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ABSTRACT 

  

Visible/near-infrared scans on a range of soil series under longleaf pine (Pinus 

palustris) were calibrated with soil total carbon using different methods to assess 

measurement accuracy. Soil data for 900 samples were provided by the Natural 

Resources Conservation Service. Spectra were preprocessed using three methods; 

Savitzky-Golay (SG), continuum removal, and wavelets. Two multivariate algorithms, 

the partial least square regression and support vector machine (SVM), were used to 

determine the best calibration model based on the coefficient of determination (R2). The 

SVM algorithm combined with the SG transformation provided the best calibration and 

validation prediction at a R2= 0.70 for mineral soils.  Adjoining soil map units that vary 

in slope steepness were also analyzed for that vary in slope steepness with soil property 

patterns at four different sites in GA.  Few significant differences were observed with 

slope steepness at any depth (0-200 cm) for the measured variables (percent clay, C, pH).  



 

 

VNIR calibrations for percent clay demonstrated potential predictive value (i.e., R2≥ 0.9) 

while those for C and pH cacl2, although not as strong (i.e., R2≥ 0.67 and R2≥ 0.54, 

respectively), indicated some utility for field classification or monitoring of dynamic soil 

properties under longleaf pine ecosystems.  
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CHAPTER 1 

INTRODUCTION 

 As interest in spatially explicit soil sampling has developed for both precision 

agriculture and ecological modeling, demands for rapidly acquired and more extensive 

soil quality data have increased (McBratney et al., 2006). Soil analyses are often 

restricted to relatively few samples or samples that are composited across an area to 

provide a representative mean, but such approaches lack the data richness to determine 

local or fine-scale spatial variability (Soriano-Disla et al., 2014). Visible/near-infrared 

reflectance (VNIR) spectroscopy is developing into a viable option to determine soil 

properties in the field in a more rapid, cost effective, and spatially explicit manner. 

 Many studies on VNIR-based models have investigated the effect of using 

different multivariate techniques and different spectral preprocessing methods on 

prediction accuracy.  In addition to total soil C, studies have investigated SOC, clay 

content, and pH (Vasques et al., 2008; Rossel and Behrens, 2010). Working in north-

central Florida, Vasques et al. (2008), used partial least square regression (PLSR) and 

other multivariate techniques with spectral preprocessing to predict total soil carbon and 

SOC.  Vasques et al. (2008) determined that PLSR yielded the best prediction.  In 

contrast, Rossel and Behrens (2010) using soil samples from Australia to predict SOC, 

pH, and clay content, compared PLSR and support vector machines (SVM), and other 

multivariate techniques combined with spectral preprocessing transformations.  These 
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researchers found SVM to be the best algorithm for predicting all three soil properties.  

More recently, Curcio et al. (2013) found PLSR with the continuum removal (CR) 

transformations to best correlate specific spectral absorption features with soil texture 

properties.  No consensus exists with respect to the best multivariate technique and 

spectral preprocessing for calibration across soil types and properties.   

The longleaf pine (Pinus palustris) ecosystem of the southeastern US is an 

ecosystem of conservation concern and a focus of restoration efforts.  During restoration, 

the recovery of SOC can reflect the development of organic matter and nutrient cycles in 

this ecosystem.  As such, the ability to rapidly and spatially monitor SOC concentrations 

with VNIR would be valuable.  This requires good VNIR calibrations of soil properties 

for soil series supported by longleaf pine.   

Longleaf pine forests once encompassed more than 90 million acres across the 

southeast United States, stretching from eastern Texas to southern Virginia. Over the past 

two centuries, development, timber harvest, and fire suppression have reduced the extent 

of these forests by almost 97 percent (Longleaf Alliance, 2015).  The species extensive 

historic range demonstrates its ability to thrive on a variety of soils within the Southeast, 

ranging from the xeric sandy Entisol soils of the Coastal Plain to the mesic clayey Ultisol 

soils of the Piedmont and the wet mesic Spodosols of the Flatwoods region (Mclntyre et. 

al. 2008; Peet 2006). Given the ecological breadth of longleaf pine, VNIR calibrations 

would need to be robust on multiple soil series.  There are 296 soil series in the state of 

Georgia and more than half can support longleaf pine (Environmental Protection 

Division, 2000). 
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 Regeneration and restoration of the longleaf pine ecosystem in these regions has 

become an important goal of many groups and government agencies including the 

Longleaf Alliance, National Fish and Wildlife Foundation, The Nature Conservancy, 

U.S. Forest Service, and the Natural Resource Conservation Service (NRCS).  The 

NRCS, in particular, participated in the Conservation Reserve Program’s Longleaf Pine 

Initiative (LLPI) that started in 2006 to plant marginal agricultural lands to longleaf pine 

and in 2010 the NRCS extended the LLPI to foster regeneration and restoration of 

longleaf pine on private lands (NRCS, 2011).   

 The historical range of the longleaf pine ecosystem has been designated a priority 

landscape by the NRCS and the agency has worked to develop a range of state-and-

transition-models that identify expected transitions in ecological site conditions with a 

change in management (i.e., agricultural abandonment or introduction of fire). When 

considering restoration and regeneration of longleaf pine within this framework of state-

transitions for a particular ecological site there is an interest in understanding how soil 

characteristics may vary with landscape position, and thus impact longleaf pine 

communities, and how changing management will change soil properties.  The state-and-

transition models are designed for specific physiographic settings and ecological site 

descriptions (ESD) that are predominantly defined by plant communities but also by soil 

properties (Caudle et al. 2013).  

 When studying dynamic soil properties (DSP; i.e., properties that are expected to 

change on human timescales of decades to centuries) such as pH or organic carbon, it is 

recommended that studies focus on specific soil map units, specifically the soil series 
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(Tugel et al., 2008).  However, this recommendation does not address the fact a soil 

series is only one component of a map unit.  Differences in slope, historic erosion or 

other features indicated by the map unit may be as, or more important, than the soil series 

itself for determining vegetation-soil relationships (Soil Survey Division Staff, 1993).  As 

such, when studying DSPs under longleaf pine one might keep the soil series consistent 

while sampling across different map unit phases with varying slope, which can impact 

both longleaf pine communities and soil attributes.  Currently, there is little research on 

how soil map units incorporating steepness of slope within a soil series might influence 

longleaf pine community classification or, more generally, how these differences might 

impact DSP under longleaf pine regeneration or restoration. 

 This thesis focuses on the use of visible/near-infrared scanning as a method to 

rapidly and cost effectively analyze and predict soil properties in the field, while also 

focusing on the use of soil map units as a useful attribute to analyze DSPs along 

topographic gradients within longleaf pine ecosystems. In Chapter II of this thesis, using 

soils under longleaf pine management, I produce a predictive model to determine soil 

total carbon by means of VNIR spectroscopy using a variety of spectral transformations 

and algorithms.  In Chapter III I analyze adjoining soil map units that vary in slope 

steepness at four different sites, two located within the Piedmont region and two within 

the Middle Coastal Plain region of Georgia.  I use VNIR in analyses of soil properties of 

interest (i.e., carbon, clay, and pHcacl2) that may help evaluate soil variability 

topographically or DSPs over time and under changing land use. In Chapter IV I briefly 

discuss the overall importance of this thesis. 
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Abstract 

Visible/near-infrared reflectance (VNIR) spectroscopy has been shown to be an 

extremely flexible method for the rapid analysis of many soil properties.  VNIR scans of 

samples collected from a range of soil series under longleaf pine (Pinus palustris) were 

calibrated with soil total carbon using different multivariate methods to assess 

measurement accuracy. Spectra were preprocessed using three different transformation 

methods; Savitzky-Golay, continuum removal, and wavelets. Two multivariate 

algorithms, the partial least square regression (PLSR) and support vector machine 

(SVM), were used to determine the best calibration model based on the coefficient of 

determination (R2) and root mean square error (RMSE) on training and test data sets. 

Most samples included in this dataset were procured through the Rapid Carbon 

Assessment (RaCA) database from the Natural Resources Conservation Service (NRCS) 

where 900 samples contained both VNIR scans and soil total carbon values.  Data were 

analyzed for three data subsets; all soils, organic matter horizons with 17 - 60 % C 

values, and mineral soil with 0-2% C values.  Results indicate that the SVM algorithm 

combined with the SG transformation provides the best calibration and validation 

prediction of R2=0.70 for mineral soils.  Mineral soils also produced the lowest RMSE 

compared to all other levels of analysis.  VNIR offers a cost effective and rapid means for 

capturing soil total carbon in the field to evaluate management and restoration effects on 

soils in longleaf pine ecosystems.   
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Introduction 

 As interest in spatially-explicit soil sampling has developed for both precision 

agriculture and ecological modeling, demands for rapidly acquired and more extensive 

soil quality data have increased (McBratney et al., 2006). Soil analyses are often 

restricted to relatively few samples or samples that are composited across an area to 

provide a representative mean, but such approaches lack the data richness to determine 

local or fine-scale spatial variability (Soriano-Disla et al., 2013). Visible/near-infrared 

reflectance (VNIR) spectroscopy is developing into a viable option to determine soil 

properties in the field in a more rapid, cost effective, and spatially explicit manner that 

can expand the acquisition of soil data. 

In VNIR scanning, spectral reflectance is measured from soils across a range of 

spectral wavelengths (350 – 2500 nm) that include both visible and a portion of infrared 

wavelengths.  Spectral reflectance measures the ratio of radiant energy reflected from a 

surface to that incident on the surface, it can be increased or decreased by factors such as 

soil moisture, organic matter content, soil texture, and mineralogy (Lillesand et al., 2008).  

Through the use of VNIR reflectance spectroscopy and known soil properties values, 

statistical models can be developed to predict soil properties within the laboratory and 

field.  

Many studies on VNIR-based models have investigated the effect of using different 

multivariate techniques and different spectral preprocessing methods on prediction 

accuracy.  In addition to total soil C, studies have also investigated other properties such 

as SOC, clay content, and pH (Vasques et al., 2008; Rossel and Behrens, 2010). Working 
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in north-central Florida, Vasques et al. (2008), used partial least square regression 

(PLSR) and other multivariate techniques with spectral preprocessing to predict total soil 

carbon and SOC.  Vasques et al. (2008) determined that PLSR yielded the best 

prediction.  In contrast, Rossel and Behrens (2010) using soil samples from Australia to 

predict SOC, pH, and clay content, compared PLSR and support vector machines (SVM), 

and other multivariate techniques combined with spectral preprocessing transformations.  

These researchers found SVM to be the best algorithm for predicting these three soil 

properties.  More recently, Curcio et al. (2013) found PLSR with the continuum removal 

(CR) transformations to best correlate specific spectral absorption features with soil 

texture properties.  Inconsistencies in the literature reveal that no consensus exists with 

respect to the best multivariate technique and spectral preprocessing for calibration across 

soil types and properties.   

Longleaf pine (Pinus palustris) is an ecosystem of conservation concern and thus a 

focus of restoration efforts.  During restoration, the recovery of SOC can reflect the 

development of organic matter and nutrient cycles in this ecosystem.  The ability to 

rapidly and spatially monitor SOC concentrations with VNIR would be valuable for 

documenting restoration success.  Longleaf pine has the ability to live and thrive on a 

variety of soils within the southeast United States, ranging from the sandy soils of the 

Coastal Plain to clayey soils in the Piedmont (Mclntyre et. al. 2008).  Historically, 

longleaf pine covered most of the Atlantic and Gulf Coastal Plains from southeastern 

Virginia to eastern Texas and south through the northern two-thirds of peninsular Florida, 

an area of approximately 90 million acres.  Currently, due to timber harvesting, clearing 
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for agriculture, and suburban development, the longleaf pine ecosystem has dwindled to 

approximately 3.8 million acres, mainly in northern North Carolina, eastern Louisiana, 

and Florida (Figure 2.1; Longleaf Alliance, 2015). Given the ecological breadth of 

longleaf pine, VNIR calibrations will need to be robust across multiple soil series.  For 

example, there are 296 soil series in the state of Georgia and more than half can support 

longleaf pine (Environmental Protection Division, 2000). 

Loss of longleaf pine has decreased habitat for many endemic plants and led some 

animal species to become endangered.  Wiregrass (Aristida stricta), the purple pitcher 

plant (Sarracenia purpurea), the red-cockaded woodpecker (Leuconotopicus borealis), 

and the gopher tortoise (Gopherus Polyphemus) are species that depend on the longleaf 

pine ecosystem.   

The diversity and historical range of the longleaf pine ecosystem is intertwined 

with its fire history.  Longleaf pine is a prime example of a fire-dependent ecosystem.  

Without fire, deciduous tree species invade, and their shade eliminates both the longleaf 

pine regeneration and herbaceous understory vegetation (Mississippi Forestry 

Commission, 2008). Historically, lightning ignited fires that burned across the landscape 

did not cause catastrophic damage.  More recently, due to fire suppression, which leads to 

the buildup of fuels, fires have burned with greater intensity (Wilson et al., 2002). 

Prescribed fires can ameliorate these fuel conditions and accomplish a number of 

additional objectives including preparing sites for seeding and planting, improving 

wildlife habitat, managing competing vegetation, controlling insects and disease, 

improving forage for grazing, enhancing aesthetics, and providing a foothold for a 
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diversity of understory vegetation (Kavanagh et al. 2010).  The use of prescribed fire 

within longleaf pine ecosystems has been central to restoring and regenerating this 

species across its native range.  Unfortunately, in addition to the need to calibrate across 

many soil series, fire may further complicate VNIR calibrations as it would be very 

difficult to incorporate a metric of time since last fire or intensity of fire at a specific 

location into calibrations.  However, robust predictions of total soil C across this range of 

variance within the longleaf pine ecosystem may help to better inform future restoration 

and regeneration management.   

Therefore, the primary aim of this study is to identify the best multivariate techniques 

and spectral transformations for soils under longleaf pine ecosystems. PLSR and SVM 

are compared and the coefficient of determination (R2) is used as the goodness-of-fit 

metric to find the best approach for predicting soil total carbon in these soils. PLSR and 

SVM, both widely used in chemometrics (Marabel et al. 2013), use the entire spectrum of 

available data. Three preprocessing transformations are also compared with each 

multivariate technique, Savitzky-Golay (SG), continuum removal (CR), and wavelets 

(WT).  These six combinations are compared for the best prediction of total soil carbon in 

longleaf pine soils. 

