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Chapter 1

General Introduction

1.1 Credit Risk and Credit Derivatives

Credit risk or Default risk is defined as ”the risk that a counterparty defaults on

its obligations”. The government is generally assumed to meet the obligations of

any financial contract it enters for certain. Any financial instruments issued by

the government are therefore considered to be default free. However, financial

contracts with counterparties other than the government are potentially default

risky. Default risk is reduced by institutional arrangements in some markets.

For example, organized securities exchanges have reduced default risk in futures

contracts, options and other derivative securities by establishing clearing houses.

However, such institutional arrangements for reducing default risk are not in place

at the over-the-counter (OTC) markets or corporate bond markets. Default risk

therefore affects corporate bonds as well as any securities traded at the OTC market.

Default risk is influenced by both business cycles and firm-specific events. Default

risk typically declines during economic expansion because strong earnings keep

overall defaults rates low. Default risk increases during economic recession because

earnings deteriorate, making it more difficult to repay loans or make bond payments.

Example here is the default of long-term capital management (LTCM), resulting

from an adverse movement in interest rates. Default risk can also come from events

specific to a firm’s business activities, including the outcome of lawsuits, unexpected

1
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devaluations, sudden default of a creditor, supplier, or a customer, and catastrophes

in production lines. Barings is a case where a large trading loss forced bankruptcy.

Therefore, default may be trigged by some unexpected events which cannot be

observed from economic variables only.

Default risk affects the valuation and hedging of corporate bonds and all over-

the-counter securities as well as portfolios of these securities. In 1992, a new class

of securities called ”Credit Derivatives” has been proposed at an annual meeting of

the ISDA (International Swap Dealer Associations). Credit derivatives are securities

”whose payoffs are linked to the credit characteristics of a particular asset”. An

example of a credit derivative is default swap, which pays a pre-specified amount

in the event of default of a reference security in the swap contract. Now the credit

derivatives market has grown dramatically. This growth has been driven by the

ability of credit derivatives to provide valuable new methods for managing default

risk. Credit derivatives can help banks, financial companies, and investors manage

the default risk of their movements by insuring against adverse movements in the

credit quality of the firm. If a firm defaults, the investor will suffer losses on the

investment, but the losses can be offset by gains from the credit derivatives. Thus,

in order to engineer credit derivative contracts to transfer the default risk exposure,

the first thing is to develop a method to measure the default risk exposure correctly.

1.2 Review of Credit Risk Models

The pricing of defaultable bonds has been a major interest in the finance literature,

and many models have been proposed for pricing and hedging risky debts. Among
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them, there are two basic approaches for modelling default risks in bonds, structural

models and reduced-form models.

1.2.1 structural form models

The structural (or firm-value) approach was inspired by classic Black-Scholes option

pricing theory. It assumes that the dynamics for the value of the assets of a firm

across time can be described by a diffusion stochastic process and that the defaultable

bond can be regarded as a contingent claim on the value of the assets of the firm.

The structural approach is formulated by Merton [1974]. He assumed that the

fundamental process V which represents the total value of the assets of the firm that

has issued the bonds follows Geometric Brownian motion

dV

V
= µdt + σdW

A default occurs at maturity if V is insufficient to pay back the outstanding debt.

Although Merton presented a breakthrough development in default risk pricing,

there are many shortcomings of this model. The major shortcomings include: firm

value is not observable; a flat and static yield spread; default occurring only when

the firm value is less than the liability claim; default triggered only at the maturity

of the debt; interest rate assumed constant over time.

There are some variations of the structural approach to overcome these short-

comings (see Longstaff and Schwartz [43], Zhou [60], etc.). In order to generate

various shapes of yield spread curves, including upward-sloping, downward-sloping,

flat, and hump-shaped, Zhou introduced jump into the underlying firm value pro-

cess. Now the evolution of firm value follows a jump-diffusion process, so sudden

drop in firm value becomes possible, therefore, default can occur unexpectedly.

Longstaff and Schwartz [43] develop a more realistic model. They allow interest
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rates to be stochastic. And they model default as the time when the value of the

debt reaches some constant threshold value K that serves as a distress boundary.

Contrary to Merton’s model, default can occur prior to maturity. All these struc-

tural models have only limited success explaining the behavior of prices of debt

instruments and credit spreads. These led to attempts to use models that make

more direct assumptions on default process.

1.2.2 Reduced Form Models

Reduced-form models characterize default time as exogenously specified. The

default time is unpredictable. Intensity function which is assumed to be determined

by common economic factors as well as firm-specific factors is used to characterize

default probability. The derived formulas of default time are calibrated to market

data. This approach provides a model that is close to the date.

Lando [40] modelled the time of default as the first jump-time of a Cox pro-

cess (also called doubly stochastic process). The random intensity of the Cox

process may depend on interest rate or other factors.

Duffie and Singleton [13] developed a model where the payoff in default is assumed

as a fraction of the value of the defaultable security just before default (called

recovery at market value). Under their framework, defaultable security can proceed

as in standard valuation models for default-free securities, using a default adjusted

rate instead of the usual interest rate.

Other major papers include Hull & White [25] [26], Jarrow, Lando &Turnbull

[28], Jarrow& Turnbull [29], Jarrow & Yu [31].



Chapter 2

Our Model Subject to counterparty Risk

2.1 Introduction

Jarrow & Yu [31] constructs a default intensity which can depend on firm-specific

counterparty structures, in order to describe the default behavior of firms holding

less well-diversified credit risk portfolios. They add a jump term in the intensity

process when its counterparter suffers a default. In this chapter, we use copular

function to derive that it’s reasonable to adjust intensity process by adding a jump

term if the two firms are correlated. Then we modify Jarrow & Yu [31] ’s model

to allow an exponential distribution to control this added term. So this added term

may be dropped from the firm’s intensity process in the future. It means that there

is a possibility for the firm to get recovery after a certain period of time. Our model

has the following features:

(i) As in Lando [40], Jeanblanc & Rutkowski [32], and Jarrow & Yu [31],

we separate the information filtration into two parts: one filtration generated by

state variables (interest rate and equity index) and the other filtration generated

by the default process. So we can explicitly incorporate the correlation among the

underlying firms into firms’ default probability.

(ii) As Jarrow & Turnbull [30] pointed out, the issue of correlation is of cen-

tral importance in all the credit risk methodologies. Two types of correlation are

5
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often identified: default correlation and event correlation. Default correlation refers

to firm default probabilities be correlated due to the common factors in the economy.

Event correlation refers to how a firm’s default probability is affected by default of

other firms. We clearly discuss the default correlation and event correlation. We

propose how to modify default probability when the event correlation is indispens-

able.

(iii) We use Farlie-Gumbel-Morgenstern copula to illustrate our results: one firm’s

default will help (deteriorate, resp.) its counterparty’s survival if these firms are

concordant (discordant, resp.). This result is the evidence to support the assumption

in Jarrow & Yu [31] ( they assume that there exists a jump term in the intensity

function when its counterparty suffers a default). Meanwhile, I also find that one

firm’s survival will also help (deteriorate, resp.) its counterparty’s survival if these

firms are concordant (discordant, resp.).

(iv) Since the default event will affect its counterparty’s intensity function, we

don’t assume that the default effect will be always on at its counterparty’s rest

time period. Instead, we assume that the holding time of this default effect follows

exponential distribution. It means that the default effect will disappear after a

certain time period.

(v) We let the event correlation be back into the intensity based credit risk model.

This increases the the range of correlation in the model. So our model can remedy

the disadvantage of the reduced-form model of limited range of correlation.
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2.2 Classic Intensity-Based Models

We shall write F to denote a filtration (Ft, t> 0). In this paper, all filtrations

are supposed to be completed and continuous on right, i.e. Ft = ∩t<sFs. Con-

sider an economy indexed by the time interval [0,T ∗]. Let the uncertainty in the

economy be described by the filtered probability (Ω,F, P). The probability space

(Ω,F, {F}T ∗

t=0, P) is large enough to support a Rd-valued stochastic process X, which

we think of as the economic-wide factors ( or state variables ). A R+ ∪ {+∞}

valued random variable τ is an G-stopping time if {τ 6 t} ∈ Gt, for any t, where

G = (Gt){t>0}. Obviously, if F is a filtration larger than G, i.e. Gt ⊂ Ft for any

t, and τ is a G-stopping time, then τ is a F-stopping time, where F is a filtration

of (Ft, t > 0). A stopping time τ is F-predictable if there exists an increasing

sequence of F-stopping times τn such that τn < τ on {τ > 0} and limτn = τ .

A stopping time τ is F-totally inaccessible if for any F-predictable stopping time

S, P{ω ∈ Ω : τ(ω) = S(ω) < ∞} = 0. In a Brownian filtration, it can be proved

that any stopping time is a predictable stopping time. The most important example

of totally inaccessible stopping time is the first time when a Poisson process jumps.

In the intensity based credit risk model, we use Cox process (also doubly stochastic

Poisson process) to represent default time. So the default time is totally inaccessible

with respect to Brownian filtration. Otherwise, there’ll be no intensity process for

the default time. If τ is a nonnegative random variable on some probability space

(Ω,F, P), it is possible to endow Ω with a filtration such that τ is a stopping time.

This filtration is not unique, and the right-continuous smallest filtration satisfying

this property is Dt = σ(Du, u 6 t), generated by the sets {τ 6 s} for s6t ( that is

the σ-algebra σ(t ∧ τ) ) and the atom {τ > t}. Here Dt = 1{τ6t} is the counting

process associated with the random time τ . Notice that any Dt-measurable inte-

grable random variable H is of the form H = h(τ)1{τ6t} + h̃1{τ>t} where h is a Borel
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function defined on [0, t], and h̃ a constant.

The filtration is generated collectively by the information contained in the state

variables and the default process:

Ft = Gt ∨ Dt where Gt = σ(Xs, 0 6 s 6 t) and Dt = σ(Ds, 0 6 s 6 t) Where

Xs is the state variable, i.e. interest rate, equity index, etc.

It is easy to describe the events which belong to the σ-field Ft on the set {τ > t}.

Indeed, if At ∈ Ft, then At ∩ {τ > t} = Bt ∩ {τ > t} for some event Bt ∈ Gt.

Therefore, any Ft-measurable random variable Yt satisfied 1{τ>t}Yt = 1{τ>t}yt,

where yt is an Gt-measurable random variable. In the filtrated probability space

(Ω,F, {F}T ∗

t=0, P). Traded are default-free zero-coupon bonds of all maturities, a

default-free money market account, and risky zero-coupon bonds of all maturities.

We assume the market is complete and arbitrage free which means the default-

able claim is hedgeable. Under the assumption of no-arbitrage opportunities and

complete, arbitrage pricing theory implies that there exists a unique equivalent

martingale measure (e.m.m.) such that present value of a security is the expectation

with respect to this e.m.m. discounted by the interest rate. In this paper, all

calculation are under the e.m.m.

In the money market account accumulates returns at the spot rate and is denoted

as B(t) = exp
(∫ t

0
r(s)ds

)
under the maintained assumption of arbitrage-free and

complete markets, we can write default-free bond prices as the expected, defaultable

value of a assure dollar received at time T, that is p(t, T ) = E

(
B(t)
B(T )

∣∣∣∣Ft

)
In the

default risk framework, a default appears at some random time τ . The payment of

a defaultable claims consists of two parts:



9

(1) Given a maturity date T > 0, a random variable Y, which does not depen-

dent on τ represents the promised payoffs - that is, the amount of cash the owner of

the claim will receive at time T, provided that the default has not occurred before

the maturity date T.

(2) A predictable process h, prespecified in the default-free world, models the

payoff which is received if default occurs before maturity. The process is called the

recovery process or the rebate.

So the price of the defaultable claim is, provided that the default has not occurred

before time t,

Yt = E

(
Y 1{τ>T} exp

(
−
∫ T

t

rudu

)
+ hτ1{τ6T} exp

(
−
∫ T

t

rudu

) ∣∣∣∣Ft

)

where Ft is all the information up to time t, ru is the spot interest rate. Under the

existence of intensity of the default, we’ll see that the intensity of the default time

acts as a change of the spot interest rate in the pricing formula.

For any t ∈ R+ and firm i, we denote F i
t = P(τi 6 t|Gt) the conditional default

probability of firm i given the state variables . Assume that F i
t < 1 for every t ∈ R+.

The G-hazard process of τi, denoted by Γi, is defined by the formula 1− F i
t = e−Γi

t ,

so the conditional survival probability P(τi > t|Gt) is equal to e−Γi
t , and Γi

t is Gt-

measurable. In this paper, we assume that the cumulative distribution function F i
t

is absolutely continuous, that is, F i
t =

∫ t

0
fi(s)ds, for some function fi : R+ → R+.

So we have

F i
t = 1 − e−Γi

t = 1 − e−
∫ t
0 λi(s)ds,

where intensity process λi(t) = fi(t)

1−F i
t
, and Γi

t =
∫ t

0
λi(s)ds. The interpretation of the

intensity process is that over the interval (t, t+∆t] the default probability conditional



10

upon no default prior to time t is approximately λi(t)∆t. We define the default time

τi as follows

τi = inf{t : e−Γi
t 6 Ei}

where Ei is uniform random variable which is assumed to be independent with

GT ∗ . As in Lando [40], this default time can be thought of as the first jump

time of a Cox process with intensity process λi(s). It is obvious that we have

{τi 6 t} = {Ei > e−Γi
t}, {τi > t} = {Ei < e−Γi

t} and

P(τi > t|Gt) = exp(−
∫ t

0

λi(s)ds)

And for u > t

P(τi > u|Gt) = E(E(1{τi>u}|GT ∗)|Gt) = E(exp(−
∫ u

0

λi(s)ds)|Gt)

Note:(i) The intensity process λi(t) is actually a function of state variable Xt. We

drop the symbol X for convenience.

(ii) The independency between Ei and GT ∗ implies that τi is not measurable with

respect to Gt, so τi is not G-stopping time, therefore F i
t

def
= P(τi 6 t|Gt) is well-

defined.

Check the appendix to see the proof of the following equations:

(a) For any F -measurable random variable Y, we have, for any t ∈ Rt

E(1{τi>s}Y |Ft) = 1{τi>t}

E(1{τi>s}Y |Gt)

P(τi > t|Gt)
(2.1)

for any t 6 s, In particular, we have P(τi > s|Ft) = 1{τi>t}E(exp(−
∫ s

t
λi(u)du)|Gt).

(b) Let h : R+ → R be a (bounded) Borel measurable function. Then

E(1t<τi6sh(τi)
∣∣Gt) = 1{τi>t}

E
(∫

]t,s]
h(u)dFu

∣∣∣Gt

)

P(τi > t
∣∣Gt)

(2.2)
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where Fu = P(τi 6 u
∣∣Gt)

(c) In the general case, let Z be a (bounded) G-predictable process, then for any

t 6 s

E(1{t<τi6s}Zτi
|Ft) = 1{τi>t}

E(
∫
]t,s]

ZudFu|Gt)

P(τi > t|Ft)
(2.3)

From the above lemma, we have following equations (which also can be found in

Lando [40]) :

E

(
X1{τi>T} exp

(
−
∫ T

t

r(s)ds

) ∣∣∣∣Ft

)

= 1{τi>t}E

(
X exp

(
−
∫ T

t

(r(s) + λi(s))ds

) ∣∣∣∣Gt

)

E

(∫ T

t

Ys1{τi>s} exp

(
−
∫ s

t

r(u)du

)
ds

∣∣∣∣Ft

)

= 1{τi>t}E

(∫ T

t

Ys exp

(
−
∫ s

t

(r(u) + λi(u))du

)
ds

∣∣∣∣Gt

)

E

(
exp

(
−
∫ τi

t

r(s)ds

)
Zτi

∣∣∣∣Ft

)

= 1{τi>t}E

(∫ T

t

Zsλi(s) exp

(
−
∫ s

t

(r(u) + λi(u))du

)
ds

∣∣∣∣Gt

)
.

(2.4)

Note (i) The interpretation of the above equations is that a rational investor should

be indifferent between the expected cash flows discounted by risk free rate (i.e. left

terms of these equations) and the promised cash flows discounted by the risky rate.

(ii) As we pointed out before, the intensity of the default time acts as a change of
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the spot interest rate in the pricing formula.

Suppose bond i’s recovery rate is δi, and we use the recovery of Treasury assumption

proposed in Jarrow & Turnbull [29]. Using the above equations, the time t price of

defaultable zero-coupon bond is

vi(t, T ) = E

(
1{t<τi6T}δi exp

(
−
∫ T

t

r(s)ds

)
+ 1{τi>T} exp

(
−
∫ T

t

r(s)ds

) ∣∣∣∣Ft

)

= δip(t, T ) + (1 − δi)1{τi>t}E

(
exp

(
−
∫ T

t

[r(s) + λi(s)]ds

)
Y

∣∣∣∣Gt

)

(2.5)

If the intensity function λi(t) is a constant, say λ0, then the above formula can be

simplified as follow:

vi(t, T ) = δip(t, T ) + (1 − δi)1{τi>t}p(t, T )e−λ0(T−t) (2.6)

Or

vi(t, T )

p(t, T )
= δi + (1 − δi)1{τi>t}e

−λ0(T−t) (2.7)

This kind of credit risk model which fits for one individual firm was studied exten-

sively by Lando [40].

2.3 Copula Functions

In order to introduce correlation structure into the n risky bonds, there is no unique

solution. We choose copula function to describe the joint distribution of the n

dependent default times.

2.3.1 Definition and Notation

Copula is a multivariate distribution function defined on the unit cube [0, 1]n, with

uniformly distributed marginal. Let S1, · · · , Sn be nonempty subsets of R̄, where R̄
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denotes the extended real line [−∞,∞]. Let H be the a real function of n variables

such that DomH = S1 × · · · × Sn and let B = [a, b] be an n-box which vertices are

in DomH. Then the H-volume of B is given by

VH(B) =
∑

sgn(c)H(c),

where the sum is taken over all vertices c of B, and sgn(c) is given by

sgn(c) =





1, if ck = ak for an even number of k’s,

−1, if ck = ak for an odd number of k’s.

Equivalently, the H-volume of an n-box B = [a,b] is the nth order difference of H

on B

VH(B) = ∆b

a
H(t) = ∆bn

an
· · ·∆b1

a1
H(t)

where we define the n first order difference as

∆bk
ak

H(t) = H(t1, . . . , tk−1, bk, tk+1, . . . , tn) − H(t1, . . . , tk−1, ak, tk+1, . . . , tn)

A real function H of n variables is n-increasing if VH(B) > 0 for all n-boxes B whose

vertices lie in DomH.

