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This dissertation investigates some topics involving periodic autoregressive moving-

average (PARMA) time series models.

Our first research topic studies autocovariance and partial autocorrelation prop-

erties of PARMA models. An efficient algorithm to compute PARMA autocovari-

ances is first derived. An Innovations based algorithm to compute partial autocor-

relations for a general periodic series is then developed. Periodic moving-averages

and periodic autoregressions are characterized as periodically stationary series whose

autocovariances and partial autocorrelations, respectively, are zero at all lags that

exceed some periodically varying threshold.

Next, techniques for fitting parsimonious periodic time series models are

explored. Large sample standard errors for the parameter estimates of a PARMA

model under parametric constraints are derived; likelihood ratio statistics are also

explored. The techniques are motivated with the analysis of a daily temperature

series from Griffin, Georgia.

The dissertation closes by introducing seasonal periodic autoregressive moving-

average time series (SPARMA) models. SPARMA models are a hybrid of seasonal

autoregressive moving-average models and PARMA models. Some mathematical

properties of SPARMA models are derived.
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Chapter 1

Introduction

Many time series in climatology, hydrology, sociology, plant physiology, electrical

engineering, and economics exhibit periodicity in their autocovariance structure.

Such series include quarterly river flows, daily temperatures, quarterly profit mar-

gins, monthly airline ticket sales etc. For example, Lund et al. (1995) examine

monthly ozone concentrations from Arosa, Switzerland, and conclude that the data

are well modeled by a time series whose autocovariances vary from month to month

within a year, but repeat at the same months in different years.

Loosely speaking, a periodic series is a random sequence in which the first two

moments are periodic with period T . Formally, a time series {Xt} with bounded

second moments satisfying

E[Xn+T ] = E[Xn] (1.0.1)

and

Cov(Xn+T , Xm+T ) = Cov(Xn, Xm), (1.0.2)

for all m and n, is called periodic (also periodically stationary, or periodically cor-

related (PC)) with period T . For clarity, T is taken as the smallest positive integer

satisfying (1.0.2).

For notation in a general periodic series, we define

µν = E[XnT+ν ] (1.0.3)

1
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and the autocovariance function (ACVF) of {Xt} at season ν and lag h ≥ 0, as

γh(ν) = Cov(XnT+ν , XnT+ν−h), (1.0.4)

and the corresponding autocorrelation function (ACF) as

ρh(ν) =
γh(ν)√

γ0(ν)γ0(ν − h)
.

The autocovariance Cov(XnT+ν , XnT+ν−h) of a periodic series does not depend on

the cycle n, but does depend on both lag h and season ν. The periodic notation

{XnT+ν} denotes the series during the νth season of the nth cycle and is preferred

to non-periodic notation {Xt} when emphasis is on periodicity. A season here refers

to any one discrete time point within a period, specifically, a value of ν satisfying

1 ≤ ν ≤ T .

Periodically stationary time series are not stationary unless T = 1. Many peri-

odic time series cannot be transformed to stationary series; therefore, some well-

established statistical inference techniques for stationary time series are not appro-

priate in the periodic setting. As we will see, the analysis of periodic time series is

much more complicated than that for stationary series.

Before doing any statistical analysis on a given series, it may be necessary to

confirm that the series is periodic in its first two moments. Gladyšev (1961) gives a

necessary and sufficient condition for a series to be periodic, establishing a connection

to T-variate stationary series. Later, Vecchia and Ballerini (1991) and Anderson and

Vecchia (1993) developed a formal test for periodicity based on the asymptotic prop-

erties of the Fourier transform of the estimated periodic autocorrelation function.

These results are theoretically useful but practically inconvenient. Hurd and Gerr

(1991), and Lund and Basawa (1999) study average squared coherence methods,

easily computed from the discrete Fourier transformation of the series, to detect
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periodicity. By graphing the average squared coherences of the series, one can usu-

ally conclude visually if a given series is periodic or not. We discuss this procedure

further in Chapter 2 and apply it to a temperature series in Chapter 4.

Perhaps the most useful class of periodic time series models is comprised of

periodic ARMA (PARMA) models. PARMA series satisfy a difference equation

similar to that for ARMA models, except that model parameters and white noise

variances are allowed to change periodically with season.

PARMA models have been studied extensively in both time and frequency

domain literatures because of their wide scope of applicability. Many noteworthy

results and methods, including model identification, parameter estimation, and

diagnostic checking, have been studied (cf. Hannan 1955, Jones and Brelsford 1967,

Tiao and Grupe 1980, Vecchia 1985a and 1985b, Bartolini et al. 1988, Lund et

al. 1995, Ghysels et al. 1996, Rasmussen et al. 1996, Lund and Basawa 1999,

among many others). This knowledge has been successfully applied in analyzing

periodic data from a wide range of fields. PARMA models have become the most

powerful and useful modeling vehicle for time series with periodically varying second

moments. We will highlight the development and major results of PARMA modeling

in the next chapter.

A desirable property of fitted time series models is parsimony. The fitted model

should fit the available data adequately using the smallest number of model param-

eters. For ARMA models, parsimony is usually achieved by eliminating unnecessary

autoregressive and moving-average model parameters. However, in PARMA models,

the number of parameters depends not only on the autoregressive and the moving-

average orders, but also on the season. The number of parameters in a PARMA

model can be extremely large when the period is large even for a model with small

autoregressive and moving-average orders. For example, if the period is a year

(T = 365), the number of autoregressive model parameters in a first order autore-



4

gressive model is 365. Some ad hoc parameter reduction techniques are given by

Thompstone et al. (1985), Bartolini et al. (1988), Bloomfield et al. (1994), Lund

et al. (1995), and Rasmussen et al. (1996). In Chapter 4, we will use Fourier tech-

niques to reduce and consolidate PARMA model parameters for a daily temperature

series.

Several methods for PARMA parameter estimation have been explored, including

Yule-Walker moment methods, least squares methods (LS), and Gaussian maximum

likelihood (ML) methods. For PAR(p) models, the Yule-Walker estimates are per-

haps the easiest to compute. For a Gaussian PARMA series, Yule-Walker estimates

are known to be asymptotically most efficient. For Gaussian PARMA series with

large T , the calculation of Yule-Walker estimates can be quite involved. Hence,

Gaussian maximum likelihood is a better way to estimate PARMA model parame-

ters. Many papers exist on Gaussian likelihood evaluation (cf. Jones and Brelsford

(1967), Pagano (1978), Li and Hui (1988), Vecchia (1983, 1985a, 1985b), Adams and

Goodwin (1993), and Lund and Basawa (2000)). Lund and Basawa (2000) present

an Innovations based algorithm to make one-step predictions, which can be used

to evaluate a Gaussian likelihood function. This algorithm is simple to carry out

and avoids the complexity of inverting the covariance matrix of the series. We will

use this approach in Chapter 4 when estimating the model parameters for a daily

temperature series.

The rest of this dissertation is organized as follows. Chapter 2 reviews some basic

concepts, the relationship between PARMA and vector ARMA models, and some

inference results for these models. Chapter 3 derives Innovations based algorithms

to efficiently calculate PARMA autocovariances and partial autocorrelations, and

presents a necessary and sufficient condition for a time series to be a periodic moving-

average with order q or a periodic autoregression with order p, respectively. Chapter

4 discusses procedures for fitting a parsimonious PARMA model. A series of daily
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temperature measurements from Griffin, Georgia is used as an example. Finally,

Chapter 5 introduces a new class of models, called seasonal periodic autoregressive

moving-average (SPARMA) models. SPARMA models are developed for the purpose

of fitting periodically correlated time series linked not only to the seasons in the same

period, but also to the same seasons of previous periods. The new models can be

viewed as a hybrid of standard PARMA models and Box-Jenkins seasonal models.

Some basic properties of SPARMA models are derived.



Chapter 2

Literature Review

2.1 Periodically Stationary Processes

Let {Xt} be a mean zero periodic series with period T . The autocovariance function

(ACVF) defined by γh(ν) = Cov(XnT+ν, XnT+ν−h) is arguably the most fundamental

feature of the series and provides a measure of the degree of dependence between two

values in the series seperated by h time units. The ACVF plays an important role

when forecasting future series values in terms of the past and present observations.

Unlike its stationary counterpart, γh(ν) is not symmetric in h; however, one sees

from (1.0.2) that

γ−h(ν) = γh(ν + h), h ≥ 0,

and

γh(ν) = γh(ν + T ), h ≥ 0.

Generally, periodicity in the ACVF of a series cannot always be visually detected

from the sample ACVF. There are periodicity tests in both time and frequency

domains (see Vecchia and Ballerini (1991), Anderson and Vecchia (1993), Hurd and

Gerr (1991), Bloomfield et al. (1994), and Lund et al. (1995)). Among these

methods, the average squared coherence method, proposed by Bloomfield et al.

(1994), and developed further by Lund et al. (1995), is straightforward and easy to

perform. The procedure of this spectral based test is as follows.

6
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Suppose that X1,X2,· · ·,XN represent d full cycles of observations of a periodic

time series {Xt} with known period T ; that is, d = N/T is assumed to be an integer.

The Fourier transformation of the series at the Fourier frequency λj = 2πj/N ,

denoted by Ij , is defined by

Ij = (2πN)−
1
2

N−1∑
n=0

Xn+1e
−inλj .

Next calculate the squared coherence

γ2
h(j) =

|M−1∑
m=0

Ij+mIj+h+m|2
M−1∑
m=0

|Ij+m|2
M−1∑
m=0

|Ij+h+m|2
, 0 ≤ j ≤ N − 1,

where M is some fixed integer — the choice of M is not crucial. Here, an over-

line denotes complex conjugation. Note that γ2
h(j) is the squared sample correla-

tion between (Ij ,Ij+1,· · ·,Ij+M−1) and (Ij+h,Ij+h+1, · · ·,Ij+h+M−1). Then average the

squared coherences over all frequencies for a fixed lag h via

γ2
h = N−1

N−1∑
j=0

γ2
h(j).

Finally, plot γ2
h against h. If values of γ2

h which are larger than a pre-specified

threshold appear only at lags which are multiples of d = N/T , one can conclude

that {Xt} is a periodic series with period T . The mentioned threshold can be

approximated under the null hypothesis that {Xt} is stationary via

P(γ2
h > x) ≈ 1 − Φ[(N/κM )

1
2 (x−M−1)],

where Φ denotes the cumulative distribution function of the standard normal random

variable, and κM is given by Lund et al. (1995) as a function of M .
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2.2 Periodic Autoregressive Moving-Average Series

If periodicity is identified in the second moment of a time series, the next step is to

find an adequate statistical model that incorporates all relevant information in the

observations. Periodic autoregressive moving-average (PARMA) models can be used

to model a large class of periodic series. The relationship between periodic series

and PARMA models is akin to that between stationary series and ARMA models.

A mean zero series {Xt} with finite second moments is said to be a periodic

autoregressive moving-average series with period T if it is a solution to the periodic

linear difference equation

XnT+ν −
p(ν)∑
k=1

φk(ν)XnT+ν−k = εnT+ν +
q(ν)∑
k=1

θk(ν)εnT+ν−k, (2.2.1)

where {εnT+ν} is mean zero periodic white noise: {εnT+ν} is uncorrelated with

E[εnT+ν ] ≡ 0 and Var(εnT+ν) = σ2(ν) > 0 for all seasons ν. The periodic nota-

tion XnT+ν refers to {Xt} during the νth season, 1 ≤ ν ≤ T , of cycle n. The

periodic notations {XnT+ν}, {εnT+ν}, {φk(ν)}, {θk(ν)}, etc. are preferred to the

non-periodic notations {Xt}, {εt}, {φk(t)}, {θk(t)}, etc. to emphasize periodicity.

Equation (2.2.1) is a generalized version of the classical ARMA difference equa-

tion with all model coefficients and orders varying periodically with time. The orders

of the autoregressive and moving-average during season ν are respectively p(ν) and

q(ν), and the model coefficients of the autoregressive and moving-average are respec-

tively φ1(ν),. . .,φp(ν)(ν), and θ1(ν),. . .,θq(ν)(ν). For mathematical purposes, p(ν) and

q(ν) can be taken as constant in ν — merely set p = max
1≤ν≤T

p(ν), q = max
1≤ν≤T

q(ν),

and take φk(ν) = 0 for k > p(ν) and θk(ν) = 0 for k > q(ν). Then equation (2.2.1)

becomes

XnT+ν −
p∑

k=1

φk(ν)XnT+ν−k = εnT+ν +
q∑

k=1

θk(ν)εnT+ν−k. (2.2.2)
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Such simplification with model orders is inappropriate, however, when specific values

of p(ν) and q(ν) are under investigation. A PARMA series satisfying (2.2.2) will also

be referred to as a PARMA(p, q) series.

Two equivalent forms of (2.2.2) are useful when studying properties of PARMA

models. One equivalent form of (2.2.2) is

(
1 −

p∑
k=1

φk(ν)B
k

)
XnT+ν =

(
1 +

q∑
k=1

θk(ν)B
k

)
εnT+ν , (2.2.3)

where B denotes the backward shift operator satisfying BkXt = Xt−k for k ≥ 0.

