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Abstract

This dissertation studies robust estimation methods for finite mixtures of gener-
alized linear models (FMGLMs). FMGLMs have been proven useful for modelling
data arising from heterogeneous populations. Maximum likelihood (ML) estimation
is usually an attractive approach for fitting such models. However, it is well known
that the ML estimator (MLE) can be very unstable when the data have outliers,
when there is poor separation between mixture components, or under certain other
types of model violations. In this dissertation, we study two types of robust methods
for such models. Chapter 3 studies minimum Hellinger distance (MHD) estimation
methods in FMGLM context, and we propose approaches on both marginal and
conditional density-based definitions of the Hellinger distance. We discuss the prac-
tical feasibility of employing these methods and examine empirically their robustness
properties. Asymptotic properties of these estimators are also discussed. Simulations
and examples show that they are competitive to the MLE when the data are cor-
rectly specified, but more robust when the data are not. In addition, the zero inflated
regression model, a special case of the class of FMGLMs, is also considered in detail.
In chapter 4, we propose another type of robust method for zero inflated models,
which we term as the robust expectation solution (RES) method. It is designed
to downweight outliers and yields an estimator with bounded influence function.
Consistency and asymptotic normality of this estimator are established. Robustness
properties of the RES approach are presented, as well as simulation-based compar-
isons between this approach and both ML estimation and marginal MHD.

Index words: Conditional density; Double kernel methods; EM algorithm;
Expectation solution algorithm; Mallow’s class; Minimum
Hellinger distance; M-estimator; Mixture models; Robustness;
Zero-inflated binomial; Zero-inflated Poisson.
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Chapter 1

Introduction

Finite mixtures of generalized linear models (FMGLMs) provide a useful tool to

analyze data arising from a heterogeneous population. They can handle situations

where a simple parametric distribution is unable to provide a satisfactory model

for local variation in the observed data. In addition, an important special case of

FMGLMs occurs when one component is a degenerate distribution with point mass

of one at zero. Such models are known as zero inflated (ZI) models and are useful

for analyzing data with extra zeros. In the last decade, there has been increasing

interested in FMGLMs. Jansen (1993) showed that by adopting a simple expecta-

tion maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977), the mixture

problem can be split into two simpler non-mixture problems. Maximum likelihood

(ML) estimation is an attractive approach to fitting such models because of the

consistency and efficiency of ML estimators and the computational convenience of

implementation via the EM algorithm. However, when outliers and other types of

data contamination exist or when the components of the mixture are not well sepa-

rated, the ML estimator is known to be extremely unstable.

Recently, robust alternatives to ML estimation for certain mixture models have

been studied in the literature. The aim of robust statistics is to describe the structure

which best fits the bulk of the data without distortion due to the effects a few anoma-

lous data points or features. There exists a great variety of approaches to robust

estimation. Huber (1964) introduced the M-estimator which became a very popular

1



2

robust method in literature. Hampel (1968) proposed the infinitesimal approach,

which is based on the influence function. The influence function itself became one

of the most useful heuristic tools to quantify the robustness of a statistic.

Minimum distance estimation forms another subclass of robust methods. The

most popular distance metrics include the Kolmogorov-Smirnov distance, the

Cramér-von Mises distance, and the Hellinger distance. Among the minimum

distance methods, the minimum Hellinger distance (MHD) approach, proposed by

Beran (1977) has been shown to be robust to certain types of violations of model

assumptions and is asymptotically equivalent to the ML estimator (Donoho and Liu,

1988). The MHD approach has also been discussed in the context of finite mixtures

of discrete data distributions by Lindsay (1994), Cutler and Cordero-Brana (1996),

Karlis and Xekalaki (2001), and Lu et al. (2003). Lindsay discussed how the MHD

estimator balances efficiency when the model has been appropriately chosen and

robustness when it has not. Cutler and Cordero-Brana considered MHD estimation

for finite mixture models when the exact forms of the component densities are

unknown in detail but thought to be close to members of some parametric family.

Karlis and Xekalaki considered MHD estimation in the case of finite mixtures of

Poisson distributions, while Lu et al. added regression structure to this context.

The goal of my dissertation is to develop robust estimation methods for mix-

ture regression models. In this dissertation we extend MHD estimation to a general

context of FMGLMs and we also propose a more efficient MHD estimator based

on the conditional density. The idea of this minimum conditional Hellinger distance

(MCHD) method is to minimize the Hellinger distance between a nonparametric

conditional density and the model density. Simulations are carried out to study the

estimation properties of (marginal) MHD estimation, MCHD estimation and ML for

data with and without outliers. The results show that the MCHD method performs

comparably to the MLE when the data have no outliers, but offers much greater
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robustness otherwise. For a special subclass of FMGLMs, ZI regression models, we

propose another robust estimation method by taking advantage of the mixture struc-

ture, and adapting the standard ML EM algorithm, which we refer to as the RES

method. This approach is more closely related to M-estimation and can be extended

to general FMGLMs easily. The asymptotic properties are investigated under some

regularity conditions. Simulation results indicate that the RES method is useful in

downweighting outliers in the data compared to ML, and also outperforms marginal

Hellinger distance based methods in several respects.

The organization of this dissertation is as follows. Chapter 2 gives the literature

background of FMGLMs, ZI models, MHD estimation, kernel density estimation and

M estimation. Chapter 3 studies the MHD estimation methods including uncondi-

tional (marginal) and conditional MHD estimation for FMGLMs. Chapter 4 proposes

the RES method and contrasts it with MHD approach, focusing on the ZI regression

context. Examples involving veterinary heart arhythmia data, and data related to

a study of aggressive behavior among sixth grade school children are used to illus-

trate the methods in chapters 3 and 4. Chapter 5 presents future extensions of this

dissertation work.



Chapter 2

Literature Review

This chapter provides a literature review on finite mixture models, as well as some

robust statistical methods and techniques that will be needed in subsequent chapters.

2.1 Finite Mixtures of Generalized Linear Models

FMGLMs have proven useful for modelling data arising from a heterogeneous popu-

lation. The basic definition is as follows. Let {(yi, xi), i = 1, . . . , n} denote observa-

tions where yi represents the observed value of Yi, and xi = (x
(m)T

i , x
(r)T

i )T denotes a

vector of explanatory variables or covariates. Usually, the first element of x
(m)
i

T
and

x
(r)
i

T
is 1, corresponding to an intercept. Here the superscript (m) denotes covari-

ates associated with the mixing probability and (r) denotes covariates related to

the component means, which sometimes may contain the same variables. The unob-

served mixing process assumes that Yi can come from any one of c states, where c

is finite but possibly unknown. Let Zij = 1 if observation i comes from component

j, 0 otherwise, where j = 1, . . . , c, and let P (Zij = 1) = pij, where
∑c

j=1 pij = 1.

We assume that these mixing probabilities are related to covariates via a generalized

logit type model of the following form, although other link functions could easily be

accommodated:

pij = pij(x
(m)
i , β) =

exp(β′jx
(m)
i )

1 +
∑c−1

k=1 exp(β′kx
(m)
i )

j = 1, . . . , c− 1, (2.1.1)

4
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where

pic = pic(x
(m)
i , β) = 1−

c−1∑

j=1

pij.

In addition, we assume exponential dispersion family densities for each component

of the mixture; that is,

fj(yi|x(r)
i , ai, αj) ≡ G(yi|ai, ηij) = exp{yiηij − b(ηij)

ai(φ)
+ c(yi)}. (2.1.2)

Then the probability function of Yi is

f(yi|x(r)
i , x

(m)
i , ai, α, β) =

c∑

j=1

pijG(yi|ai, ηij). (2.1.3)

We refer to the class of models defined in this way as FMGLMs. Such models have

received considerable attention recently.

2.1.1 Introduction to FMGLMs

Jansen (1993) was among the first to consider the FMGLM class in full generality

and presented a DNA example where a finite mixture of ten Weibull distribution

was adopted. Wang (1996) discussed mixtures of Poisson regression models with

covariate dependent rates. Wang (1998) also studied mixtures of logistic regression

models that accounted for extra-binomial variation through a mixture structure as

well as by including covariates in the binomial parameters, the mixing probabilities

or both. He argued that such models provided a more interpretable alternative to

other approaches for dealing with extra-binomial variation, such as beta-binomial

and quasi-likelihood models. He applied the mixture logistic regression model to ana-

lyze data from a study in evolutionary biology reported in McCullagh and Nelder

(1989, p.143). This study investigated whether three adult tribolium (a type of

beetle) species have developed an evolutionary advantage to recognize and avoid

eggs of their own species while foraging. The issue being tested is whether the adult

species exhibit preference for eggs of the other species. Fitting the mixture models
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here provided a more general mean-variance relationship than the beta-binomial or

quasi-likelihood models, and also provided some interesting insights into the data.

Xiao et al. (1998) and several other more recent papers have used FMGLMs to model

length of stay in a hospital. In this context a two-component mixture is motivated by

the assumption of short-stay and long-stay patients who have different health care

resource consumption patterns. Other recent papers on FMGLMs include Rosen,

Jiang, and Tanner (2000) who considered marginal FMGLMs for clustered hetero-

geneous data and Hall and Wang (2004) who considered random effect versions of

such models.

A closely related line of research is that on nonparametric generalized linear

models (NPGLMs). NPGLMs can be thought of as GLMs with random effects in

which the continuous random effects distribution is replaced by a discrete one with

a finite number of estimated mass points. The result is a finite mixture of GLMs.

NPGLMs have been developed by many authors (Follmann and Lambert, 1989;

Hinde and Wood, 1987; Dietz, 1992; Aitkin, 1999).

In fitting mixture models, Jansen (1993) adopted the EM algorithm (Demp-

ster, Laird and Rubin 1977) . This makes it possible to fit FMGLMs by iteratively

applying standard GLM estimation methods. Moreover, standard statistical pack-

ages can be used to implement the computational work. A general procedure, which

requires specification of the GLM for the mixing proportions and specification of the

GLM for the mixing distribution can be easily written. The mixture problem can

be considered as one of many examples in which the data can be viewed as incom-

plete. Mixture data are incomplete in the sense that each observation’s component

of origin zij is unobserved, or missing, where zij = 1 if the observation i comes from

the jth component, zij = 0 otherwise. Suppose that the probability density of the
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ith observation is (2.1.3). Then the complete loglikelihood data (y, z) is

n∑

i=1

c∑

j=1

zij log{pij(β)}+
n∑

i=1

c∑

j=1

zij log G(yi|αj), (2.1.4)

Maximum likelihood estimates may be obtained by applying the EM algorithm to

(2.1.4). Each iteration consists of two steps. First, in the E-step, zij is replaced

in (2.1.4) by its expected value given the current parameter estimates, which is

z∗ij = pij(β)G(yi|αj)∑c

j=1
pij(β)G(yi|αj)

. Next, in the M-step, new parameter estimates are obtained

by maximizing the resulting quantity with respect to β and α. Note that the quantity

to be maximized splits into two terms where the first term is a function of the

mixing proportions only, and the second term is a function of the parameters of

the component distributions only. So the M- step can be split into two M-steps for

standard non-mixture problems. The first M-step is solved by fitting a GLM for

multinomial data to the “data” z∗ij. The second one is solved by fitting c GLMs to

the response variable, where the jth of these GLMs have weights z∗1j, . . . , z
∗
nj.

2.1.2 Zero Inflated Models

The zero inflated (ZI) regression model is a special subclass of FMGLMs where one of

the components is taken to be a degenerate distribution, having mass of 1 at 0. The

other component is a non-degenerate distribution such as the Poisson, binomial,

negative binomial or other form depending on the situation. For example, when

manufacturing equipment is properly aligned, defects may be nearly impossible. But

when it is misaligned, defects may occur according to a Poisson(λ) distribution.

For such data that also have covariates, Lambert (1992) proposed the zero inflated

Poisson (ZIP) regression model. In ZIP regression model, the response vector is

y = (y1, . . . , yn)′, where yi is the observed value of the random variable Yi. We

assume that Yi’s are independent where

Yi ∼




0 with probability pi;

Poisson(λi) with probability 1− pi.
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Moreover, the parameters p = (p1, ..., pn)T and λ = (λ1, ..., λn)T are modelled

through canonical link GLMs as logit(p) = Gγ and log(λ) = Bβ, where β and

γ are regression parameters, and G and B are corresponding design matrices that

pertain to the probability of the zero state and the Poisson mean, respectively. The

log-likelihood function is written as

`(β, γ; y) =
∑

yi=0

log{eGiγ + exp(−eBiβ)}+
∑

yi>0

(yiBiβ − eBiβ)

− ∑

yi>0

log(yi!)−
n∑

i=1

log(1 + eGiγ), (2.1.5)

where Bi and Gi are the ith rows of design matrices B and G.

As with FMGLMs, the EM algorithm is a convenient way to obtain the MLE.

Suppose we knew which zeros came from the degenerate distribution and which

came from the Poisson distribution; that is, suppose we could observe zi = 1 when

yi is from degenerate state, and zi = 0 when yi is from the Poisson state. Then the

log-likelihood for the complete data (y, z) would be

`c(β, γ; y, z) =
n∑

i=1

[ziGiγ − log(1 + eGiγ)] +
n∑

i=1

(1− zi)[yiBiβ − eBiβ − log(yi!)]

= `c
γ(γ; y, z) + `c

β(β; y, z). (2.1.6)

This log-likelihood is easy to maximize, because `c
γ(γ; y, z) and `c

β(β; y, z) can be

maximized separately. With the EM algorithm, the log-likelihood (2.1.5) is maxi-

mized iteratively by alternating between estimating zi by its expectation under the

current estimates of (γ, β) (E step) and then, with the zi fixed at their expected

values from the E step, maximizing `c(β, γ; y, z) (M step), until the estimated (β, γ)

converges and iteration stops.

Hall (2000) extended Lambert’s methodology to an upper bounded count situ-

ation, thereby obtaining a zero inflated binomial (ZIB) model. In the ZIB model,

the Poisson(λ) component is replaced by a binomial(m,π) component and instead

of modelling λ, we model logit(π) = Bβ.
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2.2 Minimum Hellinger Distance Estimation

Minimum distance estimation methods have received considerable attention in the

literature. Beran (1977) first considered the Hellinger distance as the basis of esti-

mation. This method is asymptotically efficient under a specific regular parametric

family of densities and is robust in a small Hellinger metric neighborhood of the

given family. In this section, we will briefly review this method.

2.2.1 Definition of MHD Estimation

Beran (1977) proposed MHD estimation for iid observations. The Hellinger distance

is defined as follows. Given a random sample y1, . . . , yn, let fθ denote the probability

density assumed for the data according to the model under consideration, which

depends on a possibly unknown and vector-valued parameter θ, and let fn denote a

nonparametric density estimate. Let ‖.‖p denote the Lp norm defined by

‖h‖p = {
∫
|h|p}1/p.

The Hellinger distance is

H2(fθ, fn) = ‖f 1/2

θ − f 1/2
n ‖2

2 = 2− 2
∫

f
1/2

θ f 1/2
n dµ.

The MHD estimator of θ is defined as

T (fn) = arg min
θ∈Θ

H2(fθ, fn). (2.2.7)

Many papers have been published that investigate the properties and applications

of MHD estimation. Beran (1977) used the α-influence function (IFα) to examine

the robustness of the MHD estimator. For θ ∈ Θ, let f
α,θ,δ

= (1− α)fθ(x) + αδ(x)

and

IFα =
T (f

α,θ,δ
)− θ

α
, (2.2.8)
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where δ(x) is a contamination component. The (ordinary) influence function can be

obtained as α → 0. Since IFα may not converge uniformly to the influence function

in δ, it is necessary to examine IFα rather than the influence function to assess

the robustness of an estimator. Beran showed that, for any α ∈ (0, 1), the IFα is

a bounded function of δ. Hence T (.) is robust at fθ with 100α% contamination.

Donoho and Liu (1987) established that MHD estimation is “automatically” robust

in the sense that it optimizes certain quantitative measures of “robustness”. Among

many notions of robustness, they identified two quantitative measures. First, stability

of variance, which means the asymptotic variance of the estimator should stay small,

uniformly over a neighborhood of the true model. Huber (1964) showed that M

estimators can be designed to satisfy this criterion in an optimal fashion. Second,

stability of quantity estimated, which means the quantity being estimated should

change as little as possible, uniformly over a neighborhood of the true model. They

showed that minimum distance estimators are robust with respect to this latter

notion of robustness and when the distance is a Hellinger distance, the estimator

has the smallest possible sensitivity to contamination of the model among Fisher-

consistent functionals.

Lindsay (1994) investigated how the MHD estimator and its relatives balance effi-

ciency and robustness. This paper defined the residual adjustment function (based

on the Pearson’s residual), and showed that this function carries the relevant infor-

mation about the trade-off between efficiency and robustness. MHD estimation is

a procedure that essentially downweights large Pearson’s residuals, whereas M esti-

mation downweights influential (on the MLE) observations with some sacrifice of

first-order efficiency (Hampel, 1974).
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2.2.2 MHD Estimation for Count Data

Simpson (1987) extended MHD estimation to models with countable support, for

example, models for non-negative integer-valued counts. He pointed out that MHD

estimation gives little weight to counts that are improbable relative to the model,

and is asymptotically equivalent to the ML estimator when the model is correct. He

proposed the MHD estimator for discrete data as follows. Let Ny be the frequency

of y among y1, . . . , yn, and let fn be the empirical density function. That is,

fn(y) = Ny/n, y ∈ U,

where U is the set of all possible value of y. Then the MHD estimation is equivalent

to maximizing ρn(θ) =
∑

y∈U f 1/2
n (y)f

1/2

θ (y). This yields the standardized estimating

equation

ρn(θ)−1
∑

y∈U

f 1/2
n (y)f

1/2

θ (y)
∂ log fθ(y)

∂θ
= 0. (2.2.9)

Here,
f
1/2
n (y)f

1/2

θ
(y)

ρn(θ)
is called the MHD weight for y. The equation is standardized so

that
∑

y∈U

f
1/2
n (y)f

1/2

θ
(y)

ρn(θ)
= 1.

The consistency and asymptotic normality of the MHD estimator were also dis-

cussed by Simpson (1987). Write H2(θ; G) = ‖g1/2 − f
1/2

θ ‖2
2, where G is the true

underlying distribution of the data and g is the density corresponding to G. The

MHD functional T solves

H2(T (G); G) = min
t∈Θ

H2(t; G)

if a solution exists. Suppose fθ(x) is continuous in θ for each x, then for each

G ∈ G, Simpson proved that T (G) exists. In addition if T (G) is unique, then

‖g1/2
n − g1/2‖2 → 0 implies that T (Gn) → T (G) as n → ∞. Under some assumed

smoothness conditions on the model, we can get Ḣ(t; G) = −2
∫

ṡtg
1/2dµ, and

Ḧ(t; G) = −2
∫

s̈tg
1/2dµ, where sθ = f

1/2

θ and ṡθ = ∂s/∂t. The MHD estimator Tn is
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then a solution of Ḣ(t; Gn) = 0. In the discrete case, Gn is the empirical distribution

function. Also if Ḣ(t; G) has a zero solution θ interior to Θ, Ḣ(θ, G) is nonsingular,

and ṡθ ∈ L1. Then Tn → θ in probability implies that n1/2(Tn − θ) → Nd(0, Vθ)

in law as n →∞, where Vθ = 1
4
Ḧ(θ, G)−1i(θ)Ḧ(θ; G)−1 and i(θ) = 4

∫
ṡθ ṡ′θdµ. If

G ≡ Fθ, then Vθ = i(θ)−1.

Simpson (1989) also provide the theoretical basis to make inference based on the

MHD estimator. For fixed θ0 ∈ Θ and τ , let θn = θ0 + τn−1/2 then under some

smoothness conditions and G ≡ fθn
, as n →∞,

8n{ρ(f ˆθ
, fn)− ρ(f ˆθ0

, fn)} − 2 log{Ln(θ̃)/Ln(θ̃0)} → 0. (2.2.10)

That is, Simpson (1989) established the asymptotic equivalence between the likeli-

hood ratio statistic and a similar quantity based upon the Hellinger distance objec-

tive function, which thus can be used to form tests and confidence regions.

2.2.3 MHD Estimation for Finite Mixture Models

More recently, several researchers have extended MHD estimation to the finite mix-

ture model context when the data are subject to contamination or poor separation.

Woodward, Whitney, and Eslinger (1994) considered MHD estimation for finite mix-

tures, concentrating on the problem of estimating the mixing proportions in the

mixture of two normals. Their results indicated that the MHD estimator obtains

full efficiency at the fitting model while performing comparably with the minimum

distance estimator based on Cramer-von Mises distance. Cutler et al. (1996) also

discussed MHD estimation for finite mixture models, but in contrast to Woodward

et al. (1994), they considered all parameters (mixing proportions and component

means and variance) to be of interest. They proposed the HMIX algorithm to get

the MHD estimator. The algorithm comprises a sequence of weighted one-component

likelihood problems and is somewhat similar to the EM algorithm.
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Karlis and Xekalaki (2000) investigated MHD estimation for finite Poisson mix-

ture models. Their work extended MHD methodology to the semi-parametric case,

where the number of support points is not known a priori. They developed a test

procedure referred to as the Hellinger deviance test (HDT) for testing the Poisson

assumption against a mixture Poisson assumption. The HDT is the Hellinger dis-

tance analogue of the likelihood ratio test for parametric inference which was first

proposed in a non-mixture contest as (2.2.10) by Simpson. The HDT statistic is

defined as follows,

HDT = 4n[H0 −H1],

where Hi, i = 0, 1, are the minimized Hellinger distances (objective functions) for the

distribution under the null hypothesis and the alternative hypothesis respectively.

Under some regularity conditions, the asymptotic distribution of the HDT is a χ2

distribution with degrees of freedom equal to the difference in the numbers of param-

eters under the two hypotheses. However, the regularity conditions are not satisfied

in some cases; in particular, they do not hold when testing the number of compo-

nents in the mixture. For such situations they proposed the use of a bootstrap test;

i.e., construction of the null distribution via parametric bootstrap. The test statistic

measures the reduction in the Hellinger distance if one new component is added.

The scheme allows the testing of H0 : the data come from a k-component Poisson

mixture, against H1 : the data come from a (k+1)-component Poisson mixture. Since

the influence of an outlier on this distance is much less than on the likelihood, the

test based on the Hellinger distance is expected to be more robust. In addition, they

reported the critical points for the null distribution of the test statistics derived via

simulation, which make the HDT a convenient procedure to use for finite mixtures

of Poissons.
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Lu et al. (2003) extended the MHD method to finite mixtures of Poisson regres-

sion models. For model with covariates, an intuitive way to estimate θ based on

the Hellinger distance is to minimize the distance between the conditional densities,

fn(y|x), a nonparametric conditional density and fθ(y|x), the parametric density

according to the model. To avoid introduction of a nonparametric conditional den-

sity estimate into the Hellinger distance criterion, however, they proposed the MHD

estimator based on the distance between the empirical marginal densities fn(y) and

fθ(y), with respect to θ,

H2(fθ(.), fn(.)) =
∫

(f
1/2

θ (y)− f 1/2
n (y))2dy. (2.2.11)

Monte Carlo simulation showed that the resulting marginal MHD estimator is robust

and the finite sample bias is relatively small and decreases with the sample size. It

performs better in comparison to the ML estimator when the mixture components

are not well separated or when some mixing proportions are near zero and also when

there is contamination in the responses.

2.3 Kernel Density Estimation

Kernel density estimation is one of the most widely used nonparametric density

estimation methods. Given an iid random sample y1, . . . , yn from an unknown density

f , the kernel density estimator is defined as

f̂n(y) =
1

n

n∑

i=1

1

b
K(

y − yi

b
),

where K is a symmetric density function, and the scale factor b is called the band-

width. The normal referencing rule, i.e. assuming f is a Gaussian density with stan-

dard deviation σ and replacing σ by sample standard deviation sy (Silverman, 1986,

p.45), yields

b̂ =
[ 8π

∫
K2(y)dy

3{∫ y2K(y)dy}2

]1/5
syn

−1/5.
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Parzen (1962) shows that E[f̂n(y)− f(y)]2 → 0 provided hn → 0, and nhn →∞ as

n →∞. Common examples of kernel functions include the Gaussian kernel and the

Epanechnikov kernel K(z) = 1
c
p( z

c
) where

p(z) =





3
4
(1− z2) |z| ≤ 1,

0 otherwise.