Consider n = 2, we have

VH(B) = ∆y2
y1

∆x2
x1

H(x, y) = H(x2, y2) − H(x2, y1) − H(x1, y2) + H(x1, y1)

and

∆x2
x1

H(x, y) = H(x2, y) − H(x1, y) and ∆y2
y1

H(x, y) = H(x, y2) − H(x, y1)

Note that the statement ”H is 2-increasing” neither implies nor is implied by the

statement ”H is nondecreasing in each argument,” as the following two examples

illustrate.

Example 1 Let H be the function defined on [0, 1]2 by H(x, y) = max(x, y). Then

H is a nondecreasing function of x and of y; however, V[0,1]2 = −1, so that H is not

2-increasing.
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Example 2 Let H be the function defined on [0, 1]2 by H(x,y)= (2x-1)(2y-1). Then

H is 2-increasing, however it is a decreasing function of x for each y in (0,1/2) and

a decreasing function of y for each x in (0,1/2).

Suppose that the domain of a real function H of n variables is given by DomH =

S1 × · · · × Sn where each Sk has a smallest element ak. We say that H is grounded

if H(t) = 0 for all t in DomH such that tk = ak for at least one k. If each Sk

is nonempty and has a greatest element bk, then H has margins, and the one-

dimensional margins of H are the functions Hk with DomHk = Sk, and for all x in

Sk, Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn). Higher dimensional margins are defined

in an obvious way.

An n-dimensional copula is a function C with domain [0, 1]n such that

(i). C is grounded and n-increasing.

(ii). C has margins Ck, k = 1, 2, . . . , n, which satisfy Ck(u) = u for all u in [0,1].

Note that for any n-copula C, n > 3, each k-dimensional of C is a k-copula. Equiva-

lently, an n-copula is a function C from [0, 1]n to [0,1] with the following properties:

(a). For every u in [0, 1]n, C(n) = 0 if at least one coordinate of u is 0, and C(u)

= uk if all coordinates of u equal 1 except uk.

(b). For every a and b in [0, 1]n such that ai 6 bi for all i, VC(a,b) > 0.

The following theorem is known as Sklar’s theorem. It is the most important

result regarding copulas, and is used in essentially all applications of copulas.

Sklar’s theorem [Nelsen [48]] Let F be an n-dimensional distribution function

with margins F1, . . . , Fn. Then there exists an n-copula C such that for all x in R̄n,

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).
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If F1, . . . , Fn are all continuous, then C is unique; otherwise C is uniquely deter-

mined on RanF1 × · · · × RanFn. Conversely, if C is an n-copula and F1, . . . , Fn

are distribution functions, then the function F defined above is an n-dimensional

function with margins F1, . . . , Fn.

From Sklar’s theorem we see that for continuous multivariate distribution func-

tions, the univariate margins and the multivariate structure can be separated, and

the dependence structure can be represented by a copula.

One nice property of copula is that for strictly monotone transformation of the

random variables, copula is either invariant, or change in certain simple way. It

means that if (X1, . . . , Xn) be a vector of continuous random variables with copula

C and β1, . . . , βn are strictly increasing on RanX1, . . . , RanXn, respectively, then

also (β1(X1), . . . , βn(Xn)) has copula C. Copula provides a natural way to study

and measure dependence between random variables. Both Spearman’s Rho and

Kendall’s Tau can be use to indicate the correlation between two random variables.

Spearman’s Rho and Kendall’s Tao can be defined by using copula function. We

give the formula here.

Rho = 12

∫∫

[0,1]2
uvdC(u, v) − 3 = 12

∫∫

[0,1]2
C(u, v)dudv − 3.

and

Tau = 4

∫∫

[0,1]2
C(u, v)dC(u, v) − 1.

2.3.2 Linear Correlation vs Copula

Copula provides a natural way to study and measure dependence between random

variables. As we know, linear correlation1 (or Pearson’s correlation) is also fre-

1Let X and Y be two random variables with finite variances. The linear correlation
coefficient for X and Y is ρ(X, Y ) = Cov(X,Y )√

V ar(X)
√

V ar(Y )
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quently used in practice as a measure of dependence. The popularity of linear

correlation stems from the ease with which it can be calculated and it is a natural

scalar measure of dependence in elliptical distributions (The elliptical distributions

are distributions whose density is constant on ellipsoids. In two dimensions, the

contour lines of the density surface are ellipses. The multivariate normal is a special

case). However, most random variables are not jointly elliptically distributed, and

using linear correlation as a measure of dependence in such situations might prove

very misleading. Even for jointly elliptically distributed random variables there are

situations where using linear correlation does not make sense. We might choose

to model some scenario using heavy-tailed distributions such as t2-distributions.

Correlation tells us nothing about the degree of dependence in the tail of the under-

lying distribution. In such cases the linear correlation coefficient is not even defined

because of infinite second moments.

A list of the problems of linear correlation as a dependency measure is:

(a) Linear correlation is simple a scalar measure of dependence. It cannot tell

us everything we would like to know about the dependence structure of risks.

(b) Possible values of linear correlation depend on the marginal distribution of

the risks. All values between -1 and 1 are not necessarily attainable.

(c) Perfectly positively dependent risks do not necessarily have a correlation of

1. Perfectly negatively dependent risks do not necessarily have a correlation of -1.

(d) A linear correlation of zero does not indicate independence of risks.
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(e) Linear correlation is not invariant under transformations of risks. For example,

log(X) and log(Y ) generally do not have the same linear correlation as X and Y .

(f) Linear correlation is only defined when the variances of the risks are finite.

It is not an appropriate dependence measure for very heavy-tailed where variances

appear infinite.

By turning to rank correlation, certain of these theoretical deficiencies of stan-

dard linear correlation can be repaired. It does not matter whether we choose the

Kendall’s Tau or Spearman’s Rho definitions of rank correlation. Rank correlation

does not have deficiencies (b), (c), (e), and (f). Copulas represent a way of trying

to extract the dependence structure from the joint distribution and to extricate

dependence and marginal behavior.

2.3.3 Concordance and Discordance

Informally, a pair of random variables are concordant if ”large” values of one tend

to be associated with ”large” values of the other, and ”small” values of one with

”small” values of the other. To be more precise, let (xi, yi) and (xj, yj) denote two

observations from a vector (X,Y ) of continuous random variables. We say that

(xi, yi) and (xj, yj) are concordant if xi < xj and yi < yj, or if xi > xj and yi > yj.

Similarly, we say that (xi, yi) and (xj, yj) are discordant if xi < xj and yi > yj,

or if xi > xj and yi < yj. Note the alternate formulation: (xi, yi) and (xj, yj) are

concordant if (xi − xj)(yi − yj) > 0, and discordant if (xi − xj)(yi − yj) > 0. We use

Kendall’s tau or Spearman’s rho to describe concordant and discordant.
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Kendall’s tau for the random variables X and Y is defined as

Tau(X,Y ) = P{(X − X̃)(Y − Ỹ ) > 0} − P{(X − X̃)(Y − Ỹ ) < 0}

where (X̃, Ỹ ) is an independent copy of (X,Y). This is the population version of

Kendall’s tau which is defined as the probability of concordance minus the proba-

bility of discordance. However, Kendall’s Tau can also be defined using a copula

function only. From Nelsen [48], we know

Tau(X,Y ) = 4

∫∫

[0,1]2
C(u, v)dC(u, v) − 1.

Similarly, we give the population version and copula version of Spearman’s Rho’s

definition just for reference. In practice, we can choose either Kendall’s Tao or

Spearman’s Rho. Spearman’s rho for the random variables X and Y is defined as

Rho(X,Y ) = 3(P{(X − X̃)(Y − Y ′) > 0} − P{(X − X̃)(Y − Y ′) < 0})

where (X,Y),(X̃, Ỹ ) and (X ′, Y ′) are independent copies. And the copula version is:

Rho(X,Y ) = 12

∫∫

[0,1]2
uvdC(u, v) − 3 = 12

∫∫

[0,1]2
C(u, v)dudv − 3.

For Farlie-Gumbel-Morgenstern copula C(u, v) = uv(1+α(1−u)(1−v)), α ∈ [−1, 1],

we know the two random variables are independent when α = 0. And Kendall’s

Tau = 2
9
α, Spearmen’s Rho = 1

3
α. From these simple forms of Kendall’s Tau and

Spearmen’s Rho, we know that the two random variables will move in the same

direction when α > 0, and will move in the opposite direction when α < 0.

2.4 Dependent Default Models

In section 2.2, we’ve derived the default risk model for individual firm. Now we’ll

derive the default risk model for the case when we consider n firms simultaneously.

We denote the counting process associated with the default time τi of firm i by
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Di
t = 1{τi6t} and its σ-field by Di

t (
def
= σ(Di

u, u 6 t)). Now all the information up to

time which is available to investors is

Ft = Gt ∨ D1
t ∨ · · · ∨ Dn

t

As in section 2.2, default time τi is defined as follows:

τi = inf{t : e−Γi
t 6 Ei}

where Ei is uniform random variable which is assumed to be independent with GT ∗ .

Now we have n default times (τ1, τ2, · · · , τn). In Kijima [35], he assumes that these

n default times are conditional independent, i.e.

P(τ1 > t1, τ2 > t2, · · · , τn > tn|GT ∗) =
n∏

i=1

P(τi > ti|GT ∗)

Since we know that P(τi > ti|Gti) = exp(−
∫ ti

0
λi(s)ds). So using intensity processes,

the conditional independent assumption will give the following equation:

P(τ1 > t1, τ2 > t2, · · · , τn > tn|GT ∗) = exp(−
n∑

i=1

∫ ti

0

λi(s)ds)

This assumption will simplify the question a lot when we deal with the joint distri-

bution of these default times. But, we’ll see that this assumption will sacrifice a lot

important information. So we don’t assume that the n default times τ1, τ2, · · · , τn

are conditional independent. According to the construction of default times, we have

the following equation:

P(τ1 > t1, τ2 > t2, · · · , τn > tn) = P(E1 < e−Γ1
t1 , E2 < e−Γ2

t2 , · · · , En < e−Γn
tn )

where the hazard process Γi
ti

=
∫ ti

o
λi(s)ds and Ei is uniform random variable.

From the above equation, we know that describing the joint distribution of random

variables Ei is equivalent to describing the joint distribution of default times τi. Now
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we suppose that the copula function of these n random variables Ei is C. So we

have the following:

P(τ1 > t1, τ2 > t2, · · · , τn > tn) = P(E1 < e−Γ1
t1 , E2 < e−Γ2

t2 , · · · , En < e−Γn
tn )

= C(e−Γ1
t1 , e−Γ2

t2 , · · · , e−Γn
tn )

2.4.1 Default Correlation

Default correlation (see, Jarrow & Turnbull [30]) refers to firm default probabilities

being correlated due to common factors in the economy. We use interest rate r(t) as

the common factor to see how it will affect the default correlation even when there

is no correlation between the firm (i.e. α = 0) . let the their intensity functions

λA(t) and λB(t) be functions of spot rate of interest:

λA(t) = λA
0 + λA

1 r(t) and λB(t) = λB
0 + λB

1 r(t)

where λA
0 , λA

1 , λB
0 , λB

1 are constants. so their survival probabilities are:

P(τA > t|Gt) = e−
∫ t
0 λA(s)ds = e−

∫ t
0 (λA

0 +λA
1 r(s))ds

And

P(τB > t|Gt) = e−
∫ t
0 λB(s)ds = e−

∫ t
0 (λB

0 +λB
1 r(s))ds

As in Jarrow & Turnbull [30], we assume the spot rate of interest follow the extended

Vasicek model:

dr(t) = a(r(t) − r(t))dt + σrdWr(t)

where Wr(t) is a Wiener process under the e.m.m. P, and r(t) is a deterministic

function chosen to fit an initial term structure, with a and σr constants. From

Jarrow & Turnbull [30], Jarrow [27], we have:

r(t) = f(0, t) +
1

a

∂f(0, t)

∂t
+

σ2
r

2a2
(1 − e−2at)
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And

µt,T = E(

∫ T

t

r(u)du|Gt) =

∫ T

t

f(t, u)du +

∫ T

t

b(u, T )2

2
du

σ2
t,T = var(

∫ T

t

r(u)du|Gt) =

∫ T

t

b(u, T )2du

where f(t, u) is the forward rate, and b(u, T ) = σr

a
(1−e−a(T−u)). Therefore, we have:

P(τA > t) = E[P(τA > t|Gt)] = E[e−
∫ t
0 λA(s)ds] = e−λA

0 t−λA
1 µ0,t+

(λA
1 )2

2
σ2
0,t

And

P(τA > t) = E[P(τB > t|Gt)] = E[e−
∫ t
0 λB(s)ds] = e−λB

0 t−λB
1 µ0,t+

(λB
1 )2

2
σ2
0,t

Now in order to see the default correlation, we let α = 0. So

P(τA > t, τB > t) = E[P(τA > t, τB > t|GT ∗)]

= E[e−
∫ t
0 λA(u)due−

∫ t
0 λB(u)du]

= E[e−
∫ t
0 (λA

0 +λA
1 r(s))dse−

∫ t
0 (λB

0 +λB
1 r(s))ds]

= e−(λA
0 +λB

1 )t−(λA
1 +λB

1 )µ0,t+
(λA

1 +λB
1 )2

2
σ2
0,t

Comparing the above equations, we have:

P(τA > t, τB > t) = P(τA > t)P(τB > t)eλA
1 λB

1 σ2
0,t

From the above equation, we know that if none of λA
1 and λB

1 is zero (it means that

both of these two bonds depends on the common factor–interest rate), we do have

default correlation because of the extra term eλA
1 λB

1 σ2
0,t .
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2.4.2 Effect of Event Correlation

Event correlation refers to how a firm’s default probability is affected by default

of other firms (see Jarrow & Turnbull [30]). Now, let’s check how one firm’s

default will affect its counterparty’s default. For simplicity, we consider two

bonds issued by firm A and firm B. We use τA, τB to denote their default

times, λA(t), λB(t) to denote their intensity processes (so hazard processes are

ΓA
t =

∫ t

0
λA(u)du, ΓB

t =
∫ t

0
λB(u)du), and DA

t ,DB
t to denote their information fil-

trations generated by default times τA, τB, resp. We know that if these two firms

are independent (i.e. random variable τB is independent of DA
t ), then we have

P(τB > s|Gt ∨ DA
t ∨ DB

t ) = P(τB > s|Gt ∨ DB
t ), for s > t. It means that the

information of DA
t has no effect on the survival probability of bond B.

Now we assume that the two firms are correlated 2, the information which is

available to firm B at time t is Ft = Gt ∨ DA
t ∨ DB

t , and the information of τA (i.e.

DA
t ) will affect the default probability of bond B. Now let’s use copula function to

see the effect of event correlation. Since Farlie-Gumbel-Morgenstern copula has a

very simple formula of Kendall’s Rho and Spearman’s Rho, we can easily determine

the two firms’ dependency based on the parameter α, i.e. if the parameter α is

positive, then the two random variables are concordant, otherwise the two random

variables are discordant.

2The common factors serve to induce the default correlation between firms. However,
this default correlation is very small if the firms are from different industry sectors. That’s
why Moody’s treats firms from different industry sectors as independent. But when two
firms are from same industry sectors, it’s not reasonable to assume they are independent.
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The appendix gives the proof of the following equation (for s > t):

P(τB > s
∣∣GB

t ) = P(τB > s
∣∣Gt ∨ DA

t )

=





eΓA
t E[C(e−ΓB

s , e−ΓA
t )
∣∣Gt], if 1{τA>t} = 1

E

(
e−ΓB

s

∣∣Gt

)
−E[C(e−ΓB

s ,e−ΓA
t )

∣∣Gt]

1−e−ΓA
t

, if 1{τA6t} = 1.

(2.8)

Now let’s specify the copula in the above equation by Farlie-Gumbel-Morgenstern

copula, so we have:

P(τB > s
∣∣Gt ∨ DA

t )

=





E[e−ΓB
s (1 + α(1 − e−ΓB

s )(1 − e−ΓA
t ))
∣∣Gt], if 1{τA>t} = 1

E[e−ΓB
s

(
1 − αe−ΓA

t (1 − e−ΓB
s )
) ∣∣Gt], if 1{τA6t} = 1.

(2.9)

From the above equation, we have the following results:

(1) When α = 0, either case reduces to E
(
e−ΓAB

s

∣∣Gt

)
which is equal to P(τB > s

∣∣Gt).

This goes back to the case where the firms are independent.

(2) If 1{τA>t} = 1 and α > 0, then 1 + α(1 − e−ΓB
s )(1 − e−ΓA

t ) > 1. So we

have E[e−ΓB
s (1 + α(1 − e−ΓB

s )(1 − e−ΓA
t ))
∣∣Gt] > E

(
e−ΓB

s

∣∣Gt

)
(= P(τB > s

∣∣Gt)). It

means that the survival of firm A will increase the survival probability of firm B if

firm A and firm B are concordant (α > 0 ⇒ Tau = 2
9
α > 0 ). For example, since

Intel is the main supplier of key part of computer for PC manufacture, say Compaq,

so Intel and Compaq are concordant. Our result shows that the survival of Intel

will help Compaq to survive.
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(3) If 1{τA>t} = 1 and α < 0, then 1 + α(1 − e−ΓB
s )(1 − e−ΓA

t ) < 1. So we

have E[e−ΓB
s (1 + α(1 − e−ΓB

s )(1 − e−ΓA
t ))
∣∣Gt] < E

(
e−ΓB

s

∣∣Gt

)
(= P(τB > s

∣∣Gt)). It

means that the survival of firm A will decrease the survival probability of firm B

if firm A and firm B are discordant (α < 0 ⇒ Tau = 2
9
α < 0 ). For example,

telecom companies AT&T and Sprint are competitors. Their relationship can be

considered discordant. So our result says that the survival of AT&T will deteriorate

the survival of Sprint.

(4) If 1{τA6t} = 1 and α > 0, then 1 − αe−ΓA
t (1 − e−ΓB

s ) < 1. So we have

E

(
e−ΓB

s

(
1 − αe−ΓA

t (1 − e−ΓB
s )
) ∣∣∣∣Gt

)
< E

(
e−ΓB

s

∣∣Gt

)

(= P(τB > s
∣∣Gt)). It means that the default of firm A will reduce the survival prob-

ability of firm B if they are concordant. Using the above example, our result shows

that the default of Intel will cause the the survival probability of Compaq to decrease.

(5) If 1{τA6t} = 1 and α < 0, then 1 − αe−ΓA
t (1 − e−ΓB

s ) > 1. So we have

E

(
e−ΓB

s

(
1 − αe−ΓA

t (1 − e−ΓB
s )
) ∣∣∣∣Gt

)
> E

(
e−ΓB

s

∣∣Gt

)

(= P(τB > s
∣∣Gt)). It means that the default of firm A will increase the survival

probability of firm B when they are discordant. Using the above example, our result

Sprint shows that the default of AT&T will help to survive.

