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ABSTRACT

Tall trees that are ecologically important because of their large biomass and stored carbon
may be declining due to warming associated with climate change. This study demonstrates Light
Detection and Ranging (LIDAR) data collected in the Great Smoky Mountains National Park can
be used to detect tallest trees in a complex mixed forest. It also highlights a methodology for
processing large data volumes for quantifying and visualizing vegetation structure. Ten tall tree
sites within the park were identified in the LiDAR dataset. And eight sites were field inspected to
measure tree heights. A subset of the park also was examined to automatically extract tree
objects from the LiDAR point cloud and compute structural parameters such as height, stem
diameter, and canopy width. Multivariate regression modeling was performed to determine if
LiDAR-derived datasets are efficient baselines for the modeling of environmental variables
associated with tree growth.
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

For years, tree enthusiasts, arborists, and forestry experts have searched the world’s
forests for trees that exhibit extraordinary characteristics. These endeavors have been perpetrated
for a variety of reasons ranging from aesthetic to historical to scientific. Scientifically, the
location of exceptional trees can provide information to forest researchers about the location of
old growth tree communities and the conditions favorable for growth potential. These
extraordinarily tall trees are ecologically important to the planet because they are stores of large
quantities of biomass and carbon. They also harbor numerous other species of plants and animals
and there is some evidence to suggest that the existence of tall trees is on the decline due to the
general warming associated with climate change (Laurance, 2012). Trees can absorb up to forty-
eight pounds of carbon dioxide per year, accumulating one ton by age forty. It is estimated that
one large tree can provide enough oxygen for two people and discharge up to one hundred
gallons of water per day into the air through the process of evapotranspiration (American
Forests, 2013). The large amount of data now available from LIiDAR (Light Detection and
Ranging) collection systems that allow analysis of specific tree heights can be useful in
individual tree detection and can also help to inform ecological models, which often use the
maximum measured tree heights as the upper limit for species height potential.

Groups such as American Forests (America’s oldest conservation nonprofit) and the
Eastern Native Tree Society (ENTS) have devoted much of their time and efforts to documenting

the locations of candidate tallest individual trees of various species and collecting accurate field



measurements of tree heights in the Eastern United States. The ENTS in a nonprofit organization
established in 1996 to measure and record the tallest trees in Eastern North America. The
members of this society use a combination of measurement methods recommended by the U.S.
Forest Service to measure tree heights including field verification by climbing and measuring the
tree heights with a tape drop method.

The Great Smoky Mountains National Park (GRSM) is especially suited to studies of
very tall trees due to its location at the southern extent of the Appalachian mountain range, high
range of elevation values, diversity of terrain aspects and moist and temperate climate. The
GRSM has been allowed to thrive mostly undisturbed since its creation in 1934 to mitigate the
damage created by logging activities in the 1800s and early 1900s (Houk, 2000). It is home to
over one hundred species of trees and comprises the most extensive virgin hardwood forest in the
eastern U.S.(Whittaker, 1956; Houk, 2000). These favorable park attributes are reflected in its
high Rucker Index (RI) value (163.6) compared to other tall tree sites. The RI is a measure of the
average height of the tallest examples of the ten tallest species at a site, created by Colby Rucker
of the ENTS. To-date, the ENTS reports a tulip tree (Liriodendron tulipifera) with a height of
58.0 m as the tallest recorded tree in the GRSM, found in North Carolina in the Fork Ridge Trail

area using LIDAR data obtained for N.C.’s floodplain mapping program. (Rucker, 2004).

Correspondence on the ENTS website (www.ents-bbs.org) reports the tallest tree recorded to-
date in the Tennessee portion of the GRSM is a 52.7-m tulip tree on Porters Creek near
Gatlinburg, TN and speculation among members of the society is that the tallest tree in the
eastern U.S. is in Tennessee.

LiDAR remote sensing provides three-dimensional information about the Earth’s surface

using emitted laser pulses. This information can be useful in examination of terrain surface


http://www.ents-bbs.org/

models, vegetation characteristics, and man-made features (Renslow, 2012). In February and
April of 2011, acquisition of multiple return, moderate density (< 1 m point spacing) LIDAR
data for the Tennessee portion of the GRSM was completed as part of a project funded by the
U.S. Geological Survey (USGS) under the American Recovery and Reinvestment Act (ARRA)
of 2009. The USGS provided oversight for the project conducted by the Center for Remote
Sensing and Mapping Science (CRMS), Department of Geography at The University of Georgia
(UGA) and the Institute for Environmental and Spatial Analysis (IESA) at Gainesville State
College (GSC). A public-private partnership between faculty and students of UGA/GSC and
Photo Science, Inc. created jobs and trained students involved in tasks from project management
to data processing and metadata creation. The availability of these data provided the opportunity
for this research, namely to process large quantities of tree canopy height data in a mixture of
automated and manual processes that could potentially save hundreds of hours of field work
locating potential sites of extraordinary trees. By ranking these sites by their LIDAR predicted
heights, field teams can be targeted and directed to the areas where these trees grow and accurate
field measurements can be taken, reducing the chances of following anecdotal evidence of tall
tree site locations to fruitless results.

The large amount of data inherent in the multiple return LiDAR format, sometimes
several hundred gigabytes (Gb), coupled with emerging feature extraction software, also creates
an opportunity for rigorous statistical analysis to determine whether the large databases created
by these extractions can be used to accurately predict environmental factors that contribute to
forest canopy heights. The possibility exists to create models that show how variables such as
elevation, soil type, terrain aspect, and slope can predict tree heights in these types of highly

variable environments.



The Great Smoky Mountains National Park

The GRSM was established in 1934 after Tennessee and North Carolina donated the
purchased lands to the Federal government (Figure 1.1). Straddling the boundary between the

two states, it was established as a conservation measure to mitigate the damage caused by

Great Smoky Mountains
National Park

Park Boundary

Figure 1.1 - The Great Smoky Mountains National Park

erosion and fire due to the extensive logging of the 1800s and early 1900s (Madden et al., 2004).
It is estimated that up to two-thirds of the lands that comprise the park were logged or burned by
the 1920s (Walker, 1991). The park encompasses approximately 209,000 hectares of forest

cover, forty percent of which make up the most expansive virgin forest land on the East coast



(Houk, 2000). The park is part of the Appalachian Mountain range, and is one of the most
biologically diverse areas on the planet, containing more tree species than in all of Northern
Europe (NPS, 1981). The park is also the most heavily visited park in the National Park system,
receiving up to 10 million visitors a year. In light of its invaluable ecological importance and
potential threats from surrounding urbanization and climate change, it has been designated as an
International Biosphere Reserve and a U.N. World Heritage Site (Welch et al., 2002). The
GRSM has elevation that ranges from 250 m at the western border to 2025 m at Clingman’s
Dome. Its climate is generally temperate and humid with over 200 cm of precipitation per year.
Geologically, the region is comprised of sedimentary rock formations, the result of a shallow sea
that covered the area six to nine million years ago (Moore, 1988).

LiDAR Remote Sensing

LiDAR is an active remote sensing system that uses laser pulses emitted from a sensor
mounted on an airborne platform, usually an airplane or helicopter, to measure features on the
ground (Figure 1.2). Laser light pulses travel from the sensor to ground features and are reflected
back to the sensor. The data are captured as X, y, and z coordinates in a point cloud, where the x
and y values represent the geographical location on the surface and the z value represents the
elevation value (Figure 1.3). Airborne LIDAR data are typically collected by scanning
perpendicular to the line-of-flight with a near-infrared laser with a wavelength of 1040 to 1060
nm. The elevation of the scanned feature is determined by calculating the time it takes for the

laser pulse to leave the sensor and return using the formula:

. 1
R =200

where R is the distance between the feature and the sensor, t is the time in seconds, and ¢

is the speed of light (3 x 10® m/sec) (Jensen, 2007). On-board data collectors receive the



information from each laser pulse’s return and create an x, y, and z coordinate point for each
return based on information derived from on-board and ground-based Global Positioning
Systems (GPS) as well as Inertial Measurement Units (IMUs) that record the attitude of the
aircraft’s pitch, roll, and yaw during collection. This type of active sensor has been used since
the 1990s to perform cost-effective and rapid assessments of terrain characteristics (Maune,

2001).

Figure 1.2 — Representation of an airborne LiDAR system

(http://forsys.cfr.washington.edu/JFSP06/lidar technology.htm)
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Zt

Figure 1.3 — Visualization of a LIDAR point cloud showing the X, y, and z axis.

After collection, LIDAR data sets are typically classified according to a standardized
scheme created by the American Society for Photogrammetry and Remote Sensing (ASPRS).
This study’s data adheres to version LAS 1.2. This classification scheme classifies points into
four categories: 1= Nonground, 2 = Ground, 7 = Noise, and 12 = Overlap (ASPRS, 2008).
Classification is made possible by the multiple returns of energy to the sensor by a single laser
pulse that can occur. First pulse returns measure the distance to the first surface contacted, such

as tree canopy or rooftops, while last pulse returns measure the distance to the last surface



contacted, which includes the ground (Figure 1.4) (Renslow, 2012). The collection of multiple
returns in a vegetated area is extremely valuable because it provides information about the

vertical structure of the canopy. This classification process allows for the selection of last return

Sensor

Laser pulse

irst return

<Secondreturn

<—Third return

<—lastreturn

Figure 1.4 - lllustration of multiple LiDAR pulse returns from a single laser pulse

points to create digital elevation models (DEMSs), which are interpolated surface models of the
bare Earth with all above ground features removed, as well as digital surface models (DSMs)
which model surfaces above ground. It should be noted that often the first return can also be the
last return in cases where the pulse hits bare soil, grass, or even a solid surface above ground
such as a rooftop. Canopy height models (CHMs) can be created to model vegetated canopy
heights above the terrain by taking the difference between the DSM and the DEM and creating
an interpolated surface model that represents the canopy above ground.

LiDAR data provide the remote sensing analyst with the ability to create interpolated

models of Earth and feature elevations of increasingly high resolution and accuracy with



relatively low costs compared with conventional field techniques. DEM rasters created from
LiDAR datasets having spatial resolutions less than 2 m is not uncommon. Class-I grade LiDAR
for engineering can have horizontal accuracies with RMSE of + 20 cm or better and vertical
accuracies of £ 5 cm or better (Renslow, 2012). The vast amount of sampled points acquired in a
LiDAR collection at these accuracies would be prohibitively expensive for a traditional survey
crew to complete in the relatively short time (hours or days vs. days or months) it takes to fly a
LiDAR mission.