Recently, the estimation of conditional densities via kernel density has been devel-

oped in the literature. Rosenblatt (1969) first proposed that the estimation of f(y|x)

can be viewed as a nonparametric regression of Kb(y−Yi) on {Xi}. As bn → 0, from

a standard Taylor argument,

E{Kbn(y − Y )|X = x} ' f(y|x).

The estimator of f(y|x) is called Nadaraya-Watson estimator and defined as

f̂NW (y|x) =
n∑

i=1

Kbn(y − Yi)w
NW
i (x),

where wNW
i (x) =

Whn (x−Xi)∑n

i=1
Whn (x−Xi)

, Kbn and Whn are two kernel functions, and bn

and hn are the bandwidths (or smoothing parameters) corresponding to W and K

respectively.

Fan et al. (1996) suggested using a locally polynomial regression function to

estimate f(y|x) and its partial derivative with respect to x. By Taylor expansion at

x, we have

E{Kb(Y − y)|X = z} ' f(y|z)

' f(y|x) + ḟ(y|x)T (z − x) +
1

2
(z − x)T f̈(y|x)(z − x)

≡ β0 + βT
1 (z − x) + βT

2 vec{(z − x)(z − x)T},

Then

f̂(y|x) = β̂0 =
N∑

i=1

Kbn(y − Yi)wi(x),
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where wi(x) =
Whn (Xi−x){Tn,2−(Xi−x)Tn,1}

(Tn,0Tn,2−T 2
n,1)

, with Tn,j =
∑N

i=1 Whn(Xi − x)(Xi − x)j,

(j = 0, 1, 2). They also proposed a method for choosing the smoothing param-

eters, bn and hn, which uses the residual squares criteria proposed by Fan and

Gijbels (1995). Hall et al. (1999) proposed a modified Nadaraya-Watson estimator

for the conditional distribution function which is always non-negative and shares

the same first order asymptotic properties as the local polynomial estimator. Hyn-

dman et al. (2002) proposed another method for estimating conditional densities

by adapting the locally polynomial function. It produces estimators that are always

non-negative. If a local polynomial regression function i.e.
∑r

j=0 θj(Xi−x)j, is used,

Hyndman’s estimator reduces to that of Fan et al (1996). They also propose a

practical two-step bandwidth selection algorithm. First, the optimal bandwidth b

is chosen to minimize the weighted integrated mean squared error (IMSE) defined

by
∫ ∫

E{f̂(y|x)−f(y|x)}2f 2(x)dxdy. Second, given the bandwidth b, the bandwidth

h can be found through the cross-validation technique (Fan and Gijbels, 1996, p.45).

Gooijer et al. (2003) proposed a re-weighted Nadaraya-Watson (RNW) estimator.

They have demonstrated that asymptotically the RNW estimator preserves the supe-

rior large sample bias property of the local linear smoother of the conditional density

proposed in the literature such as Rosenblatt (1969) and Fan et al. (1996). Fan et al.

(2004) extended the technique of cross-validation to develop a consistent bandwidth

selection rule and applied to their locally polynomial estimator (Fan et al. 1996).

All the conditional density estimators described above are defined based upon a

single covariate x but they have straightforward extensions to the multivariate case

in theory. However, with increasing dimension, the kernel density methods become

hard to implement in practice. In addition, the curse of dimensionality becomes

a problem and the performance of these methods suffers. Very recently, however,

Hall et al. (2005) proposed a method for approximating the conditional distribution

function of a random variable Y given a dependent random d-dimensional vector
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x using a dimension reduction technique. Instead of estimating the distribution of

Y |x, they proposed to estimate Y |θT x, where the vector θ is selected so that the

estimation is optimal under a least-squares criterion. More specifically, first they

obtain an estimate θ̂ by using a “leave two out” technique. Let

T
[k]
−i,−j(θ) =

1

(n− 2)h

∑

i1:i1 6=i,j

K{θT (xi − xi1)

h
}{θT (xi − xi1)

h
}k,

wi1,−i,−j(θ) = K{θT (xi − xi1)

h
} × {T [2]

−i,−j(θ)− θT (xi − xi1)

h
T

[1]
−i,−j(θ)}.

F̂−i,−j(y|θT xi) = { ∑

i1:i1 6=i,j

wi1,−i,−j(θ)I(Yi1 ≤ y)} × { ∑

i1:i1≤i,j

wi1,−i,−j(θ)}−1.

Here F̂−i,−j(y|θT xi) is a local linear estimator of F (y|θT xi) based on data pairs

other than the ith and jth; and 1
n−1

∑
i:i6=j,xi∈A F̂−i,−j(y|θT xi) is an estimator of

πθ(A,B) when B = (−∞, y]. Let F̂−j(A, y) be the proportion of the n − 1 values

of (xi, yi), for i 6= j, which satisfy (xi, yi) ∈ A × (−∞, y], and let S(θ, A) =

∑n
j=1{F̂−j(A, Yj) − 1

n−1

∑
i:i6=j,xi∈A F̂−i,−j(Yj|θT xi)}2. They choose θ̂ to minimize

S(θ) =
∫

S(θ, A)dµ(A) over θ ∈ Θ. In practice, the integration is typically replaced

by a sum over a class of selected balls. The integration is approximated by a series

S(θ) = 1
L

∑L
i=1 S(θ, Ai), where the A′

is are spheres of radius r contained within

R. They recommended choosing the bandwidth h by bootstrapping based on an

approximating parametric model (Hall et al. 1999) and a arbitrary large value L.

Their results show that the choice of L has little effect on final results. The estimator

of the conditional distribution function of Y given θ̂
T
x is shown to be first order

equivalent to its counterpart when the true value of θ is known. Therefore we can

use the one dimensional methods described above to estimate f(y|θT x).

2.4 M Estimation

Huber (1964) introduced a flexible class of estimators, “M estimators”, which

have the properties of consistency and asymptotic normality under certain reg-
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ularity conditions. These estimators are a generalization of the MLE. Suppose

X ∼ a distribution F with density f(x). The M estimator Tn is defined as

Tn = arg minθ
∑n

i=1 ρ(xi, θ). If ρ has derivative Ψ, Tn is obtained at the solution of

∑n
i=1 Ψ(xi; θ) = 0. Typically, the functions ρ and Ψ are chosen to downweight the

contributions of extreme observations.

M-estimators for the linear regression context have been studied by Moronna and

Yohai (1981). The class of estimators studied by these authors are written (Tn, σ̂) is

defined as the solution of the following two equations,

n∑

i=1

η{xi, (y − θT xi)/σ}xi = 0,

n∑

i=1

χ(|yi − θT xi|/σ) = 0.

There have been several proposals for choosing η and χ. Typically, however, η may

be written in the form

η(x, r) = w(x)ψ(rv(x)),

for appropriate functions ψ : R → R, w : Rp → R+ , and v : Rp → R+. Examples

of proposed choices of the w(x), v(x) that have been proposed in the literature are

listed in Table 2.1. As for the scale σ, a popular choice is χ(r) = ψ(r)2 − β, where

β is a constant chosen to make
∫

χ(x)Φ(x)dx = 0.

Table 2.1: Overview of some useful functions applied in η

Type w(x) v(x)
Huber (1973) w(x) = 1 v(x) = 1
Mallows’s - v(x) = 1
Andrews’s w(x) = 1 -
Hill et al(1977) w(x) = v(x)
Schweppe (1971) v(x) = 1/w(x)



19

The functional T (F ) corresponding to the M-estimator is the solution of

∫
η(x, y − xT T (F ))xdF (x, y) = 0.

The influence function of T at a distribution F is given by

IF (x, y; T, F ) = η(x, y − xT T (F ))M−1(η, F )x,

where M(η, F ) =
∫

η′(x, y − xT T (F ))xxT dF (x, y). Moronna and Yohai (1981)

showed that, under certain regularity conditions, these estimators are consistent

and asymptotically normally distribued with asymptotic covariance matrix

V (T, F ) =
∫

IF (x, y; T, F )IF T (x, y; T, F )dF (x, y)

= M−1(η, F )Q(η, F )M−1(η, F ),

where Q(η, F ) =
∫

η2(x, y − xT T (F ))xxT dF (x, y).

Recently, several authors have extended M estimation to the generalized linear

model context and beyond. Preisser and Qaqish (1999) proposed a class of robust

estimators in the more general setting of the generalized estimating equations

(GEEs). Cantoni and Ronchetti (2001) studied robust inference for GLMs. They

derived the asymptotic distribution of tests based on the quasi deviance function

corresponding to a robust estimating function. Adimari and Ventura (2001) also

studied robust inference for GLMs and derived a robust quasi-profile log likelihood

function to make inference.

Other than the M-estimator, various robust estimators have been proposed by

researchers. For example, Hodges and Lehmann (1963) proposed the so called R-

estimator by using the idea of rank statistics. Bickel (1973) introduced the L-

estimator, which minimizes an Lq norm of the residuals. Rousseeuw (1984) intro-

duced the least median of square (LMS) estimator, defined by minθmediani(ri)
2,

where ri is the Pearson’s residuals. Rousseeuw (1984) adjusted the LMS method and
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introduced the least trimmed squares (LTS) estimator, given by minθ
∑h

i=1 r2
(i) where

r(i), i = 1, . . . , n are the ordered Pearson’s residuals and h determines the amount of

trimming in the estimator. Both the LMS and LTS estimators are defined by mini-

mizing a robust measure of the Person’s residuals. In this dissertation, however, we

will focus on minimum Hellinger distance estimation and M-estimation, and develop

appropriate robust estimators for FMGLMs that fall into these traditions.
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Chapter 3

Minimum Hellinger Distance Estimation for Finite Mixtures of

Generalized Linear Models

3.1 Introduction

Finite mixtures of generalized linear models (FMGLMs) provide a useful class of

models for analyzing continuous and discrete (e.g., count-valued) data that exhibit

heterogeneity relative to some exponential dispersion family distributions such as the

binomial, Poisson, or normal. Maximum likelihood (ML) estimation is an attractive

approach to fitting such models because of the consistency and efficiency of ML

estimators and the computational convenience of implementation via the EM algo-

rithm. However, when outliers and other types of data contamination exist or when

the components of the mixture are not well separated, the ML estimator is known

to be extremely unstable. Recently, robust alternatives to ML estimation for certain

mixture models have been studied in the literature. The goal of this paper is to

develop robust, Hellinger distance-based estimation methods for FMGLMs.

Beran (1977) proposed minimum Hellinger distance (MHD) estimation for inde-

pendent and identically distributed (iid) parametric models. The MHD estimator

has been shown to be robust to certain types of violations of model assumptions and

is asymptotically equivalent to the ML estimator (Donoho and Liu, 1988). Simpson

(1987) focused on MHD estimation for discrete data, where the model is allowed

to have countably infinite support e.g., in models for unbounded counts. His paper

showed that MHD estimation provides an effective means of estimation for count

26
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data that are prone to outliers. The MHD approach has also been discussed in the

context of finite mixtures of discrete data distributions by Lindsay (1994), Cutler

and Cordero-Brana (1996), Karlis and Xekalaki (2001), and Lu et al. (2003). Lindsay

discussed how the MHD estimator balances efficiency when the model has been

appropriately chosen and robustness when it has not. Cutler and Cordero-Brana

considered MHD estimation for finite mixture models when the exact forms of the

component densities are unknown in detail but thought to be close to members of

some parametric family. Karlis and Xekalaki considered MHD estimation in the case

of finite mixtures of Poisson distributions, while Lu et al. added regression structure

to this context.

In this paper, we extend Lu et al.’s work by studying MHD estimation in the more

general context of FMGLMs, and propose a more efficient MHD estimator, which

we term the minimum conditional Hellinger distance (MCHD) estimator (MCHDE).

In addition, an important special case of FMGLMs occurs when one component is

a degenerate distribution with point mass of one at zero. Such models are known

as zero inflated (ZI) regression models (Lambert, 1992; Hall, 2000) and are useful

for analyzing data with extra zeros relative to some exponential family distributions

such as the Poisson. We will discuss MHD estimation in this important subclass of

models in details as well.

The organization of this paper is as follows. Section 3.2 gives the literature back-

ground of FMGLMs and MHD estimation. Section 3.3 and 3.4 describes MHD esti-

mation methods for FMGLMs, based on marginal and conditional density respec-

tively. Simulation results are presented in section 3.5 to compare these two methods

to each other and to ML estimation. Section 3.6 examines the robustness of these

two methods through the α influence function. Two examples are given in section 3.7

for illustration of the methodology. Finally, some discussion is provided in section

3.8.
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3.2 Background on FMGLMs

Generalized linear models (GLMs) have proved to be very useful in a wide array of

application areas (McCullagh and Nelder, 1989). GLMs are based upon the assump-

tion that the data are generated from an exponential family distribution such as the

binomial, Poisson, or normal. However, in practice, data often exhibit patterns of

variability inconsistent with such standard distributional assumptions. For example,

excess variance, or overdispersion, relative to an exponential family distribution often

occurs. In some cases, overdispersion has a specific form in which the data may be

seen as arising from a heterogeneous population composed of two or more subclasses

of subjects whose data follow distributions from the same parametric family with

possible different values of parameters. Such models are sometimes called latent class

models, and are examples of FMGLMs.

Let {(yi, xi), i = 1, . . . , n} denote observations where yi represents the observed

value of Yi, and xi = (x
(m)T

i , x
(r)T

i )T denotes a vector of explanatory variables or

covariates. Usually, the first element of x
(m)
i

T
and x

(r)
i

T
is 1, corresponding to an

intercept. Here the superscript (m) denotes covariates associated with the mixing

probability and (r) denotes covariates related to the component means, which some-

times may share common variables. The unobserved mixing process assumes that

Yi can come from any one of c states, where c is finite but possibly unknown. Let

Zij = 1 if observation i comes from component j, 0 otherwise, where j = 1, . . . , c,

and let P (Zij = 1) = pij where
∑c

j=1 pij = 1. We assume that these mixing proba-

bilities are related to covariates via a generalized logit type model of the following

form, although other link functions could easily be accommodated

pij = pij(x
(m)
i , β) =

exp(β′jx
(m)
i )

1 +
∑c−1

k=1 exp(β′kx
(m)
i )

j = 1, . . . , c− 1, (3.2.1)
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where

pic = pic(x
(m)
i , β) = 1−

c−1∑

j=1

pij.

In addition, we assume exponential dispersion family densities for each component

of the mixture; that is,

fj(yi|x(r)
i , ai, αj) ≡ G(yi|ai, ηij) = exp{yiηij − b(ηij)

ai(φ)
+ c(yi)}. (3.2.2)

Then the density function of Yi is

f(yi|x(r)
i , x

(m)
i , ai, α, β) =

c∑

j=1

pijG(yi|ai, ηij). (3.2.3)

We refer to the class of models defined in this way as FMGLMs. Such models have

received considerable attention recently. In addition, an important special case of

FMGLMs occurs when one component is a degenerate distribution with point mass of

one at zero. Such models are known as zero inflated (ZI) regression models. Lambert

(1992) proposed the zero inflated Poisson (ZIP) regression model. In ZIP regression,

the response vector is y = (y1, . . . , yn)′, where yi is the observed value of the random

variable Yi. We assume the Yi’s are independent where

Yi ∼




0 with probability pi;

Poisson(λi) with probability 1− pi.

Moreover, the parameters p = (p1, ..., pN)T and λ = (λ1, ..., λN)T are modelled

through canonical link GLMs as logit(p) = β′x(m) and log(λ) = α′x(r), where

β and α are regression parameters, and x(m) and x(r) are corresponding design

matrices which pertain to the probability of the zero state and the Poisson mean,

respectively. Other ZI regression models can be defined similarly. For example, in the

zero inflated binomial model (Hall, 2000), the Poisson(λ) component is replaced by a

binomial(m,π) component and instead of modelling λ, one model, logit(π) = α′x(r).

Maximum likelihood (ML) estimation is an attractive approach to fitting

FMGLMs because of the consistency and efficiency of ML estimators and the
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computational convenience of implementation via the EM algorithm. However,

when outliers and other types of data contamination exist or when the components

of the mixture are not well separated, the ML estimator is known to be extremely

unstable.

Recently, several researchers have extended MHD estimation to the finite mix-

ture model context when the data are subject to contamination or poor separation.

Woodward, Whitney, and Eslinger (1994) considered MHD estimation for finite mix-

tures, concentrating on the problem of estimating the mixing proportions in the

mixture of two normals. Their results indicated that the MHD estimator obtains

full efficiency at the fitting model while performing comparably with the minimum

distance estimator based on Cramer-von Mises distance away from the true model.

Karlis and Xekalaki (2000) investigated MHD estimation for finite Poisson mixture

models. Lu et al. (2003) extended the MHD method to finite mixtures of Poisson

regression models. For model with covariates, an intuitive way to estimate θ based

on Hellinger distance is to minimize the distance between an empirical and model-

based conditional densities, fn(y|x) and fθ(y|x), respectively. That is, we define the

conditional Hellinger distance as

H2
c (fn(.|.), fθ(.|.)) =

∫ ∫
(f 1/2

n (y|x)− f
1/2

θ (y|x))2fX (x)dxdy. (3.2.4)

To avoid introduction of a nonparametric conditional density estimate into the

Hellinger distance criterion, however, Lu et al. (2003) proposed the MHD estimator

based on the distance between the marginal densities fn(y) and fθ(y),

H2(fθ, fn) =
∫

(f
1/2

θ (y)− f 1/2
n (y))2dy.

Here, the fn(y) indicates an empirical, non-parametric density estimate based only on

the data, whereas the subscript fθ(y) indicates the parametric model-based marginal

density. Monte Carlo simulation showed that the resulting marginal MHD estimator
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is robust and its finite sample bias is relatively small and decreases with the sample

size. It performs better in comparison to the ML estimator when the mixture com-

ponents are not well separated or when some mixing proportions are near zero and

also when there is contamination of the response, i.e. outliers in y.

3.3 Marginal MHD Estimation for Discrete FMGLMs

First we extend Lu et al.’s approach based on H2(., .) to a more general context of

FMGLMs for discrete data. We limit attention to finite mixtures of discrete data

GLMs because in this context, it is reasonable to use the empirical frequency function

of the data as the nonparametric density on which to base the MHD criterion of

estimation. Outside of this class, other nonparametric density estimators could be

used to define the Hellinger distance; however, we defer discussion of this possibility

to section 4 where we introduce the conditional MHD approach.

Let fn(y) be the empirical frequency function defined by

fn(y) = Ny/n, y ∈ U, (3.3.5)

where U is the set of all possible values of y. Let fθ(y|xi) denote the probability

defined as in (3.2.3), where θ = (αT , βT )T . Take x as the combined vector of all

observed covariates, which we condition on and consider fixed.

3.3.1 Estimation Based on Marginal Densities

For a moment consider the iid case and suppose we know the form of fθ(y). Then

the MHD estimator θ̂ would be the root of

∑

y∈U

f 1/2
n (y)

f
1/2

θ (y)
ḟθ(y) = n

n∑

i=1

f
1/2

θ (yi)

f
1/2
n (yi)

∂ log fθ(yi)

∂θ
= 0. (3.3.6)

Lindsay et al. (1992) introduced Lindsay’s residual function r(y) = fn(y)
fθ(y)

− 1, as

a more appropriate quantity than Pearson’s residual to assess goodness of fit in a
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mixture context. Notice that (3.3.6) can be written as

n∑

i=1

1

{1 + r(yi)}1/2

∂ log fθ(yi)

∂θ
= 0.

From this representation, it can be seen that MHD downweights observations that

have large Lindsay’s residuals in the estimating equation.

In the non-iid situation with which we are concerned, however, fθ(y) must be

computed from a conditional density fθ(y|x) through

fθ(y) =
∫

fθ(y|x)fX (x)dx. (3.3.7)

When fX (x) is unknown, or the integration is impractical due to the high dimension

of the covariate vector x, the objective function (3.3.6) is unavailable. Lu et al. (2003)

used a consistent estimator fθ,n
(y) to replace fθ(y), which is defined by

fθ,n
(y) =

1

n

n∑

i=1

fθ(y|xi, ai, α, β) =
c∑

j=1

n∑

i=1

pij

n
G(ai, y, α′

jx
(r)
i ). (3.3.8)

Then Lu et al.’s MHD estimator is defined as follows:

T (fn) = arg min
θ∈Θ

H2(fθ,n
, fn);

i.e., it is the maximizer of

ρ(θ) =
∑

y∈U

f 1/2
n f

1/2

θ,n
(y).

While fθ,n
defined above is a consistent estimator of fθ, it may not be the best

estimator of (3.3.7). Other classes of estimators can be considered which are not

only consistent but also more efficient than fθ,n
. For example, we can use Monte

Carlo integration to estimate (3.3.7). Generate xj, j = 1, . . . , B from f̂(x), where

B is a large number, say 1000, and f̂(x) is a kernel density estimate of x. This

approach has been termed as the smoothed bootstrap (e.g., Chernick, 1999; Efron,

1982). Let

f̂θ(y) =
1

B

B∑

j=1

fθ(y|xj), (3.3.9)
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which is used as an estimator of fθ(y). Alternatively, we can use bootstrap resam-

pling to estimate (3.3.7). Resample from the empirical distribution of the x′is, say

F̂ . Suppose (x?
j1, . . . , x

?
jn) is a bootstrap sample, where j = 1, . . . , B. Then let

f̃θ(y) =
1

B

B∑

j=1

1

n

n∑

i=1

fθ(y|x?
ji). (3.3.10)

Accordingly, we can adjust the MHD estimator by replacing fθ,n
by either (3.3.9) or

(3.3.10). Such improvements on the basic marginal MHD estimation approach will

be pursued elsewhere. In the current paper, we focus our attention here and present

the algorithm below in terms of the estimator defined by (3.3.8). The algorithm can

be altered to utilize the other estimators proposed above in an obvious way.

3.3.2 MHD Estimating Equations

Now we establish the estimating equations. The MHD estimator of

θ is arg maxθ∈Θ
ρn(θ), where ρn(θ) is

ρn(θ) =
∑

y∈U

f 1/2
n (y)

[ 1

n

n∑

i=1

{
c−1∑

j=1

exp(β′jx
(m)
i )

1 +
∑c−1

k=1 exp(β′kx
(m)
i )

G(ai, y, α′
jx

(r)
i )

+
G(ai, y, α′

cx
(r)
i )

1 +
∑c−1

k=1 exp(β′kx
(m)
i )

}
]1/2

.

Taking the partial derivatives with respective to α and β, and setting them equal

to 0, we get the following set of equations:

2
ρn(θ)

∂αj

=
∑

y∈U

f 1/2
n (y)f

1/2

θ,n
(y)

1

fθ,n
(y)

× {
n∑

i=1

pij

n
G(ai, y, α′

jx
(r)
i )

y

ai

x
(r)
i

−
n∑

i=1

pij

n
G(ai, y, α′

jx
(r)
i )

Ej|i
ai

x
(r)
i } = 0,

where Ej|i is the mean of jth component given the covariates x(r), and

2
ρn(θ)

∂βk

=
∑

y∈U

f 1/2
n f

1/2

θ,n

1

fθ,n
(y)

[ 1

n

n∑

i=1

{pik(1− pik)x
(m)
i G(ai, y, α′

kx
(r)
i )

−pik

∑

j=1, 6=k

pijx
(m)
i G(ai, y, α′

jx
(r)
i )}

]
= 0, (3.3.11)
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where k = 1, . . . , c − 1 and pij is defined by (3.2.1). To simplify the above two

equations, define the MHD weight for y as

vθ,n
(y) = f 1/2

n (y)f
1/2

θ,n
(y)/ρn(θ).

Note that, as n → ∞, the MHD weight converges in probability to the probability

of observing y. Also let

wij(ai, y, θ) =
pij

n
G(ai, y, α′

jx
(r)
i )/fθ,n

(y).

