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This thesis begins with an introduction of credit risk and a review of credit risk
models. A modified credit risk model which is subject to adjustable counterparty
risks is then present, i.e. these counterparty risks are controlled by an exponen-
tial distribution. Following are two applications of this modified model on pricing
credit derivatives: default swap of first-to-default baskets and collateralized bond
obligations. Then a broader framework for the valuation of credit risk is intro-
duced, i.e. incorporating Markov-modulated regime switching into the underlying
factors of credit risk models. Under this generalized credit risk mode, two numerical
methods: finite difference method and Markov Chain Monte Carlo simulation are
used to calculate the prices of defaultable bonds. Finally, perpetual American put
options subject to regime switching are studied. A stochastic approximation method

is provided to find the optimal selling points for perpetual American put options.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 CREDIT RISK AND CREDIT DERIVATIVES

Credit risk or Default risk is defined as "the risk that a counterparty defaults on
its obligations”. The government is generally assumed to meet the obligations of
any financial contract it enters for certain. Any financial instruments issued by
the government are therefore considered to be default free. However, financial
contracts with counterparties other than the government are potentially default
risky. Default risk is reduced by institutional arrangements in some markets.
For example, organized securities exchanges have reduced default risk in futures
contracts, options and other derivative securities by establishing clearing houses.
However, such institutional arrangements for reducing default risk are not in place
at the over-the-counter (OTC) markets or corporate bond markets. Default risk

therefore affects corporate bonds as well as any securities traded at the OTC market.

Default risk is influenced by both business cycles and firm-specific events. Default
risk typically declines during economic expansion because strong earnings keep
overall defaults rates low. Default risk increases during economic recession because
earnings deteriorate, making it more difficult to repay loans or make bond payments.
Example here is the default of long-term capital management (LTCM), resulting
from an adverse movement in interest rates. Default risk can also come from events

specific to a firm’s business activities, including the outcome of lawsuits, unexpected
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devaluations, sudden default of a creditor, supplier, or a customer, and catastrophes
in production lines. Barings is a case where a large trading loss forced bankruptcy.
Therefore, default may be trigged by some unexpected events which cannot be

observed from economic variables only.

Default risk affects the valuation and hedging of corporate bonds and all over-
the-counter securities as well as portfolios of these securities. In 1992, a new class
of securities called ”Credit Derivatives” has been proposed at an annual meeting of
the ISDA (International Swap Dealer Associations). Credit derivatives are securities
"whose payoffs are linked to the credit characteristics of a particular asset”. An
example of a credit derivative is default swap, which pays a pre-specified amount
in the event of default of a reference security in the swap contract. Now the credit
derivatives market has grown dramatically. This growth has been driven by the
ability of credit derivatives to provide valuable new methods for managing default
risk. Credit derivatives can help banks, financial companies, and investors manage
the default risk of their movements by insuring against adverse movements in the
credit quality of the firm. If a firm defaults, the investor will suffer losses on the
investment, but the losses can be offset by gains from the credit derivatives. Thus,
in order to engineer credit derivative contracts to transfer the default risk exposure,

the first thing is to develop a method to measure the default risk exposure correctly.

1.2 REVIEW OF CREDIT RISK MODELS

The pricing of defaultable bonds has been a major interest in the finance literature,

and many models have been proposed for pricing and hedging risky debts. Among
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them, there are two basic approaches for modelling default risks in bonds, structural

models and reduced-form models.

1.2.1 STRUCTURAL FORM MODELS

The structural (or firm-value) approach was inspired by classic Black-Scholes option
pricing theory. It assumes that the dynamics for the value of the assets of a firm
across time can be described by a diffusion stochastic process and that the defaultable
bond can be regarded as a contingent claim on the value of the assets of the firm.
The structural approach is formulated by Merton [1974]. He assumed that the
fundamental process V' which represents the total value of the assets of the firm that

has issued the bonds follows Geometric Brownian motion

d
VV = pdt + odW

A default occurs at maturity if V is insufficient to pay back the outstanding debt.
Although Merton presented a breakthrough development in default risk pricing,
there are many shortcomings of this model. The major shortcomings include: firm
value is not observable; a flat and static yield spread; default occurring only when
the firm value is less than the liability claim; default triggered only at the maturity

of the debt; interest rate assumed constant over time.

There are some variations of the structural approach to overcome these short-
comings (see Longstaff and Schwartz [43], Zhou [60], etc.). In order to generate
various shapes of yield spread curves, including upward-sloping, downward-sloping,
flat, and hump-shaped, Zhou introduced jump into the underlying firm value pro-
cess. Now the evolution of firm value follows a jump-diffusion process, so sudden
drop in firm value becomes possible, therefore, default can occur unexpectedly.

Longstaff and Schwartz [43] develop a more realistic model. They allow interest
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rates to be stochastic. And they model default as the time when the value of the
debt reaches some constant threshold value K that serves as a distress boundary.
Contrary to Merton’s model, default can occur prior to maturity. All these struc-
tural models have only limited success explaining the behavior of prices of debt
instruments and credit spreads. These led to attempts to use models that make

more direct assumptions on default process.

1.2.2 REeEDUCED FORM MODELS

Reduced-form models characterize default time as exogenously specified. The
default time is unpredictable. Intensity function which is assumed to be determined
by common economic factors as well as firm-specific factors is used to characterize
default probability. The derived formulas of default time are calibrated to market

data. This approach provides a model that is close to the date.

Lando [40] modelled the time of default as the first jump-time of a Cox pro-
cess (also called doubly stochastic process). The random intensity of the Cox

process may depend on interest rate or other factors.

Duffie and Singleton [13] developed a model where the payoff in default is assumed
as a fraction of the value of the defaultable security just before default (called
recovery at market value). Under their framework, defaultable security can proceed
as in standard valuation models for default-free securities, using a default adjusted

rate instead of the usual interest rate.

Other major papers include Hull & White [25] [26], Jarrow, Lando &Turnbull
28], Jarrow& Turnbull [29], Jarrow & Yu [31].



CHAPTER 2

OUR MODEL SUBJECT TO COUNTERPARTY RISK

2.1 INTRODUCTION

Jarrow & Yu [31] constructs a default intensity which can depend on firm-specific
counterparty structures, in order to describe the default behavior of firms holding
less well-diversified credit risk portfolios. They add a jump term in the intensity
process when its counterparter suffers a default. In this chapter, we use copular
function to derive that it’s reasonable to adjust intensity process by adding a jump
term if the two firms are correlated. Then we modify Jarrow & Yu [31] ’s model
to allow an exponential distribution to control this added term. So this added term
may be dropped from the firm’s intensity process in the future. It means that there
is a possibility for the firm to get recovery after a certain period of time. Our model

has the following features:

(i) As in Lando [40], Jeanblanc & Rutkowski [32], and Jarrow & Yu [31],
we separate the information filtration into two parts: one filtration generated by
state variables (interest rate and equity index) and the other filtration generated
by the default process. So we can explicitly incorporate the correlation among the

underlying firms into firms’ default probability.

(ii) As Jarrow & Turnbull [30] pointed out, the issue of correlation is of cen-

tral importance in all the credit risk methodologies. Two types of correlation are

5
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often identified: default correlation and event correlation. Default correlation refers
to firm default probabilities be correlated due to the common factors in the economy.
Event correlation refers to how a firm’s default probability is affected by default of
other firms. We clearly discuss the default correlation and event correlation. We

propose how to modify default probability when the event correlation is indispens-

able.

(iii) We use Farlie-Gumbel-Morgenstern copula to illustrate our results: one firm’s
default will help (deteriorate, resp.) its counterparty’s survival if these firms are
concordant (discordant, resp.). This result is the evidence to support the assumption
in Jarrow & Yu [31] ( they assume that there exists a jump term in the intensity
function when its counterparty suffers a default). Meanwhile, I also find that one
firm’s survival will also help (deteriorate, resp.) its counterparty’s survival if these

firms are concordant (discordant, resp.).

(iv) Since the default event will affect its counterparty’s intensity function, we
don’t assume that the default effect will be always on at its counterparty’s rest
time period. Instead, we assume that the holding time of this default effect follows
exponential distribution. It means that the default effect will disappear after a

certain time period.

(v) We let the event correlation be back into the intensity based credit risk model.
This increases the the range of correlation in the model. So our model can remedy

the disadvantage of the reduced-form model of limited range of correlation.



2.2 (CLASSIC INTENSITY-BASED MODELS

We shall write F to denote a filtration (F;, t>= 0). In this paper, all filtrations
are supposed to be completed and continuous on right, i.e. F; = Ny F,. Con-
sider an economy indexed by the time interval [0,7*]. Let the uncertainty in the
economy be described by the filtered probability (2, F,P). The probability space
(Q,F, {F},, P) is large enough to support a R%valued stochastic process X, which
we think of as the economic-wide factors ( or state variables ). A R, U {400}
valued random variable 7 is an G-stopping time if {7 < t} € G;, for any t, where
G = (G¢)qt=0y- Obviously, if F is a filtration larger than G, i.e. G, C F; for any
t, and 7 is a G-stopping time, then 7 is a F-stopping time, where F is a filtration
of (F,t > 0). A stopping time 7 is F-predictable if there exists an increasing
sequence of F-stopping times 7, such that 7,, < 7 on {r > 0} and lim7, = 7.
A stopping time 7 is F-totally inaccessible if for any F-predictable stopping time
S,P{w € Q : 7(w) = S(w) < oo} = 0. In a Brownian filtration, it can be proved
that any stopping time is a predictable stopping time. The most important example
of totally inaccessible stopping time is the first time when a Poisson process jumps.
In the intensity based credit risk model, we use Cox process (also doubly stochastic
Poisson process) to represent default time. So the default time is totally inaccessible
with respect to Brownian filtration. Otherwise, there’ll be no intensity process for
the default time. If 7 is a nonnegative random variable on some probability space
(Q,F,P), it is possible to endow 2 with a filtration such that 7 is a stopping time.
This filtration is not unique, and the right-continuous smallest filtration satisfying
this property is D; = o(D,,u < t), generated by the sets {7 < s} for s<t ( that is
the o-algebra o(t A7) ) and the atom {7 > t}. Here D, = 1.« is the counting
process associated with the random time 7. Notice that any D;-measurable inte-

grable random variable H is of the form H = h(7)1;<y + iLl{T>t} where h is a Borel



function defined on [0, t], and & a constant.

The filtration is generated collectively by the information contained in the state

variables and the default process:

Fi = Gi VD, where G, = 0(X,,0 < s < t) and Dy = 0(D;,0 < s < t) Where

X, is the state variable, i.e. interest rate, equity index, etc.

It is easy to describe the events which belong to the o-field F; on the set {7 > t}.
Indeed, if A, € F, then A, N{r >t} = B,N{r > t} for some event B; € G,.
Therefore, any F;-measurable random variable Y; satisfied 1;-nY; = lgsnwy,
where 1, is an G;-measurable random variable. In the filtrated probability space
(Q,F,{F},,P). Traded are default-free zero-coupon bonds of all maturities, a
default-free money market account, and risky zero-coupon bonds of all maturities.
We assume the market is complete and arbitrage free which means the default-
able claim is hedgeable. Under the assumption of no-arbitrage opportunities and
complete, arbitrage pricing theory implies that there exists a unique equivalent
martingale measure (e.m.m.) such that present value of a security is the expectation
with respect to this e.m.m. discounted by the interest rate. In this paper, all
calculation are under the e.m.m.

In the money market account accumulates returns at the spot rate and is denoted
as B(t) = exp ( fg r(s)ds) under the maintained assumption of arbitrage-free and
complete markets, we can write default-free bond prices as the expected, defaultable

}"t) In the

value of a assure dollar received at time T, that is p(t,T) = E (%

default risk framework, a default appears at some random time 7. The payment of

a defaultable claims consists of two parts:
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(1) Given a maturity date T > 0, a random variable Y, which does not depen-
dent on 7 represents the promised payoffs - that is, the amount of cash the owner of
the claim will receive at time T, provided that the default has not occurred before

the maturity date T.

(2) A predictable process h, prespecified in the default-free world, models the
payoff which is received if default occurs before maturity. The process is called the

recovery process or the rebate.

So the price of the defaultable claim is, provided that the default has not occurred

before time t,

T T
Y,=F (Y1{7>T} exp (—/ rudu) + hr 1<y exp (—/ rudu> ‘.7-})
t t

where F; is all the information up to time t, r, is the spot interest rate. Under the
existence of intensity of the default, we’ll see that the intensity of the default time

acts as a change of the spot interest rate in the pricing formula.

For any ¢ € R, and firm i, we denote F} = P(r; < t|G;) the conditional default
probability of firm 7 given the state variables . Assume that F} < 1 for every t € R,.
The G-hazard process of ;, denoted by T is defined by the formula 1 — F} = 1%,
so the conditional survival probability P(t; > t|G,) is equal to e ', and I' is G-
measurable. In this paper, we assume that the cumulative distribution function FY}
is absolutely continuous, that is, F} = fot fi(s)ds, for some function f; : R, — R,.

So we have

Jil) and T = J Xi(s)ds. The interpretation of the

where intensity process )\i(t> = 1
t

intensity process is that over the interval (t, t+At] the default probability conditional
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upon no default prior to time t is approximately A;(t)At. We define the default time

7; as follows

—inf{t:e Tt < B}

where FE; is uniform random variable which is assumed to be independent with
Gr+. As in Lando [40], this default time can be thought of as the first jump
time of a Cox process with intensity process A;(s). It is obvious that we have

{r, <t} ={E; > efrz}, {r, >t} ={E; < e*Fi} and
¢
P(r; > t|G,) = exp(—/ Ai(s)ds)
0
And foru >t

P(Ti > u‘gt) = E<E(1{ﬁ>u}’gT*)

G.) = Elexp(— /0 “M(s)ds)|6)

Note:(i) The intensity process \;() is actually a function of state variable X;. We
drop the symbol X for convenience.

(ii) The independency between E; and Gy« implies that 7; is not measurable with
respect to Gy, so 7; is not G-stopping time, therefore FY = P(r; < t|Gy) is well-
defined.

Check the appendix to see the proof of the following equations:

(a) For any F-measurable random variable Y, we have, for any t € R;

E<1 T >8 Y|gt)
E(l{Ti>S}Y‘}—t> 1{Tz>t} P({ >>}t|gt)

(2.1)

for any t < s, In particular, we have P(1; > s|F,) = L sn E(exp(— [ Xi(u)du)|Gy).
(b) Let h: R — R be a (bounded) Borel measurable function. Then

‘) (2.2)

E ( f,, . h(w)dF,
P(r; > t|G,)

E(1t<n<8h<7—i) |gt) = 1{Ti>t}
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where F, = P(7; < u|G,)
(c) In the general case, let Z be a (bounded) G-predictable process, then for any

t<s
B(f,, , Z,dF.|G:)

P(7; > t|F:)

(2.3)

E(lji<r<yZnlFt) = Lz

From the above lemma, we have following equations (which also can be found in

Lando [40]) :

b (tmesn (- [ o) )
o (oo ([0 00
([ Vit (- [ ro) afz)
vt ([ ([0 ) a
b oo ([ e0s) 2)5)

g E ( /t " () exp (— /t () + )\i(u))du) ds gt) |

Note (i) The interpretation of the above equations is that a rational investor should

)

(2.4)

)

be indifferent between the expected cash flows discounted by risk free rate (i.e. left
terms of these equations) and the promised cash flows discounted by the risky rate.

(ii) As we pointed out before, the intensity of the default time acts as a change of
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the spot interest rate in the pricing formula.

Suppose bond i’s recovery rate is §;, and we use the recovery of Treasury assumption

proposed in Jarrow & Turnbull [29]. Using the above equations, the time ¢ price of

)

defaultable zero-coupon bond is

T T

vi(t,T) =E (1{t<n<T}5i exp (—/ T(S)ds) + 17>y €Xp <—/ T(S)ds)
t t

0

If the intensity function \;(¢) is a constant, say Ao, then the above formula can be

= 5p(t.T) + (1 — 6)1 (o (exp (_ /t T[r(s) + )\i(s)]ds) Y

(2.5)

simplified as follow:

0i(t, T) = 6;p(t, T) + (1 — ;)1 rsyp(t, T)e 0T (2.6)
Or
Uz(t T) ) _
9 — . 1 5. 1 ) O(T t) 2
p(t, T) 57/ + ( 57/) {Tz>t}e ( 7)

This kind of credit risk model which fits for one individual firm was studied exten-

sively by Lando [40].

2.3 CopruLA FuNCTIONS

In order to introduce correlation structure into the n risky bonds, there is no unique
solution. We choose copula function to describe the joint distribution of the n

dependent default times.

2.3.1 DEFINITION AND NOTATION

Copula is a multivariate distribution function defined on the unit cube [0, 1]", with

uniformly distributed marginal. Let S;,--- ,S, be nonempty subsets of R, where R
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denotes the extended real line [—o00, co]. Let H be the a real function of n variables
such that DomH = S} x --- x S, and let B = [a,b] be an n-box which vertices are

in DomH. Then the H-volume of B is given by
Vir(B) = sgn(c)H(c),
where the sum is taken over all vertices ¢ of B, and sgn(c) is given by

© 1, if ¢ = a; for an even number of k’s,
sgn(c) =
—1, if ¢, = ay for an odd number of k’s.

Equivalently, the H-volume of an n-box B = [a, b] is the n'* order difference of H
on B
b bn b
Va(B) = AgH(t) = A2 --- A2 H(t)

where we define the n first order difference as
AMH(6) = H(tr, . toe1, b togrs - tn) — H(t1, oo ot G tegr, -, 1)

A real function H of n variables is n-increasing if Vi (B) > 0 for all n-boxes B whose
vertices lie in DomH .

