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ABSTRACT 

Retinal carotenoids lutein and zeaxanthin are found in high concentration in macula lutea 

of the neural retina, where they are termed macular pigment (MP). There are multiple hypotheses 

for MP’s function in retinal tissue, based largely on lutein and zeaxanthin’s known antioxidant 

and light absorption properties. The protective hypothesis, the most widely tested of these 

hypotheses, suggests that MP is capable of protecting vulnerable retinal tissue from actinic 

damage and oxidative stress over the lifespan. The two least explored hypotheses, the visual 

function hypothesis and the neural efficiency hypothesis, suggest that MP is capable of 

influencing visual function via an optical mechanism and / or via a direct influence on central 

nervous tissue, both inside and outside the neural retina. In the latter case, MP may be capable of 

serving as a biomarker of lutein and zeaxanthin embedded in the frontal and occipital cortices. 

The purpose of the present investigation was to provide further examination of the visual 

function hypothesis and to provide a first test of the neural efficiency hypothesis.  
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CHAPTER ONE: GENERAL INTRODUCTION 

Overview.  

 The xanthophyllic carotenoids lutein (L) and zeaxanthin (Z) are known for their ability to 

serve as active antioxidants and to absorb short-wave light (for review, see Landrum & Bone, 

2001). L and Z are distributed ubiquitously in body tissues but exist in highest concentration in 

the macula lutea of the primate retina, so named for the yellow color imparted by L and Z1 (at 

this site termed macular pigment, MP) (e.g., Snodderly et al, 1984.; Bone et al, 1985). Multiple 

hypotheses have been posed for MP’s role in the primate retina, based largely on the above-

mentioned antioxidant and filtration properties of L and Z. The most widely tested of these 

hypotheses, the protective hypothesis (e.g., Wald, 1945; Wald 1949; Wooten and Hammond, 

2002) predicts that MP is capable of protecting retinal tissue from acquired damage in a dose-

dependent manner across the lifespan. Given the long time course, and the many mechanisms by 

which L and Z can promote ocular health (light absorption, antioxidant mechanisms, anti-

inflammatory agents, membrane stability, etc., for review, see Zimmer & Hammond, 2007), the 

role of L and Z in protecting ocular tissues is difficult to study.   There are, however, a number of 

other functions that L and Z might have within the visual system that lead to more immediate 

changes.  For example, a distinct set of optical hypotheses (for a review, see Stringham and 

Hammond, 2007), here collectively termed the visual function hypothesis, predicts that MP is 

capable of improving visual experience solely via an optical mechanism (i.e., by passively 

filtering the short-wave component of the visible spectrum).  

                                                 
1As a point of clarification, Z will denote both zeaxanthin and meso-zeaxanthin isomers.  
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As stated previously, L and Z are primarily known for their antioxidant and filtration properties. 

L and Z have other properties, however, that have the potential to influence visual system health 

and function.  For example, L and Z are known for their ability to influence oxygen metabolism 

(Aleman et al, 2001; Liew et al, 2006), structurally support neurons (Crabtree et al, 2001), 

influence gap junction communication (Stahl and Seis, 2001) and their anti-inflammatory 

properties (Izumi-Nagai et al, 2007). As mentioned previously, L and Z are not exclusive to 

retinal tissue; recent research suggests that they are also the dominant carotenoids in the occipital 

and frontal cortical lobes as well (Craft et al, 2004). Although it is likely that L and Z protect 

retinal tissue and influence visual function, it is unlikely that, given these additional properties, L 

and Z serve this function exclusively. As suggested by their in vitro properties, it is possible they 

may also improve neural function, an idea that has been formally advanced as the neural 

efficiency hypothesis (Hammond & Renzi, 2008; Zimmer & Hammond, 2007).   Specifically 

stated, L and Z are thought to directly influence neural function in a variety of central nervous 

tissues, including visual cortex.  

 Given the growing body of literature supporting the protective hypothesis and the relative 

paucity of research investigating alternative hypotheses, the purpose of the current investigation 

is: 1) to determine MP’s ability to enhance contrast (tests the visual function hypothesis) and 2) 

to relate MP density to changes in temporal visual function (tests the neural efficiency 

hypothesis). 

 

Lutein and Zeaxanthin: Background and Basic Function.  

 L and Z are members of the xanthophyll family of carotenoids, which are noted for their 

long, conjugated hydrocarbon chains and terminal hexagonal ring structures (for review, see 
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Krinsky, 2002; Landrum & Bone, 2001). Xanthophylls, unlike their carotene counterparts, are 

characterized by hydroxyl functional groups that slightly increase the polarity and biological 

reactivity of these otherwise hydrophobic molecules. Carotenoids are native to plant species, 

where they serve a few noteworthy biological functions, such as absorbing short-wave light and 

serving as active antioxidants. With regard to the former function, L and Z are capable of 

quenching singlet oxygen species that arise from endogenous sources (e.g., cellular respiration) 

and from environmental exposures (e.g., actinic damage). With regard to the latter function, L 

and Z tend to preferentially absorb light in the most highly energetic region of the visible 

electromagnetic spectrum, peaking at about 460 nm, which is also the peak output wavelength of 

the sun.  

 L and Z are also found in, but are not endogenous to, animal tissues in varying 

concentrations depending on the tissue in question and the species. In humans, L and Z are 

distributed relatively ubiquitously throughout serum and tissues such as adipose tissue, testes and 

ovaries, kidneys and skin (e.g., Kaplan et al, 1990; Schmitz et al, 1991). L and Z are also found 

in relatively high concentrations in human central nervous tissue. In the frontal and occipital 

cortices, for example, L and Z make up approximately 66-77% of total carotenoid density (Craft 

et al, 2004). In the neural retina, L and Z exist to the exclusion of all other carotenoids and in 

higher concentration than any other region of the body (Snodderly et al, 1991) (e.g., 

approximately 500x greater concentration than serum). 

 When addressing the question of how L and Z might function in the human body, there 

are three basic possibilities: 1) that L and Z are vestigial; any former function that they might 

have had in animal tissue in evolutionary history is no longer retained, that 2) L and Z appear as 

a mere byproduct of plant consumption and have never retained any function in human tissue, 
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and 3) L and Z serve some distinct, identifiable function in human tissues. Research suggests that 

the former two possibilities are unlikely (for review, see Hammond & Renzi, 2008). The 

question of what these functions are in human tissues is still open, and there are, at least, two 

nonexclusive possibilities: L and Z may either retain the same functions that they serve in plant 

species (e.g., antioxidant and light absorption functions), and/or they may present a new set of 

functions suited specifically to animal tissue.  

 

Hypotheses for L and Z Function in Human Tissues 

 1. The Protective Hypothesis.  

 The most widely studied theory regarding MP function states that MP has the ability to 

protect the retina from damage that accrues across the lifespan. Retinal tissue, like all central 

nervous tissue, is generally oxygen-rich (although oxygen tension varies somewhat across the 

layers of the retina) and highly metabolically active, contains high concentrations of transition 

metals and polyunsaturated fatty acids (PUFA), and is served by an ample dual blood supply 

consisting of anterior vasculature that supplies the inner retina and a choroidal vascular network 

that supplies the outer-most portion of the retina (e.g., Alm, 1992; Gariano et al, 1994).  Each of 

these components of the retinal milieu is necessary for visual transduction and overall retinal cell 

vitality. For example, double-bonds in the PUFA tail result in a cell membrane that is fluid and 

not easily compressed (e.g., Mitchell et al, 1992).   

 One potential problem arising from the anatomical configuration and metabolic demands 

of retinal tissue is the fact that this tissue is at high risk for oxidative stress (Porter et al, 1995). 