Note also that this quantity converges in probability to the probability that the ith

observation comes from the jth component given the value of y under the fitting

model. Then the first partial derivative equation (3.3.11) can be written as follows:

∑

y∈U

vθ,n
(y){

n∑

i=1

wij(
y

ai

− Ej|i
ai

)x
(r)
i } = 0. (3.3.12)

Recall that G(ai, y, α′
jx

(r)
i ) has the form of (2.1.2), so Ej|i = ḃ(α′

jx
(r)
i ). We can solve

this equation by using iteratively re-weighted estimating equations as follows. That

is, when ‖α(l+1) −α(l)‖ is small, we have,

n∑

i=1

∑

y∈U

v
θ(l)

,n
(y)w

(l)
ij

y

ai

x
(r)
i '

n∑

i=1

∑

y∈U

v
θ(l)

,n
w

(l)
ij

E
(l)
j|i
ai

x
(r)
i

+
n∑

i=1

∑

y∈U

v
θ(l)

,n
(y)w

(l)
ij

V ar
(l)
j|i

a2
i

x
(r)
i (α

(l+1)
j −α

(l)
j ),

where
V arj|i

ai
= b̈(α′

jx
(r)
i ). This leads to the updating formula

α
(l+1)
j = α

(l)
j + (X(r)′W (l)

j X(r))−1X(r)′W (l)
j D

(l)
j ,

where W
(l)
j is a diagonal matrix with elements {W (l)

j }(i,i) =
∑

y∈U v
θ(l)

,n
w

(l)
ij

V ar
(l)

j|i
a2

i
,

and

{D(l)
j }(i) =

∑
y∈U

v
θ(l)

,n

w
(l)
ij (y)

∑
y∈U

v
θ(l)

,n

w
(l)
ij (y)

y
ai
− E

(l)

j|i
ai

V ar
(l)

j|i
a2

i

j = 1, . . . , c.
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Here ai is the scale parameter in the GLMs, for example ai = 1 for Poisson dis-

tribution and ai = 1
m

for the binomial(m, p). Note that the coefficient in W
(i,i)
j ,

∑
y∈U vθ,n

(y)wij(y), converge in probability to the probability of the value of the ith

random variable drawn from the jth component as n goes to infinity. Similarly, the

second partial derivative equation (3.3.11) would be written as

∑

y∈U

vθ,n
(y){

n∑

i=1

(wik(1− pik)x
(m)
i − pikx

(m)
i

c∑

j=1, 6=k

wij)} = 0 k = 1, . . . , c− 1.

When ‖β(l+1)
k − β

(l)
k ‖ is small , we can obtain:

∑

y∈U

v
θ(l)

,n
(y)

n∑

i=1

w
(l)
ik x

(m)
i '

n∑

i=1

c∑

j=1

∑

y∈U

v
θ(l)

,n
(y)w

(l)
ij {expit(β

(l)′
k x

(m)
i )}+

n∑

i=1

c∑

j=1

∑

y∈U

v
θ(l)

,n
(y)w

(l)
ij expit(β

(l)′
k x

(m)
i ){1− expit(β

(l)′
k x

(m)
i )}x(m)

i x
(m)
i

′
(β

(l+1)
k − β

(l)
k ),

where expit(x) = exp(x)
1+exp(x)

. Then we can update β through

β
(l+1)
k = β

(l)
k + (X(m)′W (l)

k X(m))−1X(m)′W
(l)
k S

(l)
k ,

where

{W (l)
k }(i,i) =

c∑

j=1

∑

y∈U

v
θ(l)

,n
(y)w

(l)
ij V ar(l)(Zik),

and

{S(l)
k }(i) =

∑
y∈U

v
θ(l)

,n

(y)w
(l)
ik

∑c

j=1

∑
y∈U

v
θ(l)

,n

(y)w
(l)
ij

− E(l)(Zik)

V ar(l)(Zik)
, k = 1, . . . , c− 1.

Recall that Zik is the unobserved random variable indicating whether the ith observa-

tion comes from the kth component. The coefficient in W
(l)
k ,

∑c
j=1

∑
y∈U v

θ(l)
,n

(y)w
(l)
ij ,

converges in probability to the probability of observing the ith observation, i.e. to

1, as n →∞.

3.3.3 MHD Fitting Algorithm

The MHD fitting algorithm can be summarized in terms of the following four steps:
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Step (1) : Given θ(l) = {α(l), β(l)}, calculate

v
(l)

θ,n
(y) = f 1/2

n (y)f
1/2

θ(l)
,n

(y)/ρn(θ(l)),

and

w
(l)
ij =

p
(l)
ij

n
G(ai, y, α

(l)
j

′
x

(r)
i )/f

(l)

θ,n
(y), y ∈ U,

where

p
(l)
ij =

exp(β
(l)′
j x

(m)
i )

1 +
∑c−1

k=1 exp(β
(l)
k

′
x

(m)
i )

, ρn(θ(l)) =
∑

y∈U

f 1/2
n (y)f

1/2

θ(l)
,n

(y).

Step (2): Update α by

α
(l+1)
j = α

(l)
j + (X(r)′W

(l)
j X(r))(−1)X(r)W

(l)
j D

(l)
j ,

where W
(l)
j is a diagonal matrix with components:

{W (l)
j }(i,i) =

∑

y∈U

v
(l)

θ,n
(y)w

(l)
ij (y)V ar

(l)
j|i/a

2
i ,

and

{D(l)
j }(i) =

∑
y∈U(

v
(l)

θ,n
(y)w

(l)
ij (y)

∑
y∈U

v
(l)

θ,n
(y)w

(l)
ij (y)

y
ai

)− E
(l)

j|i
ai

V ar
(l)
j|i/a

2
i

, j = 1, . . . , c.

Step (3): Update β by

β
(l+1)
k = β

(l)
k + (X(m)′W

(l)
k X(m))(−1)X(m)′W

(l)
k S

(l)
k ,

where

{W (l)
k }(i,i) =

c∑

j=1

∑

y∈U

v
(l)

θ,n
(y)w

(l)
ij (y)V ar(l)(Zik),

and

{S(l)}(i) =

∑
y∈U

v
(l)

θ,n
(y)w

(l)
ik

(y)

∑c

j=1

∑
y∈U

v
(l)

θ,n
(y)w

(l)
ij (y)

− E(l)(Zik)

V ar(l)(Zik)
, k = 1, . . . , c− 1.

Step (4): If a convergence criterion has been obtained then stop, otherwise return

to step (1). Any of several convergence criteria could be used here. For example, if
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‖α(l+1)
j −α

(l)
j ‖ ≤ ε and ‖β(l+1)

k −β
(l)
k ‖ ≤ ε then stop, where ε is some suitably small

constant (e.g., 1e-6).

The above algorithm is based on the canonical link of the GLMs. If η = η(µ) is

not the canonical link function, we can modify step (2) of the above algorithm as

follows:

α
(l+1)
j = α

(l)
j + (X(r)′W

(l)
j X(r))(−1)X(r)W

(l)
j D

(l)
j ,

where W
(l)
j is a diagonal matrix with components:

{W (l)
j }(i,i) =

∑

y∈U

v
(l)

θ,n
(y)w

(l)
ij (y)× 1

V ar
(l)
j|i(y)

(
∂µi

∂ηi

)2,

and

{D(l)
j }(i) =

[ ∑

y∈U

{
v

(l)

θ,n
(y)w

(l)
ij (y)

∑
y∈U v

(l)

θ,n
(y)w

(l)
ij (y)

y

ai

} − E
(l)
j|i
ai

]
× ∂ηi

∂µi

, j = 1, . . . , c.

It is instructive to compare the algorithm for minimizing the MHD criterion to

ML estimation via the EM algorithm. For FMGLMs, the latter approach leads to

the following E and M steps.

E step: Estimate pij by its conditional mean p
(l)
ij = E(Zij|yi, β

(l), α(l)) under current

estimates of the regression parameters.

M step for α: Update α̂ via

α
(l+1)
j = α

(l)
j + (X(r)′W

(l)
j X(r))(−1)X(r)′W

(l)
j D

(l)
j ,

where {W (l)
j }(i,i) = p

(l)
ij

V ar
(l)

j|i(Y )

a2
i

, and {D(l)
j }(i) =

yi/ai−E
(l)

j|i(Y )/ai

V ar
(l)

j|i(Y )/a2
i

.

M step for β: Update β̂ via

β
(l+1)
k = β

(l)
k + (X(m)′W

(l)
k X(m))(−1)X(m)′W

(l)
k S

(l)
k ,

where {W (l)
k }(i,i) = V ar

(l)
k (Zik), and {S(l)

k }(i) =
p
(l)
ik
−pik

V ar
(l)
k

(Zik)
. Comparing the EM

updating formulas with the corresponding ones for MHD estimation we see some

striking similarities. Both approaches involve iteratively updating β and α using
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weights that are recomputed at each iteration. These weights involve the mixing

probabilities in the case of ML, and the weight
∑

y∈U vθ,n
(y)wij in the case of MHD

estimation. In each case, though, the weight quantifies the probability that the value

of the random variable Yi is drawn from the jth component. However, MHD esti-

mation assigns less weight to those points that are outlying in the sense of large

Lindsay’s residuls. It also sets the weights
∑c

j=1

∑
y∈U vθ,n

(y)wij(y) instead of 1 to

the mixture component indicator (missing data) Zij.

3.3.4 MHDE asymptotic properties

Theorem Under the assumption of Theorem 1 in Beran (1977), Θ is a compact

subset, θ1 6= θ2 ⇒ fθ1 6= fθ2 on a set of positive Lebesgue measure,fθ(y) is continuous

in θ, and
∑∞

y=0 f
1/2
θ (y) < ∞, we have

T̃n
−→p θ,

where T̃n satisfies H̃(T̃n, fn) = MintH̃(t, fn),

H̃(t, fn) =
∞∑

y=0

(f 1/2
n (y)− f

1/2
n,t (y))2 = ‖f 1/2

n − f
1/2
n,t ‖,

fn is the empirical density of (Y1, . . . , Yn) and fn,t = 1
n

∑n
i=1 ft(y|Xi).

Proof: (1) Show that EX‖f 1/2

n,T̃n
− f

1/2
θ ‖ → 0.

EX‖f 1/2

n,T̃n
− f

1/2
θ ‖ ≤ EX(2‖f 1/2

n,T̃n
− f 1/2

n ‖+ 2‖f 1/2
n − f

1/2
θ ‖)

≤ EX(2‖f 1/2
n,θ − f 1/2

n ‖+ 2‖f 1/2
n − f

1/2
θ ‖)

≤ EX(4‖f 1/2
n,θ − f

1/2
θ ‖+ 4‖f 1/2

θ − f 1/2
n ‖+ 2‖f 1/2

n − f
1/2
θ ‖)

EX‖f 1/2
θ − f 1/2

n ‖ =
∞∑

y=0

EX(f
1/2
θ − f 1/2

n )2

≤
∞∑

y=0

EX |fθ − fn|
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≤
∞∑

y=0

{EX(fθ − fn)2}1/2

≤
∞∑

y=0

{ 1

n
fθ(1− fθ)}1/2

≤ 1√
n

∞∑

y=0

f
1/2
θ → 0.

EX‖f 1/2
n,θ − f

1/2
θ ‖ ≤

∞∑

y=0

EX [{ 1

n

∑
fθ(y|Xi)}1/2 − f

1/2
θ ]2

≤
∞∑

y=0

[EX{ 1

n

∑
fθ(y|Xi)− fθ}2]1/2

=
∞∑

y=0

1√
n

[EX{fθ(y|X1)− fθ}2]1/2

≤ 1√
n

∞∑

y=0

(EXf 2
θ (y|X1))

1/2

≤ 1√
n

∞∑

y=0

(EXfθ(y|X1))
1/2

=
1√
n

∞∑

y=0

f
1/2
θ → 0.

(2) T̃n → θ.

By Markov Inequality,

‖f 1/2

n,T̃n
− f

1/2
θ ‖ → 0, i.p.

So that =⇒ ∀N1 ⊂ N, ∃N2 ⊂ N , s.t.

‖f 1/2

n,T̃n
− f

1/2
θ ‖ → 0, a.s. n ⊂ N2.

By the Theorem 1 of Beran (1977), T̃n → θ a.s , n ∈ N2. By Lemma2 of Chow and

Teicher (1997), T̃n → θ in probability.¶
Lu et al (2003) proposed to extend Simpson’s result (1987) to the finite mixture

of Poisson cases, i.e., under certain regularity conditions, θ̂
MHD

has an asymptotic

normal distribution. Moreover,

√
n(θ̂

MHD − θ) → N(0, Vθ)
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in law as n → ∞, where Vθ = 1
4
Ḧ(θ; F )−1i(θ)Ḧ(θ; F )−1, and F is the true under-

lying distribution. If F ≡ Fθ, then Vθ = i(θ)−1. The asymptotic variance of the

MHDE can be estimated by V̂ ˆθ
= Î(θ̂)−1, where Î(θ̂) =

∑
y∈U

{̂
l̇θ(y)̂l̇

T

θ(y)fn(y)−
∂2fθ,n

(y)

∂θ∂θT |
θ=

ˆθ

}
, and ˆ̇lθ(y) = ∂

∂θ log fθ,n
(y)|

θ=
ˆθ
.

This marginal approach could be extended beyond discrete FMGLMs, but this

would require replacing fn(y) by a kernel density estimate which would defeat the

simplicity of the marginal approach (the simplicity of being able to look at the

empirical frequency function as the appropriate nonparametric density estimate). So,

if it is necessary to introduce a kernel density estimate, then we might as well work

with a nonparametric estimate for the conditional density function, then proceed

to the MCHDE section and present it as applicable to the full class (discrete and

continuous) of FMGLMs. We think that the more natural approach in a regression

context such as ours is to work with the conditional Hellinger distance criterion.

Moreover, Lu et al.’s approach complicates the issue of model identifiability (Lu

et al. 2003). Although these authors cite previous literature on the identifiability

of finite mixtures of Poisson models to support their approach, these results apply

only to the situation in which the mixing probability is constant. In many regres-

sion contexts in which FMGLMs are natural models, this assumption is restrictive.

FMGLMs are most natural as a tool to account for underlying population hetero-

geneity or latent class structure. In many contexts, the available data may include

covariates on which the class membership probability depends. For example, in sec-

tion 6 we analyze heart arhythmia data from a sample of clinically normal dogs.

The motivation for a Poisson FMGLM in that problem is the hypothesis that this

sample of “normal” animals is contaminated with a subset of misdiagnosed dogs that

have a genetic defect for cardiomyopathy. The mixing probability here represents the

probability that a particular animal has the genetic defect and this probability may

depend upon other clinical factors available to the analyst, such as gender. In this
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and many other natural settings for FMGLMs, it is appealing to specify a regression

structure for the mixing probability in the model. Unfortunately, with the marginal

MHD approach identifiability is not guaranteed in such models, and in our simu-

lation studies and other experiences, we have frequently encountered identifiability

problems when the mixing probability is not constant. Fortunately, a conditional

MHD approach avoids these identifiability problems, is more appealing in a regres-

sion context, is more widely applicable to non-discrete FMGLMS, and, as we will

see, often offers greater efficiency than the marginal MHD approach. Therefore, we

propose to minimize the conditional Hellinger distance as the basis of estimation.

3.4 Minimum Conditional Hellinger Distance Estimation for FMGLMs

Several researchers have proposed non-parametric estimators of conditional densities

(Fan et al. 1996; Hall et al. 1999; Hyndman et al. 2002). These papers have dealt

with the general conditional density estimation problem, but Gooijer and Zerom

have recently applied these approaches to a mixture context. For certain cases of

FMGLMs, if suitable nonparametric conditional density estimates can be found, it

is natural to use MCHD estimation. We expect that the MCHDE should be more

efficient than the MHDE, since we don’t need to estimate the marginal densities.

Instead, we estimate the nonparametric conditional density directly. Moreover, we

avoid the identifiability problems that may arise in the marginal MHD approach.

If we know the conditional density fn(y|x), we can minimize (3.2.4) directly.

Clearly, it’s equivalent to maximize

ρc
n(θ) =

n∑

i=1

1

n

∑

y∈U

f 1/2
n (y|xi)f

1/2

θ (y|xi).

Then the MCHD estimator is the solution of

ρ̇c
n(θ) =

1

2n

n∑

i=1

∑

y∈U

f 1/2
n (y|xi)f

−1/2

θ ḟθ(y|xi) = 0.
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To calculate the MHD estimator of θ, we can adjust the algorithm of section 3.3, by

redefining vθ,n
(y)wij(ai, y, θ) in step (1) as follows:

vθ,n
(y|xi) = f 1/2

n (y|xi)f
1/2

θ (y|xi)/ρ
c
n(θ),

and

wij(ai, y, θ|xi) =
pij

n
G(ai, y, α′

jx
(r)
i )

fθ(y|xi)
.

Simulation results in Section 4 show that for FMGLMs, the MCHD estimator is more

efficient than the MHD estimator of the regression parameters, especially for the

parameters related to the component means. In the following, we will demonstrate

how to estimate fn(y|x) in several cases.

Case 1: Categorical Covariates

For a model with categorical explanatory variables, we can estimate the nonpara-

metric density fn(y|xi) in each covariate class separately by Ny|xi
/N(xi), where

N(xi) is the frequency of xi among x, and Ny|xi
is the frequency of y among

y1, . . . , yn with covariates xi.

Case 2: A Single Continuous Covariate

For models with a single continuous covariate, we use the nonparametric conditional

density estimation proposed by Hyndman et al. (2003) as our nonparametric con-

ditional density estimate in (3.2.4). In their papers, they suggested that fn(y|xi)

can be estimated through a local regression function of Kb(Yi − y) on xi, where

Kb(u) = b−1K(u/b) with K(.) being a symmetric density function on R. They pro-

posed non-negative estimators as follows. Let

R(θ; x, y) =
n∑

i=1

{Kb(Yi − y)− A(Xi − x, θ)}2Wh(Xi − x), (3.4.13)
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where A(x, θ) = exp(
∑r

j=0 θjx
j), and Wh(u) = h−1W (u/h), W (.) is a kernel func-

tion. Then

f̂(y|x) = exp(θ̂0),

where θ̂xy = (θ̂0, θ̂1, . . . , θ̂r)
T minimizes R(θ; x, y). Clearly, the performance of

MCHDE depends on the choice of bandwidths. We apply the bandwidth selection

algorithm proposed by Hyndman et al. (2003) to choose the optimal bandwidths of

b and h. This algorithm combines two steps.

(1) Select the smoothing parameter b using the normal reference rule. That is,

assume both the conditional distribution and the marginal distribution are nor-

mally distributed with f(y|x) = 1
σ
φ(y−d0−d1(x−µ)

σ
) and g(x) = 1

ν
φ(x−µ

ν
) where φ(x) =

1
2
exp(−x2

2
), we can get ĥ ≈ 0.916(νσ5/n|d1|5)1/6 and b̂ = 1.05|d1|ĥ.

(2) Given this value of b̂, find value of h is a standard nonparametric problem

of regression Kb(Yi − y) on Xi. Therefor, the cross-validation technique (Fan and

Gijbels, 1996 p.45) can be adapted to update the bandwidth ĥ.

In practice, we can use Hyndman’s R library Hdrcde which is already built into

this algorithm, to form the estimator of fn(y|xi), as well as the optimal bandwidth

b̂ and ĥ. The MCHD estimator is then computed following the same steps as given

above for the marginal case.

In theory, for the general case, we obtain get the conditional density as above no

matter what the dimension of the covariate vector is. Replacing scalars Xi, x by the

vectors X i, x in (3.4.13), the estimator of f(y|x) would be exp(θ̂0), where θ̂xy =

(θ̂0, θ̂1, . . . , θ̂r) minimizes R(θ; x, y), where A(x, θ) = exp(
∑r

j=0 θT
j xj). However

due to the curse of dimensionality, this estimator rapidly loses efficiency as the

dimension increases. In practice, this approach to estimation is appropriate only for

small dimensions.
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Case 3: High dimension continuous covariates

Recently, Hall et al. (2005) proposed a method for approximating the conditional dis-

tribution function of a random variable Y given a dependent random d-dimensional

vector x using a dimension reduction technique. Instead of estimating the distribu-

tion of Y |x, they proposed to estimate Y |θT x, where the vector θ is selected so that

the estimation is optimal under a least-squares criterion. More specifically, first they

estimate θ̂ by using the “leave two out” technique. Let

T
[k]
−i,−j(θ) =

1

(n− 2)h

∑

i1:i1 6=i,j

K{θT (xi − xi1)

h
}{θT (xi − xi1)

h
}k,

wi1,−i,−j(θ) = K{θT (xi − xi1)

h
} × {T [2]

−i,−j(θ)− θT (xi − xi1)

h
T

[1]
−i,−j(θ)}.

F̂−i,−j(y|θT xi) = { ∑

i1:i1 6=i,j

wi1,−i,−j(θ)I(Yi1 ≤ y)} × { ∑

i1:i1≤i,j

wi1,−i,−j(θ)}−1.

Here F̂−i,−j(y|θT xi) is a local linear estimator of F (y|θT xi) based on data pairs other

than the ith and jth; and 1
n−1

∑
i:i6=j,xi∈A F̂−i,−j(y|θT xi) is an estimator of πθ(A,B)

when B = (−∞, y]. Let F̂−j(A, y) be the proportion of the n − 1 values of (xi, yi),

for i 6= j, which satisfy (xi, yi) ∈ A× (−∞, y], and let S(θ, A) =
∑n

j=1{F̂−j(A, Yj)−
1

n−1

∑
i:i6=j,xi∈A F̂−i,−j(Yj|θT xi)}2. They choose θ̂ to minimize S(θ) =

∫
S(θ, A)dµ(A)

over θ ∈ Θ. They recommended choosing the bandwidth h by bootstrapping based

on an approximating parametric model (Hall et al. 1999). The estimator of the

conditional distribution function of Y given θ̂
T
x is shown to be first order equivalent

to its counterpart when the true value of θ is known. Therefore we can use the one-

dimensional method described above to estimate f(y|θT x).

Note that in a model with continuous covariates and additional categorical covari-

ates, we can combine the approaches of case 1 and case 3 to handle a much broader

class of models.

In the iid case, Beran (1977) defined the MHDE T (ĝn) to be the minimizer of

H2 =
∫ {ĝ1/2

n (y) − f
1/2

θ (y)}2dy, where ĝn(y) is a kernel density estimator. Under
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certain regularity condition, if H2 → 0, the limiting distribution of
√

n{T (ĝn)− θ}
is N(0, {4 ∫

ṡθ(y)ṡT
θ(y)dy}−1), where sθ(y) = f

1/2

θ (y).

Conjecture This result can be extended to the regression context, i.e., MCHD

case. Recall that

θ̂
MCHD

= arg min
θ

H2
c (fn(.|.), fθ(.|.))

≡ arg min
θ

∫ ∫
(f 1/2

n (y|x)− f
1/2

θ (y|x))2fX(x)dxdy,

where fn(y|x) is defined depending on the different cases of x as described above.

Under certain regularity conditions, the limiting distribution of
√

n(θ̂
MCHD − θ)

should go to N(0, Λ−1

θ ) as n → ∞, where Λθ = 4
∫ ∫

Ṡθ(y|x)ṠT
θ(y|x)dyfX(x)dx,

and Sθ(y|x) = f
1/2

θ (y|x). Then, the asymptotic variance of θ̂
MCHD

can be estimated

by Λ̂ ˆθ
= 4

n

∑n
i=1

∫
Ṡ ˆθ

(y|xi)Ṡ
T
ˆθ
(y|xi)dy.

A formal proof of this extension is hard to establish, because (1) the property

of
∫ ∫

(f 1/2
n (y|x) − f

1/2

θ (y|x))2dyfX(x)dx → 0 in probability as n → ∞ is hard to

obtain without further assumptions, on the distribution of X, and (2) the regularity

conditions affected by bandwidths are not clear. However, simulation results in the

next section confirm that our conjecture is reasonable, so that the estimated variance

of the MCHDE is very close to the sample variance when n is large.