Consider n = 2, we have
Vu(B) = ARATH(z,y) = H(22,y2) — H(x2,y1) — H(21,52) + H(z1,41)
and
A H(x,y) = H(xe,y) — H(zy,y)  and  ARH(z,y) = H(x,y2) — H(z, 1)

Note that the statement "H is 2-increasing” neither implies nor is implied by the
statement "H is nondecreasing in each argument,” as the following two examples

illustrate.

Example 1 Let H be the function defined on [0,1]* by H(z,y) = max(x,y). Then
H is a nondecreasing function of x and of y; however, Vi 12 = —1, so that H is not

2-increasing.
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Example 2 Let H be the function defined on [0,1]? by H(z,y)= (22-1)(2y-1). Then
H is 2-increasing, however it is a decreasing function of x for each y in (0,1/2) and

a decreasing function of y for each z in (0,1/2).

Suppose that the domain of a real function H of n variables is given by DomH =
S1 x --+ x S, where each S; has a smallest element a,. We say that H is grounded
if H(t) = 0 for all t in DomH such that t; = a; for at least one k. If each Sy
is nonempty and has a greatest element by, then H has margins, and the one-
dimensional margins of H are the functions H; with DomH; = S, and for all x in
Sk, Hi(x) = H(by, ..., bg_1,2,bg11,...,b,). Higher dimensional margins are defined

in an obvious way.

An n-dimensional copula is a function C with domain [0, 1]” such that

(i). Cis grounded and n-increasing.

(ii). C has margins Cy, k = 1,2,...,n, which satisfy Cy(u) = w for all u in [0,1].
Note that for any n-copula C, n > 3, each k-dimensional of C is a k-copula. Equiva-
lently, an n-copula is a function C from [0, 1]" to [0,1] with the following properties:
(a). For every u in [0,1]", C(n) = 0 if at least one coordinate of u is 0, and C(u)
= wuy, if all coordinates of u equal 1 except uy.

(b). For every a and b in [0, 1]™ such that a; < b; for all i, V(a, b) > 0.

The following theorem is known as Sklar’s theorem. It is the most important

result regarding copulas, and is used in essentially all applications of copulas.

Sklar’s theorem [Nelsen [48]] Let F be an n-dimensional distribution function

with margins Fi, ..., F,. Then there exists an n-copula C such that for all x in R™,

F(xy,...,z,) = C(Fi(x1),..., Fu(z,)).
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If Fy,...,F, are all continuous, then C is unique; otherwise C is uniquely deter-
mined on RanF; x --- X RankF,. Conversely, if C is an n-copula and Fi,...,F),
are distribution functions, then the function F defined above is an n-dimensional

function with margins F},.. ., F,.

From Sklar’s theorem we see that for continuous multivariate distribution func-
tions, the univariate margins and the multivariate structure can be separated, and
the dependence structure can be represented by a copula.

One nice property of copula is that for strictly monotone transformation of the
random variables, copula is either invariant, or change in certain simple way. It
means that if (Xi,...,X,) be a vector of continuous random variables with copula
C and f,..., 3, are strictly increasing on RanXy,..., RanX,, respectively, then
also (81(X1),...,B.(X,)) has copula C. Copula provides a natural way to study
and measure dependence between random variables. Both Spearman’s Rho and
Kendall’s Tau can be use to indicate the correlation between two random variables.
Spearman’s Rho and Kendall’s Tao can be defined by using copula function. We

give the formula here.

Rho =12 // wvdC(u,v) —3 =12 // C(u,v)dudv — 3.
[0,1]2 [0,1]2

and
Tau = 4// C(u,v)dC(u,v) — 1.
[0,1)2
2.3.2 LINEAR CORRELATION VS COPULA

Copula provides a natural way to study and measure dependence between random

variables. As we know, linear correlation® (or Pearson’s correlation) is also fre-

et X and Y be two random variables with finite variances. The linear correlation

coefficient for X and Y is p(X,Y) = NG C:;g)\(/};) 5
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quently used in practice as a measure of dependence. The popularity of linear
correlation stems from the ease with which it can be calculated and it is a natural
scalar measure of dependence in elliptical distributions (The elliptical distributions
are distributions whose density is constant on ellipsoids. In two dimensions, the
contour lines of the density surface are ellipses. The multivariate normal is a special
case). However, most random variables are not jointly elliptically distributed, and
using linear correlation as a measure of dependence in such situations might prove
very misleading. Even for jointly elliptically distributed random variables there are
situations where using linear correlation does not make sense. We might choose
to model some scenario using heavy-tailed distributions such as t,-distributions.
Correlation tells us nothing about the degree of dependence in the tail of the under-
lying distribution. In such cases the linear correlation coefficient is not even defined

because of infinite second moments.

A list of the problems of linear correlation as a dependency measure is:

(a) Linear correlation is simple a scalar measure of dependence. It cannot tell

us everything we would like to know about the dependence structure of risks.

(b) Possible values of linear correlation depend on the marginal distribution of

the risks. All values between -1 and 1 are not necessarily attainable.

(c) Perfectly positively dependent risks do not necessarily have a correlation of

1. Perfectly negatively dependent risks do not necessarily have a correlation of -1.

(d) A linear correlation of zero does not indicate independence of risks.
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(e) Linear correlation is not invariant under transformations of risks. For example,

log(X) and log(Y) generally do not have the same linear correlation as X and Y.

(f) Linear correlation is only defined when the variances of the risks are finite.
It is not an appropriate dependence measure for very heavy-tailed where variances

appear infinite.

By turning to rank correlation, certain of these theoretical deficiencies of stan-
dard linear correlation can be repaired. It does not matter whether we choose the
Kendall’s Tau or Spearman’s Rho definitions of rank correlation. Rank correlation
does not have deficiencies (b), (c), (e), and (f). Copulas represent a way of trying
to extract the dependence structure from the joint distribution and to extricate

dependence and marginal behavior.

2.3.3 CONCORDANCE AND DISCORDANCE

Informally, a pair of random variables are concordant if "large” values of one tend
to be associated with "large” values of the other, and ”"small” values of one with
”small” values of the other. To be more precise, let (x;,v;) and (z;,y;) denote two
observations from a vector (X,Y) of continuous random variables. We say that
(xi, ;) and (x;,y;) are concordant if z; < x; and y; < y;, or if ; > x; and y; > y;.
Similarly, we say that (z;,v;) and (z;,y;) are discordant if x; < z; and y; > y;,
or if z; > x; and y; < y;. Note the alternate formulation: (x;,v;) and (z;,y;) are
concordant if (x; —x;)(y; —y;) > 0, and discordant if (x; —x;)(y; —y;) > 0. We use

Kendall’s tau or Spearman’s rho to describe concordant and discordant.
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Kendall’s tau for the random variables X and Y is defined as
Tau(X,Y)=P{(X - X)(Y =Y) >0} - P{(X - X)(Y - Y) <0}

where (X,Y) is an independent copy of (X,Y). This is the population version of
Kendall’s tau which is defined as the probability of concordance minus the proba-
bility of discordance. However, Kendall’s Tau can also be defined using a copula

function only. From Nelsen [48], we know

Tau(X,Y) = 4 / /m . O, v)dC(u,v) — 1.

Similarly, we give the population version and copula version of Spearman’s Rho’s
definition just for reference. In practice, we can choose either Kendall’s Tao or

Spearman’s Rho. Spearman’s rho for the random variables X and Y is defined as
Rho(X,Y) =3(P{(X — X)(Y —Y") > 0} - P{(X — X)(Y - Y’) < 0})

where (X,Y),(X,Y) and (X’,Y”") are independent copies. And the copula version is:

Rho(X,Y) =12 // wdC(u,v) —3 =12 // C(u,v)dudv — 3.
[0,1]2 [0,1]2

For Farlie-Gumbel-Morgenstern copula C(u,v) = vo(l+a(l—u)(1-v)),a € [-1,1],

we know the two random variables are independent when a@ = 0. And Kendall’s

1

;. From these simple forms of Kendall’s Tau and

Tau = %a, Spearmen’s Rho =
Spearmen’s Rho, we know that the two random variables will move in the same

direction when a > 0, and will move in the opposite direction when o < 0.

2.4 DEPENDENT DEFAULT MODELS

In section 2.2, we’ve derived the default risk model for individual firm. Now we’ll
derive the default risk model for the case when we consider n firms simultaneously.

We denote the counting process associated with the default time 7; of firm ¢ by
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D} = 1{,,< and its o-field by D ( e/ o(D: u < t)). Now all the information up to

time which is available to investors is
Fi=G VD V---VD}

As in section 2.2, default time 7; is defined as follows:
7 =inf{t:e "t < B}

where F; is uniform random variable which is assumed to be independent with Gp-.
Now we have n default times (71, 7, -- , 7). In Kijima [35], he assumes that these

n default times are conditional independent, i.e.

n

]P(Tl > tl,TQ > t2, cee T > tn’gT*) = H]P)(T’L > tl|QT*)
i=1

Since we know that P(r; > t;|G;,) = exp(— f(fl Ai($)ds). So using intensity processes,

the conditional independent assumption will give the following equation:

n ti
]P)(Tl > 11,79 > 1o, ,Th >tn|gT*) :eXP(_Z/ )\AS)dS)
i=1 70

This assumption will simplify the question a lot when we deal with the joint distri-
bution of these default times. But, we’ll see that this assumption will sacrifice a lot
important information. So we don’t assume that the n default times 7,79, -+ , 7,
are conditional independent. According to the construction of default times, we have

the following equation:

]P(Tl >, T > T, o0, Ty > tn) = ]P)(El < €7Ft11,E2 < 671—?2, s ,En < eir?")
where the hazard process I, = [ \;(s)ds and F; is uniform random variable.

From the above equation, we know that describing the joint distribution of random

variables F; is equivalent to describing the joint distribution of default times 7;. Now
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we suppose that the copula function of these n random variables F; is C'. So we

have the following:

11 _1T2 TN

P(ry > t1, 79 > to, - Ty >ty) =P(Ey < e 0, By <eliz,... B, <e i)
_71m1 _12 _1Tn
:O(e Ftl’e Ft27"';6 Ftn)

2.4.1 DEFAULT CORRELATION

Default correlation (see, Jarrow & Turnbull [30]) refers to firm default probabilities
being correlated due to common factors in the economy. We use interest rate r(t) as
the common factor to see how it will affect the default correlation even when there
is no correlation between the firm (i.e. a = 0) . let the their intensity functions

Aa(t) and Ap(t) be functions of spot rate of interest:
M) =2+ X (t) and  Ap(t) = A+ A\Br(t)
where A\, A, AP AP are constants. so their survival probabilities are:

P(ry > t|G,) = e Jo 2a(dds = o= JgO+xfir()ds

And

P(rg > t|Gy) = e Jo Ap()ds — o= JoOF +AFr(s))ds

Asin Jarrow & Turnbull [30], we assume the spot rate of interest follow the extended
Vasicek model:

dr(t) = a(T(t) — r(t))dt + o.dW,(t)

where W, (t) is a Wiener process under the em.m. P, and 7(¢) is a deterministic
function chosen to fit an initial term structure, with a and o, constants. From

Jarrow & Turnbull [30], Jarrow [27], we have:

F(t) = f(O,t) —+ éw + ;-_;2(1 _ e—2at)
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And
T T -
M = E(/t r(u)du|Gy) :/t f(t’u)du+/t b<u’2T)2du

T

T
orp = Var(/ r(u)du|Gy) = b(u, T)*du
¢

t

where f(t,u) is the forward rate, and b(u, T) = 2= (1 —e~*7=). Therefore, we have:

A\2
[C5] 2

t )
P(ra > t) = E[P(ra > tG))] = Ele™ Jo (] = e=51=2wo.t 508,

And

()\13)2 2

P(ra > t) = E[P(r5 > t|G,)] = Ele~ /s p()ds] — = t-AP o+,

Now in order to see the default correlation, we let a = 0. So

P(ta >t, 75 > t) = E[P(14 > t, 75 > t|Gr+)]

_ E[e* fot )\A(u)duef f(f )\B(u)du]

_ E[e—,['Ot()\g‘-&-)\fr(s))dse—j'g(kég—l—)\lBr(s))ds]

AA4AB)2
OB AAB Y= O AAE g, + B 52

=e

Comparing the above equations, we have:
]P)(TA > t, B > t) = ]P(TA > t)P(TB > t)@)‘fA{BUg,t

From the above equation, we know that if none of A\{ and AP is zero (it means that

both of these two bonds depends on the common factor—interest rate), we do have

. ANB 2
default correlation because of the extra term e 1 %0,
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2.4.2 EFFECT OF EVENT CORRELATION

Event correlation refers to how a firm’s default probability is affected by default
of other firms (see Jarrow & Turnbull [30]). Now, let’s check how one firm’s
default will affect its counterparty’s default. For simplicity, we consider two
bonds issued by firm A and firm B. We use 74,75 to denote their default
times, Aa(t),Ap(t) to denote their intensity processes (so hazard processes are
I = [ida(w)du, TP = [} Ap(u)du), and D}, DF to denote their information fil-
trations generated by default times 74,75, resp. We know that if these two firms
are independent (i.e. random variable 75 is independent of D), then we have
P(rg > s|G: VDAV DB) = P(rg > |G, vV DB), for s > t. It means that the

information of D has no effect on the survival probability of bond B.

Now we assume that the two firms are correlated 2, the information which is
available to firm B at time ¢ is F; = G; V D V DP, and the information of 74 (i.e.
D) will affect the default probability of bond B. Now let’s use copula function to
see the effect of event correlation. Since Farlie-Gumbel-Morgenstern copula has a
very simple formula of Kendall’s Rho and Spearman’s Rho, we can easily determine
the two firms’ dependency based on the parameter «, i.e. if the parameter « is
positive, then the two random variables are concordant, otherwise the two random

variables are discordant.

2The common factors serve to induce the default correlation between firms. However,
this default correlation is very small if the firms are from different industry sectors. That’s
why Moody’s treats firms from different industry sectors as independent. But when two
firms are from same industry sectors, it’s not reasonable to assume they are independent.
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The appendix gives the proof of the following equation (for s > t):

P(rp > s|gtB) =P(rg > s}gt \/Df‘)

;

eFf‘E[C(e—FSB7 €_F’{l>‘gt]a if lgsn =1 (2.8)
E'<€7FéB gt>*E[C(e*FSB,e_F?)‘gt] .
\ 1—e 17 » if 1{TA<t} =1

Now let’s specify the copula in the above equation by Farlie-Gumbel-Morgenstern

copula, so we have:

P(rp > s|Gi V DY)

Ele ™ (1+a(l— e ™A = e TG, if Loy =1 (29)

Ele T <1 — e T(1 - G*FSB)> 1G], if 1,y =1

From the above equation, we have the following results:

(1) When « = 0, either case reduces to F <€_F£B |Qt> which is equal to P(75 > S‘Qt).

This goes back to the case where the firms are independent.

(2) If 147,59 = 1 and « > 0, then 1 + a(1 — e T —e ) > 1. So we
gt) (= P(rp > s‘gt)). It

means that the survival of firm A will increase the survival probability of firm B if

have E[e T (1 + a(l — e T9)(1 — e_Ff))‘gt] > F (e‘FSB

firm A and firm B are concordant (o > 0 = Tau = %a > 0 ). For example, since
Intel is the main supplier of key part of computer for PC manufacture, say Compagq,
so Intel and Compaq are concordant. Our result shows that the survival of Intel

will help Compaq to survive.
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3) If 17,5 = 1 and o < 0, then 1 + a(1 — e T — e T < 1. So we
G.) (= Plrs > 5|G)- Tt

means that the survival of firm A will decrease the survival probability of firm B

have Ele "7 (1 + a(1 — e TF)(1 — e 14))|G) < E (e—FsB

2

if firm A and firm B are discordant (o < 0 = Tau = o < 0 ). For example,

telecom companies AT&T and Sprint are competitors. Their relationship can be
considered discordant. So our result says that the survival of AT&T will deteriorate

the survival of Sprint.

(4) If 1;,<y =1 and o > 0, then 1 — ae T (1 — e T9) < 1. So we have

gt) <E (6_FE gt)

(= P(7p > 5|G;)). It means that the default of firm A will reduce the survival prob-

E (e_FSB (1 —ae (1 - e_FSB)>

ability of firm B if they are concordant. Using the above example, our result shows

that the default of Intel will cause the the survival probability of Compaq to decrease.

(5) If 14-,<y =1 and a < 0, then 1 — ae T (1 — e T7) > 1. So we have

gt) > E(c)g,)

(= P(rp > 5|G:)). It means that the default of firm A will increase the survival

E (e_FSB <1 —ae (1 - e_FSB)>

probability of firm B when they are discordant. Using the above example, our result

Sprint shows that the default of AT&T will help to survive.

From the above results, we find that one firm’s information (default or survival) does
affect its counterparty’s default probability when they are correlated (i.e. a # 0),
even when there is no default event occurs. So we extend the event correlation to

this general sense.
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Now let’s use the approximation e* = 1 + z to see why Jarrow & Yu [31]’s
assumption is reasonable, i.e. add one term to the firm’s intensity process when its
counterparty gets default. For s > ¢, and check the Jeanblanc & Rutkowski [32] ,

we have:

P > g —[2 u)du
P(rp > s|G, vV D/) = 1{m>t}IP’((TT%:|’Q:)) = E(e It G, (2.10)

And

P(rp > 5,74 < t|Gy)

]P)(TB > S’gt \/ DiA vV DtB) = 1{7—B>t,TA<t} IED(TB >t,74 < t’gt)

(2.11)

= Urpotracn Be e Annitec A0 duy )

Comparing the above two equations, we see that there does have a term ce™ Jo Aa@)dv

added into bond B’s intensity function. How this term affects the bond B’s survival

probability depends on the sign of a.

Similarly, appendix gives the derivation of the following equation under the approx-
imation of e* = 1 + x, for the case when its counterparty has survived up to time

t.