With the development of accurate predictive models, soil total carbon values can 

be measured by scanning a soil sample either in situ or in a laboratory. Given non-linear 

relationships between VNIR reflectance and soil properties, it is predicted that SVM will 

provide a better model than PLSR (Thissen et al., 2004; Üstün, 2003). 
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Methods 

Dataset  

Data used in this study were acquired through the Rapid Carbon Assessment (RaCA) 

(n=346) conducted by the Natural Resources Conservation Service (NRCS). A secondary 

set of data, not included in the RaCA database, were provided by Strickland et al. (2015) 

(n=585).  The complete national RaCA database encompasses over 6,000 samples across 

the United States.  From these, 346 data entries were extracted from the RaCA database 

by soil series found under the longleaf pine historical range.  These 346 data entries 

consist of both carbon measurements and VNIR scans within the soil profile. Both scans 

and carbon values were collected using a range of techniques through different 

laboratories participating in the RaCA database project.  The Strickland et al. (2015) 

samples (n=585) consist of only carbon measurements.  These soil samples were 

provided to us by Dr. Strickland so that VNIR scanning could be completed. The total 

dataset within this study (n = 909) includes 22 different soil series in 284 profiles (Table 

2.1).  Not all soil profiles were sampled according to the same depth increments or data 

collection techniques.  Total profile depth within the dataset ranged from 0 - 65 cm to 0 - 

305 cm, and depth increments varied by profile. Carbon values ranged from 0.01 to 59.84 

% (Figure 2.2a).  

 

Laboratory Methods 

A VNIR field Spectrophotometer (Analytical Spectral Devices, Boulder, Co.) 

with Indico Pro software and a contact probe with a window diameter of 2 cm was used 
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to scan soil samples from Strickland et al. (2015) from 350 to 2500 nm in 1 nm 

increments. A baseline scan using a Spectralite® white blank (ASD, Inc.) was preformed 

to initiate measurements. After establishing the base line, the contact probe lens was 

pressed firmly against the surface of a soil sample within its sample bag so that no light 

from the lens was visible and then scanned. The soil was then mixed within the sample 

bag, and a refreshed surface was scanned again.   Each spectrum was averaged from a 

compilation of 50 readings during each scan. Three scans per sample were performed, 

which were then averaged.  Between each sample, the contact probe was cleaned.  A 

baseline scan was performed after every 10 samples.      

 

Calibration Process 

Raw reflectance spectra were preprocessed by cleaning and smoothing in R 

version 3.2.3 by using Savitzky-Golay (SG), continuum removal (CR), or wavelets (WT) 

transformations within the prospectr and soil.spec packages (Sila et al., 2014; Stevens et 

al. 2013). Transformations of these data were done to reduce the dimensionality of the 

spectral data, which can improve the prediction of the calibrations.  The SG uses the first 

derivative of the spectra across an eleven band window (Savitzky & Golay, 1964). The 

CR finds points lying on the convex hull (local maxima or envelope) of a spectrum, 

connects the points by linear or spline interpolation and normalizes the spectrum by 

dividing (or subtracting) the input data by the interpolated line (Stevens et al. 2013). The 

WT is an integral transformation that smooths spectral signals and reduces the 

dimensionality of large data sets (Rossel et al., 2009; Szu et al., 1996).  Low signal to 
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noise ranges were removed (350-380, 970-1010, and 2460-2500 nm) after 

transformations were completed (Shepherd et al., 2002).  

Spectra and carbon data were randomly separated into 20% test and 80% training 

datasets.  To avoid splitting up soil profiles, the Kennard-Stone Algorithm was used 

(Kennard & Stone, 1969).    The PLSR or SVM was used to perform the calibration 

(Figure 3). The PLSR is a linear predictive algorithm, whereas SVM is a linear algorithm 

but in a high-dimensional space.  SVM performs classification tasks by forming an 

optimal separating hyperplane between two classes by maximizing the margin between 

the classes’ closest points.  Points lying on the boundaries are called support vectors, and 

the middle of the margin is the optimal separating hyperplane (Meyor et al., 2015; 

Thissen et al., 2004; Üstün, 2003).   

Coefficients of determination (R2) were determined for the training dataset along 

with a cross-validation. During the cross-validation the training datasets were partitioned 

into 10 random folds and trained over nine folds while being validated on the 10th. This 

was repeated nine times for each of the folds and the accuracy averaged over all of them. 

In addition, R2 was determined for a linear regression on the observed vs predicted values 

in the test datasets along with the root mean square error (RMSE) where 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

 

n is the number of samples, 𝑦𝑖 is the measured carbon value, and 𝑦𝑖̂ is the predicted 

carbon value. 
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Calibration Data 

In order to determine the best calibration, the data was analyzed in three 

groupings: (1) calibrations of all data available (All soil, n = 931); (2) calibration of O 

horizon data only, in which C values ranged from 17.69 – 59.84% and were squared to 

achieve statistical normality (O horizon, n =227) (Figure 2.2b); and (3) calibrations on 

mineral soil data only containing C values from 0.01 - 2% for which we used a log10 

transformation to achieve normality (mineral soil, n = 682) (Figure 2.2c).   

 

Results 

For the training/cross-validation data, the All Soil analysis found that PLSR with 

CR yielded R2 = 0.94 compared to 0.95 and 0.95 for SG and WT transformations (Table 

2.2).  In contrast, SVM with CR, SG, and WT yielded R2 =0.96, compared to 0.96 and 

0.96 for SG and WT.  For Organic Horizon data, PLSR with CR yielded R2 = 0.74 

compared to 0.99 and 0.93 for SG and WT. SVM produced much poorer fits, yielding R2 

= 0.56, 0.58, and 0.53 for CR, SG, and WT.   For the Mineral Soil analysis, PLSR with 

CR yielded R2 = 0.79 compared to 0.86 and 0.81 for SG and WT, and SVM yielded R2 = 

0.79, 0.86 and 0.85 for CR, SG, and WT.  Mineral soil analysis resulted mostly in lower 

RMSE fits than either All Soil or the O Horizon analyses (Table 2.2). 

Using these multivariate models total soil carbon was predicted for the test dataset 

and predicted values compared with observed.  For All Soil analysis, PLSR with CR 

yielded R2 = 0.77 on test/validation data compared to 0.80 and 0.80 for SG and WT 

transformations.  In contrast, SVM with CR yielded R2 =0.78, compared to 0.80 and 0.69 
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for SG and WT (Figure 2.4).  For Organic horizon data, PLSR with CR yielded R2 = 0.36 

on validation data compared to 0.23 and 0.23 for SG and WT (Figure 2.5). SVM 

produced much better fits, yielding R2 = 0.38, 0.45, and 0.39 for CR, SG, and WT (Figure 

2.5).  For the mineral soil analysis, PLSR with CR yielded R2 = 0.64 on validation data 

compared to 0.64 and 0.64 for SG and WT, and SVM yielded R2 = 0.61, 0.70 and 0.70 for 

CR, SG, and WT (Figure 2.6).  Mineral soil analysis also resulted in lower RMSE than 

either All Soil or the Organic Horizon analyses (Table 2.2). 

    

Discussion 

 The All Soil analysis results yielded the best validation and cross-validation as 

measured by R2 with the PLSR and WT combination producing the best model (Table 2).  

However, the combination of organic and mineral soil horizons forms a bimodal 

distribution of total C (Figure 2.2a) and the validation plots (Figure 2.4) indicate soil total 

C percentages span a large range (0.01 – 59.84%), but with most samples located at each 

extreme.  Due to this bimodal distribution, cross-validation and validation results are 

problematic and dictate the use of separate calibrations for organic vs. mineral horizons.   

The SVM model with the SG transformation performed best for the Organic 

horizon data, which contain the higher C values. This model had a cross-validation R2 of 

0.64 and a validation R2 of 0.55.  This relatively low cross-validation result indicates that 

the model is somewhat ineffective as predictions using data from within the training 

dataset should generally be quite good (i.e., R2>0.9).  These low R2 values within the 

Organic horizon level may be due to the high organic matter contents. Generally, 
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spectrophotometric techniques can produce asymptotic shaped response curves as at high 

concentrations each increment of carbon no longer produces a linear response.  At the 

extreme, the response to additional C maybe so flat that concentrations cannot be 

separated.  This could partly explain the calibration’s inability to predict soil total C 

within the Organic horizon.   

The Mineral soils (0.01 - 2% C) calibration using SVM and SG yielded the most 

accurate prediction (R2 = 0.86 on cross-validation and R2 = 0.70 on validation).  

Moreover, from the plot’s well-distributed residuals this calibration appears superior to 

all others (Figure 2.2c).  While a predictive performance of R2 = 0.70 is still too low for 

accurate measurement of soil total carbon, this particular model might still assist in 

inferring horizontal spatial variance or vertical variance. These results suggest that the 

RaCA dataset as a whole may be too broad in soil series, landscape type, and soil total C 

ranges, with insufficient replication within these groups, to be fully able to accurately 

predict soil total C across a diverse region such as the longleaf pine ecosystem.  

Similar calibration difficulties were found by Stenberg (2010) working with a 

dataset (n = 396) representative of agricultural soils in Sweden. The 396 samples were 

organized into 5 categories of sand percentages (0-20, 20-40, 40-60, 60-80 and 80-100% 

sand) with grain sizes ranging between 0.06 and 2.0 mm in diameter. Stenberg was able 

to determine an effective calibration model for SOC only when sandy soils (80-100 % 

sand) were removed from the dataset.  Homogenizing the soil types resulted in lower 

RMSE on average (ranging from ~ 0.625-0.71) than when removing other categories of 

sand.  Within the current study, texture was not available, making it possible that texture 
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(i.e. the percentage of sand) could be another variable affecting the model.  A number of 

studies (Wang et al. 2015; Soriano-Disla et al. 2014, Sá et al. 2009; Vasques et al. 2008) 

achieved favorable calibrations (R2 > 0.8) on homogenous soil data sets.  For example, 

Wang et al. (2015) sampled 675 soil samples within Nebraska, California and Texas 

agriculture fields collected at three depths (0-15, 15-30, 30-45 cm).  For soil total C, the 

study produced R2 between 0.84-0.87 for each field.  These studies that achieved 

favorable calibrations possibly within more homogenous soils suggests NIRS calibration 

may not be broadly applicable across multiple soil series. 

Generally, SVM yielded better (smaller) RMSE validation statistics than PLSR, 

across transformations and data groups.  Based on both higher validation R2 and smaller 

RMSE values, regardless of transformation used, SVM proved to be a more accurate and 

flexible model for predicting total soil C than PLSR. 

In the future, VNIR calibration models may benefit from including more variables 

into the calibration equation, such as land use type and depth of sample.  The dataset used 

in this study derives from a mixture of sampling depths, sampling methods, C analysis 

methods, and land use types.  By incorporating different land uses and different depth 

measurements into the calibration, it may be possible to construct a total soil C 

calibration with greater accuracy.            

      

Conclusion 

 Results support the hypothesis that SVM performs better than the more-

constrained PLSR.  While SVM combined with SG for 0 -2 % C (mineral soil) yielded 
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the highest prediction accuracy (R2 = 0.70) it is not yet equipped to be used as a 

prediction model for soil total C with sufficient accuracy. Across such a diverse 

ecosystem as the longleaf pine ecosystem a more robust calibration will be required.  

This lack of precision, in part, may be due to the high degree of spatial variability within 

the dataset and data collection inconsistencies. However, where spatial patterns are 

concerned, this model could do well in trying to provide some inference for horizontal or 

vertical spatial variance. 
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Table 2.1: The twenty-two soil series and their frequency within the dataset. Note that 

profiles are not all the same depth with some containing only one horizon. 

 

 SOILSERIES 

NAME 

NO. OF 

PROFILES 

1 Tifton 75 

2 Pungo 50 

3 Leon 30 

4 Rains 29 

5 Pelham 24 

6 Alapaha 15 

7 Carnegie 11 

8 Johnston 10 

9 Chewacla 8 

10 Byars 5 

11 Troup 5 

12 Goldsboro 4 

13 Pinebarren 3 

14 Lakeland 2 

15 Norfolk 2 

16 Ruston 2 

17 Atmore 1 

18 Dothan 1 

19 Johns 1 

20 Lexington 1 

21 Linker 1 

22 Noboco 1 
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Table 2.2: Prediction results of validation and cross-validation RMSE and R2 for each data separation, method, and transformation 

combinations for prediction of total soil C.  Methods: partial least square regression (PLSR) and support vector machine (SVM).  

Transformations: continuum removal (CR), Savitzky-Golay (SG), and wavelet (WT). N-comp is principle components utilized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 DATA 

GROUP 

METHOD TRANSFORMATION N-

COMP 

VALIDATION CROSS-

VALIDATION 

    R2 RMSE R2 RMSE 

ALL SOIL 

(N=909) 

PLSR CR 5 0.77 1.1416 0.94 1.2335 

SG 7 0.80 1.1646 0.95 0.8859 

WT 20 0.80 0.8195 0.95 0.9361 

SVM CR  0.78 1.1974 0.96 1.2252 

SG  0.80 1.0672 0.96 0.8874 

WT  0.69 0.6931 0.96 0.9371 

        

ORGANIC 

HORIZON 

(N=227) 

PLSR CR 14 0.36 2293 0.74 2349 

SG 7 0.23 2377 0.99 2390 

WT 7 0.23 2426 0.93 2387 

SVM CR  0.38 2314 0.56 2312 

SG  0.45 2339 0.58 2371 

WT  0.39 2367 0.53 2372 

        

MINERAL 

SOIL 

(N=682) 

PLSR CR 11 0.64 1.5499 0.79 1.3502 

SG 12 0.64 0.6632 0.86 0.5012 

WT 11 0.64 0.6759 0.81 0.4866 

SVM CR  0.61 1.4824 0.79 1.3454 

SG  0.70 0.5931 0.86 0.4946 

WT  0.70 0.6211 0.85 0.4864 
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Figure 2.1: All site locations utilized for VNIR calibrations within the Southeastern U.S. 

shown over the native range of longleaf pine (green shading).    
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Figure 2.2: Relative frequency of soil total C for a) all data available, b) O Horizon data, 

and c) Mineral Soil data throughout sites located within the longleaf pine 

region in the southeast United States. Soil depth ranges to 2 m. 

c) 

b) 

ae)

)) 
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Figure 2.3: Flow chart describing multistep calibration process: (1) attribute data and 

spectra are collected, and spectra are cleaned; (2) spectral transformations are 

applied; (3) data are split into a training and test sets using the Kennard-Stone 

algorithm; (4) calibrations are developed on training and test sets using PLSR 

and SVM; and (5) calibrations are validated on the test set.  
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Figure 2.4: Validation scatter plot of total soil C measured vs. predicted soil C by partial  

                    least square regression (PLSR) and support vector machine (SVM) with 

continuum removal (CR), Savitzky-Golay (SG), or wavelet (WT) 

transformation using All Soil data collected under longleaf pine ecosystems.   
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Figure 2.5: Validation scatter plot of total soil C measured vs. predicted by partial least 

square regression (PLSR) and support vector machine (SVM) with continuum 

removal (CR), Savitzky-Golay (SG), or wavelet (WT) transformation using O 

Horizon (17.69- 59.84% C) data collected under longleaf pine ecosystems. 