3.5 Simulation Study

The aim of the following set of simulations is to assess the performance of MHD

method and MCHD method compared with ML methods for mixture models. Sep-

arate studies are conducted to verify and compare the properties of these three

methods, under three scenarios: correct model specification, data generated from

the model but with outliers in the response variable, and data generated from the

model but with outliers in the covariates. Simulation study 1 followed a 2 x 2 design

in which we consider two types of finite mixture models (2-component binomial and
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ZIP), and two sample sizes (100 and 200). In addition, studies 2 and 3 considered two

additional factors: degree of mean separation between the components of the finite

mixture (low and high), and level of mixing, corresponding to even (50:50) or skewed

(10:90) mixing of the components. For the binomial mixture models, independent

data are generated from a model of the form

Yi ∼




Binomial(m,µ1i), with probability pi,

Binomial(m,µ2i), with probability 1− pi,

where

µji = expit(αj0 + αj1x1i), j = 1, 2

pi = p,

x1i is a random variable generated from a uniform(0,1) distribution. The other type

of FMGLMs considered is a ZIP model, in which independent data are generated

according to

Yi ∼




0, with probability pi,

Poisson(µi), with probability 1− pi,

where

µi = exp(α20 + α21x1i),

pi = expit(β10 + β11x1i),

where again the x1i’s are iid U(0, 1).

Various settings of the true parameters are used which correspond to different

levels of component separation. The specific values of these parameters are listed

along with the simulation results in Table 3.1-3.18. For each setting, 500 data sets

were generated from the model, with or without the addition of outliers depending

on the aim of each study. Bias, mean square error (MSE), and size of the Wald

test for the hypothesis that the parameter is equal to the corresponding true value

are reported. In the case of the binomial FMGLM, the model assumes constant
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mixing probability, so all three estimation methods, MHD, MCHD, and ML, are

compared with each other. In the ZIP model, we allow the mixing probability to

have a regression structure and the resulting model is not identifiable under marginal

MHD estimation. Therefore, in this setting we consider only the conditional MHD

and ML estimation methods.

3.5.1 Study 1: Finite Sample Bias and Precision for Model Without

Contaminations

The aim of study 1 is to explore how the MHD estimator (MHDE) and MCHD

estimator (MCHDE) work for data without any contamination compared with ML

estimator (MLE) in terms of bias, MSE, size of Wald test as well as the estimate of

the asymptotic variance.

Two component binomial model

Firstly, we use the MHD method and MCHD method described above to do some

simulation studies involving two component mixtures of binomial distributions with

regression structure as an illustration. Here, we let the mixing probability to be a

constant 0.5. We generated the mixture binomial data with sample size n = 100

and 200, binomial denominator m = 30 by choosing (α10, α11) = (1.0, 0.5) and

(α20, α21) = (−1.0, 0.5). Bias, MSE, and size of the Wald test for equality with the

true value were calculate for each model parameter. In addition, the average estimate

of asymptotic variance and finite sample variance (Avar) of the parameter estimates

are also listed in Table 3.1.

From the results summarized in Table 3.1, several conclusions can be drawn: (1)

MHDE, MCHDE and MLE all have low bias when the model is correctly specified,

and this bias decreases as we increase the sample size from 100 to 200. (2) Among

these three estimators, the MLE is the best in terms of bias and MSE. However,



48

the MCHDE is very competitive with the MLE and both of them are significantly

better than the MHDE. (3) The estimate of the asymptotic variance under the

MCHDE method is very close to the sample variance for all parameters, whereas

the estimate under the MHD method is quite different, especially for the parameters

corresponding to component means. (4) Both the MCHDE and the MLE have the

size of the Wald based test close to the nominal size 0.05 while the MHDE always

deflates the Wald test size for the component means.

ZIP model

Here, we compare MCHDE and MLE in the ZIP regression context. The true param-

eters β and α are listed in Table 3.2, which correspond to the true ZIP models with

relatively large Poisson component means (i.e., well separated cases). Two sample

sizes, n = 100 and n = 200 are considered. Bias, MSE, and Wald test size are cal-

culated. Estimates of asymptotic variance and finite sample variance are also listed

in Table 3.2. Table 3.2 exhibits a similar pattern as Table 3.1. Specifically, when no

outliers are present, both estimators exhibit low bias, with greater efficiency seen for

the MLE.

3.5.2 Study 2: models with outliers in y

In study 2, we want to explore the performance of MHDE and MCHDE compared

with MLE for the case where outliers occur in the response vector.

Two component binomial model

In this section, we will compare MHD, MCHD and ML estimation methods for data

generated from a two component binomial model with constant mixing probability

p and contamination in y. For each data set generated, 5% of the responses were

selected at random and replaced by 30, the denominator of the binomial distribution,
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Table 3.1: Two component binomial data with constant p = 0.5 without any con-
tamination, n=100 and 200

Parameters Bias MSE Size Var Estimate of Avar
n = 100
MHDE
p = 0.5 0.0008 0.0030 0.08 0.0030 0.0025
α10 = 1.0 0.1069 0.0426 0.02 0.0315 0.0848
α11 = 0.5 -0.2247 0.1410 0.02 0.0914 0.3242
α20 = −1 0.1079 0.0321 0.01 0.0207 0.0576
α21 = 0.5 -0.2317 0.1206 0.00 0.0676 0.2189
MCHDE
p = 0.5 -0.0007 0.0030 0.06 0.0030 0.0025
α10 = 1.0 0.0205 0.0162 0.06 0.0159 0.0159
α11 = 0.5 -0.0452 0.0500 0.07 0.0486 0.0513
α20 = −1 -0.0018 0.0122 0.02 0.0123 0.0140
α21 = 0.5 -0.0043 0.0351 0.01 0.0354 0.0405
MLE
p = 0.5 -0.0027 0.0026 0.06 0.0026 0.0025
α10 = 1.0 0.0020 0.0162 0.07 0.0167 0.0163
α11 = 0.5 -0.0074 0.0574 0.08 0.0579 0.0536
α20 = −1 -0.0273 0.0144 0.03 0.0138 0.0143
α21 = 0.5 0.0412 0.0437 0.04 0.0425 0.0416

n = 200
MHDE
p = 0.5 -0.0004 0.0014 0.05 0.0014 0.0013
α10 = 1.0 0.0728 0.0227 0.02 0.0175 0.0718
α11 = 0.5 -0.1496 0.0888 0.03 0.0667 0.2894
α20 = −1 0.0844 0.0226 0.02 0.0156 0.0387
α21 = 0.5 -0.1477 0.0764 0.02 0.0549 0.1518
MCHDE
p = 0.5 -0.0003 0.0013 0.05 0.0013 0.0013
α10 = 1.0 0.0102 0.0075 0.03 0.0075 0.0077
α11 = 0.5 -0.0203 0.0252 0.05 0.0249 0.0251
α20 = −1 0.0159 0.0067 0.05 0.0065 0.0068
α21 = 0.5 -0.0193 0.0161 0.05 0.0158 0.0198
MLE
p = 0.5 -0.0014 0.0012 0.04 0.0012 0.0013
α10 = 1.0 0.0012 0.0076 0.04 0.0076 0.0078
α11 = 0.5 -0.0010 0.0270 0.05 0.0270 0.0254
α20 = −1 0.0034 0.0072 0.05 0.0072 0.0069
α21 = 0.5 0.0015 0.0186 0.05 0.0186 0.0199
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Table 3.2: ZIP regression model without any contamination, n=100 and 200

Parameters Bias MSE Size Var Estimate of Avar

n = 100
MCHDE
β10 = −1 -0.2418 0.2460 0.05 0.1894 0.2185
β11 = 0.5 0.2685 0.6271 0.06 0.5606 0.6155
α20 = 2 0.0699 0.0100 0.18 0.0052 0.0056
α21 = 1 -0.1593 0.0360 0.21 0.0108 0.0150
MLE
β10 = −1 -0.106 0.2042 0.04 0.1950 0.2078
β11 = 0.5 0.1649 0.5964 0.06 0.5750 0.5935
α20 = 2 -0.0072 0.0057 0.02 0.0057 0.0060
α21 = 1 0.0105 0.0157 0.07 0.0158 0.0150

n = 200
MCHDE
β10 = −1 -0.2127 0.1492 0.10 0.1050 0.1052
β11 = 0.5 0.2090 0.3761 0.10 0.3358 0.3000
α20 = 2 0.0744 0.0080 0.30 0.0025 0.0026
α21 = 1 -0.1576 0.0290 0.45 0.0043 0.0070
MLE
β10 = −1 -0.0696 0.1149 0.08 0.1111 0.0993
β11 = 0.5 0.1532 0.3749 0.12 0.3549 0.2857
α20 = 2 0.0070 0.0027 0.03 0.0026 0.0029
α21 = 1 -0.0131 0.0065 0.02 0.0063 0.0075
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as outliers. The parameters p and α were specified as listed in Tables 3.3-3.6. Two

values, 0.5 and 0.9, were considered for the mixing probability p, corresponding

to even and uneven mixing of the components. The regression parameters α were

chosen to make the two components’ mean either “well-separated” (Tables 3.3 and

3.4) or “poorly separated” (Tables 3.5 and 3.6), respectively. We also set n = 100

and n = 200 to investigate the effect of sample size. In each table of results (Tables

3.3-3.6), we report the bias, MSE, and size of the Wald test of equality to the

true value, for each parameter to assess the performance of the three methods. As

expected, the MCHDE exhibits less bias and smaller MSE than the MLE for most of

the parameters when contamination is present in the response. Surprisingly, we do

not observe the clear evidence of robustness of the MHDE when the two components

are well-separated.

From the results above, we conclude that in the presence of outliers in y: (1) the

MCHDE improved dramatically upon ML estimation in the cases we examined. (2)

the MHDE is more robust than the MLE for the cases where the two components

are poorly-separated. In such case, the MCHDE is superior to the MHDE for almost

all the parameters except α10 which is the intercept corresponding to the component

with larger mean. (3) Increasing the sample size from n = 100 to 200 has the expected

effect of decreasing bias and MSE for all parameters across all three methods.

ZIP regression model

Next, we compare MCHD and ML estimation methods for data generated from a ZIP

regression model with non-constant mixing probability and contamination in y. For

each data set generated, 5% of the responses were selected at random and replaced

by y + 25, as outliers. The parameters β and α were specified as listed in Tables

3.7-3.10. The regression parameters α were chosen to make the two components’

mean either “well-separated” (Tables 3.7 and 3.8) or “poorly separated” (Tables 3.9
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Table 3.3: Well separated two component binomial data with constant p = 0.5 and
outliers in y, n= 100 and 200

MCHDE MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
n = 100
p = 0.5 0.004 0.0032 0.08 0.005 0.0032 0.08 0.020 0.0028 0.06
α10 = 1.0 0.044 0.0221 0.11 0.037 0.0421 0.06 0.192 0.0550 0.31
α11 = 0.5 -0.025 0.0620 0.08 -0.014 0.1653 0.13 -0.106 0.0732 0.09
α20 = −1 0.000 0.0125 0.03 0.118 0.0343 0.01 -0.022 0.0154 0.05
α21 = 0.5 -0.001 0.0364 0.02 -0.247 0.1213 0.00 0.046 0.0479 0.03
n = 200
p = 0.5 0.002 0.0011 0.02 0.002 0.0012 0.03 0.018 0.0013 0.05
α10 = 1.0 0.021 0.0095 0.09 -0.033 0.0279 0.13 0.161 0.0338 0.41
α11 = 0.5 0.020 0.0311 0.07 0.136 0.1494 0.26 -0.044 0.0315 0.05
α20 = −1 0.021 0.0069 0.04 0.090 0.0255 0.01 0.014 0.0074 0.03
α21 = 0.5 -0.023 0.0174 0.04 -0.160 0.0857 0.01 -0.005 0.0198 0.04

Table 3.4: Well separated two component binomial data with constant p = 0.9 and
outliers in y, n= 100 and 200

MCHDE MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
n = 100
p = 0.9 0.019 0.0015 0.21 0.034 0.0022 0.48 0.002 0.0010 0.07
α10 = 1.0 0.027 0.0098 0.08 0.045 0.0276 0.07 0.105 0.0195 0.17
α11 = 0.5 -0.009 0.0286 0.07 -0.033 0.1213 0.14 -0.058 0.0330 0.05
α20 = −1 0.097 0.0761 0.04 0.174 0.0827 0.00 0.187 2.3798 0.08
α21 = 0.5 -0.145 0.2246 0.03 -0.339 0.2319 0.00 -0.201 3.8661 0.10
n = 200
p = 0.9 0.015 0.0007 0.18 0.022 0.0011 0.37 0.007 0.0005 0.08
α10 = 1.0 0.022 0.0045 0.03 -0.009 0.0114 0.11 0.095 0.0125 0.35
α11 = 0.5 0.002 0.0114 0.04 0.073 0.0558 0.22 -0.034 0.0120 0.02
α20 = −1 0.041 0.0373 0.02 0.150 0.0496 0.00 0.017 0.0578 0.04
α21 = 0.5 -0.069 0.1077 0.02 -0.298 0.1655 0.00 -0.020 0.1661 0.08
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Table 3.5: Poorly separated two component binomial data with constant p = 0.5
and outliers in y, n= 100 and 200

MCHDE MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
n = 100
p = 0.5 -0.142 0.057 0.33 -0.133 0.055 0.30 -0.435 0.192 0.11
α10 = 1.0 0.875 3.508 0.20 -0.358 0.387 0.02 17.642 411.606 0.74
α11 = 0.5 -0.311 1.521 0.04 4.567 93.107 0.08 -0.544 151.014 0.91
α20 = 0.5 0.133 0.041 0.28 0.199 0.073 0.08 0.244 0.071 0.25
α21 = 0.5 -0.100 0.062 0.03 -0.163 0.123 0.03 -0.042 0.032 0.90
n = 200
p = 0.5 -0.144 0.054 0.31 -0.140 0.057 0.32 -0.442 0.197 0.96
α10 = 1.0 -0.108 3.285 0.26 -0.370 0.363 0.03 15.436 308.093 0.23
α11 = 0.5 -0.228 0.820 0.04 4.240 82.174 0.08 2.219 96.690 0.02
α20 = 0.5 0.070 0.019 0.26 0.095 0.026 0.02 0.229 0.057 0.94
α21 = 0.5 -0.024 0.017 0.02 -0.112 0.092 0.14 -0.010 0.012 0.04

Table 3.6: Poorly separated two component binomial data with constant p = 0.9
and outliers in y, n= 100 and 200

MCHDE MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
n = 100
p = 0.9 -0.146 0.092 0.14 -0.033 0.028 0.05 -0.734 0.646 0.86
α10 = 1.0 0.237 0.592 0.10 -0.039 0.049 0.07 18.663 1393.650 0.26
α11 = 0.5 0.002 0.191 0.02 0.293 1.617 0.18 -3.032 3411.062 0.09
α20 = 0.5 0.189 0.110 0.14 0.362 0.188 0.01 0.955 33.741 0.84
α21 = 0.5 -0.087 0.155 0.01 -0.321 0.172 0.00 -0.444 43.680 0.07
n = 200
p = 0.9 -0.087 0.048 0.08 -0.034 0.030 0.05 -0.838 0.711 0.96
α10 = 1.0 0.163 0.385 0.05 -0.071 0.027 0.02 15.128 306.632 0.22
α11 = 0.5 -0.010 0.112 0.02 0.374 1.412 0.19 1.228 119.144 0.00
α20 = 0.5 0.121 0.072 0.10 0.274 0.133 0.07 0.447 0.206 0.96
α21 = 0.5 -0.074 0.120 0.02 -0.248 0.143 0.00 -0.011 0.014 0.07
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and 3.10), respectively. Two values of β were considered corresponding to low and

moderate levels of zero inflation. We also set n = 100 and n = 200 to investigate the

effect of sample size.

With respect to β, MCHD estimation is similar to ML when models are well-

separated, but does better under poor separation. With respect to α, the MCHDE

exhibits dramatically better performance than the MLE which has unacceptable

levels of bias and MSE in all cases. Sample size has the expected effect of decreasing

bias and improving efficiency for both methods, but the MCHD approach maintains

a clear advantage even when n = 200.

Table 3.7: Well separated and moderate level zero inflated Poisson distribution with
outliers in y, n= 100 and 200

MCHDE MLE

Parameters Bias MSE Size Bias MSE Size
n = 100
β10 = −1.0 -0.231 0.2492 0.05 -0.195 0.2418 0.06
β11 = 0.5 0.224 0.6021 0.05 0.184 0.6089 0.05
α20 = 2 0.074 0.0107 0.17 0.217 0.0524 0.84
α21 = 1 -0.142 0.0303 0.19 -0.187 0.0516 0.37
n = 200
β10 = −1.0 -0.146 0.1050 0.04 -0.077 0.0903 0.03
β11 = 0.5 0.001 0.2561 0.03 -0.015 0.2622 0.04
α20 = 2 0.061 0.0062 0.19 0.196 0.0412 0.99
α21 = 1 -0.127 0.0210 0.29 -0.157 0.0320 0.49

3.5.3 Study 3: Models with Outliers in x

Another type of model violation occurs when there are outliers in the covariate

vector x. Such points can be hard to detect and will typically have high leverage

with the potential to severely influence estimates and inference. In this study, we
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Table 3.8: Well separated zero and low level inflated Poisson distribution with outliers
in y, n= 100 and 200

MCHDE MLE

Parameters Bias MSE Size Bias MSE Size
n = 100
β10 = −2.0 -0.249 0.3988 0.01 -0.182 0.3900 0.01
β11 = 0.5 0.155 0.8960 0.01 0.099 0.9715 0.00
α20 = 2 0.078 0.0096 0.21 0.191 0.0399 0.85
α21 = 1 -0.145 0.0267 0.20 -0.158 0.0350 0.31
n = 200
β10 = −2.0 -0.197 0.2588 0.03 -0.113 0.2388 0.03
β11 = 0.5 0.070 0.6829 0.06 0.053 0.7056 0.07
α20 = 2 0.070 0.0068 0.25 0.174 0.0325 0.96
α21 = 1 -0.138 0.0232 0.47 -0.136 0.0240 0.49

Table 3.9: Poorly separated and moderate level zero inflated Poisson distribution
with outliers in y, n= 100 and 200

MCHDE MLE

Parameters Bias MSE Size Bias MSE Size
n = 100
β10 = −1.0 -0.180 0.2813 0.02 0.293 0.2738 0.09
β11 = 0.5 0.012 0.6839 0.02 -0.428 0.7901 0.10
α20 = 0.6 0.047 0.0257 0.05 0.883 0.7904 1.00
α21 = 1 -0.159 0.0753 0.07 -0.719 0.5430 0.98
n = 200
β10 = −1.0 -0.108 0.1227 0.00 0.353 0.2140 0.23
β11 = 0.5 -0.122 0.3023 0.01 -5.019 0.5209 0.18
α20 = 0.6 0.040 0.0108 0.02 0.815 0.6681 1.00
α21 = 1 -0.118 0.0330 0.04 -0.590 0.3600 1.00
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Table 3.10: Poorly separated and low level zero inflated Poisson distribution with
outliers in y, n= 100 and 200

MCHDE MLE

Parameters Bias MSE Size Bias MSE Size
n = 100
β10 = −2.0 -0.046 0.5768 0.03 0.664 0.7293 0.24
β11 = 0.5 -0.234 1.3114 0.03 -0.930 1.7790 0.12
α20 = 0.6 0.070 0.0212 0.04 0.790 0.6319 1.00
α21 = 1 -0.157 0.0592 0.03 -0.674 0.4755 0.99
n = 200
β10 = −2.0 0.024 0.3492 0.04 0.687 0.6834 0.48
β11 = 0.5 -0.270 0.8666 0.03 -0.882 1.3590 0.28
α20 = 0.6 0.062 0.0110 0.04 0.728 0.5335 1.00
α21 = 1 -0.116 0.0307 0.06 -0.550 0.3116 1.00

want to explore if the MCHD and MHD estimators are more robust than the MLE

in the sense of protection against outliers in x.

Two component binomial model

To investigate the robustness to outliers in the covariates x, we generate data from

the models described in section 5.2 and summarized in Tables 3-6 again. Instead

of adding contamination in y, we create outliers in x, by randomly choosing 1% of

the observations, and replacing the covariate x1 by x1 + 3, leaving the response y

unchanged. All the results are listed in Tables 3.11-3.14.

In all cases, MCHD estimation has less bias, smaller MSE and closer to nominal

size than ML estimation. For the well-separated cases (Tables 3.11-3.12), MHDE

does not exhibit clear robustness, while for the poorly-separated cases, the MHDE
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is more robust than the MLE. Generally, we can observe the usual positive effect of

sample size on efficiency.

Table 3.11: Well separated two component binomial data with constant p = 0.5 and
outliers in x, n= 100 and 200

MCHDE MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
n = 100
p = 0.5 -0.002 0.003 0.06 -0.002 0.003 0.08 -0.006 0.004 0.05
α10 = 1.0 0.029 0.017 0.09 0.159 0.043 0.00 0.016 0.018 0.10
α11 = 0.5 -0.062 0.056 0.12 -0.332 0.154 0.00 -0.039 0.064 0.11
α20 = −1.0 0.007 0.015 0.10 0.090 0.028 0.02 0.055 0.022 0.27
α21 = 0.5 -0.022 0.047 0.18 -0.198 0.105 0.02 -0.133 0.083 0.54
n = 200
p = 0.5 -0.004 0.001 0.05 -0.007 0.001 0.05 -0.008 0.001 0.04
α10 = 1.0 0.013 0.009 0.11 0.133 0.031 0.00 0.017 0.010 0.11
α11 = 0.5 -0.027 0.030 0.17 -0.275 0.123 0.00 -0.036 0.037 0.18
α20 = −1.0 0.025 0.008 0.16 0.073 0.020 0.04 0.089 0.020 0.46
α21 = 0.5 -0.034 0.022 0.19 -0.125 0.068 0.03 -0.195 0.068 0.64

ZIP regression model

For ZIP models, we added outliers in x, by randomly choosing 1% of the observations,

and replacing the covariate x1 by x1 + 3, leaving the response y unchanged. The

corresponding results are summarized in Tables 3.15-3.18.

In these tables, MCHD and ML perform similarly with respect to β. This result is

sensible, since there is only a small amount of contamination in x which is of a form

that does not obscure the mixture structure much. With respect to α however, the

MCHDE has less bias, smaller MSE and closer to nominal size than ML estimation.