P(ra > t,75 > 5|Gy)
P(rp > s|G, V D{‘ v DF) = Lirastrp>t} P(r4 > t, 7 > t|G;)

(2.12)

Lot B I @) —arp(u) [y Aa(v)deldu| g )

Comparing the above equation with equation (2.10), we see that there has a term
alg(u) fg Aa(v)dv subtracted from bond B’s intensity function when its counter-

party bond A has not defaulted up to time t.
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2.5 OUR DEPENDENT DEFAULT RISK MODEL

From the above section, we know that one firm’s default will cause its counterparty’s

intensity function to be added a term. As in Jarrow & Yu [31], we also use indicator

function to incorporate the event correlation. However, we don’t assume that the

default effect will be always on at its counterparty’s rest time period. Instead, we

assume that the holding time of this default effect follows exponential distribution
_ dPy(t)

(n,P(n > t) = e, and its density function f,(t) = === = pe ). It means that

the default effect will disappear after a certain time period. Now, we let Ay = a > 0,

so its density function f,,(t) = ae™™, and let

)\B(t) - b1 + b21{TA<t<’TA+77} (213)

where 7 is exponential distribution with parameter p, and we assume that the
default time 74 and 7 are independent. Now, we want to find the firm B’s survival

probability based on whether firm A has defaulted or not up to time ¢.

Case I: firm A has already defaulted by time t, 11;,<; = 1.

Since firm A has already defaulted by time ¢, so we know the default time 74,
say 74 = S. Here, S is deterministic and 0 < S < ¢t. For u > t, we have

(TA < t) C (TA < u) and 1{TA<t} = 1{TA<U} =1. So

Ap(u) = b1 + bol ) cugratny = b1 + baliscugstny = b1 + b2ljugsiny
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Therefore, the survival probability of firm B is:

T
P(rg > T|G, v D v DP) = E(exp(—/ Ag(u)du)|Gy)
t

T
= E(exp(— / [b1 + baliucsiny)ds)|Ge) (2.14)
t

_ e—bl(T—w{l b s Le—w—t)—w—&}
by + 1 by + 1

Check appendix to see the derivation of equation (2.14). In this case, the time-¢
price of zero-coupon bonds issued by B with maturity 7" with recovery of treasury

assumption is:

UB (t, T) = E((SBl{TBgT}e_ jtT r(s)ds + ]-{TB>T}€_ftT r(S)ds|gt vV D%A \/ DtB)

= E(6ge”Je " 1 (1 = 5p)1p,omye” fe "O%|G v DAV DP)

=0pP(t,T)+ (1 — 5B)P(t,T)E(exp(—/t Ap(s)ds)|Gr) (2.15)

= by
=0gP(t, T)+ (1 —6)P(t, T —b1<T—t>{1_ —pu(t—5)
sP(t,T) + ( B)P(t,T)e b2—|—,u€

n Le—ba(T—t)—MT—a}
by +

We know that the expectation of 7 is %L It means that the holding time of the

default effect will have % much long. So the smaller value of u, the longer holding

time of default effect. In Jarrow & Yu [31], they let the default effect be alive all

the rest of its counterparty life time. So when p gets smaller and smaller, both
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results from our model and Jarrow & Yu [31] should be closer and closer.

Note: (a) A quick check to find that when there is no event correlation (i.e.

by = 0), then equation (2.14) goes to e (T8 je. |

P(rg > T|G; V Df V DF) = e 01(T-1)
It means that the bond A ’s default information has no effect on bond B’s survival
probability.
(b) Let p — 0, then equation (2.14) converges to e~(1+52)(T=t) " Qg we have
T
P(rg > T|G, v D! v DP) = E(exp(—/ Ap(8)ds)|G;) = e~ OrTo2)(T—D)
t

This is exactly the same result as in Jarrow & Yu [31].

(¢) Let jt — oo, then equation (14) converges to e (T

. le.,

P(rg > T|G; VDAV DP) = 01T
It means that instantaneous default effect also has no effect on bond B’s survival
probability.

Case II: firm A has not defaulted up to time t, 1{;,>n = 1.

Now, we know that 74 > ¢, and for s > t, P(14 > s|G;) = e %Y. Using the

property E(X) = E(E(X]|Y)), where X, Y are random variables. Then the survival
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probability of firm B is:
T
P(ry > T|G, v DAV DP) = Eexp(— / A5(5)d5)[G)
t
(2.16)

00 T
= 01T / B4 (exp(—b / Urasscratyyds)|n = y)lpe " dy
0 t

where FE; denotes the expectation given the information filtration G;. Appendix

gives the proves of the following three equations.

When a = by, a # by + p, then

E(exp(— /t Ag(s)ds)|Ge)

(2.17)
2
—en@ H Domam—t L —ern)T-0)
atpo p 1y + a)
When a # by, a # by + p, then
T
E(exp(—/ Ag(s)ds)|Gy)
t
= eb1<Tt>{ B b aren ab, e(b2+m(Tt>}_
b2+,U/ (l—bg—,u (bg—l—,u)(a—bg—,u)
(2.18)
When a # by, a = by + 1, then
T
E(exp(—/ Ag(s)ds)|Gy)
t
_ e—bl(T—t){ r by(1 — (T — t)>€—a(T—t) ~ b(p+a) e—(bg-ﬁ-u)(T—t)}.
b2+,u bQ—CL (bg—a)(bg—,u)

(2.19)
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In this case, the time-t price of zero-coupon bonds issued by B with maturity 7" with

recovery of treasury assumption is:

T T
vp(t,T) = E(@plimerye 0 TO% + 1ppumye 0 "G v DI v DP)

T T
= E(6ge It "O% 4 (1 = 6p)1(rymye I "% |G, v D v DP) (2.20)

T
5Pt T) + (1 — 65)P(t, T) E(exp(— / As(5)ds)[G)
¢
Now using one of equations (2.17), (2.18) and (2.19) to substitute into the expecta-

tion in the above equation, we can find the time-t price of vg(t,T).

vB (th)
p(t.T

Theoretically, in this case, when p is getting bigger and bigger, the value

~b1(T=1) Tt means that when the

from our model is getting closer and closer to e
default effect of A on B can’t hold a certain period, then it’ll has no effect on B

though A and B are highly correlated.

Note: (a) It’s easy to check that equation (2.17) goes to (a(T —t) +1)e~(@+1)(T=1) a5

boe— (b1+a)(T—t) _qe—(b1+b2)(T—1)
ba—a

w goes to 0. And both equations (2.18) and (2.19) go to

as 1 goes to 0.

(b) When b, = 0 (i.e. mno event correlation), then all three equations (2.17),
(2.18), and (2.19) are equal to e ®*™  So equation (2.16) can be simplified as
follow:

P(t5 > T|G, VD v DE) = =010

c) As p1 goes to oo, all three equations (2.17), (2.18), and (2.19) converge to e ~*1(T"=1),

As in the previous case, the instantaneous default effect has no effect on bond B’s

survival probability.
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Now we’ll let the default probability be dependent on interest rate, i.e. we let

the bond A and bond B’s intensity function be function of interest rate.
)\A(t) =ag+ CL17’(t>
And

Ap(t) = bo 4 bir(t) + balir,<t<ratn)

Here we just give out the survival probability P(rg > T|G; V D V DE) of bond B.

We assumed that 71 is independent with ().
When bond A has defaulted by time t, S is the default time of bond A.

Using equation (2.14) and the independent assumption of 7 and r(t), we have:

T
P(rs > 71,V D v DF) = Blexp(~ [ o+ biru) + bl o d0)|G)
t

T
— e*bO(Tft)E(exp(— / [blr(u) + b21{u<5+n}]du>|gt>

t

T

— e TV E(exp(—b, /

t

r(u)du)|Go) Eexp(~by / Luesin))|G)

T p(ehiRir|g) {1 _ % H(t=8) | %e—w—t)—w—&}
2 T H 2 T M

(2.21)

Where R, 7 = ftTr(u)du.
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When bond A has not defaulted up to time t.

T
Plry > T|G, v DAV DP) — Elexp(— / A5(5)d5)[G)
t

T

— e*bo(T*t)E({e*(b2+u)(T*t)*b1Rt,T(1 + b2/ e*(ao*b2)(:v*t)*alRt,zdx)

t

T—t T
+ H efble,T + Iu/b2€*b2T+a0t7b1Rt,T / / [e(brao)x*“lR“da:]e*“ydy}\Qt).
p+ by 0 T—y

(2.22)

2.5.1 NUMERICAL EXAMPLES

For simplicity, we assume the recovery rate dp is zero. As in Yu [58], we use

the normalized (against the default-free bond price) zero-coupon bond prices (i.e.

vlig,ﬁ;)) to compare our model with Jarrow & Yu [31].
Wang Jarrow & Yu
by = 0.5 by =5 by = 0.5 by =5
a T=2 T=11 T=2 T=11 T=2 | T=11| T=2 | T=11
5000 | -9.9E-05 | -9.5E-04 | -9.9E-04 | -9.5E-03 | -0.212 | -7.68 | -0.798 | -9.33
50 | -9.7E-03 | -0.094 -0.089 -0.864 |-0.212 | -7.68 | -0.798 | -9.33
5 -0.074 -0.85 -0.448 -4.7 1-0.212 | -7.68 |-0.798 | -9.33
1 -0.16 -2.97 -0.692 -7.8 -0.212 | -7.68 | -0.798 | -9.33
0.5 | -0.183 -4.30 -0.741 -8.5 -0.212 | -7.68 | -0.798 | -9.33
0.1 | -0.206 -6.66 -0.786 -9.16 | -0.212 | -7.68 | -0.798 | -9.33
0.01 | -0.212 -7.68 -0.798 -9.33 | -0.212 | -7.68 | -0.798 | -9.33
Table 2.1. Percentage change of values from our model vs. values when there is no

counterparty risk ( when ¢t = 1,a = 0.01,b; = 0.01, and no default up to time t)
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From the above table, we can see that the value which is from our model is
very close to the value when there is no counterparty risk when p is large even with
the high correlation . For example, when 4 = 5000,7 — ¢t = 1,b, = 5, our value is
—(9.51F — 03)% less. It means that if the default effect is instantaneous, then this
default event will have no effect on its counterparty. This is intuitive. However,

Jarrow & Yu model can’t reflect this phenomena.

b2:05 b225

H T-t=1 | T-t=10| T-t=1 T-t=10

2000 | 0.21268 8.322 0.803 10.286
50 0.2031 8.221 0.715 9.343
5 0.138 7.402 0.353 5.908
1 0.0523 5.106 0.107 1.689
0.5 0.0291 3.664 0.057 0.919

0.01 | 6.512E-04 | 0.1256 | 1.233E-03 0.0201

0.001 | 6.526E-05 | 0.0127 | 1.224E-03 | 2.019E-03

Table 2.2: Percentage change of values from our model vs. Jarrow & Yu [31] ( when

t=1,a=0.01,b; = 0.01, and no default up to time ¢)

The above table tells us that when p is small ,then results from the different
models are very close no matter how much correlation (by = 0.5,5) the two bonds
have and how long the date-to-maturity (7" — ¢t = 1,10) is. For example, for
= 0.001, the difference of bond prices from the two models is only 0.0127% when
T —t = 10. However, when p = 50,05 = 0.5 is large and the date-to-maturity is
relative long (T'—t = 10), then the bond price from our model will be 8.221% larger

than that of Jarrow & Yu.



by Wang Jarrow & Yu | Percentage change
0.02 | 0.9231276 0.9231163 1.22E-03
0.1 | 0.6441293 0.6440364 0.0144
0.4 | 0.4318622 | 0.4317105 0.0351
0.6 | 0.2895725 | 0.2893842 0.0606
0.8 | 0.1941904 | 0.1939800 0.1085
1 0.130219 0.1300287 0.1716

Table 2.3: Percentage change of values from our model vs.
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values from Jarrow &

Yu (when t =3,5 =1,b; =0.02,7 =5, | x = 0.0001 |, and default has occurred by time

t)

From the above table, we can see that when the holding time of default effect

is long (i.e. p is small, ;1 = 0.0001), then results from our model is almost the same

as that of Jarrow & Yu [2001] no matter how much correlation the two firms have.

For example, when by, = 1, the bond prices from our model is only 0.1716% larger

than that of Jarrow & Yu [31].

by Wang NCR Percentage change
1 | 0.9607886 | 0.96078944 -8.777TE-05

2 1 0.9607879 | 0.96078944 -1.536E-04

3 1 0.9607897 | 0.96078944 -2.448E-04

4 1 0.9607875 | 0.96078944 -2.458E-04

5 1 0.9607871 | 0.96078944 -2.793E-04

10 | 0.9607858 | 0.96078944 -3.84E-04
20 | 0.9607849 | 0.96078944 -4.726E-04
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Table 2.4: Percentage change of values from our model vs. values from NCR ( when

t=3,5=1,0=0.02,T = 5,, and default has occurred by time t)

From the above table, we can see that when we choose a little bit larger value
=6 (i.e. with relative short holding time of default effect, the default effect will
last two months), then though the correlation becomes stronger ( i.e. by increases),
the difference of the bond prices from the different models is still very small. For
example, for b, = 20, our bond price is only 4.726E-04% smaller than the bond price
from NCR.

Next table will show the percentage change of values from our model vs. the
values of Jarrow & Yu, and percentage change of values from model vs. the
values when there is no counterparty risk as the length of holding time of default
effect (u) changes. We pick some specific numbers for by,by,1,5, 7. We let
by = 0.02,bp = 0.02,S = 1,t = 3,7 = 11. From Jarrow & Yu model, the nor-
malized bond price is 0.726149037. The normalized bond price is 0.852143789 when

there is no counterparty risk (NCR).
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0 Wang Wang vs. Jarrow & Yu | Wang vs. NCR
0.01 | 0.0.73328 0.9887 -13.943
0.05 | 0.7576809 4.3423 -11.085
0.09 | 0.7764092 6.9215 -8.888
0.1 | 0.7803387 7.4693 -8.421
0.2 | 0.8091497 11.430 -5.045
0.3 | 0.8251742 13.637 -3.165
0.4 | 0.8345441 14.927 -2.065
0.5 | 0.8402748 15.717 -1.393
0.6 | 0.8439225 16.219 -0.965
0.7 | 0.8463251 16.55 -0.683

1 | 0.8498832 17.04 -0.265

Table 2.5: Percentage change of values from our model vs. values from Jarrow &

Yu, and values with no counterparty risk ( when default has occurred by time ¢)

From table 2.5, we can see that

(a) when p > % = 0.5, it means that the default effect disappeared before the
current time ¢t = 3. So the normalized bond prices from our model has no significant
difference from that of NCR. For example, when 1 = 1, the normalized bond price
from our model is only 0.265% smaller than that of NCR.

(b) When p1 < 745 = 0.1, it means that the default effect will last all the rest
of bond B’s life. So the normalized bond price from our model has no significant
difference from that of Jarrow & Yu. For example, when p = 0.01, the normalized
bond price from our model is only 0.9887% higher than that of Jarrow & Yu.

(¢) When 0.1 = 725 < p < =z = 0.5, it means that the default effect is still alive

at current time ¢, but it’ll disappear before the bond B’s maturity date 7. In this
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case, the normalized bond price from our model has significant difference form that

of Jarrow & Yu. For example, when p = 0.2, the normalized bond price from our

model will be 11.43% higher than that of Jarrow & Yu.

2.5.2 CONCLUSION

We introduce the length of holding time of default effect into Jarrow & Yu [31]
model. We find that when we assume long period of holding time (small p), then
results from our model and Jarrow & Yu model are very close. However, when
two firms are highly correlated and one firm’s default effect will not last long, then
results from the two models are quite different. Our model can reflect the intuitive
phenomena that if the firm can survive, then the default effect from its counterparty

will disappear as time goes.

2.6 VALUATION OF DEFAULT SWAP OF THE FIRST-TO-DEFAULT BASKETS

2.6.1 INTRODUCTION

First-to-default baskets are credit derivatives which are based on a portfolio of
underlying reference entities. Rather than holding default risk on many individual
credits, buyers of the first-to-default protection can pool the credit in a basket. The
buyer of protection in this structure is hedged against the risk of default only with
this basket of reference entities. A default swap is a type of default insurance. The
buyer of the default protection makes a regular payment quoted as a percentage of
the notional amount per year which is called swap rate premium. These payments
continue until either the expiration of the swap or a default event by the underlying
reference. If there is a default, the protection buyer delivers to the protection seller

bonds of the reference entities and receives par value.
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First-to-default baskets are used to hedge against credit risk for many reasons:
(a) the protection buyer gains on an entire portfolio of exposure.
(b) it is typically cheaper to buy a first-to-default basket than to purchase protection
each credit individual credit.

(c) payout occurs when the first reference entity defaults.

The existing literature investigating the valuation of default swap of first-to-default
baskets (see Li [42] and Kijima [35]) assumes that the default times of the under-
lying references (71,7, - ,7,) are independent, or conditional independent (also
see Jarrow & Yu [31]) . However, we find that if the references’ intensity functions
of their default times are assumed to be functions of common factors (e.g. interest
rate and market index), then the model will lose the event correlation as long as you
use the conditional independent assumption, even you let the references’ intensity
functions be correlated (as in Kijima [35]). So we use the model derived in section
2.5. Under this model, we still can use the conditional independent assumption

while not losing the event correlation.

