
Endotrivial Modules for Classical Lie Superalgebras

by

Andrew J. Talian

(Under the Direction of Daniel K. Nakano)

Abstract

Let g = g0⊕g1 be a Lie superalgebra over an algebraically closed field, k, of characteristic

0. An endotrivial g-module, M , is a g-supermodule such that Homk(M,M) ∼= k ⊕ P as g-

supermodules, where k is the trivial module concentrated in degree 0 and P is a projective

g-supermodule. Such modules form a group, denoted T (g), under the operation of the tensor

product. We show that for an endotrivial module M , the syzygies Ωn(M) are also endotrivial

and for certain detecting Lie superalgebras of particular interest we show that Ω1(k), along

with the parity change functor, actually generate the group of endotrivials.

While it is not known in general whether the group of endotrivial modules for a given

Lie superalgebra g is finitely generated, the first classifications here support this result and

another finiteness theorem maybe stated under under the additional assumption that a Lie

superalgebra g is classical and that g0 has finitely many simple modules of dimension ≤ n

for some fixed n ∈ N. In this case, we show that for the same fixed n, there are finitely many

isomorphism classes of endotrivial modules of dimension n. While this result does not imply

finite generation, it may be a useful tool in proving this result in the future.

The last result deals with relating the group of endotrivial modules for the Lie super-

algebra gl(n|n) to the group of endotrivial modules over a particular parabolic subalgebra

p. The restriction map gives an embedding of the group T (g) into T (p). This result could



reduce the computation of the seemingly more complex T (g) to the understanding simpler

case of T (p).
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Chapter 1

Introduction

The study of endotrivial modules began with Dade in 1978 when he defined endotrivial kG-

modules for a finite group G in [16] and [17]. Endotrivial modules arose naturally in this

context and play an important role in determining the simple modules for p-solvable groups.

Dade showed that, for an abelian p-group G, endotrivial kG-modules have the form Ωn(k)⊕P

for some projective module P , where Ωn(k) is the nth syzygy of the trivial module k (defined

in Section 3.2). In general, the endotrivial modules form an abelian group under the tensor

product operation. It is known, via Puig in [22], that this group is finitely generated in the

case of kG-modules and is completely classified for p-groups over a field of characteristic p by

Carlson and Thévenaz in [13] and [14]. An important part in this classification is a technique

where the modules in question are restricted to elementary abelian subgroups.

Carlson, Mazza, and Nakano have also computed the group of endotrivial modules for

finite groups of Lie type (in the defining characteristic) in [9]. The same authors in [10] and

Carlson, Hemmer, and Mazza in [8] give a classification of endotrivial modules for the case

when G is either the symmetric or alternating group.

This class of modules has also been studied for modules over finite group schemes by

Carlson and Nakano in [11]. It has been shown that all endotrivial modules for a unipotent

abelian group scheme have the form Ωn(k)⊕P as well in this case. For certain group schemes

of this type, a classification is also given in the same paper (see Section 4). The same authors

proved, in an extension of this paper, that given an arbitrary finite group scheme, for a fixed

n, the number of isomorphism classes of endotrivial modules of dimension n is finite (see

[12]), but it is not known whether the endotrival group is finitely generated in this context.
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We wish to extend the study of this class of modules to Lie superalgebra modules. First

we must establish the correct notion of endotrivial module in this context. Let g = g0⊕g1 be

a Lie superalgebra over an algebraically closed field, k, of characteristic 0. A g-supermodule,

M , is called endotrivial if there is a supermodule isomorphism Homk(M,M) ∼= k⊕P where

k is the trivial supermodule concentrated in degree 0 and P is a projective g-supermodule.

There are certain subalgebras, denoted e and f, of special kinds of classical Lie superal-

gebras which are of interest. These subalgebras “detect” the cohomology of the Lie super-

algebra g. By this, we mean that the cohomology for g embeds into particular subrings of

the cohomology for e and f. These detecting subalgebras can be considered analogous to the

elementary abelian subgroups and are, therefore, of specific interest.

In this paper, we observe that the universal enveloping Lie superalgebra U(e) has a

very similar structure to the group algebra kG when G is abelian, noncyclic of order 4 and

char k = 2 (although U(e) is not commutative). With this observation, we draw from the

results of [7] to prove the base case in an inductive argument for the classification of the

group of endotrivial U(e)-supermodules. The inductive step uses techniques from [11] to

complete the classification. As for the other detecting subalgebra f, even though U(f) is not

isomorphic to U(e), reductions are made to reduce this case to the same proof.

The main result is that for the detecting subalgebras e and f, denoted generically as a,

the group of endotrivial supermodules, T (a), is isomorphic to Z2 when the rank of a is one

and Z× Z2 when the rank is greater than or equal to two.

We also show that for a classical Lie superalgebra g such that there are finitely many

simple g0-modules of dimension ≤ n, there are only finitely many endotrivial g-supermodules

of a fixed dimension n. This is done by considering the variety of all representations as

introduced by Dade in [15]. In particular, this result holds for classical Lie superalgebras

such that g0 is a semisimple Lie superalgebra.

The last chapter concerns the group of endotrivial modules for the Lie superalgebra

g = gl(n|n). A particular parabolic subalgebra p ⊆ g is considered and it is shown that there
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is a well defined map from T (g) → T (p) by restricting a g-modules M to a p module. The

main goal of the section is to prove that this map is injective. This is done by showing that

there is an induction functor which takes the trivial p-module to the trivial g-module, which

means that this induction functor acts as a one sided inverse to restriction. This key result

allows us to show that the kernel of the restriction map from T (g) to T (p) is just the trivial

module, proving that the map is injective.



Chapter 2

Preliminaries

2.1 Superalgebras

We begin by defining the basic algebraic objects of interest in the sequel. Let R be a com-

mutative ring.

Definition 2.1. An R-graded vector space, V , is a vector space with a family of subspaces

(Vr)r∈R such that

V =
⊕
r∈R

Vr.

Definition 2.2. A subspace U ⊆ V is an R-graded subspace if

U =
⊕
r∈R

(U ∩ Vr).

That is to say that U contains all the homogeneous components of its elements. Note,

there is a natural Z2 grading on any Z graded vector space given by taking

V 0 :=
⊕
i∈Z

V2i and V 1 =
⊕
i∈Z

V2i+1.

Definition 2.3. Let W be another R-graded vector space. A linear mapping

f : V → W

is said to be homogeneous of degree r, for some r ∈ R, if

f(Vs) ⊆ Wr+s ∀s ∈ R.



5

A homomorphism of R-graded vector spaces is simply a homogeneous map of degree 0. An

isomorphism of R-graded vector spaces is an invertible homomorphism and an automorphism

of an R-graded vector space is an isomorphism of the vector space to itself.

Definition 2.4. Let V and W be two R-graded vector spaces. The tensor product V ⊗W

has a natural R-gradation given by

(V ⊗W )r =
⊕
s+t=r

(Vs ⊗Wt) r, s, t ∈ R.

Definition 2.5. Let k be an algebraically closed field of characteristic 0. An algebra A over

k is an R-graded algebra over k if the underlying vector space of A is R-graded and

AiAj ⊆ Ai+j for all i, j ∈ R.

A homomorphism of R-graded algebras is a homomorphism of algebras which is also a

degree 0 homomorphism of their underlying vector spaces.

A graded subalgebra of an R-graded algebra A is a subalgebra which is also an R-graded

subspace of the underlying vector space of A. Similarly, a graded ideal of an R-graded algebra

A is an ideal which is also an R-graded subspace of the underlying vector space of A.

Let R be the ring Z or Z2 and for a homogeneous element r ∈ Ri, define |r| := i. If we

have two R-graded associative algebras, A and B, then we can define an algebra structure

on the vector space A⊗B.

Definition 2.6. Given A and B, R-graded algebras, the vector space A⊗B is an R-graded

algebra under multiplication defined by

(a⊗ b)(a′ ⊗ b′) = (−1)|a
′||b|(aa′)⊗ (bb′)

where a and b are homogeneous elements and we extend this to general elements by linearity.

This is called the graded tensor product of A and B and is denoted by A⊗B.

Convention. From now on, we assume all elements to be homogeneous and all definitions

are assumed to be extended to general elements by linearity, as is done above.
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Now that we have defined the algebraic structures of interest, we consider modules over

these algebras. In particular we are interested in modules that respect the grading structure.

Definition 2.7. Let A be an R-graded associative algebra and let V be an R-graded vector

space that is also a left A-module. We say V is an R-graded A-module if

AiVj ⊆ Vi+j for all i, j ∈ R.

An R-graded A-module homomorphism between V and W is an A-module homomor-

phism that is also a degree 0 homogeneous map of the R-graded vector spaces V and W .

Definition 2.8. A superalgebra is a Z2-graded algebra.

2.2 Lie Superalgebras

Definition 2.9. Let g = g0 ⊕ g1 be a superalgebra with the product denoted by [−,−]. If

for all a, b, c ∈ g, we have

1. [a, b] = −(−1)|a||b|[b, a]

2. [a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]]

then g is called a Lie superalgebra.

This notation is intentionally suggestive of the (graded) commutator operation. In fact,

if A is an associative superalgebra, then if we define

[a, b] := ab− (−1)|a||b|ba (2.1)

for all a, b ∈ A, then this operation gives A the structure of a Lie superalgebra and is denoted

AL.

We now consider a few observations about the structure of a Lie superalgebra, g. First,

g0 is itself a Lie algebra since this is a closed subalgebra where graded anti-commutivity and

graded Jacobi identity just become the standard versions. Second, we see that the bracket
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operation gives us a map g0 × g1 → g1. So if we think of g1 as just being an abelian

group, then we see that g1 becomes a g0-module. Furthermore, property 2 of definition

2.9 implies that g1 is actually a Lie algebra module. Finally, we note that (commutative)

multiplication in g1 gives us a map into g0. Thus we have a symmetric bilinear map g1×g1 →

g0 which is g0 invariant by the graded Jacobi identity. Equivalently, we can think of this as

a homomorphism of g0 modules φ : S2g1 → g0. We also note that for x, y, and z ∈ g1,

φ(x, y)z + φ(y, z)x+ φ(z, x)y = 0.

In fact, this information encapsulates all the information of a Lie superalgebra and can be

used to define a Lie superalgebra. If we have a Lie algebra g0, with bracket 〈, 〉, a g0-module,

g1, and a g0 homomorphism φ : S2g1 → g0 satisfying φ(x, y)z + φ(y, z)x + φ(z, x)y = 0 for

x, y, and z ∈ g1, then we can define

[a, b] := 〈a, b〉 for a, b ∈ g0

[a, x] := a · x for a ∈ g0, x ∈ g1

[x, a] := −a · x for a ∈ g0, x ∈ g1

[x, y] := φ(x, y) for x, y ∈ g1

to make the vector space g0 ⊕ g1 into a Lie superalgebra.

Example 2.10. Let V be an R-graded vector space. We can decompose the endomorphism

ring Endk V as follows. If we define (Endk V )r = {φ ∈ EndV |φ(Vs) ⊆ Vr+s}, then

Endk V =
⊕
r∈R

(Endk V )r

which forms an associative R-graded algebra. In the case when R = Z2, Endk V is an

associative superalgebra, and so using 2.1 to define a bracket on Endk V , we obtain a Lie

superalgebra. This is denoted l(V ) := (Endk V )L.

Definition 2.11. A derivation of degree r of a superalgebra A, is an endomorphism

D ∈ (Endk A)r satisfying

D(ab) = D(a)b+ (−1)r|a|aD(b).
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The space of such derivations is denoted (derA)r ⊆ (Endk A)r and we define derA :=

(derA)0 ⊕ (derA)1. We can further see that for two derivations, D ∈ (derA)r and D′ ∈

(derA)s, their bracket [D,D′] as defined in 2.1 is also a derivation by computing

[D,D′](ab) = (DD′ − (−1)rsD′D)(ab)

= D(D′(a)b+ (−1)s|a|aD′(b))− (−1)rsD′(D(a)b+ (−1)r|a|aD(b))

= D(D′(a))b− (−1)rsD′(D(a))b

+ (−1)(s+r)|a|aD(D′(b))− (−1)rs+(r+s)|a|aD′(D(b))

+ (−1)r(s+|a|)D′(a)D(b)− (−1)rs+r|a|D′(a)D(b)

+ (−1)s|a|D(a)D′(b)− (−1)rs+(r+|a|)sD(a)D′(b)

= (D(D′(a))− (−1)rsD′(D(a)))b

+ (−1)(r+s)|a|(aD(D′(b))− (−1)rsaD′(D(b)))

+ (−1)r(s+|a|)(D′(a)D(b)−D′(a)D(b))

+ (−1)s|a|(D(a)D′(b)− (−1)2rsD(a)D′(b))

= [D,D′](a)b+ (−1)(r+s)|a|a[D,D′](b).

We can see that [D,D′] ∈ (derA)r+s as is expected. Because of this computation, if we

think of Endk A as a Lie superalgebra, denoted as l(A), by using the bracket defined in 2.1

and since (derA)r ⊆ (Endk A)r (i.e. the grading of the subspace respects the grading of the

original space), then derA is a Lie subsuperalgebra of l(A).

Example 2.12. If g is a Lie superalgebra, then the graded Jacobi identity tells us that the

map

ad a : g→ g

b 7→ [a, b]

is a derivation of g. We refer to derivations of this kind as inner derivations. A similarly

messy computation as the one above will yield that [D, ad a] = ad D(a) which shows that

the inner derivations form an ideal in der g.



Chapter 3

Representations of Lie Superalgebras

3.1 The Universal Enveloping Algebra

Just as in the case of standard Lie algebras, we can construct a Universal Enveloping Algebra.

Many of the ideas are very similar and the important results will be listed here for reference.

We construct the universal enveloping algebra of a Lie superalgebra g by the following

process. First, we take the tensor algebra T (g) of the vector space g. We note that, by

definition 2.4, each of the tensor powers of g inherits a Z2 grading, hence we can give the

entire algebra T (g) a Z2 grading. It is clear that the canonical injection (into the first tensor

power) g ↪→ T (g) is an even homomorphism of supervector spaces. Furthermore, we can

endow T (g) with the standard algebra (or in this case superalgebra) structure by taking the

tensor product to be the multiplication.

Now, we can take the two sided ideal, I, generated by elements of the from

a⊗ b− (−1)|a||b|b⊗ a− [a, b]. (3.1)

This is the same construction as in the Lie algebra case but with the standard sign

grading added. By the definition of the product in T (g) and of the bracket operation of g,

the element above is homogeneous of degree |a| + |b|. Thus, the quotient algebra inherits a

Z2 grading as well.

Definition 3.1. Let g = g0 ⊕ g1 be a Lie superalgebra. Consider the tensor algebra T (g)

and the two sided ideal generated by elements of the form found in equation 3.1. Then

U(g) = T (g)
/
I
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is defined to be the Universal Enveloping Algebra of the Lie superalgebra g.

Associated to U(g), we have a map obtained by composing the inclusion map g ↪→ T (g)

with the projection map T (g) � T (g)
/
I = U(g). We label this map by

σ : g→ U(g).

