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Introduction

Deligne and Mumford introduced the moduli space M g,n of stable n-pointed
curves of genus g, which proved to be very useful in many fields of mathe-
matics. The genus 0 case is already rich and interesting, and Hassett gave
a generalization to the moduli space M0,β by assigning weights to n points
where β = (b1, ..., bn) is a weight vector with 0 < bi ≤ 1 for each 1 ≤ i ≤ n

[Has03]. Hacking, Keel and Tevelev gave another generalization M(k, n),
the moduli of stable hyperplane arrangements, by considering its higher di-
mensional case [HKT06]. Then, Alexeev introduced the moduli of weighted
stable hyperplane arrangements Mβ(k, n) which can be thought of as a gen-
eralization of both moduli spaces. Mβ(k, n) is shown to be a fine moduli
space [Ale08]. We can regard Hassett’s space as a special case of Alexeev’s
space when k = 2 and write Mβ(2, n) instead of M0,β.

Definition 0.1. For a connected equidimensional projective variety X and
n Weil divisors Bi, a pair (X,B =

∑n
i=1 biBi) is called a stable pair if

1. X is reduced, and the pair is semi log canonial, and

2. KX +B is ample.

Weighted stable hyperplane arrangements are a particular case of this
definition. Fix n ≥ 4. Define the weight domain

D (k, n) =
{

(bi) ∈ Qn | 0 < bi ≤ 1,
∑

bi > k
}

1



There is a partial order on D (k, n): β > β′ if for all 1 ≤ i ≤ n, one has
bi ≥ b′i with at least one strict inequality. For any weights β > β′, there is
a natural reduction morphism ρβ,β′ : Mβ(k, n) → Mβ′(k, n). In the curve
case (k = 2), M0,β and M0,β′ are smooth irreducible projective varieties of
dimension n− 3, and ρβ,β′ is birational. Hence, ρβ,β′ is surjective. However,
for the higher dimensional case (k ≥ 3), the surjectivity of the morphism is a
much harder problem. This is because Mβ(r, n) has a matroid structure and
when r ≥ 3 the matroid geometry may be arbitrarily complicated, which is
predicted by Mnev’s universality theorem, c.f. [Laf03].

A hyperplane arrangement has a loopless matroid structure with a ground
set S = {1, 2, ..., n} and a rank function r : 2S → Z≥0 such that r (I) =

codim ∩i∈I Bi for I ⊂ S [GGMS87]. A matroid is a generalization of a span-
ning set of a vector space, and a matroid is loopless if any singleton set has
rank 1. There are several ways to define a matroid, which will be briefly intro-
duced in Chapter 1. Any matroid gives a polytope which is called a base poly-
tope, and this correspondence is one-to-one. The base polytope for a loopless
matroid (S, r) is given as {(xi) ∈ Rn | 0 ≤ xi ≤ 1, x (S) = k, x (I) ≤ r (I)},
where x (I) denotes the sum

∑
i∈I xi. Hypersimplex ∆(k, n) is defined to

be the base polytope that corresponds to the uniform matroid Uk
n , that is,

its bases are all subsets I ⊂ S with |I| = k. Explicitly ∆ (k, n) is given as
∆(k, n) = {(xi) ∈ Rn | 0 ≤ xi ≤ 1, x (S) = k}.

Over a complex field C, a hyperplane arrangement (Pk−1, (B1, ..., Bn))

can be identified with its embeded image PV into Pn−1 in which Bi ap-
pear as intersections of PV and the coordinate hyperplanes of Pn−1, where
V is a k-dimensional vector space. An algebraic torus T = (C∗)n /diagC∗

acts on the Grassmannian G(r, n), and let Y be the closure of the orbit of
[PV ] ∈ G(k, n), then Y is a toric variety. In addition, it is known that
the strata of Y induce the strata of the subdivision of ∆ (k, n) into base
polytopes [HKT06], which we call a tiling or a complete cover of ∆ (k, n).
Similarly, given a weight β = (b1, ..., bn), define the weighted hypersimplex to
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be ∆β(k, n) = {(xi) ∈ Rn | 0 ≤ xi ≤ bi, x (S) = k}. Consider a subdivision of
∆β = ∆β (k, n) into the polytopes ∪j (∆β ∩ Qj) where ∆◦β ∩ Qj 6= ∅ and Qj

are loopless representable matroid polytopes in ∆ (k, n) forming a face-fitting
tiling. ∪Qj is called a partial tiling or a partial cover of ∆. By [Ale08], the
following combinatorial statement is closely related to the surjectivity of the
reduction map.

Question 0.2. Can every partial tiling be extended to a complete tiling?
(Question 2.1 in [Ale08])

k = 3 is the first case we are interested in. ∆ (3, 4) has no non-trivial
tiling, and we assume n ≥ 5. Until Chapter 6, we will develop combinatorial
arguments to solve this question. Recall that any matroid gives a base poly-
tope. For a face of the base polytope that is not contained in ∪ni=1 {xi = 0},
one can construct a matroid from the given loopless matroid. A puzzle-piece
for a loopless matroidM is defined to be the collection ofM and the matroids
that correspond to the faces of the base polytope ofM that are not contained
in ∪ni=1 {xi = 0}. Then, gluing of base polytopes is translated into the gluing
of puzzle-pieces, which is a backbone idea of this paper. The dimension that
one has to work with for base polytopes remarkably drops down to 3− 1 = 2

for puzzle-pieces. Moreover, because it is 2-dimensional, we can use visualiza-
tion, which cuts down much computation and also helps our understanding
of the gluing. We define a puzzle to be the collection of puzzle-pieces that
correspond to face-fitting base polytopes. A quilt is a weaker notion than a
puzzle so that a flake is a puzzle and a puzzle is a quilt. We will see that
a quilt that has regular shape, which we call a regular quilt for n ≤ 7 is a
puzzle; we will define the regular shape and a regular quilt in Chapter 5.
The author conjectures that every regular quilt for n ≤ 9 is a puzzle. Since
a puzzle is a quilt, a regular puzzle is defined to be a puzzle that is a regular
quilt at the same time. A complete puzzle is a puzzle that corresponds to a
complete cover of ∆ (k, n). A β-puzzle is a puzzle that comes from a partial
cover of ∆β for some weight β. Every β-puzzle is a sub-quilt of a regular

3



quilt. Then, Question 0.2 is translated into the following question.

Question 0.3. Can every regular puzzle be extended to a complete puzzle?

Consider again Y = T. [PV ] ⊂ G(k, n), and let U be the universal family
over G(r, n) whose fibers are isomorphic to PV ∼= Pr−1. Consider the fiber
product UY := U × Y

G(r,n)
and the GIT quotient UY //1 T , where 1 = (1, 1, ..., 1).