From the above results, we find that one firm’s information (default or survival) does

affect its counterparty’s default probability when they are correlated (i.e. α 6= 0),

even when there is no default event occurs. So we extend the event correlation to

this general sense.
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Now let’s use the approximation ex .
= 1 + x to see why Jarrow & Yu [31]’s

assumption is reasonable, i.e. add one term to the firm’s intensity process when its

counterparty gets default. For s > t, and check the Jeanblanc & Rutkowski [32] ,

we have:

P(τB > s|Gt ∨ DB
t ) = 1{τA>t}

P(τB > s|Gt)

P(τb > t|Gt)
= E(e−

∫ s
t

λB(u)du|Gt) (2.10)

And

P(τB > s|Gt ∨ DA
t ∨ DB

t ) = 1{τB>t,τA6t}
P(τB > s, τA 6 t|Gt)

P(τB > t, τA 6 t|Gt)

= 1{τB>t,τA6t}E(e−
∫ s

t
λB(u)(1+αe−

∫ t
0 λA(v)dv)du|Gt)

(2.11)

Comparing the above two equations, we see that there does have a term αe−
∫ t
0 λA(v)dv

added into bond B’s intensity function. How this term affects the bond B’s survival

probability depends on the sign of α.

Similarly, appendix gives the derivation of the following equation under the approx-

imation of ex .
= 1 + x, for the case when its counterparty has survived up to time

t.

P(τB > s|Gt ∨ DA
t ∨ DB

t ) = 1{τA>t,τB>t}
P(τA > t, τB > s|Gt)

P(τA > t, τB > t|Gt)

= 1{τA>t,τB>t}E(e−
∫ s

t
[λB(u)−αλB(u)

∫ t
0 λA(v)dv]du|Gt)

(2.12)

Comparing the above equation with equation (2.10), we see that there has a term

αλB(u)
∫ t

0
λA(v)dv subtracted from bond B’s intensity function when its counter-

party bond A has not defaulted up to time t.
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2.5 Our Dependent Default Risk Model

From the above section, we know that one firm’s default will cause its counterparty’s

intensity function to be added a term. As in Jarrow & Yu [31], we also use indicator

function to incorporate the event correlation. However, we don’t assume that the

default effect will be always on at its counterparty’s rest time period. Instead, we

assume that the holding time of this default effect follows exponential distribution

(η, P(η > t) = e−µt, and its density function fη(t) = dPη(t)

dt
= µe−µt). It means that

the default effect will disappear after a certain time period. Now, we let λA = a > 0,

so its density function fτA
(t) = ae−at, and let

λB(t) = b1 + b21{τA6t6τA+η} (2.13)

where η is exponential distribution with parameter µ, and we assume that the

default time τA and η are independent. Now, we want to find the firm B’s survival

probability based on whether firm A has defaulted or not up to time t.

Case I: firm A has already defaulted by time t, 1{τA6t} = 1.

Since firm A has already defaulted by time t, so we know the default time τA,

say τA = S. Here, S is deterministic and 0 6 S 6 t. For u > t, we have

(τA 6 t) ⊂ (τA 6 u) and 1{τA6t} = 1{τA6u} = 1. So

λB(u) = b1 + b21{τA6u6τA+η} = b1 + b21{S6u6S+η} = b1 + b21{u6S+η}
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Therefore, the survival probability of firm B is:

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(u)du)|Gt)

= E(exp(−
∫ T

t

[b1 + b21{u6S+η}]ds)|Gt)

= e−b1(T−t)

{
1 − b2

b2 + µ
e−µ(t−S) +

b2

b2 + µ
e−b2(T−t)−µ(T−S)

}

(2.14)

Check appendix to see the derivation of equation (2.14). In this case, the time-t

price of zero-coupon bonds issued by B with maturity T with recovery of treasury

assumption is:

vB(t, T ) = E(δB1{τB6T}e
−
∫ T

t
r(s)ds + 1{τB>T}e

−
∫ T

t
r(s)ds|Gt ∨ DA

t ∨ DB
t )

= E(δBe−
∫ T

t
r(s)ds + (1 − δB)1{τB>T}e

−
∫ T

t
r(s)ds|Gt ∨ DA

t ∨ DB
t )

= δBP (t, T ) + (1 − δB)P (t, T )E(exp(−
∫ T

t

λB(s)ds)|Gt)

= δBP (t, T ) + (1 − δB)P (t, T )e−b1(T−t)

{
1 − b2

b2 + µ
e−µ(t−S)

+
b2

b2 + µ
e−b2(T−t)−µ(T−S)

}

(2.15)

We know that the expectation of η is 1
µ
. It means that the holding time of the

default effect will have 1
µ

much long. So the smaller value of µ, the longer holding

time of default effect. In Jarrow & Yu [31], they let the default effect be alive all

the rest of its counterparty life time. So when µ gets smaller and smaller, both
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results from our model and Jarrow & Yu [31] should be closer and closer.

Note: (a) A quick check to find that when there is no event correlation (i.e.

b2 = 0), then equation (2.14) goes to e−b1(T−t). i.e. ,

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = e−b1(T−t)

It means that the bond A ’s default information has no effect on bond B’s survival

probability.

(b) Let µ → 0, then equation (2.14) converges to e−(b1+b2)(T−t). So we have

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(s)ds)|Gt) = e−(b1+b2)(T−t)

This is exactly the same result as in Jarrow & Yu [31].

(c) Let µ → ∞, then equation (14) converges to e−b1(T−t). i.e.,

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = e−b1(T−t)

It means that instantaneous default effect also has no effect on bond B’s survival

probability.

C
¯

ase II: firm A has not defaulted up to time t, 1{τA>t} = 1.

Now, we know that τA > t, and for s > t, P(τA > s|Gt) = e−a(s−t). Using the

property E(X) = E(E(X|Y )), where X,Y are random variables. Then the survival
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probability of firm B is:

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(s)ds)|Gt)

= e−b1(T−t)

∫ ∞

0

[Et(exp(−b2

∫ T

t

1{τA6s6τA+y}ds)|η = y)]µe−µydy

(2.16)

where Et denotes the expectation given the information filtration Gt. Appendix

gives the proves of the following three equations.

When a = b2, a 6= b2 + µ, then

E(exp(−
∫ T

t

λB(s)ds)|Gt)

= e−b1(T−t){ µ

a + µ
+

a

µ
e−a(T−t) − a2

µ(µ + a)
e−(a+µ)(T−t)}

(2.17)

When a 6= b2, a 6= b2 + µ, then

E(exp(−
∫ T

t

λB(s)ds)|Gt)

= e−b1(T−t)

{
µ

b2 + µ
− b2

a − b2 − µ
e−a(T−t) +

ab2

(b2 + µ)(a − b2 − µ)
e−(b2+µ)(T−t)

}
.

(2.18)

When a 6= b2, a = b2 + µ, then

E(exp(−
∫ T

t

λB(s)ds)|Gt)

= e−b1(T−t)

{
µ

b2 + µ
+

b2(1 − µ(T − t))

b2 − a
e−a(T−t) − b2(µ + a)

(b2 − a)(b2 − µ)
e−(b2+µ)(T−t)

}
.

(2.19)
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In this case, the time-t price of zero-coupon bonds issued by B with maturity T with

recovery of treasury assumption is:

vB(t, T ) = E(δB1{τB6T}e
−
∫ T

t
r(s)ds + 1{τB>T}e

−
∫ T

t
r(s)ds|Gt ∨ DA

t ∨ DB
t )

= E(δBe−
∫ T

t
r(s)ds + (1 − δB)1{τB>T}e

−
∫ T

t
r(s)ds|Gt ∨ DA

t ∨ DB
t )

= δBP (t, T ) + (1 − δB)P (t, T )E(exp(−
∫ T

t

λB(s)ds)|Gt)

(2.20)

Now using one of equations (2.17), (2.18) and (2.19) to substitute into the expecta-

tion in the above equation, we can find the time-t price of vB(t, T ).

Theoretically, in this case, when µ is getting bigger and bigger, the value vB(t,T )
p(t,T )

from our model is getting closer and closer to e−b1(T−t). It means that when the

default effect of A on B can’t hold a certain period, then it’ll has no effect on B

though A and B are highly correlated.

Note: (a) It’s easy to check that equation (2.17) goes to (a(T − t)+1)e−(a+b1)(T−t) as

µ goes to 0. And both equations (2.18) and (2.19) go to b2e−(b1+a)(T−t)−ae−(b1+b2)(T−t)

b2−a

as µ goes to 0.

(b) When b2 = 0 (i.e. no event correlation), then all three equations (2.17),

(2.18), and (2.19) are equal to e−b1(T−t). So equation (2.16) can be simplified as

follow:

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = e−b1(T−t)

c) As µ goes to ∞, all three equations (2.17), (2.18), and (2.19) converge to e−b1(T−t).

As in the previous case, the instantaneous default effect has no effect on bond B’s

survival probability.
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Now we’ll let the default probability be dependent on interest rate, i.e. we let

the bond A and bond B’s intensity function be function of interest rate.

λA(t) = a0 + a1r(t)

And

λB(t) = b0 + b1r(t) + b21{τA6t6τA+η}

Here we just give out the survival probability P(τB > T |Gt ∨ DA
t ∨ DB

t ) of bond B.

We assumed that η is independent with r(t).

When bond A has defaulted by time t, S is the default time of bond A.

Using equation (2.14) and the independent assumption of η and r(t), we have:

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

[b0 + b1r(u) + b21{τA6u6τA+η}]du)|Gt)

= e−b0(T−t)E(exp(−
∫ T

t

[b1r(u) + b21{u6S+η}]du)|Gt)

= e−b0(T−t)E(exp(−b1

∫ T

t

r(u)du)|Gt)E(exp(−b2

∫ T

t

1{u6S+η})|Gt)

= e−b0(T−t)E(e−b1Rt,T |Gt)

{
1 − b2

b2 + µ
e−µ(t−S) +

b2

b2 + µ
e−b2(T−t)−µ(T−S)

}

(2.21)

Where Rt,T =
∫ T

t
r(u)du.
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When bond A has not defaulted up to time t.

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(s)ds)|Gt)

= e−b0(T−t)E({e−(b2+µ)(T−t)−b1Rt,T (1 + b2

∫ T

t

e−(a0−b2)(x−t)−a1Rt,xdx)

+
µ

µ + b2

e−b1Rt,T + µb2e
−b2T+a0t−b1Rt,T

∫ T−t

0

∫ T

T−y

[e(b2−a0)x−a1Rt,xdx]e−µydy}|Gt).

(2.22)

2.5.1 Numerical Examples

For simplicity, we assume the recovery rate δB is zero. As in Yu [58], we use

the normalized (against the default-free bond price) zero-coupon bond prices (i.e.

vB(t,T )
p(t,T )

) to compare our model with Jarrow & Yu [31].

Wang Jarrow & Yu

b2 = 0.5 b2 = 5 b2 = 0.5 b2 = 5

µ
T=2 T=11 T=2 T=11 T=2 T=11 T=2 T=11

5000 -9.9E-05 -9.5E-04 -9.9E-04 -9.5E-03 -0.212 -7.68 -0.798 -9.33

50 -9.7E-03 -0.094 -0.089 -0.864 -0.212 -7.68 -0.798 -9.33

5 -0.074 -0.85 -0.448 -4.7 -0.212 -7.68 -0.798 -9.33

1 -0.16 -2.97 -0.692 -7.8 -0.212 -7.68 -0.798 -9.33

0.5 -0.183 -4.30 -0.741 -8.5 -0.212 -7.68 -0.798 -9.33

0.1 -0.206 -6.66 -0.786 -9.16 -0.212 -7.68 -0.798 -9.33

0.01 -0.212 -7.68 -0.798 -9.33 -0.212 -7.68 -0.798 -9.33

Table 2.1. Percentage change of values from our model vs. values when there is no

counterparty risk ( when t = 1, a = 0.01, b1 = 0.01, b2 = 0.5 and no default up to time t)
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From the above table, we can see that the value which is from our model is

very close to the value when there is no counterparty risk when µ is large even with

the high correlation . For example, when µ = 5000, T − t = 1, b2 = 5, our value is

−(9.51E − 03)% less. It means that if the default effect is instantaneous, then this

default event will have no effect on its counterparty. This is intuitive. However,

Jarrow & Yu model can’t reflect this phenomena.

b2 = 0.5 b2 = 5

µ
T-t=1 T-t=10 T-t=1 T-t=10

5000 0.21268 8.322 0.803 10.286

50 0.2031 8.221 0.715 9.343

5 0.138 7.402 0.353 5.908

1 0.0523 5.106 0.107 1.689

0.5 0.0291 3.664 0.057 0.919

0.01 6.512E-04 0.1256 1.233E-03 0.0201

0.001 6.526E-05 0.0127 1.224E-03 2.019E-03

Table 2.2: Percentage change of values from our model vs. Jarrow & Yu [31] ( when

t = 1, a = 0.01, b1 = 0.01, and no default up to time t)

The above table tells us that when µ is small ,then results from the different

models are very close no matter how much correlation (b2 = 0.5, 5) the two bonds

have and how long the date-to-maturity (T − t = 1, 10) is. For example, for

µ = 0.001, the difference of bond prices from the two models is only 0.0127% when

T − t = 10. However, when µ = 50, b2 = 0.5 is large and the date-to-maturity is

relative long (T − t = 10), then the bond price from our model will be 8.221% larger

than that of Jarrow & Yu.
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b2 Wang Jarrow & Yu Percentage change

0.02 0.9231276 0.9231163 1.22E-03

0.1 0.6441293 0.6440364 0.0144

0.4 0.4318622 0.4317105 0.0351

0.6 0.2895725 0.2893842 0.0606

0.8 0.1941904 0.1939800 0.1085

1 0.130219 0.1300287 0.1716

Table 2.3: Percentage change of values from our model vs. values from Jarrow &

Yu ( when t = 3, S = 1, b1 = 0.02, T = 5, µ = 0.0001 , and default has occurred by time

t)

From the above table, we can see that when the holding time of default effect

is long (i.e. µ is small, µ = 0.0001), then results from our model is almost the same

as that of Jarrow & Yu [2001] no matter how much correlation the two firms have.

For example, when b2 = 1, the bond prices from our model is only 0.1716% larger

than that of Jarrow & Yu [31].

b2 Wang NCR Percentage change

1 0.9607886 0.96078944 -8.777E-05

2 0.9607879 0.96078944 -1.536E-04

3 0.9607897 0.96078944 -2.448E-04

4 0.9607875 0.96078944 -2.458E-04

5 0.9607871 0.96078944 -2.793E-04

10 0.9607858 0.96078944 -3.84E-04

20 0.9607849 0.96078944 -4.726E-04
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Table 2.4: Percentage change of values from our model vs. values from NCR ( when

t = 3, S = 1, b1 = 0.02, T = 5, µ = 6 , and default has occurred by time t)

From the above table, we can see that when we choose a little bit larger value

µ = 6 (i.e. with relative short holding time of default effect, the default effect will

last two months), then though the correlation becomes stronger ( i.e. b2 increases),

the difference of the bond prices from the different models is still very small. For

example, for b2 = 20, our bond price is only 4.726E-04% smaller than the bond price

from NCR.

Next table will show the percentage change of values from our model vs. the

values of Jarrow & Yu, and percentage change of values from model vs. the

values when there is no counterparty risk as the length of holding time of default

effect (µ) changes. We pick some specific numbers for b1, b2, 1, S, T . We let

b1 = 0.02, b2 = 0.02, S = 1, t = 3, T = 11. From Jarrow & Yu model, the nor-

malized bond price is 0.726149037. The normalized bond price is 0.852143789 when

there is no counterparty risk (NCR).
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µ Wang Wang vs. Jarrow & Yu Wang vs. NCR

0.01 0.0.73328 0.9887 -13.943

0.05 0.7576809 4.3423 -11.085

0.09 0.7764092 6.9215 -8.888

0.1 0.7803387 7.4693 -8.421

0.2 0.8091497 11.430 -5.045

0.3 0.8251742 13.637 -3.165

0.4 0.8345441 14.927 -2.065

0.5 0.8402748 15.717 -1.393

0.6 0.8439225 16.219 -0.965

0.7 0.8463251 16.55 -0.683

1 0.8498832 17.04 -0.265

Table 2.5: Percentage change of values from our model vs. values from Jarrow &

Yu, and values with no counterparty risk ( when default has occurred by time t)

From table 2.5, we can see that

(a) when µ > 1
t−S

= 0.5, it means that the default effect disappeared before the

current time t = 3. So the normalized bond prices from our model has no significant

difference from that of NCR. For example, when µ = 1, the normalized bond price

from our model is only 0.265% smaller than that of NCR.

(b) When µ < 1
T−S

= 0.1, it means that the default effect will last all the rest

of bond B’s life. So the normalized bond price from our model has no significant

difference from that of Jarrow & Yu. For example, when µ = 0.01, the normalized

bond price from our model is only 0.9887% higher than that of Jarrow & Yu.

(c) When 0.1 = 1
T−S

< µ < 1
t−S

= 0.5, it means that the default effect is still alive

at current time t, but it’ll disappear before the bond B’s maturity date T . In this
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case, the normalized bond price from our model has significant difference form that

of Jarrow & Yu. For example, when µ = 0.2, the normalized bond price from our

model will be 11.43% higher than that of Jarrow & Yu.

2.5.2 Conclusion

We introduce the length of holding time of default effect into Jarrow & Yu [31]

model. We find that when we assume long period of holding time (small µ), then

results from our model and Jarrow & Yu model are very close. However, when

two firms are highly correlated and one firm’s default effect will not last long, then

results from the two models are quite different. Our model can reflect the intuitive

phenomena that if the firm can survive, then the default effect from its counterparty

will disappear as time goes.

2.6 Valuation of Default Swap of the First-to-Default Baskets

2.6.1 Introduction

First-to-default baskets are credit derivatives which are based on a portfolio of

underlying reference entities. Rather than holding default risk on many individual

credits, buyers of the first-to-default protection can pool the credit in a basket. The

buyer of protection in this structure is hedged against the risk of default only with

this basket of reference entities. A default swap is a type of default insurance. The

buyer of the default protection makes a regular payment quoted as a percentage of

the notional amount per year which is called swap rate premium. These payments

continue until either the expiration of the swap or a default event by the underlying

reference. If there is a default, the protection buyer delivers to the protection seller

bonds of the reference entities and receives par value.
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First-to-default baskets are used to hedge against credit risk for many reasons:

(a) the protection buyer gains on an entire portfolio of exposure.

(b) it is typically cheaper to buy a first-to-default basket than to purchase protection

each credit individual credit.

(c) payout occurs when the first reference entity defaults.