The Use of LIDAR in Forestry Applications

Airborne LIDAR has been used extensively in the past two decades to obtain accurate
measurements of forest structure (Nilsson, 1996; Maune, 2001; Jensen, 2007; Andersen et al.,
2006). In the context of forestry, height is defined as the vertical distance between the ground
and the top of the tallest tree branch (Husch et al., 1972). Research conducted by the U.S. Forest
Service in western Washington State using LIDAR sensors produced sub-meter horizontal and
vertical accuracies of a mountainous, forested area dominated by Douglas fir (McGaughey et al.,
2004). The maximum height of trees was predicted with R? values between 85 and 90% in a
mixed forest area of Appomattox-Buckingham State Forest in Virginia, U.S. (Popescu et al.,
2002). The methodology of subtracting the DEM from the DSM to obtain the relative tree
heights has been used by others in measuring forest structure. (Naesset, 1997; Zimble et al.,
2003; Andersen et al., 2006). Past studies have pointed to the errors inherent in the LIDAR data
format that can be created by the post spacing, or distance between height measurements that
become apparent when ground measurements are made to the highest peaks visible in the tree

crown (Figure 1.5).
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Figure 1.5 - Height variance explanation a) Trees 1 and 3 correctly measured, but Tree 2
is measured on the side of the crown. b) Tree 4 is incorrectly measured as two trees. (Zimble et
al., 2003)

Ground-based Tree Height Measuring Technigues

Andersen et al. (2006) pointed out that accurate direct measurements of the heights of
trees in the field are difficult. Crown overlap in dense canopy, as well as other factors such as
slope can affect the in situ measurements. The U.S. Forest Service (USFS) indicates that the best
height measurements are made using an instrument that functions as a laser rangefinder with a
built-in clinometer (Figure 1.6) (USFS, 2005). This tool measures the horizontal distance (hd) to
the tree from a fixed location as well as angles to the base of the tree (®) and the tip of the crown
(p) (Figure 1.7). The tree height (h) is derived by the trigonometric equation:

h = hd(tan p + tan ®)

10



Total Height =

> Estimated
hd(tanp + tanf)

Figure 1.7 - Diagram of the principles of field-based tree height measurements using a
clinometer (Andersen et al., 2006)
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Thesis Objectives

This manuscript-style thesis contains two chapters that will be submitted in 2013 for
peer-review and potential publication. Both articles focus on the analysis of airborne LIDAR data
for tree object extraction and height measurement. The first article discusses the use of LIDAR
data to determine a methodology for detecting the tallest trees in the Tennessee portion of the
Great Smoky Mountains National Park within the constraints of a large volume data set. The
second article provides the development of a statistical analysis of an automatically derived tree
height database using LiDAR data from the GRSM and its potential efficacy.

The primary goal of this research is to investigate the use of LIDAR as a remote sensing
tool for assessing vegetation structure and providing resource managers with detailed
information on canopy height. Special focus will be made to challenges of data management and
manipulation methodologies and specifically the challenges of working with large data sets
containing billions of potential points. To achieve this goal, specific objectives include:

1. Detection of maximum tree heights in the GRSM by creating a methodology for

processing a large dataset (724 tiles — each representing 225 ha in area and around
200 — 300 Mb file size) of recently acquired (2011) LiDAR data to identify potential
trees of extraordinary height and to assess the environmental conditions at the top ten
sites (Chapter 2).

2. The use of multivariate regression models to assess the validity of using LIDAR-
derived tree height databases to predict tree heights in a highly variable forested
environment (Chapter 3).

This research will provide the National Park Service with a database of the locations and

heights of the tallest trees in the GRSM using publicly available data. It will provide the Park

12



managers with a baseline of canopy height data that can serve as the beginning of temporal
analysis of canopy height. The University Consortium for Geographic Information Science
(UCGIS) lists temporal analysis using remotely sensed data as its number one long term priority
area of research (McMaster & Usery, 2005). While LIDAR remote sensing has been used
extensively in the last decade to predict forest parameters, this is the first study of its kind to
detect specific individual trees using the 2011 USGS data for the complex mixed deciduous
forest of the GRSM. Upon completion of this work, the Park resource managers will have a
digital database, and map visualizations of the ten tallest tree sites in the Tennessee portion of the
Park, along with the environmental conditions associated with the trees. These will include the
individual tree’s species, its height, its surrounding overstory community, the ground slope,
aspect, elevation, and adjacency to riparian areas. Multivariate statistical analysis of these
parameters will provide correlation coefficients for predicting maximum tree heights in other
parks. Using this information, the Park managers can effectively monitor these tree sites for their

protection and further research of old growth forest areas.
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CHAPTER 2
LIDAR DETECTION OF THE TEN TALLEST TREES IN THE TENNESSEE PORTION OF

THE GREAT SMOKY MOUNTAINS NATIONAL PARK!

! Strother, C.W., M. Madden, T. Jordan, and A. Presotto. To be submitted to Photogrammatic Engineering &
Remote Sensing.
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Abstract
LiDAR (Light Detection and Ranging) has been shown to be an effective tool for
measuring forest parameters such as canopy height. Researchers also have used LIDAR data for
individual tree detection. This article describes a method for predicting the locations and heights
of the ten tallest trees in the Tennessee portion of the Great Smoky Mountains National Park
(GRSM) using airborne LIiDAR data collected between February 15 and April 7, 2011 as part of
the U.S. Geological Survey (USGS) National Geospatial Program to add imagery and elevation
data to The National Map. Iterative computation tools were utilized to process the LiDAR data
along with the LiDAR-derived bare Earth digital elevation models (DEMs) and digital surface
models (DSMs) to create canopy height models (CHMs) for the entire Tennessee portion of the
park. A height threshold of 51.8 meters was chosen as the minimum value for a tree of
extraordinary height based on discussions with arborists familiar with the area. Ten potential
sites containing tall trees were identified using this methodology and seven of the top ten ranking
trees’ heights were field measured using accepted forestry methodology. The trees detected using
these methods are potentially the tallest trees ever measured on the East Coast of the United
States. These methods show that extraordinarily tall trees can be successfully detected in a large
area using large amounts of LIDAR data with varying accuracy. It is proposed that the variations
in accuracy found in this study are a result of the severe terrain characteristics as well as
variations in heights of the individual tree species.
Introduction
LiDAR in Forestry
Airborne LIDAR data has been used extensively in the past decades to obtain accurate

measurements of forest structure (Nilsson, 1996; Maune, 2001; Jensen, 2007; Andersen et al.,
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2006). In the context of forestry, height is defined as the vertical distance between the ground
and the tip of the tree crown (Husch et al., 1972). Research conducted by the U.S. Forest Service
in western Washington State produced sub-meter horizontal and vertical accuracies in a
mountainous, forested area dominated by Douglas fir using airborne LiDAR data (McGaughey et
al., 2004). The maximum height of tree plots was predicted with R? values between 85 and 90%
in a mixed forest area of Appomattox-Buckingham State Forest in Virginia, U.S. (Popescu et al.,
2002). The methodology of subtracting the digital elevation model (DEM) values from the
digital surface model (DSM) values to obtain canopy heights has been used by others in
measuring forested areas. (Naesset, 1997; Zimble et al., 2003; Andersen et al., 2006). Past
studies have pointed to height measurement errors created in the LiDAR data collection process
created by the post spacing, or distance between height measurements that become apparent

when ground measurements are made to the highest peaks visible in the tree crown (Figure 2.1).

Missed good height Double tree count

LiDAR Measurements
@ Side height

O Good height
@ Incorrect height

== Interpolated surface

Figure 2.1 - Height variance explanation a) Trees 1 and 3 correctly measured, but Tree 2 is
measured on the side of the crown. b) Tree 4 is incorrectly measured as two trees. (Zimble et al.,

2003)
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Ground-based Tree Height Measurement Procedures

Andersen et al. (2006) point out accurate direct measurement of trees in the field is
difficult. Crown overlap in dense canopy as well as other factors such as slope can affect the
ground measurements. The U.S. Forest Service (USFS) indicates that the best height
measurements are made using an instrument such as a laser rangefinder with a built in clinometer
(USFS, 2005). This tool measures the horizontal distance to the tree (hd) from a fixed location as
well as angles to the base of the tree (®) and the tip of the crown (p) (Figure 2.2). The height (h)
is derived by the trigonometric equation:

h = hd(tanp + tan @)

Estimated
Total Height =
hd(tanp + tan6)

Figure 2.2 - Field tree height measurement (Andersen et al., 2006)
Study Area
The 209,000 hectares of the Great Smoky Mountains National Park straddle the border

between the states of Tennessee and North Carolina (Figure 2.3). The GRSM receives over 10
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million visitors a year; making it the most visited National Park in the U.S. This area contains
roughly 1500 meters of relief ranging from around 250 m at the western border of the park to
2025 m at Clingman’s Dome, the highest mountain in Tennessee and third largest east of the
Mississippi (NPS, 2012). The park was created in 1934 from lands donated by Tennessee and
North Carolina in an attempt to mitigate the devastating effects nineteenth century timber
logging and subsequent erosion. The park is part of the Appalachian Mountain range, one of the
oldest mountain ranges on Earth. It is also one of the most biologically diverse areas on the
planet, given its unique terrain, its geologically rich sedimentary soil, and its ample precipitation.
The park contains almost forty percent virgin forest cover. The extreme slopes found in the park
as well as the other environmental variables create a unique opportunity for tall trees to exist

undisturbed. It also complicates efforts to make accurate field measurements of those trees.

Great Smoky Mountains
National Park

Park Boundary

0 5 10 20 30 40
[ Kilometers

Figure 2.3 — The Great Smoky Mountains National Park
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Previous Work and Objectives

lan Breckheimer of the University of North Carolina performed a similar unpublished
study of tree heights in the North Carolina portion of the GRSM in 2011 using LiDAR data
obtained by the state for their Floodplain Mapping Program. His methodology focused on
specific areas where arborists had given anecdotal evidence concerning potential sites, whereas
this study follows a more automated and comprehensive approach to obtaining candidate sites.
Breckheimer’s work included a maxent ecological model for tall tree (in this case, > 54.9 meters)
suitability sites which included variables that considered elevation, topographic moisture, aspect,

and disturbance history (Figure 2.4).