Generally speaking, these results are consistent with those of Tables 3.11-3.14.
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Table 3.12: Well separated two component binomial data with constant p = 0.9 and
outliers in x, n= 100 and 200

MCHDE MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
n = 100
p = 0.9 0.016 0.001 0.19 0.031 0.002 0.42 -0.005 0.001 0.09
α10 = 1.0 0.035 0.011 0.13 0.144 0.030 0.02 0.037 0.012 0.13
α11 = 0.5 -0.075 0.042 0.22 -0.298 0.119 0.02 -0.084 0.051 0.26
α20 = −1.0 0.053 0.063 0.05 0.156 0.077 0.00 0.010 0.711 0.08
α21 = 0.5 -0.065 0.136 0.06 -0.292 0.194 0.00 0.005 0.196 0.10
n = 200
p = 0.9 0.012 0.001 0.14 0.020 0.001 0.30 -0.002 0.001 0.05
α10 = 1.0 0.029 0.005 0.12 0.122 0.022 0.00 0.036 0.007 0.14
α11 = 0.5 -0.056 0.019 0.15 -0.252 0.088 0.00 -0.075 0.026 0.20
α20 = −1.0 0.020 0.026 0.04 0.136 0.047 0.00 0.021 0.028 0.07
α21 = 0.5 -0.028 0.077 0.08 -0.262 0.144 0.00 -0.051 0.081 0.19

Table 3.13: Poorly separated two component binomial data with constant p = 0.5
and outliers in x, n= 100 and 200

MCHDE MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
n = 100
p = 0.5 -0.016 0.012 0.01 -0.016 0.009 0.00 0.041 0.061 0.23
α10 = 1.0 -0.012 0.046 0.05 0.113 0.039 0.02 -0.159 0.177 0.27
α11 = 0.5 -0.004 0.161 0.20 -0.295 0.127 0.00 0.240 0.489 0.24
α20 = 0.5 0.117 0.040 0.09 0.189 0.054 0.25 0.198 0.175 0.28
α21 = 0.5 -0.157 0.104 0.23 -0.275 0.104 0.00 -0.350 0.222 0.66
n = 200
p = 0.5 -0.009 0.005 0.01 -0.006 0.004 0.02 0.081 0.040 0.22
α10 = 1.0 0.011 0.024 0.04 0.118 0.032 0.01 -0.104 0.085 0.30
α11 = 0.5 -0.015 0.105 0.18 -0.258 0.124 0.00 0.501 0.190 0.27
α20 = 0.5 0.064 0.019 0.10 0.099 0.021 0.02 0.098 0.062 0.22
α21 = 0.5 -0.126 0.061 0.30 -0.191 0.061 0.00 -0.307 0.244 0.79
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Table 3.14: Poorly separated two component binomial data with constant p = 0.9
and outliers in x, n= 100 and 200

MCHDE MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
n = 100
p = 0.9 -0.071 0.022 0.02 -0.015 0.007 0.01 -0.162 0.15 0.20
α10 = 1.0 0.033 0.018 0.07 0.147 0.035 0.00 -0.082 0.683 0.09
α11 = 0.5 -0.032 0.072 0.13 -0.306 0.117 0.02 0.012 0.489 0.22
α20 = 0.5 0.200 1.121 0.05 0.323 0.156 0.08 0.275 0.301 0.31
α21 = 0.5 -0.096 0.216 0.06 -0.301 0.132 0.00 -0.301 1.151 0.40
n = 200
p = 0.9 -0.036 0.010 0.01 0.002 0.001 0.00 -0.164 0.088 0.21
α10 = 1.0 0.035 0.010 0.04 0.102 0.017 0.06 -0.041 0.048 0.23
α11 = 0.5 -0.045 0.032 0.11 -0.230 0.074 0.00 0.115 0.174 0.20
α20 = 0.5 0.171 0.087 0.07 0.213 0.096 0.04 0.319 0.248 0.43
α21 = 0.5 -0.147 0.109 0.14 -0.204 0.111 0.00 -0.308 0.325 0.61

Table 3.15: Well separated and moderate level zero inflated Poisson distribution with
outliers in x, n= 100 and 200

MCHDE MLE

Parameters Bias MSE Size Bias MSE Size
n = 100
β10 = −1.0 -0.380 0.3307 0.07 0.069 0.1449 0.04
β11 = 0.5 0.373 0.6571 0.06 -0.191 0.3799 0.01
α20 = 2 0.066 0.0094 0.18 0.255 0.0945 0.72
α21 = 1 -0.148 0.0328 0.18 -0.507 0.3680 0.73
n = 200
β10 = −1.0 -0.140 0.1031 0.03 0.142 0.0807 0.06
β11 = 0.5 0.159 0.2764 0.03 -0.313 0.2736 0.09
α20 = 2 0.048 0.0048 0.15 0.295 0.0998 0.90
α21 = 1 -0.122 0.0200 0.26 -0.591 0.3933 0.90
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Table 3.16: Well separated and low level zero inflated Poisson distribution with
outliers in x, n= 100 and 200

MCHDE MLE

Parameters Bias MSE Size Bias MSE Size
n = 100
β10 = −2.0 -0.374 0.4710 0.00 0.129 0.2281 0.04
β11 = 0.5 0.250 0.8733 0.01 -0.372 0.5670 0.00
α20 = 2 0.072 0.0086 0.17 0.304 0.1074 0.89
α21 = 1 -0.146 0.0275 0.20 -0.590 0.3960 0.89
n = 200
β10 = −2.0 -0.221 0.2811 0.04 0.138 0.1287 0.06
β11 = 0.5 0.251 0.7516 0.07 -0.322 0.3679 0.05
α20 = 2 0.055 0.0050 0.19 0.309 0.1026 0.95
α21 = 1 -0.124 0.0196 0.33 -0.610 0.3948 0.95

Table 3.17: Poorly separated and moderate level zero inflated Poisson distribution
with outliers in x, n= 100 and 200

MCHDE MLE

Parameters Bias MSE Size Bias MSE Size
n = 100
β10 = −1.0 -0.419 0.1011 0.02 0.104 0.4061 0.08
β11 = 0.5 0.267 0.6066 0.03 -0.236 0.9990 0.06
α20 = 0.6 0.047 0.0315 0.14 0.234 0.1120 0.63
α21 = 1 -0.175 0.1061 0.17 -0.452 0.3660 0.60
n = 200
β10 = −1.0 -0.187 0.1406 0.01 0.285 0.1812 0.20
β11 = 0.5 0.172 0.2429 0.01 -0.476 0.4395 0.20
α20 = 0.6 0.016 0.0124 0.04 0.322 0.1265 0.89
α21 = 1 -0.079 0.0327 0.05 -0.607 0.4309 0.90
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Table 3.18: Poorly separated and low level zero inflated Poisson distribution with
outliers in x, n= 100 and 200

MCHDE MLE

Parameters Bias MSE Size Bias MSE Size
n = 100
β10 = −2.0 -0.304 0.7229 0.04 0.275 0.9322 0.14
β11 = 0.5 0.071 1.4009 0.03 -0.621 2.4453 0.08
α20 = 0.6 0.079 0.0281 0.17 0.289 0.1184 0.80
α21 = 1 -0.176 0.0893 0.17 -0.549 0.3998 0.78
n = 200
β10 = −2.0 -0.180 0.4544 0.06 0.463 0.5247 0.33
β11 = 0.5 0.170 0.8705 0.03 -0.739 1.2196 0.20
α20 = 0.6 0.034 0.0099 0.03 0.350 0.1319 0.97
α21 = 1 -0.018 0.0255 0.08 -0.647 0.4403 0.97

3.6 Robustness Studies

The robustness of the MHD estimator for finite mixture models is discussed in the

literature for various modelling contexts, including Beran (1977), Cutler et al. (1996),

Karlis and Xekalaki (2000) and Lu et al. (2003 ). In this section, we investigate the

robustness of MHD estimation methods for FMGLMs through an examination of the

α-influence function (IFα) defined as follows. In general, assume a parametric model

with density fθ(x), θ ∈ Θ, and estimator T (fθ). Let f
α,θ,δ

(x) = (1−α)fθ(x)+αδ(x)

where δ(x) is a contamination function. Then the α-influence function quantifies the

effect of an α-level degree of contamination on the relative estimation error as follows:

IFα =
T (f

α,θ,δ
)− θ

α
.

If IFα is a bounded function of δ such that limδ→∞ IFα = 0, then the functional T is

robust at fθ against 100α% contamination by gross errors at arbitrary large value δ.
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Although it is hard to get a closed expression of the IFα in most cases, we can cal-

culate it numerically for specific examples. Once again, we use the a two-component

binomial regression model and a ZIP regression model as examples to quantify the

robustness of our estimation methods via the IFα. For the two-component binomial

model, we add a third component δ ∼ binomial(m, 1) (a degenerate distribution

with point mass 1 at m) with a contamination rate α. We assume the same regres-

sion structure as in the simulation studies. Recall from section 3.5 that we assume

constant mixing probability and simple linear regressions in each component mean

with covariate vector xi = (1, x1i) where x1i ∼ U(0, 1). Then we set the sample size

to n = 200 and m = 30, and choose true parameters p = 0.5, α1 = (1, 0.5)′, and

α2 = (0.5, 0.5)′. Then we can calculate IFα through

IFα(δ; T, f) =
T ((1− α)f + αδ)− T (f)

α
.

Figure 3.1 displays a plot of IFα(δ; T, f) for α ranging from 0.01 to 0.15. The curves

of MHDE and MCHDE are very close. When the data have a small portion of

contamination, the IFα of MHDE and MCHDE are much smaller than that of MLE

for most of the parameters. These results indicate the robustness of MHDE and

MCHDE.

Next we add a third component δp ∼ binomial(m, p) where we allow p to vary

from 0 to 1 and we fix the contamination rate and sample size at 5% and n = 200,

respectively. Figure 3.2 plots IF0.05{δp; T, f} versus p. When the third component

parameter p is less than 0.3 or greater than 0.8, the α-influence function for the

MHDE and MCHDE are smaller than that of the MLE. This implies MHDE and

MCHDE are robust to points severely deviating from the true model.

Similarly, we also examine the IFα plot for a ZIP model. A data set with n =

200 was are generated in the same way as described in section 5. We examined

the α-influence function for this model, under the addition of a third component
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δ ∼ Poisson(20) with a contamination rate α, letting α vary from 0.01 to 0.15.

The IFα is calculated at each value of α (see Figure 3.3). Finally, to plot Figure

3.4, we randomly select 5% of the data and replace them by an arbitrary number

P , where P varies from 0 to 20. In both Figures 3.3 and 3.4, the MCHDE and

MLE have similar curves with respect to β, the parameter corresponding to the

mixing probability. This reflects the fact that the outliers we added did not obscure

the mixture structure much. That is, these outliers rarely changed the pattern of

occurrence of “excess zeros” in the data set. However, with respect to α, which

contains parameters corresponding to component means, the MCHDE is much more

robust than the MLE.

For the sake of brevity, we present only the IFα curves for the mixture models

with poor-separation. In fact, we also calculate the α-influence function for other

parameter settings. All those curves mirror the results in the simulation study;

that is, when the two components are well separated, only the MCHDE shows

clear robustness to the MLE, when they are poorly separated, both the MHDE

and MCHDE are more robust than the MLE.

3.7 Examples

The results of the previous section indicate that the MCHDE is more robust than

MLE in a variety of settings. This section illustrates this property with two examples.

3.7.1 Example 1

In this section, we analyze data from a cohort study carried out at the College of Vet-

erinary medicine, University of Georgia which characterize ambulatory electrocardio-

graphic results of overtly healthy Doberman Pinschers. The selected subjects include
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114 (58 male, 56 female) overtly healthy Doberman Pinschers without echocardio-

graphic evidence of cardiac disease. Among all measures, heart rates, ventricular

premature contractions (VPCs), age and sex are recorded. As shown in Calvert et

al (2000), VPC rate measured on the initial Holter recording was associated with

subsequent development of dilated cardiomyopathy. One objective of the original

study was to explore the associations between VPC rate and age and sex. Figure

3.5 displays a histogram of the VPC counts for the 106 animals who had fewer than

35 VPCs. In addition, 8 animals (omitted in the histogram) had much larger counts

equal to 58, 65, 98, 144, 326, 492, 568 and 1894/24 hours. Figure 3.5 suggests some

heterogeneity in this sample of dogs where there appears to be a subgroup of ani-

mals for whom VPCs are very rare events (counts of 0, 1 or perhaps 2/24 hours).

In addition, there is clearly a sizable subgroup of animals who experienced VPCs

more commonly as well as a few animals with extremely large VPC counts. Given

this pattern in the data and the fact that cardiomyopathy is a genetic abnormality

affecting a subset of the Doberman Pinscher population, we initially considered a

two-component mixture structure for these data. The components of this mixture

were hypothesized to correspond to genetically normal and abnormal subpopula-

tions. In addition, we considered the 8 extremely large counts to be outliers, repre-

senting contamination of our sample by a few atypical animals falling outside of the

population of primary interest (clinically normal dogs).

However, after initial analysis of the data via two-component Poisson GLMs, it

became clear that there is additional heterogeneity in these VPC counts that must

be accounted for. Essentially, these models grouped all of the counts that were ≤ 10

into one component, with a second, much larger component centered in the low 20’s.

This resulted in very large Lindsay’s residuals at 0 and at values between 5 and 10.

These results strongly suggested the need for a three-component model to capture

additional heterogeneity among the single digit counts while still allowing a larger
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mean component to explain the sizable number of observed values between 15 and 30

in the data. It is worth noting that some researchers may use additional components

to capture the 8 outliers. However, in this example, since the 8 extremely large

counts are spread out widely, we could not fit all these data well by adding only

one or two components additional. So we are stick to the three-component model

and treat those extremely large values as potential outliers. Age and gender were

considered as covariates in both the mixing probability and mean specifications of

these models. In addition, the robust estimation methods discussed in this paper

were used to downweight the influence of the few extremely large counts present

here.

Specifically, we assume that yi, the number of VPCs for the ith subject, follows a

three component Poisson mixture with mean µik and mixing probability pik for the

kth component, where k = 1, 2, 3. The mixing probabilities of pk are modelled via

generalized logit links

log(
pi1

1− pi1 − pi2

) = β10 + β11I(female)i + β12Agei

log(
pi2

1− pi1 − pi2

) = β20 + β21I(female)i + β22Agei

while the µik’s are modelled as

log(µi1) = α10 + α11I(female)i + α12Agei,

log(µi2) = α20 + α21I(female)i + α22Agei,

log(µi3) = α30 + α31I(female)i + α32Agei.

Parameter estimates and standard errors for this model fit with both MCHD

and ML estimation appear in Table 3.19. Note that the marginal MHD approach is

omitted here because of the dependence of the mixing probabilities on covariates.

Clearly, parameter estimates under the MCHD approach are quite different to those

obtained via ML.
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Table 3.19: Parameters Estimates and Standard Errors (SE) for the VPC data

MCHDE MLE

Parameters Estimate (SE) Estimate (SE)
β10 1.4686 (0.6219) 2.7678 (1.0668)
β11 1.6620 (0.5648) 1.4386 (1.1408)
β12 0.0212 (0.1105) -0.0775 (0.1762)
β20 0.6896 (0.6564) 1.4377 (1.1401)
β21 1.6651 (0.6002) 1.4167 (1.1971)
β22 -0.0896 (0.1170) -0.0846 (0.1923)
α10 -1.1750 (0.5842) -0.8927 (0.3845)
α11 0.0064 (0.4879) -1.2970 (0.2605)
α12 0.0145 (0.0929) 0.2345 (0.0277)
α20 1.6115 (0.3024) 3.4935 (0.1317)
α21 -0.4003 (0.2775) -1.2827 (0.0886)
α22 0.0220 (0.0572) 0.0173 (0.0102)
α30 3.1216 (0.2768) 6.9152 (0.1278)
α31 -0.0535 (0.3253) 1.1526 (0.0411)
α32 -0.0004 (0.0487) -0.1738 (0.0231)

To compare the MCHD and ML fits of the model, we use Lindsay’s residual

function

r(y; θ̂) =
fn(y)

f ˆθ,n
(y)

− 1,

where fn(y) and fθ,n
are defined in (3.3.5) and (3.3.8) respectively. Figure 3.6 is

the residual plot for the majority of the data (less than 50) under MCHD and ML

methods. It shows that the MCHDE fits the data better than MLE. Based on the

results of MCHD approach, this model can be reduced. The mixing probabilities of

pk are modelled via generalized logit links

log(
pi1

1− pi1 − pi2

) = β10 + β11I(female)i

log(
pi2

1− pi1 − pi2

) = β20 + β21I(female)i
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while the µik’s are modelled as

log(µi1) = αi i = 1, 2, 3.

Parameter estimates and standard errors for this reduced model fit with MCHD

appear in Table 3.20. This results lead to the conclusion that female dog are less

likely having large VPC rate.

Table 3.20: Parameters Estimates and Standard Errors (SE) of the reduced model
for the VPC data

MCHDE

Parameters Estimate SE
β10 2.0172 (0.5771)
β11 1.7272 (0.4875)
β20 1.2207 (0.6301)
β21 1.4957 (0.5306)
α1 -1.0577 (0.2273)
α2 1.5316 (0.1322)
α3 3.1071 (0.0896)

3.7.2 Example 2

As a second example of the usefulness of robust methods for finite mixture models,

we consider zero inflated regression models for data from the Multisite Violence

Prevention Project (MVPP). This study, conducted by investigators from four US

universities in cooperation with the Centers for Disease Control and Prevention,

was designed to investigate approaches for reducing violent and aggressive behaviors

among middle school aged children. The study utilized a randomized complete block

design involving 37 schools randomized to a 4 treatment structure within each of

four blocks corresponding to the sites of the universities participating in the project.

Included among the outcomes measured via teacher surveys was a 30-day recall of the
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number of insults that teachers received from their students. Although the study was

conducted longitudinally, with each teacher generating data at several measurement

occasions, here we analyze just the baseline data to determine whether there were

pre-existing differences between the insult rates across the four treatment groups.

For simplicity, we also restrict attention to just one of the four sites involved in the

study, from which 86 teachers’ data were available. Table 3.21 summarizes these

insult counts by treatment.

Table 3.21: Frequency of the Insults Number Received from Students among 86
Teachers in 4 Treatment Groups

No. of insults received from students

Treatment 0 1 2 3 4 5 7 10 30

Treatment 1 5 5 2 1 2 3 0 1 0
Treatment 2 8 2 3 2 1 0 1 1 1
Treatment 3 11 3 10 1 0 2 0 0 0
Treatment 4 15 3 1 1 0 1 0 0 0

From this table it is apparent that a very large proportion of the teachers reported

0 insults. However, there are also large frequencies of insult counts that are larger

than 0 indicating possible zero inflation in these data. In addition, there are a few

teachers who reported very large numbers of insults (7,10 and 30) which are clearly

outlying relative to the main portion of the data and which may strongly affect infer-

ences on the treatment group. Given this data structure and experimental design, a

natural model to consider here is a zero inflated Poisson analysis of variance type

model.

Specifically, we assume that yij, the number of insults for the ith teacher in the

jth treatment, follows a ZIP distribution with Poisson mean log(µij) = αj, and

mixing probability pij with model log( pij

1−pij
) = βj, j = 1, 2, 3, 4.
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Table 3.22: Parameters Estimates and Standard Errors (SE) for MVPP

MCHDE MLE

Parameters Estimate (SE) Estimate (SE)
β1 -1.2351 (0.7313) -1.2250 (0.6132)
β2 -0.2933 (0.5753) -0.3251 (0.4665)
β3 -0.7224 (0.6366) -0.8206 (0.5665)
β4 0.6012 (0.6766) 0.6570 (0.5556)
α1 0.7842 (0.2083) 1.1198 (0.1617)
α2 0.6900 (0.2603) 1.7737 (0.1250)
α3 0.4405 (0.2467) 0.6524 (0.2036)
α4 0.2194 (0.4665) 0.5951 (0.3449)

Parameter estimates and standard errors for these models appear in Table 3.22.

From these results, we can find that MCHDE and MLE are similar with respect to

β, but quite different for α. Under ML estimation, the µj are severely affected by

the few large values present, especially for treatment 2.

As with example 1, we use the Lindsay’s residual to compare the MCHD and ML

fits of the model. The MCHDE is treating the large values as outliers. It downweights

them and fits the model based mostly upon the smaller values. Therefor, we expected

the Lindsay’s residuals to be large at 30, 10, 7 and perhaps even at 5. Figure 3.7

is the Lindsay’s residual plot for the model under MCHD and ML methods (Only

observations less than 7 are plotted). It shows that the MCHDE fits the data better

than MLE for majority of the data except those outliers.
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3.8 Discussion

In this thesis, we’ve considered robust estimation methods for FMGLMs based on

the Hellinger distance. Firstly, we extended Lu et al.’s marginal MHD approach, and

then proposed a new conditional MHD method. We’ve seen that the latter is more

general in the sense that it applies to FMGLMs with continuous components, and it

applies to situations where the mixing probability is non-constant. However, it also

has limitations/drawbacks in that it requires conditional density estimation, which

requires bandwidth selection, and which can break down or become infeasible for

high dimensional covariates. Based on the simulation results presented here MCHD

estimation and MHD are both more robust than ML estimation, but MCHD has

a substantial advantage over MHD with respect to MSE and size of asymptotic

Wald-based inference.

In all the methods proposed above, the number of components in the mixture is

fixed. In our case we assume that we have prior knowledge about how many com-

ponents should be used. In practical application, the question of how to estimate

the number of components is a very important question for fitting FMGLMs, espe-

cially when no prior knowledge is available. A large amount of literature exists on

this topic including Lindsay (1992, 1995), Böhning (1992, 2000) and Peel (2000).

Schlattmann, (2000) developed an inferential Bootstrap approach for estimating the

number of components in a mixture. Karlis and Xekalaki (2000) proposed a robust

alternative based on MHD estimates. A robust estimation for mixture complexity

was discussed by Woo and Sriram (2006). Other approaches are based upon the

Akaike information criterion, Bayesian information criterion and their relatives (see

McLachlan and Peel, 2000).
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Figure 3.1: α-influence function for a two component binomial distribution with
100α% contaminations of a degenerate distribution δ =binomial(30, 1).
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Figure 3.2: α-influence function for a two component binomial distribution with 5%
contaminations of a binomial(30, p) distribution.



76

0.02 0.06 0.10 0.14

0
20

40
60

80
100

beta10=−1

a

IF

MLE
MCHDE

0.02 0.06 0.10 0.14

0
20

40
60

80
100

beta11=0.5

a

IF

MLE
MCHDE

0.02 0.06 0.10 0.14

0
10

20
30

40
50

60

alpha20=0.6

a

IF

MLE
MCHDE

0.02 0.06 0.10 0.14

0
10

20
30

40
50

60

alpha21=1.0

a
IF

MLE
MCHDE

Figure 3.3: α-influence function for a ZIP distribution with 100α% contaminations
of Poisson(20).
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Figure 3.4: α-influence function for a ZIP distribution with 5% contaminations of
value P.
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Figure 3.6: Lindsay’s residuals under MCHDE and MLE for the VPC example.
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Chapter 4

Robust Estimation for Zero-Inflated Regression Models

4.1 Introduction

The goal of this paper is to develop robust estimation for ZI models, an important

subclass of mixture models. In general, the issue of robustness in a finite mixture

model can be confounded with the choice of the number of components in the mix-

ture. That is, it is difficult to distinguish, both conceptually and practically, between

a g1 component mixture model with outliers and a g2 > g1 component mixture

model in which additional components have been introduced corresponding to the

outliers. In the ZI regression context this complication typically does not arise since

the two component size of the mixture can usually be assumed, and is not part of

the estimation problem. We study two types of robust estimation for ZI models:

first, a minimum Hellinger distance (MHD) method based on the approach of Lu et

al (2003); and second, an M-estimation type approach which is implemented via a

robustified EM algorithm and which we call robust expectation-solution (RES).

Count data with many zeros and relatively large non-zero values are common in

a wide variety of disciplines. This phenomenon can be handled by a two-component

mixture where one of the components is taken to be a degenerate distribution,

having mass one at zero. The other component is a non-degenerate distribution

such as the Poisson, binomial, negative binomial or other form depending on the sit-

uation. For example, when manufacturing equipment is operating properly, defects

may be nearly impossible. But when it is configured incorrectly, defects may occur

79
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according to a Poisson(µ) distribution. For such data, Lambert (1992) proposed the

zero inflated Poisson (ZIP) regression model. In ZIP regression, the response vector

is y = (y1, . . . , yn)T , where yi is the observed value of the random variable Yi. The

Yi’s are assumed independent where

Yi ∼




0 with probability pi;

Poisson(µi) with probability 1− pi.

Moreover, the parameters p = (p1, ..., pN)T and µ = (µ1, ..., µN)T are modelled

through canonical link generalized linear models (GLMs) as logit(p) = Gγ and

log(µ) = Bβ, where β and γ are regression parameters, and G and B are corre-

sponding design matrices which pertain to the probability of the zero state and the

Poisson mean, respectively. The log-likelihood function for this model can be written

as:

`(β, γ; y) =
∑

yi=0

log{eGiγ + exp(−eBiβ)}+
∑

yi>0

(yiBiβ − eBiβ)

− ∑

yi>0

log(yi!)−
N∑

i=1

log(1 + eGiγ), (4.1.1)

where Bi and Gi are the ith rows of design matrices B and G. Although this

loglikelihood can be maximized directly, a particularly convenient method to obtain

the MLE is to capitalize on the mixture structure of the problem and use the EM

algorithm.

Hall (2000) extended Lambert’s model and methodology to an upper bounded

count situation, thereby obtaining a zero inflated binomial (ZIB) regression model.

In the ZIB model, the Poisson(µi) component is replaced by a binomial(mi, πi) com-

ponent and instead of modeling µ, we model π = (π1, . . . , πN)T through a logit

link: logit(π) = Bβ. Here, yi is assumed to have an interpretation as the number of

successes out of mi independent identical trials.
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We can define ZI models in a general way as follows. For i = 1, . . . , N , let

Yi ∼




0 with probability pi;

ED{ηi(β), ai(φ)} with probability 1− pi.
(4.1.2)

where ED is the cumulative distribution function of the non-degenerate component

of the mixture. In addition, we assume ED is in the exponential dispersion family

with probability density function of the form

g{yi; ηi(β), ai(φ)} = exp{yiηi − b(ηi)

ai(φ)
+ c(yi)}, (4.1.3)

where ηi = BT
i β. The mean and variance functions for this component are µi = ḃ(ηi)

and ν(µi) = b̈(ηi)ai(φ), respectively. In addition, ai(φ) is the GLM weight function

which, in general, may involve a scale parameter φ as well as known weights; in

particular ai = 1 for Poisson distribution and ai = 1
mi

for binomial(mi, πi). We

assume that the mixing probability is related to covariates in Gi via a logit model

of the form pi = p(GT
i γ) = exp(GT

i γ)

1+exp(GT

i γ)
. This mixture model implies a marginal

probability density for the observed response given by piI(yi = 0)+(1−pi)g(yi; β, φ).