Theorem 0.4 ([Ale08]). UY //1 T is the log canonical model of the given pair
(Pk−1, (B1, ..., Bn)).

A matroid (S, r) is called inseparable or connected if there is no nonempty
proper subset A of S such that r (A) + r (Ac) = r (S). If a loopless insepara-
ble matroid is representable, i.e., isomorphic to a matroid defined by the set
of columns of a matrix, then its corresponding puzzle-piece can be geomet-
rically realized as the log canonical model of the hyperplane arrangement.
Then, there is a theorem due to Alexeev that the log canonical model of any
hyperplane arrangement on P2 is isomorphic to P1 × P1 or BlptsP2, [Ale13]
Theorem 5.7.2.

In Chapter 6 and 7, we give a partial answer to Question 0.3.

Theorem 0.5. Every regular quilt for ∆ (3, n) with 4 ≤ n ≤ 7 is a puzzle
and can be extended to a complete puzzle.

Conjecture 0.6. Every regular quilt for ∆ (3, n) with n = 8, 9 is a puzzle
and can be extended to a complete puzzle.

Theorem 0.7. When n = 10, there exists a weight β such that the reduction
map ρ1,β : M1 (3, 10)→Mβ (3, 10) is not surjective.

This paper is organized as follows. In Chapter 1, we give basic defini-
tions and general facts about matroids and base polytopes. Chapter 2 is
devoted to base polytopes and their gluing. We give an equivalent condition
for when two base polytopes glue to another base polytope, which is an in-
teresting combinatorial problem. This will tell us about the decomposition

4



of a puzzle-piece. In addition, it will be studied when the base polytope
comes from a hyperplane arrangement in Chapter 3, which says that its
corresponding matroid is representable. In Chapter 3 and 4, we study hy-
perplane arrangements and puzzle-pieces as preparation for the remaining
chapters. Chapter 5 and 6 are assigned for puzzles and β-puzzles, where we
will see theorems and conjectures about the completing quilts and puzzles.
In the last chapter, we construct a counter-example of the surjectivity of the
reduction map for Alexeev’s space when n = 10.
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Chapter 1

Matroids and polytopes

1.1 Characterizing matroids

The notion of matroid can be defined by several axiom systems. The char-
acterization of matroid by circuits plays an important role in graph theory,
but we do not pay attention to that description in this paper. Instead, we
list below characterizations of matroid in terms of independent sets, depen-
dent sets, bases, rank function, span function, and flats. Unless separately
mentioned, S denotes {1, 2, ..., n} for some natural number n.

Independent sets, dependent sets and bases

A pair M = (S, I) is called a matroid if S is a finite set and I is a collection
of subsets of S satisfying:

(I1) ∅ ∈ I,

(I2) if I ∈ I and J ⊆ I, then J ∈ I,

(I3) if I, J ∈ I and |I| < |J |, then I ∪ {z} ∈ I for some z ∈ J\I.(exchange
property)
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S is called the ground set of M . A subset I ⊆ S is called independent if
I ∈ I, and dependent otherwise. For U ⊆ S, a subset B of U is called a
base or basis of U if B is an inclusionwise maximal independent subset of U .
Under condition (I2), condition (I3) is equivalent to:

for any subset U of S, any two bases of U have the same size.

Rank function

The common size of the bases of a subset U of S is called the rank of U ,
denoted by rM (U). We define a rank function rM mapping 2S into the set
of non-negative integers Z≥0 by assigning rM (U) to U ∈ 2S. We write r (U)

for rM (U) if the matroid is clear from the context. In addition, we usually
write r (M) for r (S). Then r has the following properties:

(R1) if U ⊆ S, then 0 ≤ r (U) ≤ |S|,

(R2) if U ⊆ T ⊆ S, then r (U) ≤ r (T ),

(R3) if U, T ⊆ S, r (U) + r (T ) ≥ r (U ∪ T ) + r (U ∩ T ). (sub-modularity)

Conversely, if f is a function mapping 2S into Z≥0 that satisfies (R1)-(R3),
then f is the rank function of a matroid.

Independent sets and bases are characterized in terms of the rank func-
tion:

(R4) U is independent if and only if |U | = r (U),

(R5) U is a basis of M if and only if |U | = r (U) = r (M),

Span function

The span function spanM : 2S → 2S is defined as follows:

spanM (T ) := {s ∈ S | rM (T ∪ {s}) = rM (T )}

7



for T ⊂ S. spanM (T ) is called the span of T or the closure of T , and we say
that T spans spanM (T ). The span function is also called the closure operator
of a matroidM and denoted by clM . If the matroid is clear from the context,
we drop M from spanM (T ) or clM (T ). T also denotes the closure of T . The
span function has the following properties:

(C1) if T ⊆ S, then T ⊆ T ,

(C2) if T, U ⊆ S and U ⊆ T , then U ⊆ T ,

(C3) if T ⊆ S, t ∈ S\T , and s ∈ T ∪ {t}\T , then t ∈ T ∪ {s}.
(Mac Lane-Steinitz exchange property)

Conversely, if a function f : 2S → 2S satisfies (C1)-(C3), then f is the span
function of M . Note the following properties:

(C4) r (T ) = r
(
T
)
,

(C5) T is a spanning set of S, i.e. T = S if and only if r (T ) = r (S).

(C6) T is a basis if and only if it is a minimal spanning set.

Flats

A flat is a subset F of S with F = F . Note that F is a flat if and only if
r (F ∪ {a}) > r (F ) for all a ∈ F c.
F ⊂ 2S is the collection of flats of a matroid M if and only if:

(F1) S ∈ F ,

(F2) if T, U ∈ F , then T ∩ U ∈ F ,

(F3) if F ∈ F and t ∈ S\F , and T is the smallest flat containing F ∪ {t},
then there is no flat U with F ( U ( T .

8



F is also called a geometric lattice. Note that since every independent subset
is contained in a flat, it suffices to list all dependent flats for describing a
matroid.

Remark. It is known that conditions (I1)-(I3), (R1)-(R3), (C1)-(C3) and
(F1)-(F3) are all equivalent. We may use different descriptions of a matroid:
(S, I), (S, r), (S, span) and (S,F); when needed, we list more information
like (S, r, I) and (S, r,F). Since the ground set S is finite, we may assume
that S := {1, ..., n} without loss of generality from now on.

1.2 More about matroids

Dual matroid M ∗ of a matroid M

For a matroid M = (S, I, r), its dual matroid M∗ = (S, I∗, r∗) is defined as
follows.