This problem is amplified by the fact that light is incessantly focused on retinal tissue by the 

cornea and crystalline lens.  The potential of such light to damage retinal tissue varies depending 
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on wavelength.  Ultra-violet light is largely absorbed by the anterior media (e.g., cornea and 

lens) and does not reach retinal tissue in appreciable quantity (Boettner & Wolter, 1962). Long-

wave light is capable of damaging retinal tissue via thermal mechanisms, but exposure must be 

prolonged and of high intensity to initiate such damage (e.g., Okuno, 1991). Short-wave light is, 

however, able to reach the retina in appreciable quantities and energetic enough to catalyze a 

variety of reactions distinct from bleaching visual pigment, such as free radical formation in the 

presence of oxygen (for review, see Ham, 1983). PUFA are one of the most common targets for 

oxidative damage from free radical formation (e.g., Porter et al, 1995). When retinal tissue is in a 

state of minimal damage, lysosomes of the retinal pigment epithelium (RPE) are able to digest 

oxidized PUFA. As oxidative stress increases, however, the RPE is unable to perform its 

digestive function adequately and instead sequesters oxidized PUFA, forming drusen (e.g., Sarks 

et al, 1980; Sarks et al, 1994; Spraul & Grossniklaus, 1997; Guymer & Bird, 1998; Sarks, et al, 

1999; Curcio et al, 2005). Lipid peroxidation also follows a self-perpetuating cascade pattern; 

consequently, a relatively small amount of oxidative stress can result in larger scale damage. 

Over time, continued RPE insufficiency and continued accrual of oxidative stress causes 

vascular and geographic changes to retinal tissue that can result in bleeding, scarring and a loss 

of sight (e.g., Freund et al, 1993; CNPTRG, 1998). Once advanced to this state, this condition 

meets diagnostic criteria for exudative age-related macular degeneration (AMD) and is the 

leading cause of blindness in developed countries and is among the leading causes of blindness 

worldwide (Resnikoff et al, 2004; for review see Gehrs et al, 2006).  

 Oxidative stress cannot, unfortunately, be eliminated, as it also arises from non-

pathological cellular processes, such as cellular respiration and immune response. In order to 

prevent retinal degeneration, oxidative stress must, at least, be controlled. In addition to support 
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from endogenous antioxidants, (e.g., glutathione S-transferase; Maeda et al, 2005), exogenous 

antioxidants like L and Z are thought to serve this function. In addition to antioxidant functions, 

L and Z selectively absorb short-wave light, thus reducing the amount of potentially harmful 

light available to catalyze oxidation reactions (for review, see Krinsky, 2002). This protective 

hypothesis for MP function predicts that as MP density increases, risk for AMD and other retinal 

degenerative diseases decreases. A growing body of literature supports this hypothesis. For 

example, Bone and colleagues (2001) found that individuals with higher MP density had an 82% 

lower chance of developing AMD when analyzing clinical changes to the retina and L and Z 

concentrations in post-mortem tissue. This result was confirmed in vivo by Beatty et al (2001). 

Emerging evidence from epidemiology, biochemical analyses and randomized controlled trials 

also suggest that MP is able to protect against AMD in a variety of subjects with varying disease 

progression states (e.g., Chucair et al, 2007; SanGiovanni et al, 2007; Robman et al, 2007; Parisi 

et al, 2007; Tan et al, 2007; Wang et al, 2007; Cangemi, 2007; Moeller et al, 2006).  

  

2. The Visual Function Hypothesis. 

Walls and Judd (1933) originally proposed a set of hypotheses for intraocular yellow 

filters that was later adapted to MP (also, of course, an intraocular yellow filter) by Nussbaum et 

al (1981). Included in these hypotheses, here collectively referred to as the visual function 

hypotheses, are predictions that MP is capable, exclusively via its optical properties, of 

influencing visual acuity by reducing the effects of chromatic aberration, of reducing glare 

discomfort and disability, of improving visibility by the absorption of atmospheric haze, and by 

enhancing contrast.  Preliminary models (e.g., Wooten & Hammond, 2002) suggest that many of 

these predictions are possible. Despite the long history of many of these hypotheses (e.g., Shultze 
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proposed the Acuity hypothesis in 1866), and the fact that they are often cited as fact, it has only 

been quite recently that these ideas have been empirically tested.  Moreover, only the first two 

predictions, that MP can improve acuity and reduce glare dysfunction, have been evaluated and 

one had proven true while the other has not been supported.    

Engles et al (2007) found that MP and both resolution acuity and hyperacuity were not 

related when assessed psychophysically in young, healthy adults.  In contrast, others (e.g., Richer 

et al, 2004; Olmedilla et al, 2003) found an improvement in visual acuity with increased MP 

density.  At first blush, the results of these studies could be seen as contradictory.  On closer 

analysis, however, the studies are not inconsistent. Engles et al. (2007) tested young subjects 

only.  They also used stimuli that were carefully characterized to test only the optical effects 

associated with chromatic aberration (i.e., they actually tested the predictions of the acuity 

hypothesis).  Richer et al. (2004) and Olmedilla et al. (2003) tested elderly subjects.  The sample 

tested by Richer et al. (2004), for example, were elderly Veterans with atrophic AMD (a group 

probably suffering from some nutritional deficiencies) and he supplemented them with an 

antioxidant cocktail including L and Z. Hence, in the Richer et al. (2004) and Olmedilla et al. 

(2003) studies, it is impossible to disentangle the biological effects of L and Z from the optical 

effects.  This is particularly true since L and Z are likely to have distinct effects upon the disease 

process itself (e.g., as noted anti-inflammatory effects).   

 Probably the best-tested of the visual function hypotheses is the prediction that MP can 

reduce both discomfort glare and photostress recovery time. Richer et al. (2004) and Olmedilla et 

al. (2003), each suggest that L supplementation can improve visual performance under glare 

conditions in AMD and cataract patients respectively. Unfortunately, as noted, neither study 

enabled assessment of the mechanism (i.e., optical or biological) by which increased MP was 
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able to attenuate glare disability. For example, Richer and colleagues (2004) used a subjective 

questionnaire to assess improvements in function under glare conditions. Research by Stringham 

& Hammond (2007), in contrast, using young, healthy subjects was designed to specifically test 

whether MP improved visual function under glare conditions through an optical mechanism.  

These researchers created stimuli that varied in wavelength content and found that MP improved 

glare as a direct function of absorption. Hence, when subjects were tested using monochromatic 

glare sources not absorbed by MP, there was no relation. When, however, subjects were tested 

using light absorbed by MP (e.g., broad-band white light as is common in everyday situations), 

there was a strong relation (r = 0.76) (Stringham & Hammond, 2007).  In addition, individuals 

with higher MP density and were able to regain sight of a 100% contrast grating after a 5-second 

exposure to a relatively intense (2.5 µW/cm2) stimulus more rapidly than individuals with lower 

MP density (r = -0.79) (i.e., the photostress test; Stringham & Hammond, 2007).  Again, 

however, this effect was wavelength dependent as the optical hypotheses would predict.   

Perhaps more importantly, increasing MP density via a daily 12 mg L+Z supplement over a 6-

month period, improved function under glare conditions and reduced photostress recovery times 

(n = 40, Stringham & Hammond, 2008). Taken together, the strong correlations, the 

straightforward mechanistic explanations, and the fact that intervention could change the visual 

outcomes support the conclusion that MP does strongly reduce glare disability. 

  The two remaining predictions for the visual function hypotheses are that MP is capable 

of improving visibility and of enhancing contrast. Although neither prediction has been 

empirically tested, Wooten & Hammond (2002) modeled MP's putative impact on visibility. 

Unlike the acuity and glare hypotheses, which are based on MP's ability to filter short-wave light 

and, consequently, to reduce the effects of chromatic aberration and intraocular scatter, the 
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visibility component of the visual function hypothesis addresses MP's ability to attenuate the 

impact of potential aberrations that arise from environmental conditions.  Short-wave light in the 

atmosphere scatters more readily than does longer wavelength light (according to the simple 

Rayleigh equation, λ-4); consequently, objects viewed through an atmosphere containing high 

quantities of short-wave  light are more difficult to see than objects viewed in an atmosphere that 

does not contain so-called blue haze aerosol (for review, see Wooten & Hammond, 2002). This 

reduced ability to see objects through blue haze aerosol is exacerbated as a direct function of 

distance of that object from the viewer.  This is one reason why visibility is often expressed as 

visual range (i.e., how far an object can be from an individual and still be visible given a certain 

set of environmental conditions). MP, by absorbing this veiling haze, would allow an individual 

to essentially see through it.  Although extensively modeled by Wooten and Hammond (2002), 

and feasible, the visibility hypothesis has not been empirically tested.   