Another equivalent form of (2.2.2) is the T -dimensional vector ARMA (VARMA)

representation (cf. Vecchia 1985a)

Φ0Xn −
p∗∑

k=1

ΦkXn−k = Θ0εn +
q∗∑

k=1

Θkεn−k, (2.2.4)

where Xn = (XnT+1,· · ·,XnT+T )′, εn = (εnT+1,· · ·,εnT+T )′, p∗ = �p/T � and q∗ =

�q/T �. Here, �x� denotes the smallest integer greater than or equal to x. The

(i, j)th entries in the T × T matrices of {Φk, 0 ≤ k ≤ p∗} and {Θk, 0 ≤ k ≤ q∗} are

given by (see Vecchia 1985a)

(Φ0)i,j =




1 i = j

0 i < j

−φi−j(i) i > j,

(2.2.5)

(Φk)i,j = φkT+i−j(i) , 1 ≤ k ≤ p∗, (2.2.6)

(Θ0)i,j =




1 i = j

0 i < j

θi−j(i) i > j,

(2.2.7)

and

(Θk)i,j = θkT+i−j(i) , 1 ≤ k ≤ q∗. (2.2.8)
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Many results for PARMA series can be extracted from its VARMA represen-

tation. For example, Lund and Basawa (1999) provide a sufficient condition for

PARMA causality. Specifically, let Φ(z) = Φ0 −
p∗∑

k=1
Φkz

k be the T -variate VAR

polynomial. When Φ(z) has no roots within or on the complex unit circle in the

sense that det(Φ(z)) �= 0 for all complex |z| ≤ 1, then solutions to (2.2.2) exist and

can be uniquely (in mean square) expressed in the infinite order moving-average

form

XnT+ν =
∞∑

k=0

ψk(ν)εnT+ν−k, (2.2.9)

where max
1≤ν≤T

∑∞
k=0 |ψk(ν)| < ∞ (uniqueness only requires that the VAR polynomial

have no roots on the unit circle |z| = 1). Bentarzi and Hallin (1993) give further

discussion and generalities.

The ψk(ν)s can be computed from ψ0(ν) ≡ 1 and the recursion

ψk(ν) = θk(ν)1[k≤q] +
min(k,p)∑

j=1

φj(ν)ψk−j(ν − j), (2.2.10)

where k ≥ 1, and 1 ≤ ν ≤ T (cf. Lund and Basawa 2000). The notation used in

(2.2.10) and elsewhere interprets parameters periodically with period T ; for example,

ψk(j + T ) = ψk(j) for each k ≥ 0 and σ2(j + T ) = σ2(j).

We mention a generalization of the above: when the VAR polynomial has no

roots on the unit circle, solutions to the PARMA difference equation are unique and

periodically stationary, but may not be causal.

Let Θ(z) = Θ0 +
∑q∗

k=1 Θkz
k denote the PARMA model’s T -variate MA poly-

nomial. A sufficient condition for PARMA invertibility is that Θ(z) has no roots

within or on the complex unit circle (i.e. det(Θ(z)) �= 0) for all complex |z| ≤ 1.

When invertible, solutions to (2.2.2) can be expressed in the infinite order periodic

autoregressive form

εnT+ν =
∞∑

k=0

πk(ν)XnT+ν−k, (2.2.11)



11

where {πk(ν)} satisfies

max
1≤ν≤T

∞∑
k=0

|πk(ν)| <∞.

PARMA series should not be confused with seasonal ARMA (SARMA) series.

Generally speaking, SARMA series are stationary (not periodic) with strong corre-

lations (large in absolute value) at lags which are multiples of the period T . Specif-

ically, a SARMA series is a solution to the linear difference equation

XnT+ν −
p∑

k=1

φkX(n−k)T+ν = εnT+ν +
q∑

k=1

θkε(n−k)T+ν , (2.2.12)

where {εnT+ν} is white noise (stationary). Equation (2.2.12) is similar to the ARMA

difference equation except that all differences appear at multiples of the period T .

To see this more clearly, note that under the condition of causality, the solution to

equation (2.2.12) can be uniquely (in mean square) expressed as

XnT+ν =
∞∑

k=0

ψkε(n−k)T+ν , (2.2.13)

where max
1≤ν≤T

∑∞
k=0 |ψk(ν)| < ∞. From equation (2.2.13), it follows that the same

model applies to each season ν, and the autocovariance function is actually sta-

tionary; that is Cov(XnT+ν , XnT+ν−h) depends only on h, but with Cov(Xt, Xt+h)

large when h is a multiple of T . In fact, SARMA series are characterized by ACVFs

which are large at multiples of the period T . Consequently, the ACVF of a SARMA

series exhibits ‘spikes’ at lags which are multiples of T . Although SARMA models are

superior to ARMA models for describing some seasonal data, they are appropriate

for stationary and are not adequate models for most periodic series. McLeod (1993)

illustrates the inadequacies of SARMA models when forecasting periodic streamflow

series. In contrast, PARMA series have a truly periodic autocovariance structure in

the sense of (1.0.2). By letting the model parameters periodically vary with time,

PARMA models have solutions which exhibit periodicity in the second moment.
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2.3 Statistical Inference in PARMA Series

The PARMA model in (2.2.2) has (p + q)T model parameters, which we denote

by α = (φ1(1),· · ·,φp(1),θ1(1),· · ·, θq(1);· · · ;φ1(T ),· · ·,φp(T ),θ1(T ), · · ·,θq(T ))′, and T

additional white noise variance parameters, denoted by σ2 =(σ2(1),σ2(2),· · ·,σ2(T ))′.

Many PARMA estimation studies have been conducted (cf. Jones and Brelsford

(1967), Pagano (1978), Li and Hui (1988), Vecchia (1983, 1985a and 1985b), Adams

and Goodwin (1993), Lund and Basawa (1999, 2000)).

The following results pertain to estimating PARMA model parameters and their

asymptotic variances; throughout, we treat σ2 as a T -dimensional nuisance param-

eter, and also make the following assumptions:

(C1). XN = X1, X2, · · · , XN is a sample from a PARMA series containing d full

cycles of data; that is, d = N/T is a whole number.

(C2). The PARMA model is causal and invertible.

(C3). The orders of the autoregressive and moving-average in different seasons are

constant; that is, p(ν) = p and q(ν) = q for all 1 ≤ ν ≤ T .

(C4). The periodic white noise {εnT+ν} is independent and has a finite fourth

moment: E[ε4nT+ν ] <∞ for each season ν.

For PAR series, all parameters can be estimated by periodic versions of the

Yule-Walker equations. Suppose that {XnT+ν} is the periodic autoregression

XnT+ν −
p∑

k=1

φk(ν)XnT+ν−k = εnT+ν . (2.3.1)

Multiplying each side of (2.3.1) by XnT+ν−h, taking an expectation, and using

causality to evaluate the right hand side, we obtain the so-called periodic Yule-

Walker equations

γh(ν) −
p∑

k=1

φk(ν)γh−k(ν − k) = σ2(ν)I[h=0], h ≥ 0. (2.3.2)
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The Yule-Walker estimates are defined as solutions to (2.3.2), viz.,

γ̂h(ν) −
p∑

k=1

φ̂k(ν)γ̂h−k(ν − k) = σ̂2(ν)I[h=0], where h = 0, 1, · · · , p, (2.3.3)

where γ̂h(ν) is the non-negative definite sample estimate

γ̂h(ν) = d−1
M∑

n=0

XnT+νXnT+ν−h, (2.3.4)

where M = [d−max(ν, ν−h)] is such that the subscripts nT + ν and nT + ν−h in

(2.3.4) all lie within {1, · · · , dT}. Obviously α̂ = (φ̂1(1), · · ·, φ̂1(T ); · · · ; φ̂p(1), · · ·,
φ̂p(T ))′ are moment estimates. The following result (Pagano, 1978) shows that the

Yule-Walker estimates are consistent and asymptotically normal.

Theorem 2.1. If {XnT+ν} is a causal Gaussian PAR(p) series satisfying C1-C3,

then the Yule-Walker estimates α̂= (φ̂1(1),· · ·,φ̂p(1);· · · ; φ̂1(T ),· · ·,φ̂p(T ))′ satisfy

d1/2(α̂− α)
D−→ N (0, F−1(α)) as d→ ∞, (2.3.5)

where the (pT ) × (pT ) block diagonal information matrix F (α) has the form

F (α) =




F (1) 0 · · · 0 0

0 F (2) · · · 0 0

...
...

. . .
...

...

0 0 · · · F (T − 1) 0

0 0 · · · 0 F (T )




, (2.3.6)

where F (ν) (1 ≤ ν ≤ T ) is a p× p matrix. The (i, j)th entry of F (ν) is defined by

Fi,j(ν) = σ−2(ν)γi−j(ν − i) for 1 ≤ i, j ≤ p.

From the diagonal structure of F (α), we have the following result.

Corollary 2.2. The Yule-Walker estimates, α̂, are asymptotically independent in

ν and asymptotically most efficient.
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Theorem 2.1 can be extended to non-Gaussian settings. The Yule-Walker esti-

mates are not asymptotically most efficient in the non-Gaussian case, however.

For a general PARMA series with Gaussian periodic white noise {εnT+ν}, the

model parameters can also be estimated by maximizing the Gaussian likelihood

L(α) = (2π)−dT/2 (det(ΓN ))−1/2 exp
(
−1

2
X ′

NΓ−1
N XN

)
, (2.3.7)

or equivalently minimizing

−2 ln(L(α)) = dT ln(2π) + ln(det(ΓN)) +X ′
NΓ−1

N XN , (2.3.8)

where ΓN is the covariance matrix of XN . When the sample size is large, the compu-

tation of Γ−1
N can be very intensive. Many authors have studied likelihood evaluation

and optimization, including an approximation of the likelihood (Vecchia (1985a)),

a Cholesky decomposition of ΓN (Li and Hui (1988)), and a control approach to

likelihood optimization altogether (Adams and Goodwin (1995)).

In Chapter 4, we will use the Innovations Algorithm (cf. Chapter 5 of Brockwell

and Davis, 1991) to evaluate Gaussian likelihoods. The Innovations form of the

likelihood is

L(α) = (2π)−dT/2

(
dT∏
t=1

vt

)−1/2

exp

(
−1

2

dT∑
t=1

(Xt − X̂t)
2

vt

)
, (2.3.9)

where

X̂t =




0 t = 1

E[Xt|X1, . . . , Xt−1] t > 1
(2.3.10)

is the best one-step-ahead linear predictor that minimizes the mean squared predic-

tion error

vt = E[(Xt − X̂t)
2]. (2.3.11)
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X̂t and vt can be recursively computed in t for a general PARMA series quite effi-

ciently (cf. Lund and Basawa, 2000). Such an algorithm drastically reduces the

calculations and avoids computing the inverse of ΓN . For PAR(p) series,

X̂nT+ν =
p∑

k=1

φk(ν)XnT+ν−k, vnT+ν = σ2(ν), nT + ν > p; (2.3.12)

hence, (2.3.8) reduces to

−2 ln(L(α)) = dT ln(2π) + ln(det(Γp)) +X ′
pΓ

−1
p Xp

+
dT∑

t=p+1

ln(σ2(t)) +
dT∑

t=p+1

(Xt − X̂t)
2

σ2(t)
, (2.3.13)

where Xp = (X1, . . . , Xp)
′ denotes the first p series observations and Γp = E[XpX

′
p]

is its covariance matrix. The covariance matrix Γp is easily computed from the

seasonal Yule-Walker equations (see Chapter 3 here as well). Likelihood evaluation is

still very demanding for general PARMA models with a moving-average component,

however. Therefore, for a general PARMA series, Lund and Basawa (2000) present

an efficient way to recursively calculate vt in t. Specifically, define

WnT+ν =




XnT+ν , nT + ν ≤ max(p, q),

XnT+ν −
p∑

k=1
φk(ν)XnT+ν−k, nT + ν > max(p, q).

(2.3.14)

It follows that

ŴnT+ν = X̂nT+ν −
p∑

k=1

φk(ν)XnT+ν−k,

where Ŵt = E[Wt|W1, · · · ,Wt−1]. Therefore,

Xt − X̂t = Wt − Ŵt for all t,

and

vt = E[(Wt − Ŵt)
2] for all t.

Basawa and Lund (2001) establish the consistency and asymptotic normality

of the likelihood estimates in the following theorem. Their methods compute the
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asymptotic variance of the estimates via general quasi-likelihood techniques. Not

surprisingly, the limiting distributions of the likelihood estimates are equivalent to

those obtained from weighted least squares techniques.

Theorem 2.3 . If {XnT+ν} is a causal and invertible PARMA(p, q) series sat-

isfying C1-C4, then the maximum likelihood estimates α̂ = (φ̂1(1),· · ·,φ̂p(1),θ̂1(1),

· · ·,θ̂q(1); · · · ;φ̂1(T ),· · ·,φ̂p(T ),θ̂1(T ),· · ·, θ̂q(T ))′, satisfy

d
1
2 (α̂− α)

D−→ N (0, F−1(α)) as d→ ∞, (2.3.15)

where the information matrix F (α) is computed from

F (α) =
T∑

ν=1

σ−2(ν)Γ(ν), (2.3.16)

and

Γ(ν) = E

[(
∂εnT+ν

∂α

)(
∂εnT+ν

∂α

)′]
, (2.3.17)

where ∂εnT+ν/∂α, the partial derivative of εnT+ν, satisfies

∂εnT+ν

∂α
= −

p∑
k=1

∂φk(ν)

∂α
−

q∑
k=1

θk(ν)
∂εnT+ν−k(α)

∂ ulα
−

q∑
k=1

∂θk(ν)

∂α
εnT+ν−k(α).

