
MODELLING PRECIPITATION VOLUMES USING A WEIBULL MIXTURE

AND THE GAMMA GENERALIZED LINEAR MODEL

by

Vineet A Vora

(Under the Direction of Lynne Seymour)

Abstract

A novel approach is used to model the distribution of precipitation volumes using Weibull

mixture model and gamma model as a function of Convective Available Potential Energy

(CAPE). Seasonal Weibull mixture model is fit to precipitation volumes to determine the

distributions of convective and stratiform precipitation for Lakewood, Fort Collins and

Boulder, Colorado. This was achieved by implementing Nelder-Mead Algorithm to minimize

the negative log-likelihood. We find that season is a significant factor in determining the

mixture distribution. In addition, seasonal gamma regressions with log link were estimated to

model the precipitation volumes as a function of CAPE and location. The models accurately

predict rainfall/snowfall events with low or medium amount of precipitation in general. The

Fall model also predicts events with high precipitation.
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Introduction

Convection is the movement caused within gases or fluids due to the transfer of heat. The

transfer of heat makes the hotter and less dense material rise and the colder denser material

fall. This process affects the movement in the atmosphere, oceans and even land. In the

atmosphere, hot air rises on convection currents and leads to the formation of winds and

clouds. In the ocean, the convection process keeps the water temperature stable throughout

the ocean. On land, the convection process is the driving force for the movement of tectonic

plates.

Understanding the convection process of the Earth’s atmosphere is of particular impor-

tance to researchers in the field of meteorology and climatology. This thesis first attempts

to identify the proportion of convective rainfall from precipitation volumes for three cities of

Colorado, and then attempts to model the intensity of rainfall volume using the Convective

Available Potential Energy (CAPE) measurements.

Precipitation is any form of water particles that falls from the atmosphere as rain, snow,

sleet and hail. Occasionally, higher levels of precipitation are associated with the formation of

extreme storms. These storms associated with heavy rainfall often lead to severe flooding and

have an adverse affect on the infrastructure, landscape and ecology. Thus numerous studies

have been focused on predicting the severity and occurrences of these extreme events. Precip-

itation can been classified into two basic types based on different cloud dynamics, convective

and stratiform (Gaal et al., 2014). Convective precipitation is marked by convective cloud

formations, that is vertical cloud development (cumulus congestus and cumulonimbus). Con-

vective precipitation is mostly in the form of large intensity rainfall accompanied by thun-

derstorm. Sometimes, the precipitation in clouds condense very fast leading to the formation

of hailstorm (Houze Jr, 2014).
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Stratiform precipitation has extensive horizontal development and is from nimbostratus

clouds. Nimbostratus clouds are produced by widespread (large area) vertical air movement

carrying precipitation elements. These vertical air draft are relatively small and allows the

precipitation elements normally to grow to the size of raindrops and snowflakes and are

relatively uniform in intensity(i.e steady rain) (Qi et al., 2013).

Colorado is a state with a diverse landscape where most of it is made up of mountains,

foothills and desert land. Due to the combination of mountains and the surrounding valleys,

extreme weather changes including thunderstorms are quite common. Some of these extreme

storms bring about catastrophic damage to infrastructure and society as seem with the

Colorado flooding in September 2013. These storms are a result of convective rainfall and

thus, a lot of research is done to predict the occurrence of convective rainfall, in an attempt to

identify future severe storms. Rulfová and Kyselỳ (2014) examines trends in characteristics

of convective and stratiform precipitation in the Czech Republic over 1982-2010. They found

that in Spring and Summer, the observed increase in total precipitation are mainly due to

increases in convective precipitation.

A collection of daily precipitation measurements from the Community Collaborative

Rain, Hail and Snow (CoCoRaHS) network for Boulder, Fort Collins, and Lakewood, Col-

orado, from January 1,2005 through December 31,2014 were used by Kriebel (2016) to esti-

mate precipitation volumes for these cities. The precipitation volumes were computed only

for the days when all weather stations in a city recorded rainfall. Thereby we have a total

of 601, 416 and 629 observations of precipitation volumes from Boulder, Fort Collins, and

Lakewood respectively.

Convective Available Potential Energy (CAPE) is the maximum buoyancy of an undiluted

air parcel (a block of air), related to the potential updraft strength of thunderstorms.That

is, it measures the amount of precipitation present in a parcel of air. The higher the CAPE

(precipitation present in the air parcel) the higher the chances of a thunderstorm, thereby

leading to convective rainfall. A weather balloon is launched at KDNR facility in Denver



3

Colorado, which records the CAPE measurements. CAPE values are measured in Joules per

kilogram (J/kg). To put it in perspective, when the CAPE value is less than 1000 J/kg, it is

“weakly convective”, for CAPE values from 1000 to 2500 J/kg it is “moderately convective”

and with more than 3000 J/kg, it is “highly convective” which leads to tornado and damaging

thunderstorm. The weather balloon measure three different types of CAPE:

1. Surface Based CAPE (SBCAPE) uses the surface air and dewpoint temperatures to

determine the convection in the parcel of air.

2. Mixed Layer (MLCAPE) is calculated by averaging temperature and moisture variables

in the lowest 100 mb (millibars) of atmospheric pressure.

3. Most Unstable CAPE (MUCAPE) is the parcel trajectory that produces the largest

value of CAPE. To measure this value, a parcel is lifted from the large number of

pressure surfaces and the trajectory that produces the maximum amount of J/kg is

the MUCAPE.