Both in mixture models and more generally, the robustness of the MLE has been

studied extensively. It is well known that the MLE can be unstable when the data

have contamination points. Recently, MHD estimation has received considerable

attention as a robust alternative to ML in mixture models. Most of this literature

has focused on the independent and identically distributed (iid) case (Cutler et al.

1996; Karlis and Xekalaki, 2001). Outside the iid framework, MHD has received very

limited attention. However, a recent paper by Lu et al. (2003) proposes an MHD

approach for finite mixtures of Poisson regression models, a class of models in which

the ZIP model falls. These authors present simulation results that suggest that their

approach performs very well relative to ML in the presence of outliers and/or poor

separation between the mixture components.

As we will see, however, this approach has a limited domain of application

because of identifiability problems that can arise when the mixing probability
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depends upon covariates, which is typical in applications of ZI regression. In addi-

tion, MHD approaches are not particularly effective with respect to decreasing

the effect of abnormal covariates (i.e., high leverage points). Furthermore, the

asymptotics of MHD estimation in the regression context are difficult to establish.

Because of these limitations, we propose another approach, which we term robust

expectation solution (RES) estimation, and which is more closely related to M-

estimation. Huber (1964) proposed M-estimation as a generalization of ML in which

the score function in the likelihood equation is replaced by an estimating function

typically chosen to downweight the contributions of extreme observations. Recently,

several authors have extended M estimation to the generalized linear model context

and beyond (Preisser and Qaqish, 1999; Cantoni and Ventura, 2001; Adimari and

Ventura, 2001).

The organization of this paper is as follows. Section 4.2 describes the MHD

estimation method for ZI models and addresses the identifiability problem that arises

with this approach, and section 4.3 presents the RES methodology. Simulation results

are presented in section 4.4 to compare these methods with ML estimation, and

section 4.5 gives an example to illustrate the methodology which involves data from

a study of aggressive behavior among middle school-aged children. Finally, some

concluding remarks are provided in section 4.6.

4.2 MHDE in ZI regression models

Let fn(y) be the empirical frequency function defined by

fn(y) = Ny/n, y ∈ U, (4.2.4)

where Ny is the number of observations having value y, U is the sample space

for Y . Let fθ(y|X i) denote the probability density corresponding to (4.1.2), where
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θ = (γT , βT )T . Take X as the combined matrix of all observed covariates (G, B),

which we condition on and consider fixed. Lu et al. (2003) based estimation of finite

mixtures of Poisson regression models on the unconditional Hellinger distance:

H2(fn, fθ) =
∫

(fn(y)1/2 − fθ(y)1/2)2dy, (4.2.5)

where fθ(y) denotes the marginal probability of observing y. In what follows, we

extend Lu et al.’s approach based on H2(., .) to the ZI context.

4.2.1 Estimation Based on Marginal Densities

For a moment consider the iid case and suppose we know the form of fθ(y). Then

the MHD estimator θ̂ would be the root of

∑

y∈U

f 1/2
n (y)

f
1/2

θ (y)
ḟθ(y) = n

n∑

i=1

f
1/2

θ (yi)

f
1/2
n (yi)

∂ log fθ(yi)

∂θ
= 0. (4.2.6)

Lindsay et al. (1992) introduced Lindsay’s residual function r(y) = fn(y)
fθ(y)

− 1, as

a more appropriate quantity than Pearson’s residual to assess goodness of fit in a

mixture context. Notice that (4.2.6) can be written as

n∑

i=1

1

{1 + r(yi)}1/2

∂ log fθ(yi)

∂θ
= 0.

From this representation, it can be seen that MHD downweights observations that

have large Lindsay’s residuals in the estimating equation.

In the non-iid situation with which we are concerned, however, fθ(y) must be

computed from a conditional density fθ(y|x) through fθ(y) =
∫

fθ(y|x)fX(x)dx.

When fX(x) is unknown, or the integration is impractical due to the high dimension

of the covariate vector x, the objective function (4.2.6) is unavailable. Lu et al. (2003)

used a consistent estimator fθ,n
(y) to replace fθ(y), which is defined by

fθ,n
(y) =

1

n

n∑

i=1

fθ(y|xi), y ∈ U. (4.2.7)
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While improvements on this estimator are possible, in this paper we adopt Lu et

al.’s method, and extend it to the ZI models defined as (4.1.2). This leads to an

MHD estimator defined as follows

θ̂MHD = arg min
θ∈Θ

H2(fθ,n
, fn),

i.e., it is the maximizer of

ρn(θ) =
∑

y∈U

f 1/2
n f

1/2

θ,n
(y).

4.2.2 MHD Estimating Equations

Now we establish the estimating equations.

The MHD estimator of θ is arg maxθ∈Θ
ρn(θ), where ρn(θ) is

∑

y∈U

f 1/2
n (y)

[ 1

n

n∑

i=1

{ exp(Giγ)

1 + exp(Giγ)
I(yj = 0) +

g{yi; ηi(β), ai(φ)}
1 + exp(Giγ)

}]1/2
. (4.2.8)

Taking partial derivatives with respective to γ and β, and setting them equal 0, we

obtain the following set of equations:

2
ρn(θ)

∂β
=

∑

y∈U

f 1/2
n (y)f

1/2

θ,n
(y)

1

fθ,n
(y)

[ n∑

i=1

pi

n
g{yi; ηi(β), ai(φ)} y

ai(φ)
Bi

−
n∑

i=1

pi

n
g{yi; ηi(β), ai(φ)}Ei(β)

ai(φ)
Bi

]
= 0,

where Ei(β) = E{yi; ηi(β), ai(φ)}; and

2
ρn(θ)

∂γ
=

∑

y∈U

f 1/2
n f

1/2

θ,n

1

fθ,n
(y)

[ 1

n

n∑

i=1

{
pi(1− pi)I(yi = 0)Gi

−pi(1− pi)g{yi; ηi(β), ai(φ)}Gi

}]
= 0.

Adopting the iteratively reweighted computational technique proposed by Basu and

Lindsay (2004), and letting

vθ,n
(y) = f 1/2

n (y)f
1/2

θ,n
(y)/ρn(θ),



85

wi1(ai, y, θ) =
pi

n
I(yi = 0)/fθ,n

(y),

and

wi2(ai, y, θ) =
1− pi

n
g{yi; ηi(β), ai(φ)}/fθ,n

(y),

we can solve for θ by the following two update equations:

β(l+1) = β(l) + (B′W (l)

βB)−1B′W (l)

βD
(l)

β , (4.2.9)

γ(l+1) = γ(l) + (G′W (l)
γ G)−1G′W (l)

γ S
(l)
γ . (4.2.10)

Here W
(l)

β is diagonal matrix with ith diagonal elements equal to

∑
y∈U v

θ(l)
,n

(y)wi2V ari(β
(l))(y)/a2

i , V ari(β
(l)) = var{yi; ηi(β

(l)), ai(φ)}, and

D
(i)

β(l) =
[ ∑

y∈U

{ v
θ(l)

,n
(y)wi2(y)

∑
y∈U v

θ(l)
,n

(y)wi2(y)

y

ai(φ)

}
− Ei(β

(l))

ai(φ)

]
/
V ari(β

(l))

a2
i (φ)

.

Similarly, Wγ(l) is diagonal with ith diagonal elements

∑
y∈U v

θ(l)
,n

(y)(wi1 + wi2)var(l)(Zi), and

S
(i)

γ(l) =
{

∑
y∈U v

θ(l)
,n

(y)wi1

∑
y∈U v

θ(l)
,n

(y)(wi1 + wi2)
− Eγ(l)(Zi)

}
/varγ(l)(Zi),

where Zi is the indicator of whether the ith observations comes from the zero stage.

Estimation proceeds by iterating between (4.2.9) and (4.2.10) until a convergence cri-

terion has been obtained. Note that we have presented the equations here assuming

the canonical GLM link functions have been used in the ZI regression model. This

is usual, but not necessary as equations (4.2.9) and (4.2.10) can be easily modified

to accommodate other valid links.

4.2.3 Asymptotics of MHD Estimation in ZI regression

Under certain regularity conditions, Simpson proved that the MHDE is consistent

and asymptotically normal in the iid Poisson case. This result has been extended

to finite mixtures of Poisson distributions by Karlis and Xekalaki (2001). When
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regression structure is added to this framework, the asymptotics of MHD estima-

tion become much more problematic. Lu et al (2003) argue that the results of the

earlier authors should extend to the finite mixture of Poisson regression context, of

which the ZIP model is a special case. These authors propose an asymptotic vari-

ance estimator of the form V̂ ˆθ
= Î(θ̂)−1, where Î(θ̂) =

∑
y∈U

{̂
l̇θ(y)̂l̇

T

θ(y)fn(y) −
∂2fθ,n

(y)

∂θ∂θT |
θ=

ˆθ

}
, and ˆ̇lθ(y) = ∂

∂θ log fθ,n
(y)|

θ=
ˆθ
. Specifically, for ZIP models,

ˆ̇l ˆθ
(y) =

1

f̂θ,n
(y)

∂ ˆfθ,n
(y)

∂θ

=
1

f̂θ,n
(y)

( 1

n

n∑

i=1

p̂i(1− p̂i)
{
I(yi = 0)− fPois(yi|Biβ̂)

}
Gi,

1

n

n∑

i=1

(1− p̂i)fPois(yi|Biβ̂)
{
yi − exp(Biβ̂)

}
Bi

)
.

∂2f̂θ(y)

∂θ∂θT =




∂2 ˆfθ(y)

∂γ∂γT

∂2 ˆfθ(y)

∂γ∂βT

∂2 ˆfθ(y)

∂β∂γT

∂2 ˆfθ(y)

∂β∂βT




with

∂2f̂θ(y)

∂γ∂γT
=

1

n

n∑

i=1

{
I(yi = 0)− fPois(yi|Biβ̂)

}
p̂i(1− p̂i)(1− 2p̂i)GiG

T
i ,

∂2f̂θ(y)

∂β∂βT =
1

n
(1− p̂i)fPois(yi|Biβ̂)

{
(yi − exp(Biβ̂))2 − exp(Biβ̂)

}
BiB

T
i ,

and

∂2f̂θ(y)

∂β∂γT
= (

∂2f̂θ(y)

∂γ∂β
)T = − 1

n

n∑

i=1

p̂i(1− p̂i)fPois(yi|Biβ̂)BiG
T
i .

For ZIB models:

ˆ̇l ˆθ
(y) =

1

f̂θ,n
(y)

∂ ˆfθ,n
(y)

∂θ

=
1

f̂θ,n
(y)

( 1

n

n∑

i=1

p̂i(1− p̂i)
{
I(yi = 0)− fbino(yi|mi, Biβ̂)

}
Gi,

1

n

n∑

i=1

(1− p̂i)fbino(yi|mi, Biβ̂)
{
yi −mi

exp(Biβ̂)

1 + exp(Biβ̂)

}
Bi

)
.
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with

∂2f̂θ(y)

∂γ∂γT
=

1

n

n∑

i=1

{
I(yi = 0)− fbino(yi|mi, Biβ̂)

}
p̂i(1− p̂i)(1− 2p̂i)GiG

T
i ,

∂2f̂θ(y)

∂β∂βT =
1

n
(1− p̂i)fbino(yi|mi, Biβ̂)

×
[{

yi −mi
exp(Biβ̂)

1 + exp(Biβ̂)

}2 −mi
exp(Biβ̂)

{1 + exp(Biβ̂)}2

]
BiB

T
i ,

and

∂2f̂θ(y)

∂β∂γT
= (

∂2f̂θ(y)

∂γ∂β
)T = − 1

n

n∑

i=1

p̂i(1− p̂i)fbino(yi|mi, Biβ̂)

×
{
yi −mi

exp(Biβ̂)

1 + exp(Biβ̂)

}
BiG

T
i .

However, formal proofs for asymptotic properties of MHD estimators in the non-iid

set-up have not yet been established.

4.2.4 Identifiability

The issue of identifiability of finite mixture models has attracted considerable atten-

tion in the literature (Teicher, 1960; Jiang and Tanner, 1999 etc.), but most of this

discussion has centered on the likelihood function and has assumed constant mixing

probability in the model. When using MHD estimation via marginal densities rather

than ML, however, the class of identifiable models is more restricted. In addition,

ZI regression models allow a regression structure logit(pi) = GT
i γ, which invalidates

many of the existing results and adds complexity to the identifiability question.

For ZI models with non-constant mixing probability it is not hard to find simple

non-identifiable models based on the unconditional (marginal) density. For example,

let

Yi ∼




0 with probability pi;

Poisson(µ) with probability 1− pi.
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and suppose that pi depends on Xi where X is binary variable,

Xi =





0, i = 1, 2, .., n
2
;

1, i = n
2

+ 1, ..., n.

It follows that pi = expit(γ1) ≡ P1 if i = 1, 2, ..., n/2, otherwise pi = expit(γ2) ≡ P2.

The marginal density is

fθ,n(y) =
1

2
(P1 + P2)I(y = 0) + {1− 1

2
(P1 + P2)}e−µµy

y!
,

which is clearly not identifiable.

Necessary and sufficient identifiability conditions in the class of models defined

by (4.2.8) are difficult to establish. However, in our simulation studies we encoun-

tered near singular Hessian matrices for the MHD criterion for many of the models

we considered that have non-constant mixing probability. In the next section we

consider the RES approach which does not lead to the same identifiability problems

encountered with MHD estimation.

4.3 The Robust Expectation Solution Approach for ZI Regression

4.3.1 The RES Algorithm

In ZI models, as in other mixture models, the EM algorithm is a particularly con-

venient approach for computing MLEs (e.g., Lambert, 1992; Hall, 2000). This algo-

rithm is set up by introducing “missing data” into the problem. In particular, sup-

pose we knew which zeros came from the degenerate distribution (the zero state);

and which came from the non-degenerate distribution (the non-zero state); that is,

suppose we could observe zi = 1 when yi is from zero state, and zi = 0 when yi is

from the non-zero state. Then the log-likelihood for the complete data (y, z) would

be:

`c(β, γ; y, z) =
N∑

i=1

{
ziG

T
i γ − log(1 + eG

T

i γ)
}
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+
N∑

i=1

(1− zi)
{yiB

T
i β − b(BT

i β)

ai(φ)
+ c(yi)

}

= `c
γ(γ; y, z) + `c

β(β; y, z),

where z = (z1, . . . , zN)T . This log-likelihood is easy to maximize, because `c
γ(γ; y, z)

and `c
β(β; y, z) can be maximized separately with respect to γ and β, respectively.

With the EM algorithm, the log-likelihood of model (4.1.2) is maximized iteratively

by alternating between estimating zi by its conditional expectation under the current

estimates of (γ, β) (E step) and then, with the zi fixed at their expected values from

the E step, maximizing `c(β, γ; y, z) (M step), until the estimated (β, γ) converges

and iteration stops.

In more detail, the EM algorithm begins with starting values (γ(0), β(0)) and

proceeds iteratively via the following three steps.

E step. Estimate zi by its conditional mean z
(r)
i under the current estimates γ(r)

and β(r)

z
(r)
i = P (zero state|yi, γ

(r), β(r))

=
P (yi|zero state)P (zero state)

P (yi|zero state)P (zero state) + P (yi|Poisson state)P (Poisson state)
.

M Step for γ. Find γ(r+1) by maximizing `c
γ(γ; y, z(r)). This can be accomplished

by fitting a binomial logistic regression of z(r) on design matrix G with binomial

denominator equal one.

M Step for β. Find β(r+1) by maximizing `c
β(β; y, z(r)). It is equivalent to solve

the estimating equation

n∑

i=1

(1− z
(r)
i )

yi − µ(BT
i β)

ν(BT
i β)

∂µ(ηi)

∂ηi

∣∣∣
ηi=BT

i β
Bi = 0. (4.3.11)

In the RES approach, We propose to replace the estimating equation (4.3.11)

from the M step of the EM algorithm with a robustified estimating equation. Essen-

tially, we follow Cantoni and Ronchetti in the specific form of that estimating func-
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tion. Specifically, we suggest that γ(r+1) be found by solving

1

n

n∑

i=1

(1− Z
(r)
i )ω(Bi)

{
ψc

(yi − µ(Biβ
(r))√

ν(Biβ
(r))

)
− oi(β

(r), c)
} ∂µ(Biβ

(r)
)

∂ηi
Bi√

ν(Biβ
(r))

= 0, (4.3.12)

where

ψc(x) =





x, |x| < c;

c, otherwise .
(4.3.13)

and

oi(β, c) = Eψc

(yi − µ(Biβ)√
ν(Biβ)

)
.

Here, ω(Bi) is a function to downweight large leverage points. A simple choice for

ω(Bi) is
√

1− hi, where hi is the ith diagonal element of H = B(BT B)−1B.

More sophisticated choices for ω(.) based on, e.g., Mahalanobis distance, are avail-

able (Cantoni and Ronchetti, 2001). The choice of c controls the trade-off between

robustness and efficiency. Selecting a value for c is not an easy problem, but in a

simpler context Cantoni and Ronchetti (2001) have derived connections between the

value of c and the asymptotic distribution of quasi-likelihood ratio test statistics in

a neighborhood of the model.

The ML EM algorithm involves iteratively fitting a GLM with a weighted ver-

sion of the standard ML estimating equations for a GLM, where the weights are

recomputed at each iteration in the E step. In the RES algorithm we instead iter-

atively fit a GLM with a weighted version of Cantoni & Ronchetti’s M estimating

equations for fit the GLM. In fact, our S step can be performed by using their S-

PLUS routine for robust estimation in GLMs. Alternatively, a Newton-Raphson

approach can be implemented. For ZI Poisson and ZI binomial models, we can

obtain a closed form expression for the oi given c. Let j1 = bµi − c
√

ν1/2(µi)c and

j2 = bµi + c
√

ν1/2(µi)c where brc represent the integer no larger then r. Then in the

Poisson case, oi = c{P (Yi > j2 + 1) − P (Yi ≤ j1)} + µi√
µi
{P (Yi = j1) − P (Yi = j2)}
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and in the binomial case oi = c{P (Yi > j2 + 1)−P (Yi ≤ j1)}+ µi

ν1/2(µi)
{P (j1 ≤ Ỹi ≤

j2 − 1)− P (j1 + 1 ≤ Yi ≤ j2)}, where Ỹi ∼ B(mi − 1, pi).

For the cases of primary interest, the ZIP and ZIB regression models, the non-

degenerate component of the mixture involves a known scale parameter φ = 1. The

most prominent example when φ is unknown occurs for the ZI normal regression

model, where φ corresponds to the error variance. In that case, this parameter must

also be estimated in the S step, which can be done by a modification of the standard

M-estimator of the error variance in the linear regression problem. In particular, we

suggest the estimator

φ(r+1) =
1

∑n
i=1 a(1− z

(r)
i )ω(Bi)− p

n∑

i=1

(1− z
(r)
i )ω(Bi)ψ

2
c

(yi − µ(BT
i β(r))

σ(r)

)
φ(r),

where a = Eψ2
c and p is the dimension of β (cf. Huber, 2004, equation (7.8)). Note

that the RES algorithm for the ZI normal regression model is discussed here mainly

for completeness sake; it is more easily handled by recognizing that for a contin-

uous non-degenerate distribution, the mixture component to which each observation

belongs is easily identified. Therefore, the likelihood of the model factors into terms

corresponding to the zero and non-zero responses, and the entire model can be fit

by separately modeling (i) the non-zero observations with robust regression and

(ii) a vector of indicators for whether or not each observation is zero with logistic

regression.

4.3.2 Starting Values

To facilitate convergence in the RES algorithm , it is necessary to start with a

good initial value. Rousseeuw (1984) suggested the least median of squares (LMS)

estimator or least trimmed squares (LTS) as a high-breakdown starting value for

the iterative computation of M-estimators. Rosseeuw (1984) gives the definitions of
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LMS and LTS for linear regression models. The former is defined as

θ̂LMS = arg minθmediani(ri)
2,

where ri is the Pearson residual. Similarly, LTS is defined as

θ̂LTS = arg minθ

h∑

i=1

r2
(i)

where r(i), i = 1, . . . , n are the ordered Pearson residuals and h determines the

amount of trimming in the estimator.

Christmann (1998) extends LMS and LTS to categorical regression models. The

idea is to transform the discrete data model into an approximately linear regression

with normal errors by the delta method, and use the LMS or LTS methods for the

transformed data set.

We propose using LTS for the positive data (e.g., the positive Poisson or binomial

data) to get an initial guess for β. Let P be a random variable with mean µ(Bβ)

and variance ν(Bβ). Define

ỹ =
µ−1(P )

g∗(P )
√

ν(µ−1(P ))
,

and

B̃ =
1

g∗(P )
√

ν(µ−1(P ))
B,

where g∗(P ) = ∂(µ−1(P ))
∂P

. Then Ỹ follows approximately a linear regression model

with covariates B̃.

For the ZIP model, P is a truncated Poisson(λ) random variable with log(λ) =

Bβ,

µ(Bβ) =
λ

1− exp(−λ)
,

ν(Bβ) =
λ{1− exp(−λ)− λ exp(−λ)}

(1− exp(−λ))2
,
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and

g∗ =
(1− exp(−λ))2

λ{1− exp(−λ)− λ exp(−λ)} .

For the ZIB model, P is a truncated binomial(m, p) random variable divided by m

with logit(p) = Bβ, so we then have

µ(Bβ) =
p

1− (1− p)m
,

ν(Bβ) =
p(1−p)

m
{1− (1− p)m −mp(1− p)m−1}

{1− (1− p)m}2
,

and

g∗ =
{1− (1− p)m}2

p(1−p)
m

{1− (1− p)m −mp(1− p)m−1} .

The method is applied by setting P = µ(Bβ) and solving for µ−1(P ). In both cases,

µ−1(P ) and g∗(P ) can only be calculated numerically. We can take the estimator of

β through LTS for the transformed data as our initial guess. For initial values for

the mixing probability model we may follow Lambert’s suggestion and use

P̂0 =

∑n
i=1{I(yi = 0)− e− exp(Biβ

(0)
)}

n
,

and

P̂0 =

∑n
i=1

[
I(yi = 0)−

{
exp(Biβ

(0)
)

1+exp(Biβ
(0)

)

}m]

n
,

the observed average probability of an excess 0 for ZIP and ZIB respectively.

4.3.3 Influence Function

The influence function (IF) is a useful and popular tool for quantifying the degree

of robustness of a statistic by measuring the potential effect of an additional

observation. The classical ML estimating equations for γ and β can be written as

1
n

∑n
i=1 {Eθ(zi|yi)− exp(GT

i γ)

1+exp(GT

i γ)
}Gi = 0, and 1

n

∑n
i=1{1−Eθ(zi|yi)}yi−µ(BT

i β)

ai(φ)
Bi = 0,

where the expectation is with respect to zi given yi. The influence function (IF)
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of β̂MLE, the MLE with respect to β for the ZI model, quantifies the influence of

one additional observation yj corresponding to the random variable Yj drawn from

model (4.1.2). This function is given by

IFMLE(yj) =
{1− Eθ(zj|Yj)}{yj − µ(BT

j β)}Bj

−Eθ

(
∂

∂β

[
{1− Eθ(zj|Yj)}{Yj − µ(BT

j β)}
]
Bj

) . (4.3.14)

As can be seen in (4.3.14), the influence of an outlier on the ML estimator is propor-

tional to the score function and is, therefore, unbounded in general. The estimating

functions underlying the RES method are

1

n

n∑

i=1

{Eθ(zi|yi)− exp(GT
i γ)

1 + exp(GT
i γ)

}Gi = 0. (4.3.15)

1

n

n∑

i=1

(1−Eθ(zi|yi))ω(Bi)
{
ψc

(yi − µ(BT
i β)√

ν(BT
i β)

)
−oi(β, c)

}∂µ(ηi)/∂ηi√
ν(BT

i β)
Bi = 0. (4.3.16)

Let Ψ(β, yi) = ω(Bi)
{
ψc

(
yi−µ(BT

i β)√
ν(BT

i β)

)
− oi(β, c)

}
∂µ(ηi)/∂ηi√

ν(BT

i β)

Bi; then the IF of β̂RES

is

IFRES(yj) =
{1− Eθ(zj|Yj)}Ψ(β, yj)

−Eθ

(
∂

∂β

[
{1− Eθ(zj|Yj)}Ψ(β, Yj)

]) . (4.3.17)

The IF of RES estimator is bounded because the score equation Ψ is bounded, so the

supremum of the absolute value is bounded. Therefore, β̂RES is so called B-robust

(Hampel et al., 1981).