 

   

 



 

 

32 

 

 

Figure 2.6: Validation scatter plot of total soil C measured vs. predicted by partial least 

square regression (PLSR) and support vector machine (SVM) with 

continuum removal (CR), Savitzky-Golay (SG), or wavelet (WT) 

transformation for mineral soil (0-2% C) data collected under longleaf pine 

ecosystems.   
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CHAPTER III 

ANALYSIS OF SOIL MAP UNITS ACROSS SLOPE STEEPNESS WITHIN 

LONGLEAF PINE ECOSYSTEMS 1 
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1Stockton, J.C. and Markewitz, D. 2016. To be submitted to Geoderma Regional.   
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Abstract 

This study evaluated whether adjoining soil map units that vary in slope have 

sufficiently varying soil property profiles to impact analyses of soil change under 

longleaf pine management.  Four different sites were sampled, one located within the 

Piedmont region, one within the Upper Coastal Plain region and two within the Middle 

Coastal Plain region of Georgia.  All sites were dominated by an overstory of longleaf 

pine.  A total of 24 profiles were collected to a depth of 0 – 200 cm with each site 

containing two or three map units and two or three profiles within each map unit.  This 

study also incorporated the use of visible/near-infrared (VNIR) spectroscopy as a rapid, 

field based approach for analyzing soil properties of interest (i.e., clay, carbon, and 

pHcacl2) that can aid in quantifying soil variability across topographic gradients or 

dynamic soil properties (DSP) over time.  Results indicate that soil map unit phases 

capturing steepness of slope is not a valuable stratification variable in analyzing DSP 

under longleaf pine regeneration or restoration.  Few significant differences were 

observed with slope steepness at any depth (0-200 cm) for the soil properties measured 

(percent clay, percent C, pH).  Values of the soil properties measured ranged broadly 

across the sites and between depths.  Percent clay ranged from less than 1 to greater than 

70%, percent carbon ranged from 0 to 2.64%, and pH ranged from 3.42 to 6.17.  VNIR 

calibrations for percent clay demonstrated potential predictive value (i.e., R2≥ 0.9) while 

those for C and pH cacl2, though much lower (i.e., R2≥ 0.67 and R2≥ 0.54, respectively), 

indicated some utility for field classification or monitoring of DSP under longleaf pine 

ecosystems.  
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Introduction 

 Longleaf pine (Pinus palustris) forests once encompassed more than 90 million 

acres across the southeastern United States, stretching from eastern Texas to southern 

Virginia. Over the past two centuries, urban and agricultural development, timber 

harvest, and fire suppression have reduced the extent of these forests by almost 97 

percent (Longleaf Alliance, 2015).  The species extensive historical range demonstrates 

its ability to thrive on a variety of soils within the Southeast, ranging from the xeric sandy 

Entisol soils of the Coastal Plain to the mesic clayey Ultisol soils of the Piedmont and the 

wet mesic Spodosols of the Flatwoods region (Mclntyre et. al. 2008; Peet 2006).  

The U.S. Southeast is not homogeneous but includes eight different physiographic 

regions and a wide variety of soil series.  Longleaf pine (LLP) site zones identified by 

Craul et al. (2005), the vegetation classifications of Peet and Allard (1993), and the 

ecological classification system of Peet (2006) all recognize the intrinsic climatic and soil 

variability of the Southeast and incorporate it into these classification systems.  In this 

study, we focus on LLP ecosystems within the Piedmont Plateau, and the Middle Coastal 

Plain regions.  The Piedmont Plateau region is bordered to the west by the Appalachian 

Mountains and to the east by the Coastal Plain.  This landscape is mostly formed on 

granite, but does have other crystalline bedrock, and has well-developed drainage 

networks with complex topography. The moderate-relief landscape found in the 

Piedmont is a result of millions of years of erosion, gradually transforming mountains 

into a rolling landscape.  The Middle Coastal Plain is situated between the Piedmont and 

the flattest portions of the Lower Coastal Plain closest to the coast.  Sediments here are 
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marine deposits of sand, silt, clay, and gravel. The region is generally of low-relief with 

steeper slopes near stream channels. The soils in the Piedmont differ from those in the 

Middle Coastal Plain due to the contrasting geologies of bedrock vs marine deposits. In 

the Piedmont soils are predominantly in the Ultisol and Alfisol orders whereas in the 

Middle Coastal Plain Ultisols and Entisol (Quartzpsamments) are common (Craul et al., 

2005).   

 Regeneration and restoration of the LLP ecosystem in these regions has become 

an important goal among many groups and government agencies such as the Longleaf 

Alliance, National Fish and Wildlife Foundation, The Nature Conservancy, U.S. Forest 

Service, and the Natural Resource Conservation Service (NRCS).  The NRCS, in 

particular, participated in the Conservation Reserve Program’s Longleaf Pine Initiative 

(LLPI) that started in 2006 to plant marginal agricultural lands to LLP and in 2010 the 

NRCS extended the LLPI to foster regeneration and restoration of LLP on private lands.  

Regeneration of LLP is typically accomplished through planting of seedlings while 

restoration is most often through the re-introduction of prescribed fire, as longleaf pine 

ecosystems are considered fire maintained (Platt et. al., 1988).  Prescribed fires reduce 

competing vegetation, prepare soils for seeds, provide space for a wide variety of 

endemic understory vegetation, and enhance the open savannah-like structure of many 

LLP forests (Kavanagh et al. 2010).  Fire is not the only way to induce LLP restoration; 

for example, the NRCS also promotes forest stand improvement through thinning or 

hardwood removal, restoration and management of rare or declining habitats, and 

tree/shrub establishment (NRCS, 2011).   
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The historical range of the longleaf pine ecosystem has been designated a priority 

landscape by the NRCS and they have worked to develop a range of state-and-transition-

models that identify expected transitions in ecological site conditions with a change in 

management (i.e., agricultural abandonment or introduction of fire). When considering 

restoration and regeneration of LLP within this framework of state-transitions for a 

particular ecological site there is an interest in understanding how soil characteristics may 

vary with landscape position, and thus impact LLP communities, and how changing 

management will change soil properties.  The state-and-transition models are designed 

for specific physiographic settings and ecological site descriptions (ESD) that are 

predominantly defined by plant communities but also by soil properties (Caudle et al. 

2013).  

Across the Southeast region, soil moisture and percent silt were identified as 

critical attributes distinguishing the plant communities of LLP ecosystems, both plant 

community composition and productivity were distinguished by these attributes (Peet 

2006).  Working in the Middle Coastal Plain of Georgia, both soil moisture and 

topographic relief class (steeply sloping {> 8%}, undulating {> 3-8%}, or nearly level 

{1-3%}) were found to influence overstory species diversity (Kirkman et al. 2004). Other 

studies have looked at the role of landscape position on soil attributes in LLP landscapes. 

Greater soil C contents were found in bottomlands, compared to uplands, with similar 

management in the Middle Coastal Plain region of GA (Silveira et al 2009). Another 

study extended the upslope-downslope comparison into depressional wetlands and 

demonstrated increased soil C in wetlands as well as lower N mineralization and higher 
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extractable P (Craft and Chiang, 2002).  These landscape and gradient studies make 

inferences about LLP ecosystems at the level of soil orders and soil series.  

In contrast to the above broad soil comparisons, studies that have investigated 

changes in soil properties under LLP with changes in management, often limit 

investigation to a single or a few soil series.  A study in South Georgia, for example, 

investigated changes in soil attributes under LLP after agricultural abandonment and 

reported working only on two closely related series of Wagram (Loamy, kaolinitic, 

thermic Arenic Kandiudult) and Norfolk (Fine-loamy, kaolinitic, thermic Typic 

Kandiudult) (Will et al. 2002).  Similarly, another study working at the Savannah River 

Site in South Carolina investigating fire frequency and land use history impacts on soil 

under LLP focused on Blanton (Loamy, siliceous, semiactive, thermic Grossarenic 

Paleudults) and Fuquay (Loamy, kaolinitic, thermic Arenic Plinthic Kandiudults) series 

(Bizzari et al., 2015; Soil Survey Staff, 1999).  

 When studying dynamic soil properties (DSP; i.e., properties that are expected to 

change on human timescales of decades to centuries) such as pH or organic carbon it is 

recommended that studies focus on specific soil map units, specifically the series (Tugel 

et al., 2008).  However, this recommendation does not address the fact a soil series is 

only one component of a map unit.  Differences in slope, historic erosion or other 

features indicated by the map unit may be as, or more important, than the soil series itself 

for determining vegetation-soil relationships (Soil Survey Division Staff, 1993).  As such, 

when studying DSPs under LLP one might keep the soil series consistent while sampling 
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across different map unit phases with varying slope, which as noted above can impact 

both LLP communities and soil attributes.   

 Presently, there is little research concerning how soil map units relating to slope 

steepness within a soil series might impact inferences about LLP community 

classification or about DSP under LLP regeneration or restoration.  In this study we 

analyze how adjoining map units vary in slope steepness at four different sites, two 

located within the Piedmont/Upper Coastal Plain region and two within the Coastal Plain 

region of Georgia, differ in several dynamic soil properties.  This study also incorporates 

the use of visible/near-infrared (VNIR) spectroscopy as a rapid, field based approach for 

analyzing soil properties of interest (i.e., carbon, clay, and pHcacl2) that may help evaluate 

soil variability across slope steepness or dynamic soil properties over time. Based on 

previous research on landscape position we hypothesized that slope steepness across map 

units would differ in soil properties affecting soil moisture (i.e., clay) and that pHcacl2 and 

C would be higher in map units with the lowest slope. 

 

Methods 

Study Sites 

 This study was conducted using four locations within Georgia.  Two sites were 

located within the Piedmont/Upper Coastal Plain, and two in the Middle Coastal Plain 

(Figure 3.1).  The sites within the Piedmont/Upper Coastal Plain region were located in 

Hancock County and in Jones County at the Hitchiti Experimental Forest within the 

Oconee National Forest located near Juliette (Figure 3.2 and 3.3).  The two sites located 
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in the Middle Coastal Plain region were located within the Ohoopee Dunes Natural Area 

near Swainsboro and the Joseph W. Jones Ecological Research Center at Ichauway in 

Newton (Figure 3.4 and 3.5).  All sites were dominated by an overstory of longleaf pine, 

although the Piedmont/Upper Coastal Plain sites were planted 8 and 16 years ago while 

the Coastal Plain stands were a more mature, naturally regenerated stand with many trees 

>40 years old.  The Hitchiti and Hancock County sites are both cutover sites converted 

from loblolly pine stands (Pinus taeda L.) to longleaf pine.  The Ohoopee Dunes site is 

managed by the Georgia Department of Natural Resources as a conservation area with 

some use of prescribe fire while the Jones Center has minimal harvest and is managed 

with prescribed fire on a two or three year return interval.  The Jones Center site had been 

recently burned prior to sampling.   

The soil within the Hitchiti site consist of the Vance soil series, which is a fine, 

mixed, semiactive, thermic Typic Hapludult commonly found within the Piedmont.  The 

soil map units within this study site are VaB2 and VaC2, this notation indicates that the 

unit consists of the Vance series with a slope of 2-6% or 6-10%, respectively, and these 

units are eroded.  The Hancock County site contains the Bonifay soil series, common to 

the Upper Coastal Plain, which is a loamy, siliceous, subactive, thermic Grossarenic 

Plinthic Paleudult.  The Grossarenic designation indicates that the profile has a sandy layer 

between 100 and 150 cm thick.  The soil map units of interest within this site are BnB and 

BnD, indicating slopes of 0-6 or 6-12%, respectively.  The Ohoopee Dunes site also 

consists of the Bonifay soil series, but with different map unit notation, which can be 

common between counties.  The map units of interest within this site are BoB, BoC, and 
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BoD, which indicates that the units are slopes of 0-5, 5-8, and 8-12%, respectively. Lastly, 

the Jones Center site is comprised of the Troup soil series, which is a loamy, kaolinitic, 

thermic Grossarenic Kandiudult, a series commonly found within the Coastal Plain. The 

map units of interest are TwB and TwC indicating slopes of 0-5 and 5-8%, respectively.  

These soil series descriptions are based on USDA-NRCS Soil Survey Division 

(https://soilseries.sc.egov.usda.gov).  

 

Soil Sampling 

 In each map unit two or three sampling locations were randomly selected. These 

random selections in the map units were not always consistent with the slope designation 

but the locations were maintained and these few discrepancies are described below. 

Given our interest in the designation of soil maps units and DSPs we sampled complete 

soil profiles in each location.  Mineral soils were sampled at 12 different depths: 0-2, 9-

11, 0-20, 20-40, 40-60, 60-80, 80-100, 100-120, 120-140, 140-160, 160-180, and 180-

200 cm. For the upper two depths, a soil punch tube with 2 cm diameter was used and 3-5 

cores per sampling location were composited. For the 20-cm increment samples, a 6-cm 

diameter soil auger was utilized. Sampling location VaC2-3 was an exception to this 

method and was only sampled to 120 cm in depth due to the inability to auger through 

weathered bedrock. 

A VNIR field Spectrophotometer (Analytical Spectral Devices, Boulder, Co.) 

with Indico Pro software was used to scan soil samples in the field.  The VNIR 

Spectrophotometer scans soils from 350 to 2500 nm in 1 nm increments using a contact 
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probe.  The probe has a window diameter of 2 cm.  The scans were completed by first 

performing a baseline scan using a Spectralite white blank (ASD, Inc.).  The lens of the 

contact probe was pressed firmly against the surface of the soil sample within its sample 

bag, so that no light from the lens was visible. Soil within the sample bag was mixed, and 

the refreshed surface was scanned again.  Each spectrum was averaged from a 

compilation of 50 readings during each scan. This was performed three times per sample 

and the three scans were then averaged.  Between each sample, the contact probe was 

cleaned.  A baseline scan was performed after every 10 samples.      

 

Stand Attributes 

  In each plot, all individual trees within a radius of 10m from the plot center 

and a diameter at breast height (DBH) greater than 4 cm were identified and measured for 

DBH to determine basal area.  Stem density was calculated within a diameter of 10 m by 

counting all stems with a height>1m and dividing by the area (m2).  Ground cover was 

determined for a 10 m transect in both the eastward and westward direction from plot 

center, totaling 20 m of transect.  Ground cover directly below each meter along the 

transects was classified as green/living, bare soil, or forest floor.  A percentage was 

calculated for each category. Lastly, two or three dominant tree heights and two or three 

codominant tree heights were measured within the 20 m diameter plot.     
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Soil Analysis  

Samples were air-dried before being ground and passed through a 2-mm sieve. 

Jones Center sampling depths of 20-40, 60-80, 100-120, 140-160, and 180-200 cm for all 

locations were not included within this analysis.  A moisture correction factor was 

determined for each air-dried soil sample by placing 3-6 g in tin cups and drying until a 

constant weight at 105⁰C. Soils were analyzed for pH, C and nitrogen (N), particle size 

distribution, and exchangeable acidity. Soil pHH2O and pHCaCl2 were measured using a 1:1 

ratio of soil and deionized (DI) water or 0.01 M CaCl2 following Thomas (1996). C and 

N concentrations were obtained from a Flash 2000 Series CN soil analyzer (CE Elantech, 

Lakewood, NJ). Particle size distribution was measured using the hydrometer method 

(Gee and Or, 2002). Exchangeable acidity values were obtained by shaking 5 g of soil 

with 50 mL of 1 M KCl and filtering through a Whatman 42 filter. Extracts were titrated 

to a pH of 8.2 with 0.02 M NaOH using an auto-titrator (Metrohm-Toledo, Columbus, 

OH) (Bertsch and Bloom, 1996). 