I∗ = {I ⊂ S |S\I is a spanning set of M}

Its rank function r∗ = rM∗ is given as follows: for U ⊂ S,

r∗ (U) = |U |+ r (S\U)− r (S)

Restriction

The restriction M |T of M to T ⊂ S is a matroid defined on T by the rank
function rM |T : 2T → Z≥0 given by: for U ⊂ T ,

rM |T (U) = rM (U)

Deletion

The deletion M\Z of Z ⊂ S from M is defined to be M |S\Z .

9



Contraction

The contraction M/T of M over T ⊂ S is a matroid defined on T c by the
rank function rM/T : 2T

c → Z≥0 given by: for U ⊂ T c,

rM/T (U) = rM (U ∪ T )− rM (T )

Note that deletion and contraction commute! One can check the following
properties.

(RC1) [M |A] |B = M |B for B ⊂ A ⊂ S.

(RC2) [M\A] \B = M\ (A ∪B) for A,B ⊂ S with A ∩B = ∅.

(RC3) [M/A] /B = M/ (A ∪B) for A,B ⊂ S with A ∩B = ∅.

(RC4) [M |J ] /F = [M/F ] |J\F for F ⊂ J ⊂ S.

(RC5) [M/J ] |F = [M |J∪F ] /J for F, J ⊂ S with F ∩ J = ∅.

Remark. Contraction is the operation dual to deletion: contracting T means
replacing M by (M∗\T )∗; see [Sch03] Chapter 39, for more information.

Loops

An element s ∈ S is called a loop if {s} is dependent, equivalently if r ({s}) =

0. Note that:

(M1) If T consists of loops, r (T ) = 0. Hence, the set of loops is denoted by
∅.

(M2) r
(
T ∪ ∅

)
= r (T ) and r

(
T\∅

)
= r (T ).

(M3) T ⊂ S is a flat if and only if M/T is loopless.
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Separators

A subset T ⊂ S is called a separator of M if r (T ) + r (T c) = r (M). ∅ and
S are always separators. The followings are equivalent:

(S1) T is a separator.

(S2) M |T c = M/T .

(S3) M = M |T ⊕M/T .

(S4) T ∪ ∅ = T and T is a separator.

Note the following properties:

(S5) For a loopless matroid, every separator is a flat.

(S6) The family of separators is closed under the complement, union and
intersection.

Inseparable matroids and inseparable subsets

M is called inseparable or connected or non-separable if M has no separa-
tors other than ∅ and S. A subset T ⊂ S is called inseparable if M |T is
inseparable. Then,

(S7) A matroidM has the unique decomposition into inseparable nonempty
submatroids M |Ti where Ti, i ∈ Λ, are minimal nonempty separators
of M :

M ∼= ⊕i∈ΛM |Ti

Each M |Ti is called a connected component of M . Let κ (M) denote
the number of the connected components of M . If M is a loopless
separable matroid, the number of the minimal nonempty separators is
κ (M), which is not true if M is inseparable.

Note the following properties:
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(M4) If M is inseparable, it is loopless.

(M5) If M is loopless and r (M) = 1, M is inseparable. Such matroid is
isomorphic to the uniform matroid U1

n, which is defined in the next
page.

(M6) Let M be a loopless matroid of rank 2. The ground set S is a disjoint
union of rank 1 flats. Moreover, M is separable if and only if M ∼=
M |T ⊕M |T c , where T and T c are only two rank 1 flats.

(M7) Let M be a loopless matroid of rank 3. M is separable if and only if

(a) M ∼= M |T ⊕M |T c , where T is only one inseparable flat of rank 2
and T c is a flat of rank 1, or

(b) M ∼= M |T1 ⊕M |T2 ⊕M |T3 , where T1, T2, T3 are only three flats of
rank 1 and their union is a partition of S.

(M8) For a subset F of T c, F is a flat of M/T if and only if F ∪ T is a flat
of M .

(M9) Let F be a flat, T ⊂ S subset of rank 1. Then r (F ∪ T ) = r (F ) + 1.

Also note that for a loopless matroid, every flat is a direct sum of inseparable
flats. Hence, if two loopless matroids have the same family of inseparable
flats, they are identically equal.

Non-degenerate subsets

Let M be an inseparable matroid. A non-empty proper subset J ⊂ S is
called a non-degenerate subset of S if M/J and M |J are inseparable.

Lemma 1.1. Let M = (S, r) be a loopless matroid. Then non-degenerate
subsets of S are flats. Hence, ∅ 6= J ( S is a non-degenerate subset if and
only if J is an inseparable flat such that M/J is inseparable as well.
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Proof. Let ∅ 6= J ( S be a non-degenerate subset. By definition, M/J is
inseparable, so loopless by (M4). Hence J is a flat by (M3).

By Lemma 1.1, we say non-degenerate flats for non-degenerate subsets
from now on.

Lemma 1.2. Let M = (S, r) be a loopless matroid with r (M) = 1. Then
there are no non-degenerate flats of S.

Proof. Let ∅ 6= J ( S be a flat. Since M is loopless, ∅ is only one flat
with rank 0. In addition, S is only one flat with rank r (S). So, one has
0 < r (F ) < r (S). But, r (S) = 1 implies that ∅ and S are only two flats.
By Lemma 1.1, there are no non-degenerate flats.

Lemma 1.3. Let M = (S, r) be a loopless matroid with r (M) = 2. Then
non-degenerate flats of S are exactly nontrivial flats, and they have rank 1.

Proof. Let ∅ 6= J ( S be a flat. One has 0 < r (J) < r (S) = 2, which
implies r (J) = 1. By (M5), J is inseparable. In addition, M/J is loopless
by (M3). So, M/J is inseparable by (M5) since it has rank 1: rM/J (J c) =

r (J c t J)−r (J) = 2−1 = 1. Hence, J is a non-degenerate flat of S. Lemma
1.1 completes the proof.

Lemma 1.4. Let M = (S, r) be a loopless matroid with r (M) = 3. Then
non-degenerate flats of S are exactly those nontrivial flats such that:

(a) r (J) = 1 and M/J is inseparable, or

(b) r (J) = 2 and J is inseparable.

Proof. Let ∅ 6= J ( S be a non-degenerate flat. 0 < r (J) < r (S) = 3

implies that r (J) = 1 or 2. Lemma 1.1 shows that J satisfies (a) and (b).
Conversely, let ∅ 6= J ( S be a flat. (a) Suppose that r (J) = 1 and

M/J is inseparable. Since J is inseparable by (M5), J is non-degenerate.
(b) Suppose that J is inseparable with r (J) = 2. Then, M/J has rank 1:
rM/J (J c) = r (J c ∪ J) − r (J) = 3 − 2 = 1. So, M/J is loopless by (M3),
hence inseparable by (M5), which means M/J is a non-degenerate flat.
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Uniform matroids

Let I be the collection of all those subsets I of S such that |I| ≤ k where k
is a fixed natural number with 1 ≤ k ≤ n. Then (S, I) is a matroid which is
called a k-uniform matroid and denoted by Uk

n .