Figure 1.1: Histogram of Precipitation volumes by Season
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The weather balloon released from the official weather station in Denver (KDNR) records

the measurements of all three CAPE types twice a day at 00 AM (midnight) and 12

PM(afternoon) Greenwich Mean Time (GMT). This means that 00 AM and 12 PM weather

balloon launch on 5/15/2017 was actually launched around 6∼7 PM (based on daylight

saving) on 5/14/2017 and 6∼7 AM on 5/15/2017 respectively. Thus we have a total of 6

readings per day SBCAPE0, MLCAPE0 and MUCAPE0 measurements taken at 6∼7 PM

and SBCAPE12, MLCAPE12 and MUCAPE12 measurements taken at 6∼7 AM. It is jus-

tifiable to use one set of CAPE measurements for all three locations, as Lakewood, Fort

Collins and Boulder are within 60 mile radius of KDNR.

Figure 1.1 provides the histogram for the precipitation volumes from the three cities. All

three histograms are skewed right with high density of values being close to 0. Furthermore,

there are large outliers to the right for each histogram. These huge precipitation volumes

are from September, 2013 when Colorado experienced historical rainfall with widespread

flooding.

Figure 1.2 displays the seasonal precipitation volume for each city. The two highest

observed volumes with more than 10 billion liters for Boulder Fall season are from Sept

2013 floods. Figure 1.3 displays the seasonal precipitation volumes for each city without the

Sept 2013 flood volumes. Winter volumes are the lowest with the least amount of variability.

Spring and Fall volumes have the highest variability of precipitation volumes. In terms

of cities’ precipitation volumes, Fort Collins is generally lower followed by Boulder and

Lakewood with the highest variability. Thus it can be seen that seasonal and location effects

are significant for precipitation volumes.

Similar to precipitation volume, all the six CAPE measurements are right skewed with

most of the values less than 100 which is seen from Figure 5.39 and 5.40. We explore fur-

ther by looking at the boxplots of each CAPE by season in Figures 1.4,1.5 and 1.6. The

CAPE values differ a lot between seasons. Lowest amount of convection is present in CAPE

during Winter season, followed by Fall, Spring and lastly Summer. Summer is highly volatile
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Figure 1.2: Boxplot of Precipitation volume by Season and Location

Figure 1.3: Boxplot of Volume by Season and Location excluding Colorado Flood,2013
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Figure 1.4: Boxplot of SBCAPE by Season

and has the highest amount of convection present in the parcel of air of all seasons. Another

thing of importance is that CAPE0 measurements are higher than their counterpart CAPE12

measurements for all three seasons. The rationale for this difference is that, CAPE0 measure-

ments are recorded at evening time after the atmosphere has been heated all day whereas

CAPE12 measurements are recorded in morning, when the atmosphere has been cooling all

night. This indicates that there is a higher chance of thunderstorms and convective rainfall

to occur at night times compared to day time.
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Figure 1.5: Boxplot of MLCAPE by Season

Figure 1.6: Boxplot of MUCAPE by Season



Binary Mixture Methods

2.1 Method

The goal of this research is to model the distribution of precipitation volume that results

from convection. We are particularly interested in the likelihood that a large volume of pre-

cipitation will be released during a storm which can lead to catastrophic damage to the

infrastructure. We know that precipitation volumes are classified into two namely convective

rainfall and stratiform rainfall. Thus we decided to fit a mixture distribution for precipita-

tion volume comprised of two distributions. The precipitation volumes are positive and right

skewed. For the distribution of the components we have decided to use the flexible and ver-

satile Weibull distribution which can take on characteristics and shape of other distributions

based on the value of its shape parameter.

fj(x|θj) =
αj
βj

(
x

βj

)αj−1

e(x/βj)
αj

αj, βj > 0 (2.1)

where αj is the shape parameter of the Weibull distribution. When the α is 1, it becomes an

exponential distribution and when α is 3, it becomes a normal distribution. This can be seen

in Figure 2.7. βj is the scale parameter which determines the variability in the distribution.

A mixture distribution is defined as a weighted sum of component distributions:

f(x|θ) =
m∑
j=1

pjfj(x|θj) (2.2)

where the parameter θ = (p1,...,pj, θ1,...,θj) are such that pj > 0 for j = 1, ...,m and∑m
j=1 pj = 1. Constant pj is called a weight and fj is the component density function. In one

set of our analyses, in which we categorize precipitation into “convective” and “stratiform”,

8
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Figure 2.7: Weibull Density Plot with α = 1 & α = 3

j = 1, 2. Thus the distribution used to model precipitation volume is:

f(x|θ) = p1 ∗ f1(x|θ1) + (1− p1) ∗ f2(x|θ2) (2.3)

which is

f(x|θ) = p1
α1

β1

(
x

β1

)α1−1

e(x/β1)
α1 + (1− p1)

α2

β2

(
x

β2

)α2−1

e(x/β2)
α2 (2.4)

where θ = (p1, α1, β1, α2, β2)

In order to estimate the parameters of the convective rainfall we try to maximize the

likelihood of the precipitation volumes. This is achieved by finding the parameter values θ

using an optimization technique, to maximize the probability or likelihood of getting the

data we observed. The likelihood of the mixture model is:

L(θ/x) =
n∏
i=1

[
p1
α1

β1

(
x

β1

)α1−1

e(x/β1)
α1 + (1− p1)

α2

β2

(
x

β2

)α2−1

e(x/β2)
α2

]
(2.5)

The log likelihood is:
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l(θ/x) =
n∑
i=1

log[(p1)
α1

β1

(
x

β1

)α1−1

e(x/β1)
α1 + (1− p1)

α2

β2

(
x

β2

)α2−1

e(x/β2)
α2 ] (2.6)

To find the parameters θ we use the fminsearch function in MatLab which uses the

Nelder Mead optimization algorithm to minimize the log likelihood.