Since the operation in U(g) is assumed to be the tensor product, we take the convention of

using juxtaposition to denote this multiplication. With this in mind, we make the comment

that all elements of U(g) are linear combinations of products of the form σ(g1)σ(g2) . . . σ(gn)

for gi ∈ g. Homogeneous elements of this form are of degree |g1|+ |g2|+ · · ·+ |gn|.

We refer to this algebra as being “universal” in the sense that it satisfies the following

universal property. If A is a unital associative superalgebra such that there is a map φ : g→ A

that satisfies φ([a, b]) = φ(a)φ(b)− (−1)|a||b|φ(b)φ(a), then there exists a unique superalgebra

homomorphism φ such that φ(1) = 1 and the diagram

g U(g)

A

σ

φ
φ (3.2)

commutes.

Theorem 3.2 (Poincaré, Birkhoff, Witt). Let g = g0 ⊕ g1 be a Lie superalgebra where g0

has basis a1, . . . , as and g1 has basis b1, . . . , bt. Elements of the form

σ(ai1)
ki1σ(ai2)

ki2 . . . σ(aim)kimσ(bj1)σ(bj2) . . . σ(bjn)

where 1 ≤ i1 < · · · < im ≤ s and 1 ≤ j1 < · · · < jn ≤ t and kir > 0 give a basis for U(g). In

the case of the empty product (i.e. m = n = 0), we define the product to be 1.

It is sometimes valuable to note that we may in fact choose any ordering on the basis

elements for g in the above theorem rather than separating them according to the Z2 grading

as given above.
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Additionally, we observe that exponents are not necessary for the elements in g1 because

for b ∈ g1, we have

σ(b)2 = σ(b)⊗ σ(b) =
2σ(b)⊗ σ(b)

2
=
σ(b)⊗ σ(b) + σ(b)⊗ σ(b)

2
=

[σ(b), σ(b)]

2
=
σ([b, b])

2
.

Furthermore, since [g1, g1] ⊆ g0, it is clear that exponents are not necessary for elements in

g1 as indicated in Theorem 3.2.

Corollary 3.3. The canonical inclusion σ : g→ U(g) is injective.

Convention. Given the above corollary, we now take the convention that g is identified with

the graded subspace of U(g) via the mapping σ (unless the mapping is being emphasized).

3.2 Representations of Lie Superalgebras

Now that we have developed the analogue of enveloping algebras in the Z2 graded case,

we can attempt to use these associative superalgebras to study the representation theory

of Lie superalgebras. We begin by developing the definition of a representation of a Lie

superalgebra.

Definition 3.4. A Lie superalgebra homomorphism between A and B is a homomor-

phism of the Z2-graded algebras (so it is homogeneous map of degree 0) that respects the

bracket operation of the respective superalgebras. That is, if φ : A → B is the homomor-

phism, then

φ([a, a′]A) = [φ(a), φ(a′)]B.

Given the above definitions, we can now consider modules over Lie superalgebras.

Definition 3.5. Let V = V 0 ⊕ V 1 be a Z2 graded vector space. If g = g0 ⊕ g1 is a Lie

superalgebra, we define a linear representation of a Lie superalgebra g in V to be

a Lie superalgebra homomorphism φ : g → l(V ). It is common practice to refer to V as a

g-supermodule and denote g ∈ g as acting on V by g(v) rather than φ(g)(v).



12

We note that, since φ is even, then the grading of elements mapping from g to Endk V is

preserved and so gi(Vj) ⊆ Vi+j. Also, since we can explicitly write out the bracket operation

in l(V ), we can observe that (in the supermodule notation)

[g, g′](v) = g(g′(v))− (−1)|g||g
′|g′(g(v)).

We define a subsupermodule, U , of a g-supermodule V to be a Z2 graded subspace of V

such that g(U) ⊆ U . A g-supermodule V is said to be irreducible if the only nontrivial

subsupermodule of V is V itself.

If we are given a linear representation of g in V , φ, we can use the universal property

given in Equation 3.2 to obtain a map φ : U(g) → l(V ). This is a unique homomorphism

of associative superalgebras that satisfies φ(g) = φ(g) for all g ∈ g and φ(1) = id. We then

extend this to general products in U(g) to see that φ(U(g)i)Vj ⊆ Vi+j. Thus, we use φ to

extend uniquely to φ which is a representation of the associative superalgebra U(g) in the

super vector space V .

Now, assume that we have ψ, a representation of the associative superalgebra U(g) in

the super vector space V . We can restrict to g ⊆ U(g) to obtain a map, ψ|g : g → Endk V .

Because of the relations imposed upon U(g) and the fact that ψ is a homomorphism of

superalgebras, ψ|g is also a Lie superalgebra homomorphism and consequently, V is given

the structure of a g-supermodule.

We can also see that φ = φ|g and ψ|g = ψ so these operations are inverses of each

other and so these two notions of representations (or modules) are interchangeable. Thus,

we can use either terminology in the following development of the representation theory,

noting that we now have the advantage of using the associative property when we speak of

U(g)-supermodules.

Example 3.6 (Trivial Module). We can consider the vector space k as an associative super-

algebra by taking k0 = k and k1 = {0}. If g is a Lie superalgebra, we can then give k the
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structure of a g-supermodule by letting every element g ∈ g act by 0, i.e.

g(c) = 0 for all g ∈ g and c ∈ k.

We can also see that, when we extend this module to U(g), all elements of U(g) act by 0 as

well, except for the scalars in U(g), i.e. elements in the image of T (g)0 (note, we are using

the Z-grading here) under the projection map, which act via multiplication.

Example 3.7 (Adjoint Representation). Let g be a Lie superalgebra. The map given in

Example 2.12 allows us to define a representation of g in itself by

ad : g→ Endk(g)

g 7→ ad g.

By (2) in Definition 2.9, we can check that this is a homomorphism of Lie superalgebras as

well and thus, the ad map gives a representation of g in itself.

Definition 3.8. Let g be a Lie superalgebra. A homomorphism of g-supermodules,

φ : V → W , is an even homomorphism of Z2 graded vector spaces such that for all g ∈ g

and v ∈ V

φ(g(v)) = g(φ(v))

or equivalently

φ(u(v)) = u(φ(v))

for all u ∈ U(g) and v ∈ V .

Alternatively, if we have a g-supermodule V and an h-supermodule W , we can consider

the space of k-linear mappings Homk(V,W ). This space has a natural Z2 grading given by

Homk(V,W )i =
{
φ ∈ Homk(V,W )

∣∣ φ(Vj) ⊆ Wi+j

}
.

We can then give this space the structure of a g× h-supermodule where the action on some

φ ∈ Homk(V,W )r is given by

((g, h)φ)(v) = h(φ(v))− (−1)r|g|φ(g(v)).
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In the special case when g = h, we can use the diagonal homomorphism of g into g × g

to turn Homk(V,W ) into a g-supermodule with action given by

(gφ)(v) = g(φ(v))− (−1)r|g|φ(g(v)).

We can also consider maps from one g-supermodule to another which respect the action

of g. Let V and W be two g-supermodules. An element φ ∈ Homk(V,W )r is g-invariant if

and only if

g(φ(v)) = (−1)r|g|φ(g(v)) (3.3)

for all g ∈ g and v ∈ V . We note that this is exactly the subset of Homk(V,W ) on which g acts

trivially. This set is denoted Homg(V,W ) or HomU(g)(V,W ), depending on which language

is appropriate. We make the observation that Homg(V,W )0 is the set of homomorphisms of

V into W .

With this in mind, we can now construct and consider two important modules of this

form: Homk(V, k) and Homk(V, V ).

Example 3.9 (Dual Module). First, we examine Homk(V, k), denoted V ∗, the dual module.

Recall that k is a supermodule (see Example 3.6) with the odd part being {0}. We can see

that V ∗ has its Z2 gradation given by

(V ∗)i =
{
φ ∈ V ∗

∣∣ φ(Vi+1) = {0}
}
.

Given the above action, we can simplify this to be

(gφ)(v) = −(−1)r|g|φ(g(v)).

Example 3.10 (Endomorphism Module). Given a g-supermodule M , we can consider the

g-supermodule Homk(M,M) = Endk(M) of endomorphisms of M . This kind of module will

be of primary interest for the remainder of this paper.

We also have another tool for producing new modules from ones we already know about.
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Definition 3.11. Let V = V 0 ⊕ V 1 be a Z2-graded vector space. We can define

Π : mod(g)→ mod(g)

by Π(V ) = Π(V )0⊕Π(V )1 where Π(V )0 = V 1 and Π(V )1 = V 0. This operation is known as

the parity change functor.

Note that, since the vector spaces are the same, the endomorphisms of Π(V ) are the same

as V and the grading of the endomorphisms is preserved. Thus we can see that if V is a

g-supermodule, then the same map turns Π(g) into a g-supermodule as well, however, this

module does not necessarily have to be isomorphic to the original module.

At this point, we now wish to specialize to the categories of interest for the remainder of

this paper. We say that a module M is finitely semisimple if it is isomorphic to a direct sum

of finite dimensional simple subsupermodules. Let g be a Lie superalgebra and t a subsuper-

algebra of g. Let C = C(g,t) be the full subcategory of the category of all g-supermodules such

that the objects are finitely semisimple as t-modules. The projective objects in this category

are (g, t)-projective objects which are defined as follows as in [21, Appendix D].

If g is a Lie superalgebra and t ⊆ g a subalgebra, a sequence of g-supermodules

· · · →Mi−1
fi−1−−→Mi

fi−→Mi+1 → · · ·

where each fi is even is called (g, t)-exact if it is exact as a sequence as g-supermodules and

when the sequence is considered as t-supermodules, ker fi is a direct summand of Mi|t for all

i. A g-supermodule is called (g, t)-projective if for any (g, t)-exact sequence

0→M1
f−→M2

g−→M3 → 0

and g-supermodule map h : P → M3 there is a g-supermodule map h̃ : P → M2 such

that g ◦ h̃ = h. When it is clear from context which subalgebra t ⊆ g is being considered,

(g, t)-projective modules will be referred to as relatively projective modules, i.e., projective

relative to the subalgebra t. Note that any projective g-module is necessarily (g, t)-projective.

Relatively injective modules are defined in a dual way.
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Next, we define F = F(g,t) to be the full subcategory of C where the objects are finite

dimensional modules. In this work, the particular case of interest will be F = F(g,g0) and

(U(g), U(g0))-projective modules. We note that this category has enough projectives as

detailed in [2] because if M is any U(g)-supermodule, U(g) ⊗U(g0) M is a (U(g), U(g0))-

projective module (as shown in [21]) which surjects onto M . Dually, any such M also has an

injective module I into which M injects given by HomU(g0)(U(g),M).

Now, we can introduce a module which will be of particular interest for the remainder of

this paper. We may use this definition in finite dimensional, self injective module categories

with enough projectives.

Definition 3.12. Let g be a Lie superalgebra and let M be a g-supermodule. Let P be a

minimal projective which surjects on to M (called a projective cover), with the map

ψ : P �M.

Then we define the 1st syzygy of M to be kerψ and denote it by Ω(M) or Ω1(M). This is

also referred to as a Heller shift in some literature. We can extend this to all positive integers

by inductively defining Ωn+1 := Ω(Ωn).

Similarly, given M , let I be the injective hull of M with the inclusion

ι : I ↪→M

then we define Ω−1(M) := coker ι. This is extended to negative integers by defining Ω−n :=

Ω−1(Ω−n+1).

Finally, define Ω0(M) to be the compliment of the largest projective direct summand of

M . In other words, we can write M = Ω0(M)⊕Q where Q is projective and maximal as a

projective summand.

Thus, we now have defined the n-th syzygy of M for any integer n.



Chapter 4

Endotrivial Modules

4.1 Definition and Preliminary Results

Note. We are working in the category F(g,g0)

Definition 4.1. Given a category of modules,A, consider the category with the same objects

as the original category and an equivalence relation on the morphisms given by f ∼ g if f−g

factors through a projective module in A. This is called the stable module category of A

and is denoted by Stmod(A).

Definition 4.2. Let g be a Lie superalgebra and M be a g-supermodule. We say that M

is an endotrivial module if Endk(M) ∼= k ⊕ P where k is the trivial module discussed in

Example 3.6 and P is a projective supermodule.

Since we have the supermodule isomorphism Homk(V,W ) ∼= W ⊗ V ∗ for two g-

supermodules V and W , we will often times rephrase the condition for a module M

being endotrivial as

M ⊗M∗ ∼= k ⊕ P.

Lemma 4.3 (Schanuel). Let 0 → M1 → P1 → M → 0 and 0 → M2 → P2 → M → 0 be

short exact sequences of modules where P1 and P2 are projective, then M1 ⊕ P2
∼= M2 ⊕ P1.

The proof is simple and can be found in [1]. This lemma is useful because it tells us that,

in the stable category, we do not have to necessarily use the projective cover to obtain the

syzygy of a module. Indeed, any projective module will suffice because the kernels of the

projection maps will only differ by projective summands.
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Proposition 4.4. The category F is self injective. That is, a g-module M is projective if

and only if it is injective.

The proof can be found in Proposition 2.2.2 in [3].

Lemma 4.5. For a g-module M , we have the following

Ω0(M) ∼= Ω−1(Ω1(M)) ∼= Ω1(Ω−1(M)). (4.1)

Proof. First, we recall that M ∼= Ω0(M)⊕ P ′ for some projective module P ′. We then take

the projective cover of M , P ⊕ P ′, where P is the projective cover of Ω0(M) and have the

short exact sequence

0 Ω1(M) P ⊕ P ′ Ω0(M)⊕ P ′ 0.

If we want to compute Ω−1(Ω1(M)), we need to find an injective hull for Ω1(M) and take the

cokernel of the map. This cokernel will be Ω−1(Ω1(M)). However, we can see that, since P is

projective, by Proposition 4.4, P is also injective. Moreover, it is the injective hull of Ω1(M)

since P was a projective cover of Ω0(M). So the cokernel of the injection is just Ω0(M) and

we conclude that Ω−1(Ω1(M)) ∼= Ω0(M)

Similarly, we have a short exact sequence of the form

0 Ω0(M)⊕ I ′ I ⊕ I ′ Ω−1(M) 0

relating M and Ω−1(M) via the injective hull of M . Since I is injective (and minimal), it

is also projective (and minimal). Thus, this gives a minimal projective cover of Ω−1(M)

whose kernel is Ω0(M). This is the definition of Ω1(Ω−1(M)) and so we have Ω1(Ω−1(M)) ∼=

Ω0(M).

Corollary 4.6. For a g-module M , Ωn(Ωm(M)) ∼= Ωn+m(M) for any n,m ∈ Z.

Proof. We note that if n and m are of the same sign then this is simply the definition of

the syzygy. When they are of different signs, this follows from a simple induction argument

using Lemma 4.5.
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Proposition 4.7. For a g-module M , (Ωn(M))∗ ∼= Ω−n(M∗) for any n ∈ Z.

Proof. When n = 0, the claim is clear since we are in a self injective category. We proceed

by induction on n. First we consider the definition of Ω1(M). We take a projective cover of

M and take the kernel to be Ω1(M) as follows

0 Ω1(M) P M 0.