Contrast enhancement is based on a different optical mechanism. Although posited (e.g., 

by Nussbaum et al., 1981), this hypothesis has been neither modeled nor tested with respect to 

MP, but has been addressed with regard to extraocular yellow filters in general (e.g., Luria, 1972; 

Wolffsohn et al, 2000). Contrast can be defined as the degree of difference between a given 

target and its immediate surround (e.g., Schwartz, 1994). In natural visual scenes, an object must 

differ enough on some parameter (e.g., luminance, wavelength) from its background (e.g., the 

sky) in order to be seen as a distinct object. The anatomy of the neural retina makes it 

particularly apt at highlighting these differences via detection of (and, at times, creation of) 

edges. For example, it is commonly known that bipolar cells in the retina alter firing rates 

depending on which portion of the receptive field is activated, with maximal firing rates being 

achieved when a luminance difference occurs over only part of the receptive field. Given the fact 
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that the neural retina relies heavily upon the existence of edges in the visual field, any 

mechanism that optically enhances the appearance of edges (i.e., via filtering a portion of the 

visible spectrum at an edge) should amplify the difference between target and background and, 

consequently, enhance contrast. As stated previously, MP is capable of absorbing a relatively 

narrow bandwidth of light peaking at about 460 nm. Consequently, it is predicted that individuals 

with higher MP passively filter a larger proportion of the short-wave component of a broad-band 

light source (like the sun). If that light source surrounds a longer wavelength target (e.g., viewing 

an airplane on the background of the blue sky), the difference in absorption between the target 

and surround may result in an enhanced edge between target and surround and, consequently, a 

target (e.g., the airplane) that is more readily detectable. It is important to stress that contrast 

enhancement differs subtly from other components of the visual function hypotheses, despite the 

fact that each component is based on MP's ability to absorb short-wave light, thus allowing the 

differential absorbance of components of a visual scene. As stated previously, contrast 

enhancement predicts improvement in visual function in cases where absorbing short-wave light 

can lead to enhancement of an edge. 

 

3. The Neural Efficiency Hypothesis. 

 L and Z have been largely described in the literature as being short-wave light filters and 

active antioxidants. Such characterizations ignore that carotenoids are not exclusive to retinal 

tissue, nor are their functions likely to be solely optical or protective in nature (especially given 

the fact that acquired diseases of later life may not have been as problematic in evolutionary 

history as they are presently). Anatomical research, for instance, suggests that although L and Z 

are concentrated most highly in the macula, they are found in significant quantities in other 
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regions of the body (e.g., Kaplan et al, 1990; Schmitz et al, 1991). Moreover, their positioning 

within neural structures is not limited to the retina; L and Z make up approximately 66-77% of 

the total carotenoid concentration in both the frontal lobe and in the visual processing regions of 

the brain, such as the striate cortex and visual association cortices (Craft et al, 2004). L and Z 

are, consequently, positioned in regions of the central nervous system that are critical for 

cognitive function and visual processing.  

 Once embedded into neural tissues, L and Z tend preferentially to situate within 

microtubules, which form the cytoskeletons of retinal axons (e.g., Bernstein et al, 1997; Crabtree 

et al, 2001). Historically, microtubules have been thought of only as structural elements; 

however, recent research suggests that microtubules also tend to influence neural second 

messenger systems and gap junction communication (Stahl & Seis, 2001; Vaney et al, 1998). In 

addition, tubulin is also thought to serve as a binding protein for L and Z (e.g., Crabtree et al, 

2001). Consequently, L and Z uptake into retinal microtubules is likely governed by tubulin. L 

and Z are, therefore, optimally placed to regulate microtubule dynamic instability (e.g., Crabtree 

et al, 2001) and, by extension of their position, to further influence inter-neuronal 

communication. In addition to structural and neuronal communicative functions, L and Z are 

thought to aid in oxygen respiration. For example, Liew et al (2006) and Aleman et al (2001) 

found relations between MP density and retinal thickness, which is a marker of hypoxia in the 

retina. Moreover, L is thought to aid in blood flow via anti-inflammatory (e.g., Izumi-Nagai et al, 

2007) and anti-atherosclerotic (e.g., Dwyer et al, 2001) mechanisms.  

 In order to function efficiently throughout the lifespan, neural tissue must be able to 

maintain its ability to change oscillatory patterns in a synchronous manner with changes in 

sensory stimuli. In addition to this ability, it must be able to minimize input from irrelevant 
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stimuli, and it must be able to institute these changes rapidly without increasing noise levels in 

the system. Given the above-described metabolic, structural and biochemical functions of L and 

Z in central nervous tissue, it is conceivable that L and Z could acutely influence neural 

efficiency (Hammond & Renzi, 2008; Zimmer & Hammond, 2007).   

  Although there has been no test of this hypothesis directly, ancillary data are consistent 

with this interpretation.  For example, Zimmer and Hammond (2007) provide data showing the 

relation between MP density and rod-mediated noise.  Noise was defined in their study as 

threshold variability in scotopic thresholds (average deviation from a psychometric function) and 

was interpreted as reflecting the efficiency of rod photoreceptor function in determining absolute 

thresholds. 

 Perhaps one reason that the neural efficiency hypothesis has not been studied is that 

two major problems must be overcome prior to doing so: 1), relatively few techniques exist for 

directly assessing L and Z content in vivo, and 2), that the bulk of topically relevant literature has 

focused on markers of the disease process. With regard to the former problem, commonly used 

methods of determining L and Z status (e.g., serum analysis and dietary recall methods) are not 

able to assess L and Z concentration in the tissue of interest (i.e., central nervous tissue). With 

regard to the latter problem, a focus on the disease process makes it difficult to disentangle 

protective effects of L and Z from purely functional effects.  Addressing these issues was a major 

impetus of the present study. 

 

Summary. 

 L and Z have multiple functions in plant tissue that have extended to human tissue as a 

result of consuming L- and Z-rich foods. The most commonly noted of these functions, short-
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wave light absorption and their antioxidant properties, are most likely protective for retinal 

tissue, but are likely not exclusively protective. As stated previously, the bulk of research 

conducted to-date has been focused on the protective hypothesis of MP, and a relative paucity of 

research exists to identify other viable hypotheses. L and Z have other properties (e.g., the ability 

to influence interneuronal communication, the ability to influence metabolism) that may lead to 

other functions. Given the fact that changes in visual and neural function have often been 

confounded with protective effects in past literature, research that disentangles possible effects 

for MP is warranted. Consequently, the present investigation is focused on alternative hypotheses 

of MP function, namely the visual function hypothesis and the neural efficiency hypothesis.   
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CHAPTER TWO:  CONTRAST ENHANCEMENT ARM 

Overview. 

 The effects of extraocular chromatic filters on visual function have been assessed 

previously, with mixed results depending on the visual function parameter tested, the type and 

density of filter used and the population investigated (for review, see Wolffsohn et al, 2000). 

Yellow filters (peak absorption from approximately 400-500 nm) in particular have received 

attention because they have the ability to filter short-wave light that is both highly prevalent in 

our atmosphere and is most highly prone to chromatic aberration and scatter (e.g., Gilmartin & 

Hogan, 1985; Hemenger, 1992; Wooten & Hammond, 2002). The majority of studies 

investigating the effects of chromatic filters on visual function have assessed contrast sensitivity 

(generally via CRT monitors and printed grating targets) and aberrations in color vision caused 

by the addition of the filter (Wolffsohn et al, 2000). With regard to contrast sensitivity, 

Wolffsohn et al (2000) and others (e.g., Luria, 1972; Yap, 1984; Hovis et al, 1989; Leat et al, 

1990; Leguire & Suh, 1993) have found improvements in contrast sensitivity with the addition of 

extraocular yellow filters. Others, particularly those testing subjects with generally defined 

ocular disease (e.g., Zigman, 1990), photophobia (e.g., Gawande et al, 1992) and albanism (e.g., 

Provines et al, 1997), do not historically show the same benefit.  