For a PAR(p) model with Gaussian white noise {εnT+ν}, Yule-Walker and likeli-

hood estimates have equivalent asymptotic properties. However, likelihood estimates

are superior to Yule-Walker estimates in the case of parametric constraints: likeli-

hood estimates can easily be obtained if α is a function of some ‘smaller’ set of free

parameters β. Therefore, likelihood estimators have an irreplaceable role in PARMA

parsimony issues. We will revisit this issue in detail in Chapter 4.



Chapter 3

Calculation and Characterization of Parma Autocovariances and

Partial Autocorrelations

Throughout this chapter, the PARMA model is assumed causal and the AR and

MA model orders constant — say p(ν) ≡ p and q(ν) ≡ q.

3.1 Introduction

The most fundamental feature of a time series model is its autocovariance structure.

Autocovariances can be used to forecast future series values, to evaluate Gaussian-

based model likelihoods, and to compute parameter estimates and their standard

errors. Efficient computation of PARMA autocovariances, however, remains largely

unexplored. Section 2 of this chapter develops a simple algorithm that efficiently

computes general PARMA autocovariances.

The partial autocorrelation function also contains much useful diagnostic infor-

mation. Sample partial autocorrelations can be used to assess whether an autore-

gressive model is appropriate for the series as well as estimate the autoregressive

order (see Cryer 1986, Brockwell and Davis 1991, and Box et al. 1994 for stationary

series and Vecchia and Ballerini 1991 for periodic series). Section 3 of this chapter

considers definition and computation of the partial autocorrelation function in a

general periodic series.

Section 4 of this chapter extends two classical stationary autocorrelation and

partial autocorrelation characterizations to the periodic setting. Specifically, suppose

17
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that {Xt} is a mean zero stationary series. Then {Xt} is a moving-average of order

q if and only if its autocovariances are zero at all lags that exceed q; analogously,

{Xt} is an autoregression of order p if and only if its partial autocorrelations are

zero at all lags that exceed p. Theorems 3.1 and 3.3 establish periodic versions of

these results. All plots are provided at the end of this chapter.

3.2 Computation of PARMA Autocovariances

Let

γh(ν) = Cov(XnT+ν , XnT+ν−h) (3.2.1)

be the autocovariance of {Xt} at season ν and lag h ≥ 0. One form for the PARMA

autocovariances is easily obtained by multiplying both sides of (2.2.9) by XnT+ν−h,

using its causal expression in (2.2.9), and then taking an expectation:

γh(ν) =
∞∑

k=0

ψk+h(ν)ψk(ν − h)σ2(ν − k − h), (3.2.2)

where both {ψk(ν)} for each k ≥ 0 and {σ2(ν)} are interpreted periodically in ν

with period T . Equation (3.2.2) is computationally impractical since it requires

determination and infinite summation of the ψk(ν)s (explicit solutions to (2.2.10)

are not frequently available). It is worth mentioning that PARMA autocovariances

decay geometrically to zero (in lag) uniformly over the seasons whenever Φ(z) has

no roots on the unit circle: max1≤ν≤T |γh(ν)| ≤ κr−h for all h ≥ 0 and some r > 1

and finite κ. Hence, truncation approximations to (3.2.2) are feasible.

Instead, we will take a difference equation approach to compute PARMA auto-

covariances, mimicking Yule-Walker methods for stationary ARMA series. The con-

tribution here lies largely with the bookkeeping. Multiplying both sides of (2.2.2) by
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XnT+ν−h, taking expectations, and using causality to evaluate the right hand side

gives

γh(ν) =
p∑

k=1

φk(ν)γk−h(ν − h), h > max(p, q). (3.2.3)

Equation (3.2.3) expresses γh(ν) in terms of autocovariances at the previous p lags

when h > max(p, q) — note that the computational complexity of (3.2.3) does

not increase with increasing h. In particular, once γh(ν) is identified for all lags

0 ≤ h ≤ max(p, q) and seasons ν, the PARMA autocovariances at higher lags can

be rapidly computed.

Hence we focus on computation of γh(ν) for 0 ≤ h ≤ max(p, q) and all ν. Appli-

cation of (2.2.2) gives

Cov(XnT+ν , XnT+ν−h) =
p∑

k=1

φk(ν)Cov(XnT+ν−k, XnT+ν−h)

+
q∑

k=0

θk(ν)Cov(εnT+ν−k, XnT+ν−h), (3.2.4)

where the convention θ0(ν) = 1 has been used. The causal representation in (2.2.9)

provides

Cov(εnT+ν−k, XnT+ν−h) = Cov

(
εnT+ν−k,

∞∑
l=0

ψl(ν − h)εnT+ν−h−l

)

=
∞∑
l=0

ψl(ν − h)σ2(ν − k)1[l=k−h]

= ψk−h(ν − h)σ2(ν − k)1[k≥h]. (3.2.5)

Combining (3.2.4) and (3.2.5) gives

γh(ν)−
p∑

k=1

φk(ν)Cov(XnT+ν−k, XnT+ν−h) =
q∑

k=h

θk(ν)ψk−h(ν−h)σ2(ν−k),(3.2.6)

which has the general form

γh(ν) −
p∑

k=1

φk(ν)γ|h−k|(s(max(ν − k, ν − h))) = κh(ν), (3.2.7)



20

where s(t) = t−T �t/T � is the season of time t (�x� denotes the greatest integer less

than or equal to x), and

κh(ν) =
q∑

k=h

θk(ν)ψk−h(ν − h)σ2(ν − k). (3.2.8)

It is a straightforward (but tedious) task to write (3.2.7) into a T [max(p, q)+ 1]-

dimensional linear system and numerically solve for γh(ν) for all 0 ≤ h ≤ max(p, q)

and 1 ≤ ν ≤ T . The matrix associated with this linear system will be invertible

whenever the PARMA model is causal. Note that (3.2.7) only requires ψk(ν)s for

k ≤ q, which are easily obtained from (2.2.10). The overall computational burden

compares favorably to (3.2.2), which requires an infinite number of ψk(ν)s.

Example 3.1. Consider the PARMA(2,1) model

XnT+ν − φ1(ν)XnT+ν−1 − φ2(ν)XnT+ν−2 = εnT+ν + θ1(ν)εnT+ν−1 (3.2.9)

with period T = 4 and the parameters listed below.

PARMA(2,1) coefficients

ν φ1(ν) φ2(ν) θ1(ν) σ2(ν)

1 0.8 0.1 0.50 1.0

2 0.2 0.7 0.30 9.0

3 -0.2 0.7 -0.30 9.0

4 -0.8 0.1 -0.50 1.0

It can be verified that these parameters induce a causal model. Equation (2.2.10)

gives ψ0(ν) = 1 and ψ1(ν) = θ1(ν) + φ1(ν).

Figure 3.1 plots the autocovariances of the above PARMA model for each of

the four seasons. The structure of the autocovariance plots differ from season to

season, yet series values from adjacent seasons are correlated. Figure 3.2 plots the

autocorrelations for this PARMA model and can be regarded as a scaled version of
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Figure 3.1. Notice that autocovariances and autocorrelations decay to zero rapidly

with increasing lag, an aforementioned property of non-unit root PARMA models.

�

3.3 Computation of PARMA Partial Autocorrelations

Define the partial autocorrelation (PACF) αh(ν) of a periodic series {Xt} at season

ν and lag h ≥ 1 as the correlation between the residuals of XnT+ν and XnT+ν−h after

linear regression on series values between times nT + ν−h and nT + ν. Specifically,

set α1(ν) = Corr(XnT+ν , XnT+ν−1) and

αh(ν) = Corr(XnT+ν−X̂F
nT+ν−h,nT+ν, XnT+ν−h−X̂B

nT+ν−h,nT+ν), h ≥ 2, (3.3.1)

where X̂F
nT+ν−h,nT+ν = P(XnT+ν|XnT+ν−h+1, . . . , XnT+ν−1) is the best (minimum

mean squared error) linear prediction (forwards) of XnT+ν from XnT+ν−h+1, . . . ,

XnT+ν−1 and X̂B
nT+ν−h,nT+ν = P(XnT+ν−h|XnT+ν−h+1, . . . , XnT+ν−1) is the best linear

prediction (backwards) of XnT+ν−h from XnT+ν−h+1, . . . , XnT+ν−1. Periodic station-

arity of {XnT+ν} implies that αh(ν) does not depend on n.

Several methods are plausible for numerical evaluation of the PARMA PACF.

First, whereas multivariate ARMA techniques could be used to compute and unravel

the matrix autocovariances of {Xn} (Xn = (XnT+1, · · · , XnT+T )′) into those for the

univariate series {Xt}, an analogous method to extract a PACF is not evident.

In particular, the forward and backward predictions appearing in (3.3.1) are not

easily obtained from predictions involving {Xn}. For example, when T ≥ 3, the

prediction P(XnT+3|XnT+2, XnT+1, XnT ) is a function of XnT+2 and XnT+1, which

reside in the same cycle as XnT+3 — the variable being predicted. It is not possible

to obtain P(XnT+3|XnT+2, XnT+1, XnT ) from P(Xn|Xn−1, Xn−2, . . .) as XnT+2 and

XnT+1 are not in the closed linear span of the components of Xn−1, Xn−2, . . . . For

these reasons, we will not pursue multivariate PACF evaluation algorithms here. In
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general, multivariate and periodic time series differ structurally: the components of

a multivariate time series may not be time-ordered whereas the components of a

periodic time series are necessarily time-ordered.

Second, Sakai (1982, 1983) explores Durbin-Levinson methods for periodic series

and derives a set of recursions from which the PARMA PACF can be evaluated.

On the whole, some of the Durbin-Levinson recursions are comparatively cumber-

some for PARMA PACF computation. Sakai’s algorithm and the Innovations based

algorithm below induce approximately the same computational burden, which is

considerably less than the general recursive procedure of Morrison (1976) for com-

puting partial autocorrelations. The Innovations based approach, however, yields a

comparatively simplistic set of recursions cast in terms of backwards and forwards

predictors and their mean squared errors.

For simplicity of notation, we consider the general case where {Xt} is any mean

zero series such that the covariance matrix of (X1, . . . , Xk)
′ is invertible for each

k ≥ 1 (Proposition 4.1 of Lund and Basawa 2000 shows that this invertibility holds

for any causal PARMA model). Fix t ≥ 2 and let

X̂B
t−i,t = P(Xt−i|Xt−i+1, . . . , Xt−1), i ≥ 2, (3.3.2)

be the best one-step-ahead backwards linear prediction ofXt−i fromXt−i+1, . . . , Xt−1,

with the convention that X̂B
t−1,t = 0. Let vB

t−i,t = E[(Xt−i − X̂B
t−i,t)

2] denote the

backwards mean squared prediction error for i ≥ 1. Note that vB
t−1,t = E[X2

t−1].

As the closed linear spans of {Xt−i, Xt−i+1, . . . , Xt−1} and {Xt−i−X̂B
t−i,t, Xt−i+1−

X̂B
t−i+1,t, . . . , Xt−1−X̂B

t−1,t} are equal (also note that the latter set of random variables

is uncorrelated), one is justified in making the Innovations expansion

X̂B
t−i,t =

i−1∑
j=1

κi−1,j(Xt−j − X̂B
t−j,t). (3.3.3)
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Multiply both sides of (3.3.3) by Xt−j − X̂B
t−j,t, take expectations, and use that

Xt−j − X̂B
t−j,t are uncorrelated in j to get

κi−1,jv
B
t−j,t = E[X̂B

t−i,t(Xt−j − X̂B
t−j,t)]

= E[Xt−i(Xt−j − X̂B
t−j,t)], 1 ≤ j ≤ i− 1. (3.3.4)

Substituting X̂B
t−j,t with its Innovations expansion in (3.3.3) and applying (3.3.4) for

1 ≤ k ≤ j − 1 give

κi−1,j =
E[Xt−iXt−j] −∑j−1

k=1 κj−1,kκi−1,kv
B
t−k,t

vB
t−j,t

, 1 ≤ j ≤ i− 1, (3.3.5)

which shows how to compute the κi−1,js.

For updating backwards mean squared prediction errors, use the projection rela-

tion vB
t−i,t = E[X2

t−i] − E[(X̂B
t−i,t)

2], (3.3.3), and that Xt−j − X̂B
t−j,t are uncorrelated

in j to get

vB
t−i,t = E[X2

t−i] −
i−1∑
j=1

κ2
i−1,jv

B
t−j,t. (3.3.6)

The forwards one-step-ahead linear predictor of Xt from Xt−i+1, . . ., Xt−1 is

X̂F
t−i,t = P(Xt|Xt−i+1, . . . , Xt−1), i ≥ 2, (3.3.7)

where the convention X̂F
t−1,t = 0 is made. The forwards mean squared prediction

errors will be denoted by vF
t−i,t = E[(Xt − X̂F

t−i,t)
2]. Note that vF

t−1,t = E[X2
t ].