We now dualize this short exact sequence (i.e. apply Homk(−, k) to the sequence) to get a

new short exact sequence,

0 M∗ P ∗ (Ω1(M))∗ 0.

Because of our assumptions on P , we see that P ∗ is the injective hull of M∗. So by definition,

the cokernel of the injective map is then Ω−1(M∗). However, we can also see that we have

completed the base case since (Ω1(M))∗ ∼= Ω−1(M∗).

Now, we assume that (Ωn(M))∗ ∼= Ω−n(M∗) for some positive n ∈ Z and we will show

that the same is true for n+1. We do this just by recalling that the definition of Ωn+1(M) =

Ω1(Ωn(M)). So

(Ωn+1(M))∗ = (Ω1(Ωn(M)))∗ ∼= Ω−1((Ωn(M))∗) ∼= (Ω−1(Ω−n(M∗))) = Ω−(n+1)(M∗)

This completes the inductive step and proves the claim for all positive integers.

If n is negative, then −n is positive so

(Ω−n(M∗))∗ ∼= Ωn(M∗∗) ∼= Ωn(M).

Now, apply the dual once more to get

(Ω−n(M∗))∗∗ ∼= Ω−n(M∗) ∼= (Ωn(M))∗

so (Ωn(M))∗ ∼= Ω−n(M∗) for negative n as well.

Lemma 4.8. Let P be a projective g-module. Then P⊗kN is also projective for any g-module

N .
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Proof. Let M be a g-module and P and N as above. By the tensor identity found in (see

Lemma 2.3.1 in [2]), we have

ExtnF(M,P ⊗N) ∼= ExtnF(M ⊗N∗, P ) = 0

for n > 0 since P is projective. Hence, P ⊗N is also projective.

Lemma 4.9. Let M and P be g-modules, and let P be projective. Then Ωn(M⊕P ) ∼= Ωn(M).

Proof. When n = 0, note that M ∼= Ω0(M) ⊕ P ′ where P ′ is a maximal. Then P ′ ⊕ P is a

maximal projective summand of M⊕P by construction and so we conclude that Ω0(M⊕P ) ∼=

Ω0(M).

The rest of the proof follows directly from Corollary 4.6 since

Ωn(M ⊕ P ) ∼= Ωn(Ω0(M ⊕ P )) ∼= Ωn(Ω0(M)) ∼= Ωn(M)

holds for any n ∈ Z.

Proposition 4.10. Let M and N be g-modules. Then for any n ∈ Z, Ωn(M) ⊗ N ∼=

Ωn(M ⊗N)⊕ P for some projective module P .

Proof. First we consider the case n = 0. First we compute Ω0(M⊗N). Since M ∼= Ω0(M)⊕P

and N ∼= Ω0(N)⊕ P ′, when we take M ⊗N ∼= (Ω0(M)⊕ P )⊗ (Ω0(N)⊕ P ′) and distribute

the tensor product, (by recalling Lemma 4.8) we see that the only non-projective term is

Ω0(M)⊗ Ω0(N). Thus, Ω0(M ⊗N) ⊆ Ω0(M)⊗ Ω0(N). Now, we compute that

Ω0(M)⊗N ∼= Ω0(M)⊗ (Ω0(N)⊕ P ′) ∼= (Ω0(M)⊗ Ω0(N))⊕ (Ω0(M)⊗ P ′)

∼= (Ω0(M)⊗ Ω0(N))⊕ P ′′ ∼= Ω0(M ⊗N)⊕ P ′′′.

For positive n, we again use induction. We begin the base case by considering the sequence

defining Ω1(M),

0 Ω1(M) P M 0.

We can now take this sequence and tensor it with N . Since we are tensoring over k, this is

an exact operation. So we obtain a new sequence
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0 Ω1(M)⊗N P ⊗N M ⊗N 0.

Since P ⊗N is a projective module, then by Lemma 4.3 Ω1(M)⊗N ∼= Ω1(M ⊗N)⊕P ′ for

some projective module P ′.

For the inductive step, we assume the claim for n. Then,

Ωn+1(M)⊗N ∼= Ω1(Ωn(M))⊗N ∼= Ω1(Ωn(M)⊗N)⊕ P ′

∼= Ω1(Ωn(M ⊗N)⊕ P ′′)⊕ P ′ ∼= Ωn+1(M ⊗N)⊕ P ′

where the last isomorphism is given by Lemma 4.9.

We can use Proposition 4.7 to handle the case where n < 0. In this case, we already have

that

Ω−n(M)⊗N ∼= Ω−n(M ⊗N)⊕ P ′.

We can take duals on both sides and replace M and N by their duals as well without changing

anything. So now we have

(Ω−n(M∗)⊗N∗)∗ ∼= (Ω−n(M∗ ⊗N∗)⊕ P ′)∗

Ω−n(M∗)∗ ⊗N∗∗ ∼= Ω−n(M∗ ⊗N∗)∗ ⊕ P ′∗

Ωn(M∗∗)⊗N ∼= Ωn(M∗∗ ⊗N∗∗)⊕ P ′∗

Ωn(M)⊗N ∼= Ωn(M ⊗N)⊕ P ′∗.

Corollary 4.11. Let M and N be g-modules and m, n ∈ Z. Then Ωm(M) ⊗ Ωn(N) ∼=

Ωm+n(M ⊗N)⊕ P for some projective module P .
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Proof. We us two applications of Proposition 4.10.

Ωm(M)⊗ Ωn(N) ∼= Ωm(M ⊗ Ωn(N))⊕ P

∼= Ωm(Ωn(M ⊗N)⊕ P ′)⊕ P

∼= Ωm(Ωn(M ⊗N))⊕ P

∼= Ωm+n(M ⊗N)⊕ P

where the third isomorphism is given by Lemma 4.9.

Before the main theorem of this section, we prove one last proposition.

Proposition 4.12. Let M and N be g-modules. Then Ωn(M) ⊕ Ωn(N) ∼= Ωn(M ⊕ N) for

any n ∈ Z.

Proof. We will just prove the basic case and the rest of the proof will be clear from the

approaches used previously in the section.

By the definition of Ω1, we have two short exact sequences

0 Ω1(M) P M 0

associated to M and

0 Ω1(N) P ′ N 0

associated to N . We can take the direct sum of the two to get

0 Ω1(M)⊕ Ω1(N) P ⊕ P ′ M ⊕N 0.

By construction, P ⊕ P ′ is the projective cover of M ⊕ N , and so by definition Ω1(M) ⊕

Ω1(N) ∼= Ω1(M ⊕N).

We now have enough tools to prove our first theorm.

Theorem 4.13. If a g-module, M , is endotrivial, then so is Ωn(M) for any n ∈ Z.
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Proof. By assumption, we know that M ⊗M∗ ∼= k ⊕ P for some projective module P . We

can apply Proposition 4.7 and Proposition 4.10 to see that

Ωn(M)⊗ (Ωn(M))∗ ∼= Ωn(M)⊗ Ω−n(M∗)

∼= Ω0(M ⊗M∗)⊕ P ′

∼= Ω0(k ⊕ P )⊕ P ′

∼= k ⊕ P ′.

4.2 The Group T (g)

As we have noted before, given a fixed Lie superalgebra, g, we can consider which g-modules

are endotrivial. So define the set

T (g) :=
{

[M ] ∈ Stmod(g)
∣∣ M ⊗M∗ ∼= k ⊕ PM where PM is projective

}
.

Proposition 4.14. For g, a Lie superalgebra, T (g) forms an Abelian group under the oper-

ation [M ] + [N ] = [M ⊗N ].

Proof. First we note that, if [M ], [N ] ∈ T (g), then

(M ⊗N)⊗ (M ⊗N)∗ = (M ⊗N)⊗ (M∗ ⊗N∗)

= M ⊗M∗ ⊗N ⊗N∗

= (k ⊕ PM)⊗ (k ⊕ PN)

= (k ⊗ k)⊕ (k ⊗ PN)⊕ (PM ⊗ k)⊕ (PM ⊗ PN)

= k ⊕ PM⊗N .

Since tensoring with a projective module yields another projective module, we see that

[M ⊗ N ] ∈ T (g) as well and so the set is closed under the operation +. We note that this

operation is associative by the associativity of the tensor product.
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Next, we observe that, since k∗ ∼= k, we have k⊗ k∗ ∼= k⊗ k ∼= k and so [k] ∈ T (g). Since

we tensor over k itself, we also see that for any [M ] ∈ T (g), (indeed any g-module),

[M ] + [k] = [M ⊗ k] ∼= [M ] ∼= [k ⊗M ] = [k] + [M ]

and so [k] is the identity in T (g).

Finally, since M is finite dimensional, we have that (M∗)∗ ∼= M and so if [M ] ∈ T (g),

M∗ ⊗ (M∗)∗ ∼= M∗ ⊗M ∼= M ⊗M∗ ∼= k ⊕ PM

and so [M∗] ∈ T (g) is as well. Since we are working in the stable category,

[M ] + [M∗] = [M ⊗M∗] = [k ⊕ PM ] = [k]

so for each [M ], T (g) contains the inverse [M∗].

Lastly, we make the (by now) obvious comment that, by the property of the tensor

product, for any [M ], [N ] ∈ T (g), we have [M ] + [N ] = [M ⊗ N ] = [N ⊗M ] = [N ] + [M ].

Thus, we have shown that T (g) satisfies the properties of an Abelian group.

The following lemma simplifies computations involving both syzygies and the parity

change functor and will be useful throughout this work.

Lemma 4.15. Let k be either the trivial supermodule, kev, or Π(kev) = kod in F , then

Π(Ωn(k)) = Ωn(Π(k))

for all n ∈ Z.

Proof. In the case where n = 0, the claim is trivial.

The parity change functor, Π, can be realized by the following. Let M be a g-supermodule,

then

Π(M) ∼= M ⊗ kod
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and if N is another g-supermodule and φ : M → N is a g-invariant map, then

Π(φ) : M ⊗ kod → N ⊗ kod

m⊗ c 7→ φ(m)⊗ c

defines the functor Π. Let

0 Ω1(k) P k 0

be the exact sequence defining Ω1(k). Then Π(P ) is the projective cover of Π(k) and since

the tensor product is over k, the following sequence

0 Π(Ω1(k)) Π(P ) Π(k) 0

is exact. Thus, Π(Ω1(k)) = Ω1(Π(k)) as desired. We can easily dualize this argument to see

that Π(Ω−1(k)) = Ω−1(Π(k)) and the proof is completed by an induction argument.



Chapter 5

Computing T (g) for Rank 1 Detecting Subalgebras

Determining T (g) for different Lie superalgebras will be the main goal for the next three

chapters. In particular, we will be focusing on the case where g is a detecting subalgebra,

whose definition depends on the Lie superalgebras q(1) and sl(1|1).

5.1 Detecting Subalgebras

Recall the definitions of q(n) ⊆ sl(n|n) ⊆ gl(n|n). The Lie superalgebra q(n) consists of

2n× 2n matrices of the form  A B

B A


where A and B are n× n matrices over k. The Lie superalgebra q(1) is of primary interest

and has a basis of

t =

 1 0

0 1

 e =

 0 1

1 0

 .

Note that t spans q(1)0 and e spans q(1)1. The brackets are easily computed using Equation

2.1,

[t, t] = tt− tt = 0, [t, e] = te− et = 0, [e, e] = ee+ ee = 2t.

The Lie superalgebra sl(m|n) ⊆ gl(m|n) consists of (m + n) × (m + n) matrices of the

form  A B

C D


where A and D are m × m and n × n matrices respectively, which satisfy the condition

tr(A)− tr(D) = 0.
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For this work, sl(1|1) is of particular importance, so note that sl(1|1) consists of 2 × 2

matrices and has a basis of

t =

 1 0

0 1

 x =

 0 1

0 0

 y =

 0 0

1 0

 .

A direct computation shows that [x, y] = xy + yx = t and that all other brackets in sl(1|1)

are 0.

We may now define the detecting subalgebras, e and f as introduced in [2, Section 4]. Let

em := q(1)×q(1)×· · ·×q(1) with m products of q(1), and fn := sl(1|1)×sl(1|1)×· · ·×sl(1|1)

with n products of sl(1|1).

Let a denote an arbitrary detecting subalgebra (either e or f). We define the rank of a

detecting subalgebra a to be dim(a1), the dimension of the odd degree. The rank of em is m

and the rank of fn is 2n and, in general, a detecting subalgebra of rank r is denoted ar. We

start by considering rank 1 subalgebras.

With these definitions established, we now turn to the question of classifying the

endotrivial modules for rank 1 detecting subalgebras.

5.2 Endotrivial Modules for the e1 Detecting Subalgebra

It is possible to classify T (e1) by considering the classification of all indecomposable q(1)-

modules found in [2, Section 5.2].

We know that k×Z2 parameterizes the simple q(1)-supermodules and the set {L(λ),Π(L(λ)) | λ ∈

k} is a complete set of simple supermodules. For λ 6= 0, L(λ) and Π(L(λ)) are two dimen-

sional and projective. Thus, the only simple modules that are not projective are L(0), the

trivial module, and Π(L(0)). The projective cover of L(0) is obtained as

P (0) = U(q(1))⊗U(q(1)0) L(0)|q(1)0
.

Since U(q(1)) has a basis (according to the PBW theorem) of

{
erts

∣∣ r ∈ {0, 1}, s ∈ Z≥0

}
,
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we see that P (0) has a basis of {1⊗1, e⊗1} and there is a 1 dimensional submodule spanned

by e⊗ 1 which is isomorphic to kod, the trivial module under the parity change functor. The

space spanned by 1⊗ 1 is not closed under the action of U(q(1)) since e(1⊗ 1) = e⊗ 1. It is

now clear that the structure of P (0) is

kev

kod

e

and the reader may check that P (Π(L(0))) ∼= Π(P (0)). Thus, directly computing all inde-

composable modules shows that the only indecomposables which are not projective are kev

and kod which are clearly endotrivial modules.

The group T (e1) can be computed in terms of the syzygies. The kernel of the projection

map from P (0) to L(0) is Ω1(kev) = kod. In order to compute Ω2(kev), consider the projective

cover of kod, which is Π(P (0)). The kernel of the projection map is again kev, the trivial

module. The situation is the same for Π(L(0)) only with the parity change functor applied.

Now we have the following complete list of indecomposable endotrivial modules,

Ωn(kev) =


kev if n is even

kod if n is odd

Ωn(kod) =


kod if n is even

kev if n is odd

and an application of Corollary 4.11 proves the following proposition.

Proposition 5.1. Let e1 be the rank one detecting subalgebra of type e. Then T (e1) ∼= Z2.

5.3 Endotrivial Modules for the f1 Detecting Subalgebra

Now we consider the Lie superalgebra sl(1|1). By the PBW theorem, a basis of U(sl(1|1)) is

given by {
xr1yr2ts

∣∣ ri ∈ {0, 1} and s ∈ Z≥0

}
. (5.1)
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Not all endotrivial U(sl(1|1))-supermodules will be classified yet since this is a rank 2

detecting subalgebra. First consider modules over a the Lie superalgebra generated by one

element of sl(1|1)1.