 As mentioned previously, contrast is commonly defined as the difference in intensity 

between an object and its background (Schwartz, 1994)2. Contrast sensitivity testing often 

involves presentation of various sine wave gratings that vary in both frequency and in contrast, 

and determination of whether the subject in question can resolve the grating. High and extremely 

                                                 
2 It should be noted that Schwartz’s definition of contrast is specific to the spatial domain. Contrast is not, however, 
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low spatial frequencies are generally difficult to resolve, as are gratings presented in low 

contrast. Often, these gratings are achromatic. When considering the effects of extraocular 

yellow filters on contrast sensitivity, it is important to note that the influence of yellow filters is 

not the same for achromatic gratings as it is for chromatic gratings. For example, research by 

Wolffsohn et al (2000) suggests that extraocular yellow filters do not improve contrast sensitivity 

with achromatic (i.e., gray scale) gratings, but markedly improve contrast sensitivity when the 

grating in question is white on a short-wave background. These results compare well as a 

contrast sensitivity analog with those of Luria (1972), who found that detection thresholds for a 

brief flash of a yellow target on a short-wave background were reduced with addition of a yellow 

filter. Consequently, adding a yellow filter likely alters detection thresholds and contrast 

sensitivity by influencing chromatic channels, rather than luminance channels (e.g., the two 

stimuli used in Wolffsohn et al were, reportedly, isoluminant).  

 As stated previously, the multi-lamellar retina is anatomically configured in a way that 

allows for amplification of the appearance of edges in the visual field. Consequently, it is 

possible to think of the human vision system as a contrast engine of sorts, where edges detected, 

enhanced and, at times, created in the retina are amplified throughout the rest of the vision 

system. For example, C-type horizontal cells in the retina tend to be receptive to a relatively 

narrow waveband and tend to increase firing rates when the stimulus is of a specific, 

corresponding wavelength. Bipolar cells have concentric receptive fields and exhibit spatial 

antagonism, which causes these cells to increase firing rates only when light falls on the “ON” 

portion of the receptive field. Consequently, bipolar cells with the highest firing rates are those 

that detect a luminance gradient (i.e., an edge) within a single receptive field. Given the retina's 

response to contrast, any alteration of a visual scene that enhances contrast of a given target 

                                                                                                                                                             
only relevant to the spatial domain. 
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relative to its surrounding spectral environment should improve detectability of that target. This 

phenomenon is known as contrast enhancement.  

 Human primates are equipped quite early in life with their own intraocular version of the 

extraocular chromatic filter in the form of MP. As mentioned previously, MP absorbs a relatively 

narrow band of short-wave light, peaking at about 460 nm (e.g., Landrum & Bone, 2001), which 

is consistent with extraocular yellow filters tested in previous experiments (e.g., Wolffsohn et al., 

2000). Given the fact that contrast sensitivity is often improved in healthy observers by 

extraocular yellow filters, it is possible that higher levels of MP (i.e., a denser intraocular filter) 

are also capable of enhancing contrast.  Consequently, the purpose of the current investigation is 

to provide a first test of the contrast enhancement prediction of the visual function hypothesis. In 

a natural scene, it is often the case that an object of interest (i.e., a target) must be viewed against 

a short-wave background (i.e., the sky). In an ecologically valid recreation of this scenario, it is 

hypothesized that MP will enhance the appearance of the edge between the target and the 

background by absorbing the short-wave portion of the visible spectrum of the background 

relative to the target (See Figure 1). 

  

Methods. 

 Subjects. 

 A total of 23 subjects (n = 16 females, n = 7 males; n = 21 Caucasian, 1 Asian, 1 African 

American), aged 18-29 years (M = 22.74 years, SD = 3.63 years) were selected from the 

undergraduate research pool and the graduate student population from the University of Georgia 

Psychology Department. All subjects were non-smokers, presented with visual acuity correctable 

to 20:40 or better and had no presence of or history of ocular disease. Subjects were not currently 
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and had not been taking lutein supplements for at least six months prior to the experiment. 

Informed consent was obtained from each subject prior to testing, and the tenets of the 

Declaration of Helsinki were adhered to at all times. All subjects’ data were analyzed using 

Microcal Origins, version 7.2. 

 Materials and Procedure. 

 Macular Pigment Assessment. MP was assessed psychophysically in Newtonian view 

using a desktop device (Macular Metrics, Rehoboth, MA) that utilized customized 

heterochromatic flicker photometry (cHFP). This device uses light-emitting diodes (20 nm half-

bandpass) to generate a 460 nm background and test targets that can be varied in terms of their 

spatial dimensions and, consequently, the portion of the retina that they test. The test target is 

composed of a 570 nm reference light (not absorbed by the pigments) and a 460 nm test light, the 

intensity of which is varied by the subject (for a complete description, see Wooten et al, 1999).  

Essentially, the subject varies the intensity of the 460 nm test to match the luminance of the 

reference. The intensity required to make this match is a measure of the subject’s MP optical 

density. Five measures are typically taken for a given spatial configuration (e.g., at 30 minutes of 

retinal eccentricity) and the average within each condition is calculated by a connected software 

system. These measures are compared with a peripheral reference point (at seven degrees of 

eccentricity) used to equate subjects for individual differences in retinal sensitivity and lenticular 

absorption. MP density peaks in the center of the fovea and decreases exponentially with 

eccentricity (e.g., Snodderly et al, 1984). By the seven-degree reference point, MP density is 

almost nonexistent. Consequently, MP density is computed by comparing all other points on the 

spatial profile to the seven-degree reference. 



18 
 

HFP is one of the most widely used and highly validated psychophysical techniques for 

assessing MP density (see Hammond et al, 2005). The denotation of “customized” HFP refers to 

an ability to optimize viewing conditions (e.g., low-frequency flicker rates) for each subject and 

has been validated in a wide variety of subjects. It is particularly ideal for an aging population, 

given the fact that it is not prone to confounding by various artifacts such as intraocular debris 

and increased lens density that tend to be prevalent in older adults (e.g., Hammond et al, 2005).     

 Contrast Enhancement. Two goals for measuring contrast enhancement were 1), to gauge 

whether the contrast enhancement effect related to MP, and 2), to disentangle the optical effect 

of contrast enhancement from non-optical improvements in visual function. Consequently, 

contrast enhancement was measured using careful psychophysical methodology with well-

controlled, optically defined stimuli. The target and surround were presented in Maxwellian view 

using a three-channel optical system with a 1 kW xenon arc-lamp. A custom-fit dental 

impression apparatus was used to maintain head position and, consequently, light entry through 

the pupil. The target was composed of a high-contrast grating (100% contrast, 5 cycles/degree) 

superimposed with a 2.3 µW, 570 nm one-degree disk (approximately 40 nm half-bandpass). In 

the first measurement condition, the target was surrounded by a relatively bright (702 µW) 425 

nm annulus, which enabled a sharp edge between the target and the surround. In the second 

condition, the same target was surrounded by a broadband, achromatic light source that enabled 

provision of the same edge. The rationale for both of these conditions was to provide an 

ecologically valid stimulus arrangement (high-contrast, mid-wave target with either a short-wave 

“blue sky” surround or a broadband surround) stimulus arrangement, whose surround was either 

highly absorbed by MP (short-wave surround) or moderately absorbed by MP (MP absorbs only 

the short-wave portion of the achromatic surround).   
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 Subjects were aligned with the optical system in such a way that the image was in focus 

with the center of the pupil. Absolute thresholds were assessed via the ascending method of 

limits; the intensity of the short-wave annulus was incrementally increased by the experimenter, 

and subjects used a buzzer to indicate the point at which the target dimmed and was no longer 

resolvable. The phenomenon of brightness induction (e.g., Heinemann, 1955; Heinemann & 

Chase, 1995; Blakeslee & McCourt, 2008) predicts that the brightness of light in one test region 

(e.g., the target, positioned on the central retina) will change when other regions of the retina 

(e.g., those stimulated by the surround) are simultaneously illuminated. In other words, 

brightness induction is determined by a ratio of luminance of a given test region to luminance of 

an adjacent region (e.g., Hainemann & Chase, 1995) (See Figure 2). This ratio is, in general, 

relatively small (Heinemann, 1955).  The functional implication of brightness induction where 

the present study is concerned is that the target's perceived brightness will become depressed 

once the ratio becomes sufficiently small. Given the aforementioned fact that the ratio is already 

relatively small, brightness depression is relatively easy to determine for most subjects.   