An Innovations expansion for X̂F
t−i,t in terms of the backwards prediction errors

is

X̂F
t−i,t =

i−1∑
j=1

ηj(Xt−j − X̂B
t−j,t). (3.3.8)

In contrast to the expansion in (3.3.3), the ηjs do not depend on i due to the

orthogonality of Xt−j − X̂B
t−j,t in j and the fact that the variable being predicted

(namely Xt) does not change with i.
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Now argue as with the backwards predictors to get

ηj =
E[XtXt−j ] −∑j−1

k=1 κj−1,kηkv
B
t−k,t

vB
t−j,t

, 1 ≤ j ≤ i− 1, (3.3.9)

and

vF
t−i,t = E[X2

t ] −
i−1∑
j=1

η2
j v

B
t−j,t

= E[X2
t ] −

i−2∑
j=1

η2
j v

B
t−j,t − η2

i−1v
B
t−(i−1),t

= vF
t−(i−1),t − η2

i−1v
B
t−(i−1),t. (3.3.10)

Putting the above together gives

Corr(Xt − X̂F
t−h,t, Xt−h − X̂B

t−h,t)

=
E[(Xt − X̂F

t−h,t)Xt−h]√
vB

t−h,tv
F
t−h,t

(3.3.11)

=
E[XtXt−h] −∑h−1

j=1 κh−1,jηjv
B
t−j,t√

vB
t−h,tv

F
t−h,t

(3.3.12)

when the orthogonality of X̂B
t−h,t and Xt − X̂F

t−h,t, (3.3.4), and (3.3.8) are applied.

Specializing this to the PARMA case yields the following.

PARMA PACF Evaluation Algorithm.

Step 1. Compute the autocovariance and autocorrelation functions of the PARMA

model as discussed in Section 2.

Step 2. For h = 1, set α1(ν) = ρ1(ν) for each season ν.

Step 3. To obtain αh(ν) for a fixed h ≥ 2, define n∗ = min{n : nT + ν − h ≥ 1} and

set t = n∗T + ν. Now solve the PACF recursions in the order vB
t−1,t; κ1,1, v

B
t−2,t, η1,

vF
t−2,t; κ2,1, κ2,2, v

B
t−3,t, η2, v

F
t−3,t; . . .; κh−1,1,. . ., κh−1,h−1, v

B
t−h,t, ηh−1, v

F
t−h,t.

Step 4. Compute αh(ν) via (3.3.12).

�
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The computational burden for computing the forwards and backwards prediction

coefficients and their mean squared prediction errors above could possibly be further

reduced by invoking the PARMA difference equation structure (akin to Section 5.3

in Brockwell and Davis for stationary ARMA models). We have not pursued this

avenue for two reasons. First, one is typically interested in the PACF for small lags

(say h ≤ 100) and the above recursions are comparatively clean. Second, unlike the

autocovariance function which may have to be evaluated many times to optimize

a Gaussian based likelihood, the partial autocorrelation function is typically only

evaluated once.

Example 3.2. Figure 3.3 plots the PACF of the PARMA(2,1) series in Example

3.1. Again notice that the PACF structure differs in season and that the partial

autocorrelations decay to zero rapidly with increasing lag. �

3.4 Characterization of PMA Autocovariances

A stationary series {Xt} is a moving average of order q if and only if γ(h) = 0

for all h > q and γ(q) �= 0 (cf. Proposition 3.2.1 in Brockwell and Davis, 1991).

The condition γ(q) �= 0 is needed to guarantee that the moving-average order is not

strictly less than q. We next establish the periodic analogy of this result. Before

this, we present several definitions and lemmas.

Definition 3.1. The norm of a random variable X, denoted by ‖ X ‖, is

‖ X ‖=
√

EX2.

Definition 3.2. The orthogonal complement of a closed linear subset M of the

Hilbert Space H is defined to be the set M⊥ of all elements of H which are orthogonal

to every element of M. Thus

x ∈ M⊥( written x ⊥ M) if and only if < x, y >= 0 for all y ∈ M,
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where the inner product is < X, Y >= E[XY ]. For all x ∈ H,

x = PM(x) + (I − PM)(x), (3.4.1)

where PM(x) is the projection of x onto M.

Lemma 3.1. (The Projection Theorem). If M is a closed subspace of the Hilbert

space H and x ∈ H, then

(i) there is a unique element x̂ ∈ M such that

‖ x− x̂ ‖= inf
y∈M

‖ x− y ‖, and

(ii) x̂ ∈ M and ‖ x− x̂ ‖= inf
y∈M

‖ x− y ‖ if and only if x̂ ∈ M and (x− x̂) ∈ M⊥.

For proof, see page 51 Brockwell and Davis (1991).

The following theorem gives a necessary and sufficient condition for a series to

be a periodic moving-average.

Theorem 3.1. Assume that {XnT+ν} is a mean zero periodically stationary series.

Then {XnT+ν} is a PMA(q) series if and only if γh(ν) = 0 for h > q and γq(ν) �= 0

for 1 ≤ ν ≤ T .

Proof of Theorem 3.1. First, assume that γh(ν) = 0 for h > q and γq(ν) �= 0 for

1 ≤ ν ≤ T . Define the subspace Mt = sp{Xj, j ≤ t}, and set

εnT+ν = XnT+ν − PMnT+ν−1
XnT+ν. (3.4.2)

Obviously, εnT+ν ∈ MnT+ν . By (3.4.2), for each fixed n and ν, εnT+ν ∈ M⊥
nT+ν−1.

Moreover for any j > 0,

εnT+ν−j ∈ MnT+ν−j ⊆ MnT+ν−1.

Therefore, E[εnT+ν−jεnT+ν ] = 0, and {εnT+ν} is uncorrelated.
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By the conclusion in problem 5.2(c) of Brockwell and Davis (1991), we have

Psp{Xj , −∞<j≤nT+ν}XnT+ν+1 = lim
r→∞Psp{Xj , n−r<j≤nT+ν}XnT+ν+1.

Therefore, by continuity of norms,

‖ ε(n+1)T+ν ‖2 = ‖ X(n+1)T+ν − PM(n+1)T+ν−1
X(n+1)T+ν ‖2

= ‖ X(n+1)T+ν − lim
r→∞Psp{Xj ,(n+1)T+ν−1−r<j≤(n+1)T+ν−1}X(n+1)T+ν ‖2

= lim
r→∞ ‖ X(n+1)T+ν − Psp{Xj ,(n+1)T+ν−1−r<j≤(n+1)T+ν−1}X(n+1)T+ν ‖2

= lim
r→∞ ‖ XnT+ν − Psp{Xj , nT+ν−1−r<j≤nT+ν−1}XnT+ν ‖2

= ‖ XnT+ν − PMnT+ν−1
XnT+ν ‖2

= ‖ εnT+ν ‖2 .

Hence, ‖ εnT+ν ‖2 does not depend on n and we define the white noise variance

σ2(ν) = ‖ εnT+ν ‖2. Since MnT+ν−q−1 = sp{XnT+ν−q−j, j ≤ 1}, then the causality

of {XnT+ν} gives

MnT+ν−q−1 ⊥ sp{εnT+ν−1, εnT+ν−2, · · · , εnT+ν−q}.

Since γh(ν) = 0 for any h > q, we have XnT+ν ⊥ MnT+ν−q−1. Therefore,

MnT+ν−1 = sp{XnT+ν−1, XnT+ν−j, j > 1}

= sp{XnT+ν−j, j > 1, εnT+ν−1}

= sp{XnT+ν−j, j > q, εnT+ν−1, εnT+ν−2, · · · , εnT+ν−q}

= MnT+ν−q−1 + sp{εnT+ν−1, εnT+ν−2, · · · , εnT+ν−q}.

By (3.4.1), we have

PMnT+ν−1
XnT+ν = PMnT+ν−q−1

XnT+ν + Psp{εnT+ν−1,εnT+ν−2,···,εnT+ν−q}XnT+ν

= 0 + σ−2(ν − 1)E[XnT+νεnT+ν−1]εnT+ν−1 + · · ·

+σ−2(ν − q)E[XnT+νεnT+ν−q]εnT+ν−q

= θ1(ν)εnT+ν−1 + · · ·+ θq(ν)εnT+ν−q,



28

where θk(ν) = σ−2(ν − k)E[XnT+νεnT+ν−k] which does not depend on n. Thus,

XnT+ν − εnT+ν = θ1(ν)εnT+ν−1 + · · ·+ θq(ν)εnT+ν−q,

i.e.,

XnT+ν = εnT+ν +
q∑

k=1

θk(ν)εnT+ν−k

which completes the proof of sufficiency.

Now, assume that {XnT+ν} is a mean zero PMA(q) series. The autocovariance

function for h ≥ 0 and 1 ≤ ν ≤ T is

γh(ν) = Cov(XnT+ν, XnT+ν−h)

= Cov(
q∑

k=1

θk(ν)εnT+ν−k,
q∑

k=1

θk(ν − h)εnT+ν−h−k). (3.4.3)

Obviously, γh(ν) = 0 for h > q, and γh(ν) �= 0 for h ≤ q. This finishes the proof of

necessity. �

3.5 Characterization of PAR Partial Autocorrelations

Our final result in this chapter shows that, essentially, periodic autoregressions are

characterized by partial autocorrelations that are zero at lags that exceed a sea-

sonal threshold (see Ramsey (1974) for the stationary autoregressive case). We first

prove a theorem in the stationary setting, then extend the result to the periodically

stationary case.

The following lemmas are given for later reference.

Lemma 3.2. Assume that X,Z1, · · · , Zn are mean zero random variables with finite

second moments. Let γ
n

= (E[XZ1], · · · , E[XZn])′ and Γn = (E[ZiZj ])i,j=1,···,n. If

Γn is non-singular, then there exists a unique φ
n

= (φ1, · · · , φn)′ = Γ−1
n γ

n
such that

Psp{Z1,···,Zn}X =
n∑

i=1

φiZi.
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Proof. Let Psp{Z1,···,Zn}X =
n∑

i=1
φiZi. By the Projection Theorem

E[X −
n∑

i=1

φiZi]Zj = 0,

for all 1 ≤ j ≤ n. Thus, φ
n

= Γ−1
n γ

n
. �

Lemma 3.3. If {Xt} is a mean zero stationary series, then

(i) there exists φ
n

= (φn1, · · · , φnn)
′ free of t such that

Psp{Xn,···,X1}Xn+1 =
n∑

i=1

φniXi, and

(ii) under the condition that γ(h) → 0 as h→ ∞, φ
n

is unique and determined by

φ
n

= Γ−1
n γ

n
,

where Γn = [γ(i− j)]i,j=1,···,n is nonsingular and γ
n

= (γ(1), · · · , γ(n))′.

Proof. From Lemma 3.2, it suffices merely to verify the non-singularity of Γn. For

the proof, see Proposition 5.1.1 in Brockwell and Davis (1991) (page 167). �

Lemma 3.4. For any mean zero stationary series {Xt}, E[Xt−Psp{Xt−1,···,Xt−n}Xt]
2

is free from t.

Proof. From stationarity of {Xt} and Lemma 3.3 (i), there exits φ
n

= (φn1, · · · , φnn)
′

such that

E[Xt − Psp{Xt−1,···,Xt−n}Xt]
2 = E[Xt −

n∑
i=1

φniXt−i]
2,

which does not depend on t. �

Lemma 3.5. If X, Y , Z1, · · · , Zn are mean zero random variables such that

Cov(X − Psp{Z1,···,Zn}X, Y − Psp{Z1,···,Zn}Y ) = 0, (3.5.1)

then

Psp{Z1,···,Zn}X = Psp{Z1,···,Zn,Y }X.
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Proof. By the Projection Theorem, Psp{Z1,···,Zn}Y ∈ sp{Z1, · · · , Zn} and (X −
Psp{Z1,···,Zn}X) ⊥ sp{Z1, · · · , Zn}. Hence (X − Psp{Z1,···,Zn}X) ⊥ Psp{Z1,···,Zn}Y.

Therefore,

E[(X − Psp{Z1,···,Zn}X)Psp{Z1,···,Zn}Y ] = 0. (3.5.2)

By (3.5.1), we have

E[(X − Psp{Z1,···,Zn}X)(Y − Psp{Z1,···,Zn}Y )]

= Cov(X − Psp{Z1,···,Zn}X, Y − Psp{Z1,···,Zn}Y )

= 0. (3.5.3)

Hence, by (3.5.2) and (3.5.3)

E[(X − Psp{Z1,···,Zn}X)Y ] = 0.

Therefore, (X − Psp{Z1,···,Zn}X) ⊥ sp{Z1, · · · , Zn, Y }. Obviously,

Psp{Z1,···,Zn}X ∈ sp{Z1, · · · , Zn} ⊆ sp{Z1, · · · , Zn, Y }.

By the Projection Theorem

Psp{Z1,···,Zn}X = Psp{Z1,···,Zn,Y }X,

and the proof is complete. �

The following theorem was first proved by Ramsey (1974) and characterizes

PACFs for AR(p)s.