The existing literature investigating the valuation of default swap of first-to-default

baskets (see Li [42] and Kijima [35]) assumes that the default times of the under-

lying references (τ1, τ2, · · · , τn) are independent, or conditional independent (also

see Jarrow & Yu [31]) . However, we find that if the references’ intensity functions

of their default times are assumed to be functions of common factors (e.g. interest

rate and market index), then the model will lose the event correlation as long as you

use the conditional independent assumption, even you let the references’ intensity

functions be correlated (as in Kijima [35]). So we use the model derived in section

2.5. Under this model, we still can use the conditional independent assumption

while not losing the event correlation.

2.6.2 Relationship between Event Correlation and Conditional

Independent Assumption

Event correlation refers to how a firm’s default probability is affected by default of

other firms (see Jarrow & Turnbull [30]). Actually, when two firms are correlated,

then one firm’s default probability will be affected by its counterparty, even there

is no default event (see Jarrow & Yu [31]). From Jeanblanc & Rutkowski [32], we

know:

P(τi > s
∣∣Gt ∨ Dj

t ) = 1{τj>t}

P(τi > s, τj > t
∣∣Gt)

P(τj > t
∣∣Gt)

+ 1{τj6t}

P(τi > s, τj 6 t
∣∣Gt)

P(τj 6 t
∣∣Gt)

(2.23)
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If firm i and firm j are independent, then P(τi > ti, τj > tj) = P(τi > ti, P(τj > tj).

So

P(τi > t|Gt ∨ Dj
t ) = P(τi > t|Gt)

It means that the information of the firm j’s default or survival has no effect on

the firm i’s default probability. However, if firm i and firm j are correlated, then

from equation we know that the information of firm j’s default or survival up to

time t will have effect on the firm i’s default probability (see, section 2.5 for details).

Now let’s give out the definition of conditional independent assumption and discuss

how this assumption will affect the event correlation. First of all, let’s clarify the

definition of default probability or survival probability first. According to Lando

[40], the survival probability has the following equations:

P(τi > t|Gt) = e−
∫ t
0 λi(u)du (2.24)

and

P(τi > s|Gt) = E(E(1{τi>s}|GT ∗)|Gt) = E(exp(−
∫ s

0

λi(u)du)|Gt)

for s > t, and where Gt is the filtration generated by the information of state

variables, but not including the information of default process. So if we include the

information of default process Di
t,, then we have:

P(τi > t|Gt ∨ Di
t) = 1{τi > t} (2.25)

for 1{τi > t} is Di
t-measurable. And if s > t, we have:

P(τi > s|Gt ∨ Di
t) = 1{τi>t}

P(τi > s|Gt)

P(τi > t|Gt)
= 1{τi>t}E(e−

∫ s
t

λi(u)du|Gt) (2.26)

From equation (2.25), we know that the default has occurred or not at time t.

Equation (2.26) tells us that we don’t know when the default will occur in the

future. We know that most intensity-based credit risk models (see, Lando [40],

Jarrow & Turnbull [30], Jarrow & Yu [31], Jeanblanc & Rutkowski [32], etc.) have
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the above features. Now we’ll find that what realization of filtration the conditional

independent assumption uses is crucial to keep the event correlation in the model.

Conditional independent assumption means that given the realization of filtra-

tion, the default times of the n underlying references are independent, i.e. we

have:

P(τ1 > t1, τ2 > t2, · · · , τn > tn|JT ∗)

= P(τ1 > t1|JT ∗)P(τ2 > t2|JT ∗) · · ·P(τn > tn|JT ∗)

(2.27)

If we choose JT ∗ = GT ∗ (as in Jarrow & Yu [31], Kijima [35]), then the event corre-

lation will be eliminated by the conditional independent assumption. We can explain

this by both the marginal distribution of default time and their joint distribution.

For simplicity, we just consider the case when n = 2, so conditional independent

assumption has the form:

P(τ1 > t1, τ2 > t2|GT ∗) = P(τ1 > t1|GT ∗)P(τ2 > t2|GT ∗)

where t < t1 6 T ∗, t < t2 6 T ∗.



41

The marginal distribution becomes:

P(τ1 > t1|Gt ∨ D2
t ) = 1{τ2>t}

P(τ1 > t1, τ2 > t
∣∣Gt)

P(τ2 > t
∣∣Gt)

+ 1{τ26t}

P(τ1 > t1, τ2 6 t
∣∣Gt)

P(τ2 6 t
∣∣Gt)

= 1{τ2>t}

E(P(τ1 > t1, τ2 > t
∣∣GT ∗)|Gt)

P(τ2 > t
∣∣Gt)

+ 1{τ26t}

E(P(τ1 > t1, τ2 6 t
∣∣GT ∗)|Gt)

P(τ2 6 t
∣∣Gt)

= 1{τ2>t}

E(P(τ1 > t1|GT ∗)P(τ2 > t
∣∣GT ∗)|Gt)

P(τ2 > t
∣∣Gt)

+ 1{τ26t}

E(P(τ1 > t1|GT ∗)P(τ2 6 t
∣∣GT ∗)|Gt)

P(τ2 6 t
∣∣Gt)

(2.28)

Since P(τ2 > t|GT ∗) = P(τ2 > t|Gt) = e−
∫ t
0 λ2(u)du and e−

∫ t
0 λ2(u)du is Gt-measurable,

so the above equation reduces to:

P(τ1 > t1|Gt ∨ D2
t ) = P(τt > t1|Gt)

The above equation tells us that the information of default process D2
t has no effect

on its counterparty’s survival probability. Now let’s check its joint distribution

P(τ1 > t1, τ2 > t2). Use Farlie-Gumbel-Morgenstern copula C(u, v) = uv(1 + α(1 −

u)(1 − v)), α ∈ [−1, 1], we know that:

P(τ1 > t1, τ2 > t2)

= E(e−
∫ t1
0 λ1(u)due−

∫ t2
0 λ2(u)du[1 + α(1 − e−

∫ t1
0 λ1(u)du)(1 − e−

∫ t2
0 λ2(u)du)])

(2.29)

Using the conditional independent assumption, we get:

P(τ1 > t1, τ2 > t2) = E(e−
∫ t1
0 λ1(u)due−

∫ t2
0 λ2(u)du) (2.30)

Comparing the above two equations, we know that the result of the conditional

independent assumption is the same as we assume α = 0 in the Farlie-Gumbel-

Morgenstern copula. Therefore, there’ll be no event correlation in the model.
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2.6.3 Valuation of the Default Swap

Let τ = min16i6n τi be the first-to-default time and T is the maturity date of the

default swap. And all risky bonds’ maturities are longer than the default swap’s

maturity, i.e. T < min16i6n(Ti). We assume that both the protection seller and

protection buyer are default-free. And the swap rate premium is paid at rate U

from protection buyer to protection seller at time tj, j = 1, 2, · · · ,m

t 6 t1 < t2 < · · · < tm = T

If default occurs during (tk, tk+1], then the payment terminates at time tk. We

assume that the n risky bonds in the basket are alive at time t, i.e. τi > t. So the

time-t value of the payment, denoted by Vpb1τ>t, from protection buyer to protection

seller is

Vpb1{τ>t} =
m∑

j=1

E(U1{τ>tj}e
−
∫ tj

t r(u)du|Ft)

On the other hand, if default occurs before the default swap maturity date T and

the recovery rate of risky bond i is δi, under the assumption of recovery of treasury,

then the time-t value of the payment from protection seller to protection buyer is

Vps1{τ>t} = E(e−
∫ τ

t
r(u)du

n∑

i=1

(1 − δi)1{τ=τi6Ttj
}|Ft)

So the swap value at time t ( denoted by Vt) to the protection seller is

Vt = Vpb1{τ>t} − Vps1{τ>t}

(2.31)

=
m∑

j=1

E(U1{τ>tj}e
−
∫ tj

t r(u)du|Ft) − E(e−
∫ τ

t
r(u)du

n∑

i=1

(1 − δi)1{τ=τi6Ttj
}|Ft)
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If the default swap contract is initialized at time t, then the swap value at time

t to the protection seller should be 0, i.e. Vpb = Vps. So the default swap rate is

determined by the following formula.

U =
E(e−

∫ τ
t

r(u)du
∑n

i=1(1 − δi)1{τ=τi6Ttj
}|Ft)

∑m
j=1 E(1{τ>tj}e

−
∫ tj

t r(u)du|Ft)
(2.32)

In the following part of this section, we want to calculate the swap rate premium U .

For simplicity, we just consider when n = 2, say bond A and bond B which

are correlated. As in Jarrow & Yu [31], we treat bond A as a primary bond, bond

B as a secondary bond. It also means that if bind A gets default, then the intensity

of bond B will be added one term. However, if bond B gets default, there is no

effect on bond A. We use τA, τB to denote their default times, and λA(t), λB(t) to

denote their intensity processes, and DA
t = σ(1{τA6s}, s 6 t),DB

t = σ(1{τB6s}, s 6 t).

Now we’ll analyze how the event correlation and holding time of default effect on the

default swap premium. Our philosophy is to introduce the simplest model that will

capture the event correlation and holding time of default effect. We use the model

developed in section 2.5 to deal with the event correlation. Meanwhile, we assume

that the interest rate r(t) is a constant (r(t) = r, the recovery rate δA = δB = 0,

bond A and bond B have same maturity date T0. For completeness, we give out

model from section 2.5 and results here. Let λA(t) = a > 0, and

λB(t) = b1 + b21{τA6t6τA+η} (2.33)

where η controls the holding time of bond A’s default effect on bond B with the

law of exponential distribution with parameter µ.
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Case I: firm A has already defaulted by time t, 1{τA6t} = 1.

The survival probability of firm B is:

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(u)du)|Gt)

= E(exp(−
∫ T

t

[b1 + b21{u6S+η}]ds)|Gt)

= e−b1(T−t)

{
1 − b2

b2 + µ
e−µ(t−S) +

b2

b2 + µ
e−b2(T−t)−µ(T−S)

}

(2.34)

Where S is bond A’s the default time.

C
¯

ase II: firm A has not defaulted up to time t, 1{τA>t} = 1.

When a 6= b2, a 6= b2 + µ, then

E(exp(−
∫ s

t

λB(u)du)|Gt)

= e−b1(s−t)

{
µ

b2 + µ
− b2

a − b2 − µ
e−a(s−t) +

ab2

(b2 + µ)(a − b2 − µ)
e−(b2+µ)(s−t)

}
.

(2.35)

When a = b2, a 6= b2 + µ, then

E(exp(−
∫ s

t

λB(u)du)|Gt)

= e−b1(s−t){ µ

a + µ
+

a

µ
e−a(s−t) − a2

µ(µ + a)
e−(a+µ)(s−t)}

(2.36)
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When a 6= b2, a = b2 + µ, then

E(exp(−
∫ s

t

λB(u)du)|Gt)

= e−b1(s−t)

{
µ

b2 + µ
+

b2(1 − µ(s − t))

b2 − a
e−a(s−t) − b2(µ + a)

(b2 − a)(b2 − µ)
e−(b2+µ)(s−t)

}
.

(2.37)

Now, let’s simplify the denominator in equation (2.32). Using the conditional inde-

pendent assumption, we have:

P(τA > tj, τB > tj|GT ∗ ∨ DA
t ∨ DB

t )

= P(τA > tj|GT ∗ ∨ DA
t ∨ DB

t )P(τB > tj|GT ∗ ∨ DA
t ∨ DB

t )

= e−a(tj−t)e−b1(tj−t) = e−(a+b1)(tj−t)

(2.38)

And using the above equation, we have

E(e−
∫ tj

t r(u)du1{τ>tj}|Gt ∨ DA
t ∨ DB

t )

= E([E(e−
∫ tj

t r(u)du1{τ>tj}|GT ∗ ∨ DA
t ∨ DB

t )]|Gt ∨ DA
t ∨ DB

t )

= E(e−(r+a+b1)(tj−t)|Gt ∨ DA
t ∨ DB

t ) = e−(r+a+b1)(tj−t)

(2.39)

Therefore the denominator in equation (2.32) is following:

m∑

j=1

E(1{τ>tj}e
−
∫ tj

t r(u)du|Ft) =
m∑

j=1

e−(r+a+b1)(tj−t) (2.40)

For the numerator in equation (2.32), we have two cases: τ = τB and τ = τA.



46

For the τ = τB case, it’ll be a little easier for we assume that the default of

bond B has no effect on bond A. And we know that

P(s − ds < τB 6 s|GT ∗ ∨ DA
t ∨ DB

t ) = b1e
−b1(s−t)ds

And

P(τA > s, s − ds < τB 6 s|GT ∗ ∨ DA
t ∨ DB

t )

= P(τA > s|GT ∗ ∨ DA
t ∨ DB

t )P(s − ds < τB 6 s|GT ∗ ∨ DA
t ∨ DB

t )

= e−a(s−t)b1e
−b1(s−t)ds = b1e

−(a+b1)(s−t)ds

(2.41)

Therefore, one term of numerator in equation (2.32) can be simplified as follow:

E(e−
∫ τB

t r(u)du1{τ=τB6T0}|Gt ∨ DA
t ∨ DB

t )

= E([E(e−
∫ τB

t r(u)du1{τ=τB6T0}|GT ∗ ∨ DA
t ∨ DB

t )]|Gt ∨ DA
t ∨ DB

t )

= E(

∫ T0

t

e−r(s−t)b1e
−(a+b1)(s−t)ds|Gt ∨ DA

t ∨ DB
t )

=
b1

r + a + b1

[1 − e−(r+a+b1)(T0−t)]

(2.42)

For the case when τ = τA, it’ll be a little complicated for the default of bond A will

affect the default probability of bond B. We know that

P(s − ds < τA 6 s|GT ∗ ∨ DA
t ∨ DB

t ) = ae−a(s−t)ds

And

P(τB > s|GT ∗ ∨ DA
t ∨ DB

t ) = exp(−
∫ s

t

λB(u)du)

= e−b1(s−t)exp(−b2

∫ s

t

1{τA6u6τA+η}du)

(2.43)
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Thus we have following for the other term of the numerator in equation (2.32).

E(e−
∫ τA

t r(u)du1{τ=τA6T0}|Gt ∨ DA
t ∨ DB

t )

= E([E(e−
∫ τA

t r(u)du1{τ=τA6T0}|GT ∗ ∨ DA
t ∨ DB

t )]|Gt ∨ DA
t ∨ DB

t )

= E(

∫ T0

t

e−r(s−t)ae−(a+b1)(s−t)E(exp(−b2

∫ s

t

1{τA6u6τA+η}du))ds|Gt ∨ DA
t ∨ DB

t )

(2.44)

Now based on your specified values of a, µ, b2, we can use equations (2.35),(2.37),

(2.36) to substitute E(exp(−b2

∫ s

t
1{τA6u6τA+η}du)). After taking the integration,

we have:

When a 6= b2, a 6= b2 + µ, then

E(e−
∫ τA

t r(u)du1{τ=τA6T0}|Gt ∨ DA
t ∨ DB

t )

=

{
aµ

(b2 + µ)(a + b1 + r)
(1 − e−(a+b1+r)(T0−t))

+
ab2

(a − b2 − µ)(r + 2a + b1 + µ)
(e−(r+2a+b1)(T0−t) − 1)

+
a2b2

(b2 + µ)(a − b2 − µ)(r + a + b1 + b2 + µ)
(1 − e−(r+a+b1+b2+µ)(T0−t))

}

(2.45)
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When a 6= b2, a = b2 + µ, then

E(e−
∫ τA

t r(u)du1{τ=τA6T0}|Gt ∨ DA
t ∨ DB

t )

=

{
ab2

(b2 − a)(2a + b1 + r)
(1 − e−(2a+b1+r)(T0−t))

+
ab2µ

(b2 − a)(2a + b1 + r)
{(T0 − t)e−(2a+b1+r)(T0−t)

+
1

2a + b1 + r
(e−(2a+b1+r)(T0−t) − 1)}

+
aµ

(b2 + µ)(a + b1 + r)
(1 − e−(a+b1+r)(T0−t))

+
ab2(µ + a)

(b2 − a)(b2 − µ)(a + r + b1 + b2 + µ)
(e−(a+r+b1+b2+µ)(T0−t) − 1)

}

(2.46)

When a = b2, a 6= b2 + µ, then

E(e−
∫ τA

t r(u)du1{τ=τA6T0}|Gt ∨ DA
t ∨ DB

t )

=

{
aµ

(a + µ)(a + b1 + r)
(1 − e−(a+b1+r)(T0−t))

+
a2

µ(2a + b1 + r)
(1 − e−(2a+b1+r)(T0−t))

+
a3

µ(a + µ)(2a + b1 + r + µ)
(e−(2a+b1+r+µ)(T0−t) − 1)

}

(2.47)
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2.6.4 Numerical Examples

From the previous section, we can use equations (2.45),(2.46), (2.47) to find the

default swap premium U . Now the basket consists of two defaultable zero-coupon

bonds (Bond A and Bond B). we assume that both A and B have the same maturity

date T0 = 10 and their recovery rates are 0, the maturity of the default swap T is

2, and the default swap premium is paid semiannaully (tj = 0.5, 1.0, 1.5, 2.0). We

assume the current time t = 0, interest rate r = 0.08, b1 = 0.01. Then we use

different values of a, b2, µ to describe different default probability, different correla-

tion, and different length of holding time of default effect. We use Excel to get the

following two tables.

b0 = 0 b1 = 0.1 b2 = 1 b2 = 10

µ
U U Change U Change U Change

0.001 0.03576 0.03558 -0.503 0.03518 -1.622 0.03505 -1.985

0.1 0.03576 0.03561 -0.419 0.03522 -1.51 0.03506 -1.957

1 0.03576 0.03570 -0.168 0.03544 -0.895 0.03511 -1.818

10 0.03576 0.03575 -0.028 0.03569 -0.196 0.03540 -1.007

100 0.03576 0.03576 0.0 0.03575 -0.028 0.03569 -0.196

Table 2.6: Default Swap Premiums for Different Correlations, when a = 0.01 .

From the above table, we can see that the percentage change of default swap

premiums between the case with correlation and the case with no event correlation

is very small. For example, for b2 = 10, its default swap premium is only 1.985%

smaller than the value with no event correlation. So, when bond A’s default proba-

bility is small (i.e. small a), then the event correlation has little effect on the default

swap premium.



50

b0 = 0 b1 = 0.1 b2 = 1 b2 = 10

µ
U U Change U Change U Change

0.001 11.5591 11.4490 -1.23 10.6206 -8.37 7.7710 -32.957

0.1 11.5591 11.4510 -1.21 10.6356 -8.24 7.7957 -32.744

1 11.5591 11.4668 -1.07 10.7528 -7.23 8.0062 -30.924

10 11.5591 11.5215 -0.60 11.2038 -3.34 9.2807 -19.932

100 11.5591 11.5537 -0.32 11.5052 -0.74 11.0624 -4.56

Table 2.7: Default Swap Premiums for Different Correlations, when a = 5 .