 An ascending and descending method of limits was used to determine the intensity of the 

surround needed to cause the yellow grating target to disappear.  The experimenter began the 

trial at a point where either the yellow grating test was clearly visible (ascending trials) or clearly 

not visible (descending trials).  The surround was then attenuated in small steps (equivalent to 

about 0.05 OD) until threshold was reached (either the target appeared or disappeared).  An 

average of about 5 ascending and 5 descending trials was used to determine threshold.   Based on 

brightness induction (typically contrast is about 1%), these thresholds tended to be quite sharp.                            

 

Results. 
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 MP Density. The average MP density for the sample was 0.45 log-units (SD = 0.18 log-

units) at 30-minutes of retinal eccentricity, which is higher than the average for the adult 

population in the United States (approximately 0.23 log units) at the same locus (e.g., Curran-

Celentano et al, 2001; Hammond & Caruso-Avery, 2000).  

 Contrast Enhancement. MP density was significantly related to the intensity of the 425-

nm surround (r = 0.47, p < 0.01) (See Figure 3). The task required subjects to determine the 

point at which brightness induction was reached, or the point where an increase in the luminance 

of the surround causes a distinct dimming of the target. Consequently, the results suggest that 

subjects with higher MP density required a more intense surround to reach the brightness 

induction point than did subjects with lower MP density (i.e., MP was absorbing more of the 

surround). The same basic trend was seen with the broadband surround, although it was not 

statistically significant (r = 0.26, p < 0.11) (See Figure 4). This result was not surprising given 

the fact that MP absorbs less of the broadband surround.  

 

Comment. 

 The two primary goals for the present experiment were to determine whether MP was 

capable of enhancing contrast, and whether contrast enhancement occurred as a function of MP's 

optical properties. These results support the hypothesis that MP is capable of enhancing contrast 

given the right wavelength conditions. In addition, it is likely, given the young, healthy 

population tested and careful psychophysical procedures, that MP enhances contrast in an 

analogous way to extraocular yellow filters used by Wolffsohn et al (2000) and others (e.g., 

Luria, 1972).   
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 The relation between MP density and contrast enhancement was moderate, suggesting 

that MP accounted for approximately 22% of the variance in contrast enhancement. There are 

two major methodological factors that account for a moderate result of what was hypothesized to 

be a purely optical phenomenon. First, the two basic options for the stimulus configuration are a 

target-surround arrangement and a target-background arrangement. In the current study, a target-

background arrangement could not be employed, as increasing the intensity of the background 

would also cause an increase in the intensity of the target, thus effectively eliminating the 

phenomenon of brightness induction. The center-surround stimulus arrangement was, therefore, 

necessary. As stated previously, the human vision system is extremely sensitive to the presence 

of edges, and any misalignment, even extremely slight misalignment, of the target relative to the 

surround and the subject relative to the target and surround will alter the appearance of the edge. 

Consequently, alignment imperfections undoubtedly accounted for some of the noise present in 

the line (See Figures 3 and 4).  Such misalignments occur easily in Maxwellian-view (e.g., due 

to optical parallax). 

 The second methodological issue deals with the interference filter used to form the short-

wave surround. The ex vivo  absorption spectrum for MP suggests that MP tends to absorb light 

most effectively in the 400-500 nm region, with peak absorbance occurring at about 460 nm. In 

the present investigation, the surround peaked at about 425 nm. MP's absorption is only about 

65% at 425 nm (See Figure 5). Given this fact, the slope of the least squares regression line in 

the present investigation (Y = 0.01-0.40X) is predicted almost perfectly. Use of a 460 nm 

surround would, consequently, be expected to yield a steeper slope. 
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CHAPTER THREE: NEURAL EFFICIENCY ARM 

Overview. 

 A well-functioning, efficient vision system must be able to detect changes in the sensory 

environment, however minute, and to minimize neural response to irrelevant stimuli. 

Furthermore, an efficient vision system must be able to perform these tasks as rapidly as possible 

without a significant increase in noise. The various factors that contribute to this process are not 

fully known. What is known, however, is that the vision system exhibits altered function at both 

retinal and cortical levels depending on nutritional status. In animal models, for example, early 

malnutrition has been related to reduced nitric oxide synthase activity in the rat visual cortex 

(e.g., Borba et al, 2000) and increased norepinepherine release (e.g., Soto-Moyano et al, 1998), 

which leads to reduced neural plasticity, decreased synaptic pruning in early development and 

interhemispheric asymmetry of visual evoked potentials. Supplementation with taurine has been 

related to modulated signal transmission in both retina and visual cortex in rat (e.g., Mi et al, 

2000). Zinc deficiency is related to changes in the development of the non-human primate visual 

cortex (e.g., Dyck et al, 2003). In humans, vitamin A deficiency is a well-known cause of night 

blindness (e.g., Sklan, 1987) and corneal xerosis (e.g., Menon & Vijayaraghavan, 1980). Both of 

these conditions are reversible in many cases after improving vitamin A status. In addition, 

docosahexaenoic acid (DHA) supplementation, even above that usually received in breast milk, 

is related to accelerated maturation of the visual cortex and retina (e.g., Uauy et al, 1992; 

Hoffman et al, 2004), and to improved visual function in early life that seem to be maintained 

throughout the lifespan (for review, see Uauy & Dangour, 2006).  

 L and Z are the only carotenoids found in high concentration in the primate retina. 
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Furthermore, they are also found in high concentrations in the frontal and occipital cortices, 

where they form approximately 66-77% of total carotenoid concentration (Craft et al, 2004). 

Given the fact that nutritional factors can influence neuronal function, it is important to 

understand how L and Z, which are located in functionally important regions of the CNS, are 

related to neural function. The bulk of past research on L and Z has focused on their ability to 

protect the neural retina from diseases such as AMD. L and Z have multiple properties, however, 

that suggest an ability to influence neural function independently of an ability to prevent damage. 

 In order to influence neural function, L and Z need to be located in proximity to (or, 

ideally, embedded in) neurons. Looking first at the retina, L and Z are located in highest 

concentration in the in the inner and outer plexiform layers of the fovea (Snodderly, et al, 1984), 

which is the most metabolically and neurologically active site in the retina. L and Z are located 

in neural cell membranes (e.g., Sujak et al, 1999) and axon projections (e.g., Crabtree et al, 

2001), where they bind with the paclitaxil site on β-tubulin proteins (Bernstein et al, 1997; 

Crabtree et al, 2001). L and Z’s specific arrangement within the cortex is not yet known. It is 

likely, however, that L and Z will bind similarly in the occipital cortex, which has a high 

concentration of α- and β-tubulin (e.g., Cronly-Dillon & Perry, 1979).  

 It has been established that L and Z are found in neural tissue, and that, at least in retinal 

tissue, the nature of how L and Z are embedded may give some clue as to their function. L and Z 

are, as mentioned above, located in neural cell membranes. Here, L, for example, is positioned 

both orthogonal to and flush with the lipid bilayer (e.g., Sujak et al, 1999). This dual-orientation 

makes L (in its orthogonal configuration) capable of serving as structural support for a 

membrane that is PUFA-rich and, therefore, quite fluid. In its parallel state, L is able to influence 

the formation of gap junctions and second messenger systems, which enable interneuronal and 
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neural-glial communication (e.g., Vaney et al, 1998; Stahl & Seis, 2001). It must be reiterated, 

however, that the bulk of this research has been focused on retinal L and Z; although it is likely 

that L and Z serve the same function in neural tissue regardless of its locus, this fact remains 

unknown. 

In addition to support and communication functions, L and Z are also capable of 

augmenting neuron metabolic functions in the retina. As stated previously, for example, research 

by Aleman et al (2001) and Liew et al (2006) suggest that MP density is related to retinal 

thickness, which influences oxygen tension. L and Z are also thought to regulate blood flow via 

anti-inflammatory (e.g., Izumi-Nagai et al, 2007) and anti-atherosclerotic (e.g., Dwyer et al, 

2001) mechanisms. The functional consequences of L and Z’s influence on retinal metabolism 

are unknown. When blood flow is impeded to neural tissue in general, however, it is known that 

cell loss, angiogenesis and apoptosis tend to occur with increased frequency. Interestingly, L and 

Z are known to prevent apoptosis (e.g., Chucair et al, 2007).   