Note that, since [x, x] = [y, y] = 0, an 〈x〉-supermodule or a 〈y〉-supermodule will also

fall under the classification given in [2, Section 5.2]. For modules of this type, there are only

four isomorphism classes of indecomposable modules, kev, kod, U(〈x〉), and Π(U(〈x〉)). It can

be seen by direct computation that U(〈x〉) is the projective cover of kev (and the kernel of

the projection map is kod) and Π(U(〈x〉)) is the projective cover of kod (and the kernel of the

projection map is kev).

Alternatively, let z = ax+ by where a, b ∈ k \{0}. then U(〈z〉) ∼= U(q(1)). Thus, we have

the same result and proof as in Proposition 5.1.

Proposition 5.2. Let f1|〈z〉 be a rank 1 subalgebra of sl(1|1) generated by z, an element of

sl(1|1)1. Then T (f1|〈z〉) ∼= Z2.



Chapter 6

Computing T (g) for Rank 2 Detecting Subalgebras

The main result of this section is the classification of T (a2), stated in Theorem 6.11. Given

this goal, the Lie superalgebras of interest in this section are q(1) × q(1), denoted e2, and

sl(1|1), denoted f2. The classification of T (a2) is more complex than the rank one case and

will require some general information about representations of the detecting subalgebras to

prove the main theorem of this section.

6.1 Rank r Detecting Subalgebras

Since the this section requires considering arbitrary detecting subalgebras, consider the fol-

lowing. Rank r detecting subalgebras are defined to be subalgebras isomorphic to either

er ∼= q(1) × · · · × q(1) ⊆ gl(n|n) or fr ∼= sl(1|1) × · · · × sl(1|1) ⊆ gl(n|n) where there are r

copies of q(1) and sl(1|1) respectively.

Recall, er has a basis of

{e1, · · · , er, t1, · · · , tr}

and there are matrix representations of ti and ei which are 2n× 2n matrices with blocks of

size n× n. Let di be the n× n matrix with a 1 in the ith diagonal entry and 0 in all other

entries. Then

ti =

 di 0

0 di

 ei =

 0 di

di 0


is a representation of er. The only nontrivial bracket operations on er are [ei, ei] = 2ti, thus

all generating elements in U(er) commute except for ei and ej anti-commute when i 6= j and
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by the PBW theorem,

{
ek11 · · · ekrr t

l1
1 · · · tlrr

∣∣ ki ∈ {0, 1} and li ∈ Z≥0

}
is a basis for U(er).

For fr, the set

{x1, · · · , xr, y1, · · · , yr, t1, · · · , tr}

forms a basis. The matrix representation of each element are also 2n × 2n matrices with

blocks of size n× n. If di is as above then

ti =

 di 0

0 di

 xi =

 0 di

0 0

 yi =

 0 0

di 0


gives a realization of fr. The only nontrivial brackets are [xi, yi] = ti. So, in U(fr), xi ⊗ yj =

−yj ⊗ xi when i 6= j and ti commutes with xj and yk for any i, j, and k. Observe that

xi ⊗ yi = −yi ⊗ xi + ti for each i. Finally, the PBW theorem shows that

{
xk11 · · ·xkrr y

l1
1 · · · ylrr t

m1
1 · · · tmrr

∣∣ ki, li ∈ {0, 1} and mi ∈ Z≥0

}
.

is a basis for U(fr).

Note that if g and g′ are two Lie superalgebras, and σ : g→ U(g) and σ′ : g′ → U(g′) are

the canonical inclusions, then [23] gives an isomorphism between U(g × g′) and the graded

tensor product U(g)⊗U(g′) where the mapping

τ : g× g′ → U(g)⊗U(g′)

τ(g, g′) = σ(g)⊗ 1 + 1⊗ σ′(g′)

corresponds to the canonical inclusion of g×g′ into U(g×g′). The corresponding construction

for modules is the outer tensor product. If M is a U(g)-module and N is a U(g′)-module,

then the outer tensor product of M and N is denoted M �N . This is a U(g)⊗U(g′)-module

where the action is given by

(x⊗ y)(v � w) = (−1)|y||v|x(v) � y(w)
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for x⊗ y ∈ U(g)⊗U(g′).

This correspondence is relevant to the work here because it implies that U(er) ∼=

U(e1)⊗ . . .⊗U(e1) and U(fr) ∼= U(sl(1|1))⊗ . . .⊗U(sl(1|1)) with r graded tensor products

respectively. It will be useful to think of the universal enveloping algebra and corresponding

representations in both contexts.

6.2 Representations of Detecting Subalgebras

Because q(1)0 and sl(1|1)0 consist only of toral elements, for an arbitrary detecting subalgebra

a, the even component a0 consists of only toral elements as well. Thus, any a-module will

decompose into a direct sum of weight spaces over the torus a0. Furthermore, this torus

commutes with all of a, as can be observed by the bracket computations given above, and

so the weight space decomposition actually yields a decomposition as a-modules.

This decomposition is consistent with the standard notion of a block decomposition for

modules and a case of particular importance is that of the principal block, i.e., the block

which contains the trivial module. All elements of a act by zero on the trivial a-module, and

so in particular, all toral elements do as well. This defines the weight associated with this

block to be the zero weight and a0 acts by zero on any module in the principal block.

This structure has implications for the projective and simple modules in each block. As

noted, a0 is toral, and hence the only simple modules are one dimensional with weight λ.

Then for a simple a-module S of weight λ = (λ1, . . . , λr), the restriction S|a0 ∼= ⊕Ti where

each Ti is a simple, hence one dimensional, a0-module of weight λ. Thus, Ti ∼= kλ where kλ

denotes a one dimensional module, concentrated in either even or odd degree, with basis {v}

and the action of a0 is given by ti.v = λiv. Then by Frobenius reciprocity,

HomU(a)(U(a)⊗U(a0) kλ, S) ∼= HomU(a0)(kλ, S|a0) 6= 0

and since S is simple, the nonzero homomorphism is also surjective. Thus, the projective cover

of any simple a-module can be found as a direct summand of an induced one dimensional

module.
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When a ∼= sl(1|1), these modules are small enough to be explicitly described and are

important for the next proposition. By the considering the basis in (5.1), these induced

modules will be 4 dimensional. Furthermore, when λ = 0 and concentrated in the even

degree, the induced module, denoted P (0), is indecomposable with simple socle and simple

head, and hence is the projective cover of the trivial module kev and Π(P (0)) is the projective

cover of Π(kev) = kod.

When λ 6= 0, a direct computation shows that the induced module splits as a direct sum

of two simple sl(1|1)-modules each of which are two dimensional, with basis {v1, v2} and

action

x.v1 = v2 and x.v1 = 0

y.v1 = 0 y.v2 = v1.

For one of the summands v1 is even and v2 is odd, and for the other v2 is even and v1 is

odd. Thus the simple sl(1|1)-modules outside of the principal block are two dimensional and

projective. Moreover, in the terminology of [5], this computation shows that these modules

are absolutely irreducible. This will be relevant in the following proposition.

Another useful property of this block decomposition is that it yields information about

the dimensions of the modules in certain blocks.

Proposition 6.1. Let ar be a rank r detecting subalgebra. Then any simple module outside

the principal block has even dimension.

Proof. Since q(1)0 = sl(1|1)0, let {t1, . . . , tr} be the basis for (ar)0 such that ti is a basis for

the even part of the ith component of either q(1) or sl(1|1). Since the module is outside of

the principal block, the associated weight λ = (λ1, . . . , λr) must have some λi 6= 0.

According to a theorem of Brundan from [4, Section 4], the simple er = q(1)× · · · × q(1)

(r products) modules, denoted u(λ) for λ ∈ Zn, have characters given by

ch u(λ) = 2bh(λ)+1/2cxλ
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where h(λ) denotes the number of ti which do not act by 0. Thus all modules are even

dimensional except in the case when h(λ) = 0, i.e. all simple modules outside of the principal

block are even dimensional.

For the case of fr, by [23, Section 2.1, Proposition 2], U(fr) ∼= U(sl(1|1))⊗ . . .⊗U(sl(1|1)).

By [5, Lemma 2.9], we can construct any irreducible fr-module as outer tensor products of

irreducible sl(1|1)-modules. Since all simple sl(1|1)-modules are absolutely irreducible, the

outer tensor product of such modules is also absolutely irreducible. We saw that a simple

sl(1|1)-module has dimension one if the weight is 0, and dimension two otherwise. Thus the

dimension of a simple fr is 2h(λ), and so all simple modules outside of the principal block are

even dimensional.

Now that something is known about the dimensions of the simple a-modules, we consider

the dimensions of the projective a-modules. By the previous proposition, any projective

module outside of the simple block will be even dimensional as well. Furthermore, in the

previous sections we have shown that the only simple modules in the principal block are kev

and kod, and for e1 and f1, the direct computations have shown the projective covers of these

are indecomposable modules of even dimension.

By the rank variety theory of [2, Section 6], restriction of any projective er or fr module,

must be projective when restricted to e1 or f1, respectively. Thus, any projective a-module

is a direct sum of modules which are each even dimensional, and thus even dimensional as

well.

Given these results, the following lemma will greatly restrict our search for endotrivial

modules.

Lemma 6.2. Let M be an indecomposable e2-supermodule or an sl(1|1)-supermodule. If M

is an endotrivial supermodule, then M must be in the principal block, i.e. all of the even

elements must act on M by 0.

Proof. Since M is endotrivial, M ⊗ M∗ ∼= kev ⊕ P for some projective module P . Since

dimP = 2m for m ∈ N by the previous observations, dimM ⊗M∗ = dimM2 ≡ 1 (mod 2).
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Since all modules outside of the principal block are even dimensional, M must be in the

principal block.

This simplifies the search for endotrivial modules and we also can conclude that the only

simple endotrivial modules are kev and kod. Now we wish to show that the only endotrivials

are {Ωn(kev),Π(Ωn(kev))|n ∈ Z}.

Note. Since endotrivial a-modules are restricted to the principal block, the even elements act

via the zero map on any module. With this in mind, it is convenient to think of endotrivial

a-supermodules in a different way. Since ti acts trivially for all i, considering a-modules as a

a1-modules with trivial bracket yields an equivalent representation. The representations of

these superalgebras are equivalent and the notation for this simplification is V (a) := Λ(a1).

With these reductions, in general, endotrivial ar-modules are simply endotrivial modules

for an abelian Lie superalgebra of dimension r concentrated in degree 1. For simplicity, denote

a basis for (ar)1 by {a1, . . . , ar}. Then it is clear that V (ar) = 〈1, a1, . . . , ar〉 generated as an

algebra.

6.3 Computing T (a2)

Given the above simplification, a basis for V (e2) is given by

{
er11 e

r2
2

∣∣ ri ∈ {0, 1}} .
If we consider the left regular representation of V (e2) in itself with this basis, we have a 4

dimensional module with the structure

1

e1 e2

e1e2

e1 e2

e2 e1

which is isomorphic to the projective cover of k thought of as an e2-module.
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In the sl(1|1) case, now that the search has been restricted to the principal block,

V (sl(1|1)) has the same structure. V (sl(1|1)) has a basis given by{
xr1yr2

∣∣ ri ∈ {0, 1}}
and V (sl(1|1)) has the structure

1

x y

xy

x y

y x

which is isomorphic to that of V (e2) and is the projective cover of k as an sl(1|1)-module.

For the rank 2 case, the algebra V (a2) is similar to the group algebra k(Z2 × Z2) and

endotrivials in the superalgebra case will be classified using a similar approach to Carlson in

[7]. First we give analogous definitions and constructions to those in Carlson’s paper.

Let M be a g-supermodule. The rank of M , denoted Rk(M), is defined by Rk(M) =

dimk(M/Rad(M)). Any element of M which is not in Rad(M) will be referred to as gener-

ators of M . The socle of M has the standard definition (largest semi-simple submodule)

and can be identified in the case of the principal block by SocM = {m ∈ M |u.m =

0 for all u ∈ Rad(V (ar))}. If h is a subalgebra of ar with a basis of h1 given by {h1, . . . , hs},

then h̃ :=
⊗s

i=1 hi is a useful element of V (h). This is because in M |V (h), h̃.M ⊆ SocM |V h.

Now we prove a lemma in the same way as [7].

Lemma 6.3. Let M be an endotrivial ar-supermodule for any r ∈ N. Then

dim Ext1
V (ar)(M,Ω1(M)) = 1

and M is the direct sum of an indecomposable endotrivial module and a projective module.

Proof. By definition, Homk(M,M) ∼= kev ⊕ P for some projective module P . It is clear

from the definitions, that HomV (ar)(M,M) = Soc(Homk(M,M)). We have observed that

ã.M ⊆ Soc(M) and in the case of a projective module, equality holds. So then

ã.Homk(M,M) = ã.(k ⊕ P ) = Soc(P ).



37

Since Soc(Homk(M,M)) = k ⊕ Soc(P ), we can see that ã.Homk(M,M) is a submodule of

HomV (ar)(M,M) of codimension one.

Let P ′ be the projective cover of M . Apply Homk(M,−) and the long exact sequence in

cohomology to the short exact sequence defining Ω1(M) to get the following commutative

diagram

0 Homk(M,Ω1(M)) Homk(M,P ′) Homk(M,M) 0

0 HomV (ar)(M,Ω1(M)) HomV (ar)(M,P ′) HomV (ar)(M,M)

Ext1
V (ar)(M,Ω1(M)) 0

ψ∗

where the vertical maps are multiplication by ã. Since the diagram commutes and the map

into Homk(M,M) is surjective, the image of ψ∗ contains ã.Homk(M,M), and we conclude

that the dimension of Ext1
V (ar)(M,Ω1(M)) is at most 1. The dimension is nonzero since the

extension between a non-projective module and the first syzygy does not split. Since Ext1
V (ar)

splits over direct sums, the claim is established.

Lemma 6.4. Let M be a V (ar)-module and let b be a subalgebra of ar. Then

Ωn
ar(M)

∣∣
b
∼= Ωn

b (M |b)⊕ P

for all n ∈ Z, where P is a projective V (b)-module.

Proof. The case when n = 0 is proven by considering the rank varieties of ar and b. Let M

be as above and

0 Ω1
ar(M) P M 0

be the short exact sequence of V (ar)-supermodules defining Ω1(M). Then by the rank variety

theory of [2, Section 6], the module P |b is a projective V (b)-module (although perhaps not

the projective cover of M |b) and

0 Ω1
ar(M)|b P |b M |b 0

is still exact. Then by definition, Ω1
ar(M)|b ∼= Ω1

b(M |b)⊕P . This argument applies to Ω−1(M)

as well and so by induction, Ωn
ar(M)|b ∼= Ωn

b (M |b)⊕ P for all n ∈ Z
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The previous lemma indicates that the syzygies of a module commute with restriction

up to a projective module (and truly commute in the stable module category). With this in

mind, the subscripts on the syzygies will be suppressed as it will be clear from context which

syzygy to consider.

In proving Theorem 6.11, we work with 2 conditions on a V (a2)-supermodule, M . For

notation, recall that V (a2) = 〈1, a1, a2〉. The conditions are

(1) Rk(M) > Rk(Ω−1(M));

(2) for any nonzero a = ca1 + da2 ∈ (a2)1, M |〈a〉 ∼= Ωt(k|〈a〉) ⊕ P where t = 0 or 1, P is a

projective 〈a〉-supermodule, and c, d ∈ k.