 

Statistical and Data Analysis 

Soil Map Units were sorted into 3 slope categories: Flat, Medium, and Steep, 

containing slopes ranging approximately from 0-6, 6-8, and 8-12%, respectively.  Results 

were analyzed by depth as a randomized block design, with soil chemical and physical 

comparisons made between Region and Map Unit Slope with site as the blocking factor. 

Data were compared using a full interaction analysis of variance (ANOVA) across both 

regions and all slope categories. Pairwise comparisons were tested for significant 
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difference at p<0.05 using Tukey’s Honestly Significant Difference (HSD). Stand 

attributes were also analyzed using this method to determine significance between basal 

area and ground coverage with region and slope as described above.  VNIR calibration 

and analysis processes can be found in more detail in chapter two of this thesis.  Raw 

reflectance spectra were preprocessed by cleaning and smoothing in R version 3.2.3, and 

using Savitzky-Golay (SG), continuum removal (CR), or wavelets (WT) transformations.  

Spectra and percent clay, % C, or pHcacl2 data were randomly separated into 20% test and 

80% training datasets.  To avoid splitting up soil profiles within these sets, the Kennard-

Stone Algorithm was used (Kennard & Stone, 1969).  PLSR (Partial Least Square 

Regression) or SVM (Support Vector Machine) was used to perform the calibration.  

Coefficients of determination (R2) and the root mean square error (RMSE) were used to 

compare the results.  The best calibration was determined for All data, Piedmont/Upper 

Coastal Plain samples, and Coastal Plain samples.  Data were analyzed using R version 

3.2.3, and ArcMap version 10.3. 

 

Results 

Soil Profile Attributes  

Measured soil attributes across the sites and over depth ranged broadly (Table 3.1 

and Table 3.2).  Percent clay, for example, ranged from <1% to over 70%.   Between the 

regions clay content was statistically greater in the Piedmont/Upper Coastal Plain versus 

the Coastal Plain by ~15% within the 40-60 cm depth range and by ~13% within the 80-

100 cm depth (p= 0.008 and 0.03, respectively). Other depths were not statistically 
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different between the regions.  For slope steepness, percent clay was ~20% lower 

(p=0.045) when comparing Steep slope to Flat slope, in the 180-200 cm depth range 

(Figure 3.6).  Again, other depths were not statistically different for percent clay among 

steepness.  Within specific sites, map unit profiles did not vary consistently for clay.  At 

the Hitchiti site, between map units, VaB2 (rep 1 and 2) had clay concentrations between 

40 and 60 %, while VaC2 (rep 1 and 2) had 30 to 40% clay, which is consistent with a Bt 

horizon for a Vance soil series.  However, VaC2-3 only contained 10% clay at this Bt 

horizon depth (Figure 3.7). For the Hancock County site, percent clay was generally low 

(1-5%) in the upper 40 cm but increased to a peak of 70% clay within the 120-160 cm 

depth (Figure 3.7). Variance with slope steepness was inconsistent at this site.  Within the 

Ohoopee Dunes, percent clay generally increased with depth for all map units, with the 

exception of BoD-1 and BoD-2, which had very little clay present (Figure 3.7).  Within 

the Jones Center site, percent clay increased relatively consistently with depth and ranged 

from 0- 30% (Figure 3.7).   

 Percent soil C was significantly different between the regions in 0-2, 9-11, and 

40-60 cm depths (p= 0.02 ,0.04, and 0.02, respectively).  Differences by slope steepness 

were only significant in 9-11 cm (p=0.0004) but was not different at deeper depths. 

Percent soil C within the 9-11 cm range was 47% lower in the Piedmont/Upper Coastal 

Plain than the Middle Coastal Plain. For the slope comparison, Medium slope was 62% 

higher than the Flat slope and 78% higher than the Steep slope (p = 0.017 and 0.0017, 

respectively).  In all the sites % C declined steadily with depth for each profile (Figure 
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3.8) except for the Ohoopee Dunes where percent C decreased with depth until the 180 

cm depth but increased slightly within the 180-200 cm depth (Figure 3.8).  

Finally, pHcacl2 exhibited no significant differences for any depth across region or 

slope.  At the Hitchiti site there was a distinct increase when comparing VaC2 to VaB2, 

with VaC2 pH increasing with depth (Figure 3.9) but for all other sites pH remained 

fairly consistent with depth for all map units.         

 

Stand Attributes 

Stand data attributes varied widely, particular for basal area, which ranged from 

<0.02 to 30 m2 ha-1.  Despite this variance across the sites neither region nor slope 

steepness were significantly different for basal area.  There were also no statistically 

significant differences for tree height, stem density, or ground cover for region or slope 

(Table 3.2). 

 

VNIR Analysis 

Field based VNIR calibrations and validations focused on percent clay for soil 

map unit classification purposes while calibration for DSP used soil C and pH. The 

analysis investigated calibrations over all the data as well as by region (Piedmont/Upper 

Coastal Plain or Coastal Plain). For all percent clay data, partial least squared regression 

(PLSR) with Continuum Removal (CR) yielded R2 = 0.68 on validation data compared to 

0.70 and 0.64, respectively, for Sovitzky Golay (SG) and Wavelet transformation (WT) 

transformations.  In contrast, support vector machine (SVM) with CR yielded R2 = 0.40, 
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compared to 0.70 and 0.72 for SG and WT.  For Piedmont/Upper Coastal Plain percent 

clay, PLSR with CR yielded R2 = 0.96 on validation data compared to 0.85 and 0.93 for 

SG and WT. SVM produced fits yielding R2 = 0.88, 0.52, and 0.67 for CR, SG, and WT.   

For Coastal Plain percent clay, PLSR with CR yielded R2 = 0.91 on validation data 

compared to 0.76 and 0.70 for SG and WT, and SVM yielded R2 = 0.42, 0.55 and 0.43 for 

CR, SG and WT, respectively (Table 3.3; Figure 3.10).  All percent clay data analyses 

also resulted in higher RMSE fits than either Piedmont/Upper Coastal Plain or the Coastal 

Plain analyses alone (Table 3.3). 

For all percent C data, PLSR with CR yielded R2 = 0.48 on validation data 

compared to 0.16 and 0.55 for SG and WT transformations.  In contrast, SVM with CR 

yielded R2 = 0.11, compared to 0.27 and 0.54 for SG and WT.  For Piedmont/Upper 

Coastal Plain percent C, PLSR with CR yielded R2 = 0.33 on validation data compared to 

0.43 and 0.67 for SG and WT. SVM produced much poorer fits, yielding R2 = -0.19, 0.25, 

and 0.43 for CR, SG, and WT, respectively.   For Coastal Plain percent C, PLSR with CR 

yielded R2 = 0.51 on validation data compared to 0.18 and 0.73 for SG and WT, and 

SVM yielded R2 = 0.26, 0.37 and 0.58 for CR, SG and WT (Table 3.4; Figure 3.11).  

RMSE fits were smaller for validation results with R2 decreasing from All to 

Piedmont/Upper Coastal Plain to Coastal Plain (Table 3.4). 

Finally, for all pHCaCl2 data, PLSR with CR yielded R2 = 0.14 on validation data 

compared to 0.19 and 0.20 for SG and WT transformations.  In contrast, SVM with CR 

yielded R2 = 0.12, compared to -0.25 and -0.05 for SG and WT.  For Piedmont/Upper 

Coastal Plain pHCaCl2, PLSR with CR yielded R2 = 0.15 on validation data compared to 
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0.62 and 0.05 for SG and WT. SVM produced much poorer fits, yielding R2 = -0.33, 0.09, 

and -0.11 for CR, SG, and WT.   For Coastal Plain pHCaCl2, PLSR with CR yielded R2 = 

0.54 on validation data compared to 0.14 and 0.08 for SG and WT, and SVM yielded R2 

= 0.20, 0.01 and 0.09 for CR, SG and WT (Table 3.5; Figure 3.12).  All pHCaCl2 data 

analyses generally resulted in higher RMSE fits than either Piedmont/Upper Coastal Plain 

or the Coastal Plain analyses (Table 3.5).  

 

Discussion 

In this study, we focused on soil variance across soil map unit phases of slope 

steepness within a soil series as it might relate to understanding changes in dynamic soil 

properties during LLP regeneration or restoration.  We characterized 2 m profiles in 

adjoining map units to understand how well soil maps units, as delineated by polygons on 

soil maps, accurately capture variance over slope steepness and how surface soil variance 

across these units might impact our ability to quantify soil change.  We also measured all 

soil with VNIR to assess how well this rapid field technique could measure soil attributes 

of interest (i.e., clay, C, and pH) both for field classification of soils and measurement of 

DSP over time. 

When considering sharply delineated polygons of soil map units, it is well 

recognized that such classifications are not 100% pure and will contain inclusions of 

other soil series or other soil phases (i.e., slopes) (Odgers et al., 2014; Burrough et al., 

1997).  Similarly, soil does not usually change abruptly at the polygon boundaries, 

although for slope boundaries might be more well defined (Greve and Greve, 2004).  In 
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our study both issues of inclusions and boundary delineations were evident.  At the 

Hitchiti site, for example, the profiles collected furthest down the hillslope (VaC2-3 and 

VaC2-2) have an increase in pH at depth unlike the other profile in the same map unit 

(VaC2-1), or the other two profiles in the adjacent map unit phase of the same soil series 

(VaB2-1 and VaB2-2).  This, in part, may be due to surrounding mafic soils as 

represented by the Davidson (Fine, kaolinitic, thermic Rhodic Kandiudults) soil series 

(DhE2 in Figure 3.3).  The Rhodic designation indicates a darker color in the Davidson 

from the mafic rock but may also cause the soil to become more basic with depth 

compared to the more acidic felsic soils located at the top of the hill slope that have a 

slightly declining pH with depth (Raulund-Rasmussen et al. 1998; Figure 3.9).  

Increasing pH with depth is characteristic of Alfisols.  These types of inclusions might 

well impact community composition, as observed by Kirkman et al. (2004) at a slightly 

larger scale, but cannot be identified in the absence of even finer scale map units (Ogder 

et al., 2014). 

Another map unit inconsistency was identified within the Ohoopee Dunes.  

Despite locating profiles BoD-1 and BoD-2 within the map unit boundary (Figure 3.3) 

the percent clay is well below the other four profiles in the adjacent Bonifay map units 

(Figure 3.7).  In fact, these low clay profiles are not Bonifay as they do not possess an 

argillic horizon that would be defined by a 4% absolute increase in clay with depth (Soil 

Survey Staff, 1999).  Thus, regardless of being located near the middle of the BoD map 

unit, these profiles display characteristics of the Kershaw soil series, which is present 

next to the BoD map unit.  This BoD map unit was identified as being of 8-12% slope but 
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field observations clearly indicated inclusions of some slopes <8%. When using map 

units for investigations of slope steepness or DSP it is evident that units must be ground-

truthed such that geographical delineations of mapping units are consistent with 

physiographic realities in the field. This caution is stated in the NRCS Soil Change Guide 

(Tugel et al., 2008) but is often ignored in modeling efforts that may, for example, be 

interested in estimating soil C sequestration with LLP regeneration across the region. 

The two examples above demonstrate some of the potential utility in developing 

VNIR for field use.  In the first example an ability to measure pH in the field might help 

identify changes in underlying bedrock, which may alter LLP regeneration or restoration 

objectives.  The VNIR calibrations for pH across all data were poor (R2=0.2) but 

separating the data into Piedmont/Upper Coastal Plain and Coastal Plain regions yielded 

improved results (R2=0.62 and 0.54, respectively) (Figure 3.12).   Although these 

validation results are below what is desired for a predictive model (i.e., R2 >0.8), they are 

promising and still might detect a pH change from 4 to 6 as observed in the Hitchiti.  The 

ability to measure pH as a DSP under LLP regeneration or restoration would also be 

beneficial.  Declines in surface soil (0-10 or 0-15 cm) pH have been observed under LLP 

regeneration on post-agricultural land compared to reference LLP (Bizzari et al., 2015; 

Will et al., 2002), although in both these cases pH decreases ranged from 4.8 to 4.0 or 4.7 

to 4.5.  To identify such changes in pH, VNIR prediction models will need to improve.  

In the second example above, the ability to measure soil percent clay in the field 

might prove useful.  Of the three soil characteristics measured, VNIR predicted percent 

clay best with validations of R2 =0.72, 0.96, and 0.91 for All Data, Piedmont/Upper 



 

 

51 

 

Coastal Plain, and Coastal Plain datasets, respectively.  Previous VNIR models for clay 

measurement have also been successful (Waiser et al., 2007).  The VNIR could be used 

to more easily classify soils within the field.  For example, VNIR may enable a user to 

determine if and where the argillic horizon starts within a profile, which might help 

distinguish between an Arenic or Grossarenic designation.  Similarly, distinguishing 

between sandy series such as Kershaw (Thermic, uncoated Typic Quartzipsamments) or 

Lakeland (Thermic, coated Typic Quartzipsamments) that are separated by having less 

than or greater than 5% silt + clay might be possible in the field. This information could 

aid with soil mapping and thus regeneration or restoration management decisions (Waiser 

et al. 2007).   

The final VNIR calibration was for soil total C, a DSP of particular interest.  

Prediction models with the PLSR and WT transformation performed best with R2 for 

validations of 0.55, 0.67, and 0.73 for All, Piedmont/ Upper Coastal Plain, and Coastal 

Plain, respectively (Figure 3.11).  The Coastal Plain calibration contained the highest and 

best validation and cross-validation R2.  Being able to accurately estimate soil C within 

the field quickly and cheaply will help determine how LLP regeneration or restoration 

may be altering C concentrations or contents, which plays a fundamental role in soil 

fertility.  Also, knowing the amount of C being stored during LLP regeneration or 

restoration has taken on a particular interest relative to atmospheric CO2 concentration 

and fire management (Longleaf Alliance, 2015; Lavoie et al. 2014; Mississippi Forestry 

Commission, 2008).   
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Previous studies within LLP have clearly demonstrated changes in soil C with 

regeneration, fire, and landscape position. For example, in the Middle Coastal Plain of 

SC soil on post-agricultural lands regenerating with LLP had 0-15 cm soil C values of 0.9 

% compared to reference LLP of 1.35% (Bizzari et al., 2015).  In the Middle Coastal 

Plain of GA similar results were observed for 0-10 cm soil in regenerating stands (0.6 ± 

0.6% C) relative to reference stands (2.19±0.19% C) (Will et al., 2002). In this same GA 

location LLP in the absence of fire had 2.57% C while regularly burned reference stands 

had 1.7% C (Boring et al., 2016). Finally, relative to 0-20 cm upland soils (1.29 ± 0.6 % 

C) bottomland soils were three-fold higher (4.79±5.61 %C) (Silviera et al. 2009). The 

VNIR calibrations should be able to detect these size difference (Figure 3.11), although 

quantitative prediction will require some refinement of these C models.  