Without further behavioral data, the sum of these facts is simply the suggestion of a 

relation between L, Z and neural function. In order to investigate the hypothesis further in human 

subjects, it is first necessary to determine quantities of L and Z in tissues of interest, and to then 

relate these quantities to some biomarker of function.  Two of the most commonly used methods 

of L and Z assessment in human subjects research are dietary assessment via self-report and 

serum analysis via high-performance liquid chromatography (HPLC). Both of these methods 

have been useful in determining relations between xanthophyll status and disease state, but both 

methods are problematic in important ways. For example, common dietary assessment methods, 

such as the 24-hour food recall and the Food Frequency Questionnaire are commonly known to 

be subject to similar biases, such as recall ability of the participant, self-report biases and 
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seasonal variation in dietary habits. Serum xanthophyll analyses, while overcoming self-report 

biases, are generally only a sound indicator of recent dietary or supplemental intake (e.g., 

Landrum et al, 1997).  

In addition to these facts, it is necessary to note that the question of function is usually 

quite complex, especially for a system such as the CNS that tends to compensate for acquired 

cell loss (i.e., maintain function despite loss) over a period of decades. Consequently, one-time 

measures of xanthophyll status, especially those that only reflect recent dietary behavior, are 

often insufficient to predict the impact of xanthophylls on the lifespan development of the 

function in question. While the above-mentioned problems are important considerations for 

assessing L and Z status, perhaps the most important limitation of common assessment methods 

is that neither serum nor dietary intake assessment is able to accurately give information about 

how well L and Z are absorbed and concentrated into tissues of interest. In the context of the 

present investigation, for example, neither serum xanthophyll status nor dietary intake data are 

able to highly predict xanthophyll concentration in the CNS. In the neural retina, for example, 

relations between serum xanthophylls and MP density and between dietary intake of 

xanthophylls and MP density are relatively weak (e.g., r = 0.21 and 0.25, respectively in a large 

(n = 280) Midwestern population from Curran-Celentano et al, 2001). Similar data are, 

unfortunately, not available for other regions of the CNS. Given the relatively weak associations 

between diet, serum and tissue concentrations (i.e., MP density), it is necessary to find an index 

of L and Z status that reflects longer-term dietary intakes, that is proximal to the tissue of interest 

and that can be assessed in vivo.   

The purpose of the present investigation was, therefore, to undertake an initial 

exploration of the neural efficiency hypothesis using established psychophysical methodology to 
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both test neural efficiency and to provide a measure of MP, which will serve as a biomarker for 

L and Z embedded in central nervous tissue. The rationale for using MP in this way is based on 

the fact that MP density is a collection of L and Z that have crossed the blood-retina barrier and 

have been intercalated into retinal tissue. L and Z are, as also mentioned previously, the 

dominant carotenoids in the occipital cortex. Given that they are not endogenous to the human 

body (e.g., Mares-Perlman et al, 2002), it follows that carotenoids must also cross the blood-

brain barrier. Given these similarities and the fact that carotenoid density in the brain also varies 

across individuals like MP density (Craft et al, 2004), it is likely that MP density is a biomarker 

for L and Z embedded in occipital cortex. That is, individuals with higher MP density also likely 

have higher cortical levels of L and Z. As stated previously, this assumption has not yet been 

tested empirically. It is hypothesized that, as in previous studies, the TMTF will decrease with 

age. With regard to MP density, it is hypothesized that higher levels of MP will relate to 

increased sensitivity to flicker. 

 

Methods. 

 Subjects. A total of 57 subjects, ranging in age from 15-84 years (M = 40.13 years, SD = 

19.77 years) (See Figure 6) were recruited from the University of Georgia and from the Athens-

Clarke Co. community. Approximately 61% of the sample was female, and the majority of 

subjects (91.2%) were Caucasian. The remaining 8% were of Asian descent. All subjects were 

free of ocular disease, had visual acuity correctable to 20:40 (Snellen notation) or better and were 

not currently and had not been taking L or Z supplements for at least 6 months prior to 

participation. With one exception, all subjects were capable of giving informed consent. In the 
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exception (a 15-year old female), parental consent was issued, and verbal agreement was 

received from the subject. The tenets of the Declaration of Helsinki were adhered to at all times. 

 Materials and Procedure.  

MP Density. MP density was assessed using the same desktop device described 

previously (Macular Metrics, Rehoboth, MA). The customized HFP technique described 

previously was also employed, with two exceptions. The first exception is that MP density was 

assessed along the entire spatial profile, as opposed to only a central locus. Consequently, MP 

density was assessed at 7.5 minutes, 30 minutes, 1-degree and 1.75-degrees of retinal 

eccentricity. In order to compare the spatial profile between individuals, area under the curve 

was computed, using Microcal Origin, version 7.2. The second exception is the fact that MP 

density was carried out in a wide age-range of individuals. Consequently, the CAREDS protocol, 

which has been validated in older subjects, was followed during the measurement process 

(Snodderly et al, 2004).  

Neural Efficiency. In order to measure neural efficiency by the criteria defined above 

(i.e., the ability to detect and communicate the presence of rapid changes in the environment 

without an increase in noise), a dynamic measure of visual processing speed was necessary. 

Many of the most significant changes in the aging or deteriorating neural system include changes 

in processing speed. In healthy older adults, for example, decreased processing abilities and 

speed are seen in both simple (e.g., contrast sensitivity; Anstey et al, 2006) and complex 

representations (e.g., similar faces in a facial recognition task; Habak, et al., 2008). Furthermore, 

changes in visual processing are often related to changes in memory in healthy adults (e.g., 

Kemps & Newson, 2006; Anstey et al, 2006; Anstey et al, 2001). It should be noted that similar 

changes in other sensory modalities (e.g., audition) do not consistently show relations with other 
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cognitive processes (e.g., Anstey et al, 2001). These changes occur in older age independently of 

disease, but are often accelerated in the disease state and can, therefore, be confounded with 

presence of disease (overt or covert). One possible explanation for reduced processing speed in 

even healthy older adults is the fact that anatomical changes, such as gradual demyelination of 

neurons including the optic nerve, are pervasive in older age (Peters, 2002).  

One factor that needs to be considered when selecting a dynamic measure of visual 

processing is the measure’s ability to tax the vision system, and to express function over a wide 

range of points. The above-mentioned studies, for example, tended to test either simple or 

complex visual representations without including a range of representations within the same 

sample. In addition, assessments of complex visual stimuli make it difficult to determine whether 

function loss is due to retinal cell loss or loss along other regions of the visual stream. Given 

these issues, the human temporal modulation transfer function (TMTF) was chosen as the 

primary dependent measure of neural efficiency of the vision system. The TMTF is the temporal 

analog of the contrast sensitivity function, characterizing responses to changes in temporal vision 

much as the contrast sensitivity function characterizes responses to changes in spatial vision. The 

TMTF is generally assessed by presenting a simple stimulus (e.g., a solid disk of a particular 

wavelength and luminance) that varies in both frequency and in depth of modulation. Subjects 

view the stimulus over a wide range of frequencies and temporal contrast levels and determine 

whether or not the appearance of flicker is visible. Much of the past research on temporal visual 

function that has investigated the TMTF has only addressed the high frequency end. At 100% 

modulation, the critical flicker fusion frequency (CFF) can be assessed. Past research suggests 

that CFF is decreased in a variety of circumstances, including older age (e.g., Tyler, 1989; 

Haegerstrom-Portnoy et al, 1999) and in the presence of retinal degeneration (e.g., Phipps et al, 
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2004). Recent research by Hammond & Wooten (2005) suggests that CFF is also related to MP 

density. Consequently, TMTFs are particularly sensitive indices of visual function, of 

neurological decline and of retinal health.  