Great Smoky Mountains National Park:
Environmental Suitability for Trees > 180 ft. in Height

__IMiles

8 A LB R
5 - s
Map Legend Suitability Model
Elevation (m) Topographic Moisture Aspect (deg) Disturbance History
- High 10 10 T 10F, 10
[ Tall Tree > TTr—
Suitability g os L 1 05 L
Low 1
D 00 00 00 00
260,601 1997.781 2178 622 .1 360,996 0 1 2 3 4
. L High Dry Wet N E S W N Oldgrowth ~ Logged  Settled
Trails o
This map shows the relative environmental suitability for large trees (>180 ft in height) in Great Smoky Mountains National Park. The map was
generated using the ecological niche modeling program maxent, version 3.3. Occurence data used to train the model was taken from forest
canopy LiDAR data from the NC Floodplain Mapping Program. Model diagnostics indicate that this model fits well well (cross-validated AUC
ﬂ GRSM Boundary 0.91 +/- 007, and is highly significant (p < 0.001).
Author: lan Breckheimer, UNC Chapel Hill, Date: May 2011 Data: USGS, ESRI, NPS, NC Floodplain Mapping Program

Figure 2.4 - Breckheimer's tall tree suitability map for the Great Smoky Mountains National Park

(Breckheimer, 2011)
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Previously, the Eastern Native Tree Society (ENTS) reported a tulip tree (Liriodendron
tulipifera) with a height of 58.0 m as the tallest recorded tree in the GRSM, found in North
Carolina in the Fork Ridge Trail area using LIDAR data obtained for the N.C. floodplain

mapping program. (Rucker, 2011). Correspondence on the ENTS website (www.ents-bbs.org)

reported the tallest tree recorded to-date in the Tennessee portion of the GRSM is a 52.7 m tulip
tree on Porters Creek near Gatlinburg, TN.

This work will provide a unique methodology to process large volumes of recently
acquired LiDAR data for the Tennessee portion of the GRSM. The specific objective of this
study is to show that these data can be used to detect trees that are taller than have ever been
measured in the eastern U.S.

Data

Researchers at the Center for Remote Sensing and Mapping Science (CRMS) in the
Department of Geography at The University of Georgia and the Institute for Environmental and
Spatial Analysis (IESA) at Gainesville State College (GSC) collaborated on a project to collect
high resolution orthoimagery and LIDAR data of the GRSM and adjacent Foothills Parkway as
part of the USGS Geospatial Program to add imagery and elevation data to The National Map.
Funded by the American Recovery and Reinvestment Act (ARRA) of 2009, a total of 111 flight
lines were used to ensure complete coverage of high resolution (30 cm) four-band orthoimagery
and one meter point spacing point clouds of LiDAR data covering the study area (Figures 2.5 &
2.6). The LIiDAR data used in this study were acquired by Photo Science, Inc. using both a Leica
ALS-60 sensor and an Optech ALTM Gemini sensor. Both sensors use a laser with a
wavelength of 1064 nm (Table 2.1). Poor weather conditions preventing leaf-off and snow free

conditions created a narrow time window of data acquisition, but Photo Science was able to
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successfully complete data collection in February and April of 2011. High resolution four-band
digital at 30 cm spatial resolution imagery was also collected of the same study area by the same
commercial vendor.

Table 2.1 — LiDAR sensor specifications

Sensor Optech ALTM Gemini Leica ALS-60
Altitude (AGL) 1981.2m Not listed
Speed 110 knots 150 knots
Scan frequency 20.2 Hz 34 Hz

Scan angle +16° +16°

Pulse frequency 50 kHz 53 kHz

LiDAR Flightlines

Park Boundary

—— Lidar Flightlines N

40
— Kilometers

Figure 2.5 — LIDAR and orthoimage data acquisition flight lines
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Figure 2.6 - LIDAR and orthoimage tile layout

Photo Science, Inc. performed the initial processing of the collected orthoimagery and LIDAR
data and created the interpolated bare Earth DEMs used in this study. Applanix software was
used to perform the GPS and inertial correction of the collected data. GeoCue, TerraScan, and
TerraModeler software was used to classify the point cloud according the LAS 1.2 specifications
and 1.5 m resolution bare Earth elevation models were created using the classified ground points
by Esri products in an .img format (CRMS-UGA, 2011). The CRMS in the Department of
Geography at The University of Georgia and the IESA at GSC were involved in the planning and
post-processing of the raw image and LIDAR data and are the sources of the LIDAR data used in
this study. Other layers used in the analysis were obtained from public sources listed in Table

2.2.
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Table 2.2 — Description of data used in the study

Data Layer Source Datum and Projection Resolution (m) | Comments

724 tif files UGA CRMS 2011 NAD 83 UTM 17N NAVD88 0.3 Digital color images of study area
724 .img files UGA CRMS 2011 NAD 83 UTM 17N NAVD88 1.5 Lidar-derived DEMs

724 las files UGA CRMS 2011 NAD 83 UTM 17N NAVD88 0.69 Vertical RMSE of 0.165 m
statesp020.shp nationalatlas.gov 2005 | Geographic Lat/Long Projected to NAD 83 UTM 17N
overstory.shp UGA CRMS 2004 NAD 27 UTM 17N Vegetation reference map
stream.shp UGA CRMS 2004 NAD 83 UTM 17N Stream network map
GRSM_boundary.shp UGA CRMS 2004 NAD 83 UTM 17N Park boundary map
Quads27block.shp UGA CRMS 2004 NAD 83 UTM 17N USGS Quad map
GRSM_Trail_clip.shp UGA CRMS 2004 NAD 83 UTM 17N Park trails map
GRSM_Major_road_hwys.shp UGA CRMS 2004 NAD 83 UTM 17N Road network map
Classified_LAS_Point_File_Info.shp UGA CRMS 2004 NAD 83 UTM 17N Lidar, DEM, and image tile index
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Methods

It is assumed that by using the discrete returns from the LiDAR data, features with a
certain height value above ground can be detected. Using ArcGIS® 10, several process models
were created in order to handle the large amount of data processing (over 228 GB of LIDAR
point cloud data) necessary to perform the analysis of areas with the highest z-values. First, a
model was developed to transform the 724 .las data files (3.8 billion data points) into 724
“multipoint” .shp files (Figure 2.7). These .shp files were then converted to a raster format (.tif)
using another iterative model (Figure 2.8) based on the maximum value for z within each cell,
creating a digital surface model (DSM). The pixel size was selected as 1.5 m in order to correlate
with the 1.5 m DEM dataset that was created by the commercial LiDAR vendor, Photo Science.
ArcMap® 10 did not provide an iterative model capable of processing the normalized DSM
(nDSM) that is necessary to determine z-values relative to the ground surface (heights).
Therefore, a script was developed using Python programming language to perform this function,
subtracting the z-values of the 724 DEMs from the 724 DSMs and creating new rasters that
contained the heights relative to the ground in each cell (Figure 2.9). This script was used to
create a tool within ArcMap that can be used in future processing of nDSMs (Figure 2.10).
Another iterative model was created to extract pixels within the new nDSMs that contained
values greater than 51.8 m (about 170 ft.) because it was determined that any trees above this
height would be considered “tall” based on conversations with members of the ENTS (Figure
2.10).

The resulting rasters were mosaicked to create a single raster image of 17961 pixels that
contained z-values greater than 51.8 m (Figure 2.11). This raster was then converted back to

vector format (point) and queried for features that had z-values (heights) between 52 m and 60 m
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as it was determined unlikely for any trees to be higher than 59 m. This height range was again
based on correspondence with the ENTS. The resulting 2784 features were then selected by their
location within the Park boundary, excluding points that may have been within a data tile but not
within the GRSM boundary, resulting in 2178 possible height values that met the study
parameters (Figure 2.12). At this point, manual interpretation was employed to remove man-
made features from the processed results, including apparent power lines. The 1523 remaining
values were sorted according to maximum z-values and analyzed as possible individual tree
crowns. If points were arranged in a cluster of more than two points, they were considered
possible tree crowns. Using the 2011 high resolution imagery, the potential tree sites were
validated to ensure that the features were natural and not man-made.

The top ten sites were all located in the northwestern portion of the park (Figure 2.14).
These potential tall trees were mapped according to their UTM coordinates and these coordinates
were loaded onto a hand-held Garmin Etrex Vista HCx GPS unit for field verification. On March
12, 2012, six sites (Sites 5 — 10) were visited and tall trees were measured using an Impulse 100
clinometer and rangefinder based on the methodology described by Andersen et al. (2006). Three
measurements were taken for each tree at each site to obtain a mean field height to be compared
to the LIDAR predicted heights from the dataset. On March 13, 2012, an attempt was made to
access the remaining four potential sites (Sites 1 — 4), but due to extreme topography and a
flooded creek channel, only one site (Site 3) could be accessed. Ground photos were taken to
document the trees as well as to show the terrain conditions of the potential tall tree sites. Once
the field work was completed, further examination and verification of each tree site was
performed using the US Forest Service FUSION LiDAR utility tool, which measured the tallest

points in the data set at each site.
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Figure 2.7 - ArcGIS Model Builder model for iterative conversion of .las files

Figure 2.8 - ArcGIS Model Builder model for iterative conversion of .shp files
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74 ndsmscript.py-E{\UGA\LIDAR\GSMTrees\ndsmscript.py\ l .
File Edit Format Run Options Windows Help

# A script that interatively subtracts DEM rasters from DIM rasters to create ne 4
# Created by Chris Strother

# University of Georgia Department of Geography Center for Geospatial Research

1
# Import modules
i ort arcpy, oS
n arcpy import env
from arcpy.sa

# Check out SA extension
arcpy.CheckOutExtension("Spatial"

Create the list of DIMs
listl = []

env.workspace = xr"C:/Workspace/Rasters/DIMs"

1stRasters = arcpy.ListRasters("*")

for raster in l1lstRasters:
listl.append(env.workspace + 08.sep + raster)

Create the list of DEMs
list2 = []

env.workspace = r"C:/Workspace/Rasters/DEMs"

lstRasters = arcpy.ListRasters("*")

for raster in l1lstRasters:
list2.append(env.workspace + 08.sep + raster)

count = len(listl)