Representable matroids

Let A be an m×n matrix over a field F. For a subset I of S, denote by A (I)

the submatrix of A consisting of the columns with index in I. Let r (I) :=

rank (A (I)), then (S, r) is a matroid. Note that I ⊂ S is an independent set
if and only if the columns of A (I) are linearly independent. Any matroid
obtained in this way, or isomorphic to such a matroid, is called a representable
matroid or a linear matroid over the given field F. Note that every matroid
with 1 ≤ |S| ≤ 7 is representable.

Graphic matroids

Let G be a graph with the set of edges S = {1, ..., n}. A subset I ⊂ S is
independent if I forms a forest, i.e., a maximal subset of edges that has no
cycles. Then (S, I) is a matroid, and we call it a graphic matroid. Note that
a graphic matroid is regular, i.e., representable over any field.

1.3 Polytopes

The notations IPM , SPM and BPM are due to Alexeev.

Compact convex polytopes

A compact convex polytope in Rn is the convex hull of a finite set of points,
which is necessarily compact. Alternatively, it can be defined to be the
intersection of a finite number of half-spaces that is compact at the same
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time. In this paper, we assume compactness of a convex polytope and say
simply a convex polytope unless separately mentioned.

Polytopes

We define a n-dimensional (compact) polytope Q in Rm with n ≤ m to be
the face-fitting union of a finite number of (compact) convex polytopes that
is homeomorphic to a closed Euclidean n-ball. Note that any codimension 2
face P of a polytope Q is the intersection of exactly 2 facets Q1 and Q2 of Q.

Incidence vectors

For a subset I ⊆ S, the incidence vector xI of I in Rn is defined by

xI (i) :=

1 if i ∈ I

0 if i /∈ I

Independent set polytopes

For a subset I ⊆ S and a vector x = (x1, ..., xn) ∈ Rn, we use the shortcut
x (I) =

∑
i∈I xi. The independent set polytope IPM of a matroid M = (S, r)

is the convex hull of the incidence vectors xI of the independent sets I of
M . IPM is fully determined by the following linear inequalities; see [Sch03]
Section 40.2:

xs ≥ 0 for s ∈ S,
x (U) ≤ r (U) for U ⊂ S.

Since x (U) ≤ r (U) is satisfied by x
(
U
)
≤ r

(
U
)

= r (U), above describ-
ing inequalities of an independent set polytope can be replaced with a unique
minimal collection of inequalities:

xs ≥ 0 for s ∈ S,
x (F ) ≤ r (F ) for nonempty inseparable flats F.
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Spanning set polytopes

The spanning set polytope SPM of a matroid M = (S, r) is the convex hull
of the incidence vectors of the spanning sets of M . Recall that by definition,
a subset U ⊂ S is a spanning set of M if and only if S\U is independent in
M∗. So, x ∈ SPM if and only if 1 − x ∈ IPM∗ , where 1 = (1, ..., 1). Hence,
SPM is fully determined by the following inequalities:

0 ≤ xs ≤ 1 for s ∈ S,
x (U) ≥ r (U)− r (S\U) for U ⊂ S.

Base polytopes

The base polytope BPM of a matroid M = (S, r) is the convex hull of the
incidence vectors xB of bases B of M . BPM is fully determined by the
equality x (S) = r (S) and the following linear inequalities:

xs ≥ 0 for s ∈ S,
x (F ) ≤ r (F ) for nonempty inseparable flats F.

Remark. In this paper, we pay attention only to base polytopes.

Hypersimplices

We define a partial order ≤ on Rn as follows: for two vectors x = (x1, ..., xn)

and y = (y1, ..., yn) in Rn, x ≤ y if and only if xi ≤ yi, i = 1, ..., n. For a
hypercube [0, 1]n, 0 = (0, ..., 0) is the smallest element and 1 = (1, ..., 1) is
the largest element.

The base polytope BPM of a uniform matroid M = Uk
n is called the

hypersimplex and denoted by ∆ (k, n) or ∆k
n:

∆ (k, n) = Conv
(
xI | I ⊂ S, |I| = k

)
= {x ∈ Rn |0 ≤ x ≤ 1, x (S) = k}

16



A weight β is a vector β = (b1, ..., bn) ∈ [0, 1]n \ {0}. A weighted cut
hypersimplex ∆β (k, n) or ∆k

β is defined to be:

∆β (k, n) = {x ∈ Rn |0 ≤ x ≤ β, x (S) = k}

If n and k are clear from the context, we use simply ∆ or ∆β. For linear
inequalities fi (x) ≤ ci and equalities gj (x) = dj, {fi (x) ≤ ci, gj (x) = dj}
denotes the sub-polytope of ∆ satisfying them.

Uk
n-polytope

An edge of a polytope Q is a (bounded) face of dimension 1. An edge neces-
sarily connects two distince vertices of Q, and we say two vertices of Q are
adjacent if they are connected by an edge of Q.

A polytope Q in Rn is called an Uk
n-polytope if all its edges and vertices

are edges and vertices of ∆k
n. Note that every edge of ∆k

n is parallel to a
vector x{i} − x{j} for some i, j ∈ S.

Let B be a set of bases of Uk
n , and Q be a convex hull of the inci-

dence vectors of B ∈ B, i.e., the vertices of Q are vertices of ∆k
n. Let

I = {I ⊂ S | I ⊂ B for some B ∈ B}, then I satisfies (I1) and (I2).

Theorem 1.5 ([GS87]). The exchange property (I3) is equivalent to the con-
dition that BPM is a Uk

n-polytope.

In other words, if Q is a Uk
n -polytope, then (S, I,B) is a matroid, and Q

is its corresponding base polytope.

Corollary 1.6 ([GS87]). A convex polytope Q in Rn is a base polytope if and
only if Q is a Uk

n-polytope.

The following theorem says that a base polytope in ∆k
n with 2k < n is

determined by its intersection with ∪ni=1 {xi = 0}.

17



Theorem 1.7. Let 2k < n and Q ⊂ ∆k
n be a convex hull of incidence vectors

xI where I ⊂ S has cardinality k. Then, Q is a base polytope if and only if
Q ∩ {xi = 0} is a base polytope or an empty set for all i = 1, ..., n.