The human TMTF is dependent on several factors, such as pupil size, adaptation state of 

the subject, luminance of the stimulus test field, stimulus size and duration (Hart, 1993). The 

present investigation focused on the relation between MP density (as a biomarker of retinal and 

cortical L and Z) and the shape and absolute sensitivity of the TMTF. To control for factors 

known to influence the TMTF and to enable analysis of both shape and sensitivity of the 

function, a novel apparatus was engineered (Macular Metrics; Rehoboth, MA). The apparatus 

utilizes a 660 nm, 20nm half-bandpass LED light source (Nichia Corp., Mountville, PA) to 

present a one-degree target on a 10-degree background. The choice of 660 nm was made to 

maximize L-cone activity, but to not allow absorption of the stimulus by MP or the crystalline 

lens. An occluder was positioned in front of the background to enable presentation of a four-

minute black space between the target and its background, effectively making a center-surround 

orientation (See Figure 7). This space between target and surround was maintained to reduce 

small errors of fixation and optical blur. Presence of a fixation point located 7-degress in the 

periphery enabled measurement of the complete TMTF in both the fovea (with central fixation) 

and in the peripheral retina (using the fixation point at 7-degrees), where MP density is, 

effectively, zero. As mentioned previously, luminance influences the TMTF (the exact relation is 

specified by the Ferry-Porter law, e.g., Schwartz, 1994). Given the fact that pupil size influences 

retinal illumination, subjects viewed the 25 cd/m2 stimulus through an eyepiece containing a 3 

mm artificial pupil. Ambient light in the test room was kept below 1 foot-candle during the 

testing procedure.    
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Subjects were equipped with a dial that changed the percent of modulation. The 

following logged frequencies (listed as log Hz) were tested in both the center and the periphery 

for each subject: 1.5, 1.4, 1.3, 1.2, 1.1, 1, 0.8, 0.6, and 0.4 log Hz, which correspond to 

frequencies ranging from about 32 Hz to approximately 2.5 Hz. This range was selected to 

encompass the entire range of frequencies commonly tested. Frequencies were presented to 

subjects in a random order, and subjects were required to turn the knob from 0% modulation (a 

stable stimulus) until the stimulus reached a just-noticeable state of flicker. Five trials were 

assessed for each subject on each frequency in both center and periphery. With regard to analysis 

of the TMTF data, Jarvis et al (2003) compared various modeling and analysis strategies for 

assessing TMTF data across species. This comparison suggested use of integrated area under the 

TMTF curve for the provision of one, single value that can represent the curve for its comparison 

against other variables (e.g., MP density) (Jarvis et al, 2003). Consequently, this method was 

used, and all analyses were performed using Microcal Origin (version 7.2).   

 

Results. 

 MP Density. The full spatial profile for all subjects tested is presented in Figure 8. MP 

density in the present study was relatively high (approx. 0.48 log units at 30 minutes of 

eccentricity) compared with United States norms (e.g., Curran-Celentano et al, 2001). 

Anatomical studies suggest that the spatial distribution for MP shows peak MP density in the 

central fovea with exponential decline in MP density with increasing eccentricity. In order to 

assess the validity of MP measurements, the data were fit with a first-order exponential decay to 

determine goodness of fit to an exponential function. The data fit well (r = 0.999), which 

suggests a high degree of validity in the measurement. In order to determine whether MP density 
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would co-vary with age (a known covariate of the TMTF), the relation between MP density and 

age was assessed (See Figure 9). MP density was not determined to be related to age (r  = 0.11, 

p > 0.05), which compares well with past investigations.   

 TMTF. The present investigation is the first of its kind to measure the TMTF via a novel 

apparatus that is optically pristine and capable of controlling confounds (e.g., pupil size, 

luminance) that influence the TMTF, both in the center and in the periphery. The general shape 

of the TMTF is presented in Figure 10. The shape is, generally, a band-pass shape with a peak in 

the mid-frequency range (approximately 0.8 log-Hz or 6.31 Hz in the center and 1.0 log-Hz or 10 

Hz in the periphery), which is expected based on original measurements from Kelly (1961).  

As expected, a slight age-decline in temporal visual function (r = -0.31, p < 0.015) was 

seen when collapsing across frequencies (See Figure 11). It should be noted that individuals who 

were three or more standard deviations away from the mean and those who were unable to 

resolve all of the temporal frequencies (generally older adults) were removed from this analysis 

(n = 8). Estimation of the unresolved frequencies (usually in the high frequency range) would be 

expected to improve this result. The age-decline is stronger in the high-frequencies (r = -0.48, p 

< 0.0001) (See Figure 12) than in the low-frequency conditions (r = -0.25, p < 0.03) (see Figure 

13). The above-listed age-declines were significant in the central TMTF but were not present in 

the peripheral measure (See Figure 14). 

Relations between MP density and the TMTF. The primary research question was 

whether MP density related to the TMTF in younger, healthy subjects. Given the fact that MP 

density was not related to age in this sample, we were able to increase statistical power by 

collapsing across age (i.e., it was not necessary to control for age as a co-variate). The relation 

between MP and area under the TMTF was moderate in our sample in both the center (r = 0.26, 
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p < 0.035) (See Figure 15) and the periphery (r = 0.31, p < 0.015) (See Figure 16). Moreover, 

an assessment of the difference between central TMTF (where MP is densest) and peripheral 

TMTF (where there is, effectively, no MP) shows no difference between the two measures in 

their association with MP density (See Figure 17).  

 

Comment.  

 This study was the first of its kind to measure both the central and peripheral TMTF in a 

wide range of subjects. As expected, the TMTF decreases with age across a wide range of 

frequencies (i.e., from approximately 2-32 Hz). This result is consistent with those of others who 

have measured the entire TMTF (e.g., Mayer et al, 1988). On average, the TMTF tended to 

decline about three times more steeply at high frequencies as opposed to lower frequencies. This 

result may occur as a result of functional declines more centrally located (i.e., extra-retinally), 

given the fact that limits in the ability to perceive flicker at higher frequencies are generally 

thought to be a cortical phenomenon, while limits in the ability to perceive lower frequencies are 

thought to be due to limitations in retinal inhibitory mechanisms. Given the fact that the older 

adults in the current investigation, although relatively small in number, were generally healthy 

and had no presence of CNS or ocular disease, the age-decline in TMTF may be thought of as a 

feature of normal aging, rather than as an indicator of disease. Additional investigations with a 

larger sample of older adults would be beneficial, as would further investigation in a well-

segmented (i.e., young, middle-aged, young-old and old-old) sample.  

 The relation between TMTF and MP density was moderate, which is not unexpected 

given the number of factors that contribute to visual processing. One issue that undoubtedly 

tempers this result, however, is the fact that the bulk of the subjects were well-educated 
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individuals from the University of Georgia community. Although a wide range of MP densities 

was present in the sample (MP varied by about a factor of 10 in this sample as it does in the 

population), the bulk of participants were higher than the national average. Increased variability 

in MP density (i.e., more subjects with low levels) would likely yield a stronger result. For 

example, an analysis of our own archival data of 355 relatively young subjects (M = 28.7 years, 

SD = 17 years) suggests that individuals with low MP density (ranging from near zero to about 

0.2 log units) had average CFF values of approximately 3 Hz lower than individuals with high 

MP density (0.41-0.81 log units) (unpublished). Recall that CFF is the limit case for temporal 

vision (i.e., 100% temporal modulation). This result is also consistent with results from Wooten 

& Hammond (2005). These results would be expected to increase in magnitude with reduced 

temporal contrast.  Another limitation, of course, is simply based on the assumption that MP 

predicts the amount of L and Z post-receptorally. Although this is likely, the strength of this 

correlation is unknown and could also be quite moderate.  

Perhaps the most interesting result is the fact that the relation between MP density and 

the TMTF was the same in both the central TMTF and the peripheral TMTF. Given the fact that 

MP density is highest in the central one-degree of the retina (where the central TMTF was 

assessed) and is almost non-existent after about 7 degrees (where the peripheral TMTF was 

assessed), any influence L and Z may have on the TMTF is likely post-receptoral in nature. 

Otherwise, the TMTF would be expected to be improved in the central condition relative to the 

peripheral condition. Consequently, the idea that MP density may serve as a biomarker of 

cortical L and Z warrants further investigation.  

The MP-TMTF relation can be interpreted in at least two ways.  The first is consistent 

with the predictions of the neural efficiency hypothesis. L, for instance, has been shown to 
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improve gap junction communication, which could improve intercellular communication within 

the nervous system (Stahl & Seis, 2001). Consequently, higher MP density (as a biomarker for 

higher levels of L and Z in other regions of the CNS) could theoretically improve signaling 

efficiency throughout the visual system. The second interpretation is that the type of loss being 

measured by the TMTF shows up relatively early and that this loss progresses as a linear 

function of time. In that case, the protective effects of MP (the protective hypothesis) might also 

influence temporal visual function and might reduce losses as a constant function of time. Recent 

papers arguing that protection of the retina is quite significant even in infancy (e.g., see Zimmer 

and Hammond, 2007) are consistent with this interpretation. Unfortunately, the results of the 

present investigation are not capable of solving this issue.  One could argue, however, that 

protective effects of L and Z would be more pronounced in the center of the retina. The fact that 

the MP-TMTF relation was essentially the same in both the center and periphery argues for the 

neural efficiency hypothesis.  
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CHAPTER FOUR: GENERAL DISCUSSION 

 The general conclusion of these studies is that MP is related to both temporal vision and 

optical improvements, which supports the idea that MP density acutely improves visual function. 