2.6.2 RELATIONSHIP BETWEEN EVENT CORRELATION AND CONDITIONAL

INDEPENDENT ASSUMPTION

Event correlation refers to how a firm’s default probability is affected by default of
other firms (see Jarrow & Turnbull [30]). Actually, when two firms are correlated,
then one firm’s default probability will be affected by its counterparty, even there
is no default event (see Jarrow & Yu [31]). From Jeanblanc & Rutkowski [32], we

know:

P(r; > s,7; > t{gt) P(r; > s,7; < t‘gt)
<
P(Tj > t‘gt> ]P)(Tj < t}gt)

P(r; > 5|G, VD)) = L7543 (2.23)
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If firm ¢ and firm j are independent, then P(7; > ¢;,7; > t;) = P(7; > t;,P(1; > t;).
So
P(7; > t|G, vV D}) = P(r; > t|G,)

It means that the information of the firm j’s default or survival has no effect on
the firm ¢’s default probability. However, if firm ¢ and firm j are correlated, then
from equation we know that the information of firm j’s default or survival up to
time ¢t will have effect on the firm i’s default probability (see, section 2.5 for details).
Now let’s give out the definition of conditional independent assumption and discuss
how this assumption will affect the event correlation. First of all, let’s clarify the
definition of default probability or survival probability first. According to Lando

[40], the survival probability has the following equations:
P(r; > t|Gy) = e Jo Mi(wdu (2.24)

and

P(Ti > S|gt) — E(E(l{Tl>s}|gT*)

G.) = Eexp(— / () |G)

0
for s > t, and where G; is the filtration generated by the information of state
variables, but not including the information of default process. So if we include the

information of default process D:,, then we have:

P(r; > t|G, vV D!) = 1{r; >t} (2.25)

for 1{r; > t} is Di-measurable. And if s > ¢, we have:

P(Tl’ > S’gt)

B(7: > 5160V DY) = Lo S gigyy = Mo B HOMIG)  (2.26)

From equation (2.25), we know that the default has occurred or not at time t.
Equation (2.26) tells us that we don’t know when the default will occur in the
future. We know that most intensity-based credit risk models (see, Lando [40],

Jarrow & Turnbull [30], Jarrow & Yu [31], Jeanblanc & Rutkowski [32], etc.) have
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the above features. Now we’ll find that what realization of filtration the conditional

independent assumption uses is crucial to keep the event correlation in the model.

Conditional independent assumption means that given the realization of filtra-
tion, the default times of the n underlying references are independent, i.e. we

have:

]P)(’7'1>t1,7'2>t2,"' ,Tn>tn|jT*> (2 27)

= P(Tl > t1|jT*>P(7-2 > t2|jT*) .- P(Tn > tn|jT*)

If we choose Jr« = G+ (as in Jarrow & Yu [31], Kijima [35]), then the event corre-
lation will be eliminated by the conditional independent assumption. We can explain
this by both the marginal distribution of default time and their joint distribution.
For simplicity, we just consider the case when n = 2, so conditional independent

assumption has the form:
P(m > t1, 70 > t2|Gr+) = P(11 > t1|Gr+)P(12 > t5]Gr+)

where t <t < T, t <ty <T".
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The marginal distribution becomes:

]P)(Tl >t1,7’2 >t}gt) ]P)(Tl >t1,7’2 <t}gt)
Tl
P(r, > t[G,) P(r < t|Gy)

P(r > |G vV D) = Limsny

E(P(ry > t1, 72 > t|Gr+)|Gy) E(P(ry > t1, 72 < t|Gr+)|Ge)
= Ln>n + Ln<y
P(TQ >t‘gt> P(TQ gt‘g»
E(P(r1 > t1|Gr+)P(12 > t|Gr+)|Gr)
= ]-{T2>t}

P(rs > t|G;)

E(P(r1 > t1|Gr«)P(72 < t|G7+)|Gr)
P(r, < t‘gt>

+ <

(2.28)

Since P(ry > t|Gr+) = P(r2 > t|Gy) = e~ Jo22du ang = JoXe(Wdu jg G,_measurable,
so the above equation reduces to:

P(Tl > t1|gt\/,DtQ) :P(Tt > t1|gt)

The above equation tells us that the information of default process D? has no effect
on its counterparty’s survival probability. Now let’s check its joint distribution
P(1y > t1, 7 > t2). Use Farlie-Gumbel-Morgenstern copula C'(u,v) = uv(l 4+ a(1 —

u)(l —v)),a € [-1,1], we know that:

]P)(Tl > t1,7'2 > tg)

(2.29)
= E(e_f(fl >\1(u)du€—f(;f2 >\2(u)du[1 + Oc(l _ e—fotl )\1(u)du)(1 . €_f0tQ )\g(u)du)])
Using the conditional independent assumption, we get:
P(ry > t1, 7 > ta) = B Jo' Mwdug=[o* da(uyduy (2.30)

Comparing the above two equations, we know that the result of the conditional
independent assumption is the same as we assume a = 0 in the Farlie-Gumbel-

Morgenstern copula. Therefore, there’ll be no event correlation in the model.
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2.6.3 VALUATION OF THE DEFAULT SWAP

Let 7 = minj;<, 7; be the first-to-default time and 7" is the maturity date of the
default swap. And all risky bonds’ maturities are longer than the default swap’s
maturity, i.e. 7' < minj¢;<,(7;). We assume that both the protection seller and
protection buyer are default-free. And the swap rate premium is paid at rate U

from protection buyer to protection seller at time ¢;, j = 1,2,--- ,m
t<ti<ta<---<t, =T

If default occurs during (ty, 1], then the payment terminates at time tp. We
assume that the n risky bonds in the basket are alive at time t, i.e. 7, > t. So the
time-t value of the payment, denoted by V1, from protection buyer to protection

seller is

m ‘.
Vislgrsty = 3 B(Ulrsyye 7 7000 7))

j=1

On the other hand, if default occurs before the default swap maturity date T" and
the recovery rate of risky bond i is ¢;, under the assumption of recovery of treasury,

then the time-t value of the payment from protection seller to protection buyer is

n

‘/;75]‘{T>t} = E(e_ff T(u)du Z(l — (51‘)1{7-:7-,L-<th}|f.t)

i=1

So the swap value at time t ( denoted by V;) to the protection seller is

Vi = Vilirsyy = Vislirsg
(2.31)

m n

_ Z E(Ul{T>tj}€7 K r(u)du‘f‘t) _ E(e*f{ r(u)du Z(l — (51')1{7—:7—ithj}’f;t)

j=1 i=1
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If the default swap contract is initialized at time ¢, then the swap value at time
t to the protection seller should be 0, i.e. V,, = V,,. So the default swap rate is
determined by the following formula.
E(e= I rdusn (g 0) L r—r, )| )

U= ‘.
z;nZI E(1{7>t‘j}6_ J: T(U)du’]:t)

(2.32)

In the following part of this section, we want to calculate the swap rate premium U.

For simplicity, we just consider when n = 2, say bond A and bond B which
are correlated. As in Jarrow & Yu [31], we treat bond A as a primary bond, bond
B as a secondary bond. It also means that if bind A gets default, then the intensity
of bond B will be added one term. However, if bond B gets default, there is no
effect on bond A. We use 74,75 to denote their default times, and A4(t), Ag(t) to
denote their intensity processes, and D' = o(1{;,<s},5 < 1), DF = 0(1{rp<sp, s < 1).
Now we’ll analyze how the event correlation and holding time of default effect on the
default swap premium. Our philosophy is to introduce the simplest model that will
capture the event correlation and holding time of default effect. We use the model
developed in section 2.5 to deal with the event correlation. Meanwhile, we assume
that the interest rate r(t) is a constant (r(t) = r, the recovery rate 4 = dp = 0,
bond A and bond B have same maturity date Ty. For completeness, we give out

model from section 2.5 and results here. Let A4(t) = a > 0, and

/\B(t) =b + b21{‘rA<t<‘rA+77} (233>

where 7 controls the holding time of bond A’s default effect on bond B with the

law of exponential distribution with parameter pu.
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Case I: firm A has already defaulted by time t, 11, <,y = 1.
The survival probability of firm B is:

T
P(rg > T|G, v D v DP) = E(exp(—/ Ap(u)du)|Gy)
¢

T
= E(exp(—/ (b1 + b2l {u<s4ny)ds)|Gr) (2.34)
t

_ e—bl(T—t>{1 b sy b 6—b2(T—t)—u(T—5)}
bg +u bz + u

Where S is bond A’s the default time.
Case II: firm A has not defaulted up to time t, 1¢r,~pn = 1.

When a # by, a # by + i, then

E(exp(— /ts Ag(u)du)|Gy)

__—bi(s—t) B by —a(s—t) aby —(bg—&—,u)(s—t)}
=e e + e .
{b2+# a—0by—p (b2 + p)(a — by — p)

(2.35)

When a = by, a # by + p, then

Eeap(~ / “Ap(u)du)|Gy)

(2.36)

2
—etbor M Qomatmy T (st

atp  p n(p+a)
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When a # by, a = by + p, then

E(exp(— /ts Ag(u)du)|Gy)

_ e—bl(s—t){ . ba(1 — (s — t))e—a(s—t) _ b(p+a) e-(bﬁu)(s—t)}
bg—i‘/JJ bQ—CL (bg—a)(bz—u)

(2.37)

Now, let’s simplify the denominator in equation (2.32). Using the conditional inde-

pendent assumption, we have:

P(TA > tj,TB > tj|Q’T* \/’DZL‘\/’DtB)
= ]P)(TA > tj|QT* \/DtA \/DtB)]P(TB > tj|gT* \/1?24 \/DtB) (238>

— e—oti=) o=b1(t;—t) _ o—(atbi)(t;—1)
And using the above equation, we have

B(e™ 1 1% 4|6 v DV DY)
— B([E(e” I 7% 1, 1|Gre v DAV DE))|G, v D v DE) (2.39)

— E(e—(r+a+b1)(tj—t)|gt v/ Df v fo) — o~ (rtatb)(t;—1)

Therefore the denominator in equation (2.32) is following:

m

.. m
Z E(1{7—>t]—}€_ K r(u)du|]_-t) _ Z e~ (rtatbi)(t;—t) (24())

j=1 7j=1

For the numerator in equation (2.32), we have two cases: 7 = 75 and T = 74.
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For the 7 = 7 case, it’ll be a little easier for we assume that the default of
bond B has no effect on bond A. And we know that
P(s — ds < 75 < s|Gr- VDAV DE) = be 1= s

And

P(14 > 5,5 —ds < 7 < 8|Gr- VD! v DP)
=P(14 > 5|Gp- VDAV DEP(s — ds < 75 < s|Gr- V D v DP) (2.41)

_ e—a(s—t) ble_bl (s—t)ds _ ble—(a—i-bl)(s—t) ds

Therefore, one term of numerator in equation (2.32) can be simplified as follow:

E(G_ 7 r(u)dul{T:TBgTO} |gt V D;EA V Df)

= B([B(e™ 570y |Gre v DV DP)]|IG vV D v DF)

(2.42)

To
= E(/ e T Dp e (=D g5\1G, v DAV DP)
¢

_ b e

r+a+ b
For the case when 7 = 74, it’ll be a little complicated for the default of bond A will

affect the default probability of bond B. We know that
P(s —ds < 74 < 5|Gp= VDAV DP) = ae™7 (s

And
P(rp > s|Gp- VD v DP) = exp(—/ Ag(u)du)

t

(2.43)

= e_bl(s_t)exp(_ln/ 1{TA<“<TA+"}du>
t
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Thus we have following for the other term of the numerator in equation (2.32).

B(e Aty qylGe v DV DP)

= E([E(e” A rwduy_ <ry|Gr- VDV DE)|G, v D v DP)
To s
= E(/ e " qe (@D B(eap(—by / Ly cusratnydu))ds|Gy vV Dt v DF)
¢ ¢

(2.44)

Now based on your specified values of a, i, by, we can use equations (2.35),(2.37),
(2.36) to substitute E(exp(—bs [, 1{r,<ugranmdu)). After taking the integration,

we have:

When a # by, a # by + 1, then

— 7-‘A'I' U
E(e Jetrtd 1{T:TA<T0}|gt\/,D£4\/IDf)

_ ap —(a+b1+7)(To—t)
= 1—
{(b2+u)(a+b1+r)< © )

(2.45)

aby —(r+2a-+b1)(To—t)
+ e~ (r+2a+b1)(To -1
(a—bg—,u)(r—i-2a+b1+,u)( )

a2 bg

by + p)(a — by — p)(r +a+bi + by + p)

4 ( (1 _ 6—(r+a+b1+b2+,u)(To—t))}
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When a # by, a = by + 1, then
E(e 0t nylGe v DV DP)

aby
{(bz—a)(2a+bl+7”)

(1 — e (2a+b1+7)(To—t) )

abapt —(2a-+b To—
+ Ty — t)e~ Gatbitn)(To—t)
(by — a)(2a + by +r){( =1
(2.46)
1
- —(2a+b1+7‘)(T()—t) _ 1
+ 2a + by +r © )}
ap —(a+b1+7)(To—t)
+ 1—e !
(b2+u)(a+bl—|—r)( )
n abs (,U + a) (e—(a+r+b1+b2+u)(To—t) _ 1)}
(b2 —a)(by — p)(a+ 71+ b1 + by + 1)
When a = by, a # by + 1, then
B(e Iy 131GV DV DF)
_ ap —(a+b1+7)(To—t)
— 1—e¢
{(a+u)(a+b1+r)( )
(2.47)

a?

_l’_
pw(2a+ by + 1)

(1 . e*(2a+b1 +7)(To—t) )

CL3
(6—(2a+b1+7"+,u,)(T0—t) o 1)}

+
pla+p)(2a+by +r+p)
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2.6.4 NUMERICAL EXAMPLES

From the previous section, we can use equations (2.45),(2.46), (2.47) to find the
default swap premium U. Now the basket consists of two defaultable zero-coupon
bonds (Bond A and Bond B). we assume that both A and B have the same maturity
date T, = 10 and their recovery rates are 0, the maturity of the default swap T is
2, and the default swap premium is paid semiannaully (¢; = 0.5,1.0,1.5,2.0). We
assume the current time ¢t = 0, interest rate » = 0.08, by = 0.01. Then we use
different values of a, by, pu to describe different default probability, different correla-
tion, and different length of holding time of default effect. We use Excel to get the

following two tables.

bp =0 by =0.1 by =1 by = 10
a U U Change U Change U Change
0.001 | 0.03576 | 0.03558 | -0.503 | 0.03518 | -1.622 | 0.03505 | -1.985
0.1 |0.03576 | 0.03561 | -0.419 | 0.03522 | -1.51 | 0.03506 | -1.957
1 | 0.03576 | 0.03570 | -0.168 | 0.03544 | -0.895 | 0.03511 | -1.818
10 | 0.03576 | 0.03575 | -0.028 | 0.03569 | -0.196 | 0.03540 | -1.007
100 | 0.03576 | 0.03576 0.0 0.03575 | -0.028 | 0.03569 | -0.196

Table 2.6: Default Swap Premiums for Different Correlations, when a = 0.01 .

From the above table, we can see that the percentage change of default swap
premiums between the case with correlation and the case with no event correlation
is very small. For example, for by = 10, its default swap premium is only 1.985%
smaller than the value with no event correlation. So, when bond A’s default proba-
bility is small (i.e. small a), then the event correlation has little effect on the default

swap premium.
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bp =0 by =0.1 by =1 by =10

K U U Change U Change U Change

0.001 | 11.5591 | 11.4490 | -1.23 | 10.6206 | -8.37 7.7710 | -32.957

0.1 | 11.5591 | 11.4510 | -1.21 | 10.6356 | -8.24 7.7957 | -32.744

1 11.5591 | 11.4668 | -1.07 | 10.7528 | -7.23 8.0062 | -30.924

10 | 11.5591 | 11.5215 | -0.60 | 11.2038 | -3.34 9.2807 | -19.932

100 | 11.5591 | 11.5537 | -0.32 | 11.5052 | -0.74 | 11.0624 | -4.56

Table 2.7: Default Swap Premiums for Different Correlations, when a =5 .

From the above table, we can see that when default probability of bond A is
high (i.e. large a), then the event correlation does matter. For example, for
fixed p = 0.1, as correlation becomes stronger (by from 0.1 to 10), the percentage
changes of default swap premiums gets bigger (from down 1.21% to down 32.957%).
Meanwhile, we can also find that the length of holding time of default effect (%)
is a significant factor on the default swap premium when the correlation is high.
The longer the default effect holds, the smaller the default swap premium is. For
example, for a = 5,by = 10, if the length of holding effect is short (u = 100), then
the default swap premium is only 4.56% smaller than the case with no correlation.

However, if the length of holding time of default effect is long (1 = 0.001), then the

default swap premium will be 32.957% smaller than the case with no correlation.

2.6.5 CONCLUSION

Kijima [35] found that the correlations between bonds in the baskets have little
effect on the default swap premium. However, we find that this case happens only

when the bonds’ default probabilities are very small. If there exists bond which has
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high default probability in the basket, then the correlation is a key factor in pricing
the default swap premium. Meanwhile, we also find that the length of holding time

of default effect is also a key factor in pricing the default swap premium.

2.7 VALUATION OF DEPENDENT DEFAULT RISK IN COLLATERALIZED BOND

OBLIGATIONS

Recently, many new products are associated with credit risk portfolios. Examples of
these include Collateralized Debt Obligations (CDOs) which include Collateralized
Loan Obligations (CLOs) and Collateralized Bond Obligations (CBOs). The central
idea of these trades is ratings arbitrage. Banks typically hold large groups of loans
on their balance sheets. These loans will vary in degree of credit risk and the
overall pool may or may not be well diversified. In a CDO the bank slices up
these loans into various tranches which are rated by a rating agency and then sold
on to investors. CBO is a multitranche debt structure which is similar to some
respect to a Collateralized Mortgage Obligation (CMO) structure. Typically low-
rated bonds rather than mortgage serve as the collateral. Interests and principal
repayments received on the bond portfolio are passed through to owners of the
derivative securities. However, these payments is contingent upon the time and
identity of the first or second-to-default. Default dependency is indispensable to

price/hedge these portfolios.