Theorem 3.2. Assume that {Xt} is a mean zero causal stationary series with partial

autocorrelation function α(.) and autocovariance function γ(.) such that γ(h) → 0

as h→ ∞. Then {Xt} is an AR(p) series if and only if α(h) = 0 for all h > p and

α(p) �= 0.
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Proof of Theorem 3.2. First, we assume that the PACF satisfies α(h) = 0 for

all h > p and α(p) �= 0.

By stationarity and the Projection Theorem, there exists a unique φ
p

=

(φ1, · · · , φp)
′ such that

Psp{Xt−1,···,Xt−p}Xt =
p∑

k=1

φkXt−k.

Let

εt = Xt − Psp{Xt−1,···,Xt−p}Xt = Xt − φ1Xt−1 − · · · − φpXt−p.

By Lemma 3.4, the variance of εt is constant in t. Set σ2 = Var(εt). From station-

arity,

Corr(Xt − Psp{Xt−1,···,Xt−p}Xt, Xt−p−1 − Psp{Xt−1,···,Xt−p}Xt−p−1)

= Corr(Xp+2 − Psp{Xp+1,···,X2}Xp+2, X1 − Psp{Xp+1,···,X2}X1)

= α(p+ 1)

= 0.

Repeated use of Lemma 3.5 yields that for all r ≥ 1

Psp{Xt−1,···,Xt−p}Xt = Psp{Xt−1,···,Xt−p,···,Xt−p−r}Xt.

Hence we conclude that {εt} are uncorrelated since for any i > j,

Cov(εi, εj) = E[(Xi − Psp{Xi−1,···,Xi−p}Xi)(Xj − Psp{Xj−1,···,Xj−p}Xj)]

= E[(Xi − Psp{Xi−1,···,Xi−p,···,Xj−p}Xi)(Xj − Psp{Xj−1,···,Xj−p}Xj)]

= 0,

by the Projection Theorem. Therefore {εt} ∼ WN(0, σ2), and the proof of sufficiency

is complete.
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Now, suppose {Xt} is an AR(p) series. By the definition of causality and linearity

of predictions, we can easily conclude that

Xt − Psp{Xt−1,···,Xt−p}Xt = Xt −
p∑

k=1

φkXt−k,

= εt, (3.5.4)

and for any h > p,

Xt − Psp{Xt−1,···,Xt−p,···,Xt−h}Xt = Xt − Psp{Xt−1,···,Xt−p}Xt

= εt. (3.5.5)

Since εt ⊥ sp{Xt−1, · · · , Xt−h},

α(h) = Cov(Xt − Psp{Xt−1,···,Xt−h}Xt, Xt−h−1 − Psp{Xt−1,···,Xt−h}Xt−h−1)

= E[εt(Xt−h−1 − Psp{Xt−1,···,Xt−h}Xt−h−1)]

= 0. (3.5.6)

Suppose that α(p) = 0 and that h0 < p is the largest integer such that α(h0) �= 0.

Then by the sufficiency argument above, {Xt} is an AR(h0) series which contradicts

that {Xt} is an AR(p) series. Therefore, for a causal AR(p) series, α(h) = 0 for all

h > p and α(p) �= 0. This completes the necessity. �

The following result generalizes Theorem 3.2 to periodic autoregressions.

Theorem 3.3. Assume that {XnT+ν} is a mean zero periodically stationary series

with autocovariance γh(ν) and partial autocorrelation αh(ν) at season ν and lag h

such that Γm,ν = [γi−j(ν − i)]i,j=1,···,m is nonsingular for all ν and m ≥ 1. Then

{XnT+ν} is a PAR(p) series if and only if αh(ν) = 0 for all h > p and αp(ν) �= 0

for 1 ≤ ν ≤ T .

Proof of Theorem 3.3. First, assume that αh(ν) = 0 for any h > p and

1 ≤ ν ≤ T , and that αp(ν) �= 0. Let

εnT+ν = XnT+ν − Psp{XnT+ν−1,···,XnT+ν−p}XnT+ν .



33

From Lemma 3.2, there exists a unique φ(ν) = (φ1(ν), · · · , φp(ν))
′ for each ν such

that

Psp{XnT+ν−1,···,XnT+ν−p}XnT+ν =
p∑

k=1

φk(ν)XnT+ν−k

holds for all n and

σ2(ν) := E[εnT+ν ]
2 = E[XnT+ν − Psp{XnT+ν−1,···,XnT+ν−p}XnT+ν ]

2

is free from n by periodic stationarity. Repeated use of Lemma 3.5 yields that

Psp{Xt−1,···,Xt−p}Xt = Psp{Xt−1,···,Xt−p,···,Xt−p−r}Xt

for all r ≥ 1. Hence, for any i > j

E[εiεj ] = E[(Xi − Psp{Xi−1,···,Xi−p}Xi)(Xj − Psp{Xj−1,···,Xj−p}Xj)]

= E[(Xi − Psp{Xi−1,···,Xi−p,···,Xj−p}Xi)(Xj − Psp{Xj−1,···,Xj−p}Xj)]

= 0

by the orthogonality property of projections. Therefore, {εnT+ν} is periodic white

noise and the proof of sufficiency is complete.

Now, suppose that {XnT+ν} is a PAR(p) series. By the definition of causality

and linearity of predictions, we have

Psp{XnT+ν−1,···,XnT+ν−p}XnT+ν =
p∑

k=1

φk(ν)XnT+ν−k,

and for any h > p,

Psp{XnT+ν−1,···,XnT+ν−p,···,XnT+ν−h}XnT+ν = Psp{XnT+ν−1,···,XnT+ν−p}XnT+ν .

Therefore, for any h > p,

X̂F
t−h,tXt−h = X̂F

t−p−1,tXt−h, (3.5.7)
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and hence

E[(Xt − X̂F
t−h,t)Xt−h] = E[(Xt − X̂F

t−p−1,t)Xt−h]

= E[εtXt−h]

= 0. (3.5.8)

So by (3.3.11), αh(ν) = 0 for h > p.

Suppose that αp(ν) = 0 and that h0 < p is the largest integer such that αh0(ν) �=
0. Then by the sufficiency argument above, {XnT+ν} is a PAR(h0) series which

contradicts that {XnT+ν} is a PAR(p) series. Therefore, for a causal PAR(p) series,

αh(ν) = 0 for all h > p and αp(ν) �= 0. �
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Chapter 4

Large Sample Parsimonious PARMA Inference

4.1 Introduction

Modeling methods for periodic series focus on the class of periodic autoregres-

sive moving-average (PARMA) models as the PARMA second moment structure

is indeed periodic. A ubiquitous problem in fitting a PARMA model to a periodic

series, however, lies with parsimony. Even very simple PARMA models can have

an inordinately large number of parameters. A first order periodic autoregression

for daily data, for example, has 365 autoregressive parameters — typically far more

than this number is necessary for an adequate statistical description of the series.

This chapter presents results aimed at parsimonious PARMA model development.

The PARMA model in (2.2.2) has (p + q)T autoregressive and moving-average

parameters and T additional white noise variance parameters. This parameter total

can be large for even moderate T , making some PARMA inference matters unwieldy.

For example, it would be a computationally intensive task to numerically optimize a

Gaussian-based likelihood in the 365 autoregressive parameters to fit a periodic

first order autoregression (PAR(1)) to daily data. Consequently, many authors

have investigated parsimonious versions of (2.2.2). Thompstone et al. (1985) sug-

gested grouping similar seasons into blocks to reduce parameter totals; alternatively,

Hannan (1955), Jones and Brelsford (1967) and Bloomfield et al. (1994) consider

modeling slow seasonal changes in parameters with Fourier series. For example,

in the analysis of a monthly ozone series, Bloomfield et al. (1994) found that the

38
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12 parameters in a monthly representation for φ1(ν) in a PAR(1) model could be

statistically consolidated into the three parameters R0, R1, and τ1 via

φ1(ν) = R0 +R1 cos

(
2π(ν − τ1)

T

)
. (4.1.1)

Wavelet based expansions could be considered if changes between adjacent seasons

are more abrupt. A third technique of parsimonious PARMA modeling constrains

all off-diagonal matrix parameters in the PARMA model’s T -variate ARMA repre-

sentation (Vecchia 1985a provides the construction) to be zero. See Bartolini et al.

(1988) and Rasmussen et al. (1996) for further discussion of these ‘contemporaneous’

models.

Parameter estimation and large sample inference for unconstrained PARMA

models has now been well explored from several viewpoints. Pagano (1978) and

Troutman (1979) first studied moment estimates for periodic autoregressions and

established their consistency and asymptotic efficiency for Gaussian series; Lund and

Basawa (2000) extend these results to weighted and unweighted least squares and

maximum likelihood estimation, and also consider PARMA models with a moving

average component. Parzen and Pagano (1979) and Dunsmuir (1981) focus on esti-

mation of the seasonal means and standard deviations of a periodic series.

Inference for PARMA models with parametric constraints such as those in (4.1.1)

have not been directly investigated. For example, an explicit standard error for the

estimate (say maximum likelihood) of R1 in (4.1.1) allows one to test the hypothesis

that φ1(ν) is constant in the season ν. It is the purpose of this chapter to consider

such problems.

The rest of this chapter proceeds as follows. Section 2 introduces a series of

daily temperatures from Griffin, Georgia (GA), whose analysis motivated this study.

Section 3 presents a large sample result for parsimonious PARMA model fitting.

A likelihood ratio hypothesis test is also investigated there. Section 4 explores



40

the computational mathematics of several simple PARMA models, and Section 5

concludes with a study of the Griffin series. All plots are provided at the end of this

chapter.

4.2 Griffin Temperatures

Figure 4.1 plots 67 years of daily temperatures from Griffin, GA observed from Jan 1

1931 through Dec 31 1997 inclusive. Leap year (Feb 29) temperatures were ignored

so that T = 365. Inclusion of leap year data does not change any of our inferences

appreciably. Figure 4.1 reveals that the first two moments of the Griffin data are

periodic with summertime temperatures being warmer and less variable than win-

tertime temperatures. The seasonal cycle in variance can be seen by comparing

the ‘jaggedness’ of peaks and troughs in Figure 4.1. The first two graphs in Figure

4.2 present plots of the series sample means and variances by day and graphically

confirm this claimed seasonality.

Let γh(ν) = Cov(XnT+ν , XnT+ν−h) denote the autocovariance of {Xt} at lag

h ≥ 0 and season ν. The bottom plot in Figure 4.2 displays Griffin sample autoco-

variances by day of year at the lag h = 1. These estimates show a similar seasonal

structure to that of the sample variances. Autocovariances are estimated from the

non-negative definite sample average

γ̂h(ν) = d−1
d−1∑
n=0

XnT+νXnT+ν−h, (4.2.1)

where the employed notation assumes d full cycles of observed data. The number

of observed data points is then dT and {Xt} is observed at the times t = 1, . . . , dT .

The summation limits in (4.2.1) are written more precisely, for a fixed ν and h, as

all n ≥ 0 such that nT + ν and nT + ν − h lie within {1, . . . , dT}.
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Let ρh(ν) = Corr(XnT+ν , XnT+ν−h) denote the autocorrelation of {Xt} at lag

h ≥ 0 and season ν. Sample versions of the autocorrelations are computed via

ρ̂h(ν) =
γ̂h(ν)√

γ̂0(ν)γ̂0(ν − h)
. (4.2.2)

The top graph in Figure 4.3 plots the lag one sample autocorrelations by day of year

(the ordinate scale on this graph is labelled as ‘PAR(1) autoregressive estimate’, but

the two quantities are equivalent; see (4.5.2) below). From this plot, it is not clear

whether the lag one autocorrelations are constant in season, or if there is further

structure. Later, we will investigate statistical tests for such hypotheses.

4.3 Large Sample Parsimonious PARMA Inference

Suppose that the (p+ q)T PARMA autoregressive and moving average parameters,

denoted by α, are functions of an l dimensional parameter vector β. The dimension

l can be considerably smaller than (p+q)T . The notations φk(ν; β) and θk(ν; β) will

explicitly emphasize dependence of the autoregressive and moving-average parame-

ters on β. The T white noise variances, σ2(ν), 1 ≤ ν ≤ T , will be treated as nuisance

parameters in the exposition below. We now give two examples of PARMA para-

metric ‘consolidations’ (constraints) that appear interesting.