Furthermore, these improvements seem to occur via a variety of mechanisms. The well-

established protective hypothesis suggests that MP density preserves visual function by 

protecting the retina from degeneration and disease, thus preserving the number of functional 

cells available over the lifespan. The visual function hypothesis suggests that MP density is able 

to directly improve specific aspects of visual function (e.g., performance under glare conditions 

and contrast enhancement) via a purely optical (i.e., filtration) mechanism. The neural efficiency 

hypothesis predicts that L and Z improve neural processing throughout the visual system. The 

current study provides the first test of, and support for, this hypothesis. The fact that relatively 

moderate, but significant, results were seen in some of the studies is not surprising. As 

mentioned previously, methodological issues in the contrast enhancement arm and sampling 

issues in the neural efficiency arm may have attenuated the relations that we found. In the neural 

efficiency arm, however, one additional factor is simply that visual function is a complex process 

capable of being influenced by many external factors. L is likely just one of those factors.  

 There are multiple implications for these results. With regard to the contrast enhancement 

result, perhaps the most important point to note is the fact that this result supports the idea that 

MP is capable of directly altering visual function. In this particular instance, MP seems to 

improve contrast enhancement via the same mechanism as extraocular filtered lenses. From a 

practical standpoint, given the fact that tasks that involve distance viewing of a target against a 

short-wave background (e.g., air traffic control, sharp shooting) are facilitated by the addition of 
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yellow extraocular filters (for review, see Wooten & Hammond, 2002), it follows that increased 

MP density may also facilitate such tasks. These examples are relatively specific; this result was, 

however, obtained via assessment with an ecologically valid stimulus configuration and should 

generalize to any task in which perception of an edge between a target and its short-wave 

background will improve ability to detect the target, whether it is an aircraft on the horizon or 

oncoming traffic in the distance.  

 With regard to the neural efficiency arm, several implications should be mentioned. The 

first point of interest is the fact that this study provides the first example of the ability to measure 

the full TMTF in both the central retina and in the periphery in a portable device. Given the fact 

that the TMTF is a sound measure of visual processing ability, the clinical applications of a 

novel measurement strategy warrant further exploration. The second point that should be 

addressed is the fact that measures of visual processing have been correlated with a variety of 

measures of cognitive function. For example, the CFF has been linked to MP density (Wooten & 

Hammond, 2005) and to general intelligence in adults (e.g., Zlody, 1965) and in older children 

(e.g., Cross, 1963). CFF is also subject to attention and learning, as CFF decreases as perceptual 

load increases (Carmel et al, 2007) and can be improved with increased visual experience (e.g., 

Seitz et al, 2005). Given the fact that the CFF is considered to be a sound measure of visual 

processing speed and is related to other indices of cognitive function (recall that L and Z are also 

the dominant carotenoids in the frontal lobe; Craft et al, 2004), the relation between MP density 

(again, as a biomarker of cortical L and Z) should be investigated. Preliminary work in this area 

(e.g., Renzi et al, in preparation) suggests that MP density is related to a variety of cognitive 

indices (e.g., the Salthouse battery, including portions of the Mini-Mental State Examination, the 

Wechsler Adult Intelligence Scale and basic reaction time indices) in healthy older adults. 
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 One result that is reasonably clear from the neural efficiency study is the fact that 

relations between MP density and neural function need further investigation. Of particular 

interest is the fact that increasing CNS L and Z may have some impact on visual and, possibly, 

cognitive function. Prior to examining these relations (and, inevitably, confounding neural 

efficiency effects of MP with protective effects of MP), however, it is necessary to relate MP 

density and the TMTF to other validated measures of visual function, such as steady-state visual 

evoked response potentials. An investigation is currently underway to test these relations using 

stimuli that mirror those used in the TMTF portion of the current study.  In addition, it will be 

necessary in the future to relate MP density to cortical levels of L and Z, although such an 

undertaking will be difficult, given the variable nature of carotenoid density in CNS tissue. 

 One additional point that should be mentioned is that both the contrast enhancement 

results and the neural efficiency results are amenable to experimental investigation using L and Z 

supplementation. With regard to contrast enhancement, past research by Stringham & Hammond 

(2008) suggests that a dose of approximately 10-12 mg of L+Z for approximately 6 months is 

sufficient to raise MP density and improve function under disability glare conditions in young, 

healthy subjects. Given the magnitude of results anticipated with further contrast enhancement 

testing, such an intervention would be expected to improve contrast enhancement as well. With 

regard to neural efficiency, supplementation with L and Z is, unfortunately, not quite as 

straightforward. The magnitude of the effect in the present investigation was relatively low to 

moderate. If this low magnitude of effect is due merely to the complex nature of visual function 

and the probability that L and Z play only a small part of it, then immediate effects of 

supplementation might not be obvious. If the effect is due to a sampling bias (as was 

undoubtedly at least partly the case in the present investigation), then supplementation in a more 
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heterogeneous population may yield more dramatic results. Regardless of the reason for 

relatively low magnitude correlations, one thing to consider is the fact that whatever MP does for 

neural tissue, it probably does it over the entire lifespan. Consequently, a relatively small-scale 

effect at one time-point may actually be important over the lifespan.  
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Figure 1. Schematic of the relation between naturally viewed stimuli relate to laboratory stimuli.  
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Figure 2. Differential retinal illuminance in the fovea and parafovea in the contrast enhancement 

task. 
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Figure 3. Log radiance of the 425 nm surround required to veil a 570 nm target, presented as a 

function of MP density. MP density was tested at 30 minutes of retinal eccentricity. The line 

indicates the least squares regression fit to the data, Y = 0.01 – 0.40X; r = 0.47, p < 0.01.  
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Figure 4.  Log radiance of the broadband surround required to veil a 570 nm target, presented as 

a function of MP density. MP density was tested at 30-minutes of retinal eccentricity. The line 

indicates the least squares regression fit to the data Y = 0.81 – 0.40X, r = 0.26, p < 0.11.   
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Figure 5. Ex vivo absorption spectrum for MP (derived from Hammond et al, 2005). Square 

indicates MP's absorbance (approx. 65%) of the 425 nm short-wave surround.  
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Figure 6. Frequency distribution of subjects sampled in the neural efficiency arm. 
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Figure 8. Spatial profile for MP density in the entire neural efficiency sample (N = 57). The 

points were fit by a first-order exponential decay (r = 0.999). Error bars depict standard 

deviation, as standard error of the mean was too small at each point to depict on this figure. 
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Figure 9. The relation between MP density and age in the study sample (r = 0.11, p > 0.05). 
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Figure 10. Mean TMTF collapsed across age, assessed in the center and in the periphery. 
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Figure 11. The relation between TMTF and age, collapsed across all frequencies tested. 
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Figure 12. The relation between TMTF and age in the high frequency (approx 32 Hz) region of 

the function (r = -0.48, p < 0.0001).  
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Figure 13. The relation between TMTF and age in the low frequency (approx 2.5 Hz) region of 

the function (r = -0.25, p < 0.03). 
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Figure 14. The relation between peripheral TMTF and age (p > 0.09) collapsed across 

frequencies. 
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Figure 15. The relation between central TMTF and MP density (assessed at 30-minutes of 

eccentricity). Note the inverted y-axis, which is typical for this measure. Consequently, the 

negative slope actually indicates a positive association. 
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Figure 16. The relation between peripheral TMTF and MP density (assessed at 30-minutes of 

eccentricity). Note the inverted y-axis, which is typical for this measure. Consequently, the 

negative slope actually indicates a positive association.   
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Figure 17. An assessment of the difference between central and peripheral TMTF area under the 

curve and its relation to MP density essentially yields a flat line (i.e., no difference) 

 

 