2.7.1 INTRODUCTION

Collateralized Debt obligations (CDOs) are a form of structurated finance used to
securitize corporate bonds (collateralized bond obligations or CBOs) and bank loans
(collateralized loan obligations or CLOs). With a CDO, assets are pooled in a port-

folio and then rated securities are issued to fund the purchase of the assets. CDOs
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can consist of a number of assets: loans, bonds, combination of loans and bonds, and
a variety of other assets. In a collateralized debt obligation, a portfolio is created
that contains approximately three tranches. All of the tranches reference the same
securities. They are differentiated by levels of risk; the CDO issuer finds a buyer
for each tranche depending on the buyer’s particular risk appetite. As losses occur,
they are incurred by the holders of the First Loss Tranche, Mezzanine Tranche, and
Senior Tranche sequentially. The issuer pays the investor a fixed payment for the
credit protection, and in return, the investor would make a payment to the issuer if
one of the securities were to default when the cumulative default level falls within

their tranche.

Senior
Tranche
Investor

Asset Mezzanine
SPV Tranche

Port folio \ Investor

FirstLoss
Tranche
Investor

Figure 2.1: Typical CDO Structure

The above picture shows the typical CDO structure. The box labelled SPV denotes
a 'Special Purpose Vehicle’. The SPV created for the issuance of a collateralized
bond obligation will be a stand-lone, bankruptcy remote entity. For CBOs, it means
that the asset portfolio is backed by high-yield corporate bonds. All subsequent
payments made to CBO investors are derived from income received from the bond

portfolio. The senior tranche investor and the mezzanine tranche investor receive
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a specified coupon on their investment and are repaid their principal at maturity.
These two tranches are also called bond tranches. They are first in priority of pay-
ment. The first loss tranche investor are paid receipts, with no guaranteed coupon
or guarantee of principal repayment. That’s why some papers call this tranche
equity tranche. If the SPV actually receives all coupon and principal payments due
from the bond portfolio, then all tranches investors will receive everything due to
them and the first loss tranche investors will a receive a high return. If any of the
collateral bonds defaults, then the first loss tranche investors will suffer a loss of
return. This tranche investors are in effect making a leveraged investment in the
high-yield portfolio. It is because of the redistribution of risk that the two bond
tranches can obtain investment-grade ratings even though the underlying collateral

consists largely of below investment-grade bonds.

A CBO is a correlation product. Investors in this product are buying correla-
tion risk. To determine that they are getting a fair return for this risk, they must

be able to measure the correlation risk. In this paper, we focus on two things:

(a) One is how the event correlation affects the credit protection of each tranche.

(b) The other is to analyze how the holding time of default effect affects the

credit protection of each tranche.

2.7.2 CREDIT RISK MODEL

We just consider the simple case when there are only two bonds in the collateral
pool, say bond A and bond B. As in Jarrow & Yu [31], we treat bond A as a

primary bond, bond B as a secondary bond. It means that if bond B gets default,
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there is no effect on bond A. However, if bond A gets default, then the intensity
of bond B will be added one term. Using the model we just developed, we’ll use
exponential distribution to control the life of the added term. It means that after
a certain time of period, this added term will disappear. We use 74,75 to denote
their default times, and A4 (¢), Ag(t) to denote their intensity processes, and D' =
0(Lirycsy: 8 < 1), D = 0(lirp<sy, s < t). We assume that the interest rate r(t)
is a constant (r(t) = r, bond A and bond B have same maturity date Tp. Let
Aa(t) =a >0, and

)\B(t) =b + b21{7A<t<7A+,7} (2.48)

where b; > 0,0y > 0, and 7 controls the holding time of bond A’s default effect on
bond B with the law of exponential distribution with parameter p. This extra term
bolir, <t<ra4n} is induced by the default event of bond A. It will not appear before

the bond A’s default time 74 and after the time 7, + 17 .
Case I: firm A has already defaulted by time t, 11,,<; = 1.
The survival probability of firm B is:

T
P(rg > T|G, v D v DP) = E(exp(—/ Ag(u)du)|Gy)
t

T
= E(exp(—/ [bl + bzl{u<s+n}}d8)|gt) (2'49>
t

G SR B SN S e B
bg"i‘/ﬁ b2+,LL

Where S is bond A’s default time (S < t).

Case II: firm A has not defaulted up to time t, 1{7,>n = 1.



95

When a # by, a # by + p, then

T
P(rg > TG, vV DtA V Df) = E(exp(—/ Ag(u)du)|Gy)
¢

_ e—bl(T—w{ L B ab; e—(bw)@—t)}
by+u a—by—p (b + p)(a@ — by — )

(2.50)

When a = by, a # by + p, then

T
P(rp > T|G, v Di* v DFP) = E(exp(—/ Ag(u)du)|Gy)
¢

(2.51)
2
—en@=tg B Bemat-t) T —(et)T-0)
atpo p 1y + a)
When a # by, a = by + 1, then
T
P(rp > T|G, vV Di* v DP) = E(exp(—/ Ag(u)du)|Gy)
t
_ e—bl(T—t){ H + by (1 — p(T — t>>e—a(T—t) _ ba(p + a) e—(bz-i—u)(T—t)}'
b2+,u bQ—CL (bg—d)(bg—u)
(2.52)

2.7.3 CREDIT PROTECTION VALUATION

Moody’s uses a probabilistic, expected loss approach to determine a portfolio’s
credit risk. A portfolio’s credit risk is quantified as the amount of loss protection
needed to lower a portfolio’s expected loss to the expected loss benchmark of the
desired rating of the structured bonds, where expected loss is defined as the average

of all possible principal losses weighted by their probability. For example, a single
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speculative-grade bond with a 30% default probability and with a 70% loss of par,
then its expected loss is 30% x 70% = 21%. Similarly, the expected loss of the
investment-grade bond with 5% default probability and a 70% loss of par is 3.5%.
If the collateral pool is only backed by this speculative-grade bond, then the credit
protection necessary for the portfolio to achieve an investment-grade rating is 58.3%

which is calculated by the following formula:

Probability of Default x (Default Severity — Credit Protection) )
(2.53

= Target Expected Loss.
i.e. 30% x (70% — X) = 3.5% = X = 58.3%.

If the collateral pool has two bonds, then we can use the following formula to

calculate credit protection:
Probability of 1 Bond Default x
(Default Severity if 1 Bond Defaults - Credit Protection)
+ Probability of 2 Bond Default x (2.54)
(Default Severity if 2 Bonds Default - Credit Protection)
= Target Expected Loss.

If we assume that these two bonds are independent with same default probabilities
(30%), and same default severity (70% loss of par), then plug in these numbers into

the above formula, we get:
(2 x 30% x 70%) x (35% — X)) + (30% x 30%) x (70% — X) = 3.5%.

Solving the above equation, we get the credit protection X = 34.3%3. Comparing

this number to that of only one speculative-grade bond in the collateral pool

3These two examples are from Lucas & McDaniel [1993].
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(58.3%), we find that this one is much smaller. The reduction in credit protection

is a result of the decreased variance in the portfolio’s expected loss.

Now we use our dynamic credit risk model to calculate credit protection of
the collateral pool. As we pointed previously, there are two correlated bonds
A and B in the collateral pool. We assume the current time is ¢, and the
maturity date of the CBO is T. So the probability of one bond default is
P(ra < T,78 > T|G: VDAV DE) + P(r4 > T,75 < T|G; VD v DP). And
the probability of both bonds default is P(r4 < T,73 < T|G; V D#* vV DP). Let
T* denote the horizontal time of the economy (so 7" < T%) and Gr- denote the
information filtration generated by the state variables (for example, interest rate,
market index). Since bond B is a secondary bond, its default has no effect on bond

A. It means that we have:
P(TA > T|gT* \/ DtA \/ DtB) — eifoT )\A(U)du — e*(l(T*t).
And

LrasryP(r5 < T|Gr- VDV DE) = 1 — ¢ o Aoldu — 1 — e=0a(T-0),
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Using conditional independent assumption?, we have:

P(ra > T, 753 < T|G, V Dj* v DF)

= E(P(14 > T, 73 < T|Gp- VD v DP)|G, v DA v DP)

= E((P(14 > T|Gr+ V D v DPYP(15 < T|Gp- vV D v DP))|G, v D v DF)

— ¢aT=)(] _ e~ (T-0)y,
(2.55)

To calculate the probability P(14 < T, 75 > TG V D! V DP) ,we know that P(14 <
T,75 > T|GVDAVDE) = P(rp > T|G,VDAVDE)—P(r4 > T, 5 > T|G:VDAVDE).
Using equations (2.50),(2.51), or (2.52), we can calculate P(7g > T|G; VDAV DE) =
E(P(rg > T|G; V D v DB)|G, v DA v DP). For the probability P(ta > T,75 >

T|G; VvV D* v DB), since bond A will survive up to time 7', so there is no default

4Conditional independent assumption refers to the independence of default times 74
and 7p given the realization of information filtration. Here, we have

P(14 € By, 78 € BQ|QT*\/D£4\/DtB) =P(r4 € B1|gT*\/D£4\/DtB)]P>(TB € BQ|gT*\/DiA\/,DtB).

where Bi, By are Borel sets.
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effect. Therefore, we have:

P(ry > T,75 > T|G, V Di* v DP)

= E(P(14 > T, 73 > T|Gr- vV D v DP) |G, v DA v DP)

(2.56)
= E(P(1a > T|Gp- VDAV DEYP(75 > T|Gr- vV D v DP)|G, v Di* v DF)
— o—a(T—t) ,=bi(T—1)
So the probability of one bond default is following:
When a # by, a # by + 1, then
P(ra < T,78 > T|G, VDAV DE) + P(r4 > T, 758 < T|G, V Di* v DP)
= o~ d(T=1) _ 9p—(atb)(T=t) 4 =bi(T~1) Ko by o~ a(T—1) 9 57
b2 + % a — bQ — U ( : )
i aby o (ba+) (1) } '
(b2 + p)(a — by — p1)
When a = by, a # by + p, then
P(ry <T,73 > T|G: VDIV D)+ P(ry > T, 73 < T|G: VD v DP)
— o~ u(T=1) _ 9p—(atb)(T—1) efbl(Tft){ H I gefa(Tft) (2.58)

atp g

2
I

n(p+a)
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When a # by, a = by + p, then

P(ta < T, 75 > T|G: VDV DP) +P(ra > T,75 < T|G: VD v DF)

= e + €

Ca(T— _ _ b (T— bo(L — (T —t))
— o a(T=t) _ 9o—(atb1)(T-1) by (T—t) H 2 H a(T—t)
e +e {b2 T by — a (2.59)

_ by(p+a) 6—(b2+,u)(T—t)}'
(b2 — a)(bs — 1)

Using P(ta < T,78 < T|G; VD vV DP) = P(ra < T|G: VDAV DE) — P(r4 <
T,75 > T|G; VDAV DE), and equation (2.50),(2.51), or (2.52), we can calculate the

probability of two bonds default P(74 < T, 75 < T|G; V D Vv DE). So we have:

When a # by, a # by + p, then

P(ra < T,75 < T|G: VD VD) =1 — e 01 4 ¢~ (er0)(T=0)

_ €b1<Tt){ [ S aby e(bm)(Tt)}_
b2+M a—bQ—u (b2+u)(a—bg—u)

(2.60)

When a = by, a # by + p, then

P(ra < T,75 < T|G VD VD) =1 — e 70 4 gm(at){T=0

(2.61)

2
_ Ty Py 8mams @ e~ (@H(T=0,

atp o p p(p +a)
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When a # by, a = by + p, then

P(ra <T,73 < T|G: VD VDY) =1 — e @00 gm0

. ebl(Tt){ H 1 ba(1 — p(T — t))e—a(Tft) . ba(p + a) €(b2+u)(Tt)}_
by + p by —a (b2 — a)(bs — 1)

(2.62)

2.7.4 NUMERICAL EXAMPLES

In this section, we’ll analyze numerically how the event correlation (by) and the
average of holding time of default effect (%) affect the credit protection. We assume
the current time ¢ = 0 and both bond A and bond B will lose 70% of par if default
occurs. Now we use equations (2.57),(2.58), or (2.59), to calculate the probability
of one bond default and use equations (2.60),(2.61), or (2.62) to calculate the prob-
ability of both bonds default. Here we assume CBO has the same maturity date as
the bonds in the collateral pool. Then we choose a = 0.0713,b; = 0.0713,T = 5,
thus both bond A and bond B has 30% default probability. Therefore we can
compare our results to the one when bond A and bond B are independent (in this

case, the credit protection is 34.3%).

b Wang Percentage change
0.01 | 0.3458678 0.81124
0.1 | 0.3676301 7.154
0.2 | 0.3862371 12.578
0.3 | 0.4005695 16.755
1 | 0.4462486 30.07
2 1 0.4643707 35.352
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Table 2.8: Percentage changes of credit protections from our model vs. that of inde-

pendent case. And | =0.19 |

In the above table we assume p = 0.19, the holding time of the default effect
will last /% = 5.26 years which is longer than the bonds’ maturity date. The above
table tells us that the credit protection increases as the correlation between the two
bonds becomes strong. So the rating of the credit risk portfolio (i.e. collateral pool)
is down. For example, when b, = 2, then the credit protection is 0.4643707 which is

35.352% larger than the one (0.34308) when both bonds are independent.

by Wang | Percentage change
0.01 | 0.343088 1.15E-03
0.1 | 0.343124 0.0115
0.2 | 0.343163 0.023
0.3 | 0.343203 0.0345
1 | 0.343478 0.1147
2 | 0.343870 0.2288

Table 2.9: Percentage changes of credit protections from our model vs. that of inde-

pendent case. And | = 365 |.

In table 2.9, we assume g = 365, so the holding time of the default effect is
only 1 day. In this case, the correlation was not a key role in measuring the credit
protection. For example, when by = 2, the credit protection from our model is only
0.2288% higher than the one (0.34308) when both bonds are independent. In table

1, however, we get a credit protection which is 35.352% higher.
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by |p=019|p=025|p=0333|pu=05]| p=1

0.01| 0.811 0.745 0.667 0.546 | 0.343

0.1 7.154 6.613 2.969 4.954 | 3.205

0.2 12.578 11.70 10.645 8.962 | 5.973

0.3 16.755 15.674 14.366 12.249 | 8.384

1 30.07 28.875 27.365 24.747 | 19.193

2 35.352 34.49 33.364 31.305 | 26.415

Table 2.10: Percentage changes of credit protections from our model vs. that of indepen-

dent case for different u.

Table 2.10 tells us that when i is changing around the CBO’s maturity date
(T" = 5), then the longer the holding time of default effect, the larger the credit
protection of the collateral pool. For example, as the holding times of default effect
change from 1 year (u = 1) to 5.26 years (u = 0.19), the percentage changes of the
credit protection with respect to the independent case increase from 26.415% to

35.352% when by = 2.



CHAPTER 3

PRICING DEFAULTABLE BONDS WITH REGIME SWITCHING

3.1 INTRODUCTION

In chapter 2, we use indicator function to adjust one firm’s intensity process if its
correlated counterparter gets default. We also use an exponential distribution to
control this indicator function. So this indicator function may be dropped from the
firm intensity process in the future. It means that there is a possibility for the firm
to get recovery after a certain period of time. This tells us that the intensity process
shifts from one regime to another. In this chapter, we’ll develop a generalized credit
risk model which is subject to regime switching. It means that all the underlying

factors in the credit risk model are subject to regime switching.

3.1.1 REVIEW OF REDUCED FORM MODELS

In [40], [13], they characterize default using intensity function which is assumed to
be determinied by common economic factors as well as firm-specific factors. This
achieves two effects. One is that the model can be applied to the situations where
the underlying asset value is not observable. The other is that the default time is
unpredictable, so this is consistent with the empirical literature that short-term debt
often does not have zero credit spreads. The credit spread represents the premium
that compensates the holder who bear the credit risk. The price or credit spread
of a defaultable bond is directly related to a risk-free bond through default and

recovery rates that both of them are defined exogenously. While the reduced-form

64
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models have attractive properties, their main drawbacks are: the model is lack of
a link between firm value and default; the credit spread generated by reduced-form
model is still not large enough; and the model can not explain the jump part in
credit spread. In order to explain the jump part in the credit spread, Arvanitis,
Gregory and Laurent [2] directly model the credit spread. They used credit migra-
tion to generate jump part. So the model treats default as the consequence of
credit migration rather than sudden occurrence. Jarrow and Yu [31] introduce a
counterparty risk in their model. They assume that when one firm gets default,
then its correlated firms may benefit or suffer from this default event. In order to
achieve correlated default effect, they introduce an indicator function into hazard

process.

There is an in-between approach which is developed by Cathcart and El-Jahel [5].
They provide a framework that combines structural and reduced-form approaches.
By introducing a signaling process of uncertainty, they assume that a default event
occurs in an expected or unexpected manner then the value of this signaling process
reaches a certain lower barrier or at the first jump time of a hazard rate process.
This signaling process of uncertainty represents the aggregation of all information
on the quality of the firm currently available. The greater the value of the uncertain
process, the poorer the quality of the firm. As Cathcart and El-Jahel [5], Schmid
and Zagst [49] introduce this signaling process into their three factor model con-
sisting of interest rate, credit spread and signaling process of uncertainty. From the

practical point of view, their model is difficult to implement in practice.

Here, we present a model which can unify the current existing credit risk models by
introducing regime shifts in the short interest rate process and hazard process. Our

model can explain the following important issues: (1) credit spreads may change
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Figure 3.1: Time series with regime switching.

without default occurring; (2) credit spreads exhibit both a jump and a continuous
component. (3) downward-sloping, upward-sloping, humped-sloping credit spread
in short term can be generated by our model. Meanwhile, our model is much
more tractable mathematically than the jump-diffusion type models or three factor
models. And it is easy to implement in practice without losing any feature that the
other models have. Some work on regime shifts has been done in literature. Zhang
[59] introduces regime switching in stock liquidation. Yao, Zhang and Zhou [54]
introduce regime switching in option pricing. Smith [50], and Bansal & Zhou [3]
introduce regime switching into term structure of interest rate. All of them find
sufficient evidences to support the regime switching models. Moreover, Smith (2002)
also finds evidence that regime-switching model is favored over stochastic volatility

model to represent the dynamic behavior of U.S. short-term interest rates.