2.1.1 Nelder Mead Algorithm

The Nelder-Mead algorithm provides a means of minimizing an objective function of dimen-

sion n. The algorithm iterates on a simplex, a geometric figure in n dimensions that is the

convex hull of a n + 1 vertices. In a 2 dimensional plane, the simplex consists of 3 points

forming a triangle, and in 3 dimensions the simplexs consist of 4 points forming a tetrahe-

dron. It specifies a sequence of steps for iteratively updating the worst point in the simplex

in order to converge to the smallest value of the object function (Gavin, 2013). Wright (2012)

shows the different ways a new point on a simplex is generated on R2.

Figure 2.8: Nelder Mead Algorithm different ways to generate new point

The steps for a single iteration of Nelder Mead Algorithm (Byatt, 2000) are as follows.
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1. Create an initial simplex in Rn. The initial estimate is used as one of the vertices of

the simplex. The n remaining vertices of the simplex are found by perturbing each of

the coordinates of the initial guess. The perturbation used is:

(a) If the coordination is non-zero then set the perturbated coordinate to 105% of its

current value; else

(b) If the coordinate is zero then set the perturbed coordinate to 0.00025.

2. Evaluate the objective function at each of the n+ 1 vertices of the simplex.

3. Order the vertices v0, v1, , vn of the current simplex so that

f(v0) ≤ f(v1) ≤ ... ≤ f(vn)

4. Calculate the reflect point, xr of the worst performing vertices vn.

5. Accept the reflect point if f(v0) ≤ f(xr) ≤ f(v(n−1)).

6. If f(xr) < f(v0), then calculate the expansion point.

7. If f(xr) ≥ f(v(n−1)) then perform a contraction:

(a) If f(v(n−1)) ≤ f(xr) ≤ f(vn) then contract outside; else

(b) If f(vn) ≤ f(xr) then contract inside.

By iterating this process several times, the Nelder-Mead algorithm finds the parame-

ters that minimize the negative likelihood. A custom MatLab code is written to find the

parameters for the mixture distribution of precipitation volume for each location and season

combination. Kolmogorov-Smrinov goodness of fit test was implemented to check if the final

distributionv fit the precipitation volume data well.

2.2 Data Analysis

The parameters of Weibull mixture are estimated for precipitation volumes for each combi-

nation of location and season. We first look at the Spring season as it has the most number of
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observations in all the 3 locations. Figure 2.9 shows the Weibull mixture model for Lakewood

Spring season. The top plot in Figure 2.9 shows the histogram of precipitation volume in

blue while the red and green lines are the estimated Weibull distributions of stratiform rain-

fall and convective rainfall respectively. The red distribution shows that most of the rainfall

with less than 1 billion liters comes from stratiform rainfall. Rainfalls with volumes larger

than 1 billion liters all come from convective rainfall. Generally, rainfall with thunderstorms

(convective rainfall) leads to longer duration heavy downpours and occasionally it leads to

a short duration quick downpour. These occurrences have been captured perfectly by the

Weibull distribution of precipitation data.

Figure 2.9: Lakewood Spring Mixture model for Precipitation Volumes

The bottom left plot in Figure 2.9 shows the overall fit of the mixture precipitation data.

It can be seen that the Weibull mixture fits the data accurately except it underestimates

volume at 2.5 billion litres. The bottom right plot shows the proportion of stratiform and

convective rainfall for a given rainfall volume. For a rainfall of less than 670 million liters
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the odds of it being a stratiform rainfall are higher than convective rainfall and for a rainfall

of more than 670 million liters the odds of it being a convective rainfall are higher than

stratiform rainfall.

In order to test the goodness of fit of the mixture distribution, the Kolmogorov-Smirnov

(KS) test is implemented. Since no weather stations keep records for a rainfall being convec-

tive or stratiform, we use the average MLCAPE (Mixed Layer Convective Available Potential

Energy) measurement obtained as described in the introduction. MLCAPE measurements

tells us if there is any precipitation found in a parcel of air. If the MLCAPE value is 0, then

there is no precipitation present in the air. When the MLCAPE value is more than 3000

tornadoes are likely. To check the goodness of fit, we have used the most stringent constraint,

MLCAPE values of more than 0 as convective vs MLCAPE values of 0 as stratiform rainfall.

Figure 2.10: Kolmogorov Smirnov Test for Lakewood Spring Mixture
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The null hypothesis for the KS test states that the distributions of MLCAPE measure-

ments and the Weibull mixture model are the same versus the alternate hypothesis that the

two distributions are different. The left plot on Figure 2.10 shows the KS test for Lakewood

Spring season. The blue line is the hypothesized model derived from MLCAPE and red dotted

line is the estimated Weibull mixture model. The two distribution lines are almost similar

with the highest distance between the two lines at KS test value of 0.0526. The p-value is

computed by building a sampling distribution of KS test statistic using exact (permutation)

test. The right graph of Figure 2.10 shows the sampling distribution of KS statistic, which are

computed by randomly assigning the observations to convective precipitation and stratified

precipitation distributions without replacement. The red star is the original KS test statistic

computed from the MLCAPE data. Since all of the sampling distributions KS statistics

exceeds the red star, we obtain a p-value of 1.00. Therefore, we can conclude that the two

distributions are not different from each other. Thus, mixture model correctly estimates the

distribution of convective precipitation and stratiform precipitation.