Relative to our primary interest of map units and slope steepness, surface soil C 

(0-2, 9-11, or 0-20 cm) did not vary consistently with slope (Figure 3.6).   In the 0-2 cm 

layer soil C increased with slope steepness but not significantly (Figure 3.6).  Only in the 

9-11 cm layer was slope significant and here the middle steepness showed the highest soil 

C, which is not consistent with our original hypothesis.  Whether variance in these map 

units with slope steepness can inform changes in DSP during LLP regeneration or 

reforestation depends on the variance in the units (or strata) compared to the overall 

landscape variance. When measuring 186 samples in an upland to bottomland gradient 

study, the coefficient of variation (CV) for soil C was 144% over all samples and 50 or 

118% in the upland and bottomland, respectively (Silviera et al. 2009).  This is similar to 

the results of our study.  The percent C CV over all soil profiles for 0-2, 9-11, or 0-20 cm 
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depths was 127%, 92%, and 58%, respectively (n = 22 per depth increment).  Within the 

slope classes of flat, medium, or steep the CV for soil C is 49%, 28%, or 150%, 29%, 

68%, or 46%, and 58%, 70%, or 47% for 0-2 (n= 10 per slope class), 9-11 (n= 5 per slope 

class), and 0-20 cm (n = 7 per slope class), respectively.  The 9-ll cm depth contains 

smaller CV across slope class than the CV for all samples combined for 9-11 cm.  This 

further supports the significance of slope class within the 9-ll cm depth. In relation to 

DSPs, it would appear that the smallest scale of soil classification, soil map unit phases, 

may not be beneficial for improving our ability to determine soil property change over 

time under longleaf regeneration or restoration.  There is too much variance within the 

soil map unit phases for the inclusion of slope to improve statistical models.   

    

Conclusion 

This study suggests that soil map unit phases capturing steepness of slope will not 

be a valuable stratification variable in analyzing DSP under LLP regeneration or 

restoration.  Few significant differences were observed between slope classes at any 

depth (0-200 cm) for the measured variables (percent clay, C, pH) and even in cases of 

observed differences there was not a clear monotonic pattern from flat to steep.  VNIR 

calibrations for percent clay demonstrated potential predictive value (i.e., R2≥ 0.9) while 

those for C and pH, although not as strong, indicated some utility for field classification 

or monitoring of DSP.  
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Table 3.1: Minimum and maximum values for soil characteristics across two Piedmont/Upper Coastal Plain and two Coastal Plain 

sites in GA collected in 2015/2016.  (n= 278 for Carbon, Nitrogen, and Ex.Ac.; n= 226 for Clay and pH)  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 pH measured in a 0.01 M CaCl2 slurry  

2Exchangeable acidity   

 

 

 

 

 

Depth Clay (%) 1pHCaCl2 Carbon (%) Nitrogen (%) 2Ex.Ac. (cmol+/kg soil) 

(cm) Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

0-2 NA NA NA NA 0.04 11.85 0.01 0.19 0.02 1.32 

9-11 NA NA NA NA 0.03 3.78 0.01 0.08 0.24 5.00 

0-20 0.77 29.54 3.42 5.07 0.02 1.66 0.01 0.06 0.12 3.17 

20-40 1.00 55.94 3.72 4.70 0.13 0.56 0.01 0.03 0.01 4.90 

40-60 0.77 57.26 3.52 5.14 0.06 1.58 0 0.06 0.10 8.70 

60-80 0.39 50.58 3.71 4.85 0.04 1.15 0 0.09 0.12 6.75 

80-100 1.00 47.15 3.75 5.47 0.03 0.41 0 0.02 0.01 6.75 

100-120 1.00 55.86 3.71 6.17 0.01 0.26 0 0.03 0.04 18.00 

120-140 0.39 65.35 3.42 4.80 0 0.37 0 0.03 0.08 30.38 

140-160 1.00 73.44 3.57 5.47 0 0.23 0 0.03 0.04 39.81 

160-180 1.00 70.71 3.63 5.84 0 0.27 0 0.03 0.04 39.51 

180-200 0.44 70.69 3.43 6.14 0.02 2.64 0 0.09 0.07 41.69 
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Table 3.2: Stand characteristics and map unit slope for two Piedmont/Upper Coastal 

Plain (Hitchiti, Hancock) and two Coastal Plain (Ohoopee Dunes, Jones 

Center) sites in GA, taken at each soil profile sampling location in 2015/2016. 

 

 

         Ground Cover 

Location 

 

Map 

Unit 

 

Rep. 
Map 

Unit 

Slope 

 

Soil 

Series 
Basal 

Area  
Tree 

Height 
Stem 

Density  1FF 2GR 3BS 

     m2/ha m Stem/ha  %  
Ohoopee BoD 1 Steep Bonifay 2.88 21.20 509 90 0 10 

Dunes BoD 2 Steep Bonifay 20.18 13.13 764 90 10 0 
 BoC 1 Medium Bonifay 16.47 18.97 891 65 35 0 
 BoC 2 Medium Bonifay 8.58 19.34 637 90 10 0 
 BoB 1 Flat Bonifay 18.33 15.03 1401 85 15 0 
 BoB 2 Flat Bonifay 1.45 11.93 637 90 10 0 
           

Jones TwC 1 Medium Troup 1.504 11.04 2165 0 10 90 
Center TwC 2 Medium Troup 0.074 2.80 762 0 25 75 

 TwC 3 Medium Troup 0.080 3.40 382 30 10 60 
 TwB 1 Flat Troup 0.232 4.43 3183 40 10 50 
 TwB 2 Flat Troup 0.000 23.16 509 40 10 50 
 TwB 3 Flat Troup 0.023 2.11 1655 35 5 60 
           

Hitchiti VaC2 1 Steep Vance 0.039 12.28 4329 20 80 0 
 VaC2 2 Steep Vance 0.030 3.60 5474 40 60 0 
 VaC2 3 Steep Vance 0.039 3.08 3310 10 85 5 
 VaB2 1 Flat Vance 0.021 3.67 6366 40 60 0 
 VaB2 2 Flat Vance 0.078 4.60 2674 55 45 0 
           

Hancock BnB 1 Flat Bonifay 7.83 10.46 NA 25 70 5 
County BnB 2 Flat Bonifay 28.70 5.91 NA 40 30 30 

 BnB 3 Flat Bonifay 26.40 4.57 NA 20 55 25 
 BnD 1 Steep Bonifay 15.95 25.30 NA 25 70 5 
 BnD 2 Steep Bonifay 17.22 3.60 NA 60 30 10 

1 Forest Floor 

2 Green vegetation 

3 Bare Soil  
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Table 3.3: Prediction results of validation and cross-validation RMSE and R2 for each 

data separation, method, and transformation combination for percent clay, 

separated by all data, Piedmont/Upper Coastal Plain sites, and Coastal Plain 

sites.  Methods: Partial Least Square Regression (PLSR) and Support Vector 

Machine (SVM).  Transformations: Continuum Removal (CR), Savitzky-

Golay (SG), and Wavelets (WT) (nAll = 226, nPiedmont/Upper Coastal Plain = 116, 

nCoastalPlain= 105). N-comp is principle components utilized. Bold numbers 

highlight the best model result. 

 

 

 

 

 

 

 

   
 

Validation 
Cross-

Validation 

Data Method Transformation 
N 

Comp 
R2 RMSE R2 RMSE 

All  

PLSR 

CR 12 0.68 0.4188 0.91 0.5395 

SG 3 0.70 0.8581 0.95 1.0391 

WT 4 0.64 1.1311 0.92 1.0299 

SVM 

CR  0.40 0.3929 0.88 0.5064 

SG  0.70 0.8483 0.93 0.9981 

WT  0.72 0.9719 0.93 1.0281 

        

Piedmont/ 

Upper 

Coastal 

Plain 

PLSR 

CR 8 0.96 0.5398 0.96 0.5631 

SG 6 0.85 1.2284 0.99 1.2218 

WT 13 0.93 1.1027 0.96 1.2336 

SVM 

CR  0.88 0.5479 0.90 0.5296 

SG  0.52 1.1999 0.96 1.2169 

WT  0.67 1.1735 0.95 1.2259 

        

Coastal 

Plain 

PLSR 

CR 8 0.91 0.4586 0.94 0.4615 

SG 6 0.76 0.7027 0.98 0.8357 

WT 13 0.70 0.6827 0.96 0.8392 

SVM 

CR  0.42 0.4912 0.79 0.5205 

SG  0.55 0.5694 0.89 0.7687 

WT  0.43 0.5409 0.89 0.7716 
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Table 3.4: Prediction results of validation and cross-validation RMSE and R2 for each 

data separation, method, and transformation combination for percent C, 

separated by all data, Piedmont/Upper Coastal Plain sites, and Coastal Plain 

sites.  Methods: Partial Least Square Regression (PLSR) and Support Vector 

Machine (SVM).  Transformations: Continuum Removal (CR), Savitzky-

Golay (SG), and Wavelets (WT) (nAll = 277 npiedmont/Upper Coastal Plain= 139, 

ncoastalPlain= 137). N-comp is principle components utilized. Bold numbers 

highlight the best model result. 

 

 

 

   
 

Validation 
Cross-

Validation 

Data Method Transformation 
N 

Comp 
R2 RMSE R2 RMSE 

All  

PLSR 
CR 15 0.48 1.8963 0.71 1.7351 
SG 4 0.16 0.9526 0.88 0.9936 
WT 5 0.55 0.8840 0.80 0.9492 

SVM 

CR  0.11 1.6591 0.55 1.7019 

SG  0.27 0.7858 0.79 0.9453 

WT  0.54 0.8881 0.77 0.9088 

        

Piedmont

/ Upper 

Coastal 

Plain 

PLSR 
CR 9 0.33 1.8042 0.92 1.7497 
SG 10 0.43 1.0136 0.96 0.8861 
WT 11 0.67 0.8906 0.93 0.8985 

SVM 

CR  -0.19 1.6391 0.76 1.7246 

SG  0.25 0.7655 0.88 0.8647 

WT  0.43 0.7265 0.88 0.8777 

        

Coastal 

Plain 

PLSR 
CR 10 0.51 1.9750 0.82 1.7625 
SG 6 0.18 0.8305 0.96 1.1015 
WT 3 0.73 0.9996 0.86 1.0217 

SVM 

CR  0.26 1.8492 0.59 1.7072 

SG  0.37 0.7672 0.78 0.9967 

WT  0.58 0.9021 0.74 0.9411 
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Table 3.5: Prediction results of validation and cross-validation RMSE and R2 for each 

data separation, method, and transformation combination for pHCaCl2, 

separated by all data, Piedmont/Upper Coastal Plain sites, and Coastal Plain 

sites.  Methods: Partial Least Square Regression (PLSR) and Support Vector 

Machine (SVM).  Transformations: Continuum Removal (CR), Savitzky-

Golay (SG), and Wavelets (WT) (nAll = 226 npiedmont/Upper Coastal Plain = 116, 

ncoastalPlain= 105). N-comp is principle components utilized. Bold numbers 

highlight the best model result. 

 

 

 

   
 

Validation 
Cross-

Validation 

Data Method Transformation 
N 

Comp 
R2 RMSE R2 RMSE 

All 

PLSR 

CR 8 0.14 3.5807 0.71 3.3550 

SG 10 0.19 4.0947 0.88 4.2456 

WT 16 0.20 4.0296 0.82 4.2045 

SVM 

CR  0.12 3.2608 0.50 3.2919 

SG  -0.25 4.1566 0.65 4.1902 

WT  -0.05 4.0916 0.69 4.1543 

        

Piedmont/ 

Upper 

Coastal 

Plain 

PLSR 

CR 8 0.15 3.2444 0.86 3.6987 

SG 9 0.62 4.4332 0.95 4.1822 

WT 6 0.05 4.0744 0.92 4.2080 

SVM 

CR  -0.33 3.2437 0.69 3.2990 

SG  0.09 4.1365 0.61 4.1121 

WT  -0.11 4.1088 0.79 4.1604 

        

Coastal 

Plain 

PLSR 

CR 10 0.54 3.2502 0.91 3.3460 

SG 4 0.14 4.1368 0.96 4.2531 

WT 12 0.08 4.9416 0.89 4.2060 

SVM 

CR  0.20 3.2839 0.60 3.3460 

SG  0.01 4.1803 0.72 4.2075 

WT  0.09 4.1501 0.67 4.1862 
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Figure 3.1: Study site locations and physiographic regions in Georgia. 
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Figure 3.2: Site location and elevations within the Hancock County site in Hancock County, GA.  Location points are in blue, while 

elevation contours are in red at 10 m intervals.    
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Figure 3.3: Site location and elevations within the Hitchiti site in the Oconee National Forest in Gray, GA.  Location points are in 

green, while elevation contours are in red at 15 m intervals.  
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Figure 3.4: Site location and elevations within the Ohoopee Dunes Site in Swainsboro, GA.  Location points are in yellow, while 

elevation contours are in red at 10 m intervals.  
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Figure 3.5: Site location and elevations within the Jones Center site in the Newton, GA.  Location points are in pink, while elevation 

contours are in red at 10 m intervals. 
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Figure 3.6:  Percent carbon (top) and percent clay (bottom) averaged by depth and 

compared by slope (Flat, Medium, and Steep) (mean ± SD). Capital letters 

indicate significance among slope types and depth (Percent C: nFlat = 10, 

nMedium = 5, and nSteep= 7 for each depth; Percent Clay (160-180 cm): nFlat = 

10, nMedium = 5, and nSteep= 7; Percent Clay (180-200 cm): nFlat = 7, nMedium = 

2, and nSteep= 7)   
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Figure 3.7:  Percent clay for each site by depth and map unit soil series.  Within each graph, the same color indicates the same map 

unit and different shape indicates different soil profile within that map unit category.  Collected 2015/2016. 
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Figure 3.8: Percent C for each site by depth and map unit soil series.  Within each graph, the same color indicates the same map unit 

and different shape indicates different soil profile within that map unit category. Collected 2015/2016.  
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Figure 3.9: Values of pHCaCl2 for each site by depth and map unit soil series.  Within each graph, the same color indicates the same 

map unit and different shape indicates different soil profile within that map unit category.   Collected 2015/2016.
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Figure 3.10: Most accurate validation scatter plot of percent clay measured vs. predicted 

for all clay data, Piedmont/Upper Coastal Plain data and Coastal Plain data 

from the four study sites.  Produced from partial least square regression 

(PLSR) or support vector machine (SVM) with wavelets (WT) or continuum 

removal (CR) transformations. 

(Piedmont/Upper Coastal Plain) 
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Figure 3.11: Most accurate validation scatter plot of percent C measured vs. predicted for 

all C data, Piedmont/Upper Coastal Plain data and Coastal Plain data from the 

four study sites.  Produced from partial least square regression (PLSR) with 

wavelets (WT) or continuum removal (CR) transformations. 
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Figure 3.12: Most accurate validation scatter plot of pHCaCl2 measured vs. predicted for 

all pHCaCl2 data, Piedmont/Upper Coastal Plain data and Coastal Plain data 

from the four study sites.  Produced from partial least square regression 

(PLSR) with wavelets (WT), Savitzky-Golay (SG), or continuum removal 

(CR) transformations. 
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CHAPTER IV 

CONCLUSION 

I investigated soil attributes under longleaf pine ecosystems, an ecosystem of 

current conservation concern.  In Chapter 2 of this thesis, I evaluated multivariate 

calibration techniques for Visible/near-infrared (VNIR) scans to predict soil C under 

longleaf pine.  In Chapter 3, I conducted field-based research on soil maps units (phases) 

under longleaf pine.  Below I summarize my main findings. 