Note that in condition (2), U(〈a〉) ∼= V (a1) and so the structure of such modules is

detailed in Sections 5.2 and 5.3.

The technique is to show that some endotrivial modules have these properties and use

them to classify all endotrivial modules.

Let M be an endotrivial V (a2) module. Because the complexity of an M is nonzero (see

[3, Corollary 2.71]), Ωn(M) satisfies (1) for some n ∈ Z≥0, so we can simply replace M

with Ωn(M) initially and proceed. Since the endotrivials for rank 1 supermodules have been

classified, and M |〈a〉 is isomorphic to a V (a1)-supermodule, M satisfies (2) as well.

The classification of T (a2) is approached in the same way as in [7], but the techniques

are altered to suit the rank 2 detecting subalgebra case. We begin by establishing several

supplementary results.

Lemma 6.5. A V (a2)-supermodule M satisfies (2) if and only if Ωn(M) satisfies (2) for all

n ∈ Z.

Proof. Since M |〈a〉 is endotrivial, then Ωn(M)|〈a〉 is as well by Lemma 6.4, and so by the

classification of the V (a1) endotrivials, Ωn(M) satisfies (2) for all n if and only if M satisfies

(2).
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Lemma 6.6. Let M be a V (a2)-supermodule which has no projective submodules and which

satisfies condition (2) and let b be some nonzero element of (a2)1 not in the span of a. Let v

be a generator for the Ωt(k|〈a〉) component of some decomposition of M |〈a〉, then M satisfies

condition (1) if and only if every such element v satisfies b.v 6= 0.

Proof. First, note that since M has no projective summands, a.M ⊆ Annb(M) and b.M ⊆

Anna(M), i.e. that radical series of M has length 1. Otherwise if (a ⊗ b).m 6= 0 for some

m ∈M , then this would generate the socle of a projective submodule, and hence summand

since V (a2) is self injective. Recall also that in the principal block Annx(M) = Soc(M |〈x〉).

Let M be as above and assume that b.v 6= 0. Since M is endotrivial, it must have odd

dimension, and by the decomposition given in (2) and the knowledge of projective U(〈a〉)-

modules, if dimM = 2n+ 1, then dim Soc(M |〈a〉) = n+ 1.

Since M satisfies (2) and the choice of a was arbitrary, we also know that M |〈b〉 ∼=

Ωt(k|〈b〉) ⊕ P and since b.v 6= 0, v is not in the socle of M |〈b〉, which also has dimension

n + 1. Since, as noted before, a.M ⊆ Annb(M) and b.M ⊆ Anna(M), but b.v 6= 0, then

Soc(M) = Anna(M) ∩Annb(M) = a.M = b.M which has dimension n and Rk(M) = n+ 1.

Thus, if 0→ M → I → Ω−1(M)→ 0 is the exact sequence defining Ω−1(M), then since M

has no projective submodules, the following holds

Rk(Ω−1(M)) = Rk(I) = dim(Soc(M)), (6.1)

and so

Rk(M) = n+ 1 > n = Rk(Ω−1(M))

as was desired.

Now, assume that Rk(M) > Rk(Ω−1(M)) and let a and b be as above. Since M |〈a〉 ∼=

Ωt(k|〈a〉) ⊕ P and M |〈b〉 ∼= Ωt(k|〈b〉) ⊕ P ′ which both have socles of dimension n + 1 and

intersect in at least n dimensions since a.M ⊆ Annb(M) and b.M ⊆ Anna(M) and at most

in n+1. However, by Equation 6.1, they cannot intersect in n+1 or else condition (1) would
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be violated. Thus, if v is a generator for the Ωt(k|〈a〉) component of M |〈a〉, then it is not in

the socle of M |〈b〉, and so b.v 6= 0.

A new condition is introduced to encapsulate the previous lemma.

(3) Let M satisfy condition (2). If v is a generator for the Ωt(k|〈a〉) component of M |〈a〉,

then v is a generator for M . If m is any generator for M then either a.m 6= 0 or b.m 6= 0

where b is some nonzero element of (a2)1 not in the span of a.

Lemma 6.7. Let M be a V (a2)-supermodule which has no projective submodules and which

satisfies condition (2), then M satisfies (1) if and only if M satisfies (3).

Proof. First, assume M satisfies (3). Since M satisfies (2), let v be some generator for the

Ωt(k|〈a〉) component in some decomposition of M |〈a〉. Since a.v = 0, b.v 6= 0 by (3) and by

Lemma 6.6, M satisfies (1).

Next, assume that M satisfies (1). By Lemma 6.6, b.v 6= 0. Assume that v is not a

generator for M . Then, by definition, v is in Rad(M) and so we can write v = a.m1 + b.m2

for some m1,m2 ∈M . By assumption

b.v = b.(a.m1 + b.m2) = cã2.m1 6= 0

for some c ∈ k. However, then m′ generates a projective submodule which is a contradiction,

so v is also a generator of M .

The only thing left to show is that if m is any generator for M , either a.m 6= 0 or b.m 6= 0.

If m is any such generator, then m must also be a generator for M |〈a〉 ∼= Ωt(k|〈a〉)⊕ P . The

case when m generates Ωt(k|〈a〉) has been handled, so assume that m is a generator for P .

Since P is a projective 〈a〉-module, and m is a generator, then a.m 6= 0.

Proposition 6.8. Let M be a V (a2)-supermodule which has no projective submodules satis-

fying (1), (2), and (3), then Ωn(M) does as well for all n ≥ 0.
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Proof. By Lemmas 6.5 and 6.7, it is sufficient to show that (3) holds for Ωn(M) for all n ≥ 0.

This proposition it trivial when n = 0 since Ω0(M) = M by assumption.

Let m be a generator for Ω1(M), then m is also a generator for Ω1(M)|〈a〉 ∼= Ωt(k|〈a〉)⊕P

in some decomposition of Ω1(M)|〈a〉. Assume that m is a generator for P . Since P is a

projective 〈a〉-module, a.m 6= 0.

All that remains to be shown is that if w is a generator for the Ωt(k|〈a〉) component of

Ω1(M)|〈a〉, then w is a generator for Ω1(M) and b.w 6= 0.

Let 0 → Ω1(M) → P
ψ−→ M → 0 be the exact sequence defining Ω1(M). Let v be

a generator for the Ωt(k|〈a〉) component of M |〈a〉. This generator can be chosen so that

v = ψ(p) where p is a generator of P . We claim that a.p is a generator for Ω1(M) ⊆ P . If

not, then write

a.p = a.l + b.m

for some elements l, m ∈ Ω1(M). Then

ba.p = ba.l.

Define ω := b.p − b.l. Since a.ω = b.ω = 0, by definition, ω ∈ Soc(P ) = ã.P ⊆ Ω1(M). So

then b.p = ω + b.l ∈ Ω1(M) = kerψ (as in Definition 3.12). Now

ψ(ω + b.l) = ψ(b.p) = b.ψ(p) = b.v 6= 0

by assumption since M satisfies (3). This is a contradiction, thus, a.p is a generator for

Ω1(M).

Note that in Ω1(M)|〈a〉, a.p generates a trivial 〈a〉-module. Thus, any generator for the

Ω1(k|〈a〉) component of Ω1(M)|〈a〉 ∼= Ωt(k|〈a〉)⊕Q is equivalent to a.p modulo Soc(Q) = a.Q.

So if w is any such generator, then it is possible to write w = ca.p+ a.ν for some 0 6= c ∈ k

and ν ∈ Soc(Q). Then

b.w = b.(ca.p+ a.ν) = c′ã.p 6= 0.

These computations show that condition (3) holds for Ω1(M), hence condition (1) does

as well. An inductive argument completes the proof of the proposition.
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Proposition 6.9. Let M be a V (a2)-supermodule which has no projective submodules sat-

isfying (1), (2), and (3), then either Ω−1(M) satisfies all three conditions or Ω−1(M) has a

summand which is isomorphic to k (either even or odd).

Proof. Let 0 → M → I
ψ−→ Ω−1(M) → 0 be the exact sequence of V (a2)-supermodules

defining Ω−1(M). By Lemma 6.5, Ω−1(M) already satisfies (2). Recall that because we are

working in a self-injective category, the module I is also projective and we can take advantage

of the previous description of these modules.

Let v ∈ M be a generator for the Ωt(k|〈a〉) component of some decomposition of M |〈a〉.

Our previous work shows that we may choose v so that v = a.p for some p ∈ I. We also

know that for some nonzero c ∈ k, cã.p = b.v 6= 0. Then p is a generator for I and ψ(p) is a

generator for Ω−1(M). There are two cases to consider.

First, if b.ψ(p) = 0, then ψ(p) ∈ Soc(Ω−1(M)), since a.ψ(p) = ψ(a.p) = ψ(v) = 0 because

v ∈M . If this happens, then k · ψ(p) ∼= k is a direct summand of Ω−1(M).

For the rest of the proof, assume that for any such element p, b.p /∈ M and we will

show that Ω−1(M) satisfies all three conditions. Note that, by Lemma 6.7, we only need to

establish (3). Indeed, it has been observed that ψ(p) is a generator for Ω−1(M) and by the

assumption, b.p /∈M yields that b.ψ(p) 6= 0 in Ω−1(M).

Now let m be a generator for Ω−1(M) such that a.m = 0. By (2), Ω−1(M)|〈a〉 ∼= Ωt(k|〈a〉)⊕

P where P is a projective 〈a〉-module. Since a.ψ(p) = 0, any generator of the Ωt(k|〈a〉)

component will be equivalent to ψ(p) modulo Soc(P ). This case has been covered since we

assumed b.p /∈ M so assume that m does not generate the Ωt(k|〈a〉) component and, thus,

must be a generator for the projective summand. However, since a.m = 0, m ∈ Soc(P ) and

we conclude that m cannot be a generator for P , a contradiction. So if m 6≡ ψ(p) mod Soc(P )

is any generator, then a.m 6= 0. Thus, Ω−1(M) satisfies (3) and thus (1) in this case, and the

proof is complete.
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Theorem 6.10. Let M be an endotrivial V (a2)-supermodule in F . Then M ∼= Ωn(k) ⊕ P

for some n ∈ Z and where k is either the trivial module kev or Π(kev) = kod and P is a

projective module in F .

Proof. It has been observed that if M is endotrivial, then M satisfies condition (2). Addi-

tionally, for some r ≥ 0, Ωr(M) satisfies (1). So by Lemma 6.7, Ωr(M) satisfies (3) as well.

By (1), we can see that Ωr(M) has no summand isomorphic to k. Assume that

Ω−s(Ωr(M)) has no such summand for for all s > 0. By Proposition 6.9,

Rk(M) > Rk(Ω−1(M)) > Rk(Ω−2(M)) > · · ·

which is clearly impossible since Rk(M) is finite for any module in F . Thus, Ω−n−r(Ωr(M)) ∼=

k⊕Q for some n ∈ Z. Since Ω−n−r(Ωr(M)) satisfies (2), Q|〈a〉 is a projective 〈a〉-module and

by considering the rank variety of V (a2), Q is a projective V (a2)-module. The k summand

may either be contained in Ω−n(M)0 or Ω−n(M)1 and since Ω−n(M) contains no projective

submodules, Ω−n(M) ∼= k and Ω0(M) ∼= Ωn(k). By Lemma 6.3,

M ∼= Ωn(k)⊕ P

where P is a projective V (a2)-supermodule and k is either kev or kod.

Given this theorem, it is now possible to identify the group T (a2).

Theorem 6.11. Let a2 be a rank 2 detecting subalgebra of g, then T (a2) ∼= Z × Z2 and is

generated by Ω1(kev) and kod.

Proof. Let M be an endotrivial V (a2)-supermodule. By Theorem 6.10, in the stable module

category, M ∼= Ωn(kev) or M ∼= Ωn(Π(kev)). By Lemma 4.15, this can be rewritten as

M ∼= Ωn(kev) or M ∼= Π(Ωn(kev)). Since the group operation in T (a2) is tensoring over k

and by Corollary 4.11,

M ∼=


Ω1(kev)

⊗n ⊗k (kod)
⊗t if n > 0

Ω−1(kev)
⊗n ⊗k (kod)

⊗t if n < 0

Ω1(kev)⊗k Ω−1(kev)⊗k (kod)
⊗t if n = 0
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where t ∈ {1, 2}. Thus, there is an isomorphism, φ, from T (a2) to Z× Z2 given by

φ(M) :=


(n, t) if M ∼= Ω1(kev)

⊗n ⊗k (kod)
⊗t for n > 0

(n, t) if M ∼= Ω−1(kev)
⊗n ⊗k (kod)

⊗t for n < 0

(0, t) if M ∼= kev ⊗k (kod)
⊗t

and it is now clear that T (a2) is generated by Ω1(kev) (and its inverse) and kod.



Chapter 7

Computing T (g) for All Ranks Inductively

Now we wish to proceed by induction to classify endotrivial modules for the general case ar

where r > 2. The structure of en ∼= q(1)×· · ·×q(1) ⊆ gl(n|n) and fn ∼= sl(1|1)×· · ·×sl(1|1) ⊆

gl(n|n) where there are r copies of q(1) and sl(1|1) respectively is given in Section 6.1.

By Lemma 6.2, any endotrivial module for a detecting subalgebra is in the principal

block, we can consider (equivalently) endotrivial representations of V (en) = Λ((en)1) and

V (fn) = Λ((fn)1). The support variety theory of [2, Section 6] will be used as well. For an

endotrivial module M , since M ⊗M∗ ∼= kev ⊕ P , we have V(a,a0)(M) = V(a,a0)(kev) ∼= Ar

(which is also equivalent to the rank variety of M).

Our first step in the classification comes by following [11, Theorem 4.4]. Recall that

{a1, . . . , ar} denotes a basis for (ar)1 and that V (ar) = 〈1, a1, . . . , ar〉 when generated as an

algebra.

Theorem 7.1. Let M be an endotrivial V (ar)-supermodule, where ar is a rank r detecting

subalgebra. Let v = c1a1 + · · · + crar ∈ (ar)1 with ci 6= 0 for some i < r and let A = 〈v, ar〉

be the subsuperalgebra of V (ar) of dimension 4 generated by v and ar. Then, for some s

independent of the choice of v, M |A ∼= Ωs(k|A) ⊕ P for some ar-projective module P where

k|A is either the trivial module kev or Π(kev) = kod.

Proof. First, note that since ar is a purely odd, abelian Lie superalgebra, v ⊗ v = [v,v]
2

= 0

and ar ⊗ ar = 0 but v ⊗ ar = −ar ⊗ v 6= 0 and so A ∼= V (a2). Also note that if v′ =

c1a1 + · · · cr−1ar−1, since ci 6= 0 for some i < r, then 〈v, ar〉 ∼= 〈v′, ar〉 by a change of basis.

So without loss of generality, redefine v = c1a1 + · · · cr−1ar−1 and A = 〈v, ar〉 for the new v

and identify all such v with the points in Ar−1 \ {0}.
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By the previous classification, Ω0(M |A) ∼= Ωmv(k) where k is either even or odd. We now

show that mv is independent of the choice of v.