Similar are obtained using the Weibull mixture model for all the other combination of

location and season as seen in Figure 2.11 to Figure 2.32. Based on these Figures, one

can see that Fort Collins has the highest proportion of convective precipitation compared to

other locations. Lakewood and Boulder have similar precipitation proportions for all seasons.

The most important finding of this exercise is that the seasonal effects are similarly for all

locations. For Winter seasons one expects the number of precipitation events to be lowest of

all seasons, as the air is cold and cannot contain much water vapor. This pattern is captured

by the Weibull mixture models and can be seen in Figures 2.11, 2.17 and 2.25. The highest

proportion of convective precipitation is observed during the Spring season. The proportion

of convective precipitation for Summer and Fall season is similar.



15

Figure 2.11: Lakewood Winter Mixture model for Precipitation Volumes

Figure 2.12: Kolmogorov Smirnov Test for Lakewood Winter Mixture
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Figure 2.13: Lakewood Summer Mixture model for Precipitation Volumes

Figure 2.14: Kolmogorov Smirnov Test for Lakewood Summer Mixture
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Figure 2.15: Lakewood Fall Mixture model for Precipitation Volumes

Figure 2.16: Kolmogorov Smirnov Test for Lakewood Fall Mixture



18

Figure 2.17: Fort Collins Winter Mixture model for Precipitation Volumes

Figure 2.18: Kolmogorov Smirnov Test for Fort Collins Winter Mixture
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Figure 2.19: Fort Collins Spring Mixture model for Precipitation Volumes

Figure 2.20: Kolmogorov Smirnov Test for Fort Collins Spring Mixture
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Figure 2.21: Fort Collins Summer Mixture model for Precipitation Volumes

Figure 2.22: Kolmogorov Smirnov Test for Fort Collins Summer Mixture
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Figure 2.23: Fort Collins Fall Mixture model for Precipitation Volumes

Figure 2.24: Kolmogorov Smirnov Test for Fort Collins Fall Mixture
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Figure 2.25: Boulder Winter Mixture model for Precipitation Volumes

Figure 2.26: Kolmogorov Smirnov Test for Boulder Winter Mixture
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Figure 2.27: Boulder Spring Mixture model for Precipitation Volumes

Figure 2.28: Kolmogorov Smirnov Test for Boulder Spring Mixture
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Figure 2.29: Boulder Summer Mixture model for Precipitation Volumes

Figure 2.30: Kolmogorov Smirnov Test for Boulder Summer Mixture



25

Figure 2.31: Boulder Fall Mixture model for Precipitation Volumes

Figure 2.32: Kolmogorov Smirnov Test for Boulder Fall Mixture
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Table 2.1 provides the minimized negative log likelihood, estimated convective and strat-

iform precipitation parameters. Table 2.2 provides with the stringent observed MLCAPE

parameters, KS test statistic and the p-values. As mentioned earlier, Weibull mixtures of

precipitation volumes behave similarly by seasons. This can be seen by looking at the range

of proportions of convective precipitation (the parameter p). In Winter the proportion of

convective precipitation ranges from 0.178 to 0.30 which is the lowest of all seasons. This is

followed by Summer where proportions are 0.3091, 0.3453 and 0.6397 for Boulder, Lakewood

and Fort Collins respectively. This means that there is a larger proportion of convective

precipitation in Summer at Fort Collins. This is followed by Fall where proportions range

from 0.427 to 0.598, with the higher proportion of convective precipitation of 0.598 observed

in Fort Collins. Spring has the highest proportion of convective precipitation of all seasons

with 0.4435, 0.6468 and 0.7278 in Lakewood, Boulder and Fort Collins respectively, thereby

the likelihood of experiencing extreme storms is the highest in Spring.

The shape parameter for the convective precipitation in Winter for all three regions is

around 1.1 to 1.2, along with the scale parameter ranging from 80 to 100, which is the lowest

of all seasons indicating that there is less variability or extreme values/storms during Winter.

The highest scale parameter is found in Fall season ranging from 122 to 134 indicating that

there are more extreme values during this season, e.g. the extreme precipitation volume in

liters from Colorado flooding in September 2013. One can see that Lakewood and Boulder

have similar precipitation volume mixture distributions for all seasons.
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Table 2.1: Parameter estimates for Weibull Mixture Distribution for Precipitation Volumes

Model Sample (-Log BIC Convective Stratiform Proportion of
Size Likelihood) Precipitation Precipitation Convective Precipitation

Winter
Lakewood 128 591.663 1207.587 β=80.78, β=28.323, p = .2959

α = 1.12, α = 1.6
Fort Collins 77 358.288 740.835 β=97.38, β=33.05, p = .2271

α = 1.13, α = 1.76
Boulder 129 599.631 1223.523 β=97.08, β=30.95, p = .1779

α = 1.21, α = 1.27
Spring
Lakewood 192 1001.067 2026.394 β=127.75, β=35.84, p = .4435

α = 1.36, α = 1.44
Fort Collins 124 663.872 1352.004 β=119.00, β=20.32, p = .7278

α = 1.311, α = 2.81
Boulder 180 943.012 1910.284 β=108.44, β=25.47, p = .6468

α = 1.33, α = 1.82
Summer
Lakewood 175 895.977 1816.214 β=136.48, β=34.76, p = .3453