# Perform the subtraction and assisn a new name to each nDSM
X =:0
while X < count:

raster = listl[x]

name = raster.split("\\")[-1]

outMinus = arcpy.sa.Minus(listl[x], 1list2[x])
outMinus.save (x"C: /Workspace/Rasters/nDSMs" + o0s.sep + name.split(".")[0] +
print 'nDSM created’

x-4=1

del listl, 1list2

v

Ln: 31 | Col: 60

Figure 2.9 - Python interpreter window showing script created to process the subraction of 724

DEMs from 724 DTMs
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Figure 2.10 - BatchnDSM software tool created using a Python script to iteratively process raster

files

Figure 2.11 - ArcGIS Model Builder model for iterative analysis of nDSM files
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Figure 2.12 — Dataset points with heights greater than 51.8 meters
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Figure 2.13 — Dataset points between 52 and 60 meters
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Results and Discussion

A total of 1523 discrete points were identified from the LIDAR data with heights above
ground of greater than 51.8 meters. The top ten heights were chosen and ranked based on the
assumption that ten sites could be visited in a two-day field study window. All ten sites were
located in the Northwestern portion of the park (Figure 2.14). It should be noted that the exact
location of these trees is ecologically and historically sensitive information and can only be
obtained by request to the NPS. The range in heights of trees at these ten sites is roughly 55 m to
59 m, all higher than the 52.7 m tulip poplar previously listed as the tallest tree recorded in the
Tennessee portion of the GRSM as of May 2011 (Table 2.3). This finding justifies further
investigation by qualified arborists for in situ height verification. The measurements of the ten
sites conducted in the field yielded results of varying errors. The difficulties in using a hand-held
instrument in such extreme conditions as well as the sometimes very extreme slope at the sites
are possible sources of the error. Also, given the great heights of the objects in the field and the
proximity of other trees as obstacles, it was often difficult to get an adequate distance from the
measured trees to obtain the measurements. Although it is difficult to assign significant statistical
importance to the errors between the field data and the LIiDAR data due to the intentionally small
sample size, it is worth noting that five of the seven measurements suggest that the LIDAR data
underestimated the actual height which is consistent with findings of missed tree crowns

described by Zimble et al. (2003).

Of the seven sites visited, none exhibited characteristics typically found in "Champion
Trees". This designation is determined by a point system, calculated by adding the tree's
circumference in inches to the tree's height in feet to one-fourth of the total crown spread in feet

(American Forests, 2013). The trees that could be accessed did not have large trunks proportional
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Figure 2.14 — Approximate location of ten tallest tree sites

to their height, leading to speculation that these trees are not old growth, but likely successional
trees that have been growing since logging practices ended in the late 1920s and early 1930s.
The favorable environmental conditions in the Southern Appalachians and geological conditions
that created fertile soils in the region have allowed these trees to grow unthreatened by humans

for nearly a century.

The topographical conditions of each site are also of interest. All but one site are below
or very near the threshold for “low elevation” conditions described by Madden et al. (2002) as

below 2500 ft. (762 m) with the average elevation at the ten sites as 554.1 m. (Figures 2.15 —
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2.19). Slopes at the ten sites were varied from relatively flat conditions (10.3°) to severe (80.5°)
with the average slope for the ten sites measuring 37.8°. Eight of the ten sites had a generally
Northwest, North, or Northeast orientation, which is expected because these aspects present the
moistest conditions for tree growth. Interestingly, the tallest potential tree site was found to have
a Southwest facing aspect, usually associated with hot and dry conditions - a less favorable
environment for tree growth. Based on the GRSM Vegetation Community Database created by
Madden et al. (2004) as part of the USGS NPS National Vegetation Inventory program, the
overstory communities at the ten sites were identified and split into three main categories: Pines
(PIs = Eastern White pine successional, Pl = Southern Yellow pine, PIs-T = Eastern White pine
with Hemlock), Southern Appalachian Cove Hardwoods (CHx = S. Appalachian Cove
Hardwoods, CHxA-T = S.A. Cove Hardwoods/Acid type with Hemlock), and Oaks (OmH/T =
Submesic to mesic oak/Hardwoods with Hemlock). Five of the seven accessible sites were
visually inspected and found to be hardwoods, four tulip poplar and one white oak. The
remaining two trees were identified as pines. Figures 2.20 — 2.29 show point cloud

representations of each tree site as visualized by the USFS FUSION/LDV LiDAR utility tool.
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Table 2.3 - Tree site measurement results, terrain conditions, and measurement error

Site | Lidar Height (m) | Field Height (m) | % Error vs. Field | Elevation (m) | Degree Slope | Aspect | Overstory | Tree Type
1 59.0 Unknown Unknown 376.3 35.1 SW Pls-T Unknown

2 59.0 Unknown Unknown 358.6 51.9 N OmH/T Unknown

3 55.9 72.8 -30.2 494.2 10.3 E CHxA-T Pine

4 57.0 Unknown Unknown 477.9 39.4 NW Pls-T Unknown

5 57.0 56.6 0.7 394.0 54.7 NW Pl Pine

6 57.0 61.5 -7.9 367.4 80.5 NW Pls White oak

7 55.0 58.4 -6.2 785.3 28.6 NE CHx Tulip poplar
8 56.0 56.9 -1.6 765.0 26.8 E CHXx Tulip poplar
9 56.0 51.6 7.9 761.1 19.0 NE CHx Tulip poplar
10 |55.0 56.4 -2.5 761.4 31.7 N CHx Tulip poplar
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Figure 2.15 - Sites 1 & 2 elevation map
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Figure 2.16 - Site 3 elevation map
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Figure 2.17 - Site 4 elevation map

A Tree Sites
- 600 m

"344m

N

D, (o +

0 0.25

1
Kilometers

Figure 2.18 - Sites 5 & 6 elevation map
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Figure 2.19 - Sites 7 - 10 elevation map
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Figure 2.20 - Representation of the highest point detected in the point cloud at Site 1 with image

plate (measurements are in meters)
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Figure 2.21 - Representation of the highest point detected in the point cloud at Site 2 with

image plate (measurements are in meters)
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2+

Figure 2.22 - Representation of the highest point detected in the point cloud at Site 3 with image

plate (measurements are in meters)
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Figure 2.23 - Representation of the highest point detected in the point cloud at Site 4 with image

plate (measurements are in meters)
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2+

Figure 2.24 - Representation of the highest point detected in the point cloud at Site 5 with image

plate (measurements are in meters)

X+

Figure 2.25 - Representation of the highest point detected in the point cloud at Site 6 with image

plate (measurements are in meters)
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Figure 2.26 - Representation of the highest point detected in the point cloud at Site 7 with image

plate (measurements are in meters)
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Figure 2.27 - Representation of the highest point detected in the point cloud at Site 8 with image

plate (measurements are in meters)

40



2+

X+

Figure 2.28 - Representation of the highest point detected in the point cloud at Site 9 with image

plate (measurements are in meters)
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Figure 2.29 - Representation of the highest point detected in the point cloud at Site 10 with

image plate (measurements are in meters)
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Conclusions and Recommendations

This study demonstrates the use of LIDAR data as an effective tool for detecting
individual trees of extreme height within a complex forest community in an area of rugged
terrain. Using GIS and other data processing workflows, a methodology was developed to parse
and query large volumes of data to obtain verifiable results. In all, ten tree sites were detected
using this unique methodology with heights ranging from 55 m to 59 m. Sites 1 and 2 would be
the tallest trees ever measured in the eastern U.S. if they prove to be as tall as the LIDAR data
indicate (both 59 m) and all ten trees are taller than the tallest measured tree in the Tennessee
portion of the GRSM (53.8 m). These ten tree sites varied in their tree species, general overstory
community type and terrain slope, but had similarities in regards to elevation and terrain aspect
at the tree sites. Field measurements of these individual trees were made difficult given the
rugged terrain and density of vegetation at each site. Regardless, the findings of this research are
sufficient to require further investigation of these tree sites, especially the three sites that could

not be accessed in the field at the time of this work.

This tree site information can be passed on to arborists and park managers at the GRSM
to better inform them regarding the locations of potentially historical, record-setting trees. This
information can be used to promote park visitation, as well as provide specific areas for further
ecological niche research. It is recommended that these ten areas be revisited by arborists skilled
in accurate tree measurement techniques to verify the LIDAR derived data and further research
be conducted at these sites to gather more environmental and ecological information, including

soil types, soil moisture, precipitation, temperature, and understory vegetation.
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CHAPTER 3

ORDINARY LEAST SQUARES ANALYSIS OF A LIDAR-DERIVED TREE HEIGHT

DATABASE?

2 Strother, C.W., M. Madden, T. Jordan, and S. Holloway. To be submitted to The Professional Geographer.
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Abstract

In the examination of trees that reach extraordinary heights in Eastern forests, researchers
have identified environmental factors influencing the potential maximum height that an
individual tree can obtain. Access to water, sunlight, prior disturbance, topography, elevation,
and available fertile soil has been hypothesized to affect the maximum tree height. This study is
unique because it uses large volumes of feature data extracted from a LiDAR (Light Detection
and Ranging) dataset covering a 225 hectare area of diverse Eastern Deciduous forest within
Great Smoky Mountains National Park (GRSM) to correlate tree heights and environmental
variables. Although relationships were significant between certain environmental variables and
tree heights in the model, the variability in the dataset was not well explained. Results from
ordinary least squares (OLS) regression showed R® = 0.2057, p = 0.0000 with a RMSE = 7.2512
m for the described model. This study demonstrates the use of large volumes of LiDAR derived
data in showing tall trees are generally located in areas with North oriented slopes in mid-
elevations that have fertile, loamy soils, and some reasonable adjacency to water.