Example 4.1. Fourier parameter consolidations can be written in the form

φm(ν) = A0,m+
r∑

k=1

[
Bk,m sin

(
2πkν

T

)
+ Ak,m cos

(
2πkν

T

)]
, 1 ≤ m ≤ p;(4.3.1)

θm(ν) = C0,m+
s∑

k=1

[
Dk,m sin

(
2πkν

T

)
+ Ck,m cos

(
2πkν

T

)]
, 1 ≤ m ≤ q,(4.3.2)

where Ak,m, Bk,m, Ck,m, and Dk,m are Fourier coefficients. There are (2r + 1)p +

(2s + 1)q free parameters in (4.3.1) and (4.3.2) which may be considerably smaller

than (p + q)T for small r and s. One could have r and s depend on m, but we
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do not pursue such generality here. Equations (4.3.1) and (4.3.2) are equivalently

reparameterized as

φm(ν) = R0,m +
r∑

k=1

Rk,m cos

(
2πk(ν − τk,m)

T

)
, 1 ≤ m ≤ p; (4.3.3)

θm(ν) = S0,m +
s∑

k=1

Sk,m cos

(
2πk(ν − ηk,m)

T

)
, 1 ≤ m ≤ q. (4.3.4)

Here, Rk,m and Sk,m are amplitudes and τk,m and ηk,m are phase shifts. �

Example 4.2. Consider a manufacturing process which operates with different

dynamics on weekend days and week days. A simple first order autoregression

describing this situation, also considered in Bibi and Francq (2000), is

XnT+ν − φ1(ν)XnT+ν−1 = εnT+ν , (4.3.5)

where φ1(ν) = β1 if 1 ≤ ν ≤ 5 and φ1(ν) = β2 if 6 ≤ ν ≤ 7. The period is T = 7

and our accounting tracks Mondays as ν = 1 and Sundays as ν = 7. �

Estimates of β can be computed under several estimation paradigms. A like-

lihood estimate of β is calculated as the arguments that maximize the Gaussian

likelihood

L(β) = (2π)−dT/2

(
dT∏
t=1

vt

)−1/2

exp

(
−1

2

dT∑
t=1

(Xt − X̂t)
2

vt

)
, (4.3.6)

where the innovations form of the likelihood (cf. Chapter 8 of Brockwell and Davis,

1991) has been invoked. In particular,

X̂t = E[Xt|X1, . . . , Xt−1], t ≥ 2 (4.3.7)

is the best one-step-ahead linear predictor (take X̂1 = 0) that minimizes the mean

squared prediction error

vt = E[(Xt − X̂t)
2]. (4.3.8)
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Lund and Basawa (2000) present an algorithm that efficiently computes X̂t and vt

recursively in t for a general PARMA series. In the case of periodic autoregressions

of order p (PAR(p)),

XnT+ν −
p∑

k=1

φk(ν)XnT+ν−k = εnT+ν , (4.3.9)

the one-step-ahead predictions and mean squared errors take the simple form

X̂nT+ν =
p∑

k=1

φk(ν; β)XnT+ν−k, vnT+ν = σ2(ν), nT + ν > p; (4.3.10)

hence, (4.3.6) reduces to

−2 ln(L(β)) = dT ln(2π) + ln (det(Γp)) +X ′
pΓ

−1
p Xp

+
dT∑

t=p+1

ln (σ2(t)) +
dT∑

t=p+1

(Xt − X̂t)
2

σ2(t)
, (4.3.11)

where Xp = (X1, . . . , Xp)
′ denotes the first p series observations and Γp = E[XpX

′
p]

is its covariance matrix. The covariance matrix Γp can be computed from the sea-

sonal Yule-Walker equations (cf. Pagano 1978 and Section 4 here). The exact

likelihood above compares quite favorably, in terms of computational demands, to

the methods of Li and Hui (1988) or the approximate likelihood in Vecchia (1985b).

For PARMA models with a moving average component, β can be estimated as a

solution to the l-dimensional optimal estimating equation Sd(β) = 0(l×1) where

Sd(β) =
d−1∑
n=0

T∑
ν=1

ε∗nT+ν(β)

σ2(ν)

∂ε∗nT+ν(β)

∂β
. (4.3.12)

Here, ε∗t (β), an estimate of εt in (2.2.2), is computed recursively in t via

ε∗nT+ν(β) = XnT+ν −
p∑

k=1

φk(ν; β)XnT+ν−k −
q∑

k=1

θk(ν; β)ε∗nT+ν(ν; β) (4.3.13)

with the convention that Xt = ε∗t = 0 for t ≤ 0. The derivatives ∂ε∗t (β)/∂β in

(4.3.12) are easily computed (recursively in t) by differentiating (4.3.13). We tacitly

assume that the first order partial derivatives of φk(ν; β) and θk(ν; β) exist.
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Using general quasilikelihood techniques, Basawa and Lund (2001) establish the

consistency and asymptotic normality of the above maximum likelihood and optimal

estimating equation estimates of β and identify the asymptotic covariance matrix

of these estimates for general causal and invertible PARMA models. The limiting

distribution for the estimating equation and likelihood estimates are equivalent.

Noting that

Sd(β) =
d−1∑
n=0

T∑
ν=1

ε∗nT+ν(β)

σ2(ν)

∂ε∗nT+ν(β)

∂α

∂α

∂β
(4.3.14)

and arguing as in Basawa and Lund (2001) will produce the following result.

Theorem 4.1. If {Xt} is a causal and invertible PARMA series where {εt} is

independent periodic white noise with E[εt] ≡ 0 and E[ε4nT+ν ] ∈ (0,∞) for each

season ν, then

d
1
2 (β̂ − β)

D−→ N(0, F−1(β)) (4.3.15)

as d→ ∞ where the information matrix F (β) is computed from

F (β) =
T∑

ν=1

σ−2(ν)D′Γ(ν)D, (4.3.16)

D = ∂α/∂β is a (q + p)T × l dimensional matrix of partial derivatives translating

constrained estimation to unconstrained estimation (the (i, j)th element of D is

Di,j = ∂αi/∂βj for 1 ≤ i ≤ (p+ q)T and 1 ≤ j ≤ l), and

Γ(ν) = E

[(
∂εnT+ν

∂α

)(
∂εnT+ν

∂α

)′]
. (4.3.17)

�

The next section gives several examples illustrating the practical uses of Theorem

4.1.
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Likelihood ratio statistics for hypothesis tests involving the PARMA parameters

are easily developed. Specifically suppose that a parsimonious PARMA model is

specified via α = g(β) where g is a known (p + q)T dimensional function of the l

dimensional parameter vector β. Of course, one wants l much less than (p+ q)T . To

test the null hypothesis H : α = g(β) nested within the unrestricted PARMA model

(but subject to periodic stationarity and invertibility conditions), one can examine

the likelihood ratio statistic

Λ = −2 ln


L(g(β̂

ML
))

L(α̂ML)


 , (4.3.18)

where β̂
ML

and α̂ML are the maximum likelihood estimates of β and α.

Under the conditions of Theorem 4.1, and regarding the white noise variances

σ2(ν), 1 ≤ ν ≤ T as known nuisance parameters, one can establish the usual null

hypothesis chi-squared limit law Λ
D→ χ2

(p+q)T−l as d → ∞, where χ2
k denotes a

chi-squared random variable with k degrees of freedom. If the white noise variances

are unknown, consistent estimates of these quantities can be substituted without

altering the limit distribution. Whereas we will focus on likelihoods and likelihood

ratios in the ensuing computations, Wald Tests, Rao Tests, and AICC discrepancies

are also easily developed.

Assuming H is true, one may wish to further test a hypothesis of the form

H∗ : β = β
0

against the alternative that β �= β
0
. The likelihood ratio statistic for

this hypothesis test is

λ∗ = −2 ln


 L(g(β

0
))

L(g(β̂
ML

))


 ; (4.3.19)

in this case, λ∗ D→ χ2
l as d→ ∞. Applications of these methods are given in Section

5.
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4.4 Computational Examples

Example 4.3. Consider the causal PAR(p) model in (4.3.9) with AR parameters

as in (4.3.1). Our derivation will enter the PARMA parameters in the order

α = (φ1(1), . . . , φp(1);φ1(2), . . . , φp(2); . . . ;φ1(T ), . . . , φp(T ))′, (4.4.1)

and

β = (A0,1, B1,1, A1,1, . . . , Br,1, Ar,1; . . . ;A0,p, B1,p, A1,p, . . . , Br,p, Ar,p)
′. (4.4.2)

Here, l = p(2r + 1) and

DmT+ν,j =
∂φm+1(ν)

∂βj
, 0 ≤ m ≤ p− 1, 1 ≤ ν ≤ T, 1 ≤ j ≤ l. (4.4.3)

Taking derivatives in (4.3.1) and performing some tedious simplifications gives, for

a fixed i, j satisfying 1 ≤ i ≤ pT and 1 ≤ j ≤ l,

Di,j =




cos
(

2πkν
T

)
, if i = mT + ν and j = m(2r + 1) + 2k + 1

sin
(

2πkν
T

)
, if i = mT + ν and j = m(2r + 1) + 2k

0, otherwise

(4.4.4)

for some values satisfying 0 ≤ m ≤ p− 1, 1 ≤ ν ≤ T , and 0 ≤ k ≤ r. �

Example 4.4. Consider a causal PAR(1) series as a specific case of Example 4.3.

The PAR(1) causality condition is well known as |∏T
ν=1 φ1(ν)| < 1 (cf. Vecchia

1985a and Hurd et al. 1999). Here, α = (φ1(1), . . . , φ1(T ))′. By (4.3.5),

∂εnT+ν

∂α
= −XnT+ν−1

∂φ1(ν)

∂α
= −XnT+ν−1e

T
ν (4.4.5)

where eT
i denotes a T × 1 unit vector whose entries are all zero except for a one in

the ith row. Combining (4.3.17) and (4.4.5) gives

Γ(ν) = Var(XnT+ν−1)E
T
ν,ν , (4.4.6)
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where ET
i,j = eT

i e
T
j ′ is a T × T matrix whose entries are all zero except for a unit

entry in the jth column of row i.

When the PAR(1) parameters are constrained as in Example 4.1, the constrained

parameters will be tracked in the order β = (A0,1, B1,1, A1,1, . . . , Br,1, Ar,1)
′. Differ-

entiating (4.3.1) and simplifying shows that the odd columns of D have the form

Dν,2k+1 = cos

(
2πkν

T

)
, 1 ≤ ν ≤ T, 0 ≤ k ≤ r, (4.4.7)

and that even columns of D have entries

Dν,2k = sin
(

2πnν

T

)
, 1 ≤ ν ≤ T, 1 ≤ k ≤ r. (4.4.8)

Using (4.4.6) in (4.3.16) gives

F (β) =
T∑

ν=1

Var(XnT+ν−1)D
′ET

ν,νD

σ2(ν)
. (4.4.9)

All quantities in (4.4.9) are now explicitly identified except for the periodic variance

of {Xt}, which Bloomfield et al. (1994) compute as

γ0(ν) = Var(XnT+ν) = r2
ν

[
r2
T

1 − r2
T

T∑
k=1

σ2(k)

r2
k

+
ν∑

k=1

σ2(k)

r2
k

]
, (4.4.10)

where rν =
∏ν

j=1 φ1(j) for 1 ≤ ν ≤ T .

For the PAR(1) parameterization in Example 4.2, α = (φ1(1), . . . , φ1(T ))′, β =

(β1, β2)
′, T = 7, and the causality condition is |β5

1β
2
2 | < 1. For white noise variances,

we take σ2(ν) = σ2
1 if 1 ≤ ν ≤ 5 and σ2(ν) = σ2

2 if 6 ≤ ν ≤ 7. Here, D is a 7 × 2

matrix whose entries are

Di,j =




1, if 1 ≤ i ≤ 5 and j = 1

1, if 6 ≤ i ≤ 7 and j = 2

0, otherwise

. (4.4.11)



48

Hence,

D′ET
ν,νD =



E2

1,1, if 1 ≤ ν ≤ 5

E2
2,2, if 6 ≤ ν ≤ 7

(4.4.12)

and substitution into (4.4.9) gives

F (β1, β2) = Diag

(
σ−2

1

5∑
ν=1

Var(XnT+ν−1), σ
−2
2

7∑
ν=6

Var(XnT+ν−1)

)
, (4.4.13)

where Var(XnT+ν−1) is computed from (4.4.10) as an explicit function of β1, β2, σ
2
1 ,

and σ2
2. Some tedious manipulations with (4.4.10) produce

Var(XnT+ν) = β2ν
1

[(
β4

2

1 − β10
1 β

4
2

)(
σ2

1(β
10
1 − 1)

β2
1 − 1

+
σ2

2(β
2
2 + 1)

β4
2

)
+ σ2

1

(
β2ν

1 − 1

β2ν
1 (β2

1 − 1)

)]

for 1 ≤ ν ≤ 5 and

Var(XnT+ν) = β
2(ν−5)
2

[
Var(XnT+5) + σ2

2

(
(β2

2)
ν−5 − 1

(β2
2)

ν−5(β2
2 − 1)

)]

for 6 ≤ ν ≤ 7. The diagonal structure of F (β) implies that the estimates of β1 and β2

are asymptotically independent — a structure inherited from general unconstrained

periodic autoregressions (cf. Pagano 1978). �

4.5 Model Development for Griffin Temperatures

A PARMA model will now be developed for the Griffin data in Figure 4.1. To focus

initially on autocovariances, a daily mean µν = E[XnT+ν ] was estimated via

µ̂ν = d−1
d−1∑
n=0

XnT+ν (4.5.1)

and subtracted from the series. Next, an unconstrained PAR(1) model was fitted to

this mean adjusted data via the method of moments:

φ̂1(ν) = ρ̂1(ν) and σ̂2(ν) = d−1
d−1∑
n=0

(XnT+ν − X̂nT+ν)
2. (4.5.2)
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Figure 4.3 plots the PAR(1) moment estimates of autoregressive and white noise

variance parameters. The estimated white noise variances have a distinctly sinu-

soidal shape; however, it is not clear how the autoregressive parameters vary in

season if at all. After some exploratory Fourier fits, the parameterizations

φ1(ν) = R0 +R1 cos

(
2π(ν − τ1)

T

)
+R2 cos

(
4π(ν − τ2)

T

)
(4.5.3)

and

σ2(ν) = S0 + S1 cos

(
2π(ν − κ1)

T

)
(4.5.4)

were chosen for further study. Seasonal variation of φ1(ν) in ν is controlled through

R1 and R2 (we are interested in testing if R1 and/or R2 is zero); seasonal variation of

σ2(ν) in ν is controlled through S1. The PAR(1) likelihood was evaluated via (4.3.11)

and optimized while imposing the constraints in (4.5.3) and (4.5.4). The likelihood

estimates, to three decimal places, are R̂0 = 0.705±0.00423, R̂1 = 0.0263±0.00541,

R̂2 = 0.00574 ± 0.00541, τ̂1 = 3.169 ± 14.265, τ̂2 = 3.427 ± 32.625, Ŝ0 = 8.618,

Ŝ1 = 7.050, and κ̂1 = 29.533. The error margins were computed from the informa-

tion matrix derived in Theorem 4.1 and Example 4.4 (standard errors for nuisance

parameters are omitted). A likelihood of −2 ln(L) = 116128.814 was achieved.