Since dim Ωm(k|A) = dim Ω−m(k|A) > dimM for large enough m, then there exist b,

B ∈ Z such that b ≤ mv ≤ B for any v ∈ Ar−1 \ {0}. Moreover, we can choose b and B

such that equality holds for some v and v′. Now replace M by Ω−b(M). Once this is done,

we assume b = 0, and for all v ∈ Ar−1 \ {0}, 0 ≤ mv ≤ B where the bounds are actually

attained.

Let C ∈ Z be such that 0 ≤ C < B and let

SC = {v ∈ Ar−1\{0} | mv > C}

We claim that SC is closed in the Zariski topology of Ar−1 \ {0}.

Recall that, since we are working with V (a2)-modules, i.e., in the principal block, there

are, up to the parity change functor, a unique simple module, k, and indecomposable pro-

jective module, which is isomorphic to the left regular representation of V (a2) (see Sections

6.2 and 6.3). Thus, any projective module P has dimension 4n for some n ∈ N.

Since mv = 0 for some v, it follows that dimM ≡ 1 (mod 4). This implies that mv is

even for all v since dim Ωn(k|A) = 1 + 2|n|. Thus, for any v, dim Ω2s(k|A) = 1 + 4s for s ≥ 0.

With this in mind, define

t = (dimM − dim Ω2c(k|A))/4

where c = C/2 if C is even and c = (C − 1)/2 if C is odd. In either case, 2c ≤ C < 2c + 2.

This construction is done to ensure that for any v, the statement that mv ≤ C means that

the dimension of the projective part of M |A is

dimM − dim Ωmv(k|A) ≥ 4t.

In other words, if mv ≤ C, then M |A has an A-projective summand of rank at least t so the

rank of the matrix of the element ωv = v ⊗ ar (which generates the socle of A) acting on

M is at least t. Otherwise, if mv > C, then M |A has no A-projective summand of rank t.

Consequently, the rank of the matrix of ωv is strictly less than t.
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Let d = dimM and let S be the set of all subsets of N = {1, . . . , d} having exactly t

elements. For any S, T ∈ S define fS,T : Ar−1 \ {0} → k by

fS,T (v) = Det(MS,T (ωv))

where MS,T is the t× t submatrix of the matrix of ωv acting on M having rows indexed by S

and columns indexed by T . The functions fS,T are polynomial maps and so their common set

of zeros V ({fS,T}S,T∈S) is a closed set of Ar−1 \{0}. If M |A has no A-projective summand of

rank t, then each determinant must always be 0, hence in the vanishing locus, and otherwise,

at least one of the fS,T (v) will be nonzero. Thus we have constructed a set of polynomials

such that fS,T (v) = 0 on each polynomial fS,T if and only if v ∈ SC . We conclude that SC is

closed in Ar−1 \ {0}.

It is also true that for any C, SC is open in Ar−1 \ {0}. First, replace M with M∗ (which

is also endotrivial). Since (Ωn(M∗))∗ ∼= Ω−n(M), for M∗, the bounds are −B ≤ mv ≤ 0.

Replacing M∗ with ΩB(M∗) again yields 0 ≤ mv ≤ B . However, now we have that for any

v,

M |A ∼= Ωmv(k|A)⊕ P,

and by the above computation, we also have

(ΩB(M∗))|A ∼= ΩB−mv(k|A)⊕ P.

Thus, SC = (SB−C)c and so SC is open. Since SC is both open and closed and Ar−1 \ {0} is

connected, we conclude that SC is either the empty set or all of Ar−1 \ {0}. By assumption,

there is a v such that mv = 0, so S0 is nonempty. Thus, S0 = Ar−1 \ {0} and B = 0 as well

(since the bounds are attained). Thus, the number mv is constant over all v ∈ Ar−1 \ {0}

and

M |A ∼= Ωs(k|A)⊕ P

for any subsuperalgebra A ∼= V (a2) where k is either kev or kod, by the classification of T (a2).

We also claim that for any such A, the parity of k|A is constant as well. This can be seen

by assuming that there are A and A′ such that M |A ∼= Ωs(kev)⊕P and M |A′ ∼= Ωs(kod)⊕P ′.
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Now consider the dimensions of M0 and M1. Since dim Ωs(kev) = dim Ωs(kod), it follows

that dimP = dimP ′. Note that dimP 0 = dimP 1 and consequently, dimP 0 = dimP ′0 and

dimP 1 = dimP ′1. Finally, recall that dim Ωs(kev)0 6= Ωs(kev)1. Without loss of generality,

assume that dim Ωs(kev)0 > dim Ωs(kev)1, i.e. s is an even integer. Then

dim Ωs(kod)0 = dim Ωs(Π(kev))0 = dim Π(Ωs(kev)0) = dim Ωs(kev)1

and similarly,

dim Ωs(kod)1 = dim Ωs(Π(kev))1 = dim Π(Ωs(kev)1) = dim Ωs(kev)0.

This implies that dim Ωs(kod)0 < dim Ωs(kod)1. These different decompositions combine to

yield that dimM0 > dimM1 by considering M |A and dimM0 < dimM1 by considering

M |A′ . This is a contradiction and so the parity of the k in the decomposition of M |A is

constant for any choice of A as well.

Theorem 7.2. Let M be an endotrivial V (ar)-supermodule, then M ∼= Ωn(k)⊕ P for some

n ∈ Z where k is either the trivial module kev or Π(kev) = kod and P is a projective module

in F .

Proof. Let M be an endotrivial V (ar)-supermodule and let A = 〈v, ar〉. By Theorem 7.1,

M |A ∼= Ωm(k|A) ⊕ P where v = c1a1 + · · · + cr−1ar−1 for some (c1, . . . , cr−1) ∈ Ar−1 \ {0}

and m is independent of the choice of v. The goal is to prove that M ∼= Ωm(k) ⊕ Q′ or,

equivalently, Ω−m(M) ∼= k ⊕ Q. For simplicity, replace M by Ω−m(M) and assume that

M |A ∼= k|A ⊕ P .

The first step is to show that the module M̂ = ar.M is a projective V̂ = V (ar)/(ar)

module. We do this by considering the rank variety Vrank
a (M̂ |V̂ ) (see [2, Section 6.3]).

As in the previous proof, we are working in the principal block and so, there is, up

to the parity change functor, a unique indecomposable projective V (ar)-module, which is

isomorphic to the left regular representation of V (ar) in itself (see Section 6.2). Note that

the dimension of these projective indecomposable modules is 2r.
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Recall that A = 〈v, ar〉 ∼= V (a2) = 〈a1, a2〉 and we assume that M |A ∼= k|A ⊕ PA where

PA is a projective A-module. Then ar.M |A ∼= ar.k|A ⊕ ar.PA ∼= ar.PA. The action of ar on

these modules is trivial, so think of them now as v-modules. We also know that ar.PA is still

projective as a v-module, since a2.V (a2) ∼= V (a1) as V (a1)-modules. Hence M̂ |v = ar.M |v is

projective for all v ∈ Ar−1\{0}. This tells us that Vrank
a (M̂ |V̂ ) = {0} and so M̂ is a projective

V̂ -module.

The projective indecomposable modules in the principal block are the projective covers

(or equivalently injective hulls) of the trivial modules kev and kod. Consequently, the simple,

one dimensional socle of V̂ ∼= V (ar−1) is generated by ãr−1 = a1⊗· · ·⊗ar−1. Thus, dim ãr−1.M̂

counts the number of summands of projective V (ar)-modules in M̂ and so

dim M̂ = 2r−1 dim ãr−1.M̂ .

Also, ãr = ãr−1⊗ar is a generator for the socle of V (ar) and ãr−1.M̂ = ãr.M by construction.

Therefore, M has a projective submodule, Q of dimension 2r dim ãr.M = 2r dim ãr−1.M̂ .

Thus,

2 dim M̂ = dimM − 1

and we conclude that M ∼= k ⊕ Q. Note, since this is a direct sum decomposition, as super

vector spaces, k = k|A. Thus k has the same parity as k|A (which was uniquely determined

by M) and the claim is proven.

We can now classify endotrivial ar-modules for all r.

Theorem 7.3. Let ar be a rank r detecting subalgebra where r ≥ 2, then T (ar) ∼= Z × Z2

and is generated by Ω1(kev) and kod.

Proof. The proof is exactly the same as in Theorem 6.11.



Chapter 8

A Finiteness Theorem for T (g)

Let g = g0 ⊕ g1 be a classical Lie superalgebra. Just as in the case of finite group schemes,

it is not known if T (g) is finitely generated, but we can show that in certain cases, there are

finitely many endotrivial modules of a fixed dimension. This is done by extending a proof in

[12] to superalgebras.

In order to achieve a situation which is analagous to that in [12] (the main goals working

with modules over a finitely generated algebra), we must work in a category which is Morita

equivalent to U(g)-modules.

8.1 Morita Equivalence

First, consider the following category.

Definition 8.1. Let g = g0 ⊕ g1 be a classical Lie superalgebra and let Y + denote a set

which indexes the simple g modules. Let L(λ) denote the simple module corresponding to

λ ∈ Y + and P (λ) its projective cover. Then define

Ag := EndfinU(g)

(⊕
λ∈Y +

P (λ)⊕ dimL(λ)

)op

which we will call the Khovanov algebra associated to g. The notation EndfinU(g) is to indicate

that the endomorphisms are U(g)-module endomorphisms which are supported on a finite

number of summands.

By [6], the category of U(g)-modules is Morita equivalent to the category of Ag-modules

and finite dimensional modules correspond to finite dimensional modules of the same dimen-

sion. Shifting to the representation theory of Ag is still not a sufficient reduction since Ag
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is not finitely generated. A restriction to a finite subset Γ of Y + must be made in order to

construct the variety of all n dimensional representations. In order to give this desired con-

dition, some restrictions must be put on g. These restrictions will be considered in Section

8.3, so for now we will just assume there is such a finite set Γ.

With this in mind, consider the following subalgebra of Ag

AΓ := EndU(g)

(⊕
λ∈Γ

P (λ)⊕ dimL(λ)

)op

which is constructed by taking e := eλ1 + · · ·+eλt for each λi ∈ Γ where eλi is the idempotent

associated to the identity endomorphism of P (λi). Then AΓ = eAge. We will show that this

algebra is finitely generated and still has the desired idempotent decompositions of AΓ.

Lemma 8.2. Let g = g0 ⊕ g1 be a classical Lie superalgebra and let Ag be the Khovanov

algebra associated to g and let Γ be a finite subset of Y +. Then AΓ is finitely generated as

an algebra.

Proof. The approach is to show that AΓ is a quotient of U(g), which is finitely generated by

the PBW theorem.

First, let M be a module such that M = U(g).v for some v ∈M . Then there is a map

π : U(g)→ EndU(g)(M) = HomU(g)(U(g).v, U(g).v)

given by u 7→ u.idM . Since these maps are U(g)-invariant, any f ∈ EndU(g)(M) is completely

determined by the image of v. Thus, if f ∈ EndU(g)(M), then for some u ∈ U(g),

f(v) = u.v = u.idM(v) = π(u)(v)

and so π is surjective.

Now it remains to show that M =
⊕

λ∈Γ P (λ)⊕ dimL(λ) is cyclically generated by one

element.

As a module HomU(g)(U(g), L(λ)) ∼= L(λ) and so dim HomU(g)(U(g), L(λ)) = dimL(λ)

and so there are dimL(λ) homomorphic images of U(g) so U(g) � L(λ)dimL(λ) and so for a
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finite subset of Y +, U(g) �
⊕

λ∈Γ L(λ)dimL(λ) and consequently U(g) �
⊕

λ∈Γ P (λ)⊕ dimL(λ)

as well. Then,
⊕

λ∈Γ P (λ)⊕ dimL(λ) is generated as an algebra by the image of 1 and the claim

has been shown.

Next, a lemma similar to that of [11, Lemma 2.1] is proven for the algebra AΓ which will

be required to prove certain properties about the variety of n dimensional representations.

Lemma 8.3. Let g = g0 ⊕ g1 be a classical Lie superalgebra and let Ag be the Khovanov

algebra associated to g and let Γ be a finite subset of Y +. Let M be an Ag-module such that

all the composition factors of M and the composition factors of the projective covers of M

lie in Γ. Then there exist elements uλ ∈ AΓ such that, if uλM 6= {0} then M has a direct

summand isomorphic to PΓ(λ). Moreover, if dλ = dim(uλPΓ(λ)) is the rank of the operator

of left multiplication by uλ on PΓ(λ) and aλ = dim(uλM)/dλ, then M ∼= PΓ(λ)dλ ⊕N where

N has no direct summands isomorphic to PΓ(λ).

Proof. Since Ag is an algebra with idempotent decomposition, we can assume that each pro-

jective module P (λ) = Ageλ for an idempotent eλ. Since Ag is self injective, each projective

indecomposable module has a simple socle and is thus generated by any nonzero element

uλ ∈ Soc(P (λ)), thus Aguλ = Soc(P (λ)) and uλ = uλeλ.

By assumption, there exists an m ∈ M such that uλm 6= 0. Define ψλ : P (λ) → M

by ψλ(aeλ) = aeλm for a ∈ Ag. Note that ψλ(uλeλ) = uλeλm = uλm 6= 0 and since uλ

generates the socle of P (λ), the map ψλ is injective. Furthermore, since Ag is self injective,

this projective module is injective and so M ∼= P (λ)⊕N . The multiplicity of the projective

module follows from an inductive argument applied to the module N .

Next, this argument is extended to apply to the smaller algebra AΓ = eAe for some

idempotent e ∈ Ag. This is done by realizing that each step of the above proof actually

occurred in AΓ.
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First we consider what functor which gives the Morita equivalence between U(g) modules

and Ag modules. According to [6, Section 5], the functor is given by

F (−) := HomU(g)

(⊕
λ∈Y +

P (λ)⊕ dimL(λ),−

)
(8.1)

and then Ag now acts by precomposition. Because we are only considering modules whose

composition factors correspond to the λ which occur in Γ, then the only nonzero action of

Ag will be in AΓ. Since we chose uλ to act nontrivially on M , then the results also hold for

AΓ, which proves the result.

8.2 The Variety of n Dimensional Representations

Now we turn to the variety of n dimensional AΓ representations. This is done by using a con-

struction of Dade, as introduced in [15]. The goal is to show that the subvariety of endotrivial

modules is open and that each component has a finite number of isomorphism classes of

endotrivial modules in it. Since there is a correspondence between n dimensional AΓ-modules

and n dimensional U(g)-modules, the same result holds for endotrivial g-modules.

Now, we actually construct the variety of n dimensional representations, with some addi-

tional structure to account for the Z2 grading of the representations. The variety of all

representations of a fixed dimension n is denoted Vn and is defined by considering a set

of homogeneous generators g1, . . . , gr for the superalgebra AΓ. A representation is a homo-

morphism of superalgebras ϕ : AΓ → Endk(V ) where dim(V ) = n, and if a homogeneous

basis for V is fixed, we can think of this homomorphism as a superalgebra homomorphism

ϕ : AΓ →Mn(k). Since g1, . . . , gr generate AΓ, the map ϕ is completely determined by ϕ(gi)

which is an n× n matrix with entries (gi,st) in k where 1 ≤ i ≤ r and 1 ≤ s, t ≤ n.