Introduction

The increasing acquisition of airborne LiDAR data over the last two decades has created
a valuable analysis tool for those interested in a variety of disciplines, including forest
conservation and research (Ussyshkin and Theriault, 2011). LiDAR data provide the remote
sensing analyst with the ability to create bare earth digital elevation models (DEMs) and digital
surface models (DSMs) of increasingly high resolution and accuracy with relatively low costs
compared to conventional field techniques (Andersen et al., 2006). These digital raster models
allow the user to perform mathematical functions to determine the relative heights of objects on

the Earth’s surface based on the LiDAR point cloud data. The use of airborne LiDAR to estimate
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forest parameters has been shown to have some advantages to traditional photogrammetry
because the data do not require further orthorectification (geometric correction) and can produce
results with accuracies within a few centimeters, both vertical and horizontal (Suarez et al.,
2005). Through the use of software-based extractive algorithms, large amounts of data regarding
canopy structure can be acquired. The increase in computer processing capabilities, along with
the prevalence of the computationally large data sets that LIDAR sensors collect, gives
researchers in forestry research using LIDAR data a great opportunity to increase the number of
observations available for statistical analysis versus traditional field measurement techniques.
However few studies have fully investigated the effects of extremely large sample sizes with
traditional statistical analyses. The over twenty thousand unique observations used in this
particular study would have taken field researchers months to possibly years to acquire at
prohibitive costs. These observations can be collected in a database and then used to create a
multivariate model to determine if this type of collection is useful in predicting tree heights
based on environmental conditions.

Canopy height of a forest is a complicated metric to measure and predict given the
number of factors that contribute to an individual tree’s growth. It is a useful metric, however,
because it provides a suitable estimator of forest carbon stock as well as contributing to natural
resources management and fire fuel modeling (Kenyi et al., 2009). Among the factors shown to
have an effect on tree growth are ground elevation (Coomes and Allen, 2007; Petit et al., 2011)
soil characteristics, light, water, and physical characteristics (Kozlowski, 1971). Past studies
using LiDAR remote sensing have focused primarily on accurately measuring maximum and

mean canopy heights and modeling forest parameters such as timber volume, basal area, and
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stem density from these data (Nilsson, 1996; Naesset, 1997; Maune, 2001; Jensen et al. 2006;
Magnussen et al., 2010).

This work used 22187 observations of tree height values extracted from a LiDAR data set
as well as other GIS layers to model the environmental variables that contribute to tree heights in
a mountainous forested landscape with a high variability of overstory species. An Ordinary Least
Squares (OLS) model was used because of its unbiased characteristics. It is proposed that the
influence of increasing elevation will have a negative impact on tree heights in the model due to
environmental conditions such as low temperatures and high winds (Madden et al., 2004).
Increased distance from riparian features is also predicted to produce lower tree heights because
of decreasing soil moisture. It is also proposed that increasing slope percentage will predict
lower tree heights because of the difficulty of seedling establishment. The presence of Ditney-
Unicoi and Soco-Stecoah soils (low in plant macro-nutrients), and a general Southern exposure
(drier conditions due to sunlight) are also predicted to reduce modeled tree heights as well.
Conversely, low slope percentages, lower elevations, shaded Northern exposures, close
proximity to water, and the presence of highly productive Spivey-Santeetlah soils should predict
taller tree heights (NRCS, 2009).

A successful multivariate, ordinary least squares (OLS) model of these parameters will
allow park managers, foresters, and conservationists to predict the expected recoverable carbon
stock volume in similar conditions after an event such as fire, flood, illegal logging, or
destructive pest invasion. This study will provide a thorough multivariate statistical analysis to

determine the effectiveness of creating such a model.
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Study Area

The study area (Figure 3.1) is a 225-ha area of mountainous terrain located in the Great
Smoky Mountains National Park (GRSM) in Tennessee, U.S. The park contains almost
continuous forest cover and is one of the most biologically diverse forests in the world. The
subset study area within the park was chosen because potentially record setting trees were known
to grow there and site conditions included the presence of water sources, the large range of
elevation values, the large variation in slope percentages, as well as the presence of a nutrient
rich and a nutrient poor soil type. There are two predominate fluvial features in the study area
known as False Gap Prong and Wooly Tops Branch, respectively. The area is bounded by the
NAD 83 UTM Zone 17N coordinates: 285000 m to 286500 m Easting and 3951000 m to
3952500 m Northing and all analyses were performed using the UTM projection. The study area
contains 502 m of relief between 662 m and 1164 m (Figure 3.2) and contains low to extreme
slopes of 0.14 to 76 percent (Figure 3.3). The forested landscape is comprised of ten major
overstory vegetation communities (Figure 3.4)— Low Elevation Mixed Pine-Xeric Oak, Montane
Alluvial Forest, Montane Grape Vine Opening, Southern Appalachian Cove Hardwoods,
Southern Appalachian Early Successional Hardwoods, Southern Appalachian Heath Balds,
Southern Appalachian Mixed Hardwoods without Oaks, Southern Appalachian Mixed
Hardwood, Acidic, Southern Appalachian Northern Hardwoods, and Submesic to Mesic
Oak/Hardwoods as described by Madden et al. (2004). The area contains three major soil types

— Ditney-Unicoi, Soco-Stecoah, and Spivey-Santeetlah (Figure 3.5). A three-dimensional (3D)

fly-through animation of the study area can be viewed at http://strother.myweb.uga.edu by

clicking on the Research tab on the home page.
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Figure 3.1 - False Gap study area within the GRSM
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Figure 3.3 - Slope raster of False Gap
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Tree Communities
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Figure 3.4 - Overstory vegetation map of False Gap (Madden et al., 2004)
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Soils
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Figure 3.5 - Soil map of False Gap (NRCS, 2011)
Methods
Between February 15 and April 7, 2011, LiDAR data were collected for the U.S.
Geological Survey (USGS) to be added to The National Map. The data were collected in leaf-off
and snow-free conditions for the Tennessee portion of the GRSM as well as the Foothills
Parkway with grants awarded to The University of Georgia (UGA) and Gainesville State College
(GSC) funded by the American Recovery and Reinvestment Act (ARRA) of 2009 (Jordan &
Madden, 2011) A total of 111 flight lines were used to ensure complete coverage of the study
area (Figure 3.6). The LiDAR data used in this study were acquired by Photo Science, Inc. using
a Leica ALS-60 sensor and an Optech ALTM Gemini sensor. Both sensors used a laser with a

wavelength of 1064 nm. The flying height for the ALTM Gemini mission was reported to be
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1981.2 m above ground level (AGL), with a scan angle of £16°, scan frequency of 20.2 Hz, and
a laser pulse frequency of 50 kHz. The flying height for the ALS-60 mission was not listed, the
scan angle was +16°, the scan frequency was 34 Hz, and the pulse frequency was 53 kHz (Table

3.1).

LIiDAR Flightlines

Park Boundary

— Lidar Flightlines N

0 5 10 20 30 40
N e e e Kilometers

Figure 3.6 - Mission flight lines for LIDAR collection in early 2011
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Table 3.1 — Photo Science, Inc. LIDAR sensor acquisition data

Sensor Optech ALTM Gemini Leica ALS-60
Altitude (AGL) 1981.2 m Not listed
Speed 110 knots 150 knots
Scan frequency 20.2 Hz 34 Hz

Scan angle +16° +16°

Pulse frequency 50 kHz 53 kHz

High resolution (30-cm pixel size), four-band color infrared (CIR) imagery was also collected of
the same study area by the same commercial vendor, Photo Science, Inc. The Center for
Geospatial Research (formerly Center for Remote Sensing and Mapping Science - CRMS) in the
Department of Geography at UGA was involved in the post-processing and quality control
checking of the raw LiDAR data and orthoimagery used in this work.

The LiDAR data file used in this study contains 3,601,691 points with point spacing of
0.79 points / m% The vertical accuracy was reported as + 0.165 m RMSE, which meets the
standard of < + 0.18 m RMSE required by the USGS. A 1.5-m bare Earth DEM was derived
from the ground return points of the LiDAR data file and was interpolated using the Nearest
Neighbor method by the vendor, Photo Science, Inc. The stream layer was sourced from the
USGS National Hydrology Dataset (NHD) and the vegetation overstory layer was created by the
CRMS as part of the USGS — National Park Service National Vegetation Inventory Project by
manual interpretation of large scale CIR aerial photographs acquired in 1997 / 1998 (Welch et
al., 2002; Madden et al., 2004). The state layer was sourced from the USGS National Atlas
website and the soils layer from the United States Department of Agriculture’s (USDA) Natural

Resources Conservation Service (NRCS) Web Soil Survey (Table 3.2).
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Table 3.2 — Description of data used in the study

Data Layer Source Format | Resolution
Bare Earth DEMs UGA CRMS 2011 .img 1.5m
LiDAR point cloud UGA CRMS 2011 las 0.69m
files

State boundary nationalatlas.gov 2005 | .shp

Streams USGS 2004 .shp

Forest oye_rstory UGA CRMS 2004 .shp

communities

Soils USDA 2012 .shp

The first step in the analysis was to perform a feature extraction using a software
extension for ArcGIS® 10 called Lidar Analyst. This tool required input from the user regarding
the type of forest of interest. A fixed window search was recommended for dense forests. The
“deciduous” forest option was chosen given the overstory designations found in the reference
layer by Madden et al. (2004). The resulting points created from the algorithm yielded 22187
trees (Figure 3.7) and created an attribute table with the tree characteristics: height, crown width,
and stem density based on allometric algorithms within the software (Overwatch Systems, Ltd.,
2010).

Next, raster layers were created in ArcGIS to represent percent slope and aspect (Figure
3.8) using the elevation layer as the source. The stream, overstory, and soil layers were added
along with the tree point layer for analysis in the GIS. Spatial data joins were used to extract the
values of each layer to the tree point layer and an attribute table was created that contained the
values for tree height (in meters), slope percentage, aspect azimuth, elevation (in meters), soil

type, and overstory vegetation type. A Euclidean distance operation was performed on the tree
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points to determine the linear distance to features in the stream layer and an attribute field was
added to the tree point layer with the distance in meters.

The GIS attribute table was then exported in text format (.txt) so it could be imported into
a spreadsheet for further manipulation. Once opened in a spreadsheet, a formula was created to
categorize the aspect azimuth values into eight cardinal directions, plus a category for flat
aspects. Cardinal directions were defined as North, Northeast, East, Southeast, South, Southwest,
West, and Northwest with each category including 45° of azimuth. Next, formulas were entered
to categorize the original soil designations into three main categories. This was decided after
research of the qualities of the six original soil types and determining that the finer resolution in
the soil types was due to difference in slope. For example, the soils of the Ditney-Unicoi (DtD
and DtF) complex were identical except for the slope percentage in the area where they are
found. The final spreadsheet was exported in a comma separated value format (.csv) for
compatibility with the Stata IC 10 statistical analysis software package.