Visible/near-infrared (VNIR) scanning can offer a cost effective and rapid means 

for capturing soil total carbon and other dynamic soil properties (DSP) in the field to 

evaluate management and restoration effects on soils in longleaf pine ecosystems.  The 

geographic area covered by longleaf pine plantations is expansive and given this 

ecological breadth, VNIR calibrations need to be robust across multiple soil series. Data 

from the RaCA database and from Strickland et al. (2015), were combined to produce a 

sample size of 931 measured soil samples. A coefficient of determination of 70% using 

the support vector machine combined with the Savitzky-Golay transformation was found 

for soils with 0 -2 % C (mineral soil).  While this multivariate calibration model still 

needs further development for accurate prediction of soil total C, the current model could 

serve as a useful tool in estimating horizontal or vertical spatial variance. 

I also investigated soil map units that vary in degree of slope to determine the 

importance of including slope when monitoring changes in DSPs during longleaf pine 
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regeneration or restoration.  The DSPs of interest were soil total C, clay, and pHCaCl2.  

Results suggest that soil map unit phases capturing slope are not useful as a stratification 

variable for analyzing DSPs under longleaf pine restoration.  Few significant differences 

were observed with slope steepness at any depth (0-200 cm) for the measured variables 

(percent clay, C, pH CaCl2) and even in cases of observed differences there was not a clear 

monotonic pattern from flat to steep.  Use of Visible/near-infrared spectroscopy was 

incorporated into this field study in hopes that these methods would help evaluate soil 

variability across slope steepness or DSPs over time.  VNIR calibrations for percent clay 

demonstrated potential predictive value (i.e., R2≥ 0.9). While those for total soil C and 

pH, although not as strong, indicated some utility for field classification or monitoring of 

DSP, much like the total soil C models produced in Chapter 2. 

Thus, VNIR calibrations can, at present, be effective currently for predicting clay 

percentage and also for assessing patterns of soil total C and pHCaCl2 across landscapes.  

Further development of VNIR will be valuable in facilitating the collection of more 

spatially explicit data at a faster rate without the need to have samples analyzed by a 

laboratory.  With greater spatial soil data, patterns and processes in soil attributes can be 

better analyzed and interpreted in longleaf pine ecosystems as restoration and 

regeneration efforts expand.          
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APPENDIX A: Chapter III Supplemental Tables and Figures 

 

Table S3.1: Prediction results of validation and cross-validation RMSE and R2 for each 

data separation, method, and transformation combination for Nitrogen %, 

separated by all data, Piedmont/Upper Coastal Plain sites, and Coastal Plain 

sites.  Methods: Partial Least Square Regression (PLSR) and Support Vector 

Machine (SVM).  Transformations: Continuum Removal (CR), Savitzky-

Golay (SG), and Wavelets (WT). (nAll = 278, nPiedmont/Upper Coastal Plain = 140, 

nCoastalPlain= 137) Bold numbers highlight the best model result. 

 

   Validation Cross-Validation 
Data Method Transformation R2 RMSE R2 RMSE 

All 

PLSR 
CR 0.36 2.6786 0.69 2.6174 

SG 0.14 1.7854 0.83 1.7340 

WT 0.46 1.7004 0.75 1.7248 

SVM 
CR 0.10 2.6731 0.54 2.6330 

SG 0.23 1.7531 0.73 1.7416 

WT 0.40 1.7927 0.71 1.7380 

       

Piedmont/ 
Upper 

Coastal 
Plain 

PLSR 
CR 0.17 2.6314 0.93 2.5682 

SG 0.54 1.9156 0.94 1.6855 

WT 0.33 1.5824 0.95 1.6980 

SVM 
CR -0.28 2.5760 0.71 2.5866 

SG 0.38 1.6497 0.83 1.6983 

WT 0.00 1.7000 0.89 1.7025 

       

Coastal 
Plain 

PLSR 
CR 0.41 2.6863 0.76 2.6725 

SG 0.17 1.9170 0.94 1.7854 

WT 0.22 1.7533 0.80 1.7730 

SVM 

CR 0.17 2.7674 0.59 2.6989 

SG 0.18 1.8214 0.69 1.7956 

WT 0.27 1.8445 0.67 1.7870 
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Table S3.2: Prediction results of validation and cross-validation RMSE and R2 for each 

data separation, method, and transformation combination for Exchangeable 

Acidity (EA), separated by all data, Piedmont/Upper Coastal Plain sites, and 

Coastal Plain sites.  Methods: Partial Least Square Regression (PLSR) and 

Support Vector Machine (SVM).  Transformations: Continuum Removal 

(CR), Savitzky-Golay (SG), and Wavelets (WT). (nAll = 278, nPiedmont/Upper 

Coastal Plain = 140, nCoastalPlain= 137) Bold numbers highlight the best model 

result. 

 

   Validation Cross-Validation 
Data Method Transformation R2 RMSE R2 RMSE 

All  

PLSR 
CR 0.43 1.0622 0.78 1.2058 

SG 0.40 0.5560 0.84 0.5602 

WT 0.39 0.5666 0.77 0.5343 

SVM 
CR 0.28 1.0168 0.67 1.1371 

SG 0.22 0.3944 0.78 0.4749 

WT 0.22 0.4047 0.78 0.4721 

       

Piedmont/ 
Upper 

Coastal 
Plain 

PLSR 
CR 0.31 0.9936 0.88 1.0950 

SG 0.47 0.4827 0.94 0.6093 

WT 0.19 0.4616 0.90 0.6159 

SVM 
CR 0.00 0.7906 0.74 0.9840 

SG 0.06 0.3959 0.83 0.5011 

WT 0.16 0.3533 0.84 0.5173 

       

Coastal 
Plain 

PLSR 
CR 0.54 1.3652 0.74 1.3390 

SG 0.29 0.5005 0.88 0.5517 

WT 0.55 0.4621 0.75 0.5291 

SVM 

CR 0.42 1.3182 0.49 1.2960 

SG 0.30 0.4099 0.60 0.4618 

WT 0.15 0.4061 0.60 0.4589 
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Table S3.3: Soil nutrients by depth within the Hancock County site located in Hancock County, Georgia.  

(BDL= Below Detection Limit) 

 

  Hancock County (mg/kg)  

Sample 

Name 

Depth 

(cm) 
Ca Cd Cr Cu Fe K Mg Mn Mo Na Ni P Pb Zn 

BnD1k 0-2 174.76 BDL 0.19 0.65 25.07 108.31 620.60 1.24 BDL 21.69 0.14 1.30 BDL 0.38 

BnD1L 9-11 761.77 BDL BDL BDL 9.81 92.91 118.02 67.19 BDL 4.72 0.72 5.91 BDL 2.94 

BnD1a 0-20 215.06 BDL BDL BDL 5.69 10.28 20.80 8.76 BDL BDL 0.07 1.07 BDL 0.31 

BnD1b 20-40 134.52 BDL BDL BDL 12.59 6.46 17.94 8.55 BDL BDL 0.07 1.14 BDL BDL 

BnD1c 40-60 574.29 BDL 0.05 BDL 9.43 7.26 164.73 2.50 BDL 6.58 BDL 0.21 BDL BDL 

BnD1d 60-80 739.62 BDL 0.06 0.31 17.63 28.45 404.33 4.98 BDL 13.66 0.07 0.30 BDL BDL 

BnD1e 80-100 310.84 BDL 0.05 BDL 11.47 16.99 146.31 2.97 BDL 7.15 0.05 0.24 BDL BDL 

BnD1f 100-120 218.75 BDL 0.11 0.21 15.41 30.86 337.12 1.60 BDL 13.54 0.06 0.24 BDL BDL 

BnD1g 120-140 431.83 BDL 0.18 0.64 20.94 87.78 605.28 3.70 BDL 22.37 0.09 0.32 BDL 0.37 

BnD1h 140-160 382.30 0.04 0.30 1.08 40.77 141.37 874.23 2.73 BDL 40.49 0.07 0.89 0.08 0.46 

BnD1i 160-180 293.10 0.06 0.25 1.00 31.70 169.78 979.01 2.71 BDL 35.78 0.17 0.82 BDL 0.56 

BnD1j 180-200 174.76 BDL 0.19 0.65 25.07 108.31 620.60 1.24 BDL 21.69 0.14 1.30 BDL 0.38 

BnD2k 0-2 241.45 BDL BDL 0.35 63.90 31.18 19.10 59.74 BDL 8.15 0.48 6.50 BDL 2.68 

BnD2L 9-11 19.79 BDL 0.08 BDL 19.17 4.43 2.69 17.88 BDL BDL 0.13 4.67 BDL 0.23 

BnD2a 0-20 45.92 0.06 0.15 0.35 37.31 10.83 5.40 30.53 BDL 7.85 0.14 8.46 0.17 0.44 

BnD2b 20-40 14.39 BDL 0.05 BDL 22.56 4.34 2.80 7.75 BDL 3.90 BDL 6.36 BDL BDL 

BnD2c 40-60 13.72 BDL 0.05 0.40 30.40 22.66 3.77 5.33 BDL 6.62 BDL 8.77 BDL 0.44 

BnD2d 60-80 51.43 BDL 0.05 0.30 16.89 7.87 4.35 1.10 BDL 77.59 0.07 4.32 BDL 0.99 

BnD2e 80-100 36.88 BDL 0.14 0.20 43.68 7.70 9.07 1.37 BDL 4.85 BDL 6.41 BDL 0.39 

BND2F 100-120 31.54 BDL BDL BDL 13.79 3.36 9.29 0.21 BDL 2.14 BDL 1.32 BDL BDL 

BnD2g 120-140 18.00 BDL 0.06 BDL 10.21 4.98 9.63 0.20 BDL BDL BDL 0.35 BDL BDL 

BnD2h 140-160 40.73 BDL 0.20 0.32 25.51 8.36 26.86 1.54 BDL 8.35 BDL 0.72 BDL BDL 

BnD2i 160-180 11.08 BDL BDL BDL 4.48 2.61 6.86 BDL BDL BDL BDL 0.34 BDL BDL 

BnD2j 180-200 11.57 BDL BDL BDL 4.49 BDL 6.83 BDL BDL 3.58 0.05 0.85 BDL BDL 

BnB1k 0-2 206.70 BDL BDL BDL 16.81 18.69 19.82 24.35 BDL BDL 0.27 2.00 BDL 1.00 

BnB1L 9-11 87.15 BDL BDL BDL 14.83 15.00 12.38 8.70 BDL 2.50 0.34 1.74 BDL 0.46 
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BnB1a 0-20 19.74 BDL BDL BDL 7.00 6.39 4.18 2.79 BDL 3.15 BDL 0.49 BDL BDL 

BnB1b 20-40 10.70 BDL 0.05 BDL 5.77 4.04 2.29 4.80 BDL BDL BDL 0.68 BDL BDL 

BnB1c 40-60 7.74 BDL BDL BDL 7.34 3.85 2.77 2.66 BDL BDL BDL 0.49 BDL BDL 

BnB1d 60-80 12.23 BDL BDL BDL 4.99 4.40 8.21 1.59 BDL BDL BDL 0.17 BDL BDL 

BnB1e 80-100 117.56 BDL BDL BDL 6.54 10.96 32.01 1.61 BDL BDL BDL 0.24 BDL BDL 

BnB1f 100-120 87.15 BDL BDL BDL 1.49 8.43 25.53 0.35 BDL BDL BDL BDL BDL BDL 

BnB1g 120-140 33.36 BDL BDL BDL 6.32 3.73 26.51 1.23 BDL BDL BDL 0.12 BDL BDL 

BnB1h 140-160 9.60 BDL BDL BDL 4.01 2.41 14.77 0.32 BDL BDL BDL 0.08 BDL BDL 

BnB1i 160-180 4.13 BDL BDL BDL 1.56 BDL 8.71 BDL BDL BDL BDL BDL BDL BDL 

BnB1j 180-200 6.88 BDL BDL BDL 2.98 3.44 14.80 0.22 BDL 2.44 BDL 0.12 BDL BDL 

BnB2k 0-2 76.70 BDL BDL BDL 48.89 8.63 11.18 16.02 BDL BDL 0.12 5.23 BDL 0.67 

BnB2L 9-11 6.13 BDL 0.09 BDL 66.05 3.79 1.38 15.46 BDL BDL 0.22 42.81 0.10 BDL 

BnB2a 0-20 30.20 BDL 0.05 BDL 56.93 6.97 3.61 18.03 BDL 2.73 0.27 22.39 BDL 0.31 

BnB2b 20-40 15.18 BDL 0.10 BDL 84.73 8.26 3.81 24.31 BDL 6.08 0.05 23.22 BDL 0.26 

BnB2c 40-60 27.29 BDL 0.05 BDL 45.15 4.32 6.43 12.38 BDL 2.65 BDL 15.92 BDL BDL 

BnB2d 60-80 15.46 BDL BDL BDL 20.02 4.02 3.53 9.92 BDL BDL BDL 5.43 BDL BDL 

BnB2e 80-100 14.80 BDL BDL BDL 16.09 2.24 3.55 2.69 BDL BDL BDL 3.92 BDL BDL 

BnB2f 100-120 19.31 BDL 0.07 BDL 47.68 9.02 5.89 1.76 BDL 4.17 0.05 4.98 BDL BDL 

BnB2g 120-140 22.49 BDL BDL BDL 16.56 6.00 3.15 1.20 BDL 2.83 BDL 4.03 BDL BDL 

BnB2h 140-160 76.00 BDL BDL BDL 34.90 9.75 11.13 1.26 BDL 4.24 BDL 10.63 BDL BDL 

BnB2i 160-180 148.93 BDL 0.13 0.20 50.47 18.01 29.07 1.47 BDL 5.36 BDL 5.74 BDL BDL 

BnB2j 180-200 59.62 BDL 0.06 BDL 20.29 9.35 15.87 1.67 BDL 4.34 BDL 2.06 BDL BDL 

BnB3k 0-2 805.72 0.06 BDL 0.22 24.62 81.43 86.39 57.49 BDL 4.58 0.51 5.39 BDL 2.57 

BnB3L 9-11 58.77 BDL 0.06 BDL 18.33 9.72 15.33 24.54 BDL BDL 0.13 1.99 BDL 0.26 

BnB3a 0-20 44.07 BDL BDL BDL 10.44 8.45 6.49 9.47 BDL BDL BDL 0.86 BDL BDL 

BnB3b 20-40 49.56 BDL BDL 0.21 16.69 8.99 11.42 8.24 BDL 3.79 0.05 1.63 BDL BDL 

BnB3c 40-60 37.64 BDL BDL BDL 5.12 5.04 5.50 2.76 BDL BDL BDL 0.98 BDL BDL 

BnB3d 60-80 145.46 BDL BDL BDL 5.86 7.86 23.82 0.56 BDL BDL BDL 0.30 BDL BDL 

BnB3e 80-100 195.21 BDL BDL BDL 3.53 5.47 41.63 0.22 BDL BDL BDL 0.09 BDL BDL 

BnB3f 100-120 185.91 BDL BDL BDL 5.84 10.97 115.89 0.52 BDL 5.90 BDL 0.16 BDL BDL 

BnB3g 120-140 450.98 BDL BDL 0.21 10.76 20.99 152.90 0.99 BDL 9.33 BDL 0.70 BDL BDL 

BnB3h 140-160 347.58 BDL BDL BDL 4.52 10.03 132.71 0.25 BDL 4.57 BDL 0.09 BDL BDL 

BnB3i 160-180 399.36 BDL BDL 0.31 14.34 15.97 213.88 0.38 BDL 9.65 BDL 0.18 BDL BDL 

BnB3j 180-200 174.67 BDL BDL 0.24 11.98 8.74 114.08 0.42 BDL 5.09 BDL 0.22 BDL BDL 
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Table S3.4: Soil nutrients by depth within the Hitchiti Experimental Forest site located near Juliet, Georgia. 