From the above table, we can see that when default probability of bond A is

high (i.e. large a), then the event correlation does matter. For example, for

fixed µ = 0.1, as correlation becomes stronger (b2 from 0.1 to 10), the percentage

changes of default swap premiums gets bigger (from down 1.21% to down 32.957%).

Meanwhile, we can also find that the length of holding time of default effect ( 1
µ
)

is a significant factor on the default swap premium when the correlation is high.

The longer the default effect holds, the smaller the default swap premium is. For

example, for a = 5, b2 = 10, if the length of holding effect is short (µ = 100), then

the default swap premium is only 4.56% smaller than the case with no correlation.

However, if the length of holding time of default effect is long (µ = 0.001), then the

default swap premium will be 32.957% smaller than the case with no correlation.

2.6.5 Conclusion

Kijima [35] found that the correlations between bonds in the baskets have little

effect on the default swap premium. However, we find that this case happens only

when the bonds’ default probabilities are very small. If there exists bond which has
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high default probability in the basket, then the correlation is a key factor in pricing

the default swap premium. Meanwhile, we also find that the length of holding time

of default effect is also a key factor in pricing the default swap premium.

2.7 Valuation of Dependent Default Risk in Collateralized Bond

Obligations

Recently, many new products are associated with credit risk portfolios. Examples of

these include Collateralized Debt Obligations (CDOs) which include Collateralized

Loan Obligations (CLOs) and Collateralized Bond Obligations (CBOs). The central

idea of these trades is ratings arbitrage. Banks typically hold large groups of loans

on their balance sheets. These loans will vary in degree of credit risk and the

overall pool may or may not be well diversified. In a CDO the bank slices up

these loans into various tranches which are rated by a rating agency and then sold

on to investors. CBO is a multitranche debt structure which is similar to some

respect to a Collateralized Mortgage Obligation (CMO) structure. Typically low-

rated bonds rather than mortgage serve as the collateral. Interests and principal

repayments received on the bond portfolio are passed through to owners of the

derivative securities. However, these payments is contingent upon the time and

identity of the first or second-to-default. Default dependency is indispensable to

price/hedge these portfolios.

2.7.1 Introduction

Collateralized Debt obligations (CDOs) are a form of structurated finance used to

securitize corporate bonds (collateralized bond obligations or CBOs) and bank loans

(collateralized loan obligations or CLOs). With a CDO, assets are pooled in a port-

folio and then rated securities are issued to fund the purchase of the assets. CDOs
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can consist of a number of assets: loans, bonds, combination of loans and bonds, and

a variety of other assets. In a collateralized debt obligation, a portfolio is created

that contains approximately three tranches. All of the tranches reference the same

securities. They are differentiated by levels of risk; the CDO issuer finds a buyer

for each tranche depending on the buyer’s particular risk appetite. As losses occur,

they are incurred by the holders of the First Loss Tranche, Mezzanine Tranche, and

Senior Tranche sequentially. The issuer pays the investor a fixed payment for the

credit protection, and in return, the investor would make a payment to the issuer if

one of the securities were to default when the cumulative default level falls within

their tranche.

SPV

Asset

Portfolio

Senior
Tranche
Investor

Mezzanine
Tranche
Investor

F irstLoss
Tranche
Investor

- -
�

�
�
��

@
@

@
@R

Figure 2.1: Typical CDO Structure

The above picture shows the typical CDO structure. The box labelled SPV denotes

a ’Special Purpose Vehicle’. The SPV created for the issuance of a collateralized

bond obligation will be a stand-lone, bankruptcy remote entity. For CBOs, it means

that the asset portfolio is backed by high-yield corporate bonds. All subsequent

payments made to CBO investors are derived from income received from the bond

portfolio. The senior tranche investor and the mezzanine tranche investor receive
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a specified coupon on their investment and are repaid their principal at maturity.

These two tranches are also called bond tranches. They are first in priority of pay-

ment. The first loss tranche investor are paid receipts, with no guaranteed coupon

or guarantee of principal repayment. That’s why some papers call this tranche

equity tranche. If the SPV actually receives all coupon and principal payments due

from the bond portfolio, then all tranches investors will receive everything due to

them and the first loss tranche investors will a receive a high return. If any of the

collateral bonds defaults, then the first loss tranche investors will suffer a loss of

return. This tranche investors are in effect making a leveraged investment in the

high-yield portfolio. It is because of the redistribution of risk that the two bond

tranches can obtain investment-grade ratings even though the underlying collateral

consists largely of below investment-grade bonds.

A CBO is a correlation product. Investors in this product are buying correla-

tion risk. To determine that they are getting a fair return for this risk, they must

be able to measure the correlation risk. In this paper, we focus on two things:

(a) One is how the event correlation affects the credit protection of each tranche.

(b) The other is to analyze how the holding time of default effect affects the

credit protection of each tranche.

2.7.2 Credit Risk Model

We just consider the simple case when there are only two bonds in the collateral

pool, say bond A and bond B. As in Jarrow & Yu [31], we treat bond A as a

primary bond, bond B as a secondary bond. It means that if bond B gets default,
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there is no effect on bond A. However, if bond A gets default, then the intensity

of bond B will be added one term. Using the model we just developed, we’ll use

exponential distribution to control the life of the added term. It means that after

a certain time of period, this added term will disappear. We use τA, τB to denote

their default times, and λA(t), λB(t) to denote their intensity processes, and DA
t =

σ(1{τA6s}, s 6 t),DB
t = σ(1{τB6s}, s 6 t). We assume that the interest rate r(t)

is a constant (r(t) = r, bond A and bond B have same maturity date T0. Let

λA(t) = a > 0, and

λB(t) = b1 + b21{τA6t6τA+η} (2.48)

where b1 > 0, b2 > 0, and η controls the holding time of bond A’s default effect on

bond B with the law of exponential distribution with parameter µ. This extra term

b21{τA6t6τA+η} is induced by the default event of bond A. It will not appear before

the bond A’s default time τA and after the time τa + η .

Case I: firm A has already defaulted by time t, 1{τA6t} = 1.

The survival probability of firm B is:

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(u)du)|Gt)

= E(exp(−
∫ T

t

[b1 + b21{u6S+η}]ds)|Gt)

= e−b1(T−t)

{
1 − b2

b2 + µ
e−µ(t−S) +

b2

b2 + µ
e−b2(T−t)−µ(T−S)

}

(2.49)

Where S is bond A’s default time (S 6 t).

C
¯

ase II: firm A has not defaulted up to time t, 1{τA>t} = 1.
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When a 6= b2, a 6= b2 + µ, then

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(u)du)|Gt)

= e−b1(T−t)

{
µ

b2 + µ
− b2

a − b2 − µ
e−a(T−t) +

ab2

(b2 + µ)(a − b2 − µ)
e−(b2+µ)(T−t)

}
.

(2.50)

When a = b2, a 6= b2 + µ, then

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(u)du)|Gt)

= e−b1(T−t){ µ

a + µ
+

a

µ
e−a(T−t) − a2

µ(µ + a)
e−(a+µ)(T−t)}

(2.51)

When a 6= b2, a = b2 + µ, then

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(u)du)|Gt)

= e−b1(T−t)

{
µ

b2 + µ
+

b2(1 − µ(T − t))

b2 − a
e−a(T−t) − b2(µ + a)

(b2 − a)(b2 − µ)
e−(b2+µ)(T−t)

}
.

(2.52)

2.7.3 Credit Protection Valuation

Moody’s uses a probabilistic, expected loss approach to determine a portfolio’s

credit risk. A portfolio’s credit risk is quantified as the amount of loss protection

needed to lower a portfolio’s expected loss to the expected loss benchmark of the

desired rating of the structured bonds, where expected loss is defined as the average

of all possible principal losses weighted by their probability. For example, a single
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speculative-grade bond with a 30% default probability and with a 70% loss of par,

then its expected loss is 30% × 70% = 21%. Similarly, the expected loss of the

investment-grade bond with 5% default probability and a 70% loss of par is 3.5%.

If the collateral pool is only backed by this speculative-grade bond, then the credit

protection necessary for the portfolio to achieve an investment-grade rating is 58.3%

which is calculated by the following formula:

Probability of Default × (Default Severity − Credit Protection)

= Target Expected Loss.

(2.53)

i.e. 30% × (70% − X) = 3.5% ⇒ X = 58.3%.

If the collateral pool has two bonds, then we can use the following formula to

calculate credit protection:

Probability of 1 Bond Default ×

(Default Severity if 1 Bond Defaults - Credit Protection)

+ Probability of 2 Bond Default ×

(Default Severity if 2 Bonds Default - Credit Protection)

= Target Expected Loss.

(2.54)

If we assume that these two bonds are independent with same default probabilities

(30%), and same default severity (70% loss of par), then plug in these numbers into

the above formula, we get:

(2 × 30% × 70%) × (35% − X) + (30% × 30%) × (70% − X) = 3.5%.

Solving the above equation, we get the credit protection X = 34.3%3. Comparing

this number to that of only one speculative-grade bond in the collateral pool

3These two examples are from Lucas & McDaniel [1993].
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(58.3%), we find that this one is much smaller. The reduction in credit protection

is a result of the decreased variance in the portfolio’s expected loss.

Now we use our dynamic credit risk model to calculate credit protection of

the collateral pool. As we pointed previously, there are two correlated bonds

A and B in the collateral pool. We assume the current time is t, and the

maturity date of the CBO is T . So the probability of one bond default is

P(τA 6 T, τB > T |Gt ∨ DA
t ∨ DB

t ) + P(τA > T, τB 6 T |Gt ∨ DA
t ∨ DB

t ). And

the probability of both bonds default is P(τA 6 T, τB 6 T |Gt ∨ DA
t ∨ DB

t ). Let

T ∗ denote the horizontal time of the economy (so T 6 T ∗) and GT ∗ denote the

information filtration generated by the state variables (for example, interest rate,

market index). Since bond B is a secondary bond, its default has no effect on bond

A. It means that we have:

P(τA > T |GT ∗ ∨ DA
t ∨ DB

t ) = e−
∫ T
0 λA(u)du = e−a(T−t).

And

1{τA>T}P(τB 6 T |GT ∗ ∨ DA
t ∨ DB

t ) = 1 − e−
∫ T
0 λB(u)du = 1 − e−b1(T−t).
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Using conditional independent assumption4, we have:

P(τA > T, τB 6 T |Gt ∨ DA
t ∨ DB

t )

= E(P(τA > T, τB 6 T |GT ∗ ∨ DA
t ∨ DB

t )|Gt ∨ DA
t ∨ DB

t )

= E((P(τA > T |GT ∗ ∨ DA
t ∨ DB

t )P(τB 6 T |GT ∗ ∨ DA
t ∨ DB

t ))|Gt ∨ DA
t ∨ DB

t )

= e−a(T−t)(1 − e−b1(T−t)).

(2.55)

To calculate the probability P(τA 6 T, τB > T |Gt ∨DA
t ∨DB

t ) ,we know that P(τA 6

T, τB > T |Gt∨DA
t ∨DB

t ) = P(τB > T |Gt∨DA
t ∨DB

t )−P(τA > T, τB > T |Gt∨DA
t ∨DB

t ).

Using equations (2.50),(2.51), or (2.52), we can calculate P(τB > T |Gt ∨DA
t ∨DB

t ) =

E(P(τB > T |Gt ∨ DA
t ∨ DB

t )|Gt ∨ DA
t ∨ DB

t ). For the probability P(τA > T, τB >

T |Gt ∨ DA
t ∨ DB

t ), since bond A will survive up to time T , so there is no default

4Conditional independent assumption refers to the independence of default times τA

and τB given the realization of information filtration. Here, we have

P(τA ∈ B1, τB ∈ B2|GT ∗∨DA
t ∨DB

t ) = P(τA ∈ B1|GT ∗∨DA
t ∨DB

t )P(τB ∈ B2|GT ∗∨DA
t ∨DB

t ).

where B1,B2 are Borel sets.
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effect. Therefore, we have:

P(τA > T, τB > T |Gt ∨ DA
t ∨ DB

t )

= E(P(τA > T, τB > T |GT ∗ ∨ DA
t ∨ DB

t )|Gt ∨ DA
t ∨ DB

t )

= E(P(τA > T |GT ∗ ∨ DA
t ∨ DB

t )P(τB > T |GT ∗ ∨ DA
t ∨ DB

t )|Gt ∨ DA
t ∨ DB

t )

= e−a(T−t)e−b1(T−t)

(2.56)

So the probability of one bond default is following:

When a 6= b2, a 6= b2 + µ, then

P(τA 6 T, τB > T |Gt ∨ DA
t ∨ DB

t ) + P(τA > T, τB 6 T |Gt ∨ DA
t ∨ DB

t )

= e−a(T−t) − 2e−(a+b1)(T−t) + e−b1(T−t)

{
µ

b2 + µ
− b2

a − b2 − µ
e−a(T−t)

+
ab2

(b2 + µ)(a − b2 − µ)
e−(b2+µ)(T−t)

}
.

(2.57)

When a = b2, a 6= b2 + µ, then

P(τA 6 T, τB > T |Gt ∨ DA
t ∨ DB

t ) + P(τA > T, τB 6 T |Gt ∨ DA
t ∨ DB

t )

= e−a(T−t) − 2e−(a+b1)(T−t) + e−b1(T−t){ µ

a + µ
+

a

µ
e−a(T−t)

− a2

µ(µ + a)
e−(a+µ)(T−t)}

(2.58)
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When a 6= b2, a = b2 + µ, then

P(τA 6 T, τB > T |Gt ∨ DA
t ∨ DB

t ) + P(τA > T, τB 6 T |Gt ∨ DA
t ∨ DB

t )

= e−a(T−t) − 2e−(a+b1)(T−t) + e−b1(T−t)

{
µ

b2 + µ
+

b2(1 − µ(T − t))

b2 − a
e−a(T−t)

− b2(µ + a)

(b2 − a)(b2 − µ)
e−(b2+µ)(T−t)

}
.

(2.59)

Using P(τA 6 T, τB 6 T |Gt ∨ DA
t ∨ DB

t ) = P(τA 6 T |Gt ∨ DA
t ∨ DB

t ) − P(τA 6

T, τB > T |Gt ∨DA
t ∨DB

t ), and equation (2.50),(2.51), or (2.52), we can calculate the

probability of two bonds default P(τA 6 T, τB 6 T |Gt ∨ DA
t ∨ DB

t ). So we have:

When a 6= b2, a 6= b2 + µ, then

P(τA 6 T, τB 6 T |Gt ∨ DA
t ∨ DB

t ) = 1 − e−a(T−t) + e−(a+b1)(T−t)

− e−b1(T−t)

{
µ

b2 + µ
− b2

a − b2 − µ
e−a(T−t) +

ab2

(b2 + µ)(a − b2 − µ)
e−(b2+µ)(T−t)

}
.

(2.60)

When a = b2, a 6= b2 + µ, then

P(τA 6 T, τB 6 T |Gt ∨ DA
t ∨ DB

t ) = 1 − e−a(T−t) + e−(a+b1)(T−t)

− e−b1(T−t){ µ

a + µ
+

a

µ
e−a(T−t) − a2

µ(µ + a)
e−(a+µ)(T−t)}.

(2.61)
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When a 6= b2, a = b2 + µ, then

P(τA 6 T, τB 6 T |Gt ∨ DA
t ∨ DB

t ) = 1 − e−a(T−t) + e−(a+b1)(T−t)

− e−b1(T−t)

{
µ

b2 + µ
+

b2(1 − µ(T − t))

b2 − a
e−a(T−t) − b2(µ + a)

(b2 − a)(b2 − µ)
e−(b2+µ)(T−t)

}
.

(2.62)

2.7.4 Numerical Examples

In this section, we’ll analyze numerically how the event correlation (b2) and the

average of holding time of default effect ( 1
µ
) affect the credit protection. We assume

the current time t = 0 and both bond A and bond B will lose 70% of par if default

occurs. Now we use equations (2.57),(2.58), or (2.59), to calculate the probability

of one bond default and use equations (2.60),(2.61), or (2.62) to calculate the prob-

ability of both bonds default. Here we assume CBO has the same maturity date as

the bonds in the collateral pool. Then we choose a = 0.0713, b1 = 0.0713, T = 5,

thus both bond A and bond B has 30% default probability. Therefore we can

compare our results to the one when bond A and bond B are independent (in this

case, the credit protection is 34.3%).

b2 Wang Percentage change

0.01 0.3458678 0.81124

0.1 0.3676301 7.154

0.2 0.3862371 12.578

0.3 0.4005695 16.755

1 0.4462486 30.07

2 0.4643707 35.352
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Table 2.8: Percentage changes of credit protections from our model vs. that of inde-

pendent case. And µ = 0.19 .

In the above table we assume µ = 0.19, the holding time of the default effect

will last 1
µ

= 5.26 years which is longer than the bonds’ maturity date. The above

table tells us that the credit protection increases as the correlation between the two

bonds becomes strong. So the rating of the credit risk portfolio (i.e. collateral pool)

is down. For example, when b2 = 2, then the credit protection is 0.4643707 which is

35.352% larger than the one (0.34308) when both bonds are independent.

b2 Wang Percentage change

0.01 0.343088 1.15E-03

0.1 0.343124 0.0115

0.2 0.343163 0.023

0.3 0.343203 0.0345

1 0.343478 0.1147

2 0.343870 0.2288

Table 2.9: Percentage changes of credit protections from our model vs. that of inde-

pendent case. And µ = 365 .

In table 2.9, we assume µ = 365, so the holding time of the default effect is

only 1 day. In this case, the correlation was not a key role in measuring the credit

protection. For example, when b2 = 2, the credit protection from our model is only

0.2288% higher than the one (0.34308) when both bonds are independent. In table

1, however, we get a credit protection which is 35.352% higher.
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b2 µ = 0.19 µ = 0.25 µ = 0.333 µ = 0.5 µ = 1

0.01 0.811 0.745 0.667 0.546 0.343

0.1 7.154 6.613 5.969 4.954 3.205

0.2 12.578 11.70 10.645 8.962 5.973

0.3 16.755 15.674 14.366 12.249 8.384

1 30.07 28.875 27.365 24.747 19.193

2 35.352 34.49 33.364 31.305 26.415

Table 2.10: Percentage changes of credit protections from our model vs. that of indepen-

dent case for different µ.

Table 2.10 tells us that when 1
µ

is changing around the CBO’s maturity date

(T = 5), then the longer the holding time of default effect, the larger the credit

protection of the collateral pool. For example, as the holding times of default effect

change from 1 year (µ = 1) to 5.26 years (µ = 0.19), the percentage changes of the

credit protection with respect to the independent case increase from 26.415% to

35.352% when b2 = 2.