Proof. (⇐) Since Q is a convex polytope, Q∩{xi = 0} is a convex polytope.
By Corollary 1.6, Q ∩ {xi = 0} ⊂ ∆k

n ∩ {xi = 0} ∼= ∆k
n−1 is a Uk

n−1-polytope.
Any incidence vector that gives a vertex of Q also gives a vertex of Q ∩
{xi = 0} for some i since k < n. So, it is a vertex of ∆k

n ∩ {xi = 0}, hence
a vertex of ∆k

n. Take two distinct incidence vectors xI1 and xI2 that give
vertices of Q. Since 2k < n, xI1 and xI2 is contained in Q∩{xi = 0} for some
i, by pigeon hole principle. If xI1 − xI2 is an edge of Q, it is also an edge
in Q ∩ {xi = 0}, which is an edge of ∆k

n ∩ {xi = 0}, hence an edge of ∆k
n.

Therefore, all vertices and egdes of Q are vertices and edges of ∆k
n, which

means that Q is a Uk
n -polytope. Since Q is convex, Q is a base polytope by

Corollary 1.6.
(⇒) Since Q is a base polytope, it is a Uk

n -polytope by Corollary 1.6,
i.e., all of its verices and edges are verices and edges of ∆k

n. So, for any
i = 1, ..., n, Q ∩ {xi = 0} is either an empty set or a convex polytope such
that all of its verices and edges are verices and edges of ∆k

n∩{xi = 0} ∼= ∆k
n−1.

By Corollary 1.6 again, Q ∩ {xi = 0} is a base polytope.

Theorem 1.5 is about the adjacency of vertices of a base polytope, which
is generalized to Theorem 1.8 that is a generalized version for an independent
set polytope; see [Sch03] Theorem 40.6.

Theorem 1.8. Let M = (S, r) be a loopless matroid and let I and J be
distinct independent sets. Then xI and xJ are adjacent vertices of IPM if
and only if |I4J | = 1, or |I\J | = |J\I| = 1 and r (I ∪ J) = |I| = |J |, where
I4J denotes the symmetric difference of I and J , i.e., I4J = (I\J)∪(J\I).

Remark. If B and B′ are two distinct bases of M , |B4B′| 6= 0, 1 and one
always has r (B ∪B′) = |B| = |B′|. Hence, xB − xB′ is an edge of BPM if
and only if |B\B′| = |B′\B| = 1.

18



Facets of base polytopes

For a loopless matroid M , we have an important correspondence theorem
as follows, which implies that nonempty inseparable flats in the describing
inequalities of BPM are actually non-degenerate flats.

Theorem 1.9 ([GS87]). Let M = (S, r) be an inseparable matroid. Non-
degenerate flats of S are in 1-1 correspondence with the facets of BPM that
are not contained in ∪nj=1 {xj = 0}. To the non-degenerate flat J there cor-
responds the matroid M |J ⊕M/J and the facet BPM (J) := BPM |J⊕M/J =

BPM |J × BPM/J .

We denote by SM (BPM (J)) = SBPM
(BPM (J)) := J the non-degenerate

flat corresponding to the facet BPM (J) or the matroid M |J ⊕M/J . If the
matroid is clear from the context, we sometimes drop M or BPM and write
simply S (BPM (J)). For a face Q of BPM , we denote by M (Q) the matroid
corresponding to Q. Remark that M (Q) does not depend on which base
polytope Q is a face of. Note the following properties:

(B1) If M is inseparable, there corresponds an inequality of its associated
unique minimal collection of inequalites to a facet of BPM .

(B2) The dimension of BPM is |S| − κ (M). By (S7), BPM has dimension
n− 1 if and only if M is inseparable.

Intersection/union of two base polytopes/matroids

The intersection of two base polytopes BPM1 and BPM2 in ∆k
n is not nec-

essarily a base polytope. The following theorem describes BPM1 ∩ BPM2 in
terms of the common bases of M1 and M2, which can be found in [Sch03]
Corollary 41.12d.

Theorem 1.10. Let M1 and M2 be two matroids with the same ground set.
The intersection of two base polytopes BPM1 and BPM2 is the convex hull of
the incidence vectors of the common bases of M1 and M2.
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Corollary 1.11. The edges of BPM1 ∩ BPM2 are edges of BPM1 or BPM2 if
and only if BPM1 ∩ BPM2 is another base polytope.

Proof. The vertices of BPM1 ∩ BPM2 are the common vertices of BPM1 and
BPM2 by Theorem 1.10. Suppose that the edges of BPM1∩BPM2 are edges of
BPM1 or BPM2 . Then, since BPM1 and BPM2 are Uk

n -polytopes and BPM1 ∩
BPM2 is a convex polytope, by Corollary 1.6, BPM1 ∩BPM2 is a Uk

n -polytope,
hence a base polytope.

Conversely, suppose that BPM1 ∩BPM2 is a base polytope. Let xB − xB′

be any edge of BPM1∩BPM2 , where B and B′ are two distinct common bases
of both M1 and M2. Then, by Theorem 1.8, |B\B′| = |B′\B| = 1, which is
true for both BPM1 and BPM2 . By Theorem 1.8 again, xB−xB′ is a common
edge of both BPM1 and BPM2 .

If BPM1 ∩ BPM2 satisfies Corollary 1.11, it is a base polytope of some
matroid, which we denote by M1 ∧ M2 and call it the intersection of the
matroids M1 and M2. By Theorem 1.10, its bases is B1 ∩ B2 where M1 =

(S,B1) and M2 = (S,B2).
If M1 = (S1, I1) and M2 = (S2, I2), the union of the matroids M1 ∨M2

is defined as follows: M1 ∨M2 = (S1 ∪ S2, I1 ∨ I2) where I1 ∨ I2 is defined
to be {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}. Note that for any two matroids, their union
always exists. However, M1 ∨M2 is not what we want in this paper as the
counterpart of the intersection of matroids, since it doesn’t say much about
the gluing of two base polytopes BPM1 and BPM2 . In the next chapter, we
will see when a glued base polytopes becomes another base polytope, and
define a gluing of matroids M1#M2 that will work as the counterpart of the
intersection of matroids.
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Chapter 2

Base polytopes and gluing
theorems

2.1 The facets of base polytopes and non-degenerate

flats

Lemma 2.1. Let J ⊂ S be a non-degenerate flat of an inseparable matroid
M . By Theorem 1.9, there correspond a matroid M |J ⊕M/J and a facet
QJ = BPM |J × BPM/J of BPM to J . Suppose that Q1 * ∪nj=1 {xj = 0} is a
codimension 2 face of BPM that is a facet of QJ at the same time. Then, Q1

is contained in either BPM |J ×
(
a facet of BPM/J

)
or
(
a facet of BPM |J

)
×

BPM/J . In other words, there corresponds a non-degenerate flat F ofM/J or
M |J to Q1. Call Q1 = QF . By the convexity of BPM , QF is the intersection
of exactly two facets of BPM ; write QF = QJ ∩ QJ ′ where J ′ is a non-
degenerate flat of M .