3.2 MARKOV-MODULATED REGIME SWITCHING

Many financial variables undergo episodes in which the behavior of the series seems

to change quite dramatically. Graphically, it’ll look like figure (3.1).
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For the data plotted in figure (3.1), how should we model this process which is
regime dependent. One way is that we can consider this process to be influenced
by an unobserved random variable a(t), which will be called the regime that the
process was in at time ¢. If «(t) = 1, then the process is in regime 1, while a(t) = 2
indicates that the process is in regime 2. For Markov-modulated regime switching,

we assume that this unobserved random variable is a Markov chain.

3.3 VALUATION OF DEFAULTABLE BONDS

Let (2, F,(F:),P) be a given probability space. All processes are assumed to be
defined on this space and adapted to the filtration (F;). The short-hand notation
E.(-) denotes E(-|F;), and all expectations are with respect to the measure P. We
work in an arbitrage-free setting and consider the behavior of the involved processes

directly under an equivalent martingale measure P.

Since P is an equivalent martingale measure, the money market account and

default-free bond price are given by
t
B(t) = exp (/ rsds)
0

pie.7) = (i)

and

, respectively, where r; denotes the instantaneous default-free interest rate. In the
default risk framework, a default appears at some random time 7. The payment of

a defaultable bond consists of two parts:

(1) Given a maturity date T' > 0, a random variable Y, which does not dependent

on 7 represents the promised payoffs - that is, the amount of cash the owner of the
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claim will receive at time T', provided that the default has not occurred before the

maturity date T'.

(2) A predictable process X, pre-specified in the default-free world, models the
payoff which is received if default occurs before maturity. The process is called the

recovery process or the rebate.

So the price of the defaultable bond is, provided that the default has not occurred

before time t,

T T
V(t,T)=E, (Y1{7>T} exp (—/ rudu) + X lr<ry exp (—/ rudu)>
t t

In this paper, we follow Duffie and Singleton [13] and consider that default occurs
at a rate of h;. Here h; is a given positive hazard rate process, i.e. the time-¢ hazard
rate process, h;d;, gives the approximation probability of default for the bond over
the time interval (¢,¢+d;). Suppose the promised payoff Y = 1, and use the recovery
of market value, i.e. if default occurs, then the defaultable bond will be worth only
a fraction of its predefault value, X, = ¢,V (7—,T), where 0 < ¢, < 1. Under the
equivalent martingale measure, using the result from Duffie and Singleton [13], the

price of the defaultable bond is given by the expectation:

V(t,T,r.h) = E, {exp(— /tT Rudu)} . (3.1)

where R; = r; + hyL; which is called adjusted discount rate, and L; denotes the
expected fractional loss in market value if default were to occur at time t. Comparing
to the discount rate r; in the default-free bond, this extra term h;L; represents the

risk-neutral mean-loss rate”. In this paper, we assume L, is independent of ¢, i.e.

Lt:L.
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Duffee [11] uses an extented Kalman filter approach to test a square root dif-
fusion model for the credit spread. He finds that the square root diffusion model is
reasonably successful at fitting corporate bond yields. As in Duffee [11], we assume
that the instantaneous interest rate r; and hazard rate h; follow mean reverting

square-root processes (CIR model).

dry = ay(t) (b1 (t) — re)dt 4+ o1 (t)\/redw (t). (3.2)
and
dhy = ag(t)(ba(t) — hy)dt + oo(t)\/ hedws(t (3.3)

We assume that the correlation between dw; and dws, is p, i.e. dwy(t)dws(t) = pdt.

Using Feynman-Kac formula, we know that V(t) := V(¢t,7,r,h) must satisfy

the following partial differential equation:

oV oV v 1 2V 1, 8V

W + al(b Tt)E + a2(b ht) 8h V( )0 2 + §U2V(t) Oh2 (3 4>
82V .

+ pPO1021/ Tthtm - (Tt + Lht)V(t) = 0,

With boundary condition
V(T,T,r,h) =

Our interest is to derive the implications for defaultable bond pricing when the
interest rate and hazard rate are subject to regime shifts. Let {a(t)} denote a
continuous-time Markov chain with state space M = {1,2,--- m}. This finite-
state Markov chain a(-) can be used to represent the general market direction, the
economy trend, etc. Let @ = (¢ij)mxm be the generator of a(t) with ¢;; > 0 for i # j
and 27:1 ¢;; = 0 for each ¢« € M. Moreover, for any function f on M, we denote

Qf()(@) = >_7%, aii(f(j) — f(i)). To keep things tractable, we will model the the
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regime shifts process as a two-state Markov process (m = 2). Let the generator of

()
A — Ay

a(+) have the form

with \; > 0 and X\ > 0.

Using «(t), we have the following interest rate process and hazard rate process

corresponding to equations (3.2) and (3.3).

dry = ay(a(t))(bi(a(t)) — ry)dt + o1 (a(t))/redw (t). (3.5)
and
dhy = as(a(t))(ba(a(t)) — hy)dt + o9(a(t)) v/ hedws(t). (3.6)

Also using Feynman-Kac formula, we can verify that V(i) := V(¢,T,r, h,i) should

satisfy the following system of PDE’s:

§%Q+wmﬂm@—wa%;ﬂ+wmx@@%4mﬁg?

+ §Uf(i)V(i) 52 T 52OV ()=~ + por()oa()) Vreh— = (3.7)
— (re+ Lh)V () +QV (¢, T,r, h,-)(1) =0,i = 1,2,

with the boundary condition:

V(T,T,r h,i)=1,i=1,2.
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Writing it separately, we get the following two partial differential equations:

v (1) oV (1) ov (1)
S o =T e - T
12T 0 Ly T 4 o ey D (38)

— (ry + Lhy) V(1) + M (V(2) = V(1)) = 0.

And
v (2) v (2) oV (2)
5 T @1(2)(521(2) - Tt)V + a2(22)(b2(2) - ht)W 2
4 %03(2)\/(2)8 8Vr @), %U%(Q)V@)a avh(22) + pal(Q)@(z)\/@aarLa(? (3.9)

— (ry+ Lh)V(2) + X (V(1) = V(2)) = 0.

with the boundary condition:
V(T,T,r,h,i)=1,i=1,2.

where V(i) denotes the value of defaultable bond when the Markov process is in

state 1,1 =1, 2.

Based on the above setup, analytical solution won’t be easy to get. So we seek

numerical approaches to calculate defaultable bond price.

3.4 NUMERICAL APPROACHES

Finite difference approach, lattice (or tree) approach, and Monte Carlo simulation
approach are the most popular vehicles for valuing derivative securities. When the
number of underlying factors in the underlying system is less than three, finite
difference approach and lattice approach are preferred to be used. However, when
the number of underlying factors in your system is larger than three, Monte Carlo

simulation will be easier to be implemented.
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3.4.1 ExprLiciT FINITE DIFFERENCE METHOD

The idea behind finite difference methods is to simplify the PDE by replacing the
partial differentials with finite differences. There are three ways of implementing
finite difference approach: explicit, implicit, and Crank-Nicolson. Each of them
has its own advantages and disadvantages. Explicit finite difference method is
very intuitive, and easy to implement comparing to implicit and Crank-Nicolson
methods. The method’s only disadvantage is that the numerical solution does not
necessarily converge to the solution of the differential equation as the time step size
0; tends to zero if we use the regular approximation method. Explicit finite differ-
ence method simply can be described as the unknown point can be calculated and
expressed explicitly by known points. As we know, using explicit finite difference
method to solve Black-Scholes PDE is equivalent to using trinomial tree model.
By the trinomial tree model, we know that the coefficients before the three known
points are the risk-neutral probabilities. So the three coefficients before the known
points in the explicit finite difference methods serve the risk-neutral probabilities,
therefore all three should be positive. However, we know that the sign of these
coefficients also depend on the relative values of interest rate and stock volatility.
Too small time and space steps will cause these coefficients to be negative. These
will cause explicit finite difference method to be instable and lack of convergence.
Hull & White [24] also pointed out that negative coefficients will happen when the

underlying factor of PDE follows mean-reverting process.

However, there is a modification of explicit finite difference method introduced
by Fleming & Soner [17]. They prove the convergence of explicit finite difference
method by using viscosity solution approach. Here is the basic idea of the approx-

imation method of Fleming & Soner [17]. Considering PDE (3.4), the value of a
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defaultable bond V satisfies this partial differential equation. In this PDE, there
are partial derivatives of V' with respect to state variables r, h and time ¢t. A small
constant time interval, d;, a small constant change ¢, in r, and a small constant
change 9, in h are chosen. Then a grid is then constructed for considering values of
V' when r is equal to

To,To + 57‘7 ro + 251”7 * 5 Pmax,

h07 hO + 6h7 hO + 26117 Tty hmax7

and time is equal to

tt+ 0yt + 26, T.

where the parameters rg, hg and ryax, Amax are the smallest and largest values of 7, h,
respectively, considered by the model, ¢ is the current time, and T is the maturity
date of the derivative security. Denote t + nd; by t,, ro + ¢, by r;, ho + 70, by
hj, and the value of the derivative security at the (n, 4, j) point on the grid by V7.
The partial derivatives of V' with respect to r at node (n,i,j) are approximated as
follows,

if CLl(bl — T’z‘) > 0, then
ov o 'Lil,j -V

—— b 1
ar 6T Y (3 O)

if a1(61 — Ti) < 07 then
v V- Ve,
or J, )

Similarly, the partial derivatives of V' with respect to h at node (n, 1, j) are approx-

(3.11)

imated as follows,

if CLQ(bQ — h]) > 0, then
oV Vi -V
_— = 3.12
if CLQ(bQ — h]) < 0, then
oV V-V

5 5 (3.13)
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where a1(by — 1), as(by — h;) are the coefficients of partial derivatives V' in PDE.

9%V 9%V

The second-order partial derivatives 5=, 5=

0*V _ 1 —2ViE+ Vi

are approximated as follows,

or? 92
and
O*V Vi 2V VT
oh? 52
The cross-term g:—a‘;l is approximated as follows,
if p > 0, then
o*V _ @V 4+ Vi Vit ) — (Vi + Vs + Vi + Vi)
oroh 26T5h
if p <0, then
>V _ (Vi + Vil + Vi + Vi) = V5 + Vi + Vil )
oroh 20,-0p,

and the time derivative is approximated as

n+1 n
8‘/ _ V;’]% - ‘/i,j'

ot 5

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

According to the signs of coefficients of partial derivatives, we substitute corre-

sponding approximation into PDE (3.4). Then we can calculate the value of V!

at time ¢, from the values of V;; at time ¢,. We have the following eight cases.
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Case 1: if a;(by — ;) > 0,a2(by — hj) > 0,p > 0, then we have
Oy 2 Oy

Vi 1 (252 oir; — 2%.0, ——po1094/Tih; )V, 1t 25 5 < Po102\/Tih; V"
Ot 0t 5 O
—~as(by — h: h; — \/rih )V
+ (5ha2( 2 J) + 25’%‘72 25r5hp0102 r J)Vmﬂ
5t 5t
+ (1 = 6¢(r; + Lhy) — —ay(by — r;) — —as(bs — hy)
) ) 53 On (3.19)
t t n
620%7’1— 52 2h + 5o ——po109+/Tih; )V
0. 0. " Oy
+ (2(;2 %h 25% po109+\/Tih; )Vj 1+ 2.0, ———po102\/Tih; Vi i 4
0 0 0y
+ (5—ta1(b1 — TZ‘) + 2—(;20'%7’1' - 25 5 o < PO102\/ T h )‘/;T—il-l]
Case 2: if a1(by — ;) > 0,a2(by — hj) > 0,p < 0, then we have
. 5 o n 0 n
Vi ! (2(;2 ori + 2.0, p0102\/7”zh3)‘/;,1,j - ﬁpalazx/nhjviq,jﬂ
Ot O Ot n
(aag(b h) + ﬁ(f%hj + 25.0n oo o PO1024/ Tzh )Vi,j—i-l
0.
+ (1= 6,(r; + Lhy) — —ay(by — ;) — —az(by — hy)
) ) 53 On (3.20)
t t t n
_ 5_30%7"2- (52 2h 5 (5 p0'10'2\/7“1h )V
B 5 n 0 n
- (2—(;}%a§hj 5 té po1oa\/Tih )V — Ttéhpalaz\/ rihiVig-1
0. Oy 0y
+ (5_:«(11(171 - Tz) 252U%T1 25 5 S < PO102y/ Tlh )‘/erl]
Case 3: if ay(by — ;) > 0,a2(by — h;) < 0,p > 0, then
_ 6 5 n 5 n
V[; L — (2—(;20fn- — %, t5 po102+/Tih; )Vi,l,j + ﬁpalazv Tihj‘/ifl,j—l
0 Oy Oy
+ (2—(;}2L0'gh] — mpalgg\/ Tzh )‘/;j-f—l + 25 5 ——<~ < PO102 V Tl ‘/;—1—1 J+1
) 0.
+ (1 — 5t(ri + Lh]) — 6—t&1(b1 — Ti) + 5_ta2(b2 - h])
" h 3.21)
— 5—301n (52 o5h; + 5 5 ——po102+/Tih;) V],
(=t anlbs = )+ 553y — 52 g TV
5, 2\ 262721 7 955,172 -1
5t (5 2 5t n
+ (6—TG1(b1 — 7’1) 252017’1 - 25.0n oo o PO1024/ rzh )Vz’—i-l,j'
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Case 4: if ai(by — ;) > 0,a2(by — hj) < 0,p < 0, then
n 0, O 5
v 1 (252 iri + 5.0, P10/ 1)V — TR = Po10a/Tih V]

5, 5, § 5, )
+ (25% o3h; + 55 5h00102\/ rihi) Vi — mpalo’z\/ rihiViii ;o

0 0
+ (1 - 515(7"2‘ + th) - 5—ta1(b1 — Ti) + 5—2(12(52 — hj)

) ) )
6;(7%/’@ — 53 5 g po109y/Tih )V

5, 5, .
+ (——ag(bg — h; )—|— 252 h + 25 (5 ——< < PO0102 Tihj)‘/i,jfl

) ) 0y n
+ (_tal(bl — 1) + 2(;20%7% + 25,6, S PO102y/Tih) Vi ;.

Case 5: if a1(by — ;) < 0,a2(by — hj) > 0,p > 0, then we have

5 J o
n—1 t t o2 n
Vi,j = (_é_ral(bl — )+ ﬁdﬂ’z’ 2.0, < PO102/Tih; )‘/ifl,]

T

(3.22)
oshj —

8 2 Oy ST
(6—ha2(b —h; ) 252 h 25T5hp0'10'2 Tihj)‘/;,j—i-l

O 0.
+ (1 — 5t(ri —+ Lh) + 5-@1((?1 — 7’1') — 5—ta2(b2 — h])
r h
0 o

) Oy
— ﬁalri 6; 2h + 5.0, p0102M)V"

(St 61& n 615 n
+ (55 25 osh; — 25T5hP<7102\/ rih )V + mﬂalﬁ\/ rihi Vit i

5 5 . 5 .
+ (2(;20%T2 — 2(5 5 p0'10'2\/7’zh )V;JrLj + mpalam/mhj‘/;fl’jfl.

Case 6: if ay(by — ;) < 0,a2(by — h;) > 0,p < 0, then we have

n— oy 0y O "
Vi b= (—5—Ta1(b1 i) + 2520% 20, P10/ Tih; )V

5 O Ot T\
+ (5_ha2(b2 h ) + 53 262 h + 25 5hp0-10-2 rihj)‘/;d"'l
oy 0
+ (1 = &,(r; + Lhy) + 5—a1(bl — ;) — 5—ta2(bz — hy)
, h

0. ) 0y "
— 5—;an (5; %h 56, ——po1097/Tih; )V

5 o n 0, U
25}21 h + 5 (Shp0102vrihj)‘/;’j_l — mP0102 Tihj‘/z‘—&—l,j—l

0y 0y . 5, .
+ (o0iri + 55 5, P71V Tihi)Vid — g5 pm a1 Vi

(3.23)

(3.24)

+ (55
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Case 7. if ay(by — ;) < 0,a2(by — hj) < 0,p > 0, then

n— 0 ot .
V;J L (_(5—ra1(b1 - Ti) + T;ZU%Ti % (Shpa'la'z,/ rih; )V

J o Ot
+( (;2 Sh 2(5(5 P0102\/nh )‘/UJrl—’_ 2(55 p0'10'2\/7“z ‘/z+1j+1

) )
+ (1 — 5t(ri + Lh) + —tal(bl — Ti) —+ —tag(bg — h])

0y )
b o O s 5 ' (3.25)
62017’z— 52 2h; +55 po1027/Tih;j )V
5t b h; 5t h 5 /r-h n
+(—aa2( 2 — ) 252 2(5 5 —— < PO102\/T; J)V,j—l
0. Oy 0y
+(2—§20§7’z‘— 550, o102/ Tih;) Vil + 2.5 ———po102\/Tih V" .
Case 8 if ay(by — ;) < 0,a2(by — hj) < 0,p < 0, then
Vet = (=2, P Vil Vi
nj (_(S_TGI( 1= ) + 25201 i + 25 6hp0102 r; j) i—1,j
0. 0y Oy
+( (;2 2h + 25 5 55 < PO102vy Tlh )‘/z]Jrl 2(5 5 oc <« PO102y/ Tz ‘/z+lj 1
0. 0.
+ (1= 8u(ri + Lhy) + —ay(by — ;) + —aa(by — hy)
0y S
5t 9 575 2 5t . (3.26)
62017‘2— 52 shi — 5.5 ——po102+/Tih; )V
5t b h 5t h 5 [ h VT
+ (—am( 2 j) + — 252 + 5 5 —< < PO102\/T; )V,j—l

Oy Oy Oy
+ (55 257 o; iy 5h/)0102\/ h)Vz+1g—255 po1o2\/Tih; V" iy

Since we know the value of V' at time T', so the value of V' at time t can be calculated
by using (3.19)-(3.26) repeatedly to work back from the maturity date 7" to the

current time ¢ in step size of d;.