Once the data were imported for statistical analysis, a decision was made to exclude
observations that fell into the Montane Grape Vine Opening and Heath Bald overstory categories
based on information reported by Madden et al. (2004) regarding the species found there. The
Heath Bald communities are general on rock outcrops and contain shrub species of
Rhododendron (R. catawbiense and R. carolinianum) whose low-growing characteristics would
affect the model performance. Montane Grape Vine Openings are areas where vines (Vitis
aestivalis) grow over the canopy and weight down the overstory creating lower tree heights than
would be found with their absence. The exclusion of these data resulted in reducing the sample

to 20,708 tree height observations.
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To create models for analysis, independent categorical variables had to be created for the
aspect, overstory vegetation, and soil type categories. The dummy coded categorical values were
used along with the independent continuous variables representing elevation, slope percentage,
and distance to riparian features, to create the initial model for the dependent variable - tree
heights. A list of the variables, their aliases, and their types is provided in Table 3.3. Decisions
were made regarding which dummy variables in each category would be used as the reference
variable. For Model 1, it was decided that the variable with the smallest percentage of frequency
in the observations would be the reference variable (Tables 3.4-3.6). For the soils, this was the
Spivey variable (s3); aspect - the East variable (a3); overstory - SA Mixed Hardwoods, Acidic

variable (n6). Basic summary statistics were also created for the continuous variables (Table

3.7).

Table 3.3 — Dependent and independent variables used in Models 1 and 2

Variable alias | Variable value Type

treeheight Tree height (m) Dependent; continuous
elevation Elevation (m) Independent; continuous
near_dist Distance to streams (m) Independent; continuous
slope Slope % Independent; continuous
sl Ditney-Unicoi soil Independent; categorical
s2 Soco-Stecoah soil Independent; categorical
s3 Spivey-Santeetlah soil Independent; categorical
al North aspect Independent; categorical
a2 Northeast aspect Independent; categorical
a3 East aspect Independent; categorical
ad Southeast aspect Independent; categorical
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a5 South aspect Independent; categorical
a6 Southwest aspect Independent; categorical
a7 West aspect Independent; categorical
a8 Northwest aspect Independent; categorical
nl Low elevation Mixed Pine-Xeric Oak | Independent; categorical
n2 Montane Alluvial Forest Independent; categorical
n3 SA Cove Hardwoods Independent; categorical
n4 SA Early Successional Hardwoods Independent; categorical
n5 SA Mixed Hardwoods w/o Oaks Independent; categorical
n6 SA Mixed Hardwoods, Acidic Independent; categorical
n7 SA Northern Hardwoods Independent; categorical
n8 Submesic to Mesic Oak/Hardwoods | Independent; categorical
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Figure 3.7 - Tree points extracted by Lidar Analyst algorithm
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Figure 3.8 - Aspect raster of False Gap

Table 3.4 — Stata output of frequency statistics for soils in False Gap

Soil_cat Freq. Percent Cum.
Ditney 11,344 54.78 54.78
Soco 6,536 31.56 86.34
Spivey 2,828 13.66 100.00
Total 20,708 100.00
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Table 3.5 - Stata output of frequency statistics for aspect in False Gap

Asp_name Freq. Percent cum.
E 137 0.66 0.66

N 2,638 12.74 13.40

NE 1,148 5.54 18.94

NW 2,883 13.92 32.87

S 2,947 14.23 47.10

SE 498 2.40 49.50

Sw 6,359 30.71 80.21

w 4,098 19.79 100.00

Total 20,708 100.00

Table 3.6 - Stata output of frequency statistics for overstory vegetation in False Gap

Name Freq. Percent Cum.

Low Elevation Mixed Pine- Xeric 0Oak 941 4.54 4.54

Montane AlTluvial Forest 218 1.05 5.60

SA Cove Hardwoods 5,809 28.05 33.65

SA Early Successional Hardwoods 2,768 13.37 47.02

SA Mixed Hardwoods without Oaks 2,294 11.08 58.09

SA Mixed Hardwoods, Acidic 2 0.01 58.10

SA Northern Hardwoods 615 2.97 61.07

Submesic to Mesic Oak/Hardwoods 8,061 38.93 100.00
Total 20,708 100.00

Table 3.7 - Stata output of descriptive statistics for all continuous variables in False Gap

variable | Obs Meanh Sstd. Dev. Min Max
treeheight i 20708 19.67359 8.134268 3.552734 47.67651
slope 20708 28.52869 9.350015 .237586 69.1052
elevation 20708 907.5433 109.3009 662.903 1153.98
near_dist | 20708 163.3713 101.2992 0 437.5657
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Results and Discussion

Examination of normality and variables
Before running the initial model using an OLS estimator, the continuous variables were

visually inspected for normal distribution (Figures 3.9-3.12).
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Figure 3.9 - Data distribution versus a normal curve for treeheight variable
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Figure 3.10 - Data distribution versus a normal curve for near_dist variable
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Figure 3.11 - Data distribution versus a normal curve for elevation variable
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Figure 3.12 — Data distribution verses a normal curve for slope variable

The histograms showing the data distribution against a normal distribution curve show that there
is non-normality in the elevation, distance, and tree height data. The slope variable is closest to a

normal distribution. The same trends can be seen in the boxplots of the same variables (Figures

62



3.13-3.16). Although normality is not apparent in all of the variable data, this is not necessarily
crucial to the model’s success because the distribution of the variables’ residuals display a

normal distribution.
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Figure 3.13 — Boxplot of treeheight variable data
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Figure 3.14 — Boxplot of near_dist variable data
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Figure 3.15 — Boxplot of elevation variable data
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Figure 3.16 — Boxplot of slope variable data

Scatterplots were created for the continuous variables before executing the model for further

visual analysis of the relationships between the variables and tree height (Figures 3.17-3.19).
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Figure 3.17 - Scatterplot of elevation (m) and treeheight (m)
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Figure 3.18 - Scatterplot of slope (%) and treeheight (m)
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Figure 3.19 - Scatterplot of near_dist (m) and treeheight (m)

General comments can be made regarding these relationships. There is a visible decrease in tree
heights with increasing elevation, increasing slope, as well as increased distance from water
based on the fitted lines in each of these scatterplots. It also appears that increasing slope may
limit the number of trees in areas with high slope percentages. These visual interpretations are
crucial for basic understanding of the relationships between the continuous variables. A more
rigorous statistical understanding can be obtained by examining the metrics of the model
regression (Table 3.8).

In addition to visual interpretation of the continuous variables in the model, some
general comments can be made regarding the categorical variables used in the regression. The
bar graphs (Figures 3.20— 3.22) show some general trends regarding the mean height of trees for

each category. For soils, it can be seen that the mean height of trees in areas with Spivey soils is
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higher relative to the other two soil types. Also, the assumptions based on empirical evidence
with respect to aspect seem to hold true as well with mean tree height greater in generally north
facing slopes and lower in south facing slopes. An interpretation of the overstory vegetation
graph shows less variability and the mean height in SA Mixed Hardwoods, Acidic category is
somewhat misleading given that there are only two observations of the > 20000 for this
community. By examining the scatterplot graphs of each categorical variable, we can see how
the mean values of tree height change between variables. For the three soil variables, visual
inspection implies that the mean value of tree height will increase in the presence of Spivey soils
and decrease with Soco and Ditney soil complexes (Figures 3.23-3.25). Figures 3.26-3.33 show
the effect of the aspect categories on the mean of tree height. As predicted by empirical
evidence, the mean height of trees in the study area generally increases in the north and

decreases in the south.
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Figure 3.20 - Graph of soil types and mean tree height (m)
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Figure 3.22 — Graph of tree category and mean tree height (m)
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Figure 3.23 — Scatterplot of categorical variable s3 (Spivey soil) and tree height (m)
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Figure 3.24 — Scatterplot of categorical variable s2 (Soco soil) and tree height (m)
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Figure 3.25 - Scatterplot of categorical variable s1 (Ditney soil) and tree height (m)
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Figure 3.26 - Scatterplot of categorical variable al (North aspect) and tree height (m)
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Figure 3.27 - Scatterplot of categorical variable a2 (Northeast aspect) and tree height (m)
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Figure 3.28 - Scatterplot of categorical variable a3 (East aspect) and tree height (m)
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Figure 3.29 - Scatterplot of categorical variable a4 (Southeast aspect) and tree height (m)
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Figure 3.30 - Scatterplot of categorical variable a5 (South aspect) and tree height (m)
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Figure 3.31 - Scatterplot of categorical variable a6 (Southwest aspect) and tree height (m)
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Figure 3.32 - Scatterplot of categorical variable a7 (West aspect) and tree height (m)
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Figure 3.33 - Scatterplot of categorical variable a8 (Northwest aspect) and tree height (m)

Model regression and diagnostics
The initial model (Model 1) was executed using an OLS estimator because of its

simplicity as a linear unbiased estimator with the formula defined as:

treeheight = by + by *elevation + b,*near_dist +bs*slope + bs*s1 + bs*s2 + bg*al + b;*a2 +
bg*a4 + b9*8.5 + b10*8.6 + bll*a7 + blz*aS + blg*nl + b14*n2 + b15*n3 + ble*n4 + b17*n5 +

big*n7 + b19*n8

Table 3.8 shows the output results of the initial model regression. Review of the output shows
that the F-test is statistically significant for the overall model (Prob > F = 0.0000). The R? value
of 0.2390 means that approximately 24 percent of the variance of tree height in the study area is

accounted for by Model 1. Because of the large number of observations (20708) relative to the
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number of predictors (19), the adjusted-R? (0.2383) is not significantly different from the R?.
The RMSE =+ 7.0991 m. Based on a p-value of 0.0000, Model 1 shows that the collection of
independent variables reliably predict the dependent variable of tree height. Closer examination
of the Model 1 results shows even more useful information. By examining the effect of each
variable on the efficacy of the model, it can be seen that based on the t-test, none of the
categorical variables concerning overstory vegetation are statistically significant at the alpha =
0.05 level. This is interesting because, intuitively, one would assume that the type of tree
community to which an individual tree belongs, with its individual genetic characteristics, would
have a profound effect on the height of the organism. This does not appear to be the case in this
particular model for this study area. Also surprising is the insignificance of slope in Model 1.
This contradicted the assumptions made at the onset of the study that increasing slope would be
influential in determining tree heights.