(a) In case that F is a non-degenerate flat of M/J , J ′ = J ∪ F if J ∪ F is
inseparable, J ′ = F otherwise.

(b) In case that F is a non-degenerate flat of M |J , J ′ = F if M/F is
inseparable, J ′ = (J\F )c = J c ∪ F otherwise.
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I.e., there are 4 cases for J ′ as follows.

F is a nondegenerate flat of M |J∪F M/F J ′

(i) M/J inseparable J ∪ F
(ii) M/J separable F

(iii) M |J inseparable F

(iv) M |J separable J c ∪ F

Table 2.1:

Proof. (a) Suppose that F is a non-degenerate flat of M/J . Then, its corre-
sponding matroid M (F ) is:

M (F ) = M |J ⊕ [M/J ] |F ⊕ [M/J ] /F.

Since F ∩ J = ∅, the ground sets of M |J , [M/J ] |F and [M/J ] /F are J ,
F and (J ∪ F )c, respectively. Considering M (F ) in M |J ′ ⊕M/J ′, each of
M |J , [M/J ] |F and [M/J ] /F can be identified with M |J ′ or M/J ′. But,
M |J 6= M/J ′ since otherwise J ′ = J c and rM |J (J) = rM/J ′ (J) implies that
r (J) = r (J ∪ J ′)− r (J ′) = r (S)− r (J c), i.e., r (S) = r (J) + r (J c), which
is a contradiction since M is inseparable and J is a nonempty proper subset.
Hence, only possibility for M |J is to be M |J ′ , but this means that J = J ′,
which is a contradiction. Now, [M/J ] /F = M/ (J ∪ F ) by (RC3), and
M/ (J ∪ F ) cannot beM |J ′ by the same reason. So, the remaining possibility
for M/ (J ∪ F ) is to be M/J ′, in which case J ′ = J ∪ F .

(i) Suppose that J ∪ F is inseparable. Since [M/J ] /F = M/ (J ∪ F ) is
inseparable, J ∪ F is a non-degenerate flat of M . Moreover, M |J =

[M |J∪F ] |J by (RC1) and [M/J ] |F = [M |J∪F ] /J by (RC5) imply that:

M (F ) = [M |J∪F ] |J ⊕ [M |J∪F ] /J ⊕M/ (J ∪ F ) .

Hence, J ′ = J ∪ F .
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(ii) Suppose that J ∪ F is separable. Let A be a nontrivial separator of
M |J∪F :

rM |J∪F (J) = rM |J∪F (J ∩ A) + rM |J∪F (J\A) .

But, J is inseparable, so one has either J ∩ A = ∅ or J\A = ∅. Since
B := (J ∪ F ) \A is also a nontrivial separator of M |J∪F , without loss
of generality, assume J ⊂ A and F ⊃ B. Let F1 = F ∩ A and F2 =

F ∩B = B. Note that:

rM/J (F2) = r (F2 ∪ J)− r (J) = [r (F2) + r (J)]− r (J) = r (F2)

r (F ∪ J) = r (F1 ∪ F2 ∪ J) = r ([F1 ∪ J ] ∪ F2) = r (F1 ∪ J) + r (F2)

Then,

rM/J (F1) + rM/J (F2) = [r (F1 ∪ J)− r (J)] + r (F2)

= r (F1 ∪ J) + r (F2)− r (J)

= r (F ∪ J)− r (J)

= rM/J (F )

Since F = F1∪F2 is an inseparable flat ofM/J , one has either F1 = ∅ or
F2 = ∅. But, F2 = B is a nonempty separator, so one has F1 = F ∩A =

∅. Hence, F = F2 = B and J = A. Moreover, J and F are only two
nontrivial separators of M |J∪F . Now, by (S2), [M/J ] |F = M |F and
[M/F ] |J = M |J . Recall that as other matroids M |J and [M/J ] /F ,
[M/J ] |F has possibility to be identified with M |J ′ or M/J ′. Now,
[M/J ] |F = M |F cannot be identified with M/J ′ since otherwise the
inseparablility ofM would be violated. Hence, the remaining possibility
for [M/J ] |F = M |F is [M/J ] |F = M |J ′ , i.e., J ′ = F . Furthermore,
Theorem 1.9 forces J ′ = F . The corresponding matroid M (F ) of F is
written as follows:

M (F ) = M |F ⊕ [M/F ] |J ⊕ [M/F ] /J
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(b) Suppose that F is a non-degenerate flat of M |J . Then, its corresponding
matroid M (F ) is:

M (F ) = [M |J ] |F ⊕ [M |J ] /F ⊕M/J

Since F ⊂ J , the ground sets of [M |J ] |F , [M |J ] /F and M/J are F , J\F
and J c, respectively. Observe that each of [M |J ] |F , [M |J ] /F and M/J can
be identified with M |J ′ or M/J ′. Similarly as in (a), M/J has no chance
to be M |J ′ or M/J ′ by inseparability of M . Also, for [MJ ] |F = M |F , only
possibility is that J ′ = F .

(iii) Suppose that M/F is inseparable. Since M |F = [MJ ] |F is inseparable,
F is a non-degenerate flat of M . By (M8), J\F is a flat of M/F since
J = (J\F ) ∪ F is a flat of M . Moreover, [M |J ] /F = [M/F ] |J\F by
(RC4) and M/J = [M/F ] / (J\F ) by (RC3) are inseparable, which
means that J\F is a non-degenerate flat of M/F . Hence, J ′ = F and
one has:

M (F ) = M |F ⊕ [M/F ] |J\F ⊕ [M/F ] / (J\F )

(iv) Suppose that M/F is separable. Let A be a nontrivial separator of
M/F such that A ∩ (J\F ) 6= ∅. Since [M |J ] /F = [M/F ] |J\F is insep-
arable, A ⊃ J\F . Let T := J\F , then J = T ∪ F and A ⊃ T . Let
B := F c\A, then B is a separator of M/F :

rM/F (A) + rM/F (B) = rM/F (A ∪B) = rM/F (F c) = r (S)− r (F ) .