α = 1.23, α = 1.33
Fort Collins 123 648.411 1321.082 β=114.49, β=22.46, p = .6397

α = 1.17, α = 2.36
Boulder 168 823.164 1670.588 β=116.80, β=31.50, p = .3091

α = 1.32, α = 1.50
Fall
Lakewood 134 677.122 1378.504 β=121.74, β=27.199, p = .4266

α = 1.35, α = 1.55
Fort Collins 92 494.855 1013.97 β=131.75, β=34.95, p = .5977

α = 1.39, α = 1.89
Boulder 124 633.226 1290.712 β=133.86, β=22.53, p = .4597

α = .85, α = 1.77
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Table 2.2: Parameter estimates for MLCAPE Weibull Distribution and Goodness of Fit Test

Model MLCAPE Parameters KSSTAT p-value

Winter
Lakewood β1=57.432, α1 = 1.002, 0.0688 1.00

p = .0781,
β2=40.524,α2 = 1.109

Fort Collins β1=46.07, α1 = 1.134, 0.0921 1.00
p = .0909,
β2=40.24,α2 = .82

Boulder β1=48.31, α1 = .85, 0.0394 1.00
p = .0775,
β2=439.57,α2 = 1.06

Spring
Lakewood β1=71.17, α1 = 1.06, 0.0526 1.00

p = .5,
β2=70.20,α2 = 1.002

Fort Collins β1=82.32, α1 = 1.094, 0.0868 1.00
p = .4839,
β2=90.13,α2 = 1.006

Boulder β1=71.22, α1 = 1.082, 0.0615 1.00
p = .5278,
β2=77.37,α2 = 1.04

Summer
Lakewood β1=62.145, α1 = 1.226, 0.0623 1.00

p = .126,
β2=63.01,α2 = .959

Fort Collins β1=60.68, α1 = 2.188, 0.101 1.00
p = .0989,
β2=77.96,α2 = .94

Boulder β1=54.72, α1 = 1.39, 0.0743 1.00
p = .1012,
β2=52.84,α2 = .99

Fall
Lakewood β1=50.820, α1 = 1.007, 0.0758 1.00

p = .4553,
β2=69.0465,α2 = .9553

Fort Collins β1=94.03, α1 = 1.095, 0.0666 1.00
p = .6304,
β2=77.06,α2 =1.15

Boulder β1=77.12, α1 = .72, 0.1251 1.00
p = .5565,
β2=45.53,α2 =.89



Gamma Models for Precipitation as a Function of CAPE

3.1 Methodology

The present goal is to accurately predict the intensity of precipitation volume as a function

of CAPE’. Precipitation volumes are positive and right skewed with extreme events. Thus

we use gamma regression, a special case of generalized linear model (GLM) family. Gamma

regression is generally used for positive skewed data and is used extensively in the area of

quality control, insurance, weather extremes and clinical trials.

The general form of gamma regression is

y = β0 + βix+ σz

µ = E(y) = β0 + βix (3.7)

where the errors z follows the gamma distribution. The gamma distribution is

f(y) =
1

δαΓ(α)
yα−1ey/δ α, δ > 0 (3.8)

and

E(y)= αδ = µ V ar(y) = αδ2 = µ2/δ

where α is the shape parameter and δ is the scale parameter. There are several special cases

of gamma distributions; for example, when α = 1 it is an exponential distribution and when

α → ∞ it is a normal distribution. In order to treat gamma as a part of a generalized

linear model, we assume that α is known. Thus the parameter of interest is the scale, δ. The

exponential form of a gamma distribution is

29
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f(y) = exp{−yi/δ + (α− 1)ln(yi)− ln(δα)− ln(Γ(α))} (3.9)

where the canonical parameter: θ = −1/δ and the dispersion parameter: φ = 1/α. Since we

need µ > 0 and θ < 0 which gives restriction on δ. Thus the identity canonical link is not

often used and the most common choices are log and inverse link.The use of inverse link can

sometimes provide negative fitted values. As a result gamma glm with log link is used to

predict precipitation volume. The form of gamma regression with log link is

log(µ) = log(E(y)) = β0 + βix

or

µ = ŷ = exp(β0 + βix)

(3.10)

To check the goodness of fit of gamma regression, the residual deviance test is imple-

mented. The null hypothesis states that the model fits the data well, against the alternative

that the model does not fit the data. The test statistic is computed as:

D = 2
∑
i

[−log(y/µ̂) + (y − µ̂)/µ̂]/φ (3.11)

where D is the scaled deviance statistic, which is asymptotically distributed as χ2 given

that the model is correct. Thus p-value for the test statistics is obtained by using the χ2

distribution.