Now, we consider the boundary conditions. We have four points and four seg-

ments at each time ¢,,. Using Taylor expansion, we have

V() = V(ro) + 226, + 12562 + o(4,) 327

V(ra) = V(ro) + 2926, + 12V(25,)% + 0(4,)
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Solving the above equations, we have the approximations at lower boundary

(3‘/)” _ Ve AV - 3V

or 0, 20,
(VY V2 429
or2oj (0,)2 '

Similarly, the partial derivatives of V' with respect to h at lower boundary can be

approximated as follow,

(8_‘/)” _ ViR AV - 3V

Oh/io 20},

BV Va2V (529
oh?/)io (0n,)? ‘

Using the same technique, we can get the following approximation at upper boundary

((?V)" _ Va2 AV, 1 + 3V

or Nyj 20,
<32V>” VR e =2V VR

or? J n,,j (0,)2

VN Vily, o =4V, 1 + 3V, (3.50)
(%)i,z\fh N 20y,

D*V\n . ‘/i?NhfZ - 2‘/;?1\@4 + V;nNh
(W)Wh N (61)2 ‘

where N,.0, = "mazs Nnon = Rnaz-

To use explicit finite difference approach on PDE system (3.7) with regime shifts,

there is nothing new but to solve equations (3.8) and (3.9) simultaneously.

convergence: As Hull & White [24] pointed out, when using the explicit finite
difference method and the underlying factor following a mean-reverting process,
we’ll have some problem on convergence which is caused by the mean-reverting
process. One way to overcome this problem is to find the maximun/minimum
values of the underlying factor that it could reach in specified time interval. They

found an analytical solution for these maximum /minimum values. In this paper, we
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use Monte Carlo simulation to find what the possible maximum/minimum values of

interest rate and intensity rate could be in a given time interval.

3.4.2 MARKOV CHAIN MONTE CARLO SIMULATION

Monte Carlo simulation has long been an important numerical tool for complex
securities valuation problems. The technique is used extensively in the literature to
obtain prices for instruments for which analytical solutions are not possible. Monte
Carlo simulation provides a simple and flexible method for valuing these type of
instruments. Here, our objective of using Monte Carlo simulation is to compare
these results with those of explicit finite difference approach. Since there is Markov
switching both in interest rate process and in hazard rate process, our simulation
procedures are follows,

(1) Based on the given generator @) of this Markov chain, we generate a Markov
chain in the span of given time-to-maturity of the defaultable bond.

(2) generate sample path of interest rate process, the coefficients in the drift and
diffusion terms are decided by the state of the Markov chain (generated in step (1))
at that time.

(3) generate sample path of hazard rate process synchronously... as in step (2),
however, this sample path is correlated to the one generated in step (2).

(4) use formula (1) to get the price of defaultable bond.

(5) repeat step (2) through (4) M times, then take the average of these M’s default-

able bond prices.

Here, we use Markov chain Monte Carlo simulation as an alternative way to



calculate the defaultable bond price. Our objective is to check the stability of our

results from explicit finite difference method.

3.5 NUMERICAL EXAMPLES

Now we choose correlation p = 0.5, recovery rate § = 0.4, A = 10, u = 20, and all

coefficients in equations (3.5) and (3.6) as following

Parameter table 3.1. Parameters for humped shape credit spread with rq = 0.06, hg = 0.06.

Parameter table 3.2. Parameters for downward trend credit spread with rq = 0.06, hg = 0.1.

ar(a(t)) | bi(a() | or(a() | az(a(t) | ba(a(t) | o2(alt))
at)=1| 1.3 0.08 0.25 1.5 0.1 0.1
alt)=2| 25 0.05 0.25 2.5 0.05 0.25

ar((t)) | bi(a(t)) | or(e(t)) | az(a(t)) | ba(a(t)) | o2(e(t))
at)=1| 1.3 0.07 0.25 1.5 0.06 0.1
at)y=21] 25 0.03 0.15 2.5 0.15 0.25

ar(a(t)) | bi(a()) | or(a()) | az(a(t) | ba(a(t) | o2(a(t))
at)=1| 1.3 0.07 0.25 1.5 0.06 0.1
at)=2| 1.3 0.07 0.25 2.5 0.15 0.25

Parameter table 3.3. Parameters for upward trend credit spread with rg = 0.06, hg = 0.03.
The default-free discount bond given by cox, Ingersoll, and Ross (1985) model:
p(l,r) = exp(A(l) + B()r)
where

_ —2[1 — exp(—11)]
2y exp(—1) + (a1 — 7)[1 — exp(—1)]

B(l)
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v = /a? + 20}

_ 2a,b; 2y expl(ar — ’Y)é]

o7 <2v exp(—7l) + (a1 — 7)[1 — exp(—91)]

)
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With downward trend credit spread, the firm improves their quality in the long

rumn.
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Time-to-Maturity | Default-free | a(t) =1 | «a(t) =2 Spread
0.2 0.987604 0.980319 | 0.980796 | 0.037019
0.4 0.974595 0.960038 | 0.960859 | 0.037623
0.6 0.961188 0.937940 | 0.939123 | 0.040807
0.8 0.947542 0.916776 | 0.918161 | 0.041260
1.0 0.933773 0.900083 | 0.901331 | 0.036747
1.2 0.919968 0.880533 | 0.881821 | 0.036510
1.4 0.906191 0.862025 | 0.863296 | 0.035690
1.6 0.892487 0.843188 | 0.844458 | 0.035514
1.8 0.878891 0.824925 | 0.826180 | 0.035204
2.0 0.865427 0.806857 | 0.808097 | 0.035038
2.2 0.852114 0.788798 | 0.790012 | 0.035095
2.4 0.838963 0.771530 | 0.772721 | 0.034913
2.6 0.825984 0.754636 | 0.755803 | 0.034746
2.8 0.813182 0.738274 | 0.739413 | 0.034514
3.0 0.800561 0.722116 | 0.723230 | 0.034376
3.2 0.788122 0.706312 | 0.707403 | 0.034249
3.4 0.775866 0.690856 | 0.691923 | 0.034132
3.6 0.763794 0.675886 | 0.676926 | 0.033965
3.8 0.751903 0.666463 | 0.667425 | 0.031743
4.0 0.740194 0.652212 | 0.653152 | 0.031636
4.2 0.728663 0.638268 | 0.639188 | 0.031536
4.4 0.717310 0.624622 | 0.625522 | 0.031446
4.6 0.706131 0.611422 | 0.612301 | 0.031307
4.8 0.695126 0.598356 | 0.599216 | 0.031231
5.0 0.684291 0.585571 | 0.586413 | 0.031159
5.2 0.673624 0.573060 | 0.573883 | 0.031093
5.4 0.663123 0.560816 | 0.561621 | 0.031031
5.6 0.652785 0.548835 | 0.549624 | 0.030973
5.8 0.642608 0.537235 | 0.538005 | 0.030879
6.0 0.632590 0.525762 | 0.526515 | 0.030829

Result table 3.1. Humped shape credit spread.

83



Time-to-Maturity | Default-free | a(t) =1 | «a(t) =2 Spread Price difference
0.2 0.987840 0.983199 | 0.982495 | 0.023545 0.000704
0.4 0.975453 0.964253 | 0.962959 | 0.028872 0.001294
0.6 0.962950 0.943923 | 0.942247 | 0.033262 0.001676
0.8 0.950408 0.922827 | 0.920920 | 0.036812 0.001907
1.0 0.937883 0.901414 | 0.899356 | 0.039660 0.002058
1.2 0.925414 0.879951 | 0.877834 | 0.041979 0.002117
1.4 0.913030 0.858672 | 0.856527 | 0.043844 0.002145
1.6 0.900752 0.837712 | 0.835586 | 0.045347 0.002126
1.8 0.888594 0.817031 | 0.814920 | 0.046646 0.002111
2.0 0.876567 0.796836 | 0.794763 | 0.047682 0.002073
2.2 0.864677 0.777106 | 0.775079 | 0.048536 0.002027
2.4 0.852929 0.757851 | 0.755874 | 0.049246 0.001977
2.6 0.841327 0.738937 | 0.737003 | 0.049911 0.001934
2.8 0.829872 0.720613 | 0.718732 | 0.050418 0.001881
3.0 0.818565 0.702808 | 0.700978 | 0.050823 0.001830
3.2 0.807406 0.685265 | 0.683480 | 0.051257 0.001785
3.4 0.796395 0.668156 | 0.666415 | 0.051639 0.001741
3.6 0.785530 0.651648 | 0.649957 | 0.051904 0.001691
3.8 0.774811 0.635626 | 0.633981 | 0.052108 0.001645
4.0 0.764236 0.619782 | 0.618178 | 0.052377 0.001604
4.2 0.753805 0.604333 | 0.602770 | 0.052621 0.001563
4.4 0.743514 0.589270 | 0.587745 | 0.052842 0.001525
4.6 0.733363 0.574795 | 0.573314 | 0.052963 0.001481
4.8 0.723350 0.560480 | 0.559035 | 0.053146 0.001445
5.0 0.713474 0.546785 | 0.545378 | 0.053218 0.001407
5.2 0.703731 0.533184 | 0.531812 | 0.053371 0.001372
5.4 0.694122 0.519922 | 0.518584 | 0.053513 0.001338
5.6 0.684644 0.506991 | 0.505687 | 0.053644 0.001304
5.8 0.675294 0.494378 | 0.493107 | 0.053767 0.001271
6.0 0.666073 0.482301 | 0.481065 | 0.053805 0.001236

Result table 3.2. Upward trend credit spread.
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Time-to-Maturity | Default-free | a(t) =1 | «a(t) =2 Spread
0.2 0.987840 0.976603 | 0.976495 | 0.057202
0.4 0.975453 0.953928 | 0.953577 | 0.055786
0.6 0.962950 0.932628 | 0.932399 | 0.053326
0.8 0.950408 0.911770 | 0.911519 | 0.051880
1.0 0.937883 0.891604 | 0.891349 | 0.050603
1.2 0.925414 0.872010 | 0.871760 | 0.049534
1.4 0.913030 0.852893 | 0.852648 | 0.048668
1.6 0.900752 0.834186 | 0.833947 | 0.047983
1.8 0.888594 0.816060 | 0.815816 | 0.047307
2.0 0.876567 0.798586 | 0.798374 | 0.046585
2.2 0.864677 0.781316 | 0.781108 | 0.046080
2.4 0.852929 0.764396 | 0.764194 | 0.045663
2.6 0.841327 0.747987 | 0.747804 | 0.045229
2.8 0.829872 0.731825 | 0.731647 | 0.044904
3.0 0.818565 0.716072 | 0.715896 | 0.044591
3.2 0.807406 0.700605 | 0.700435 | 0.044338
3.4 0.796395 0.685485 | 0.685320 | 0.044108
3.6 0.785530 0.670688 | 0.670528 | 0.043904
3.8 0.774811 0.656541 | 0.656388 | 0.043588
4.0 0.764236 0.642393 | 0.642243 | 0.043419
4.2 0.753805 0.628730 | 0.628593 | 0.043198
4.4 0.743514 0.615196 | 0.615062 | 0.043056
4.6 0.733363 0.601956 | 0.601825 | 0.042925
4.8 0.723350 0.588997 | 0.588869 | 0.042807
5.0 0.713474 0.576374 | 0.576247 | 0.042678
5.2 0.703731 0.563971 | 0.563846 | 0.042576
5.4 0.694122 0.551834 | 0.551713 | 0.042482
5.6 0.684644 0.540151 | 0.540039 | 0.042330
5.8 0.675294 0.528534 | 0.528424 | 0.042249
6.0 0.666073 0.517169 | 0.517061 | 0.042172

Result table 3.3. Downward trend credit spread.
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Time-to-Maturity | Finite difference | Monte Carlo | Price differences
0.2 0.976603 0.977697 -0.001094
0.4 0.953928 0.957697 -0.003769
0.6 0.932628 0.939085 -0.006457
0.8 0.911770 0.921496 -0.009726
1.0 0.891604 0.904520 -0.012916
1.2 0.872010 0.888074 -0.016064
1.4 0.852893 0.875112 -0.022219
1.6 0.834186 0.856403 -0.022217
1.8 0.816060 0.841080 -0.025020
2.0 0.798586 0.826144 -0.027558
2.2 0.781316 0.811368 -0.030052
2.4 0.764396 0.796986 -0.032590
2.6 0.747987 0.782771 -0.034784
2.8 0.731825 0.768880 -0.037055
3.0 0.716072 0.755143 -0.039071
3.2 0.700605 0.741794 -0.041189
3.4 0.685485 0.728568 -0.043083
3.6 0.670688 0.715548 -0.044860
3.8 0.656541 0.702977 -0.046436
4.0 0.642393 0.690361 -0.047968
4.2 0.628730 0.678108 -0.049378
4.4 0.615196 0.666098 -0.050902
4.6 0.601956 0.654206 -0.052250
4.8 0.588997 0.642554 -0.053557
5.0 0.576374 0.631174 -0.054800
5.2 0.563971 0.619917 -0.055946
5.4 0.551834 0.608837 -0.057003
5.6 0.540151 0.598144 -0.057993
5.8 0.528534 0.587383 -0.058849
6.0 0.517169 0.576994 -0.059825

Result table 3.4. Price from finite difference vs. price from Monte Carlo simulation.
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For upward-sloping credit spread, it means that the possibility of default of the

firm is getting bigger and bigger. The firm just could not keep its well performance,

but deteriorate in quality over time.
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For hump-shaped credit spread, it means that the firm has high possibility of
default in the short and medium term, but the firm will improve its quality in the
long term. So its credit spread widens in the short and medium term and tightens

in the long term.

For downward-sloping credit spread, it means that the firm improves their quality

as time goes.

As we can see from the above figures, our model can generate all kinds of credit
spreads (downward trend, upward trend, and hump-shaped ) with Markov regime
switching. Comparing to Schmid & Zagst’s [49] three-factor model ( three-factor
model is intractable in practice) and jump-diffusion model, our model is much easier
to be implemented and more tractable. And the spread is not zero for short-term
which is consistent with the real spread. It means that default could happen on a

sudden.

3.6 SUMMARY

In our paper, we incorporate regime shifts both in interest rate and in hazard rate.
With these internal adjustments, our model can exhibit all the effects of credit spread
model, counterparty risk model, three factor models, and jump-diffusion process
model. Meanwhile, as Bansal and Zhou [3] point out, in order to account for the
short interest rate data, incorporating regime shifts into the interest rate model is
essential. Otherwise, multifactor version of CIR or affine models are needed. So
we want to price accurate defaultable bond price, incorporating regime shifts into

interest rate and hazard rate are crucial.



CHAPTER 4

RECURSIVE ALGORITHMS FOR PERPETUAL AMERICAN PuT OPTIONS

4.1 INTRODUCTION

Pricing American put options is equivalent to finding the stopping time when the
put options reach their maximum values. It is well-known that some optimal stop-
ping (or related free boundary problems) problems may be solved alternatively with
probabilistic method. McKean [45] solved the optimal stopping point for perpetual
American put options with no regime switching. In finance, many situations can be
depicted by regime switching. For example, the dynamics of interest rate, exchange
rate, stock price, etc. And regime switching is also widely used in finance, see [3],
[21], [50], [54], [59]. Recently, Guo & Zhang [21] derived a closed-form solutions
for perpetual American put options with regime switching. They consider a case
when the Markov-modulated regime has only two states. However, if the underlying
Markov chain has more than two states, a closed-form solution is difficult to obtain
although the existence of solutions was proved in [59]. It is thus of practical interest
to find feasible algorithms yielding good approximations to the optimal policy. With
the motivation of reducing computational effort, a stochastic optimization procedure

is developed.

38
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4.2 FORMULATION

4.2.1 HYBRID GEOMETRIC BROWNIAN MOTION MODEL

Suppose that a(t) is a finite-state, continuous-time Markov chain with state space
M = {1,...,m}, which represents market trends and other economic factors. For
example, when m = 2, a(t) = 1 stands for a bullish market, whereas a(t) = 2 rep-
resents a bearish market. We may also consider, for instance, a(t) = (a1(t), aa(t)),
where a4 (t) models the market trends and as(t) represents the interest rates at time
t. To take into account of more complex situation, we need to assume that the
chain has more than two states, i.e., m > 2 in general. Let S(t) be the price of the
stock. We consider a hybrid geometric Brownian motion model that is risk neutral,

in which S(t) satisfies the stochastic differential equation
ds(t) = pudt + o(a(t))dw(t),
S(t) (4.1)
S(0) = Sy initial price,

where w(+) is a real-valued standard Brownian motion that is independent of «(-).

The model is a hybrid geometric Brownian motion model (HGBM) or GBM with

switching regime.

In (4.1), the volatility depends on the Markov chain a(t). Define another process

X(t) = /0 r(a(s))ds + /0 o ((s))dw(s). (4.2)
where
r(i) =p—

Using X (t), we can write the solution of (4.1) as

2 .
7 2(2) foreachi=1,...,m. (4.3)
S(t) = Syexp(X(1)). (4.4)

Consider the perpetual American put options. The value functions take the form

(S, 1) = sup Elexp(—pr) (K = S(1)*[S(0) = Sh,a(0) =i, (45)
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where 7 is a stopping time to be specified shortly. For M = {1,2,...,m}, a closed
form solution has been found in [21]. Both dynamic programming approach and two-
point-boundary-value method are used to approximate the solution of the optimal
stopping problem. Note that due to the presence of the Markov chain, a system of
value functions (a vector) value function must be dealt with. In what follows, we

propose a stochastic approximation approach.