Chapter 3

Pricing Defaultable Bonds with Regime Switching

3.1 Introduction

In chapter 2, we use indicator function to adjust one firm’s intensity process if its

correlated counterparter gets default. We also use an exponential distribution to

control this indicator function. So this indicator function may be dropped from the

firm intensity process in the future. It means that there is a possibility for the firm

to get recovery after a certain period of time. This tells us that the intensity process

shifts from one regime to another. In this chapter, we’ll develop a generalized credit

risk model which is subject to regime switching. It means that all the underlying

factors in the credit risk model are subject to regime switching.

3.1.1 Review of Reduced Form Models

In [40], [13], they characterize default using intensity function which is assumed to

be determinied by common economic factors as well as firm-specific factors. This

achieves two effects. One is that the model can be applied to the situations where

the underlying asset value is not observable. The other is that the default time is

unpredictable, so this is consistent with the empirical literature that short-term debt

often does not have zero credit spreads. The credit spread represents the premium

that compensates the holder who bear the credit risk. The price or credit spread

of a defaultable bond is directly related to a risk-free bond through default and

recovery rates that both of them are defined exogenously. While the reduced-form

64
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models have attractive properties, their main drawbacks are: the model is lack of

a link between firm value and default; the credit spread generated by reduced-form

model is still not large enough; and the model can not explain the jump part in

credit spread. In order to explain the jump part in the credit spread, Arvanitis,

Gregory and Laurent [2] directly model the credit spread. They used credit migra-

tion to generate jump part. So the model treats default as the consequence of

credit migration rather than sudden occurrence. Jarrow and Yu [31] introduce a

counterparty risk in their model. They assume that when one firm gets default,

then its correlated firms may benefit or suffer from this default event. In order to

achieve correlated default effect, they introduce an indicator function into hazard

process.

There is an in-between approach which is developed by Cathcart and El-Jahel [5].

They provide a framework that combines structural and reduced-form approaches.

By introducing a signaling process of uncertainty, they assume that a default event

occurs in an expected or unexpected manner then the value of this signaling process

reaches a certain lower barrier or at the first jump time of a hazard rate process.

This signaling process of uncertainty represents the aggregation of all information

on the quality of the firm currently available. The greater the value of the uncertain

process, the poorer the quality of the firm. As Cathcart and El-Jahel [5], Schmid

and Zagst [49] introduce this signaling process into their three factor model con-

sisting of interest rate, credit spread and signaling process of uncertainty. From the

practical point of view, their model is difficult to implement in practice.

Here, we present a model which can unify the current existing credit risk models by

introducing regime shifts in the short interest rate process and hazard process. Our

model can explain the following important issues: (1) credit spreads may change
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Figure 3.1: Time series with regime switching.

without default occurring; (2) credit spreads exhibit both a jump and a continuous

component. (3) downward-sloping, upward-sloping, humped-sloping credit spread

in short term can be generated by our model. Meanwhile, our model is much

more tractable mathematically than the jump-diffusion type models or three factor

models. And it is easy to implement in practice without losing any feature that the

other models have. Some work on regime shifts has been done in literature. Zhang

[59] introduces regime switching in stock liquidation. Yao, Zhang and Zhou [54]

introduce regime switching in option pricing. Smith [50], and Bansal & Zhou [3]

introduce regime switching into term structure of interest rate. All of them find

sufficient evidences to support the regime switching models. Moreover, Smith (2002)

also finds evidence that regime-switching model is favored over stochastic volatility

model to represent the dynamic behavior of U.S. short-term interest rates.

3.2 Markov-Modulated Regime Switching

Many financial variables undergo episodes in which the behavior of the series seems

to change quite dramatically. Graphically, it’ll look like figure (3.1).
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For the data plotted in figure (3.1), how should we model this process which is

regime dependent. One way is that we can consider this process to be influenced

by an unobserved random variable α(t), which will be called the regime that the

process was in at time t. If α(t) = 1, then the process is in regime 1, while α(t) = 2

indicates that the process is in regime 2. For Markov-modulated regime switching,

we assume that this unobserved random variable is a Markov chain.

3.3 Valuation of Defaultable Bonds

Let (Ω,F , (Ft), P) be a given probability space. All processes are assumed to be

defined on this space and adapted to the filtration (Ft). The short-hand notation

Et(·) denotes E(·|Ft), and all expectations are with respect to the measure P. We

work in an arbitrage-free setting and consider the behavior of the involved processes

directly under an equivalent martingale measure P.

Since P is an equivalent martingale measure, the money market account and

default-free bond price are given by

B(t) = exp
(∫ t

0

rsds
)

and

p(t, T ) = Et

( B(t)

B(T )

)

, respectively, where rt denotes the instantaneous default-free interest rate. In the

default risk framework, a default appears at some random time τ . The payment of

a defaultable bond consists of two parts:

(1) Given a maturity date T > 0, a random variable Y , which does not dependent

on τ represents the promised payoffs - that is, the amount of cash the owner of the
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claim will receive at time T , provided that the default has not occurred before the

maturity date T .

(2) A predictable process X, pre-specified in the default-free world, models the

payoff which is received if default occurs before maturity. The process is called the

recovery process or the rebate.

So the price of the defaultable bond is, provided that the default has not occurred

before time t,

V (t, T ) = Et

(
Y 1{τ>T} exp

(
−
∫ T

t

rudu

)
+ Xτ1{τ6T} exp

(
−
∫ τ

t

rudu

))

In this paper, we follow Duffie and Singleton [13] and consider that default occurs

at a rate of ht. Here ht is a given positive hazard rate process, i.e. the time-t hazard

rate process, htδt, gives the approximation probability of default for the bond over

the time interval (t, t+δt). Suppose the promised payoff Y = 1, and use the recovery

of market value, i.e. if default occurs, then the defaultable bond will be worth only

a fraction of its predefault value, Xτ = φτV (τ−, T ), where 0 ≤ φτ < 1. Under the

equivalent martingale measure, using the result from Duffie and Singleton [13], the

price of the defaultable bond is given by the expectation:

V (t, T, r, h) = Et

{
exp(−

∫ T

t

Rudu)

}
. (3.1)

where Rt = rt + htLt which is called adjusted discount rate, and Lt denotes the

expected fractional loss in market value if default were to occur at time t. Comparing

to the discount rate rt in the default-free bond, this extra term htLt represents the

” risk-neutral mean-loss rate”. In this paper, we assume Lt is independent of t, i.e.

Lt = L.
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Duffee [11] uses an extented Kalman filter approach to test a square root dif-

fusion model for the credit spread. He finds that the square root diffusion model is

reasonably successful at fitting corporate bond yields. As in Duffee [11], we assume

that the instantaneous interest rate rt and hazard rate ht follow mean reverting

square-root processes (CIR model).

drt = a1(t)(b1(t) − rt)dt + σ1(t)
√

rtdw1(t). (3.2)

and

dht = a2(t)(b2(t) − ht)dt + σ2(t)
√

htdw2(t). (3.3)

We assume that the correlation between dw1 and dw2 is ρ, i.e. dw1(t)dw2(t) = ρdt.

Using Feynman-Kac formula, we know that V (t) := V (t, T, r, h) must satisfy

the following partial differential equation:

∂V

∂t
+ a1(b1 − rt)

∂V

∂r
+ a2(b2 − ht)

∂V

∂h
+

1

2
σ2

1V (t)
∂2V

∂r2
+

1

2
σ2

2V (t)
∂2V

∂h2

+ ρσ1σ2

√
rtht

∂2V

∂r∂h
− (rt + Lht)V (t) = 0,

(3.4)

With boundary condition

V (T, T, r, h) = 1.

Our interest is to derive the implications for defaultable bond pricing when the

interest rate and hazard rate are subject to regime shifts. Let {α(t)} denote a

continuous-time Markov chain with state space M = {1, 2, · · · ,m}. This finite-

state Markov chain α(·) can be used to represent the general market direction, the

economy trend, etc. Let Q = (qij)m×m be the generator of α(t) with qij ≥ 0 for i 6= j

and
∑m

j=1 qij = 0 for each i ∈ M. Moreover, for any function f on M, we denote

Qf(·)(i) :=
∑m

j=1 qij(f(j) − f(i)). To keep things tractable, we will model the the
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regime shifts process as a two-state Markov process (m = 2). Let the generator of

α(·) have the form

Q =

(
−λ1 λ1

λ2 − λ2

)

with λ1 > 0 and λ2 > 0.

Using α(t), we have the following interest rate process and hazard rate process

corresponding to equations (3.2) and (3.3).

drt = a1(α(t))(b1(α(t)) − rt)dt + σ1(α(t))
√

rtdw1(t). (3.5)

and

dht = a2(α(t))(b2(α(t)) − ht)dt + σ2(α(t))
√

htdw2(t). (3.6)

Also using Feynman-Kac formula, we can verify that V (i) := V (t, T, r, h, i) should

satisfy the following system of PDE’s:

∂V (i)

∂t
+ a1(i)(b1(i) − rt)

∂V (i)

∂r
+ a2(i)(b2(i) − ht)

∂V (i)

∂h

+
1

2
σ2

1(i)V (i)
∂2V (i)

∂r2
+

1

2
σ2

2(i)V (i)
∂2V (i)

∂h2
+ ρσ1(i)σ2(i)

√
rtht

∂2V (i)

∂r∂h

− (rt + Lht)V (i) + QV (t, T, r, h, ·)(i) = 0, i = 1, 2,

(3.7)

with the boundary condition:

V (T, T, r, h, i) = 1, i = 1, 2.
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Writing it separately, we get the following two partial differential equations:

∂V (1)

∂t
+ a1(1)(b1(1) − rt)

∂V (1)

∂r
+ a2(1)(b2(1) − ht)

∂V (1)

∂h

+
1

2
σ2

1(1)V (1)
∂2V (1)

∂r2
+

1

2
σ2

2(1)V (1)
∂2V (1)

∂h2
+ ρσ1(1)σ2(1)

√
rtht

∂2V (1)

∂r∂h

− (rt + Lht)V (1) + λ1(V (2) − V (1)) = 0.

(3.8)

And

∂V (2)

∂t
+ a1(2)(b1(2) − rt)

∂V (2)

∂r
+ a2(2)(b2(2) − ht)

∂V (2)

∂h

+
1

2
σ2

1(2)V (2)
∂2V (2)

∂r2
+

1

2
σ2

2(2)V (2)
∂2V (2)

∂h2
+ ρσ1(2)σ2(2)

√
rtht

∂2V (2)

∂r∂h

− (rt + Lht)V (2) + λ2(V (1) − V (2)) = 0.

(3.9)

with the boundary condition:

V (T, T, r, h, i) = 1, i = 1, 2.

where V (i) denotes the value of defaultable bond when the Markov process is in

state i, i = 1, 2.

Based on the above setup, analytical solution won’t be easy to get. So we seek

numerical approaches to calculate defaultable bond price.

3.4 Numerical Approaches

Finite difference approach, lattice (or tree) approach, and Monte Carlo simulation

approach are the most popular vehicles for valuing derivative securities. When the

number of underlying factors in the underlying system is less than three, finite

difference approach and lattice approach are preferred to be used. However, when

the number of underlying factors in your system is larger than three, Monte Carlo

simulation will be easier to be implemented.
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3.4.1 Explicit Finite Difference Method

The idea behind finite difference methods is to simplify the PDE by replacing the

partial differentials with finite differences. There are three ways of implementing

finite difference approach: explicit, implicit, and Crank-Nicolson. Each of them

has its own advantages and disadvantages. Explicit finite difference method is

very intuitive, and easy to implement comparing to implicit and Crank-Nicolson

methods. The method’s only disadvantage is that the numerical solution does not

necessarily converge to the solution of the differential equation as the time step size

δt tends to zero if we use the regular approximation method. Explicit finite differ-

ence method simply can be described as the unknown point can be calculated and

expressed explicitly by known points. As we know, using explicit finite difference

method to solve Black-Scholes PDE is equivalent to using trinomial tree model.

By the trinomial tree model, we know that the coefficients before the three known

points are the risk-neutral probabilities. So the three coefficients before the known

points in the explicit finite difference methods serve the risk-neutral probabilities,

therefore all three should be positive. However, we know that the sign of these

coefficients also depend on the relative values of interest rate and stock volatility.

Too small time and space steps will cause these coefficients to be negative. These

will cause explicit finite difference method to be instable and lack of convergence.

Hull & White [24] also pointed out that negative coefficients will happen when the

underlying factor of PDE follows mean-reverting process.

However, there is a modification of explicit finite difference method introduced

by Fleming & Soner [17]. They prove the convergence of explicit finite difference

method by using viscosity solution approach. Here is the basic idea of the approx-

imation method of Fleming & Soner [17]. Considering PDE (3.4), the value of a
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defaultable bond V satisfies this partial differential equation. In this PDE, there

are partial derivatives of V with respect to state variables r, h and time t. A small

constant time interval, δt, a small constant change δr in r, and a small constant

change δh in h are chosen. Then a grid is then constructed for considering values of

V when r is equal to

r0, r0 + δr, r0 + 2δr, · · · , rmax,

,

h0, h0 + δh, h0 + 2δh, · · · , hmax,

and time is equal to

t, t + δt, t + 2δt, · · · , T.

where the parameters r0, h0 and rmax, hmax are the smallest and largest values of r, h,

respectively, considered by the model, t is the current time, and T is the maturity

date of the derivative security. Denote t + nδt by tn, r0 + iδr by ri, h0 + jδr by

hj, and the value of the derivative security at the (n, i, j) point on the grid by V n
ij .

The partial derivatives of V with respect to r at node (n, i, j) are approximated as

follows,

if a1(b1 − ri) > 0, then

∂V

∂r
=

V n
i+1,j − V n

i,j

δr

, (3.10)

if a1(b1 − ri) < 0, then

∂V

∂r
=

V n
i,j − V n

i−1,j

δr

. (3.11)

Similarly, the partial derivatives of V with respect to h at node (n, i, j) are approx-

imated as follows,

if a2(b2 − hj) > 0, then

∂V

∂h
=

V n
i,j+1 − V n

i,j

δh

, (3.12)

if a2(b2 − hj) < 0, then

∂V

∂h
=

V n
i,j − V n

i,j−1

δh

. (3.13)
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where a1(b1 − ri), a2(b2 − hj) are the coefficients of partial derivatives V in PDE.

The second-order partial derivatives ∂2V
∂r2 , ∂2V

∂h2 are approximated as follows,

∂2V

∂r2
=

V n
i+1,j − 2V n

ij + V n
i−1,j

δ2
r

(3.14)

and

∂2V

∂h2
=

V n
i,j+1 − 2V n

ij + V n
i,j−1

δ2
h

(3.15)

The cross-term ∂2V
∂r∂h

is approximated as follows,

if ρ > 0, then

∂2V

∂r∂h
=

(2V n
i,j + V n

i+1,j+1 + V n
i−1,j−1) − (V n

i+1,j + V n
i−1,j + V n

i,j+1 + V n
i,j−1)

2δrδh

(3.16)

if ρ < 0, then

∂2V

∂r∂h
=

(V n
i+1,j + V n

i−1,j + V n
i,j+1 + V n

i,j−1) − (2V n
i,j + V n

i+1,j−1 + V n
i−1,j+1)

2δrδh

(3.17)

and the time derivative is approximated as

∂V

∂t
=

V n+1
i,j − V n

i,j

δt

. (3.18)

According to the signs of coefficients of partial derivatives, we substitute corre-

sponding approximation into PDE (3.4). Then we can calculate the value of V n−1
i,j

at time tn−1 from the values of V n
i,j at time tn. We have the following eight cases.



75

Case 1: if a1(b1 − ri) > 0, a2(b2 − hj) > 0, ρ > 0, then we have

V n−1
i,j = (

δt

2δ2
r

σ2
1ri −

δt

2δrδh

ρσ1σ2

√
rihj)V

n
i−1,j +

δt

2δrδh

ρσ1σ2

√
rihjV

n
i−1,j−1

+ (
δt

δh

a2(b2 − hj) +
δt

2δ2
h

σ2
2hj −

δt

2δrδh

ρσ1σ2

√
rihj)V
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(3.19)

Case 2: if a1(b1 − ri) > 0, a2(b2 − hj) > 0, ρ < 0, then we have
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(3.20)

Case 3: if a1(b1 − ri) > 0, a2(b2 − hj) < 0, ρ > 0, then
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Case 4: if a1(b1 − ri) > 0, a2(b2 − hj) < 0, ρ < 0, then
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Case 5: if a1(b1 − ri) < 0, a2(b2 − hj) > 0, ρ > 0, then we have
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Case 6: if a1(b1 − ri) < 0, a2(b2 − hj) > 0, ρ < 0, then we have

V n−1
i,j = (− δt

δr

a1(b1 − ri) +
δt

2δ2
r

σ2
1ri +

δt

2δrδh

ρσ1σ2

√
rihj)V

n
i−1,j

+ (
δt

δh

a2(b2 − hj) +
δt

2δ2
h

σ2
2hj +

δt

2δrδh

ρσ1σ2

√
rihj)V

n
i,j+1

+ (1 − δt(ri + Lhj) +
δt

δr

a1(b1 − ri) −
δt

δh

a2(b2 − hj)

− δt

δ2
r

σ2
1ri −

δt

δ2
h

σ2
2hj −

δt

δrδh

ρσ1σ2

√
rihj)V

n
i,j

+ (
δt

2δ2
h

σ2
2hj +

δt

2δrδh

ρσ1σ2

√
rihj)V

n
i,j−1 −

δt

2δrδh

ρσ1σ2

√
rihjV

n
i+1,j−1

+ (
δt

2δ2
r

σ2
1ri +

δt

2δrδh

ρσ1σ2

√
rihj)V

n
i+1,j −

δt

2δrδh

ρσ1σ2

√
rihjV

n
i−1,j+1.

(3.24)



77

Case 7: if a1(b1 − ri) < 0, a2(b2 − hj) < 0, ρ > 0, then
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Case 8: if a1(b1 − ri) < 0, a2(b2 − hj) < 0, ρ < 0, then
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(3.26)

Since we know the value of V at time T , so the value of V at time t can be calculated

by using (3.19)-(3.26) repeatedly to work back from the maturity date T to the

current time t in step size of δt.

Now, we consider the boundary conditions. We have four points and four seg-

ments at each time tn. Using Taylor expansion, we have





V (r1) = V (r0) + ∂V
∂r

δr + 1
2

∂2V
∂r2 δ2

r + o(δr)

V (r2) = V (r0) + 2∂V
∂r

δr + 1
2

∂2V
∂r2 (2δr)

2 + o(δr)
(3.27)
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Solving the above equations, we have the approximations at lower boundary

(∂V
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(δr)2
.

(3.28)

Similarly, the partial derivatives of V with respect to h at lower boundary can be

approximated as follow,
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.

(3.29)

Using the same technique, we can get the following approximation at upper boundary
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(3.30)

where Nrδr = rmax, Nhδh = hmax.