The estimate and standard error of R2 produce a standard normal z-statistic of

1.061 for the null hypothesis test that R2 = 0; hence, the PAR(1) model in (4.5.3)

and (4.5.4) was refitted with R2 constrained as zero. The likelihood estimates for this

‘reduced’ model are R̂0 = 0.708±0.00405, R̂1 = 0.0281±0.00490, τ̂1 = 3.169±13.288,

Ŝ0 = 8.620, Ŝ1 = 7.054, and κ̂1 = 29.520; a likelihood of −2 ln(L) = 116129.598 was

achieved.

The likelihood ratio test in (4.3.19) also favors R2 = 0. Here, a test statistic

of 0.784 is obtained, which, under the null hypothesis, has one degree of freedom

(the restriction R2 = 0 imposes one parametric constraint) and a P -value of 0.377.
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Figure 4.3 compares the constrained likelihood estimates of φ1(ν), 1 ≤ ν ≤ T and

σ2(ν), 1 ≤ ν ≤ T with their moment counterparts in (4.5.2) — notice that the

constrained parameters retain the general structure of the moment estimates with

fewer expended parameters.

A set of residuals was computed for this model fit. In general, the residual at

time t, denoted by Lt, is defined as

LnT+ν =
XnT+ν − X̂nT+ν√

vnT+ν

(4.5.5)

and has the usual interpretation of observation minus prediction. If the fitted model

is adequate, the residuals should be approximately uncorrelated; otherwise, the

model can be improved. The denominator in (4.5.5) scales {Lt} to a unit variance

series.

Figure 4.4 plots estimated versions of {Lt} along with their sample autocorrela-

tions and partial autocorrelations. Ninety five percent confidence bounds for white

noise are included for comparison’s sake. The autocorrelations and partial autocorre-

lations exceed the white noise confidence bounds over the first four lags and indicate

a departure from white noise. The empirical tests of Bloomfield et al. (1994) were

applied to {Lt} and did not reveal any periodicities. Hence, the residuals appear to

be short-memory and stationary, but decisively non-white. An ARMA model was

next fitted to these residuals. The optimal fitting ARMA model was judged to be

an AR(3) model via the usual ARMA fitting criterion (cf. Chapter 9 of Brockwell

and Davis 1991).

Mathematically combining the PAR(1) difference equation in (4.3.5) with errors

that are a solution to the AR(3) difference equation

εt − η1εt−1 − η2εt−2 − η3εt−3 = Wt, (4.5.6)

where {Wt} is mean zero white noise with Var(Wt) ≡ 1, results in a PAR(4) differ-

ence equation with the coefficients
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φPAR(4),1(ν) = φPAR(1),1(ν) + η1
σ(ν)

σ(ν − 1)
,

φPAR(4),2(ν) = η2
σ(ν)

σ(ν − 2)
− η1φPAR(1),1(ν − 1)

σ(ν)

σ(ν − 1)
,

φPAR(4),3(ν) = η3
σ(ν)

σ(ν − 3)
− η2φPAR(1),1(ν − 2)

σ(ν)

σ(ν − 2)
,

φPAR(4),4(ν) = −η3φPAR(1),1(ν − 3)
σ(ν)

σ(ν − 3)
(4.5.7)

(PAR(1) and PAR(4) coefficients are distinguished with the obvious notation). We

now have a good PARMA model candidate and proceed to ‘tune’ the model param-

eters via likelihood.

Much of the motivation for the analysis of the Griffin series lies with forecasting.

Because of this, we also take care to model the seasonal mean cycle of Griffin tem-

peratures. Using the Fourier parameterization

µν = E[XnT+ν ] = M0 +
u∑

k=1

Mk cos

(
2πk(ν − ξk)

T

)
(4.5.8)

to describe the periodic mean, we will estimate the value of u, M0,M1, . . . ,Mu and

ξ1, . . . , ξu jointly with the above PAR(4) model parameters. Imposing (4.5.7), (4.5.3)

with R2 = 0, and (4.5.4), the following optimal model likelihoods were obtained for

varying u:

u −2 ln(L)

1 116074.063

2 116044.695

3 116035.086

4 116029.320

5 116029.258.

Comparing the nested likelihoods above with a chi-squared test with one degree

of freedom suggests that the optimal value of u is four. The periodic mean estimate



52

with u = 2 is substantially better than that with u = 1, reducing −2 ln(L) by about

30 points, but the three- and four-term fits also improve daily mean description.

The above parameterization saves T − (2u + 1) = 356 parameters over general

unconstrained seasonal means. The top graph in Figure 4.2 compares the Fourier

estimates with u = 4 against the general periodic means in (4.5.1) and reveals a close

agreement. The Fourier fit to the mean also graphically confirms a climatological

principle common in the temperate zone: the descent from summer into winter is

quicker than the ascent from winter into summer.

The likelihood estimates for the PAR(4) autoregressive and white noise variance

parameters with u = 4 are R̂0 = 0.708 ± 0.0106, R̂1 = 0.0331 ± 0.00629, τ̂1 =

0.982 ± 11.180, Ŝ0 = 8.176, Ŝ1 = 6.469, κ̂1 = 25.454, η̂1 = 0.103 ± 0.0122, η̂2 =

−0.092±0.00858, and η̂3 = −0.0430±0.00842. The error margins are again based on

Theorem 3.1. The fitted model saves 5T −9 = 1816 parameters over a general mean

zero PAR(4) model for daily data with general white noise variances. Estimates of

the mean parameters in (4.5.8) are M̂0 = 13.110, M̂1 = −10.062, ξ̂1 = 22.596, M̂2 =

0.194, ξ̂2 = 74.990, M̂3 = 0.0893, ξ̂3 = −20.014, M̂4 = 0.0834, and ξ̂4 = −20.014; a

likelihood of −2 ln(L) = 116029.320 was achieved with this model fit.

As a final diagnostic check, a set of residuals for the above PAR(4) model was

computed via (4.5.5) after subtracting daily means estimated by (4.5.8). The sample

autocorrelations and partial autocorrelations of these residuals, along with 95% con-

fidence bounds for white noise, are displayed in Figure 4.5. As all autocorrelations

lie inside or very close to the 95% white noise bounds, the PAR(4) residuals are

concluded to be white noise. Hence, the Griffin series is parsimoniously described

with a PAR(4) model as constrained in (4.5.7), (4.5.3) with R2 = 0, (4.5.4), and

(4.5.8) with u = 4.
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The above PAR(4) model expends 18 total parameters, 9 of which describe the

seasonal mean structure of the series. This is substantially smaller than the 6×T =

2190 parameters in a general mean PAR(4) model with general white noise variances.

A layering strategy for modeling general short memory periodic series now

emerges. First, find a simple PARMA model that leaves short memory and sta-

tionary (not periodic) residuals. In the case of the Griffin series, a PAR(1) model fit

served this purpose. If the PAR(1) fit had non-periodic or long memory residuals,

then a PAR(2), PARMA(1,1), etc. model could alternatively be investigated as a

first layer. Next, consolidate the parameters of the first layer with the standard

errors derived in Theorem 4.1 or a likelihood ratio test. Reduce the parameters in

the first layer as much as possible. For the second layer, fit a stationary ARMA

model to the residuals of the first layer. Then mathematically combine the differ-

ence equations governing the two layers. The result will be a PARMA model which

is parsimonious. As a final step, retune the PARMA parameters jointly in both

layers by maximizing a combined two-layer model likelihood or estimating equation.

For the Griffin series, more complex first layers (e.g. PAR(2), PARMA(1,1)) were

explored, but all non-PAR(1) first layers ultimately led to worse fits with increased

parameter counts.

The above methods have worked very well in describing the Griffin series. In

general, the results and techniques in this article now make it possible to quickly fit

parsimonious PARMA models to periodic short-memory series.
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Figure 4.1: Griffin, GA Temperatures.
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Figure 4.2: (a) Griffin Daily Sample Means; (b) Griffin Daily Sample Variances; (c)
Griffin Lag One Autocovariances.
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Figure 4.3: (a) PAR(1) Autoregressive Estimates; (b) PAR(1) White Noise Variance
Estimates.
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Figure 4.4: (a) PAR(1) Residuals; (b) Autocorrelation; (c) Partial Autocorrelation.
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Figure 4.5: (a) PAR(4) Residuals; (b) Autocorrelation; (c) Partial Autocorrelation.



Chapter 5

Seasonal Periodic Autoregressive Moving-Average Models:

Future Research

5.1 Motivation

In this section, we introduce a new class of time series models, called seasonal peri-

odic autoregressive moving-average models (SPARMA), by generalizing Box-Jenkins

seasonal ARMA (SARMA) models.

The Box-Jenkins seasonal ARMA model (SARMA((p1×p2),(q1×q2))) is defined

by the difference equation:

XnT+ν −
p1∑
i=1

φiXnT+ν−i −
p2∑

j=1

ζjX(n−j)T+ν +
p1∑
i=1

p2∑
j=1

φiζjX(n−j)T+ν−i

= εnT+ν +
q1∑

i=1

θiεnT+ν−i +
q2∑

j=1

ξjε(n−j)T+ν +
q1∑

i=1

q2∑
j=1

θiξjε(n−j)T+ν−i, (5.1.1)

where {εt} ∼ WN(0, σ2). This model incorporates correlations within each period

and also correlations between periods. For instance, for monthly data, one may be

interested in the following questions:

(a) How is each successive monthly observations related to the previous monthly

observations?

(b) How is each month of a given year related to the same month in previous years?

The difference equations in (5.1.1) allow one to model two types of correlations in

a convenient form. The product terms involving φζ and θξ represent interaction

effects.

59
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In the above model, all the autoregressive parameters, moving-average parameters,

and the white noise variances are constant over time.

By allowing the parameters in (5.1.1) to periodically vary with time, we obtain

the corresponding model which we will refer to as a SPARMA model.

A time series {Xt} with finite second moments is said to be a seasonal periodic

autoregressive moving-average (SPARMA) series of order ((p1 × p2), (q1 × q2)), or

SPARMA ((p1×p2), (q1×q2)), with period T ≥ 1, if it satisfies the difference equation

XnT+ν −
p1∑
i=1

φi(ν)XnT+ν−i −
p2∑

j=1

ζj(ν)X(n−j)T+ν

+
p1∑
i=1

p2∑
j=1

φi(ν)ζj(ν)X(n−j)T+ν−i

= εnT+ν +
q1∑

i=1

θi(ν)εnT+ν−i +
q2∑

j=1

ξj(ν)ε(n−j)T+ν

+
q1∑

i=1

q2∑
j=1

θi(ν)ξj(ν)ε(n−j)T+ν−i, (5.1.2)

where {εnT+ν} ∼ PWN(0, σ2(ν)).

Equation (5.1.2) becomes a seasonal ARMA (SARMA) model (Box et al. (1994))

when the model parameters φi(ν), ζj(ν), θi(ν), ξj(ν), σ
2(ν) do not depend on ν.

Model (5.1.2) reduces to a PARMA(p1, q1) model if all {ζj(ν)} and {ξj(ν)} are set

equal to zero. Thus, a SPARMA model includes both SARMA and PARMA as

special cases.

We will denote SPARMA((p1 × p2), (0 × 0)) and SPARMA((0 × 0), (p1 × p2))

models respectively as SPAR(p1 × p2) and SPMA(q1 × q2).

Example 5.1. The SPAR(1 × 1) model is defined by

XnT+ν − φ(ν)XnT+ν−1 − ζ(ν)X(n−1)T+ν + φ(ν)ζ(ν)X(n−1)T+ν−1 (5.1.3)

= εnT+ν .

From (5.1.3), we obtain
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SAR(1 × 1) : XnT+ν − φXnT+ν−1 − ζX(n−1)T+ν + φζX(n−1)T+ν−1 (5.1.4)

= εnT+ν

and

PAR(1) : XnT+ν − φ(ν)XnT+ν−1 = εnT+ν (5.1.5)

by setting φ(ν) = φ and ζ(ν) = ζ in (5.1.3), and by setting ζ(ν) = 0 in (5.1.3),

respectively.