4.2.2 METHOD 1: MARKOV-DEPENDENT PROCEDURE

Keeping in mind the threshold-type solutions, for ¢ € M, let 7 be a stopping time

defined by
7=1inf{t > 0: (X(¢),a(t)) & D(x)}, (4.6)
where z = (z!,...,2™) with 2! <22 < ... < 2™,
D) = U { (', 00) x {i}}. (47)

We aim at finding the optimal threshold level x, so that the expected return is

maximized. The problem can be rewritten as:

Find argmax ¢(z),
ProblemP : (4.8)

p(x) = Elexp(—p)(K — 5(1))7],
where p > 0 is the discount rate. Use a stochastic optimization procedure to resolve
the issue by constructing a sequence of estimates of the optimal threshold value z,
using

Tpi1 = T, + {step size} - {gradient estimate of ¢(x,)},

where the step size is a decreasing sequence of real numbers or a small positive

constant.
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4.2.3 GRADIENT ESTIMATES AND RECURSIVE ALGORITHM

The approximation procedures will depend on how the gradient estimates of ¢, (z)
are constructed. Let us begin with a simple noisy finite difference scheme. Several
of its variants will be discussed in the subsequent sections. Using (4.1), generate a
sample path of X (¢) that is the solution of (4.2). At time 0, choose initial estimate

zo = (x},...,20"). Compute 7y the first time that (X (), a(t)) reaches (D(z))¢, with
1o =1inf{t > 0: (X(¢),a(t)) & D(z0)}

Choose the step size to be ¢, = 1/n, and let

[Choose €, = 1/(n + 1) in the simulation.] Let

§o = (X(To)ﬂ'o),

and define the observable quantity

P(wo, o) = exp(—puTo) (K — 5(7'0))+-

Then define the difference quotient

. . i1 . . 1 _
(D$O)Z (,0($é,l’3,...,$6+50,1’6+ ,...,1’6”’,58_)—90(23(1),$%,...,$6—(50,l'6+ 7"'7x6n7§0)

- 200 ’

where (D@g)" denotes the ith component of the gradient estimate D@y, and fa—L
means that two different observations are used and §,, is a sequence of real numbers
satisfying d,, > 0 and &, — 0. [In the simulation, we can use &, = 1/(n + 1)1/ ]

Then compute z; = (z},2%,...,2") according to

) =g+ 50(D850)i($0)1{a(ro)=i}v i=12....m
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Using induction, we then proceed construct the estimates recursively as follows.

1

ny -

Suppose that x,, = (z .,2") has been computed. Choose

7, = inf{t : (X(t),a(t)) & D(x,_1)},

gn = (X(Tn); Tn>’
2 i+1

(D3,) = S O N S MO (L il B To] € P L) O L P FL o
" 20, '

(4.9)

Then the stochastic approximation algorithm takes the form
Ty = b +en(D8n) Tia(ry=it, ¢ = 1,2,...,m. (4.10)
To ensure the boundedness of the iterates, use a projection algorithm
T = H[ez;’ez][l'; + e0(DPn) Tia(ry=iy], for i=1,2,...,m, (4.11)
where for each real value =z,

iifx < 6],
Wi gz = 0 if & > 67

x, otherwise.

\
The idea can be explained as follows. For component i, after the z!, + £,(D®,)’
is computed, we compare its value with the bounds 6] and . If the increment is
smaller than the lower value 6}, reset the value to ¢, if it is larger than the upper

value 6! reset its value to ', otherwise keep its value as it was.

Convergence: the proof of convergence of this algorithm is similar to [57]. Several

other stochastic recursive algorithms are also presented there.
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4.3 NUMERICAL SIMULATION

In this section, we consider a case with m = 2 and compare our approach with an

analytical solution in [21]. We take

The simulation procedures are follows:

(1) For given Markov generator, say A; = 100, A\ = 100, we use 0.0001 as time

step-size to generate a Markov chain «(t).

(2) Based on this generated Markov chain «(t), we generate a sample path for
X(t). It means that the coefficients in expression X (-) at time ¢ is determined by
the generated markov chain. Then we use expression S(t) = Spexp(X(t)) to get a

sample path for stock price.

(3) Based on this generated sample path S(¢), use the proposed recursive algo-

rithm to find the optimal threshold levels.

After 1000 iterations and averaging all threshold levels, we obtain the optimal

threshold levels (27, x3).

o1 7 8 9 10 11 12

Exact (.646, .764) | (.531, .683) | (.441,.614) | (.369, .554) | (.312, .505) | (.266, .462)

Our results | (.549, .782) | (.505, .692) | (.468, .620) | (.427, .555) | (.394, .497) | (.357, .441)

Table 4.1. Dependency on o3 given g2 = 5, \; = Ao = 100.

Keep all other parameters fixed, the threshold levels decrease as oy increase. It

implies high option premium, i.e. high put option value. Since the volatility of state
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1 (oy) is larger than the volatility of state 2 (o2 = 5), the threshold level of state 1

is smaller than that of state 2.

A1 80 90 100 110 120 130

Exact (425, .596) | (.433,.605) | (.441,.614) | (.448, .621) | (.456, .629) | (.463, .637)

Our results | (.455, .592) | (.459, .615) | (.468, .620) | (.472,.625) | (.476, .634) | (.482, .649)

Table 4.2. Dependency on Aj given Ay = 100,01 = 9,09 = 5.

Keep all other parameters fixed, the threshold levels increase as A increases.
The higher the A; is, the shorter period the Markov chain stays in state 1. So these
is a smaller weight on ¢y which leads to a small average volatility, then a low option

premium.
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APPENDIX A

DERIVATION OF EQUATION (2.8)

P(rp > S|QtB) =P(r5 > S‘Qt v D)

P(rp > 5,74 > t|Gy)
]P(TA > tlgt)

P(rp > s,74 < If}gt)
P(TA < t}gt)

= 1{ryon) + Lra<y

P(tg > 5,74 > t|gt)
]P(TA > t|Qt)

- 1{T,4>t}

]P’(TB > S‘gt) — P(’TB > 8, Tq > t}gt)
1-— ]P)(TA > t‘gt)

+ 1<

E(P(tp>s,7A>t|Gr+)|Gt)
_TA
e t

) Zf 1{7'A>t} =1

B(e™" |G- B(P(rp>s,a>t0r+)IG)) .
1 —Ff‘ ) Zf 1{7'A<t} =L
—e

E(P(Br<e ¥ By<eT1 |Gru)|Gr) :
_rA ) Zf 1{TA>t} =1

Be 2|60 - B@EE < TF Byce Grl0)
= i Ly =1
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APPENDIX B

DERIVATION OF EQUATIONS (2.11) AND (2.12)

We use ui,us,v to denote e~ o Apudu o= fgApudu o= Jgraudu  pegpectively.  Using
Farlie-Gumbel-Morgenstern copula C(u,v) = uv(1l 4+ a(l — u)(1 — v)), we have

P(rp > 5,74 < t|Gy)
]P)(TB > Slgt \% ID;,L‘ \ DtB) - 1{TB>t’TA<t} ]P)(TB >1,7Ta 2t|gt)
P N

_ E(P(1p > s|Gr+) —P(1p > 5,74 > t|Gr+)|Gt)
E(P(1p > t|Gr+) —P(15 > t, 74 > t|Gp+)|Gt)

(B.1)

E(uy —uv(1 4+ a(l —up)(1 —))|G)
E(uz — ugv(l 4+ a(1 — ug)(1 — v))|Gy)

_ Bl - o)l —av(l —w)]|G)
E(ua(1 —v)[1 — av(l — us)]|Gy)

Since ug, v are Gi-measurable, so E(ug(1—v)[1—av(l—us)]|G;) = us(1—v)[1—av(l—

uy)]. Therefore, the above equation can be simplified as [(e~ /i Az(wdu=avi—t) 258 Z; |Gt).

Now we use approximation formula e =1+, s0 1 — av(l —uy) = e-ov(l—u) 1 _

av(l —uy) = e 07u2) and 1 —uy = = [, Ap(u)du,1 — fo Ag(u)du. so

a1l —av(l —uy)
1 —av(l —usp)

B~ I st G)) = E(e KOt liMa@anstig)  (B)

This is the proof of equation (2.11). Similarly, we can prove equation (2.12).
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APPENDIX C

DERIVATION OF EQUATION (2.14)

T
P(ry > T|G: V DA v DF) = E(exp(— / A (u)du)|Gr)
t
T
—Blexp(~ [ [+ belucs)d9)G)
t

T
= T (exp(—b, / Luesen|G)
t

t—S -8 0o
:ebl(Tt){/ ue“ydy+/ ebQ(Sert)ue“ydy—i—/
0 t—S T-8

AU SR BEIUR BN S e R
b2+,U/ b2+,u
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APPENDIX D

DERIVATION OF EQUATIONS (2.17), (2.18) AND (2.19)

From (2.12), it’s sufficient to derive E;[exp(—bs ftT Lir,<s<ratnyds)]. We know that

P(14 > 5|G;) = e~ We consider two cases: n =y >T —tandn=y < T — L.

When n =y > T —t, then 74 + nl,—, > T, So

o0 T
/ Ey(exp(—by / Liracscraryyds)|n = y)pe™"dy
t

T—t

o0

T
- Ey(exp(—by / L, <syds)) e dy (D.1)
t

T—t

:/ Ey(e T easn ) ey
T—t

From Jarrow & Yu [31], we know that

(a(T —t)+ Ve T8 if a=b,

Et(e*bQ(T*TA)l{rAgT}) =

bye—a(T—1) _ge—ba(T—t)

bo—a > lf a 7A bg.
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Therefore, we have

00 T
/ Ey(exp(—by / Lirp<s<ratyyds)|n = y)ue ™ dy
T t

—1

f;it(a(T —t) 4+ Ve T Dpe~mdy, if a=by

f;it boe~ T —1) _ge—ba(T—t) Me_uydy’ Zf a 7£ b2- (D2)

bos—a

eI (a(T —t) + 1)e @T=D if a=by

—u(T—8) b —a(T—t) _,,—bo(T—t) .
e ( ) bae bgf(jle , Zf a 7& bs.

When n =y < T —t, we have

T
Et[eXp<_b2/ 1{TA<S<TA+y}d5)|77 = y]
t

(D.3)

T—y T 0o
:/ eb2yae“(xt)dx—|—/ ebQ(T“”)ae“(xt)da:—l—/ ae” @y
t

T—y T
Now we’re going to simplify the above three integrals, then take the integration from

0toT —twr.t. n. Let

T—y
Il _ / e—bgyae—a(m—t)dx _ €_b2y . 6—&(T—t)+(a—b2)y
t
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Then

T—t T—t T—t
/ Lipe ™dy = / ue_(b2+“)ydy _ / ue—a(T—t)e(a—bQ_u)ydy
0 0 0

s (1 — e G0 — (T — )eet=0), if a=by+p

1 [1 . e—(bg—f—u)(T—t)] + w[l _ e(a—bz—u)(T—t)]’ Zf a % by + L.

ba+p a—ba—p
(D.4)
Let
aye—b2T+at7 /lf a = b2
T
I, = / e—bQ(T—x)ae— (:B—t)dx _
T—y
o “T 0| _eloba] if a b,
Then, we have:
When a = by
T—t T—t
/ [Queiﬂydy —_ / ayefb2T+atluefuydy
0 0
(D.5)
]_ — efu(Tft)
— aefb2T+at[7 . (T . t)ei‘u(Tit)]
7
When a # by
Tt T—t  —a(T—t)
/ Lype ™ dy = / a(zi[l — ela=b2)y) e gy
0 0 2 —a
—a D.6
aebQ(_Ta t) [1 _ e*H(T*t) _ M(T _ t)]? Zf a = bQ + ( )
ae;:(—Ta_t) [aggzbiu —e7HIY — a—b!;—ue(a_bQ_u)(T_t)]a if a# by p.
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Let

So

Tt T—t
/ Lype Mdy = / e~ T e~ mdy = e~ T (1 — ¢=#T=0), (D.7)
0 0

Using equations (D.5), (D.6) and (D.7), we can get Ey[exp(—by ftT Lira<s<ratnyds)).

Therefore, we have following equations:

When a # by, a # by + p, then
T
Blexp(= [ An(s)ds)1G) = e 00 { et - oeminy
t

—a(T—t)

+{ M [1 . 6—(b2+u)(T—t)] + He [1 . e(a—bg—u)(T—t)]}

by + a—by—p
—a(T—t
N {ae (T-t) ¢ — b e HT—t) _ H e(a—bz—u)(T—t)]}
bo—a a—by—p a—by—p
N G_M(T_t) b2€—a(T—t) _ ae—bQ(T—t)
b2 —a
_ e—b1(T—t){ o by e—a(T—t) + abs e—(bg-{—u)(T—t)}‘
by+p  a—by—p (ba + p)(a — by — p)
(D.8)
When a = by, a # by + p, then
T
E(exp(~ [ Aa(s)ds)/6)
t
(D.9)

2
—en@ H Domam—t L —ern)T-0)
atp o p p(p + a)
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When a # by, a = by + p1, then

T
E(exp(— / AB(s)ds)|G;) = e—b1<T—t>{{e—a<T—t> — e~(atm)(T-0)
t

+ K [1— e—(b2+u)(T—t)] — (T — t)e—a(T—t)}

by +
—a(T—t)
L= e (T - o)
9 —
4 eIt bye T8 — ge=b2(T=0)
) by —a
— e_bl(T—t){ /'l/ + b2(1 - ,LL(T - t)) e_a(T—t) _ bQ(M + a’) e—(bg—i—u)(T_t)}'
b2"i_,u bz—a (b2_a>(b2_u)

(D.10)



APPENDIX E

DERIVATION OF EQUATION (2.22)

We know that
P(ra > s|Gr- VD v DF) = exp(_/ M (uw)du) = el -aRes
¢

Where Ry, = [ r(u)du.

We let E;r«(exp(—be ftT Liri<s<ratny)) denote E(exp(—by ftT Lira<s<ratny) |G V

D v DP). Using R;r is Gr«-measurable, we have

T
P(ry > T|G, v D' v DF) — E(exp(—/ A(5)ds)|Gy)
t
T
= Bexp(— [ o+ bur(s) + bl rscacrinld9)lG)
t
T

= e_bO(T_t)E(E(eXP(—/ [017(5) + bal{rs<s<ratm)ds)|Gr- V DI v DF)|G,)

t

T T
=—bo(T—1) E(exp(—bl/ r(s)ds)E(exp(—/ bolir,<s<ratnyds)|Gre V DV DF)|G,)

t t

T T
= e T B(exp(~b / r(s)ds) Eyr+(exp(—bs / Hrasscratnyd))|G)
t t

(E.1)
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Now we use the property that F(X) = E(E(X|Y)), where X,Y are random vari-

ables. As we did in appendix D, we consider two cases: n =y > T —t and

n=y<T—t.

When n =y > T —t, then 74 + nl,—, > T, So

T
Et,T* (eXp(—bz / 1{7’A <s<7A+n}d8))
t

o0 T
:/ Ey 7 (eXP(—b2/ Liry<s<ratyyds)|n = y)pe dy
t

(E.2)

00 T
— / E; 7+ (exp(—by / Lira<syds))pe " dy
¢

T—t

_ / E, T*(esz(T*TA)l{TAgT})ue—uydy
T—t

And

T
Et T (e—bz(T—TA)l{TAgT}) — / e—bz(T—z)d(l o e—ao(w—t)—alRt@)
t

+ /OO d(l . e—ag(a:—t)—alRt,g;>
T

T

T
_ e—bg(T—x)(l . e—ao(a:—t)—alRtyz) _/ (1 . €_a0(x_t)_alRt’z)bge_bQ(T_x)d.iE (E?))
t

t

(e 9]

4 (1 _ efao(wft)met,z)

T

T
t
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Therefore, for n =y > T — t, we have:

T
Bt (eXp(_bQ/ Liry<s<ratnyds))
t

©o T
:/ 67b2(T7t)<1 + b2/ e*(aosz)(xft)falledx),u/efuydy (E4>
t

T—t

T
= e_(b2+H)(T—t)(1 + b2/ 6_(a0_b2)(z_t)_a1Rt’xdl’).
t

When n =y < T —t, we have:

T
Bt r-(exp(—by / Liry<ssranyds))
t

(E.5)
T—t T
- / Et’T*(eXp(_bQ/ Liry<s<ratn}) ln=y) e " dy.
0 t
And
T Ty
Et,T* (eXp(_bQ/ 1{TA<8<TA+y}dS)) — / e—bzyd(l o e_ao(z_t)_alRt,ac)
t ¢
T o
" / 6ib2(Tiz)d<1 - 67&0(1%)7&1&’1) + / d(l — e*ao(w*t)falRt,w)
T—y T
T—y .
= e PY(1 — gl + e t2(T=2)(] — gmwo(e—t)—a1Ria) (E.6)
t Ty

T
_ bz/ (1 _ e—ao(ac—t)—aﬂ'%t,ac)e—bz(T—:z:)da7 + (1 - e—ag(m—t)—alRt@)
T—y

T
— €7b2y + b2ebQ(Tt)/ e(bgfao)(:pft)falRt@da:'
T-y
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Therefore, for n =y < T —t, we have:

T
Eth*(eXp(_%/ Liry<ssrasnyds))
t

T—t T
— [ Bty [ Licicrinn) oy iy (E.7)
0 t

T—t T
= H + Iub2€b2T+aot/ / [e(bzfao)mfalRt,zdx]efuydy.
n—+ b2 0 Ty

Now combining equations (E.3) and (E.6), we have:

T
P(rg > T|G; V DtA v DP) = E(exp(—/ Ag(s)ds)|Gy)
¢

T T
:e_bO(T_t)E(eXp(—bl/ T(S)dS)Et7T*<eXp(—b2/ Lira<s<ratntds))|Ge)
t ¢

T
— e*bo(T*t)E({e*(b2+u)(T*t)*b1Rt,T(1 + b2/ e*(ao*bz)(:v*t)*ale,zdx)
t

T—t T
+ H efble,T + Mb267b2T+aotfb1Rt,T / / [e(bzfao)mfalRt,zdx]efuydy}‘gt)'
p =+ b2 0 T—y

(E.8)