To use explicit finite difference approach on PDE system (3.7) with regime shifts,

there is nothing new but to solve equations (3.8) and (3.9) simultaneously.

convergence: As Hull & White [24] pointed out, when using the explicit finite

difference method and the underlying factor following a mean-reverting process,

we’ll have some problem on convergence which is caused by the mean-reverting

process. One way to overcome this problem is to find the maximun/minimum

values of the underlying factor that it could reach in specified time interval. They

found an analytical solution for these maximum/minimum values. In this paper, we
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use Monte Carlo simulation to find what the possible maximum/minimum values of

interest rate and intensity rate could be in a given time interval.

3.4.2 Markov Chain Monte Carlo Simulation

Monte Carlo simulation has long been an important numerical tool for complex

securities valuation problems. The technique is used extensively in the literature to

obtain prices for instruments for which analytical solutions are not possible. Monte

Carlo simulation provides a simple and flexible method for valuing these type of

instruments. Here, our objective of using Monte Carlo simulation is to compare

these results with those of explicit finite difference approach. Since there is Markov

switching both in interest rate process and in hazard rate process, our simulation

procedures are follows,

(1) Based on the given generator Q of this Markov chain, we generate a Markov

chain in the span of given time-to-maturity of the defaultable bond.

(2) generate sample path of interest rate process, the coefficients in the drift and

diffusion terms are decided by the state of the Markov chain (generated in step (1))

at that time.

(3) generate sample path of hazard rate process synchronously... as in step (2),

however, this sample path is correlated to the one generated in step (2).

(4) use formula (1) to get the price of defaultable bond.

(5) repeat step (2) through (4) M times, then take the average of these M ’s default-

able bond prices.

Here, we use Markov chain Monte Carlo simulation as an alternative way to
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calculate the defaultable bond price. Our objective is to check the stability of our

results from explicit finite difference method.

3.5 Numerical Examples

Now we choose correlation ρ = 0.5, recovery rate δ = 0.4, λ = 10, µ = 20, and all

coefficients in equations (3.5) and (3.6) as following

a1(α(t)) b1(α(t)) σ1(α(t)) a2(α(t)) b2(α(t)) σ2(α(t))

α(t) = 1 1.3 0.08 0.25 1.5 0.1 0.1

α(t) = 2 2.5 0.05 0.25 2.5 0.05 0.25

Parameter table 3.1. Parameters for humped shape credit spread with r0 = 0.06, h0 = 0.06.

a1(α(t)) b1(α(t)) σ1(α(t)) a2(α(t)) b2(α(t)) σ2(α(t))

α(t) = 1 1.3 0.07 0.25 1.5 0.06 0.1

α(t) = 2 2.5 0.03 0.15 2.5 0.15 0.25

Parameter table 3.2. Parameters for downward trend credit spread with r0 = 0.06, h0 = 0.1.

a1(α(t)) b1(α(t)) σ1(α(t)) a2(α(t)) b2(α(t)) σ2(α(t))

α(t) = 1 1.3 0.07 0.25 1.5 0.06 0.1

α(t) = 2 1.3 0.07 0.25 2.5 0.15 0.25

Parameter table 3.3. Parameters for upward trend credit spread with r0 = 0.06, h0 = 0.03.

The default-free discount bond given by cox, Ingersoll, and Ross (1985) model:

p(l, r) = exp(A(l) + B(l)r)

where

B(l) =
−2[1 − exp(−γl)]

2γ exp(−γl) + (a1 − γ)[1 − exp(−γl)]
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Figure 3.2: Humped shape credit spread
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Figure 3.3: Upward trend spread.

γ :=
√

a2
1 + 2σ2

1

and

A(l) =
2a1b1

σ2
1

ln
( 2γ exp[(a1 − γ) l

2
]

2γ exp(−γl) + (a1 − γ)[1 − exp(−γl)]

)

where l = T − t

With downward trend credit spread, the firm improves their quality in the long

run.
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Figure 3.4: Downward trend spread.
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Figure 3.5: Impact of Markov switch on bond price.



83

Time-to-Maturity Default-free α(t) = 1 α(t) = 2 Spread

0.2 0.987604 0.980319 0.980796 0.037019

0.4 0.974595 0.960038 0.960859 0.037623

0.6 0.961188 0.937940 0.939123 0.040807

0.8 0.947542 0.916776 0.918161 0.041260

1.0 0.933773 0.900083 0.901331 0.036747

1.2 0.919968 0.880533 0.881821 0.036510

1.4 0.906191 0.862025 0.863296 0.035690

1.6 0.892487 0.843188 0.844458 0.035514

1.8 0.878891 0.824925 0.826180 0.035204

2.0 0.865427 0.806857 0.808097 0.035038

2.2 0.852114 0.788798 0.790012 0.035095

2.4 0.838963 0.771530 0.772721 0.034913

2.6 0.825984 0.754636 0.755803 0.034746

2.8 0.813182 0.738274 0.739413 0.034514

3.0 0.800561 0.722116 0.723230 0.034376

3.2 0.788122 0.706312 0.707403 0.034249

3.4 0.775866 0.690856 0.691923 0.034132

3.6 0.763794 0.675886 0.676926 0.033965

3.8 0.751903 0.666463 0.667425 0.031743

4.0 0.740194 0.652212 0.653152 0.031636

4.2 0.728663 0.638268 0.639188 0.031536

4.4 0.717310 0.624622 0.625522 0.031446

4.6 0.706131 0.611422 0.612301 0.031307

4.8 0.695126 0.598356 0.599216 0.031231

5.0 0.684291 0.585571 0.586413 0.031159

5.2 0.673624 0.573060 0.573883 0.031093

5.4 0.663123 0.560816 0.561621 0.031031

5.6 0.652785 0.548835 0.549624 0.030973

5.8 0.642608 0.537235 0.538005 0.030879

6.0 0.632590 0.525762 0.526515 0.030829

Result table 3.1. Humped shape credit spread.
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Time-to-Maturity Default-free α(t) = 1 α(t) = 2 Spread Price difference

0.2 0.987840 0.983199 0.982495 0.023545 0.000704

0.4 0.975453 0.964253 0.962959 0.028872 0.001294

0.6 0.962950 0.943923 0.942247 0.033262 0.001676

0.8 0.950408 0.922827 0.920920 0.036812 0.001907

1.0 0.937883 0.901414 0.899356 0.039660 0.002058

1.2 0.925414 0.879951 0.877834 0.041979 0.002117

1.4 0.913030 0.858672 0.856527 0.043844 0.002145

1.6 0.900752 0.837712 0.835586 0.045347 0.002126

1.8 0.888594 0.817031 0.814920 0.046646 0.002111

2.0 0.876567 0.796836 0.794763 0.047682 0.002073

2.2 0.864677 0.777106 0.775079 0.048536 0.002027

2.4 0.852929 0.757851 0.755874 0.049246 0.001977

2.6 0.841327 0.738937 0.737003 0.049911 0.001934

2.8 0.829872 0.720613 0.718732 0.050418 0.001881

3.0 0.818565 0.702808 0.700978 0.050823 0.001830

3.2 0.807406 0.685265 0.683480 0.051257 0.001785

3.4 0.796395 0.668156 0.666415 0.051639 0.001741

3.6 0.785530 0.651648 0.649957 0.051904 0.001691

3.8 0.774811 0.635626 0.633981 0.052108 0.001645

4.0 0.764236 0.619782 0.618178 0.052377 0.001604

4.2 0.753805 0.604333 0.602770 0.052621 0.001563

4.4 0.743514 0.589270 0.587745 0.052842 0.001525

4.6 0.733363 0.574795 0.573314 0.052963 0.001481

4.8 0.723350 0.560480 0.559035 0.053146 0.001445

5.0 0.713474 0.546785 0.545378 0.053218 0.001407

5.2 0.703731 0.533184 0.531812 0.053371 0.001372

5.4 0.694122 0.519922 0.518584 0.053513 0.001338

5.6 0.684644 0.506991 0.505687 0.053644 0.001304

5.8 0.675294 0.494378 0.493107 0.053767 0.001271

6.0 0.666073 0.482301 0.481065 0.053805 0.001236

Result table 3.2. Upward trend credit spread.
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Time-to-Maturity Default-free α(t) = 1 α(t) = 2 Spread

0.2 0.987840 0.976603 0.976495 0.057202

0.4 0.975453 0.953928 0.953577 0.055786

0.6 0.962950 0.932628 0.932399 0.053326

0.8 0.950408 0.911770 0.911519 0.051880

1.0 0.937883 0.891604 0.891349 0.050603

1.2 0.925414 0.872010 0.871760 0.049534

1.4 0.913030 0.852893 0.852648 0.048668

1.6 0.900752 0.834186 0.833947 0.047983

1.8 0.888594 0.816060 0.815816 0.047307

2.0 0.876567 0.798586 0.798374 0.046585

2.2 0.864677 0.781316 0.781108 0.046080

2.4 0.852929 0.764396 0.764194 0.045663

2.6 0.841327 0.747987 0.747804 0.045229

2.8 0.829872 0.731825 0.731647 0.044904

3.0 0.818565 0.716072 0.715896 0.044591

3.2 0.807406 0.700605 0.700435 0.044338

3.4 0.796395 0.685485 0.685320 0.044108

3.6 0.785530 0.670688 0.670528 0.043904

3.8 0.774811 0.656541 0.656388 0.043588

4.0 0.764236 0.642393 0.642243 0.043419

4.2 0.753805 0.628730 0.628593 0.043198

4.4 0.743514 0.615196 0.615062 0.043056

4.6 0.733363 0.601956 0.601825 0.042925

4.8 0.723350 0.588997 0.588869 0.042807

5.0 0.713474 0.576374 0.576247 0.042678

5.2 0.703731 0.563971 0.563846 0.042576

5.4 0.694122 0.551834 0.551713 0.042482

5.6 0.684644 0.540151 0.540039 0.042330

5.8 0.675294 0.528534 0.528424 0.042249

6.0 0.666073 0.517169 0.517061 0.042172

Result table 3.3. Downward trend credit spread.
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Time-to-Maturity Finite difference Monte Carlo Price differences

0.2 0.976603 0.977697 -0.001094

0.4 0.953928 0.957697 -0.003769

0.6 0.932628 0.939085 -0.006457

0.8 0.911770 0.921496 -0.009726

1.0 0.891604 0.904520 -0.012916

1.2 0.872010 0.888074 -0.016064

1.4 0.852893 0.875112 -0.022219

1.6 0.834186 0.856403 -0.022217

1.8 0.816060 0.841080 -0.025020

2.0 0.798586 0.826144 -0.027558

2.2 0.781316 0.811368 -0.030052

2.4 0.764396 0.796986 -0.032590

2.6 0.747987 0.782771 -0.034784

2.8 0.731825 0.768880 -0.037055

3.0 0.716072 0.755143 -0.039071

3.2 0.700605 0.741794 -0.041189

3.4 0.685485 0.728568 -0.043083

3.6 0.670688 0.715548 -0.044860

3.8 0.656541 0.702977 -0.046436

4.0 0.642393 0.690361 -0.047968

4.2 0.628730 0.678108 -0.049378

4.4 0.615196 0.666098 -0.050902

4.6 0.601956 0.654206 -0.052250

4.8 0.588997 0.642554 -0.053557

5.0 0.576374 0.631174 -0.054800

5.2 0.563971 0.619917 -0.055946

5.4 0.551834 0.608837 -0.057003

5.6 0.540151 0.598144 -0.057993

5.8 0.528534 0.587383 -0.058849

6.0 0.517169 0.576994 -0.059825

Result table 3.4. Price from finite difference vs. price from Monte Carlo simulation.

For upward-sloping credit spread, it means that the possibility of default of the

firm is getting bigger and bigger. The firm just could not keep its well performance,

but deteriorate in quality over time.
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For hump-shaped credit spread, it means that the firm has high possibility of

default in the short and medium term, but the firm will improve its quality in the

long term. So its credit spread widens in the short and medium term and tightens

in the long term.

For downward-sloping credit spread, it means that the firm improves their quality

as time goes.

As we can see from the above figures, our model can generate all kinds of credit

spreads (downward trend, upward trend, and hump-shaped ) with Markov regime

switching. Comparing to Schmid & Zagst’s [49] three-factor model ( three-factor

model is intractable in practice) and jump-diffusion model, our model is much easier

to be implemented and more tractable. And the spread is not zero for short-term

which is consistent with the real spread. It means that default could happen on a

sudden.

3.6 Summary

In our paper, we incorporate regime shifts both in interest rate and in hazard rate.

With these internal adjustments, our model can exhibit all the effects of credit spread

model, counterparty risk model, three factor models, and jump-diffusion process

model. Meanwhile, as Bansal and Zhou [3] point out, in order to account for the

short interest rate data, incorporating regime shifts into the interest rate model is

essential. Otherwise, multifactor version of CIR or affine models are needed. So

we want to price accurate defaultable bond price, incorporating regime shifts into

interest rate and hazard rate are crucial.



Chapter 4

Recursive Algorithms for Perpetual American Put Options

4.1 Introduction

Pricing American put options is equivalent to finding the stopping time when the

put options reach their maximum values. It is well-known that some optimal stop-

ping (or related free boundary problems) problems may be solved alternatively with

probabilistic method. McKean [45] solved the optimal stopping point for perpetual

American put options with no regime switching. In finance, many situations can be

depicted by regime switching. For example, the dynamics of interest rate, exchange

rate, stock price, etc. And regime switching is also widely used in finance, see [3],

[21], [50], [54], [59]. Recently, Guo & Zhang [21] derived a closed-form solutions

for perpetual American put options with regime switching. They consider a case

when the Markov-modulated regime has only two states. However, if the underlying

Markov chain has more than two states, a closed-form solution is difficult to obtain

although the existence of solutions was proved in [59]. It is thus of practical interest

to find feasible algorithms yielding good approximations to the optimal policy. With

the motivation of reducing computational effort, a stochastic optimization procedure

is developed.

88
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4.2 Formulation

4.2.1 Hybrid Geometric Brownian Motion Model

Suppose that α(t) is a finite-state, continuous-time Markov chain with state space

M = {1, . . . ,m}, which represents market trends and other economic factors. For

example, when m = 2, α(t) = 1 stands for a bullish market, whereas α(t) = 2 rep-

resents a bearish market. We may also consider, for instance, α(t) = (α1(t), α2(t)),

where α1(t) models the market trends and α2(t) represents the interest rates at time

t. To take into account of more complex situation, we need to assume that the

chain has more than two states, i.e., m ≥ 2 in general. Let S(t) be the price of the

stock. We consider a hybrid geometric Brownian motion model that is risk neutral,

in which S(t) satisfies the stochastic differential equation

dS(t)

S(t)
= µdt + σ(α(t))dw(t),

S(0) = S0 initial price,

(4.1)

where w(·) is a real-valued standard Brownian motion that is independent of α(·).

The model is a hybrid geometric Brownian motion model (HGBM) or GBM with

switching regime.

In (4.1), the volatility depends on the Markov chain α(t). Define another process

X(t) =

∫ t

0

r(α(s))ds +

∫ t

0

σ(α(s))dw(s), (4.2)

where

r(i) = µ − σ2(i)

2
for each i = 1, . . . ,m. (4.3)

Using X(t), we can write the solution of (4.1) as

S(t) = S0 exp(X(t)). (4.4)

Consider the perpetual American put options. The value functions take the form

v(S0, i) = sup
τ

E[exp(−µτ)(K − S(τ)+
∣∣S(0) = S0, α(0) = i], (4.5)
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where τ is a stopping time to be specified shortly. For M = {1, 2, . . . ,m}, a closed

form solution has been found in [21]. Both dynamic programming approach and two-

point-boundary-value method are used to approximate the solution of the optimal

stopping problem. Note that due to the presence of the Markov chain, a system of

value functions (a vector) value function must be dealt with. In what follows, we

propose a stochastic approximation approach.

4.2.2 Method 1: Markov-dependent Procedure

Keeping in mind the threshold-type solutions, for i ∈ M, let τ be a stopping time

defined by

τ = inf{t > 0 : (X(t), α(t)) 6∈ D(x)}, (4.6)

where x = (x1, . . . , xm) with x1 ≤ x2 ≤ . . . ≤ xm,

D(x) = ∪m
i=1{(xi,∞) × {i}}. (4.7)

We aim at finding the optimal threshold level x∗ so that the expected return is

maximized. The problem can be rewritten as:

ProblemP :





Find argmax ϕ(x),

ϕ(x) = E[exp(−µτ)(K − S(τ))+],

(4.8)

where µ > 0 is the discount rate. Use a stochastic optimization procedure to resolve

the issue by constructing a sequence of estimates of the optimal threshold value x∗

using

xn+1 = xn + {step size} · {gradient estimate of ϕ(xn)},

where the step size is a decreasing sequence of real numbers or a small positive

constant.
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4.2.3 Gradient Estimates and Recursive Algorithm

The approximation procedures will depend on how the gradient estimates of ϕx(x)

are constructed. Let us begin with a simple noisy finite difference scheme. Several

of its variants will be discussed in the subsequent sections. Using (4.1), generate a

sample path of X(t) that is the solution of (4.2). At time 0, choose initial estimate

x0 = (x1
0, . . . , x

m
0 ). Compute τ0 the first time that (X(t), α(t)) reaches (D(x))c, with

τ0 = inf{t ≥ 0 : (X(t), α(t)) 6∈ D(x0)}.

Choose the step size to be εn = 1/n, and let

tn =
n−1∑

j=0

εj.

[Choose εn = 1/(n + 1) in the simulation.] Let

ξ0 = (X(τ0), τ0),

and define the observable quantity

ϕ̃(x0, ξ0) = exp(−µτ0)(K − S(τ0))
+.

Then define the difference quotient

(Dϕ̂0)
i =

ϕ̃(x1
0, x

2
0, . . . , x

i
0 + δ0, x

i+1
0 , . . . , xm

0 , ξ+
0 ) − ϕ̃(x1

0, x
2
0, . . . , x

i
0 − δ0, x

i+1
0 , . . . , xm

0 , ξ−0 )

2δ0

,

where (Dϕ̃0)
i denotes the ith component of the gradient estimate Dϕ̃0, and ξ±0

means that two different observations are used and δn is a sequence of real numbers

satisfying δn ≥ 0 and δn → 0. [In the simulation, we can use δn = 1/(n + 1)1/6.]

Then compute x1 = (x1
1, x

2
1, . . . , x

m
1 ) according to

xi
1 = xi

0 + ε0(Dϕ̂0)
i(x0)I{α(τ0)=i}, i = 1, 2, . . . ,m.
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Using induction, we then proceed construct the estimates recursively as follows.

Suppose that xn = (x1
n, . . . , x

m
n ) has been computed. Choose

τn = inf{t : (X(t), α(t)) 6∈ D(xn−1)},

ξn = (X(τn), τn),

(Dϕ̂n)i =
ϕ̃(x1

n, x
2
n, . . . , xi

n + δn, xi+1
n , . . . , xm

n , ξ+
n ) − ϕ̃(x1

n, x
2
n, . . . , xi

n − δn, x
i+1
n , . . . , xm

n , ξ−n )

2δn

.