3.2 Data Analysis

Before fitting the gamma log link regression model,we look at the correlation between vari-

ables. From Table 3.3 one can see that there appear to be no correlation between day and

night time CAPE measurements. All of CAPE0’s variables are highly correlated with each

other and the same is true for CAPE12’s. This can be explained as all the CAPE0 and

CAPE12 precipitation measurements are recorded at the same time of 6-7 PM and 6-7 AM

respectively. As a result one can conclude that multicollinearity might be an issue in our

dataset.
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Table 3.3: Correlation Matrix of Precipitation Volumes and CAPE’s

Volume SBCAPE0 MUCAPE0 MLCAPE0 SBCAPE12 MUCAPE12 MLCAPE12
Volume 1 0.08 0.06 0.05 0.07 0.05 0.04
SBCAPE0 0.08 1 0.86 0.76 0.4 0.48 0.38
MUCAPE0 0.06 0.86 1 0.76 0.34 0.4 0.33
MLCAPE0 0.05 0.76 0.76 1 0.3 0.36 0.33
SBCAPE12 0.07 0.4 0.34 0.3 1 0.77 0.56
MUCAPE12 0.05 0.48 0.4 0.36 0.77 1 0.75
MLCAPE12 0.04 0.38 0.33 0.33 0.56 0.75 1

3.2.1 Gamma Regression for Precipitation Volume for All Seasons

A gamma regression with log link is fitted to precipitation volumes as a function of CAPE’,

location and season. The best fit model is selected based on both Akaike Information Cri-

terion (AIC) and p-value for each coefficient, and results are presented in Table 3.4. In this

model, surface based convective precipitation measurements for day and night along with

season and location are significant predictors for precipitation volumes. The positive coeffi-

cients on SBCAPE0 and SBCAPE12 indicate that surface based potential energy is positively

associated with volume. Relative to Winter, the remaining three seasons have higher pre-

cipitation. Also, Boulder and Fort Collins are more likely to have higher precipitation than

Lakewood. The model is of the form

̂Precipitation = exp(3.6637 + 0.0001 ∗ SBCAPE0 + 0.0003 ∗ SBCAPE12

+ 0.5852 ∗ Spring + 0.2915 ∗ Summer + 0.5237 ∗ Fall

+ .0067 ∗ Boulder + .2009 ∗ Fort Collins).

(3.12)

Figure 3.33 shows the observed vs fitted plot of the best fit model for all seasons. The

predicted volumes appear to be on a flat line with little variability and fails to capture

extreme events. This might be due to the fact that season is a significant factor with a lot

of heterogeneity. Therefore, there is a need to fit the precipitation volume model by season.
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Table 3.4: Regression Estimates for Best Fit Model of Precipitation, All Seasons

Variable Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.6637 0.0822 44.56 0.0000
SBCAPE0 0.0001 0.0001 1.69 0.0907

SBCAPE12 0.0003 0.0001 1.90 0.0571
Spring 0.5852 0.0924 6.34 0.0000

Summer 0.2915 0.1038 2.81 0.0050
Fall 0.5237 0.0993 5.28 0.0000

Boulder 0.0067 0.0723 0.09 0.9259
Fort Collins 0.2009 0.0802 2.50 0.0124

Figure 3.33: Diagnostic Plots for Best Fit Model, All Seasons

Table 3.5 shows the observation counts across season and location. Winter has the lowest

number of observations for precipitation while Spring has the highest number of observations.

A deviance goodness of fit test is performed to check the validity of the model. The null

hypothesis states that the model fits the data well, and the alternative hypothesis states

that the model is lack of fit. The test statistic is derived by comparing the scaled residual

deviance with its degrees of freedom. The p-value of deviance goodness of fit test ≈ 1.00,
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Table 3.5: Observations across Season and Location

Lw Bo Fc Total
Winter 113 114 65 292
Spring 185 173 120 478
Summer 168 164 118 450
Fall 128 118 90 336

thereby, we fail to reject the null hypothesis and concluding that the model shows no lack of

fit.

3.2.2 Gamma Regression for Winter Precipitation Volume

A gamma log link regression is fitted to precipitation volumes for Winter season as seen

in Equation 3.13. Only the mixed layer precipitation measurement from the morning

(MLCAPE12) is significant. The coefficient of MLCAPE12 is -0.03982, indicating that

an increase in MLCAPE12 leads to a decrease in expected Winter precipitation. This is

unexpected as precipitation volumes should increase with the rise in CAPE values.

̂WinterPrecipitation = exp (3.7188− 0.03982 ∗MLCAPE12) (3.13)

We further examine the observed vs fitted plot in Figure 3.34. The left plot shows the

observed vs fitted plot for Winter precipitation as a function of MLCAPE12. From the plot,

it is seen that all the spikes are downward facing, that is MLCAPE12 only predict low

precipitation. To make sure that the same downward pattern is not observed elsewhere, we

fit a new regression model for Winter Precipitation as a function of SBCAPE12 (highly

correlated with MLCAPE12), and the right plot shows the observed vs fitted plot for this

model. The spikes are upward facing which means SBCAPE12 predicts high volumes well.

SBCAPE, MUCAPE and MLCAPE provide us with precipitation measurements in a parcel

at different altitudes in atmosphere at a given time. Hence, a function of all these CAPE’
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Figure 3.34: Observed vs Fitted Plot for Winter Precipitation

combined together can help accurately measure the precipitation. Therefore even though the

CAPE12 variables are highly correlated and some of them are insignificant, we include them

in our final model.The same is true for modeling precipitation for other seasons. If only one

of the CAPE variable is significant, then we include remaining CAPE values recorded at the

same time in the model.