Note that B ∩ J = ∅, B ∪ (A\J) = J c and A\J = A\T . Then,

rM/J (B) = r[M/F ]/T (B) = rM/F (B ∪ T )− rM/F (T ) = rM/F (B)

rM/J (A\J) = r[M/F ]/T (A\T ) = rM/F (A)− rM/F (T )
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The sum of the right hand side formulas becomes:

rM/F (B) + rM/F (A)− rM/F (T ) = rM/F (A ∪B)− rM/F (T )

= [r (S)− r (F )]− [r (J)− r (F )]

= r (S)− r (J)

= rM/J (J c)

By equating this with the sum of the left hand side formulas, one has:

rM/J (B) + rM/J (A/J) = rM/J (J c)

which means thatA\J = ∅ sinceM/J is inseparable andB is nonempty.
Since A ⊃ J\F , one has J = A ∪ F and A = J\F . So, J\F = A

and J c = B are separators of M/F . Note that by (M3) M/F is
loopless since F is a flat. Then, by (S5) two separators J/F and
J c are flats of M/F . Now, [M/F ] /J c = [M/F ] |J\F by (S2) and
M/ (J\F )c = [M/F ] /J c by (RC3). Hence M/ (J\F )c = [M/F ] |J\F .
Moreover,

[
M |(J\F )c

]
/F = M/J because

[
M |(J\F )c

]
/F = [M/F ] |Jc

by (RC4), M/J = [M/F ] / (J\F ) and [M/F ] |Jc = [M/F ] / (J\F ) by
(S2). Since

[
M |(J\F )c

]
|F = M |F by (RC1), one has:

M (F ) =
[
M |(J\F )c

]
|F ⊕

[
M |(J\F )c

]
/F ⊕M/ (J\F )c

Now, by (M8) (J\F )c = J c∪F is a flat of M since J c is a flat of M/F .
By Theorem 1.9, J ′ = (J/F )c is one and only one choice for J ′.

Thus, the lemma is proved.

Corollary 2.2. Let M be an inseparable matroid, J a non-degenerate flat of
M .

(a) Let F be a non-degenerate flat of M/J . Then, M |J∪F is separable if
and only if F is a non-degenerate flat of M if and only if M/F is
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inseparable.

(b) Let F be a non-degenerate flat of M |J . Then, M/F is separable if and
only if (J\F )c is a non-degenerate flat of M if and only if M |(J\F )c is
inseparable.

Proof. (a) Suppose that M |J∪F is separable. By Lemma 2.1(a), F is non-
degenerate. Suppose that M |J∪F is inseparable. By Lemma 2.1(a), J ∪ F is
a non-degenerate flat of M . Then J and J ∪ F are only two non-degenerate
flats whose corresponding facets contain QF . By Theorem 1.9, F must be
degenerate. So, we proved that M |J∪F is separable if and only if F is a
non-degenerate flat. Moreover, in the proof of Lemma 2.1(a), we see that
M |F = [M/J ] |F is inseparable. Hence, F is a non-degenerate flat of M if
and only if M/F is inseparable.

(b) The proof for the first part is similar. Note that in the proof of Lemma
2.1(b),M/ (J\F )c = [M/F ] |J is inseparable. So, (J\F )c is a non-degenerate
flat of M if and only if M |(J\F )c is inseparable.

Corollary 2.3. Let M be an inseparable matroid. Let P be any codimension
2 face of BPM that is not contained in ∪nj=1 {xj = 0}. By Theorem 1.9, P is
the intersection of two facets Q1 and Q2 of BPM with non-degenerate flats
J1 and J2, respectively. Let MA⊕MB ⊕MC be the corresponding matroid of
P . Then, there are 3 cases for J1 and J2, up to symmetry, as follows.

1. J1 = A, J2 = A ∪ C

2. J1 = A, J2 = C

3. J1 = A ∪B, J2 = B ∪ C, where M/B is separable.

Proof. Lemma 2.1 (i) and (iii) give the same case (1). Lemma 2.1 (ii) and
(iv) give the case (2) and (3), respectively.
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2.2 Gluing base polytopes

We say two base polytopes BPM1 and BPM2 face-fit or simply fit if BPM1 ∩
BPM2 is empty or a common face of both polytopes. We say BPM1 and BPM2

meet nicely if they fit in ∆k
n\∪ni=1 {xi = 0} or BPM1 ∩BPM2 ⊂ ∪ni=1 {xi = 0}.

Denote ∆+ := ∆k
n\ ∪ni=1 {xi = 0} when k, n are clear from the context. If

BPM1 and BPM2 fit in ∆+ with the common facet BPM1 ∩BPM2 , we can glue
them through the common facet. The glued one BPM1 ∪BPM2 is a polytope,
but may not be another base polytope. If BPM1 ∪ BPM2 is a base polytope,
there corresponds a loopless matroid which we denote by M1#M2 such that
BPM1 ∪BPM2 = BPM1#M2 . This matroidM1#M2 is different from the union
of matroids M1 ∨M2.

It is an interesting question when the gluing of base polytopes gives an-
other base polytope, which we will see an equivalent condition in terms of
matroids in Theorem 2.6. For its proof, we need Lemma 2.4. Recall that
if Q ⊂ Rn is a full dimensional polytope, each codimension 2 face P is the
intersection of exactly 2 facets Q1 and Q2. We say Q is convex at a codimen-
sion 2 face P if near the interior of P , Q is the intersection of two half-spaces
that are determined by Q1 and Q2.

Lemma 2.4. Let Q ⊂ Rn be a full dimensional (compact) polytope. Then, Q
is a convex polytope if and only if Q is convex at every codimension 2 face.

Proof. If Q is a convex polytope, near the interior of any codimension 2 face,
Q appears as the intersection of two half-spaces.

Suppose that the converse statement is not true. Then there is a hyper-
plane L0 ⊂ Rn determined by a facet of Q such that L0 ∩Q is disconnected.
Indeed, let L0 be a hyperplane in Rn determined by any facet Q0 of Q. Let
Q1 be one of its neighboring facet, i.e., Q0 ∩ Q1 is a codimension 2 face of
Q. Let L1 be the hyperplane determined by Q1. Then, either L0 = L1 or
L0 6= L1. Collect the facets Q1, ..., Qm such that their corresponding hyper-
planes are L0 and Q0 ∪ Q1 ∪ · · · ∪ Qm is connected, which is connected in
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codimension 2. Let {Q0, Q1, ..., Qm} be the maximal family of those facets.
Then, since Q is convex at every codimension 2 face, Q0 ∪Q1 ∪ · · · ∪Qm is a
nonempty connected component of Q ∩ L0. If Q0 ∪Q1 ∪ · · · ∪Qm = L0 ∩Q
for all Q0, then Q is an intersection of half-spaces determined by Q0. So, we
may assume that there is a pair of a facet Q0 and its associated hyperplane
L0 ⊂ Rn such that L0 ∩Q is disconnected.

Fix a normal vector ~n of L0 and consider the translation of L0 by ε~n for
ε ∈ R which we denote by tε (L0). Since Q is connected and convex at any
codimension 2 face, by translating L0, one can find two distinct facets of Q
whose intersection is a codimension 2 face of Q such that the intersection
of tε (L0) for some ε and the two corresponding half-spaces, say tε (L0) ∩
(H1 ∩H2) is disconnected. But, this is impossible sinceH1∩H2 is convex.