(BDL= Below Detection Limit) 

 

Hitchiti Experimental Forest (mg/kg) 

Sample 

Name 

Depth 

(cm) 
Ca Cd Cr Cu Fe K Mg Mn Mo Na Ni P Pb Zn 

VaB2-1k 0-2 112.20 BDL BDL 0.51 44.52 19.42 19.07 14.22 BDL BDL 0.19 1.14 BDL 0.99 

VaB2-1L 9-11 96.20 BDL 0.06 0.57 24.92 26.57 93.47 4.32 BDL BDL 0.11 0.39 BDL 0.34 

VaB2-1a 0-20 16.11 BDL BDL BDL 10.76 7.19 7.85 4.23 BDL BDL BDL 0.22 BDL 0.24 

VaB2-1b 20-40 81.82 BDL BDL 0.61 13.65 40.43 229.39 4.62 BDL 9.08 BDL 0.34 BDL 0.54 

VaB2-1c 40-60 14.96 BDL BDL 0.30 7.97 14.69 108.07 BDL BDL 6.89 BDL 0.16 BDL BDL 

VaB2-1d 60-80 8.76 BDL BDL 0.58 15.61 11.46 176.19 BDL BDL 14.26 BDL 0.25 BDL BDL 

VaB2-1e 80-100 BDL BDL BDL 0.24 7.60 BDL 63.74 BDL BDL 8.37 BDL BDL BDL BDL 

VaB2-1f 100-120 2.16 BDL BDL 0.26 9.43 BDL 44.53 BDL BDL 12.43 BDL 0.15 BDL BDL 

VaB2-1g 120-140 4.83 BDL BDL 0.51 19.38 5.81 93.63 BDL BDL 44.90 0.06 0.24 BDL BDL 

VaB2-1h 140-160 3.30 BDL BDL 0.35 10.78 2.81 43.77 BDL BDL 36.61 BDL 0.18 BDL BDL 

VaB2-1i 160-180 5.51 BDL BDL 0.75 20.70 9.41 65.27 BDL BDL 78.70 BDL 0.28 BDL 0.32 

VaB2-1j 180-200 4.02 BDL BDL 0.42 8.37 4.33 43.28 BDL BDL 58.82 BDL 0.30 BDL BDL 

VaB2-2k 0-2 573.54 BDL BDL BDL 13.35 29.49 53.52 20.29 BDL BDL 0.15 1.15 BDL 2.15 

VaB2-2L 9-11 189.76 BDL BDL 0.23 36.85 27.62 50.75 8.14 BDL BDL 0.13 0.46 BDL 0.25 

VaB2-2a 0-20 306.34 BDL BDL 0.79 20.69 102.15 138.93 16.63 BDL 6.61 0.07 1.26 BDL 1.18 

VaB2-2b 20-40 259.27 BDL BDL 0.33 9.46 43.35 181.10 0.46 BDL 6.49 0.04 0.16 BDL BDL 

VaB2-2c 40-60 116.86 BDL BDL 0.28 9.26 22.60 156.71 BDL BDL 10.33 BDL 0.12 BDL BDL 

VaB2-2d 60-80 60.38 BDL BDL BDL 9.35 18.08 135.34 BDL BDL 14.38 BDL 0.14 BDL BDL 

VaB2-2e 80-100 79.85 BDL BDL 0.47 23.41 38.83 374.68 0.35 BDL 66.73 0.08 0.23 BDL 0.27 

VaB2-2f 100-120 14.79 BDL BDL BDL 8.88 9.37 149.23 BDL BDL 37.30 BDL BDL BDL BDL 

VaB2-2g 120-140 9.92 BDL BDL BDL 7.18 4.86 173.09 0.54 BDL 60.88 BDL 0.10 BDL BDL 

VaB2-2h 140-160 11.76 BDL BDL 0.25 14.03 4.00 249.10 1.09 BDL 102.70 0.07 BDL BDL 0.28 

VaB2-2i 160-180 20.64 BDL BDL 0.35 19.14 5.62 417.99 1.65 BDL 175.54 0.13 0.15 BDL 0.58 

VaB2-2j 180-200 26.17 BDL BDL 0.33 12.48 3.99 325.52 0.76 BDL 167.94 0.12 0.10 BDL 0.52 

VaC2-1k 0-2 280.33 BDL 0.04 0.35 62.60 37.84 104.11 19.90 BDL 4.19 0.22 1.08 BDL 0.44 
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VaC2-1L 9-11 205.65 BDL BDL 1.07 39.36 19.16 205.18 1.92 BDL 19.28 0.15 0.32 BDL BDL 

VaC2-1a 0-20 217.34 BDL 0.05 0.73 53.98 33.53 164.50 8.18 BDL 14.41 BDL 0.39 BDL 0.20 

VaC2-1b 20-40 284.75 BDL 0.06 1.99 64.30 35.41 519.43 1.41 BDL 57.73 0.10 0.60 BDL 0.23 

VaC2-1c 40-60 204.31 BDL BDL 1.88 51.43 50.88 890.25 0.78 BDL 152.21 0.15 0.52 BDL BDL 

VaC2-1d 60-80 27.15 BDL BDL 0.24 6.49 6.00 115.59 BDL BDL 24.26 BDL BDL BDL BDL 

VaC2-1e 80-100 48.79 BDL BDL 0.35 9.13 9.95 151.63 0.37 BDL 38.36 BDL 0.21 BDL BDL 

VaC2-1f 100-120 101.05 BDL BDL 0.36 8.04 14.84 232.51 0.26 BDL 57.68 0.05 0.46 BDL BDL 

VaC2-1g 120-140 126.35 BDL BDL 0.30 5.26 7.61 188.34 BDL BDL 52.63 0.04 0.18 BDL BDL 

VaC2-1h 140-160 155.15 BDL BDL 0.31 5.72 7.48 201.18 BDL BDL 66.16 0.05 0.18 BDL 0.22 

VaC2-1i 160-180 168.48 BDL BDL 0.46 10.31 14.86 266.84 0.41 BDL 97.80 0.07 0.35 BDL 0.31 

VaC2-1j 180-200 158.08 BDL BDL 0.38 11.36 12.38 204.00 0.62 BDL 96.47 0.08 0.48 BDL 0.28 

VaC2-2k 0-2 602.60 0.06 BDL 0.48 52.72 185.03 141.95 58.45 BDL 18.55 1.78 6.66 BDL 5.46 

VaC2-2L 9-11 26.71 BDL BDL BDL 13.13 7.80 12.42 9.59 BDL BDL 0.10 0.53 BDL 0.20 

VaC2-2a 0-20 161.45 BDL BDL 0.21 41.02 20.99 35.91 12.10 BDL 6.10 0.08 0.67 BDL 0.77 

VaC2-2b 20-40 224.81 BDL BDL 0.70 25.49 11.04 206.45 6.53 BDL 19.25 0.07 0.48 BDL 0.28 

VaC2-2c 40-60 295.80 BDL BDL 0.30 17.65 4.52 276.85 0.71 BDL 45.78 BDL 0.49 BDL BDL 

VaC2-2d 60-80 522.30 BDL BDL 0.21 20.25 3.89 574.06 1.51 BDL 109.74 0.11 0.16 BDL 0.37 

VaC2-2e 80-100 375.99 BDL BDL BDL 20.87 5.43 490.49 2.42 BDL 128.51 0.12 0.24 BDL 0.50 

VaC2-2f 100-120 369.91 BDL BDL BDL 11.44 4.56 462.25 1.85 BDL 186.37 0.11 0.25 BDL 0.36 

VaC2-2g 120-140 173.34 BDL BDL BDL 19.96 9.40 305.98 4.37 BDL 149.75 0.08 0.64 BDL 0.33 

VaC2-2h 140-160 347.75 BDL BDL BDL 43.26 17.13 475.47 29.77 BDL 253.18 0.26 4.10 BDL 0.55 

VaC2-2i 160-180 446.75 BDL BDL BDL 27.82 9.61 198.11 18.35 BDL 128.86 0.10 83.75 BDL 0.26 

VaC2-2j 180-200 468.36 BDL BDL 0.39 69.52 26.79 275.77 73.18 BDL 191.44 0.34 81.87 BDL 1.03 

VaC2-3k 0-2 442.08 BDL BDL 0.23 19.51 35.59 185.90 14.23 BDL 10.82 0.27 1.00 BDL 0.42 

VaC2-3L 9-11 116.06 BDL BDL BDL 13.98 12.23 153.41 0.46 BDL 12.26 0.07 0.56 BDL BDL 

VaC2-3a 0-20 455.88 BDL BDL 0.27 21.47 27.28 224.10 8.30 BDL 13.73 BDL 1.29 BDL 0.48 

VaC2-3b 20-40 472.72 BDL BDL 0.20 19.74 14.03 395.55 1.90 BDL 42.53 BDL 91.38 BDL BDL 

VaC2-3c 40-60 919.24 BDL BDL 0.72 33.16 30.95 1061.15 5.23 BDL 222.75 0.12 273.34 BDL 0.59 

VaC2-3d 60-80 679.26 BDL 0.07 0.38 15.07 11.31 389.40 2.48 BDL 161.56 0.07 117.77 BDL 0.20 

VaC2-3e 80-100 487.22 BDL BDL 0.23 12.24 5.78 296.12 4.00 BDL 148.75 0.06 114.60 BDL BDL 

VaC2-3f 100-120 666.13 BDL BDL 1.71 15.84 25.44 1317.96 11.28 BDL 875.80 0.22 56.39 BDL 0.66 
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Table S3.5: Soil nutrients by depth within the Ohoopee Dunes site located near Swainsboro, Georgia. 

(BDL= Below Detection Limit) 

 

Ohoopee Dunes (mg/kg) 
Sample 

Name 

Depth 

(cm) 
Ca Cd Cr Cu Fe K Mg Mn Mo Na Ni P Pb Zn 

Bob1k 0-2 63.40 BDL 0.04 0.10 38.88 18.58 14.25 44.51 BDL 1.79 BDL 1.55 BDL BDL 

Bob1L 9-11 44.44 BDL 0.06 0.12 35.71 13.62 11.55 28.36 BDL 1.63 BDL 1.55 BDL BDL 

Bob1a 0-20 49.83 BDL 0.05 0.50 22.86 14.39 11.90 21.57 BDL 2.94 BDL 1.16 BDL BDL 

Bob1b 20-40 35.39 BDL BDL 0.16 14.80 10.33 12.36 18.06 BDL 2.66 BDL 0.79 BDL BDL 

Bob1c 40-60 18.61 BDL BDL 0.13 15.22 6.73 8.11 8.40 BDL 1.97 BDL 0.66 BDL BDL 

Bob1d 60-80 17.89 BDL BDL 0.52 11.79 10.47 8.68 10.42 BDL 4.50 BDL 0.71 BDL BDL 

Bob1e 80-100 20.56 BDL 0.04 0.11 19.09 7.59 17.73 5.30 BDL 2.47 BDL 0.60 BDL BDL 

Bob1f 100-120 22.38 BDL 0.04 0.18 21.47 5.79 21.49 4.29 BDL 3.20 BDL BDL BDL BDL 

Bob1g 120-140 17.35 BDL 0.13 0.20 55.74 8.24 20.62 13.25 BDL 6.34 BDL BDL BDL BDL 

Bob1h 140-160 19.29 BDL BDL 0.16 16.99 4.65 17.35 5.94 BDL 4.92 BDL BDL BDL BDL 

Bob1i 160-180 10.62 BDL BDL 0.14 8.48 3.30 19.85 1.34 BDL 4.69 BDL BDL BDL BDL 

Bob1j 180-200 12.48 BDL BDL 0.11 10.42 3.84 16.50 3.87 BDL 2.82 BDL 0.63 BDL BDL 

Bob2k 0-2 19.53 BDL BDL 0.12 36.75 14.26 4.29 32.28 BDL 1.96 BDL 1.96 BDL BDL 

Bob2L 9-11 4.03 BDL 0.05 0.16 23.30 6.68 1.57 13.28 BDL 1.69 BDL 1.65 BDL BDL 

Bob2a 0-20 5.14 BDL BDL 0.14 13.48 8.56 1.71 9.14 BDL 3.87 BDL 0.90 BDL BDL 

Bob2b 20-40 2.58 BDL BDL 0.08 12.47 BDL 1.05 4.17 BDL BDL BDL 0.52 BDL BDL 

Bob2c 40-60 2.66 BDL BDL 0.06 9.56 BDL 1.01 2.63 BDL BDL BDL 0.62 BDL BDL 

Bob2d 60-80 2.41 BDL BDL 0.06 8.51 BDL 0.95 2.60 BDL BDL BDL 1.09 BDL BDL 

Bob2e 80-100 4.05 BDL BDL 0.08 11.52 3.03 1.42 2.66 BDL 1.79 BDL 1.01 BDL BDL 

Bob2f 100-120 2.32 BDL BDL 0.09 11.81 2.80 0.85 0.77 BDL 1.94 BDL 1.55 BDL BDL 

Bob2g 120-140 3.17 BDL BDL 0.08 21.84 2.80 1.35 0.64 BDL BDL BDL 2.17 BDL BDL 

Bob2h 140-160 4.59 BDL 0.05 0.23 17.40 5.02 2.05 1.48 BDL 2.43 BDL 1.31 BDL BDL 

Bob2i 160-180 34.95 BDL 0.04 0.12 18.28 6.58 28.58 1.80 BDL 2.67 BDL 0.55 BDL BDL 
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Bob2j 180-200 11.99 BDL 0.04 0.14 15.67 5.82 13.90 2.27 BDL 2.92 BDL 0.58 BDL BDL 