From the output of Table 3.6, it is seen that none of the p-values are significant, this is

likely due to multicollinearity. The observed vs the fitted plot in Figure 3.35 shows spikes in

both direction with the predicted values closer to the y intercept line of e3.6972 = 40 (10 million

liters). For the Winter season, the precipitation volumes are the lowest with rare extreme

storm events. Thus, the model is a good fit as it predicts most of low volume precipitation

compared to high precipitation volumes. The dispersion parameter for the model is 1.545,

along with residual deviance of 265.55. Therefore, the deviance goodness of fit test statistic

is 265.55/1.545 = 171.89 with a corresponding p-value of ≈ 1. Thereby, we fail to reject the

null hypothesis and conclude that the model shows no lack of fit.
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̂WinterPrecipitation = exp(3.6972 + 0.0417 ∗ SBCAPE12 + 0.0054 ∗MUCAPE12

− 0.0612 ∗MLCAPE12)

(3.14)

Table 3.6: Regression Estimates for Best Fit Model of Winter Precipitation

Variable Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.6972 0.0756 48.87 0.0000
SBCAPE12 0.0417 0.0444 0.94 0.3485
MUCAPE12 0.0054 0.0111 0.48 0.6298
MLCAPE12 -0.0612 0.0453 -1.35 0.1778

Figure 3.35: Diagnostic Plots for Winter Precipitation Model

3.2.3 Gamma Regression for Spring Precipitation Volume

A gamma regression with log link is fitted to the Spring precipitation volumes. The best fit

model is a function of surface based CAPE measured at evening time and most unstable

CAPE’ measured at morning and evening times, as seen in Equation 3.15.
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̂SpringPrecipitation = exp(4.3465 + 0.0001 ∗ SBCAPE0− 0.0011 ∗MUCAPE0

+ 0.0003 ∗MUCAPE12)

(3.15)

Table 3.7: Regression Estimates for Best Fit Model of Spring Precipitation

Variable Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3465 0.0531 81.89 0.0000
SBCAPE0 0.0009 0.0004 2.59 0.0098
MUCAPE0 -0.0011 0.0003 -3.17 0.0016
MUCAPE12 0.0003 0.0002 1.51 0.1309

From Table 3.7, we can see that variables SBCAPE0 and MUCAPE0 are significant

predictors of precipitation in Spring. Although MUCAPE12 is not significant, we still retain

it in the model because it gives us the lowest AIC value, compared with that from the model

without this variable. Besides, precipitation volume in Spring is highly volatile due to the

many extreme storm events, therefore, it is reasonable to include most unstable potential

energy readings (MUCAPE) in our final model. We also perform the deviance test and

find the test statistic is 461.3258 with a p-value of 0.6531. Thus, we fail to reject our null

hypothesis that the sample data is from a Gamma distribution.

Figure 3.36: Diagnostic Plots for Spring Precipitation Model
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Figure 3.36 presents the observed versus fitted plot for the Spring precipitation model.

We can see from the scatter plot that our model correctly predicts the precipitation volumes

when there is only light rainfall/snowfall. However, when there is heavy rain/snow or even

catastrophic floods, our model does not forecast the precipitation volume well, which is

indicated by the significant distance between the extreme values and the upper spikes.

3.2.4 Gamma Regression for Summer Precipitation Volume

A gamma log link regression model is fitted to Summer precipitation volumes. From Table

3.8, we can see that none of the variables are significant and the parameter estimates are

tiny. A backward selection process was implemented and we find that the model with only

location factor was the best according to AIC. Table 3.9 displays the gamma regression

coefficients of the Summer precipitation model where only location is included. This means

that the rainfall volumes in Summer only depend on location of city, which is inadequate.

Upon further inspection of the Summer precipitation distribution in Figures 1.4 to 1.6 as

shown in the Introduction, we see that Summer volumes for all CAPE’ are right skewed

with the highest variability across all seasons. Hence, there is a need to transform the CAPE

values to better fit the Summer precipitation volumes.

A log transformation is applied to the CAPE values in order to account for the skewness

and high variability. We reestimate the model with the transformed variables and present

the results from the best fit model in Table 3.10. Before examining individual estimates, we

should inspect the overall fit of the model. A deviance test of the model gives a p-value of

0.9746, indicating there is no lack of fit, and the analysis of deviance table also shows the

variables included in Table 3.10 are overall significant predictors of Summer precipitation.

Mixed layer convective available potential energy in the night (MLCAPE0) is significantly

and negatively associated with Summer precipitation at 1% level, whereas surface-based

potential energy in the morning (SBCAPE12) is positively related to precipitation volume

in Summer. Besides, we find significant difference in the rainfall volume in Summer across
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city. On average, Fort Collins has a higher level of precipitation in Summer holding everything

else constant. Precipitation in Boudler, however, is not significantly different from that in

Lakewood.

Table 3.8: Regression Estimates for Full Model of Summer Precipitation

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1135 0.1096 37.53 0.0000
SBCAPE0 -0.0000 0.0001 -0.01 0.9952
MUCAPE0 0.0001 0.0001 0.50 0.6139
MLCAPE0 -0.0001 0.0002 -0.26 0.7934
SBCAPE12 -0.0002 0.0002 -0.65 0.5143
MUCAPE12 -0.0000 0.0002 -0.04 0.9652
MLCAPE12 0.0001 0.0004 0.35 0.7238
Boulder -0.1763 0.1299 -1.36 0.1755
FortCollins 0.2247 0.1423 1.58 0.1151

Table 3.9: Regression Estimates of Summer Precipitation Model by Location

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1293 0.0900 45.90 0.0000

Boulder -0.1737 0.1280 -1.36 0.1755
FortCollins 0.2293 0.1401 1.64 0.1023

̂SummerPrecipitation = exp(4.172− 0.1638 ∗ Boulder + 0.2559 ∗ FortCollins

− 0.0622 ∗ log(MLCAPE0) + .0574 ∗ log(SBCAPE12)

(3.16)