Consider the polynomial ringR = k[xi,st], where 1 ≤ i ≤ r and 1 ≤ s, t ≤ n, which has rn2

variables. The information of each representation can be encoded in the form of a variety by

defining a map ϕ : AΓ →Mn(R) by (ϕ(gi))st = xi,st for 1 ≤ i ≤ r. Since AΓ = 〈g1, . . . , gr〉/I,

the relations in I must be imposed on Mn(R) by constructing the following ideal of R. By
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using ϕ, a relation in I is transferred the same relation in Mn(R) by creating a relation

on the rows and columns in the corresponding matrix multiplication. For example, take

the relation g1g2 = 0 in AΓ. This would correspond to the relation
∑n

u=1 x1,sux2,ut = 0 for

each 1 ≤ s, t ≤ n. Furthermore, the fact that a representation is defined by a superalgebra

homomorphism will introduce further relations to ensure that ϕ is homogeneous. Thus, if

gi ∈ (AΓ)j for j ∈ Z2, then (ϕ(gi))st = xi,st = 0 for s and t which correspond to (Mn(R))j+1

where the grading is inherited from GLn(k). With these relations, the matrices have the

same algebra structure as AΓ does (and now ϕ is actually a homomorphism), but they are

expressed as zero sets in the polynomial ring R. Thus, the ideal I uniquely corresponds to

an ideal J ⊆ R.

If Vn := V(J ) ⊆ krn
2
, then each point of Vn uniquely defines a representation of AΓ.

Furthermore, the orbit of any point under conjugation by an element of (GLn(k))0 will yield

an isomorphic representation, so the n dimensional representations of AΓ are in one to one

correspondence with the orbits of the points of Vn under the action of (GLn(k))0. Thus, Vn

contains all n dimensional representations of AΓ.

Lastly, in order to achieve the results here, we artificially introduce a tensor structure on

Ag. Let F ′ denote the equivalence from Ag-modules to U(g)-modules since they are Morita

equivalent. Then for M and N Ag-modules, define

M ⊗N := F (F ′(M)⊗ F ′(N)) (8.2)

for modules in the image of U(g) under F . Note that by constructions, F is now a tensor

functor.

Given this setup, we may now use the variety of n dimensional AΓ-modules and the

functor F (Equation 8.1), to prove corresponding versions of [12, Lemmas 2.2 and 2.3] and

[12, Theorem 2.4], since AΓ-modules satisfy a similar result to that of [12, Lemma 2.1].

Lemma 8.4. Let M be a AΓ-supermodule, P (λ) a projective indecomposable AΓ-supermodule

and m ∈ N. Let U be the subset of Vn of all representations, φ, of AΓ such that M ⊗Lφ has
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no submodule isomorphic to P (λ)m, where Lφ is the module given by the representation φ.

Then U is closed in Vn.

Proof. Using a similar idea as in the proof of Theorem 7.1, consider the rank of the matrix

of uλ (see the discussion preceding Lemma 6.3 for the definition) on M ⊗ Lφ. Denote this

matrix by Muλ and let r be the rank of the matrix. Since uλ is a polynomial in the generators

of AΓ and the matrix of the action of φ(gi) on M ⊗Lφ has entries in the polynomial ring R,

then for a fixed representation M , the entries of Muλ are all polynomials in R.

By the same reasoning in Theorem 7.1, the condition that the rank of Muλ be less than

r is the same condition that any r × r submatrix have determinant zero which we can then

translate to a condition that certain polynomials in R be zero. Hence, the subset U is closed

in Vn.

Lemma 8.5. Let M be an endotrivial U(g)-supermodule of dimension n. Let U be the subset

of representations φ of Vn such that Lφ is not isomorphic to F (M)⊗ λ for any one dimen-

sional module λ, where Lφ is the module given by φ. Then U is closed in Vn.

Proof. Let µ be a one dimensional U(g)-supermodule. Since M is endotrivial, so is M ⊗ µ.

Then since F is a tensor functor,

F ((M ⊗ µ)⊗ (M ⊗ µ)∗) ∼= k ⊕
l⊕

i=1

P (λi)
ni

where P (λi) is a projective indecomposable AΓ-module and ni ∈ N. For each i, let Ui ⊆ Vn

where

Ui := {φ ∈ Vn
∣∣ Lφ ⊗ F (M∗)⊗ µ∗ does not contain a submodule isomorphic to P (λi)

ni}.

By the previous lemma, each Ui is closed and so is Uµ = U1 ∪ · · · ∪ Ul.

Clearly, for any φ ∈ U , Lφ is not isomorphic to F (M) ⊗ µ since they have different

projective indecomposable summands. Now we will consider some φ /∈ Uµ and show that

Lφ
∼= F (M)⊗ λ for some one dimensional module λ. Since φ /∈ Uµ,

Lφ ⊗ F (M∗)⊗ µ∗ ∼= ν ⊕
l⊕

i=1

P (λi)
ni
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for some supermodule ν. However, dimLφ⊗F (M∗)⊗µ∗ = n2 = dim(F (M)⊗µ)⊗(F (M∗)⊗

µ∗) so ν is one dimensional. Since ν is one dimensional,

ν∗ ⊗ Lφ ⊗ F (M∗)⊗ µ∗ ∼= k ⊕
l⊕

i=1

(ν∗ ⊗ P (λi)
ni).

Tensoring both sides by ν ⊗ F (M)⊗ µ yields

Lφ ⊕
l⊕

i=1

P ni
i
∼= (F (M)⊗ µ⊗ ν)⊕

l⊕
i=1

(P ni
i ⊗ F (M)⊗ µ)

and so Lφ
∼= F (M)⊗ ν ⊗ µ ∼= F (M)⊗ λ where λ = ν ⊗ µ by comparing the nonprojective

summands. Then Uµ is exactly the subset of Vn such that Lφ is not isomorphic to F (M)⊗µ

where µ is a fixed one dimensional module. The proof is concluded by observing that

U =
⋂
λ

Uλ

where the intersection is over all one dimensional modules λ. Thus, U is closed.

Theorem 8.6. Let g = g0 ⊕ g1 be a classical Lie superalgebra and let Γ be a finite subset of

Y +. Then there are only finitely many isomorphism classes of endotrivial U(g)-modules of

dimension n.

Proof. Let M be an indecomposable endotrival U(g)-supermodule of dimension n. Let UM

be the subset of Vn of representations φ such that the associated module Lφ is isomorphic

to F (M)⊗ λ for some one dimensional module λ.

By the previous lemma, UM is open in Vn and so UM is a union of components in Vn. There

are finitely many components of Vn, and any endotrivial module will be contained in some UM

for some endotrivial U(g)-module M . Since AΓ has only finitely many isomorphism classes

of one dimensional modules, there are finitely many isomorphism classes in each such UM .

Hence, we conclude that there are only finitely many endotrivial U(g)-modules of dimension

n.
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8.3 Conditions for Finiteness

Now that the main theorem of the chapter has been established, we consider conditions on

a classical Lie superalgebra g that will yield the finite subset Γ of Y +, the set which indexes

the simple modules of g.

The first case considered to guarantee this is when g0 has finitely many simple modules

of dimension ≤ n. The condition on g0 can be extended to all of g.

Lemma 8.7. Let g = g0 ⊕ g1 be a classical Lie superalgebra such that g0 has finitely many

simple modules of dimension ≤ n. Then g has finitely many simple modules of dimension

≤ n and consequently, there is a finite set Γ ⊆ Y + such that any U(g) module of dimension

≤ n has composition factors L(λ) such that λ ∈ Γ .

Proof. Let S be a simple g-module of dimension ≤ n. Then S|g0 has a simple g0-module in

its socle, call it T . Then,

0 6= HomU(g0)(T, S|g0) = HomU(g)(U(g)⊗U(g0) T, S)

and so there is a surjection U(g)⊗U(g0) T � S for some simple g0-module T .

Consider the set

C = {U(g)⊗U(g0) T
∣∣ T is a simple g0-module of dim ≤ n}

Note that each element of C is finite dimensional since T is finite dimensional. Furthermore,

by the previous observation, a module from this set surjects onto any simple g-module, and

since the set C is finite by assumption, the result is proven.

Now the Lie algebras which satisfy this condition are considered. Since g = g0 ⊕ g1 is

classical, g0 is reductive. Note that if g0 has any toral elements, then there will be infinitely

many one dimensional modules where the toral elements act via scalars. Thus, it must be

that g is semisimple.
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Then g0
∼= h1×· · ·×hs where hi is a simple Lie algebra. Then any simple finite dimensional

g0-module L(λ) ∼= L(λ1) � · · ·� L(λs) where L(λi) is a simple hi module.

Since there are finitely many weights λi of X(hi) such that L(λi) is of dimension ≤ n,

then the same result holds for L(λ) and consequently g0.

Corollary 8.8. Let g be a classical Lie superalgebra such that g0 is a semisimple Lie algebra.

Then there are finitely many isomorphism classes of endotrivial g-modules of dimension n

for any n ∈ Z.

Proof. Since g0 is semisimple, there are only finitely many simple modules of dimension ≤ n

for n ∈ Z. The result follows from Lemma 8.7 and Theorem 8.6.

The conditions given in the previous theorem are sufficient but not necessary for all clas-

sical Lie superalgebras. Some interesting cases are Lie superalgebras whose even component

contains a torus, and thus is not semisimple. In this case, it may be possible to conclude

the result assuming that there are only finitely many one dimensional modules, regardless of

what n may be. The condition of having only finitely many one dimensional representations

is explored here.

By direct computations, there are only finitely many endotrivial modules of a fixed dimen-

sion n for detecting subalgebras–which only have two one dimensional modules, kev and kod.

Now consider an example where this condition fails. When g = gl(1|1), there are infinitely

many one dimensional g-modules. The matrix realization gl(1|1) has basis vectors x and y

as in sl(1|1), but has two toral basis elements t1 and t2 which are given by

t1 =

 1 0

0 0

 t2 =

 0 0

0 1


and the weights of the simple modules in g are given by (λ|µ) where λ, µ ∈ k and t1 and

t2 act on k via multiplication by λ and µ respectively. If λ = −µ then the representation

of the simple g-module is one dimensional. Thus there are infinitely many one dimensional

modules given by the representations (λ| − λ).
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In general, the condition that g has finitely many one dimensional modules in F is

equivalent to the condition that g0/([g, g] ∩ g0) has finitely many one dimensional modules

in F .

Proposition 8.9. Let g be a classical Lie superalgebra. Then there are finitely many one

dimensional g-modules in F if and only if g0 ⊆ [g, g].

Proof. Assume that g is a Lie superalgebra such that g0 ⊆ [g, g] A one dimensional repre-

sentation of g corresponds to a Lie superalgebra homomorphism φ : g → kev since Endk(k)

(for k either even or odd) is always isomorphic to kev. Since kev is concentrated in degree

0 and φ is an even map, any element of g1 necessarily maps to 0. Furthermore, since kev is

abelian as a Lie superalgebra, then [g, g] must be mapped to zero and so by assumption g0

maps to 0 as well and φ is the 0 map. This forces the one dimensional module to be either

kev or kod.

Now, assume that g has only finitely many one dimensional modules but that g0 * [g, g].

Let g ∈ g0 \ [g, g]. As noted, since kev is abelian, if φ is a representation of g, then φ :

g0/([g, g] ∩ g0)→ kev yields another representation which agrees on nonzero elements. They

are also equivalent in the sense φ can be obtained uniquely from φ and vice versa. Since g is

classical, g0 is a reductive Lie algebra and given that g /∈ [g, g], g must be in the center of g0

and therefore in the torus of g0 as well. Thus, g is a semisimple element, and in F , g must

act diagonally on any one dimensional module. If g is the image of g in g0/([g, g]∩ g0), then

g is nonzero and 〈g〉 is a one dimensional abelian Lie superalgebra. Since g acts diagonally

and k is infinite, this yields infinitely many distinct one dimensional modules resulting from

the diagonal action of g. These one dimensional modules lift (possibly non-uniquely) to

g0/([g, g] ∩ g0) and consequently g as well. This is a contradiction and the assumption that

g0 * [g, g] is false.

Corollary 8.10. Let g be a simple classical Lie superalgebra. Then there are finitely many

one dimensional g-modules in F .
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Proof. By the necessary condition of simplicity given in Proposition 1.2.7 of [20] that

[g1, g1] = g0, the lemma is proven.

Note that in the case where there are finitely many one dimensional modules in F , there

are in fact only two, kev and kod, as in the case of the detecting subalgebras.

In regard to the g = gl(1|1) example, [g, g] = 〈x, y, t1 + t2〉. Then g0/([g, g] ∩ g0) =

〈t1, t2〉/(t1 + t2) and it is clear that if t1 has any weight λ, then µ is determined to be

−λ. Thus, there are infinitely many one dimensional representations resulting from the free

parameter λ.

It may be the case that the conditions in Theorem 8.6 may be relaxed to a condition that

there only be finitely many one dimensional modules, as these examples suggest, however,

the proof technique fails in this case, so other approaches must be considered.



Chapter 9

Endotrivial Modules for gl(n|n)

9.1 Construction of the Relative Category

The focus of this chapter is to give a reduction for computing the endotrivial modules for the

Lie superalgebra gl(n|n). The result obtained is that the group T (g) injects into the group

of endotrivial modules for a specific intermediate parabolic, which will be denoted as p.

First, several definitions and constructions are given in order to reach this goal.

9.2 Properties of the Relative Category

Now, a few results are given to further understand the category F(g,g0). The first proposition

gives a concrete description of all the relatively projective modules as direct summands of

induced modules.

Proposition 9.1. A g-module M where g is a Lie superalgebra, is (U(g), U(g0))-projective

if and only if it is a direct summand of U(g)⊗U(g0) N for some U(g0)-module N .

Proof. First, assume that M is projective in F . Then the (U(g), U(g0))-exact sequence

0 kerµ U(g)⊗U(g0) M |g0 M
µ

0

is split by using the (U(g), U(g0))-projectivity of M to extend the identity map on M , in

the standard way.

Now, let M be a direct summand of U(g)⊗U(g0) N for some U(g0)-module N . Then

Ext1
(g,g0)(M,R) ↪→ Ext1

(g,g0)(U(g)⊗U(g0) N,R) = Ext1
(g0,g0)(N,R) = 0

for any module R in F . Thus, M is (U(g), U(g0))-projective and thus projective in F .
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Proposition 9.2. Let M be a module in F = F(g,g0) where g is a Lie superalgebra, then M

is projective in F if and only if it is an injective module in F .

Proof. The proof given in [3, Propositions 2.2.2] holds for the category F .

Corollary 9.3. Let M be a module in F = F(g,g0) where g is a Lie superalgebra, then

there exists a projective module P in F such that there is a homomorphism of F modules

π : P �M and an injective module I in F such that ι : M ↪→ I.

Proof. If M is any g-module, then M |g0 is a g0-module and so by Proposition 9.1, U(g)⊗U(g0)

M |g0 is a (U(g), U(g0))-projective module which surjects on to M via the “multiplication

map”, u⊗m 7→ u.m (since U(g) is a unital superalgebra).

A dual argument to this completes the proof.

With a better understanding of projective modules in F , we now define the object of

interest in this paper.