The remainders of the variables tell their own stories. By examining the raw coefficients,
it can be seen that an increase in elevation has a negative effect on the predicted tree heights, but
only slightly. This reinforces the pattern seen in the graphic representation of the data from
earlier. For each meter increase in elevation, tree heights predicted in this model would decrease
by 8 mm net of the effects of all of the other variables. The same negative effect on tree heights
is provided by the distance to water. For each meter from a stream feature, tree heights decrease
by 15 mm. The same relative relationship is apparent in the beta coefficients as well, with a 1o
increase in elevation creating a -0.1139112c change in tree heights and a 1o increase in the
distance from water creating a -0.1938349¢ change in height.

At least for the continuous variables in this model, the distance to water seems to be the

predictor that contributes the most to the outcome. All of the remaining dummy variables except
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a8 (NW aspect) are significant according to their t-tests, but the raw coefficients are of most
importance here. The presence in this model of soil types Ditney and Soco shows a negative
effect on the mean of tree heights compared to trees in Spivey soils. This was also represented in
the graphical interpretation from earlier. We also can see that generally north facing slopes (a2,
a3, ad) create a positive effect on the mean of tree heights with their individual presence in
comparison to eastern slopes. The sign on the raw coefficients for the south facing slopes (a5, a6,
a7) show a negative influence on the overall predicted mean tree height in this model. The by
value indicates that in Spivey soils, with eastern aspect in a SA Mixed Hardwood, Acidic
community with low slope, low elevation, and near a stream we could expect to see tree heights
around 40 m.

Diagnostics for Model 1 showed that there was reason to be concerned about the validity
of the model for predicting tree heights. The variance inflation factor (VIF) analysis showed
problems with the overstory vegetation variables as well as many of the aspect variables which
suggest multicollinearity in the data (Table 3.9). This makes sense given that most of the
communities of trees are hardwoods of one species or another and that slope aspect is not
naturally categorized, but in reality more continuous. There also seemed to be correlation
between the variables elevation and s1 (0.82) in Model 1 as shown in Table 3.10. The initial
concerns regarding the normality of the data were eased by the analysis of the distribution of the
residuals for the model which showed a nearly normal distribution (Figure 3.42). The scatterplot
of fitted values vs. the residuals provided evidence that the model may contain heteroscedasticity

and some influential observations (Figure 3.43).
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Table 3.8 - Stata output of regression metrics for Model 1

source SS df MS Number of obs = 20708

FC 19, 20688) = 342.02

Model 327499.746 19 17236.8288 Prob > F = 0.0000
Residual 1042606.06 20688 50.3966582 R-squared = 0.2390
Adj R-squared = 0.2383

Total 1370105.81 20707 66.1663114 Root MSE = 7.0991
treeheight Coef. std. Err. t P>|t]| Beta
slope -.00099 .006185 -0.16 0.873 -.001138
elevation -.0084774 .0008598 -9.86 0.000 -.1139112
near_dist -.0155648 .0006473 -24.04 0.000 -.1938349
sl -1.957992 .2471761 -7.92 0.000 -.119806

s2 -4.642676 .1929783 -24.06 0.000 -.2652735

a2 2.95577 .6263579 4.72 0.000 .1211549

a3 2.377997 .6427148 3.70 0.000 .0668991

a4 1.904571 .6253784 3.05 0.002 .0810565

a5 -3.447952 .6256608 -5.51 0.000 -.1480945

a6 -5.001658 .6928934 -7.22 0.000 -.0942032

a7 -2.860934 .6182169 -4.63 0.000 -.1622433

a8 .0606113 .6209349 0.10 0.922 .0029688

nl -6.409651 5.028473 -1.27 0.202 -.1641169

n3 -4.583735 5.023344 -0.91 0.362 -.2531644

n2 -9.623848 5.045111 -1.91 0.056 -.1207541

n4 -6.478364 5.024034 -1.29 0.197 -.2710276

n5 -5.4207 5.024137 -1.08 0.281 -.2091607

n7 -4.416366 5.02934 -0.88 0.380 -.0921677

n8 -8.38914 5.022821 -1.67 0.095 -.5028744

_cons 39.72185 5.11124 7.77 0.000 .

Table 3.9 - Variance Inflation Factor analysis results for Model 1

variable VIF 1/VIF

n8 2464.52 0.000406

n3 2092.69 0.000478

n4 1201.03 0.000833

ns 1021.70 0.000979

nl 450.67 0.002219

n7 299.50 0.003339

n2 108.94 0.009179

a7 33.42 0.029926

a8 25.15 0.039765

a5 19.63 0.050935

a4 19.26 0.051925

a2 17.92 0.055804

a3 8.89 0.112510

sl 6.22 0.160805

ab 4.63 0.215979

elevation 3.63 0.275589

s2 3.31 0.302538

near_dist 1.77 0.565985

slope 1.37 0.727736
Mean VIF 409.70
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Table 3.10 — Correlation matrix for continuous and categorical variables with high correlation between s1 and elevation highlighted

treehet elevat=n  slope near_(ut sl 52 al a3 al 2 a al a8 n n3 n n N9 n g

treeheight | 1.0000
elevation | -0.1144 1.0000
slope | -0.1323  0.2377  1.0000

near_dist | -0.1416 04654 0.2664 1.0000
s -0.0422”0.8205 ).1425 0.4035  1.0000
s2 | -0.1685 “o:5r0.1994 -0.1360 -0.7475  1.0000
al | 0,179 0.0570 0.0434 0.0727 0.0457 -0.0491 1.0000
a3 | 0.1345 0.0573 0.0188 -0.0407 0.0730 -0.1232 -0.0926 1.0000
ad | 0.1493 -0.1064 -0.0953 0.0868 -0.0870 -0.0060 -0.1537 -0.0974 1.0000
a5 | -0.1621 -0.0522 0.0183 -0.0187 0.0004 0.0487 -0.155 -0.0987 -0.1638 1.0000
a0 | -0.0076 -0,1218 -0.0833 -0.0987 -0.0999 0.1165 -0.0600 -0.0380 -0.0631 -0.0639 1.0000
al | -0.2053 0,135 0.0559 -0.0772 0.0844 0.003 -0.2544 -0.1613 -0.2677 -0.2712 -0.1045 1.0000
a8 | 0.0551 -0.0485 -0.0098 0.0376 -0.0733 0.0320 -0.1898 -0.1203 -0.1998 -0.2023 -0.0780 -0.3307 1.0000
nl | 0.0003 -0.1649 -0.0318 -0.0623 -0.1586 0.1227 -0.0229 -0.0225 -0.0228 -0.0099 0.0021 0.0357 0.0179 1.0000
i3 0.0843 01944 01129 0.3519 0.1928 -0.1361 0.0084 -0.0122 0.0063 -0.0085 -0.0882 -0.0063 0.0500 -0.1362 1.0000
n2 | -0.0507 0.0982 -0.0332 0.1088 0.0918 -0.0700 0.0415 -0.0229 0.0364 -0.0393 -0.0162 0.0042 -0.0156 -0.0225 -0.0644 1.0000
nd | 0.0542 -0.0043 -0.0320 0.0518 -0.119% 0.0792 0.0955 -0.0127 0.1027 -0.1011 -0.0607 -0.1058 0.0742 -0.0857 -0.2453 -0.0405 1.0000
| 0.0399 0,258 0.0938 0.154 0.2313 -0.1715 0.0308 0.1848 -0.0144 -0.0394 -0.0343 -0.0475 -0.0347 -0.0770 -0.2204 -0.0364 -0.1386 1.0000
n7 | 0.1341 -0.0065 -0.0978 -0.1269 0.06% -0.1188 0.109 0.0073 0.0800 -0.0696 -0.0219 -0.0443 -0.0448 -0.0382 -0.109 -0.0180 -0.0687 -0.0618 1.0000
ng | -0.1819 -0.2235 -0.0875 -0.4098 -0.2189 0.1843 -0.1316 -0.0869 -0.0942 0.1406 0.1559 0.1006 -0.0642 -0.1742 -0.4985 -0.0823 -0.3136 -0.2818 -0.1397 1.0000
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Given the issues with insignificant variables, suspected heteroscedasticity, and suspected
influential observations, a decision was made to create a second model — Model 2, to try to
improve the performance of the predictor for tree heights in the False Gap study area. All of the
overstory type variables were removed as well as slope and the variable for northwest aspect.
The regression was run with the new parameters and the output can be seen in Table 3.11.

Table 3.11 - Stata output of regression metrics for Model 2

. regress treeheight elevation near_dist sl s2 a2 a3 a4 a5 a6 a7, beta

Source SS df MS Number of obs = 20708

FC 10, 20697) = 536.03

Model 281846.684 10 28184.6684 Prob > F = 0.0000
Residual 1088259.13 20697 52.580525 R-squared = 0.2057
Adj R-squared = 0.2053

Total 1370105.81 20707 66.1663114 Root MSE = 7.2512
treeheight Coef. std. Err. t P>|t] Beta
elevation -.0085856 .0008671 -9.90 0.000 -.1153659
near_dist -.0098157 .0005973 -16.43 0.000 -.1222386
sl -1.900884 .2446983 -7.77 0.000 -.1163116

s2 -5.131421 .1782767 -28.78 0.000 -.2931994

a2 3.043134 .1803883 16.87 0.000 .1247359

a3 2.734529 .2438076 11.22 0.000 .0769293

a4 1.838883 .1762269 10.43 0.000 .0782609

a5 -4.000873 .17624 -22.70 0.000 -.1718432

a6 -6.147989 .3481603 -17.66 0.000 -.1157937

a7 -3.20735 .1468173 -21.85 0.000 -.1818886

_cons 32.63681 .6857501 47.59 0.000 .

The overall results of this model are similar to Model 1, but with some of the manageable factors
corrected. Again the F-test is significant and the p = 0.0000 means that the overall model is
statistically significant. This second model accounts for less variability than Model 1, with an R?
= 0.2057 and adjusted R? = 0.2053 or around 21 percent of the variability compared to 24
percent in Model 1. The RMSE = + 7.2512 m is slightly higher for this model, also.