Table 3.10: Regression Estimates for Best Fit Model of Summer Precipitation

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1720 0.0960 43.48 0.0000
log(MLCAPE0) -0.0622 0.0156 -3.98 0.0001
log(SBCAPE12) 0.0574 0.0143 4.02 0.0001
Boulder -0.1638 0.1172 -1.40 0.1629
FortCollins 0.2559 0.1282 2.00 0.0466

Similar to that for Winter and Spring, we also present the observed-fitted plot from

model (3.16) in Figure 3.37. Since a large proportion of the observations have low precipita-

tion volume, the scatter plot is concentrated on the lower part of the graph vertically. The

red, green and blue lines are the predicted volume from the model fitted with Gamma distri-

bution for Lakewood, Fort Collins and Boulder, respectively. We can see that they correctly

predict both light and medium rainfall as the spikes extend both to the bottom and top
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of the fitted line. One important difference to note is that Fort Collins have a higher mean

predicted rainfall volumes. The average predicted rainfall volumes in Summer for Lakewood

and Boulder are close to each other. This is consistent with the results shown in Table 3.10.

Figure 3.37: Observed vs Fitted Plot for Summer Precipitation Model

3.2.5 Gamma Regression for Fall Precipitation Volume

A gamma log link regression model is fit to Fall precipitation volumes. From Table 3.11, we

can see that all variables are included in the best fit model with the exception of MLCAPE0.

The variables of best fit model are all significant with a p-value of less than 5%. The surface

based potential energy (SBCAPE) measurements recorded both in daytime and nighttime

are positively associated with the Fall precipitation, whereas, the most unstable potential

energy (MUCAPE) measurements for day and night are negatively associated with Fall

precipitation. Also, we find significant difference in the rainfall volume across cities. Boulder

and Lakewood have similar precipitation levels, however, Fort Collins is significantly different

from the other two locations and has a higher level of precipitation in Fall. The deviance

test is conducted to check the overall fit of the model. The deviance test statistic of 270.53
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is obtained with a corresponding p-value of .99. Thereby, we can conclude that there is no

lack of fit.

̂FallPrecipitation = exp(3.9901 + 0.0013 ∗ SBCAPE0− 0.0006 ∗MUCAPE0

+ 0.0025 ∗ SBCAPE12− 0.0027 ∗MUCAPE12

+ 0.0052 ∗MLCAPE12 + 0.0700 ∗ Boulder

+ 0.3431 ∗ Fort Collins)

(3.17)

Table 3.11: Regression Estimates for Best Fit Model of Fall Precipitation

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.9901 0.1035 38.54 0.0000
SBCAPE0 0.0013 0.0003 3.93 0.0001

MUCAPE0 -0.0006 0.0002 -2.74 0.0064
SBCAPE12 0.0025 0.0010 2.55 0.0112

MUCAPE12 -0.0027 0.0008 -3.44 0.0007
MLCAPE12 0.0052 0.0023 2.29 0.0228

Boulder 0.0700 0.1439 0.49 0.6270
FortCollins 0.3431 0.1560 2.20 0.0286

Figure 3.38: Observed vs Fitted Plot for Fall Precipitation Model

Figure 3.38 presents the observed vs fitted plot of Fall precipitation for the three cities.

Different from the previous models, we find that model 3.17 fits the data well for all types
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of rainfall including extreme volumes, and this is true for all locations. The highest two

observations in the plot for Boulder are from the Colorado flooding in September, 2013.

The flooding precipitation volumes are at least three times that of other events on average.

As a result, the model has not accurately predicted this event yet. However, the plots for

Lakewood and Fort Collins, show that the model predicts the Fall precipitation well. In

addition, we find that Fort Collins has the highest mean predicted precipitation volumes,

followed by Boulder and Lakewood.



Conclusion

In this study, we examine the seasonal precipitation patterns in Lakewood, Fort Collins,

and Boulder, Colorado. We first classify precipitation volumes into two categories, namely

convective and stratiform precipitation. This was achieved by fitting a versatile Weibull

mixture distribution for each location-season combination. Afterwards, Kolmogorov-Smirnov

Test was implemented to check the goodness of fit of these mixture models. The Weibull

mixture distributions accurately model the seasonal precipitation volumes for Lakewood, Fort

Collins, and Boulder, Colorado. Results clearly show that seasons affect the proportion and

the shape of the distribution of convective precipitation. Surprisingly, we find that seasonal

mixtures for Lakewood and Boulder perform similarly, although Lakewood is located on a

flat region compared with Boulder’s mountainous landscape. The weather stations do not

distinguish between convective and stratiform events, thereby, the mixture model is artificial

to some extent.

The second part of this study aims to model the continuous precipitation volumes as a

function of Convective Available Potential Energy (CAPE) measurements. Since the precip-

itation volumes are positive and right skewed with high extreme events, a gamma model was

estimated. It was found that the log link gamma model for seasonal precipitation volumes

fits the data well. For most of the seasons, the model accurately predicts only the lower

and mid precipitation volumes except for Fall where the model accurately predicts even the

extreme events.

There are some limitations of this study. First, observation for precipitation volumes are

available only for times when all stations in the region record rainfall. Had we had daily

observations, including the days with no rainfall, we could have fit a spatial temporal model

to determine the trend and forecast future precipitation volumes and extreme storm events.

42
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Second, the CAPE measurements are indicators of the convective energy present in the

atmosphere. Future research could try to identify each precipitation event as convective or

stratiform and then predict the extreme events with higher accuracy.
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Appendix

Figure 5.39: Histogram of CAPE0

Figure 5.40: Histogram of CAPE12
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