Definition 9.4. A module in F = F(g,g0) where g is a stable Lie superalgebra, is called

endotrivial if Endk(M) ∼= kev ⊕ P as U(g)-modules for some projective module P in F .

9.3 The gl(n|n) Case

The desired injection depends on a specific parabolic subalgebra and endotrivial modules for

this subalgebra which are addressed here.

Define the maximal torus t0 to be the subalgebra of diagonal matricies of g = gl(n|n)

and p, referred to as the distinguished parabolic subalgebra, to be the subalgebra defined as

follows. Let p0 ⊆ (gl(n|n))0
∼= gl(n) ⊕ gl(n) be generated by the upper triangular matricies

of each gl(n) and p1 ⊆ (gl(n|n))1 be generated by n × n matricies whose entries are all on

or above the odd diagonal.

Note that if f is defined to be the subalgebra of p generated by elements which are

strictly on the diagonal (either the even diagonal or the odd diagonal), then f ⊆ p ⊆ g and

tf ⊆ tp = t0. Given this set up, we can relate T (f), T (p), and T (g).
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First, it must be established that restriction to each of these subalgebrs takes projectives

to projectives in order to have well defined maps between these groups which live in the

stable module category.

9.3.1 Restriction Preserves Projectivity

Because g is a Type I Lie superalgebra, g has a Z grading of the form g = g−1 ⊕ g0 ⊕ g1

which is consistent with the standard Z2 grading. This gives a consistent Z grading on p ⊆ g

by defining pi = p ∩ gi for i ∈ Z, and so p = p−1 ⊕ p0 ⊕ p1. Given this grading, define

p+ := p0 ⊕ p1 and p− := p−1 ⊕ p0.

Following the work in [3], define F(p±1) to be the category of finite dimensional p±1-

modules. For the objects in F(p±1), define the support variety Vp±1(M) as in [3] and the

rank variety

Vrank
p±1

(M) = {x ∈ p±1

∣∣ M is not projective as a U(〈x〉)-module}.

Since p1 and p−1 are both abelian Lie superalgebras, both are well defined and identified by

a canonical isomorphism as discussed in [2].

As before, let X(t0) ⊆ t0
∗ be the set of weights relative to a fixed maximal torus t0 ⊆ p0.

For λ ∈ X(t0), consider the simple finite dimensional p0-module of weight λ. An important

property of p0 is that is constructed to be solvable as a Lie algebra and so by Lie’s theorem,

irreducible p0-modules are one dimensional modules where t ∈ t0 acts by t.v = λ(t)v. Typi-

cally, such one dimensional modules are usually just denoted by kλ and may be concentrated

in either even or odd degree.

It will be very useful to have a partial ordering on these weights. Let d = dim t0. The

weights X(t0) can be parametrized by the set kd so any λ ∈ X(t0) can be though of as an

ordered d-tuple, (λ1, . . . , λd). For two weights λ = (λ1, . . . , λd) and µ = (µ1, . . . , µd), we say

that λ ≥ µ if and only if for each k = 1, . . . , d,

k∑
i=1

λi ≥
k∑
i=1

µi
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and equality holds if and only if λ = µ. This ordering will allow the use of highest weight

theory.

A module M ∈ F(p,p0) is called a highest weight module if in the weight decomposition

M ∼=
⊕

λ∈X(t0) Mλ, there exists a weight λ0 such that λ0 ≥ µ for each nonzero weight space

Mµ of M .

Proposition 9.5. If S ∈ F(p,p0) is a simple p-module, then S is a highest weight module in

F(p,p0).

Proof. Because S is finite dimensional, there exists a weight λ0 ∈ X(t0) such that µ ≯ λ0

for all nonzero weight spaces Sµ of S. Note that this means all weights are either less than

or equal to or not comparable to λ0.

For any element u of u = p/t0, u.Sλ ⊆ Sµ implies that λ > µ in X(t0). This yields that

u.Sλ0 = 0 for any u ∈ u. Since S is simple (because S is and this does not depend on the

torus), for v ∈ Sλ0 , v generates S and u.v = 0.

Thus, S = U(p−1)U(p+).v but since any element of p+ either stabilizes or kills v, it follows

that S = U(p−1).v. It is now clear, because v ∈ Sλ0 that any element of Sµ 6= 0 is equal to

cy.v for some y ∈ U(p−1) and c ∈ k, that λ0 ≥ µ. Thus S is a highest weight module.

Because p1 ⊆ p+ and p−1 ⊆ p− are ideals, the module kλ can be considered as a simple

p±-module by inflation via the canonical quotient map p± � p0. By construction, p1 and

p−1 act by 0 on kλ. Define

K(λ) = U(p)⊗U(p+) kλ and K−(λ) = HomU(p−)(U(p), kλ)

to be the Kac module and the dual Kac module, respectively.

The Kac module K(λ) has several useful properties. First, by construction it is a highest

weight module in F(p,p0). Since K(λ) is generated by one element, it has a simple head. Also,

if S is any simple module in F(p,p0) where S has highest weight λ for some weight λ of S,

and S is generated by v, and w ∈ kλ, there is a homomorphism from K(λ) � S given by
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1 ⊗ w 7→ v. This homomorphism also lifts uniquely to a map K(λ) � S by extending the

action given by the previous map to the full torus.

Furthermore, K(λ)/Rad(K(λ)) ∼= S and is denoted L(λ). Note that this surjective homo-

morphism is in fact valid for any highest weight module and in this sense, the Kac module

is universal.

Dually, K−(λ) has a simple socle which is isomorphic to L(λ) as well and λ is the lowest

weight of K−(λ).

Now we define two useful filtrations of a module M in F(p,p0). M is said to admit a Kac

filtration if there is a filtration

{0} = M0 (M1 ( · · · (Mt = M

of the module M such that for i = 1, . . . t, Mi/Mi−1
∼= K(λi) for some λi ∈ X(t0). Similarly,

if M has a filtration as above such that i = 1, . . . t, Mi/Mi−1
∼= K−(λi), then M is said to

admit a dual Kac filtration.

By the same reasoning in [3], modules in F(p,p0) satisfy the following.

Theorem 9.6. Let p ⊆ g be the distinguished parabolic subalgebra as defined at the beginning

of Section 9.3 and let M be a module in Fp = F(p,p0). Then the following are equivalent.

1. M has a Kac filtration;

2. Ext1
Fp

(M,K−(µ)) = 0 for all µ ∈ X(t0);

3. Ext1
F(p−1)(M,k) = 0;

4. Vp−1(M) = 0.

A dual version of this theorem can be proved in a similar way.

Theorem 9.7. Let p ⊆ g be the distinguished parabolic subaglebra as defined at the beginning

of Section 9.3 and let M be a module in Fp = F(p,p0). Then the following are equivalent.

1. M has a dual Kac filtration;
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2. Ext1
Fp

(K(µ),M) = 0 for all µ ∈ X(t0);

3. Ext1
F(p1)(k,M) = 0;

4. Vp1(M) = 0.

These two theorems can be used to show the following powerful condition relating pro-

jectivity in F(p,p0) and the support varities of p±1.

Theorem 9.8. Let M be in F(p,p0). Then M is projective in F(p,p0) if and only if Vp1(M) =

Vp−1(M) = {0}.

Corollary 9.9. A projective module in F(g,g0) is also projective in F(p,p0) and thus, there is

a well defined map

res
T (g)
T (p) : T (g)→ T (p)

given by M 7→M |p.

Proof. Let P be a projective module in F(g,g0). Then by, [3, Theorem 3.5.1], Vg1(M) =

Vg−1(M) = {0}. Since Vp1(M) ⊆ Vg1(M) = {0}, and Vp−1(M) = Vg−1(M) = {0}, then by

Theorem 9.8, M |p is projective in F(p,p0).

With this conclusion, the restriction map now descends to a well defined map on each

of the respective stable module categories, and in particular, if for M ∈ F(g,g0), M ⊗M∗ ∼=

kev ⊕ P , then (M ⊗M∗)|p ∼= kev ⊕ P |p

With these tools established, the final maps follow easier.

Proposition 9.10. Let M be a projective module in F = F(p,p0). Then M |p+ and M |p− are

projective in their respective categories.

Proof. First, assume that M is projective in F . Then, by Proposition 9.1, M is a summand

of U(p)⊗U(p0) N for some U(p0)-module N . Because

U(p)⊗U(p0) N ∼= U(p+)U(p−1)⊗U(p0) N ∼= U(p+)⊗U(p0) [U(p−1)⊗N ]
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where the second isomorphism is given on basis elements by

u+u−1 ⊗U(p0) n 7→ u+ ⊗U(p0) [u−1 ⊗ n],

any summand of U(p)⊗U(p0)N is also a summand of U(p+)⊗U(p0)N
′ for some p0-module N ′.

Thus, if M is projective in F(p,p0), M is also (U(p+), U(p0))-projective as well, or projective

in F(p+,p0). By a similar argument, M is also projective in F(p−,p0).

9.4 Restriction from T (g) to T (p)

Let g = gl(n|n) and p ⊆ g be the distinguished parabolic. Now that restriction from T (g) to

T (p) is well defined, properties of this map can be exploited to relate a classification of one

to the other. An important step in understanding the relationship between these two groups

is an induction functor from p to g.

In [19, Section 3], the geometric induction functor Γ0 is defined. The functor Γ0 is from

p-modules to g-modules and will be denoted Indg
p since the geometric structure will not be

emphasized in this paper. This functor is of particular interest because it will allow us to

show that restriction map is injective.

Since T (g) and T (p) are groups and the restriction map is a homomorphism (restriction

commutes with the tensor product over k), we can show that the restriction map

res
T (g)
T (p) : T (g)→ T (p)

given by M 7→M |p is injective by checking that ker
(

res
T (g)
T (p)

)
= {kev} since kev is the identity

in T (g).

In order to show this map is injective, we need to show that Indg
p kev = kev. This is done by

considering [19, Lemma 3] and the proof of the lemma. In particular, the authors observe that

if Lµ (respectively Lµ(a)) is the simple g-module (respectively a-module) with highest weight

µ, then if Lµ occurs in Indg
p kλ, then Lµ(g0)∗ occurs in H0(G0/B0,L∗λ(p)⊗S•(g/(g0⊕ p1))∗).

The case when kλ is the trivial module k is of particular interest in this section. Thus

we consider H0(G0/B0, S
•(g/(g0 ⊕ p1))∗), and more specifically, the dominant weights in
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S•(g/(g0 ⊕ p1))∗). In order for such a weight to be dominant, it must have positive inner

product with ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn and δ1 − δ2, δ2 − δ3, . . . , δn−1 − δn. The weights

of S•(g/(g0 ⊕ p1))∗) are positive linear combinations of the weights of the form εi − δj and

δi − εj where i > j.

Proposition 9.11. Let p ⊆ g = gl(n|n). No weight of S•(g/(g0 ⊕ p1))∗ is dominant.

Proof. This will be proven by induction on n. The first case is trivial since when n = 1,

p1 = g1 and g = g0 ⊕ g1.

The first nontrivial base case is when n = 2. If the weights ε2 − δ1 and δ2 − ε1 are

represented as (0, 1| − 1, 0) and (−1, 0|0, 1) respectively, then a positive linear combination

of such weights r(ε2 − δ1) + s(δ2 − ε1) is represented as (−s, r| − r, s). We compute

〈(1,−1|0, 0), (−s, r| − r, s)〉 = −s− r

〈(0, 0|1,−1), (−s, r| − r, s)〉 = −s− r

and so any nonzero weight has negative inner product and thus, is not dominant.

Now let n > 2. In order for a positive linear combination of weights to be dominant,

there are a set of conditions which must be satisfied. Let λ be an arbitrary weight and let

ai,j be the coefficient for the weight εi − δj and bk,l be the coefficient of the weight δk − εl,

where i > j and k > l. Then

λ =

(∑
i>j

ai,j(εi − δj)

)
+

(∑
k>l

bk,l(δk − εl)

)

or if we denote αi,j = ai,j(εi − δj) and βk,l = bk,l(δk − εl), then λ =
∑

i>j(αi,j + βi,j).

Note that

〈εs − εs+1, αi,j〉 = δs,iai,j − δs+1,iai,j

〈εs − εs+1, βi,j〉 = −δs,jbi,j + δs+1,jbi,j

〈δs − δs+1, αi,j〉 = −δs,jai,j + δs+1,jai,j

〈δs − δs+1, βi,j〉 = δs,jbi,j − δs+1,jbi,j
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where δs,t is the Kronecker delta. We note that the conditions 〈εs − εs+1, λ〉 ≥ 0 and 〈δs −

δs+1, λ〉 ≥ 0 for each s = 1, . . . , n − 1 gives 2(n − 1) inequalities which the coefficients ai,j

and bi,j must satisfy.

The important step in this proof is to add all the given inequalities together to produce

one inequality.

n−1∑
s=1

(〈εs − εs+1, λ〉+ 〈δs − δs+1, λ〉) =

n−1∑
s=1

∑
i>j

(〈εs − εs+1, αi,j + βi,j〉+ 〈δs − δs+1, αi,j + βi,j〉) ≥ 0.

Next, observe that each ai,j and bi,j appears exactly twice as a negative term in the inequality.

Furthermore, each term ak,l and bk,l with 1 < k, l < n appears twice as a positive term and

ai,1, an,j, bi,1, and bn,j appear at most once as a positive term (with a1,n and b1,n being the

terms which do not appear at all). Rearranging the inequality then yields

0 ≥
n∑
s=1

(as,1 + an,s + bs,1 + bn,s)

and so each coefficient of this form is forced to be zero in order for a weight to be dominant.

However, by induction, we have now reduced to a weight whose nonzero coefficients come

from a lower diagonal (n−2)×(n−2) matrix which has no dominant weights by the inductive

hypothesis. Thus, the claim is proven.

Corollary 9.12. Let p ⊆ g = gl(n|n), then Indg
p k
∼= k.

Proof. Since S•(g/(g0 ⊕ p1))∗ has no dominant weights by the previous lemma,

H0(G0/B0, S
•(g/(g0 ⊕ p1))∗) ∼= k.

Furthermore, note that the induction functor does not change the parity of the module, so

the degree (either even or odd) is fixed and the result is proven.

Corollary 9.13. The restriction map

res
T (g)
T (p) : T (g)→ T (p)

given by M 7→M |p is injective
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Proof. Let M ∈ T (g) be an indecomposable endotrivial g-module such that M |p ∼= kev ⊕ P .

Then

Indg
pM |p ∼= Indg

p(kev ⊕ P ) ∼= Indg
p kev ⊕ Indg

p P
∼= kev ⊕ Indg

p P.

However, since M is already a g-module, by the tensor identity given in [19, Lemma 1],

Indg
pM |p ∼= Indg

p(M |p ⊗ kev) ∼= M ⊗ Indg
p kev

∼= M ⊗ kev ∼= M

and so we have that, as g-modules, M ∼= kev ⊕ Indg
p P . Since M is indecomposable, M ∼= kev

as g-modules and thus the map res
T (g)
T (p) is injective.

With this relationship established, the remaining goal is to classify T (p).

The author is interested in generalizing these results to other Type I Lie superalgebras,

particularly gl(m|n) and sl(m|n) as similar techniques may be employed.
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