Example 5.2. Consider the models PAR(1), SAR(1×1), and SPAR(1×1) with

period T = 4 given in Table 5.1. All model parameters and white noise vari-

ances periodically vary for both PAR(1) and SPAR(1×1), but remain constant for

SAR(1×1).

Both the PAR(1) and SPAR(1×1) models have different autocorrelation and

partial autocorrelation structures in different seasons. The autocorrelations in the

PAR(1) model die out more rapidly than those of SPAR(1×1) model (see Figure 5.1

and Figure 5.3). For example, in season 1, the absolute values of autocorrelations for

PAR(1) is reduced from 0.3149 at lag 1 to 0.0003 at lag 10, while the absolute values

of autocorrelation for SPAR(1×1) is reduced from 0.3188 at lag 1 to 0.0462 at lag 10.

The difference between autocorrelations at lag 1 and lag 10 for PAR(1) is 0.3146,

while it is only 0.2726 for SPAR(1×1). The SAR(1×1) model is stationary, and

hence, it has the same autocorrelation structure in different seasons (see Figure 5.2).

According to Theorem 3.2 and Theorem 3.3, their PACFs are zero after lags 1, 5,

and 5. The PACFs are given in Figures 5.4-5.6. �

Model (5.1.2) can be written in the PARMA(p1 + p2T, q1 + q2T ) form

XnT+ν −
p1+p2T∑

k=1

φ∗
k(ν)XnT+ν−k = εnT+ν +

q1+q2T∑
k=1

θ∗k(ν)εnT+ν−k (5.1.6)
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with

φ∗
k(ν) =




φi(ν) for 0 ≤ k ≤ p1

ζj(ν) for k = jT (0 ≤ j ≤ p2)

φi(ν)ζj(ν) for k = i+ jT (1 ≤ i ≤ p1 and 1 ≤ j ≤ p2)

0 otherwise,

and

θ∗k(ν) =




θi(ν) for 0 ≤ k ≤ q1

ξj(ν) for k = jT (0 ≤ j ≤ q2)

θi(ν)ξj(ν) for k = i+ jT (1 ≤ i ≤ q1 and 1 ≤ j ≤ q2)

0 otherwise.

Example 5.3. The SPAR(1 × 1) model can be reparameterized as a PAR(1 + T )

model with

φ∗
k(ν) =




φ(ν) for k = 1

ζ(ν) for k = T

φ(ν)ζ(ν) for k = 1 + T

0 otherwise,

�

It follows that some fundamental features of SPARMA models are easily obtained

from PARMA properties.

5.2 Stationarity and Computation of Autocovariances

Based on the foregoing results on PARMA series, we will briefly discuss some prop-

erties, such as stationarity and autocovariance computation, via an example.
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Example 5.4. Consider the SPARMA(1× 1) model with period T governed by the

difference equation

XnT+ν − φ(ν)XnT+ν−1 − ζ(ν)X(n−1)T+ν + φ(ν)ζ(ν)X(n−1)T+ν−1

= εnT+ν . (5.2.1)

The T-variate ARMA version for (5.2.1) is

Φ0Xn − Φ1Xn−1 − Φ2Xn−2 = εn, (5.2.2)

where {Φ0,Φ1,Φ2,Θ0} are respectively determined by (2.2.5) and (2.2.6). Therefore,

the causality condition for this model is

det(Φ0 − Φ1z − Φ2z
2) =

T∏
ν=1

(1 − ζ(ν)z)

(
1 −

T∏
ν=1

φ(ν)zT

)
�= 0

for all complex z satisfying |z| ≤ 1. Hence a unique causal solution to (5.2.1) exists

when

∏
1≤ν≤T

|φ(ν)| < 1, and |ζ(ν)| < 1 for all 1 ≤ ν ≤ T. (5.2.3)

Under (5.2.3), the causal solution to (5.2.1) has the PMA(∞) representation

XnT+ν =
∞∑

k=0

ψk(ν)εnT+ν−k, (5.2.4)

where {ψk(ν)} satisfies max
1≤ν≤T

∞∑
k=0

|ψk(ν)| < ∞. Furthermore, we can determine

{ψk(ν)} via (2.2.10), i.e.,

ψk(ν) = φ(ν)ψk−1(ν − 1)I[k≥1] + ζ(ν)ψk−T (ν)I[k≥T ]

+φ(ν)ζ(ν)ψk−(T+1)(ν − 1)I[k≥T+1],

where k ≥ 1, and 1 ≤ ν ≤ T . Similar to PARMA models, autocovariances are found

by multiplying each side of (5.2.1) by XnT+ν−h, and then taking expectations:

γh(ν) − φ(ν)γh−1(ν − 1) − ζ(ν)γh(ν − T ) + φ(ν)ζ(ν)γh−1(ν − (T + 1))

= σ2(ν)1[h=0]. (5.2.5)
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In particular, the recursion

γh(ν) = φ(ν)γh−1(ν − 1) + ζ(ν)γh(ν − T )− φ(ν)ζ(ν)γh−1(ν − (T + 1)), (5.2.6)

for h > T + 1 emerges. �

5.3 SPARMA Parameter Estimation

We will illustrate the problem via two examples.

Example 5.5. Consider a causal and invertible SPAR((1 × 1)) model,

XnT+ν − φ(ν)XnT+ν−1 − ζ(ν)X(n−1)T+ν + φ(ν)ζ(ν)X(n−1)T+ν−1

= εnT+ν . (5.3.1)

Let

α = (φ(1), ζ(1);φ(2), ζ(2); · · · ;φ(T ), ζ(T ))
′
.

By Theorem 2.3 in Chapter 2, we have d
1
2 (α̂MLE−α)

D−→ N (0, F−1(α)) as d→ ∞,

where F (α) is determined as follows. Taking partial derivatives in (5.3.1) gives

∂εnT+ν(α)

∂α
= −12ν−1XnT+ν−1 − 12νXnT+ν−T + e2ν−1XnT+ν−(T+1), (5.3.2)

where 1i is a 2T × 1 vector whose entries are all zeros except for a one in the ith

entry; ei is a 2T ×1 vector whose entries are all zeros except for ζ(i) on the ith entry

and φ(i) on the (i+ 1)th entry. By (4.3.17)

Fν(α, σ
2)

= E[(
∂εnT+ν(α)

∂α
)(
∂εnT+ν(α)

∂α
)′]

= E[(−12ν−1XnT+ν−1 − 12νXnT+ν−T + e2ν−1XnT+ν−(T+1))

(−12ν−1XnT+ν−1 − 12νXnT+ν−T + e2ν−1XnT+ν−(T+1))
′
]

= 12ν−11
′
2ν−1γ0(ν − 1) + 12ν1

′
2ν−1γT−1(ν − 1) − e2ν−11

′
2ν−1γT (ν − 1)

+12ν−11
′
2νγT−1(ν − 1) + 12ν1

′
2νγ0(ν) − e2ν−11

′
2νγ1(ν)

−12ν−1e
′
2ν−1γT (ν − 1) − 12νe

′
2ν−1γ1(ν) + e2ν−1e

′
2ν−1γ0(ν − 1),
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which is a (2T ×2T ) matrix whose entries are all zeros except for the (i, i), (i+1, i),

(i, i+ 1), and (i+ 1, i+ 1) elements. Specifically,

Fν(α, σ
2) =




0 · · · 0 0 0 0 · · · 0

...
...

...
...

...
...

0 · · · 0 0 0 0 · · · 0

0 · · · 0 f2ν−1,2ν−1 f2ν−1,2ν 0 · · · 0

0 · · · 0 f2ν,2ν−1 f2ν,2ν 0 · · · 0

0 · · · 0 0 0 0 · · · 0

...
...

...
...

...
...

0 · · · 0 0 0 0 · · · 0




, (5.3.3)

where

f2ν−1,2ν−1 = γ0(ν − 1) − 2ζ(ν)γ0(ν − 1) + ζ2(ν)γ0(ν − 1),

f2ν−1,2ν = f2ν,2ν−1

= γ1(ν) − ζ(ν)γ1(ν) − φ(ν)γ0(ν − 1) + φ(ν)ζ(ν)γ0(ν − 1),

f2ν,2ν = γ0(ν) − 2φ(ν)γ1(ν) + φ2(ν)γ0(ν − 1),

where γ0(ν), γ1(ν), γT (ν) and γT+1(ν) can be evaluated by (5.2.5) and (5.2.6). Hence

the 2T × 2T matrix F (α) =
T∑

ν=1
σ−2(ν)Fν(α, σ

2) is a block diagonal matrix. This

indicates that the MLEs for different seasons are asymptotically independent. �

5.4 Concluding Remarks

As we mentioned before, one needs to pay special attention to the parsimony issue

when fitting a PARMA model. SPARMA models provide methods that can help

achieve this goal. For a general PARMA (p1 + p2T, q1 + q2T ) model, there are

p1 + q1 + (p2 + q2)T parameters (the white noise variances are treated as nuisance

parameters). If one can identify the model as a SPARMA((p1×p2), (q1×q2)), then at
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least (p2+q2)(T−1) parameters can be saved. When the period is large, the number

of parameters can be drastically reduced. On the other hand, a SPARMA((p1 ×
p2), (q1 × q2)) model has more parameters than a PARMA (p1, q1) model. It would

be of interest to test whether the extra (p2 + q2) parameters (representing between

season correlations) are significant. Due to the relationship between PARMA and

SPARMA models, many of the results developed in Chapter 3 and 4 for PARMA

models can be extended to SPARMA models. However, further work is needed in

dealing with the problems of identification, prediction, and inference for SPARMA

models.



67

Table 5.1: Comparison of PAR(1), SAR(1×1), and SPAR(1×1)

PAR(1) SAR(1×1) SPAR(1×1)

XnT+ν − φ(ν)XnT+ν−1 XnT+ν − φXnT+ν−1 XnT+ν − φ(ν)XnT+ν−1

= εnT+ν −ζX(n−1)T+ν −ζ(ν)X(n−1)T+ν

+φζX(n−1)T+ν−1 +φ(ν)ζ(ν)X(n−1)T+ν−1

= εnT+ν = εnT+ν

Model φ(1) = 0.3 φ = 0.3 φ(1) = 0.3
σ2(1) = 1 ζ = 0.1 ζ(1) = 0.1

σ2 = 1 σ2(1) = 1

Parameters φ(2) = −0.3 φ(2) = −0.3
σ2(2) = 1 ζ(2) = −0.1

σ2(2) = 1

φ(3) = −0.9 φ(3) = −0.9
σ2(3) = 0.8 ζ(3) = −0.3

σ2(3) = 0.8

φ(4) = −0.5 φ(4) = −0.5
σ2(4) = 0.8 ζ(4) = −0.1

σ2(4) = 0.8
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Table 5.2: Autocorrelations of PAR(1), SAR(1×1), and SPAR(1×1)

season lag PAR(1) SAR(1×1) SPAR(1×1)

ν = 1 1 0.3149 .3105 0.3188
2 -0.1851 .1057 -0.2019
3 0.1344 .0659 0.1214
4 -0.0405 .1291 0.0355
5 -0.0128 .0998 -0.0659
6 0.0075 .0498 0.1133
7 -0.0054 .0247 -0.1078
8 0.0016 .0223 0.0470
9 0.0005 .0205 0.0384
10 -0.0003 .0141 -0.0462

ν = 2 1 -0.3014 -0.3118
2 -0.0949 -0.1469
3 0.0558 0.1375
4 -0.0405 -0.1459
5 0.0122 0.0506
6 0.0039 0.0441
7 -0.0023 -0.0539
8 0.0016 0.0506
9 -0.0005 -0.0181
10 -0.0002 -0.0179

ν = 3 1 -0.7259 -0.6853
2 0.2188 0.2754
3 0.0689 0.3794
4 -0.0405 -0.5117
5 0.0294 0.4807
6 -0.0089 -0.1715
7 -0.0028 -0.1682
8 0.0016 0.2122
9 -0.0012 -0.2025
10 0.0004 0.0720

ν = 4 1 -0.5880 -0.6870
2 0.4268 0.4463
3 -0.1286 -0.2144
4 -0.0405 -0.3767
5 0.0238 0.4464
6 -0.0173 -0.3838
7 0.0052 0.1444
8 0.0016 0.1650
9 -0.0010 -0.2073
10 0.0007 0.1931
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Figure 5.1: Autocorrelations of PAR(1).
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Figure 5.2: Autocorrelations of SAR(1×1).

SEASON 1

Lag h

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-1
.0

0.
0

1.
0

 

 

0 5 10 15 20

-1
.0

0.
0

1.
0

SEASON 2

Lag h

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-1
.0

0.
0

1.
0

 

 

0 5 10 15 20

-1
.0

0.
0

1.
0

SEASON 3

Lag h

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-1
.0

0.
0

1.
0

 

 

0 5 10 15 20

-1
.0

0.
0

1.
0

SEASON 4

Lag h

A
ut

oc
or

re
la

tio
n

0 5 10 15 20

-1
.0

0.
0

1.
0

 

 

0 5 10 15 20

-1
.0

0.
0

1.
0

Figure 5.3: Autocorrelations of SPAR(1×1).
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Figure 5.4: Partial Autocorrelations of PAR(1).
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Figure 5.5: Partial Autocorrelations of SAR(1×1).
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Figure 5.6: Partial Autocorrelations of SPAR(1×1).
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