4.3.4 Asymptotics

For simplicity, we combine (4.3.15) and (4.3.16) and rewrite them as one equation,

U(θ; y) =
1

n

n∑

i=1

Eθ{si(yi, zi, θ)|yi} = 0 (4.3.18)

with the expectation respect to zi given yi. Here, si(yi, zi, θ) = (si1(yi, zi, θ)T ,

si2(yi, zi, θ)T )T , with si1(yi, zi, θ) = {zi − expit(GT
i γ)}Gi, and

si2(yi, zi, θ) = (1− zi)ω(Bi){ψc(
Yi − µ(BT

i β)√
ν(BT

i β)
)− oi(β, c)}∂µ(ηi)/∂ηi√

ν(BT
i β)

Bi.
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Rosen et al. (2001) show that under certain regularity conditions, if there exists a

point θ̂ such that limr→∞ θ(r) = θ̂ where θ(1), θ(2), . . . is a sequence generated by the

expectation solution algorithm, then θ̂ satisfies: (1) U(θ̂; y) = 0, and (2) U(θ; y) is

an unbiased estimating function, satisfying Eθ{U(θ; y)} = 0 for all θ.

The conditions of the above theory are easily verified for RES algorithm (see

Appendix on page 117). Therefore, if the RES algorithm converges, it converges to

a solution to θ̂ of an unbiased estimating equation. Moreover under mild regularity

conditions (e.g., Carroll, Ruppert and Stefanski, 1995, §A.3), the RES estimator

θ̂ = (γ̂T , β̂
T
)T is consistent: θ̂ → θ, almost surely; and asymptotically normal:

√
n(θ̂ − θ)

D−→ N(0, V ). Here, V = M−1QM−1 where Q = E{U(θ; y)U(θ; y)T}
and M = −E{U̇(θ; y)}, where U̇ = ∂

∂θU . The asymptotic variance of θ̂ can be

estimated by Vn = M−1
n QnM

−1
n at θ̂, where Mn = − 1

n

∑n
i=1 Eθ{ṡi(yi, zi, θ)|yi}, and

Qn = 1
n

∑n
i=1[Eθ{si(yi, zi, θ)|yi} × Eθ{si(yi, zi, θ)|yi}T ].

4.4 Simulations

The aim of the following simulations is to assess performance under model mis-

specification and/or poor separation of the mixture components. Three separate

simulation studies were conducted in which we compare the ML, MHD and RES

estimation methods in the context of ZI regression with outliers. Because of non-

identifiability problems with the MHD method, we restrict attention to the case

of constant mixing probability in study 1, and consider only the RES and ML

approaches for non-constant mixing probability in simulation studies 2 and 3. In

studies 1 and 2, the specific form of model violation considered is the presence of

outlying values in the response, whereas in study 3 we consider outlying values in

the explanatory variables (high leverage points). In all three simulation studies, both
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ZIP and ZIB models are considered, as well as two different degrees of separation

between the mixture components and two sample sizes.

All simulations involving the ZIB model were patterned after the structure of a

data set reported in Hall and Berenhaut (2002) regarding alligator egg hatch rates.

The data came from a study in which alligator egg nests were monitored over several

consecutive years at two sites in Florida. Therefore, data were simulated from ZIB

models of the form

Yi ∼




0, with probability pi;

Binomial(mi, µi), with probability 1− pi.

where

µi = expit(β1x1i + β2x2i + β3x3i + β4x4i),

pi =





p, in simulation study 1,

expit(γ1x1i + γ2x2i + γ3x3i), in simulation studies 2, 3.

xji is an indicator for whether observation i was taken from site j, j = 1, 2, x3i

is the year of the ith observation, and x4i is a random variable generated from a

uniform(0,1) distribution.

The simulations involving the ZIP model were patterned after a data set pre-

sented by Ridout et al. (1998) which contains the results of an experiment in which

apple tree roots were propagated under eight different treatments corresponding to

the 2×4 combinations of chemical medium and light level. The covariates here were

defined similarly to those in the ZIB model above. Let x1, x2 be indicators for the

two propagation media, let x3 take values 1–4 corresponding to the 4 increasing light

levels, and again let x4 ∼ uniform(0, 1). Then the model under which the data were

generated takes the form

Yi ∼




0, with probability pi,

Poisson(µi), with probability 1− pi.

where

µi = exp(β1x1i + β2x2i + β3x3i + β4x4i),
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pi =





p, in simulation study 1,

expit(γ1x1i + γ2x2i + γ3x3i), in simulation studies 2, 3.

The data were generated under various settings of the model parameters γ and

β, chosen to correspond to low versus high levels of zero inflation combined with

low versus high levels of separation between the mixture components. For every

parameter setting, 500 data sets were generated from the model, with outliers added

depending upon the particular model type and data contamination scheme under

consideration. Bias, mean square error (MSE), and size of the Wald test for equality

with the true value were calculated for each model parameter. In addition, we pro-

vided the MSE for ζ ≡ 1
n

∑n
i=1(1 − pi)µi, the average marginal mean according to

the model, to assess the performance of the different estimation methods.

4.4.1 Study 1: ZI Regression with Constant p and Outliers in y

In study 1, we compare ML, MHD and RES estimation methods for data generated

from the ZI regression model with constant p and contamination in y. For each data

generated set, 10% of the responses were selected at random and replaced by outliers.

In the ZIB model, these responses were replaced by m, the binomial denominator,

and in the ZIP case, they were replaced by y + 15. The parameters p and β were

specified as list in Tables 4.1-4.8. The regression parameter β was chosen to make

the non-degenerate component’s mean either large or small, which we refer to as the

“well-separated” (Tables 4.3, 4.4, 4.7, and 4.8) and “poorly separated” (Tables 4.1,

4.2, 4.5, and 4.6) cases, respectively. Two values, 0.1 and 0.3, were considered for

the mixing probability p, corresponding to low and moderate levels of zero inflation.

We also set n = 64 and n = 200 to investigate the effect of sample size. In each

table of results (Tables 4.1-4.8), we report the bias, MSE, and size of the Wald test

of equality to the true value, for each parameter to assess the performance of the

three methods.
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Tables 4.1 and 4.2 are the results for poorly separated ZIB models. As expected,

both RES and MHDE exhibit less bias and smaller MSE for ζ and for all components

of β than MLE, but perform similarly with respect to p. RES has better size (closer

to 0.05) than MHDE and MLE. In the well-separated ZIB cases (Tables 4.3 and 4.4),

again, both RES and MHDE generally yield estimators of β and ζ with smaller bias

and MSE than the MLEs, but produced comparable estimators for p.

Tables 5 through 8 repeat the simulations above but in the ZIP context and

exhibit a similar pattern to the ZIB results. Both RES and MHDE perform better

than MLE in bias, MSE of β and ζ. In addition, when p = 0.1, both of them are

consistently better in p, but very close to MLE when p = 0.3.

From the results above, we conclude that in the presence of outliers in y: (1) Both

RES and MHDE improved dramatically upon ML estimation, which had unaccept-

able levels of bias and MSE in the cases we examined. (2) With respect to β, the

presence of outliers severely inflated the size of Wald tests under ML estimation

and, in most cases, deflated the size of these tests under MHD estimation. With

few exceptions the MHD method led to sizes of 0.01 or 0.00 for the β parameters.

In contrast, the RES approach typically led to mildly inflated test sizes, which, in

many cases, were close to nominal. With respect to p, the size comparisons among

the three methods are less consistent. Generally speaking, the size of Wald tests for

p were strongly inflated under ML estimation, but much less severely affected under

RES and MHD estimation, which performed roughly the same. (3) As expected,

increasing sample size from n = 64 to n = 200 generally has the effect of decreasing

bias and MSE for all parameters across all three methods. This effect may have been

limited somewhat by the fact that the proportion of outliers stayed constant, which

also may explain the lack of a clear effect of sample size on Wald test size.
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Table 4.1: ZIB poorly separated data with constant zero state probability p = 0.1,
with 10% outliers, n = 64 and 200

n = 64 RES MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
p = 0.1 -0.013 0.0013 0.01 0.006 0.0017 0.07 -0.013 0.0013 0.18
β1 = −1.0 0.050 0.0122 0.07 -0.004 0.0021 0.00 0.298 0.0976 0.89
β2 = −0.8 0.056 0.0142 0.07 0.097 0.0182 0.01 0.259 0.0764 0.80
β3 = −0.1 0.028 0.0026 0.08 0.047 0.0036 0.00 0.165 0.0287 0.99
β4 = 0.1 -0.073 0.0261 0.05 -0.051 0.0038 0.00 -0.378 0.1592 0.83
ζ 1.5118 1.0902 17.8055
n = 200
p = 0.1 -0.010 0.0005 0.04 0.003 0.0005 0.02 -0.010 0.0005 0.12
β1 = −1.0 0.071 0.0097 0.09 -0.004 0.0005 0.00 0.419 0.1787 1.00
β2 = −0.8 0.071 0.0089 0.17 -0.041 0.0046 0.00 0.374 0.1431 1.00
β3 = −0.1 -0.003 0.0004 0.01 0.019 0.0009 0.01 0.019 0.0007 0.12
β4 = 0.1 -0.005 0.0087 0.04 -0.022 0.0010 0.00 -0.092 0.0144 0.22
ζ 0.8132 0.2774 14.6069

Table 4.2: ZIB poorly separated data with constant zero state probability p = 0.3,
with 10% outliers, n = 64 and 200

n = 64 RES MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
p = 0.3 -0.039 0.0044 0.07 0.018 0.0047 0.10 -0.038 0.0044 0.10
β1 = −1.0 0.062 0.0165 0.06 -0.003 0.0025 0.00 0.372 0.1545 0.89
β2 = −0.8 0.073 0.0019 0.08 -0.101 0.0185 0.00 0.322 0.1205 0.83
β3 = −0.1 0.039 0.0040 0.08 0.0497 0.0037 0.00 0.194 0.0404 1.00
β4 = 0.1 -0.098 0.0377 0.06 -0.053 0.0038 0.00 -0.451 0.2399 0.81
ζ 2.3027 1.3197 20.6134
n = 200
p = 0.3 -0.030 0.0017 0.18 0.010 0.0011 0.00 -0.030 0.0017 0.20
β1 = −1.0 0.086 0.0143 0.08 -0.004 0.0009 0.00 0.500 0.2560 1.00
β2 = −0.8 0.085 0.0122 0.15 -0.056 0.0063 0.00 0.450 0.2086 1.00
β3 = −0.1 0.002 0.0006 0.01 0.026 0.0013 0.00 0.028 0.0015 0.21
β4 = 0.1 -0.006 0.0133 0.06 -0.029 0.0014 0.00 -0.099 0.0222 0.26
ζ 1.3672 0.3665 16.9054
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Table 4.3: ZIB well separated data with constant zero state probability p = 0.1, with
10% outliers, n = 64 and 200

n = 64 RES MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
p = 0.1 -0.012 0.0015 0.00 0.010 0.0023 0.18 -0.012 0.0015 0.19
β1 = 0.5 0.044 0.0099 0.05 0.008 0.0016 0.00 0.139 0.0275 0.33
β2 = 0.7 0.046 0.0109 0.03 -0.103 0.0166 0.00 0.125 0.0231 0.26
β3 = −0.1 0.033 0.0027 0.13 0.056 0.0041 0.00 0.086 0.0088 0.67
β4 = 0.1 -0.077 0.0246 0.04 -0.058 0.0042 0.00 -0.192 0.0554 0.37
ζ 3.1062 3.1650 8.0338
n = 200
p = 0.1 -0.0101 0.0005 0.05 0.003 0.0005 0.03 -0.0103 0.0005 0.14
β1 = 0.5 0.065 0.0070 0.05 0.002 0.0005 0.00 0.206 0.0446 0.97
β2 = 0.7 0.066 0.0082 0.17 -0.046 0.0045 0.00 0.191 0.0403 0.93
β3 = −0.1 0.001 0.0005 0.01 0.024 0.0011 0.00 0.194 0.0004 0.04
β4 = 0.1 -0.014 0.0066 0.02 -0.027 0.0012 0.00 -0.050 0.0091 0.14
ζ 1.5805 0.8680 5.5705

Table 4.4: ZIB well separated data with constant zero state probability p = 0.3, with
10% outliers, n = 64 and 200

n = 64 RES MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
p = 0.3 -0.025 0.0032 0.04 0.043 0.0063 0.10 -0.025 0.0033 0.06
β1 = 0.5 0.065 0.0147 0.06 0.012 0.0026 0.00 0.185 0.0472 0.44
β2 = 0.7 0.067 0.0144 0.03 -0.106 0.0177 0.00 0.166 0.0368 0.36
β3 = −0.1 0.042 0.0035 0.08 0.141 0.0045 0.00 0.105 0.0128 0.72
β4 = 0.1 -0.1006 0.0325 0.05 -0.062 0.0046 0.00 -0.237 0.0832 0.40
ζ 5.4738 6.5393 11.2489
n = 200
p = 0.3 -0.031 0.0019 0.11 0.011 0.0014 0.06 -0.03 0.0019 0.23
β1 = 0.5 0.082 0.0110 0.04 0.001 0.0008 0.00 0.258 0.0695 1.00
β2 = 0.7 0.086 0.0133 0.15 -0.058 0.0063 0.01 0.245 0.0655 0.97
β3 = −0.1 0.001 0.0007 0.02 0.030 0.0015 0.00 0.007 0.0007 0.11
β4 = 0.1 -0.018 0.0077 0.02 -0.032 0.0016 0.00 -0.065 0.0117 0.11
ζ 3.6528 1.6205 9.2044
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Table 4.5: ZIP poorly separated data with constant zero state probability p = 0.1,
with 10% outliers, n = 64 and 200

n = 64 RES MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
p = 0.1 -0.001 0.0018 0.03 0.008 0.0023 0.01 0.028 0.0026 0.03
β1 = 0.5 0.146 0.0506 0.10 0.044 0.0805 0.02 0.592 0.3685 0.96
β2 = 1.0 0.090 0.0398 0.06 -0.012 0.0222 0.01 0.366 0.1492 0.72
β3 = 0.2 0.059 0.0089 0.10 -0.036 0.0067 0.00 0.087 0.0104 0.31
β4 = 0.1 -0.017 0.1030 0.08 -0.011 0.0092 0.00 -0.432 0.2240 0.53
ζ 0.5936 0.3396 2.8334
n = 200
p = 0.1 -0.0001 0.0007 0.03 -0.001 0.0008 0.00 0.033 0.0018 0.22
β1 = 0.5 0.157 0.0450 0.14 -0.061 0.0619 0.02 0.792 0.0633 1.00
β2 = 1.0 0.132 0.0328 0.19 -0.054 0.0223 0.02 0.561 0.3205 1.00
β3 = 0.2 -0.008 0.0014 0.02 0.013 0.0038 0.01 -0.087 0.0082 0.87
β4 = 0.1 -0.018 0.0127 0.04 0.050 0.0342 0.02 -0.110 0.0240 0.11
ζ 0.2395 0.2199 2.2850

Table 4.6: ZIP poorly separated data with constant zero state probability p = 0.3,
with 10% outliers, n = 64 and 200

n = 64 RES MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
p = 0.3 -0.022 0.0043 0.03 0.010 0.0047 0.06 -0.004 0.0035 0.07
β1 = 0.5 0.201 0.0826 0.11 -0.006 0.1663 0.24 0.695 0.5094 0.97
β2 = 1.0 0.138 0.0660 0.06 -0.061 0.0483 0.12 0.431 0.2103 0.69
β3 = 0.2 0.069 0.0130 0.05 -0.026 0.0118 0.26 0.084 0.0114 0.21
β4 = 0.1 -0.055 0.0452 0.04 0.031 0.0488 0.00 -0.459 0.2639 0.52
ζ 0.6972 0.4208 2.7595
n = 200
p = 0.3 -0.0100 0.0006 0.04 -0.0057 0.0006 0.09 -0.0094 0.0006 0.20
β1 = 0.5 0.1247 0.0228 0.10 -0.1505 0.0314 0.03 0.2974 0.0927 1.00
β2 = 1.0 0.1674 0.0157 0.23 -0.0462 0.0054 0.00 0.2144 0.0497 0.96
β3 = 0.2 -0.0096 0.0019 0.03 -0.0764 0.0065 0.00 -0.0319 0.0015 0.36
β4 = 0.1 -0.0140 0.0227 0.03 0.1151 0.0154 0.00 -0.0526 0.0098 0.11
ζ 0.3042 0.2881 2.4882
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Table 4.7: ZIP well separated data with constant zero state probability p = 0.1 ,
with 10% outliers, n = 64 and 200

n = 64 RES MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
p = 0.1 -0.015 0.0016 0.01 0.005 0.0016 0.04 -0.014 0.0017 0.23
β1 = 1.5 0.071 0.0215 0.13 0.033 0.0790 0.04 0.200 0.0523 0.43
β2 = 2.0 0.066 0.0151 0.05 0.034 0.0484 0.01 0.135 0.0269 0.30
β3 = 0.2 0.025 0.0023 0.04 0.015 0.0039 0.00 0.036 0.0028 0.14
β4 = 0.1 -0.013 0.0326 0.09 -0.072 0.1135 0.01 0.168 0.0459 0.20
ζ 1.4067 1.5983 3.2599
n = 200
p = 0.1 -0.010 0.0006 0.04 -0.006 0.0006 0.09 -0.009 0.0006 0.20
β1 = 1.5 0.092 0.0152 0.12 -0.151 0.0314 0.03 0.297 0.0927 1.00
β2 = 2.0 0.079 0.0101 0.16 -0.046 0.0054 0.00 0.214 0.0497 0.96
β3 = 0.2 -0.008 0.0006 0.02 0.076 0.0065 0.00 -0.032 0.0015 0.36
β4 = 0.1 -0.002 0.0093 0.05 0.115 0.0154 0.00 -0.053 0.0098 0.11
ζ 0.928 2.8812 2.4882

Table 4.8: ZIP well separated data with constant zero state probability p = 0.3, with
10% outliers, n = 64 and 200

n = 64 RES MHDE MLE

Parameters Bias MSE Size Bias MSE Size Bias MSE Size
p = 0.3 -0.026 0.0033 0.01 0.022 0.0043 0.06 -0.026 0.0033 0.05
β1 = 1.5 0.095 0.0303 0.08 -0.039 0.0453 0.19 0.231 0.0712 0.47
β2 = 2.0 0.068 0.0226 0.07 -0.021 0.0251 0.03 0.139 0.0349 0.31
β3 = 0.2 0.026 0.0033 0.03 0.008 0.0036 0.07 0.032 0.0034 0.14
β4 = 0.1 -0.025 0.0399 0.07 0.069 0.0178 0.00 -0.158 0.0495 0.16
ζ 1.4769 0.9128 2.9648
n = 200
p = 0.3 -0.023 0.0015 0.07 -0.006 0.0011 0.04 -0.023 0.0014 0.09
β1 = 1.5 0.137 0.0267 0.18 0.108 0.0236 0.01 0.353 0.1320 1.00
β2 = 2.0 0.108 0.0172 0.18 -0.010 0.0045 0.00 0.250 0.0675 0.96
β3 = 0.2 -0.013 0.0009 0.04 0.062 0.0049 0.00 -0.04 0.0023 0.42
β4 = 0.1 -0.019 0.0099 0.02 0.084 0.0093 0.00 -0.079 0.0147 0.15
ζ 0.8140 1.6412 2.3701
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4.4.2 Study 2: ZI Regression with Nonconstant p and Outliers in y

For data generated from ZI regression with nonconstant p, we restricted our attention

to RES and ML estimation methods. Data were contaminated in the same way as

described in study 1. True values for the parameters γ and β are specified in Tables

4.9-4.12. Again, two sample size n = 64 and 200 are examined in this study.

In Table 4.9, results are presented corresponding to estimation of data with small

proportion of zeros and well separated ZIB models. As expected, RES demonstrates

less bias and MSE than ML approach for γ, β, and ζ. RES also performs much

better in size. Table 4.10 gives result for data with a large portion of zeros and

poorly separated ZIB models. Here we find that RES parameter estimates of γ

exhibit similar bias, MSE and size compared with ML, but RES does significantly

better in β and ζ. Tables 4.11 and 4.12 represent analogues of Tables 4.9 and 4.10

for the ZIP context and exhibit similar patterns of results.

In general, we can conclude that RES method is much more accurate than ML in

estimating β when data have outliers in y. In estimating γ, RES method improves

upon ML estimation when the components are poorly separated. Whereas the size

of Wald tests was extremely far from nominal in many cases under ML estimation,

the RES approach led to Wald tests with fairly accurate observed sizes. Sample size

has the expected effect of decreasing bias and improving efficiency for both methods,

but the RES approach maintains a clear advantage even when n = 200.