All of the t-tests for variables in Model 2 are significant. As for Model 1, conclusions can
be drawn by examining the raw and beta coefficients for the model. The variables elevation and

near_dist display much the same relationship with tree heights as before as far as direction go,
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but near_dist has less of an impact net the effect of the other variables now that slope, overstory,
and northwest aspect have been removed from the regression (-0.1222386 vs. -0.1938349 beta
coefficient). South facing slope variables still produce conditions that reduce the predicted mean
heights of trees and north facing slopes have the opposite effect as hypothesized. The absence of
Spivey soils, or conversely, the presence of Ditney or Soco soils in the study area will reduce the
mean value of tree heights. The y-intercept in Model 2 is statistically more significant than in
Model 1 (t=47.59 vs. t=7.77). Therefore, more confidence can be placed in the predicted value
of tree heights in conditions of low elevation, close to water, in Spivey soils and a west-
northwest facing slope of 32.63681 m.

Diagnostics for this model revealed some improvement and some lingering problems
with the data. Plots of the histogram of the residuals for Model 2 and pnorm and gnorm graphs
show a distribution that is nearly normal, with some increased variance at the low end of the

residuals (Figures 3.44-3.46).
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Figure 3.36 - Histogram of residuals of Model 2
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Figure 3.38 - gnorm plot of Model 2
The VIF test for multicollinearity of Model 2 was much improved over Model 1 as shown in

Table 3.12. Only one value is possibly troublesome and that is for the s1 variable. Some
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researchers set the threshold for concern with VIF at 5, while others use 10. The value of 5.84 is
not well above the lower threshold, so it was retained in the model.

Table 3.12 - VIF values for Model 2

Variable VIF 1/VIF
sl 5.84 0.171188
elevation 3.54 0.282710
s2 2.70 0.369854
a7 1.81 0.553602
a5 1.49 0.669741
a4 1.47 0.682251
near_dist 1.44 0.693548
a2 1.42 0.701961
a3 1.23 0.815752
ab 1.12 0.892501
Mean VIF 2.21

Issues concerning correlation between the s1 variable and the elevation variable remain (0.8
value) and this relationship is logical considering the known location of the Ditney soil complex
at higher, steeper, rocky elevations.

A rigorous examination of the model was performed to look for influential observations.
Scatterplots of elevation and near_dist vs. treeheight were created to identify any possible
outliers (Figures 3.47 and 3.48). Three observations were noted with tree heights above 46 m for
further investigation. Next, an examination of students' residuals was completed using the
residuals of Model 2 and shown in Figure 3.49. Studentized residuals can help to identify
outliers. The threshold was defined as any value > 3. A leverage analysis was also completed
with the threshold of 0.00106239 ((2k+2)/n, where k = number of predictors, 10) and n = number
of observations, 20708). Cook's D was also performed with a threshold set at 0.00019316 (4/n).
Cook's D measures overall influence by combining information about residuals and leverage.
The final influential observation test was DFITS. This also combines information regarding

residuals and leverage and the threshold was set as 0.04395 (2*sqgrt(k/n). All of the data were
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combined and 230 of the observations met three out of four of the tests. Only one observation of
20708 met all four of the tests. It was removed, but replaced after the model showed no
significant improvement in performance. It should be noted that the original three possible
outliers identified by the graphic interpretation did not fail any of the tests for influential
observations. As a final test for influential observation, the DFBETA was examined with no
discernible issues. The decision was made to leave the data set as it was based on the knowledge
of the variability of natural phenomenon in general and the ability for some individual organisms
to be outstanding without being outside of the realm of possibility.

Finally, the diagnostics for heteroscedasticity indicate that the data are not homoscedastic
based on the graphic interpretation of the data as well as the significance calculated in White's
Test and the Breusch-Pagan Test (Table 3.13). We must reject the null hypothesis of

homoscedasticity in this case.
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Figure 3.39 — elevation (m) vs. treeheight (m) with potential outliers circled
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Figure 3.41 - Predicted treeheight values vs. residuals for Model 2
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Table 3.13 - Results of White's Test and Breusch-Pagan test for heteroskedasticity

. estat imtest

Cameron & Trivedi's decomposition of IM-test

Source chi2 df p
Heteroskedasticity 1523.67 41 0.0000
Skewness 1017.32 10 0.0000
Kurtosis 46.27 1 0.0000
Total 2587.27 52 0.0000

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
variables: fitted values of treeheight

chi2(1)
Prob > chi2

515.78
0.0000

Conclusions and Recommendations

The use of LIDAR derived data in this study allowed for a rigorous assessment to be
made of the environmental variables that contribute to tree heights in the GRSM. The use of
feature extraction software provided over twenty thousand observations that were used to create
predictive models that would have been costly and time consuming to collect by traditional
fieldwork. This study emphasized the problems that are inherent in creating a predictive model
using such a large sample set created by the LIiDAR data. The predictive Model 2 was able to
account for 21 percent of the variability in the heights in the False Gap area with a number of
significant variables including elevation, distance to streams, soil types, and aspect as expected.
At least for the continuous variables in this model, the distance to water seems to be the
predictor that contributes the most to the outcome.

Unexpected was the poor performance of the slope variable in the model, but it is

proposed that there be further examination of the effects of interactions of slope with elevation
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and soil types, as well as interactions between soil types and elevation based on the evidence of
collinearity in Model 2. Future work should include an investigation regarding the historical
disturbance in forested areas in the Appalachians as well as climatic effects on tree heights. It is
believed that special attention should be given to the Lidar Analyst tool used to create the initial
database of tree heights. No substantive work was done in this study to ascertain the accuracy of
the automatically derived database.

Also, it should be noted that the study was performed as an evaluation of the
methodology of using OLS regression to model one of the most diverse forests in the world in a
highly variable environment. This type of straightforward regression model was chosen because
of its lack of bias, but it is possible that a more complex model such as a Geographically
Weighted Regression model (GWR) or a Generalized Least Squares (GLS) model would
perform better at predicting tree heights in this type of complex and varied environment.

Overall the study shows the challenges in modeling natural environments, which by their
very nature, contain high levels of complexity and variability. It is surmised that because this
area is dominated by hundreds of species of broadleaf deciduous trees, the interspecies
variability in attainable tree heights make the task of modeling heights a challenging one. It is
suggested that future work select communities/species of trees to model in order to remove

variability and potentially improve the predictive model.

87



CHAPTER 4
CONCLUSIONS

Humans have always been fascinated by the natural world around them. This fascination
and curiosity can be seen in those who choose to study forest structures and extraordinary trees
in parks and forests around the world. Forestry experts, arborists, plant biologists, bio-
geographers, and tree enthusiasts are all interested in searching the forests for exceptionally tall
trees because of the information that this research can provide regarding old growth
communities, favorable growth conditions, biomass stock, and carbon storage. These giant trees
also serve as habitats for numerous other species of plants and animals that rely on the health of
the tree for their own survival. In addition, the identification and measurement of these trees has
implications in the issue of climate change because of their ability to store carbon and provide
valuable oxygen into the Earth’s atmosphere.

In Chapter 2, Determining the Location of the Ten Tallest Trees in the Tennessee Portion
of the Great Smoky Mountains National Park Using LIDAR Data, ten trees were detected in a
complex and rugged forested area of the Great Smoky Mountains National Park (GRSM) using
LiDAR data with heights between 55 and 59 m. The two tallest trees measured are potentially
the tallest trees ever recorded in the eastern U.S., pending field verification. All ten trees detected
in the LiDAR data are taller than the tallest tree recorded to data in the Tennessee portion of the
GRSM. The site information for these remarkable trees will be used by park managers,
ecologists, and arborists to promote park visitation, as well as to provide the basis for future

research of tall trees and their environmental impacts and ecological habitats.
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In Chapter 3, Ordinary Least Squares Analysis of a LIDAR-Derived Tree Height
Database, a database of tree heights was created using feature extraction software for a 225
hectare area within the GRSM. Over twenty thousand observations were obtained using this
process, representative of the large volume of researchable data that can be analyzed using the
LiDAR data format. Categorical and continuous variables representing elevation, terrain aspect,
terrain slope, overstory vegetation community, distance to water, and soil type at each observed
point were used in an Ordinary Least Squares (OLS) analysis to determine the strength of these
variables in relation to the measured tree heights. The two models that were created were able to
predict 21 — 24 % of the variability in tree heights in the study area. It is proposed that the poor
performance of the models was the result of the difficulty in predicting highly variable natural
environments. Future studies should include variables that account for climatic conditions at the
tree sites, historical data that consider past disturbance in the region, and field research to
determine the validity of the dataset created by the automated extraction software. This work
also showed that LiDAR data can be valuable as the basis for a database of tree heights. It would
be a herculean effort to document the heights of over 22,000 trees using manual field methods
and now this process can be automated through feature extraction algorithms currently being
used in the field of GIS. Although the fit of the OLS model in this study explained only a portion
of the variability in tree heights in the False Gap area, the results were statistically significant
and bear further examination.

Both chapters show that using LiDAR to extract accurate elevation and height
information in the Great Smoky Mountains National Park allows researchers to obtain
information about extraordinary trees and creates interest for arborists, ecologists, park

managers, as well as the general public. Upon field verification of the tree sites studied here, it
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may be found that these are among the tallest trees of their species ever recorded in the eastern
United States. This would be valuable information that could lead to studies of the history of
these trees. Further work is needed to examine the history of these sites and determine whether
these trees are old-growth or successional.

Finally, the future of LIDAR data applications in forestry research is bright.
Higher density point clouds and the introduction of new technologies, such as terrestrial LIDAR
and Flash LIiDAR mean that those working in the LIDAR remote sensing discipline will have
many challenges and opportunities to work with for years to come. Flash LIiDAR technology
uses an array of sensors to measure ranges over an entire field of view with a single pulse. This
technology is being used in military, space, and emergency management situations and has only
begun to be explored in the last few years. Terrestrial LIDAR uses ground-based vehicles or
platforms instead of airborne platforms to create three-dimensional point clouds which can then
be used to create realistic and highly accurate (sub centimeter) models of ground features,
including forest structure. These new technologies, as well as the now traditional airborne
LiDAR sensors, will continue to create opportunities for researchers in many different fields.
The future use of high resolution geospatial data to detect and quantify forest structure will only
be limited by the ability for computer systems and processors to manage the large volumes of

data that these sensors create.
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