(4.9)

Then the stochastic approximation algorithm takes the form

xi
n+1 = xi

n + εn(Dϕ̂n)iI{α(τn)=i}, i = 1, 2, . . . ,m. (4.10)

To ensure the boundedness of the iterates, use a projection algorithm

xi
n+1 = Π[θi

l
,θi

u][x
i
n + εn(Dϕ̂n)iI{α(τn)=i}], for i = 1, 2, . . . ,m, (4.11)

where for each real value x,

Π[θi
l
,θi

u]x =





θi
l , if x < θi

l ,

θi
u, if x > θi

u,

x, otherwise.

The idea can be explained as follows. For component i, after the xi
n + εn(Dϕ̂n)i

is computed, we compare its value with the bounds θi
l and θi

u. If the increment is

smaller than the lower value θi
l , reset the value to θi

l , if it is larger than the upper

value θi
u, reset its value to θi

u, otherwise keep its value as it was.

Convergence: the proof of convergence of this algorithm is similar to [57]. Several

other stochastic recursive algorithms are also presented there.
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4.3 Numerical Simulation

In this section, we consider a case with m = 2 and compare our approach with an

analytical solution in [21]. We take

r = 3, µ1 = µ2 = 3, K = 5.

The simulation procedures are follows:

(1) For given Markov generator, say λ1 = 100, λ2 = 100, we use 0.0001 as time

step-size to generate a Markov chain α(t).

(2) Based on this generated Markov chain α(t), we generate a sample path for

X(t). It means that the coefficients in expression X(·) at time t is determined by

the generated markov chain. Then we use expression S(t) = S0 exp(X(t)) to get a

sample path for stock price.

(3) Based on this generated sample path S(t), use the proposed recursive algo-

rithm to find the optimal threshold levels.

After 1000 iterations and averaging all threshold levels, we obtain the optimal

threshold levels (x∗
1, x

∗
2).

σ1 7 8 9 10 11 12

Exact (.646, .764) (.531, .683) (.441,.614) (.369, .554) (.312, .505) (.266, .462)

Our results (.549, .782) (.505, .692) (.468, .620) (.427, .555) (.394, .497) (.357, .441)

Table 4.1. Dependency on σ1 given σ2 = 5, λ1 = λ2 = 100.

Keep all other parameters fixed, the threshold levels decrease as σ1 increase. It

implies high option premium, i.e. high put option value. Since the volatility of state
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1 (σ1) is larger than the volatility of state 2 (σ2 = 5), the threshold level of state 1

is smaller than that of state 2.

λ1 80 90 100 110 120 130

Exact (.425, .596) (.433, .605) (.441,.614) (.448, .621) (.456, .629) (.463, .637)

Our results (.455, .592) (.459, .615) (.468, .620) (.472, .625) (.476, .634) (.482, .649)

Table 4.2. Dependency on λ1 given λ2 = 100, σ1 = 9, σ2 = 5.

Keep all other parameters fixed, the threshold levels increase as λ1 increases.

The higher the λ1 is, the shorter period the Markov chain stays in state 1. So these

is a smaller weight on σ1 which leads to a small average volatility, then a low option

premium.
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Appendix A

Derivation of Equation (2.8)

P(τB > s
∣∣GB

t ) = P(τB > s
∣∣Gt ∨ DA

t )

= 1{τA>t}

P(τB > s, τA > t
∣∣Gt)

P(τA > t
∣∣Gt)

+ 1{τA6t}

P(τB > s, τA 6 t
∣∣Gt)

P(τA 6 t
∣∣Gt)

= 1{τA>t}

P(τB > s, τA > t
∣∣Gt)

P(τA > t
∣∣Gt)

+

+ 1{τA6t}

P(τB > s
∣∣Gt) − P(τB > s, τA > t

∣∣Gt)

1 − P(τA > t
∣∣Gt)

=





E(P(τB>s,τA>t|GT∗ )|Gt)

e−ΓA
t

, if 1{τA>t} = 1

E(e−ΓB
s

∣∣Gt)−E(P(τB>s,τA>t|GT∗ )|Gt)

1−e−ΓA
t

, if 1{τA6t} = 1.

=





E(P(E1<e−ΓB
s ,E2<e−ΓA

t

∣∣GT∗ )|Gt)

e−ΓA
t

, if 1{τA>t} = 1

E(e−ΓB
s

∣∣Gt)−E(P(E1<e−ΓB
s ,E2<e−ΓA

t

∣∣GT∗ )|Gt)

1−e−ΓA
t

, if 1{τA6t} = 1.

(A.1)
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=





eΓA
t E[C(e−ΓB

s , e−ΓA
t )
∣∣Gt], if 1{τA>t} = 1

E

(
e−ΓB

s

∣∣Gt

)
−E[C(e−ΓB

s ,e−ΓA
t )

∣∣Gt]

1−e−ΓA
t

, if 1{τA6t} = 1.

(A.2)



Appendix B

Derivation of Equations (2.11) and (2.12)

We use u1, u2, v to denote e−
∫ s
0 λBudu, e−

∫ t
0 λBudu, e−

∫ t
0 λAudu, respectively. Using

Farlie-Gumbel-Morgenstern copula C(u, v) = uv(1 + α(1 − u)(1 − v)), we have

P(τB > s|Gt ∨ DA
t ∨ DB

t ) = 1{τB>t,τA6t}
P(τB > s, τA 6 t|Gt)

P(τB > t, τA 6 t|Gt)

=
E(P(τB > s|GT ∗) − P(τB > s, τA > t|GT ∗)|Gt)

E(P(τB > t|GT ∗) − P(τB > t, τA > t|GT ∗)|Gt)

=
E(u1 − u1v(1 + α(1 − u1)(1 − v))|Gt)

E(u2 − u2v(1 + α(1 − u2)(1 − v))|Gt)

=
E(u1(1 − v)[1 − αv(1 − u1)]|Gt)

E(u2(1 − v)[1 − αv(1 − u2)]|Gt)

(B.1)

Since u2, v are Gt-measurable, so E(u2(1−v)[1−αv(1−u2)]|Gt) = u2(1−v)[1−αv(1−

u2)]. Therefore, the above equation can be simplified as E(e−
∫ s

t
λB(u)du 1−αv(1−u1)

1−αv(1−u2)
|Gt).

Now we use approximation formula ex .
= 1 + x, so 1 − αv(1 − u1)

.
= e−αv(1−u1), 1 −

αv(1 − u2)
.
= e−αv(1−u2), and 1 − u1

.
=
∫ s

0
λB(u)du, 1 − u2

.
=
∫ t

0
λB(u)du. so

E(e−
∫ s

t
λB(u)du 1 − αv(1 − u1)

1 − αv(1 − u2)
|Gt) = E(e−

∫ s
t
(1+α

∫ t
0 λA(u)du)λB(u)du|Gt) (B.2)

This is the proof of equation (2.11). Similarly, we can prove equation (2.12).
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Appendix C

Derivation of Equation (2.14)

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(u)du)|Gt)

= E(exp(−
∫ T

t

[b1 + b21{u6S+η}]ds)|Gt)

= e−b1(T−t)
E(exp(−b2

∫ T

t

1{u6S+η}|Gt))

= e−b1(T−t)

{∫ t−S

0

µe−µydy +

∫ T−S

t−S

e−b2(S+y−t)µe−µydy +

∫ ∞

T−S

e−b2(T−t)µe−µydy

}

= e−b1(T−t)

{
1 − b2

b2 + µ
e−µ(t−S) +

b2

b2 + µ
e−b2(T−t)−µ(T−S)

}

(C.1)
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Appendix D

Derivation of Equations (2.17), (2.18) and (2.19)

From (2.12), it’s sufficient to derive Et[exp(−b2

∫ T

t
1{τA6s6τA+η}ds)]. We know that

P(τA > s|Gt) = e−a(s−t). We consider two cases: η = y > T − t and η = y 6 T − t.

When η = y > T − t, then τA + η|η=y > T , So

∫ ∞

T−t

Et(exp(−b2

∫ T

t

1{τA6s6τA+y}ds)|η = y)µe−µydy

=

∫ ∞

T−t

Et(exp(−b2

∫ T

t

1{τA6s}ds))µe−µydy

=

∫ ∞

T−t

Et(e
−b2(T−τA)1{τA6T})µe−µydy

(D.1)

From Jarrow & Yu [31], we know that

Et(e
−b2(T−τA)1{τA6T}) =





(a(T − t) + 1)e−a(T−t), if a = b2

b2e−a(T−t)−ae−b2(T−t)

b2−a
, if a 6= b2.
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Therefore, we have

∫ ∞

T−t

Et(exp(−b2

∫ T

t

1{τA6s6τA+y}ds)|η = y)µe−µydy

=





∫∞

T−t
(a(T − t) + 1)e−a(T−t)µe−µydy, if a = b2

∫∞

T−t
b2e−a(T−t)−ae−b2(T−t)

b2−a
µe−µydy, if a 6= b2.

=





e−µ(T−t)(a(T − t) + 1)e−a(T−t), if a = b2

e−µ(T−t) b2e−a(T−t)−ae−b2(T−t)

b2−a
, if a 6= b2.

(D.2)

When η = y 6 T − t, we have

Et[exp(−b2

∫ T

t

1{τA6s6τA+y}ds)|η = y]

=

∫ T−y

t

e−b2yae−a(x−t)dx +

∫ T

T−y

e−b2(T−x)ae−a(x−t)dx +

∫ ∞

T

ae−a(x−t)dx

(D.3)

Now we’re going to simplify the above three integrals, then take the integration from

0 to T − t w.r.t. η. Let

I1 =

∫ T−y

t

e−b2yae−a(x−t)dx = e−b2y − e−a(T−t)+(a−b2)y
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Then
∫ T−t

0

I1µe−µydy =

∫ T−t

0

µe−(b2+µ)ydy −
∫ T−t

0

µe−a(T−t)e(a−b2−µ)ydy

=





µ
b2+µ

[1 − e−(b2+µ)(T−t)] − µ(T − t)e−a(T−t), if a = b2 + µ

µ
b2+µ

[1 − e−(b2+µ)(T−t)] + µe−a(T−t)

a−b2−µ
[1 − e(a−b2−µ)(T−t)], if a 6= b2 + µ.

(D.4)

Let

I2 =

∫ T

T−y

e−b2(T−x)ae−a(x−t)dx =





aye−b2T+at, if a = b2

ae−a(T−t)

b2−a
[1 − e(a−b2)y], if a 6= b2.

Then, we have:

When a = b2

∫ T−t

0

I2µe−µydy =

∫ T−t

0

aye−b2T+atµe−µydy

= ae−b2T+at[
1 − e−µ(T−t)

µ
− (T − t)e−µ(T−t)]

(D.5)

When a 6= b2

∫ T−t

0

I2µe−µydy =

∫ T−t

0

ae−a(T−t)

b2 − a
[1 − e(a−b2)y]µe−µydy

=





ae−a(T−t)

b2−a
[1 − e−µ(T−t) − µ(T − t)], if a = b2 + µ

ae−a(T−t)

b2−a
[ a−b2
a−b2−µ

− e−µ(T−t) − µ
a−b2−µ

e(a−b2−µ)(T−t)], if a 6= b2 + µ.

(D.6)
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Let

I3 =

∫ ∞

T

ae−a(x−t)dx = e−a(T−t).

So
∫ T−t

0

I3µe−µydy =

∫ T−t

0

e−a(T−t)µe−µydy = e−a(T−t)(1 − e−µ(T−t)). (D.7)

Using equations (D.5), (D.6) and (D.7), we can get Et[exp(−b2

∫ T

t
1{τA6s6τA+η}ds)].

Therefore, we have following equations:

When a 6= b2, a 6= b2 + µ, then

E(exp(−
∫ T

t

λB(s)ds)|Gt) = e−b1(T−t)

{
{e−a(T−t) − e−(a+µ)(T−t)}

+ { µ

b2 + µ
[1 − e−(b2+µ)(T−t)] +

µe−a(T−t)

a − b2 − µ
[1 − e(a−b2−µ)(T−t)]}

+ {ae−a(T−t)

b2 − a
[

a − b2

a − b2 − µ
− e−µ(T−t) − µ

a − b2 − µ
e(a−b2−µ)(T−t)]}

+ e−µ(T−t) b2e
−a(T−t) − ae−b2(T−t)

b2 − a

}

= e−b1(T−t)

{
µ

b2 + µ
− b2

a − b2 − µ
e−a(T−t) +

ab2

(b2 + µ)(a − b2 − µ)
e−(b2+µ)(T−t)

}
.

(D.8)

When a = b2, a 6= b2 + µ, then

E(exp(−
∫ T

t

λB(s)ds)|Gt)

= e−b1(T−t){ µ

a + µ
+

a

µ
e−a(T−t) − a2

µ(µ + a)
e−(a+µ)(T−t)}

(D.9)
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When a 6= b2, a = b2 + µ, then

E(exp(−
∫ T

t

λB(s)ds)|Gt) = e−b1(T−t)

{
{e−a(T−t) − e−(a+µ)(T−t)}

+ { µ

b2 + µ
[1 − e−(b2+µ)(T−t)] − µ(T − t)e−a(T−t)}

+ {ae−a(T−t)

b2 − a
[1 − e−µ(T−t) − µ(T − t)]}

+ e−µ(T−t) b2e
−a(T−t) − ae−b2(T−t)

b2 − a

}

= e−b1(T−t)

{
µ

b2 + µ
+

b2(1 − µ(T − t))

b2 − a
e−a(T−t) − b2(µ + a)

(b2 − a)(b2 − µ)
e−(b2+µ)(T−t)

}
.

(D.10)



Appendix E

Derivation of Equation (2.22)

We know that

P(τA > s|GT ∗ ∨ DA
t ∨ DB

t ) = exp(−
∫ s

t

λA(u)du) = e−a0(s−t)−a1Rt,s .

Where Rt,s =
∫ s

t
r(u)du.

We let Et,T ∗(exp(−b2

∫ T

t
1{τA6s6τA+η})) denote E(exp(−b2

∫ T

t
1{τA6s6τA+η})|GT ∗ ∨

DA
t ∨ DB

t ). Using Rt,T is GT ∗-measurable, we have

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(s)ds)|Gt)

= E(exp(−
∫ T

t

[b0 + b1r(s) + b21{τA6s6τA+η}]ds)|Gt)

= e−b0(T−t)E(E(exp(−
∫ T

t

[b1r(s) + b21{τA6s6τA+η}]ds)|GT ∗ ∨ DA
t ∨ DB

t )|Gt)

=−b0(T−t) E(exp(−b1

∫ T

t

r(s)ds)E(exp(−
∫ T

t

b21{τA6s6τA+η}ds)|GT ∗ ∨ DA
t ∨ DB

t )|Gt)

= e−b0(T−t)E(exp(−b1

∫ T

t

r(s)ds)Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+η}ds))|Gt)

(E.1)
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Now we use the property that E(X) = E(E(X|Y )), where X,Y are random vari-

ables. As we did in appendix D, we consider two cases: η = y > T − t and

η = y 6 T − t.

When η = y > T − t, then τA + η|η=y > T , So

Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+η}ds))

=

∫ ∞

T−t

Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+y}ds)|η = y)µe−µydy

=

∫ ∞

T−t

Et,T ∗(exp(−b2

∫ T

t

1{τA6s}ds))µe−µydy

=

∫ ∞

T−t

Et,T ∗(e−b2(T−τA)1{τA6T})µe−µydy

(E.2)

And

Et,T ∗(e−b2(T−τA)1{τA6T}) =

∫ T

t

e−b2(T−x)d(1 − e−a0(x−t)−a1Rt,x)

+

∫ ∞

T

d(1 − e−a0(x−t)−a1Rt,x)

= e−b2(T−x)(1 − e−a0(x−t)−a1Rt,x)

∣∣∣∣
T

t

−
∫ T

t

(1 − e−a0(x−t)−a1Rt,x)b2e
−b2(T−x)dx

+ (1 − e−a0(x−t)−a1Rt,x)

∣∣∣∣
∞

T

= e−b2(T−t)(1 + b2

∫ T

t

e−(a0−b2)(x−t)−a1Rt,xdx).

(E.3)
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Therefore, for η = y > T − t, we have:

Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+η}ds))

=

∫ ∞

T−t

e−b2(T−t)(1 + b2

∫ T

t

e−(a0−b2)(x−t)−a1Rt,xdx)µe−µydy

= e−(b2+µ)(T−t)(1 + b2

∫ T

t

e−(a0−b2)(x−t)−a1Rt,xdx).

(E.4)

When η = y 6 T − t, we have:

Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+η}ds))

=

∫ T−t

0

Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+η})|η=y)µe−µydy.

(E.5)

And

Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+y}ds)) =

∫ T−y

t

e−b2yd(1 − e−a0(x−t)−a1Rt,x)

+

∫ T

T−y

e−b2(T−x)d(1 − e−a0(x−t)−a1Rt,x) +

∫ ∞

T

d(1 − e−a0(x−t)−a1Rt,x)

= e−b2y(1 − e−a0(x−t)−a1Rt,x)

∣∣∣∣
T−y

t

+ e−b2(T−x)(1 − e−a0(x−t)−a1Rt,x)

∣∣∣∣
T

T−y

− b2

∫ T

T−y

(1 − e−a0(x−t)−a1Rt,x)e−b2(T−x)dx + (1 − e−a0(x−t)−a1Rt,x)

∣∣∣∣
∞

T

= e−b2y + b2e
−b2(T−t)

∫ T

T−y

e(b2−a0)(x−t)−a1Rt,xdx.

(E.6)
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Therefore, for η = y 6 T − t, we have:

Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+η}ds))

=

∫ T−t

0

Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+η})|η=y)µe−µydy

=
µ

µ + b2

+ µb2e
−b2T+a0t

∫ T−t

0

∫ T

T−y

[e(b2−a0)x−a1Rt,xdx]e−µydy.

(E.7)

Now combining equations (E.3) and (E.6), we have:

P(τB > T |Gt ∨ DA
t ∨ DB

t ) = E(exp(−
∫ T

t

λB(s)ds)|Gt)

= e−b0(T−t)E(exp(−b1

∫ T

t

r(s)ds)Et,T ∗(exp(−b2

∫ T

t

1{τA6s6τA+η}ds))|Gt)

= e−b0(T−t)E({e−(b2+µ)(T−t)−b1Rt,T (1 + b2

∫ T

t

e−(a0−b2)(x−t)−a1Rt,xdx)

+
µ

µ + b2

e−b1Rt,T + µb2e
−b2T+a0t−b1Rt,T

∫ T−t

0

∫ T

T−y

[e(b2−a0)x−a1Rt,xdx]e−µydy}|Gt).

(E.8)