4.4.3 Study 3: ZI Regression with Nonconstant p and Outliers in x

Again, to avoid non-identifiability issues with the MHD approach for non-constant p,

we restrict our attention to RES and ML methods only. To create these outliers, we

randomly chose about 1% of the observations (one point for n = 64 and two points

for n = 200), and replaced the covariate value x4 by x4 + 3, leaving the response y



104

Table 4.9: ZIB with complex mixing probability with small portion of zero state and
well separated binomial component, with 10% outliers, n = 64 and 200

n = 64 RES MLE

Parameters Bias MSE Size Bias MSE Size
γ1 = −2 -0.1930 4.8539 0.04 -0.9359 14.9168 0.04
γ2 = −1.5 -0.3360 4.0044 0.03 -0.3468 4.6700 0.02
γ3 = −0.1 -0.2340 3.0315 0.07 -0.2541 3.6168 0.02
β1 = 0.5 0.0452 0.0107 0.07 0.1424 0.0289 0.34
β2 = 0.7 0.0537 0.0124 0.05 0.1415 0.0283 0.32
β3 = −0.1 0.0332 0.0027 0.08 0.0859 0.0089 0.67
β4 = 0.1 -0.0643 0.0261 0.03 -0.1989 0.0582 0.37
ζ 6.9065 12.1800
n = 200
γ1 = −2 -0.1743 0.2626 0.06 -0.1743 0.2626 0.06
γ2 = −1.5 -0.2109 0.2387 0.10 -0.2109 0.2387 0.09
γ3 = −0.1 -0.0013 0.0437 0.06 -0.0013 0.0437 0.06
β1 = 0.5 0.0658 0.0072 0.04 -0.2082 0.0457 0.97
β2 = 0.7 0.0669 0.0086 0.11 0.2037 0.0453 0.97
β3 = −0.1 0.001 0.0005 0.01 0.0043 0.0005 0.05
β4 = 0.1 -0.0196 0.0068 0.02 -0.0495 0.0096 0.12
ζ 3.1125 7.4134
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Table 4.10: ZIB with complex mixing probability with large portion of zero states
and poorly separated binomial component, with 10% outliers, n = 64 and 200

n = 64 RES MLE

Parameters Bias MSE Size Bias MSE Size
γ1 = −1 -0.116 0.3106 0.02 -0.116 0.3106 0.01
γ2 = −0.5 -0.1276 0.4169 0.08 -0.1276 0.4169 0.05
γ3 = −0.1 -0.0788 0.0928 0.06 -0.0788 0.0928 0.05
β1 = −1.0 0.0530 0.014 0.07 0.3526 0.1380 0.89
β2 = −0.8 0.0803 0.0200 0.08 0.3550 0.1418 0.90
β3 = −0.1 0.0369 0.0040 0.09 -0.2576 0.0367 0.99
β4 = 0.1 -0.0095 0.0402 0.06 -0.01047 0.2467 0.77
ζ 3.5607 21.9422
n = 200
γ1 = −1 -0.2112 0.1518 0.08 -0.2118 0.1518 0.08
γ2 = −0.5 -0.1476 0.0986 0.07 -0.1476 0.0986 0.08
γ3 = −0.1 0.0016 0.0256 0.06 0.0016 0.0256 0.06
β1 = 1.0 0.0980 0.0137 0.09 0.4935 0.249 1.00
β2 = −0.8 0.0867 0.0143 0.11 0.5023 0.2580 1.00
β3 = −0.1 -0.0026 0.0006 0.01 0.0134 0.0008 0.15
β4 = 0.1 -0.0083 0.0117 0.04 -0.11195 0.0237 0.31
ζ 1.6727 17.0735
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Table 4.11: ZIP with complex mixing probability with small portion of zero states
and well separated Poisson component, with 10% outliers, n = 64 and 200

n = 64 RES MLE

Parameters Bias MSE Size Bias MSE Size
γ1 = −2 -0.2071 1.1644 0.04 -1.4009 4.6692 0.01
γ2 = −1.5 -0.2269 1.0986 0.04 -0.7024 4.5802 0.02
γ3 = −0.1 -0.0660 0.2400 0.05 -0.1968 3.8604 0.05
β1 = 1.5 0.0068 0.0299 0.04 0.2013 0.0533 0.42
β2 = 2.0 0.0137 0.0259 0.06 0.1348 0.0272 0.26
β3 = 0.2 0.0271 0.0030 0.06 0.0358 0.0028 0.11
β4 = 0.1 -0.0105 0.0172 0.02 -0.1657 0.0453 0.19
ζ 1.810 3.6752
n = 200
γ1 = −2 -0.1422 0.2098 0.01 -0.1929 0.2378 0.03
γ2 = −1.5 -0.1635 0.2310 0.10 -0.1681 0.2533 0.10
γ3 = −0.1 -0.0148 0.0479 0.07 0.0036 0.0393 0.02
β1 = 1.5 0.1021 0.0166 0.17 0.3089 0.1002 0.99
β2 = 2.0 0.0833 0.0119 0.14 0.2277 0.0559 0.95
β3 = 0.2 -0.0077 0.0007 0.05 -0.0347 0.0017 0.39
β4 = 0.1 -0.0058 0.0073 0.02 -0.064 0.0195 0.09
ζ 0.8155 2.5899
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Table 4.12: ZIP with complex mixing probability with large portion of zero states
and poorly separated Poisson component, with 10% outliers, n = 64 and 200

n = 64 RES MLE

Parameters Bias MSE Size Bias MSE Size
γ1 = −1 -0.0487 0.5379 0.06 0.2821 0.5860 0.12
γ2 = −0.5 -0.0968 0.3638 0.02 0.0837 0.3740 0.06
γ3 = −0.1 -0.1006 0.1153 0.07 -0.1391 0.1161 0.08
β1 = 0.5 0.1007 0.1285 0.04 0.6900 0.5033 0.95
β2 = 1.0 0.1059 0.0877 0.05 0.4706 0.2450 0.79
β3 = 0.2 0.0539 0.0079 0.02 0.0682 0.0113 0.15
β4 = 0.1 -0.0322 0.0591 0.02 -0.4475 0.2435 0.49
ζ 0.7201 3.0567
n = 200
γ1 = −1 0.0135 0.1204 0.06 0.2966 0.1780 0.14
γ2 = −0.5 -0.0799 0.0817 0.04 0.0268 0.0752 0.01
γ3 = −0.1 -0.0225 0.0180 0.06 -0.0677 0.0249 0.05
β1 = 0.5 0.2555 0.0887 0.18 0.8841 0.8245 1.00
β2 = 1.0 0.2154 0.0634 0.13 0.6790 0.4683 1.00
β3 = 0.2 -0.0376 0.0032 0.04 -0.1118 0.0153 0.95
β4 = 0.1 -0.026 0.0244 0.05 -0.0582 0.0436 0.15
ζ 0.3285 2.3419
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and other covariates unchanged. Like in study 2, two levels of mixture separation

and two sample sizes were considered.

Tables 4.13 and 4.14 gives results for well separated ZIB data with small portion

of zeros and for poorly separated ZIB data with a large portion of zeros, respectively.

In these tables, RES and ML perform similarly with respect to γ. This results is

sensible, since there is only a small amount of contamination in x which is of a

form which does not obscure the mixture structure much. With respect to β and

ζ however, RES has less bias, smaller MSE and closer to nominal size than ML

estimation. Generally speaking, these results are replicated in Tables 4.15 and 4.16,

which contain the corresponding results for the ZIP setting. Across all of these tables,

the usual positive effect of sample size on efficiency is observed.

4.5 Example

To illustrate the use of robust methods for zero inflated regression models, we con-

sider data from the Multisite Violence Prevention Project (MVPP), a study designed

to reduce violent and aggressive behaviors among middle school aged children con-

ducted by investigators from four US universities and the Centers for Disease Control

and Prevention. The study utilized a randomized complete block design involving

37 schools randomized to a 4 treatment structure within each of four blocks cor-

responding to the sites of the universities participating in the project. Included

among the outcomes measured via teacher surveys in the study was a 30-day recall

of number of insults received from students. Although the study was longitudinal

with data collected twice annually over 4 years, we avoid this aspect of the design by

examining only data from the first post-treatment measurement occasion, treating

the pre-treatment, or baseline, response as a covariate in our analysis. For simplicity,
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Table 4.13: ZIB with complex mixing probability with small portion of zero states
and well separated binomial component, with 1% moderate outliers having abnormal
covariates, n = 64 and 200

n = 64 RES MLE

Parameters Bias MSE Size Bias MSE Size
γ1 = −2 -0.097 0.6819 0.06 -0.097 0.6819 0.05
γ2 = −1.5 -0.129 0.6262 0.03 -0.129 0.6279 0.03
γ3 = −0.1 0.029 0.1077 0.04 0.030 0.1077 0.02
β1 = 0.5 0.046 0.0126 0.07 0.240 0.0739 0.76
β2 = 0.7 0.022 0.0107 0.04 0.274 0.0453 0.52
β3 = −0.1 -0.005 0.0017 0.06 -0.003 0.0017 0.06
β4 = 1.0 -0.073 0.0350 0.05 -0.527 0.3438 0.12
ζ 7.3990 9.7052
n = 200
γ1 = −2 -0.036 0.2538 0.06 -0.036 0.2538 0.06
γ2 = −1.5 -0.121 0.1916 0.03 -0.121 0.1926 0.03
γ3 = −0.1 0.006 0.0401 0.03 0.006 0.0402 0.03
β1 = 0.5 0.020 0.0044 0.04 0.179 0.0376 0.82
β2 = 0.7 0.022 0.0049 0.04 0.166 0.0324 0.79
β3 = −0.1 -0.001 0.0005 0.07 -0.006 0.0005 0.05
β4 = 1.0 -0.049 0.0090 0.01 -0.377 0.1562 0.93
ζ 2.4616 3.4021
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Table 4.14: ZIB with complex mixing probability with large portion of zero states and
poorly separated binomial component, with 1% moderate outliers having abnormal
covariates, n = 64 and 200

n = 64 RES MLE

Parameters Bias MSE Size Bias MSE Size
γ1 = −1 -0.1248 0.4646 0.07 -0.1248 0.4646 0.06
γ2 = −0.5 0.0173 0.2215 0.02 0.0173 0.2215 0.01
γ3 = −0.1 0.0054 0.0611 0.04 0.0054 0.0611 0.05
β1 = −1.0 0.0449 0.0176 0.06 0.2078 0.0772 0.65
β2 = −0.8 0.0446 0.0157 0.04 0.1801 0.0565 0.61
β3 = −0.1 0.0000 0.0014 0.01 -0.0002 0.0014 0.04
β4 = 1.0 -0.1146 0.0591 0.05 -0.4594 0.3436 0.67
ζ 3.6389 5.2225
n = 200
γ1 = −1 0.0168 0.1315 0.08 -0.0789 0.1289 0.07
γ2 = −0.5 -0.0071 0.838 0.02 -0.0617 0.1053 0.06
γ3 = −0.1 0.0001 0.0231 0.05 0.0152 0.0273 0.09
β1 = −1.0 0.0492 0.0075 0.03 1.1195 0.0586 0.88
β2 = −0.8 0.0494 0.0069 0.01 0.2181 0.0570 0.88
β3 = −0.1 -0.0031 0.0004 0.03 -0.0058 0.0005 0.02
β4 = 1.0 -0.1059 0.0238 0.01 -0.4348 0.2255 0.91
ζ 1.4222 3.5329
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Table 4.15: ZIP with complex mixing probability with small portion of zero and well
separated Poisson component, with 1% moderate outliers having abnormal covari-
ates, n = 64 and 200

n = 64 RES MLE

Parameters Bias MSE Size Bias MSE Size
γ1 = −2 -0.3530 0.8194 0.03 -0.3463 0.8133 0.01
γ2 = −1.5 -0.1821 0.7093 0.06 00.1796 0.7072 0.04
γ3 = −0.1 0.0744 0.1473 0.06 0.0727 0.1470 0.03
β1 = 1.5 0.0981 0.02718 0.10 0.4781 0.3041 0.79
β2 = 2.0 0.0791 0.0210 0.09 0.3995 0.2126 0.79
β3 = 0.2 -0.0095 0.0015 0.07 -0.0511 0.0047 0.42
β4 = 1.0 -0.1364 0.0442 0.09 -0.6503 0.5586 0.80
ζ 2.4567 7.6554
n = 200
γ1 = −2 -0.0654 0.1870 0.06 -0.0721 0.1859 0.05
γ2 = −1.5 0.0014 0.1776 0.05 0.0024 0.1774 0.05
γ3 = −0.1 -0.0101 0.0495 0.10 -0.0101 0.0494 0.06
β1 = 1.5 0.2107 0.0523 0.17 0.3992 0.1712 0.99
β2 = 2.0 0.1975 0.0453 0.13 0.3680 0.1448 0.99
β3 = 0.2 -0.0133 0.0006 0.10 -0.0263 0.0011 0.12
β4 = 1.0 -0.3520 0.1371 0.13 -0.6579 0.4561 0.99
ζ 2.5793 6.7281
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Table 4.16: ZIP with complex mixing probability with large portion of zero and
poorly separated Poisson component, with 1% moderate outliers having abnormal
covariates, n = 64 and 200

n = 64 RES MLE

Parameters Bias MSE Size Bias MSE Size
γ1 = −1 -0.1364 0.7116 0.06 -0.2788 0.4304 0.06
γ2 = −0.5 0.0072 0.3818 0.05 0.0104 0.3834 0.04
γ3 = −0.1 -0.0119 0.0925 0.04 -0.0101 0.0925 0.05
β1 = 0.5 0.1098 0.0520 0.09 0.2494 0.1426 0.41
β2 = 1.0 0.0972 0.0419 0.06 0.2154 0.1112 0.45
β3 = 0.2 0.0044 0.0064 0.14 0.0106 0.0066 0.07
β4 = 1.0 -0.2466 0.1293 0.13 -0.5326 0.4829 0.62
ζ 0.6934 1.0900
n = 200
γ1 = −1 0.0510 0.1128 0.07 0.0696 0.1123 0.06
γ2 = −0.5 0.0459 0.0914 0.04 0.0551 0.0910 0.04
γ3 = −0.1 -0.0116 0.0165 0.03 -0.0115 0.0164 0.03
β1 = 0.5 0.2506 0.0771 0.14 0.3806 0.1616 0.94
β2 = 1.0 0.2301 0.0662 0.18 0.353 0.1395 0.95
β3 = 0.2 -0.0033 0.0016 0.07 -0.0066 0.0016 0.11
β4 = 1.0 -0.3441 0.2281 0.15 -0.6802 0.4902 0.95
ζ 0.4854 0.8056
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we also restrict attention to just one of the four sites involved in the study, from

which 86 teachers’ data were available.

A simple histogram of the insult data is presented in Figure 1 (a). From this

plot it is apparent that a very large proportion of the teachers reported 0 insults.

However, there are also large frequencies of insult counts that are much larger than 0

indicating possible zero inflation in these data. In addition, there are a few teachers

who reported very large numbers of insults (15, 20, 30) which are clearly outlying

relative to the main portion of the data and which may strongly affect inferences on

the treatments. Given this data structure and experimental design, a natural model

to consider here is a zero inflated Poisson analysis of covariance type model for

the post-treatment insult count in which the baseline count is treated as a covariate,

and which is fit with a robust methodology to account appropriately for the presence

of the few extremely high observations in the data. By using the proposed robust

methods, we aim to automatically downweight the extreme observations with poten-

tially large influence on the estimates of the treatment effects.

Specifically, we assume that yij, the number of insults for the jth teacher in

the ith treatment, follows a ZIP distribution with Poisson mean log(µij) = λi +

β log(baselineij + 0.01). In addition, we considered two models for the mixing

probability pij. First, we assumed pij = p for all i, j, and fit this model with the

ML, MHD, and RES estimation methods. However, there is little reason a priori

to assume that the presence of excess zeros is independent of the treatments and

baseline response, so we also investigated a similar model to that for µ, and model

log( pij

1−pij
) = γ1 + γ2 log(baselineij + 0.01).

Parameter estimates and standard errors for these models appear in Table 4.17.

The results for the RES method here were obtained by using tuning constant c = 1.65

and weights w(xi) =
√

1− hi. From these results it can be seen that the RES and

MHD methods produce similar estimates to each other in model 1 but quite different
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results to ML, especially for λ. For model 2, in which there is regression structure

for p, the MHD method is not available; but again, results for RES and ML differ

substantially. There is also evidence here (based on Wald test of γ2 in model 2), that

the mixing probability depends at least on the baseline response so that having to

restrict attention to a constant mixing probably model here, as is necessary for use of

the MHD method, is an undesirable restriction. Note that downweighting the effect

of outliers in the RES analysis results in qualitatively different results with respect to

the treatment effect here. In particular, the Wald test of H0 : λ1 = · · · = λ4 gives p-

values of 0.918 and 0.012 under the RES and ML fitting methods, respectively. This

difference underscores the importance of robustifying the analysis so that estimates

and inferences are not unduly influenced by the effects of a small number of extreme

values.

To further compare the RES and ML fits of model 2, we produced plots of

chi-square residuals. These plots are somewhat similar in concept to half normal

plots (Atkinson, 1981; Vieira et al., 2000), and were constructed by first binning

the data into b bins according to the observed values of the response. In this case,

we used b = 7 bins corresponding to 0, 1, 2, 3, [4, 5] , (5, 12] and (12,∞). Then

we calculated residuals defined as the contribution to the chi-square goodness of fit

statistic rj =
n{fn(y)−fθ,n

(y)}2

fθ,n
(y)

for each bin based on the fitted model (using RES or

ML). The idea behind this plot is if the model is correctly specified, any collection

of b− 1 residuals should be approximately iid χ2(1) random variables. The residual

plot is a plot of ordered r(j) against χ−1
1 {(j − 0.5)/b}, j = 1, 2, . . . , b. A simulated

envelope for this chi-square plot was constructed in the same way as is typically done

in half normal plots. An additional 19 data sets were simulated based on the fitted

model. Chi-square residuals r(j)(d) for data sets d = 1, . . . , 19 were then calculated

and ordered, where r(1)(d) < r(2)(d) < . . . < r(b)(d) for each d. Then for each bin j,

the median, minimum and maximum of r(j)(d) over the 19 simulated data sets were
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Table 4.17: Parameters Estimates and Standard Errors (SE) of Model 1 and Model
2 for MVPP

RES,c=1.65 MLE MHDE

Model 1
Parameters Estimate (SE) Estimate (SE) Estimate (SE)
γ -0.7206 (0.3169) -0.6420 (0.2939) -0.4463 (0.3481)
λ1 1.2497 ( 0.1785) 1.4126 (0.1384) 1.1466 (0.3820)
λ2 1.2739 (0.2314) 1.1935 (0.1864) 1.2983 (0.3247)
λ3 1.1383 (0.1683) 1.3635 (0.1218) 1.0245 (0.5030)
λ4 1.2382 (0.2981) 1.8838 (0.1536) 1.1609 (0.7822)
β 0.1918 (0.0524) 0.2438 (0.0437) 0.1643(0.0962)

Model 2
Parameters Estimate (SE) Estimate (SE)
γ1 -0.9410 (0.3086) -0.9061 (0.3015) -
γ2 -0.2696 (0.0915) -0.2706 (0.0939) -
λ1 1.2989(0.1793) 1.4720 (0.1359) -
λ2 1.3187 (0.2316) 1.2595 (0.1866) -
λ3 1.1557 (0.1692) 1.3831 (0.1216) -
λ4 1.2841 (0.2935) 1.9283 (0.1458) -
β 0.1477 (0.0472) 0.2019 (0.0390) -
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plotted alongside the residuals of the original data set. The plots show that most of

the residuals fall within the boundaries of the envelope using RES (Figure 1(b)), but

not with ML (Figure 1(c)), indicating that the former method is more appropriate

for these data. The one extremely large point in Figure 1(b) is actually a desirable

feature. It corresponds to the outlying values in the largest bin, which should have

large residuals if the estimation is downweighting these outliers as intended.

4.6 Summary

In this thesis, we proposed two robust methods, MHD and RES estimation for ZI

regression models. Simulation results were largely consistent with expectations, indi-

cating that both the MHD and RES methods provide substantial protection against

outliers and poor component separation relative to ML. However, as described above,

the MHD method leads to identifiability problems for some models that are identi-

fiable when fit with ML or the RES approach and is therefore, substantially more

narrowly applicable. The Mallows class estimating equations we proposed in the RES

method perform well in downweighting outliers in y and/or covariates x. However,

it does require specification of the tuning constant c, which does affect the efficiency

of the parameter estimators. Further research is ongoing to develop methodology for

optimal selection of c.

A natural extension of the RES approach would be to generalize this method to

the clustered data context (e.g., longitudinal data). We are currently pursuing this

goal by combining our approach with that of Hall and Zhang (2004) who recently

proposed an estimation method for marginal ZI regression models for clustered data

via generalized estimating equations.
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Appendix

Verification of Conditions of Rosen et al.’s theory

Let (Sy, Fy) and (Sz, Fz) be σ-finite measurable spaces with a product measure

space (Sy × Sz, Fyz), S(.|.) has the following two properties,

(1) For all θ ∈ Θ

EY [S(θ|θ, Y )] =
∫

Sy×Sz

si(y, z; θ)f(y, z|θ)dµ(y)dµ(z) = 0. (4.6.19)

Since

E[Zi − exp(Giγ)

1 + exp(Giγ)
|θ] = 0,

and

E[ψc(
Yi − µ(Biβ)√

ν(Biβ)
)− ai(β, c)|θ] = 0.

Then we get

EY [si(Yi, Zi; θ)|θ] = 0.

(2)

S(φ|θ, y) =
1

n

n∑

i=1

∑

z=0,1

si(yi, zi, φ)
pi(yi|zi)pi(zi)∑

z=0,1 pi(yi|zi)pi(zi)
.

Since si is continuous function for each (y, z) ∈ Sy × Sz, so S(.|.) is a bivariate

continuous function on θ × θ.
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Figure 4.1: Histogram of the raw data and chi-square plots of Pearson’s residuals for
models fit to MVPP data.



Chapter 5

Future Work

5.1 Robust Estimation for Zero-Inflated Models for Clustered

Data

Recently, ZI regression models have been extended to clustered data via adding

random effects into the model by several authors (Hall, 2000; Yau and Lee, 2001).

More recently, Hall and Zhang (2004) incorporate generalized estimating equations

(GEEs) with EM algorithm to fit such marginal models for clustered data. However,

since those methods are not designed to be resistant to potential outliers or influential

data, they can be highly influenced by anomalous data points. One of the approaches

described in Chapter 4, the RES approach, can easily be extended to the clustered

data context.

For clustered data, the ZI model can be defined as follows. Assume the random

variable

Yij ∼




0 with probability pij;

F2(yij; θij, φ) with probability 1− pij.

where i = 1, ..., K and j = 1, ..., ni. In addition, we assume F2 is in the exponential

dispersion family with probability density function of f2(yij; θij, φ). Also, we assume

that the (conditional) mean, ζi, of f2(yij; θij, φ) depends on covariates through some

link function g, i.e. η(ζi) = Biβ, and the mixing probabilities, pi, are related to

covariates, Gi, via a link function too, such as the logit. Here, Bi and Gi are matrices

of covariates for the ith subject.
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Hall and Zhang (2004) proposed an expectation solution (ES algorithm that

incorporate GEEs into the S step by introducing missing values uij, where uij = 1

if yij is from zero state, otherwise, uij = 0. They also defined working correlation

matrices P (ρ) and R(δ), where ρ and δ are unknown correlation parameters. At the

E-step, the expectation of uij is calculated under the current parameter estimates

β(l), γ(l) and φ(l), which yields

u
(l)
ij = 1{yij=0}[1 + {1− pij(γ

(l))}f2(yij; β
(l), φ(l))/pij(γ

(l))]−1.

At the S-step, this approach leads to a combined estimating equation for β, ρ and

φ

K∑

i=1




∂ζT

i

∂β 0

0
∂σT

i

∂ρ̃







V −1
i11 0

0 V −1
i22


 H i




yi − ζi

si − σi


 = 0. (5.1.1)

Here, ρ̃ = (ρT , φ)T , V i11 = D
1/2
i {ζi(β)}P (ρ)D

1/2
i {ζi(β)}, si = vech{(yi −

ζi)(yi−ζi)
T}, σi = E(si) = vech(V i11), H i =diag[jni

−u
(l)
i , vech{(jni

−u
(l)
i )(jni

−
u

(l)
i )T}], where Di(ζi)=diag{a(φ)v(ζi1), . . . , a(φ)v(ζini

)}, U
(l)
i =diag(1−u

(l)
i1 , . . . , 1−

u
(l)
ini

), jni
is an ni× 1 vector of ones, and V −1

i22 is a weight matrix. In particular, V i22

has elements given by the relation cov(sijk, si`m) = σij`σikm + σijmσik` where sijk =

(yij−ζij)(yik−ζik) and σijk = E(sijk) are the elements of si and σi, respectively. The

vech denotes the vector-half function that stacks the columns of a matrix including

only those elements on or below the diagonal. For γ and δ, this combined estimating

equation is

K∑

i=1




∂pT
i

∂γ 0

0
∂τ T

i

∂α







W−1
i11 0

0 W−1
i22







u
(l)
i − pi

ti − τ i


 = 0, (5.1.2)

where W i11 = A
1/2
i {pi(γ)}R(δ)A

1/2
i {pi(γ)}, Ai(pi) = diag{pi1(1−pi1), . . . , pini

(1−
pini

)}, ti = vech{(u(l)
i − pi)(u

(l)
i − pi)

T}, τ i = E(ti) = vech(W i11), and W−1
i22 is a

weight matrix. Similarly, W i22 has elements given by cov(tijk, ti`m) = τij`τikm +

τijmτik`, where tijk = (u
(l)
ij − pij)(u

(l)
ik − pik) and τijk = E(tijk) are from ti and τ i.
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As in Chapter 4, to create the robust approach, we propose to replace (yi − ζi)

by (ψi − ai), where ψi ≡ Ψc(
yi−ζi√
var(yi)

)
√

var(yi), ai = E(ψi) and Ψc is defined as

(4.3.13). Accordingly, we redefine si as follows. si = vech(ψi − ai)(ψi − ai)
T. We can

iteratively compute the E step and S step until convergence. This approach allows

the fit to downweight the outliers. The asymptotic properties of the estimator will

be established using the results of Rosen et al. (2000).

5.2 Identification of Outliers and Leverage Points

Identification of outliers or highly influential data points is an important part of

robust statistical estimation and inference. Checking residuals from a fit is a pop-

ular approach to detect outliers or even leverage points. The residuals from a robust

fit automatically show outliers and should be more reliable than those from a clas-

sical method, for example ML, because in a non-robust estimation method outliers

inflated the residual variance, which makes outlier detection more difficult. Graphical

methods of inspection and more formal outlier detection techniques will be studied

in the future.
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