BoC1k 0-2 121.78 BDL BDL 0.16 34.43 14.92 10.21 21.02 BDL 2.68 BDL 1.40 BDL BDL 

BoC1L 9-11 33.51 BDL 0.05 0.18 36.99 4.66 3.66 11.74 BDL BDL BDL 0.95 BDL BDL 

BoC1a 0-20 174.90 BDL BDL 0.17 26.67 17.09 15.89 22.90 BDL 3.60 BDL 1.63 BDL BDL 

BoC1b 20-40 48.65 BDL 0.04 0.20 18.52 5.40 5.73 9.58 BDL 2.64 BDL 0.98 BDL BDL 

BoC1c 40-60 27.24 BDL BDL 0.15 9.26 10.89 6.04 3.75 BDL 2.38 BDL 0.43 BDL BDL 

BoC1d 60-80 16.43 BDL BDL 0.12 7.98 5.05 3.56 3.82 BDL 1.88 BDL 0.47 BDL BDL 

BoC1e 80-100 18.21 BDL BDL 0.11 9.74 3.22 5.47 3.43 BDL BDL BDL 0.48 BDL BDL 

BoC1f 100-120 16.80 BDL BDL 0.09 5.31 3.54 4.19 1.66 BDL 1.82 BDL BDL BDL BDL 

BoC1g 120-140 47.53 BDL BDL 0.12 10.15 5.96 18.11 1.91 BDL 2.06 BDL BDL BDL BDL 

BoC1h 140-160 162.18 BDL BDL 0.20 6.01 8.60 60.15 1.22 BDL 5.10 BDL BDL BDL BDL 

BoC1i 160-180 148.04 BDL BDL 0.22 10.02 7.41 49.86 3.76 BDL 4.98 BDL 0.46 BDL BDL 

BoC1j 180-200 217.50 BDL BDL 0.20 10.15 10.01 66.36 5.74 BDL 5.16 BDL 0.46 BDL BDL 

BoC2k 0-2 136.63 BDL 0.05 0.12 37.07 13.00 20.49 37.78 BDL 2.41 BDL 1.71 BDL BDL 

BoC2L 9-11 47.02 BDL 0.05 0.23 26.30 8.80 9.07 21.78 BDL 2.62 BDL 1.23 BDL BDL 

BoC2a 0-20 41.09 BDL 0.04 0.20 23.39 9.12 11.34 15.75 BDL 1.67 BDL 0.98 BDL BDL 

BoC2b 20-40 16.39 BDL 0.04 0.17 21.52 7.26 7.64 11.91 BDL 4.35 BDL 0.87 BDL BDL 

BoC2c 40-60 10.94 BDL BDL 0.18 15.84 4.99 4.77 9.59 BDL 1.63 BDL 0.69 BDL BDL 

BoC2d 60-80 16.32 BDL BDL 0.18 16.63 6.93 4.26 6.84 BDL BDL BDL 0.86 BDL BDL 

BoC2e 80-100 22.69 BDL BDL 0.22 19.58 4.64 6.22 5.53 BDL BDL BDL 0.82 BDL BDL 

BoC2f 100-120 19.51 BDL BDL 0.19 20.46 5.00 8.47 5.14 BDL BDL BDL 0.95 BDL BDL 

BoC2g 120-140 22.83 BDL 0.06 0.25 14.64 4.51 15.99 2.54 BDL 1.68 BDL 0.96 BDL BDL 

BoC2h 140-160 24.66 BDL 0.08 0.33 18.29 5.89 18.04 1.59 BDL 2.02 BDL 0.85 BDL BDL 

BoC2i 160-180 37.45 BDL 0.12 0.37 16.78 5.91 22.73 3.03 BDL 1.92 BDL 0.56 BDL BDL 

BoC2j 180-200 170.51 BDL 0.11 0.46 17.05 11.39 75.12 6.60 BDL 4.56 BDL 0.44 BDL BDL 

Bod1k 0-2 12.40 BDL BDL BDL 117.71 14.76 4.44 1.14 BDL 2.81 BDL 2.31 0.51 1.13 

Bod1L 9-11 5.78 BDL 0.07 BDL 92.22 10.61 2.38 0.58 BDL 2.07 BDL 1.87 1.01 1.77 

Bod1a 0-20 11.67 BDL 0.07 BDL 90.65 12.38 3.70 1.45 BDL 2.71 0.04 1.88 0.69 0.30 

Bod1b 20-40 10.93 BDL 0.16 BDL 120.28 13.83 3.98 1.52 BDL 2.89 0.07 2.79 0.64 0.42 
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Bod1c 40-60 8.47 BDL 0.17 BDL 78.09 21.71 3.15 2.50 BDL 3.27 0.09 3.06 0.51 0.37 

Bod1d 60-80 4.30 BDL 0.11 BDL 34.30 4.11 1.51 1.99 BDL 2.13 BDL 2.52 0.16 BDL 

Bod1e 80-100 4.66 BDL 0.06 BDL 21.50 7.10 1.36 1.27 BDL 2.26 BDL 2.80 BDL BDL 

Bod1f 100-120 6.49 BDL 0.12 BDL 37.57 6.95 2.11 3.12 BDL 3.81 BDL 4.71 0.21 BDL 

Bod1g 120-140 4.81 BDL 0.12 BDL 37.73 5.24 2.22 2.90 BDL 2.62 0.04 4.00 BDL BDL 

Bod1h 140-160 5.09 BDL 0.11 BDL 46.29 5.32 2.40 3.01 BDL 2.45 0.05 4.26 BDL BDL 

Bod1i 160-180 10.74 BDL 0.14 BDL 45.24 7.72 3.45 3.67 BDL 3.47 0.15 4.85 BDL 0.25 

Bod1j 180-200 7.60 BDL 0.12 BDL 28.52 3.62 1.64 1.53 BDL 2.72 0.08 2.37 0.10 0.23 

Bod2k 0-2 8.77 BDL BDL BDL 73.37 7.19 2.30 1.07 BDL 2.69 BDL 1.62 0.90 2.93 

Bod2L 9-11 6.56 BDL 0.08 BDL 76.98 6.31 2.34 5.63 BDL 2.87 BDL 2.13 1.41 2.31 

Bod2a 0-20 10.41 BDL 0.15 BDL 78.39 9.96 2.48 8.93 BDL 3.28 0.06 3.88 0.66 0.66 

Bod2b 20-40 7.05 BDL 0.08 BDL 40.72 5.69 1.53 4.59 BDL 2.99 0.09 3.17 0.08 0.23 

Bod2c 40-60 3.90 BDL BDL BDL 26.60 3.05 0.96 1.71 BDL 2.05 BDL 2.83 BDL BDL 

Bod2d 60-80 4.72 BDL 0.10 BDL 71.78 2.79 1.90 2.10 BDL 2.42 BDL 6.56 0.05 BDL 

Bod2e 80-100 6.67 BDL 0.17 0.37 111.95 4.09 2.95 4.50 BDL 6.50 0.34 11.08 0.05 0.48 

Bod2f 100-120 12.65 BDL 0.11 0.20 76.26 7.52 3.04 5.42 BDL 9.25 0.09 16.05 0.05 0.32 

Bod2g 120-140 7.86 BDL 0.05 BDL 44.83 4.73 1.79 2.83 BDL 4.47 0.16 12.22 BDL 0.25 

Bod2h 140-160 2.83 BDL BDL BDL 18.11 2.32 0.90 1.10 BDL BDL BDL 5.39 BDL BDL 

Bod2i 160-180 4.18 BDL BDL BDL 20.10 2.81 1.18 1.13 BDL BDL BDL 7.22 BDL BDL 

Bod2j 180-200 5.88 BDL BDL BDL 20.48 4.49 1.50 1.82 BDL 4.42 BDL 7.63 BDL BDL 

 

 

 

 

 



 

 

87 

 

 

Table S3.6: Soil nutrients by depth within the Hancock County site located in Newton, Georgia. 

(BDL= Below Detection Limit) 

 

Jones Center (mg/kg) 

Sample 

Name 

Depth 

(cm) 
Ca Cd Cr Cu Fe K Mg Mn Mo Na Ni P Pb Zn 

TWC-1k 0-2 343.22 BDL BDL BDL 11.80 34.63 74.36 56.73 BDL BDL 0.14 9.84 0.00 0.92 

TWC-1L 9-11 39.48 BDL BDL BDL 14.47 15.48 13.68 10.95 BDL 2.32 0.16 1.72 0.04 0.30 

TWC-1a 0-20 89.65 BDL BDL 1.13 21.94 21.99 23.61 28.82 BDL 3.85 0.08 2.85 0.09 0.25 

TWC-1c 40-60 59.52 BDL BDL BDL 20.97 9.69 28.86 18.97 BDL 2.65 0.08 0.92 0.06 BDL 

TWC-1e 80-100 82.25 BDL BDL BDL 5.12 6.06 75.54 0.32 BDL BDL 0.06 0.63 0.03 BDL 

TWC-1g 120-140 9.55 BDL BDL BDL 4.29 5.15 29.77 BDL BDL 2.24 0.10 0.47 0.13 BDL 

TWC-1i 160-180 4.78 BDL BDL BDL 5.75 3.71 16.90 BDL BDL BDL 0.08 0.60 0.16 BDL 

TWC-2k 0-2 420.31 BDL BDL BDL 11.81 30.63 82.42 40.53 BDL 2.67 0.17 10.67 0.00 0.66 

TWC-2L 9-11 295.26 BDL BDL BDL 9.48 12.01 47.09 19.91 BDL 3.04 0.18 1.98 0.00 BDL 

TWC-2a 0-20 199.36 BDL BDL 0.22 11.83 12.52 37.35 22.18 BDL 3.70 0.09 2.98 0.05 0.26 

TWC-2c 40-60 67.16 BDL BDL BDL 10.86 4.87 12.28 9.49 BDL BDL 0.06 2.15 0.00 BDL 

TWC-2e 80-100 46.47 BDL BDL BDL 6.74 5.37 10.04 2.75 BDL BDL 0.06 2.90 0.00 BDL 

TWC-2g 120-140 81.44 BDL BDL BDL 9.36 5.82 29.62 1.58 BDL BDL 0.06 4.15 0.00 BDL 

TWC-2i 160-180 144.74 BDL BDL BDL 8.38 6.98 68.49 BDL BDL 2.44 0.07 1.99 0.00 BDL 

TWC-3k 0-2 499.94 BDL BDL BDL 23.12 98.45 81.51 93.70 BDL 3.90 0.22 4.42 0.06 0.41 

TWC-3L 9-11 28.80 BDL BDL BDL 20.35 9.16 15.02 22.16 BDL 2.14 0.15 1.30 0.00 BDL 

TWC-3a 0-20 121.03 BDL BDL BDL 33.96 17.79 25.68 52.78 BDL 3.77 0.12 2.47 0.00 0.20 

TWC-3c 40-60 22.60 BDL BDL BDL 12.36 4.90 16.42 14.19 BDL 2.10 0.08 1.34 0.00 BDL 

TWC-3e 80-100 47.48 BDL BDL BDL 7.82 7.02 14.69 4.00 BDL BDL 0.07 2.22 0.02 BDL 

TWC-3g 120-140 50.51 BDL BDL BDL 6.20 21.10 21.23 1.25 BDL BDL 0.05 3.53 0.07 BDL 

TWC-3i 160-180 57.09 BDL BDL BDL 4.83 7.81 27.95 0.91 BDL BDL 0.08 4.61 0.00 BDL 

TWB-1k 0-2 748.36 BDL BDL BDL 12.33 40.48 150.51 55.65 BDL 2.59 0.25 10.15 0.05 0.69 

TWB-1L 9-11 147.73 BDL BDL 0.26 24.27 10.82 42.48 32.74 BDL 2.46 0.14 1.79 0.00 BDL 

TWB-1a 0-20 362.48 BDL BDL BDL 15.04 13.99 74.46 34.81 BDL 2.67 0.10 2.98 0.00 0.37 

TWB-1c 40-60 41.20 BDL BDL BDL 10.35 4.76 21.30 11.80 BDL 2.21 0.08 2.01 0.00 BDL 
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TWB-1e 80-100 44.31 BDL BDL BDL 7.77 5.56 16.80 4.76 BDL BDL 0.07 2.53 0.02 BDL 

TWB-1g 120-140 63.25 BDL BDL BDL 11.36 6.32 34.52 1.75 BDL 3.25 0.05 2.74 0.07 BDL 

TWB-1i 160-180 84.44 BDL BDL BDL 6.69 7.72 59.32 0.21 BDL BDL 0.05 2.11 0.02 BDL 

TWB-2k 0-2 526.50 BDL BDL BDL 20.81 48.28 105.90 80.35 BDL 3.89 0.23 28.74 0.00 1.73 

TWB-2L 9-11 114.79 BDL BDL 0.20 52.04 12.06 27.16 59.59 BDL BDL 0.22 6.63 0.01 BDL 

TWB-2a 0-20 329.62 BDL BDL BDL 25.35 24.23 55.20 46.29 BDL 3.92 0.12 7.23 0.00 0.40 

TWB-2c 40-60 29.63 BDL BDL BDL 12.90 4.68 13.54 9.45 BDL BDL 0.06 2.06 0.00 BDL 

TWB-2e 80-100 14.51 BDL BDL BDL 8.65 5.61 4.98 2.32 BDL 4.25 0.08 2.53 0.00 BDL 

TWB-2g 120-140 15.42 BDL BDL BDL 9.43 4.64 7.03 1.71 BDL BDL 0.05 4.02 0.00 BDL 

TWB-2i 160-180 16.03 BDL BDL BDL 10.20 6.50 10.78 1.57 BDL BDL 0.06 5.66 0.00 BDL 

TWB-3k 0-2 266.56 BDL BDL BDL 14.60 36.50 45.49 26.72 BDL 2.52 0.20 4.73 0.02 0.49 

TWB-3L 9-11 36.97 BDL BDL BDL 35.98 10.64 10.77 17.28 BDL BDL 0.14 1.64 0.00 BDL 

TWB-3a 0-20 137.02 BDL BDL BDL 20.27 13.60 21.32 15.98 BDL 2.58 0.08 2.08 0.00 0.30 

TWB-3c 40-60 9.71 BDL BDL BDL 13.74 7.57 4.84 3.21 BDL BDL 0.10 0.91 0.07 BDL 

TWB-3e 80-100 14.19 BDL BDL BDL 12.64 8.00 32.57 0.28 BDL 2.98 0.08 0.87 0.07 BDL 

TWB-3g 120-140 3.42 BDL BDL BDL 10.03 9.11 12.56 0.22 BDL 4.75 0.06 0.68 0.10 BDL 

TWB-3i 160-180 3.21 BDL BDL BDL 8.67 9.28 5.18 0.27 BDL 3.93 0.08 0.72 0.09 BDL 
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Figure S3.1. Indicates percent N for each site by depth and map unit.  Within each graph, same color indicates same map unit and 

different shape indicates different soil profile within that map unit category.   Collected 2015/2016. 
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Figure S3.2. Indicates Exchangeable Acidity for each site by depth and map unit.  Within each graph, same color indicates same map 

unit and different shape indicates different soil profile within that map unit category.   Collected 2015/2016. 
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