Glued base polytopes at a facet

Theorem 2.5. Fix k = 2. Let M1 = (S, r1) and M2 = (S, r2) be two
inseparable matroids of rank 2 such that BPM1 and BPM2 glue through a
common facet. Then, BPM1 ∪ BPM2 is a base polytope.

Proof. Since both BPM1 and BPM2 are base polytopes, they are Uk
n -polytopes

by Corollary 1.6. For any codimension 2 face P of BPM1 ∪ BPM2 , P is
contained in ∪ni=1 {xi = 0}. Since P is contained in the boundary of ∆k

n

which is a convex polytope, ∆k
n is convex at P . So, the union of two convex

polytopes BPM1 ∪BPM2 ⊂ ∆k
n is convex at P . By Lemma 2.4, BPM1 ∪BPM2

is a convex polytope. By Corollary 1.6, BPM1 ∪BPM2 is a base polytope.

Theorem 2.6. Fix k ≥ 3. Let M1 = (S, r1) and M2 = (S, r2) be two
inseparable matroids of rank k such that BPM1 and BPM2 glue through a
common facet. Let J1 and J2 be the corresponding non-degenerate flats of
the common facet in M1 and M2, respectively, with a partition of S = J1 ∪
J2. Take any i1 6= i2 from {1, 2}. Let F be an arbitrary non-degenerate
flat of Mi1/Ji1 = Mi2|Ji2 ; see Theorem 1.9. Then, for any pair (i1, i2) not
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both Mi1|Ji1∪F and Mi2/F are inseparable for every such F if and only if
BPM1 ∪ BPM2 is a base polytope.

Proof. (⇒) Since both BPM1 and BPM2 are base polytopes, they are Uk
n -

polytopes by Corollary 1.6. So, BPM1 ∪ BPM2 is a Uk
n -polytope. If we prove

that BPM1∪BPM2 is convex, it is a base polytope by Corollary 1.6 again. By
Lemma 2.4, we will prove that BPM1 ∪BPM2 is convex at every codimension
2 face P . Suppose that P is not contained in the common facet Q0 :=

BPM1 ∩ BPM2 . Then, P is contained solely in BPM1 or BPM2 , not in both.
Since both polytopes are convex, by Lemma 2.4, BPM1 ∪ BPM2 is convex at
P .

Now, suppose that P is contained in Q0. Since BPM1 ∪ BPM2 is home-
omorphic to a full-dimensional ball, P is the intersection of exactly two
facets Q1, Q2 6= Q0 of BPM1 ∪ BPM2 . We can say without loss of gener-
ality that Qi is contained in BPMi

for i = 1, 2. Note that M1/J1 = M2|J2
and M1|J1 = M2/J2 by Theorem 1.9. Write the associated matroid of Q0 to
be M1|J1 ⊕M2|J2 . Recall Lemma 2.1 and we know that there corresponds a
non-degenerate flat F of M1|J1 or M2|J2 to P . Since the argument is sym-
metric, assume that F is a non-degenerate flat of M1/J1 = M2|J2 , in which
case P = BPM1|J1 × (a facet of BPM1/J1) = BPM2/J2 × (a facet of BPM2|J2 ).
Then, there are 4 cases as follows.

M1|J1∪F M2/F SM1 (Q1) SM2 (Q2)

(i) separable separable F J1 ∪ F
(ii) separable inseparable F F

(iii) inseparable separable J1 ∪ F J1 ∪ F
(iv) inseparable inseparable J1 ∪ F F

Table 2.2:

We will show that BPM1 ∪ BPM2 is convex at P = Q1 ∩Q2 for the cases
(i),(ii) and (iii). Note that ifM1|J1∪F is separable, J1 and F are its separators,
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and if M2/F is separable, J1 and J2\F are its separators; see the proof of
Lemma 2.1.

Case (i)(ii). Suppose that M1|J1∪F is separable. [M1|J1∪F ] /J1 = M1|F by
(S2). Then, one has:

rM2 (F ) = rM2|J2 (F ) = rM1/J1 (F ) = r[M1|J1∪F ]/J1 (F ) = rM1|F (F ) = rM1 (F )

Since F is a flat ofM2, BPM2 is contained in the half space determined by the
inequality x (F ) ≤ rM2 (F ) = rM1 (F ) while Q1 has the the same describing
inequality. Hence, BPM1 ∪ BPM2 is convex at P .

Case (iii). Since M2/F is separable, rM2/F (J1 ∪ (J2\F )) = rM2/F (J1) +

rM2/F (J2\F ) implies that:

rM2 (J1 ∪ F ) = rM2 (S)− rM2 (J2) + rM2 (F )

rM1/J1 (F ) = rM2|J2 (F ) implies that:

rM1 (J1 ∪ F ) = rM1 (J1) + rM2 (F ) (∗)

rM1/J1 (J1) = rM2|J2 (J1) implies that:

rM1 (J1) + rM2 (J1) = rM1 (S)

Then, one has:

rM1 (J1 ∪ F )− rM2 (J1 ∪ F ) = rM1 (J1) + rM2 (J2)− rM2 (S)

= rM1 (S)− rM2 (S)

= 0

So, rM1 (J1 ∪ F ) = rM2 (J2 ∪ F ) and two facets Q1, Q2 have the same de-
scribing inequality, which means that BPM1 ∪ BPM2 is convex at P .

(⇐) It is enough to show that in Case (iv), BPM1 ∪ BPM2 is not convex
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at P . Since J1 ∪ F is inseparable, one has:

rM1 (J1) + rM2 (F ) = rM1 (J1 ∪ F ) < rM1 (J1) + rM1 (F )

rM2 (F ) < rM1 (F )

The describing inequalities for the facets Q1 of BPM1 and Q2 of BPM2 are,
respectively,

x (J1) + x (F ) = x (J1 ∪ F ) ≤ rM1 (J1 ∪ F ) = rM1 (J1) + rM2 (F ) by (∗)

x (F ) ≤ rM2 (F )

Consider the half-spaces H1, H2 determined by these two inequalities. Then
the intersection of H1 and the plane {x (F ) = rM2 (F )} is:

L := {x (F ) = rM2 (F ) , x (J1) ≤ rM1 (J1)} ⊂ ∆k
n

This plane L is contained in the half-space {x (J1) ≤ rM1 (J1)}, where x (J1) ≤
rM1 (J1) is the facet inducing inequality of Q0 in BPM1 . Hence, the plane L
intersects BPM1 in codimension 1. But, since L ∩ BPM1 is not a facet of
BPM1 , we conclude that BPM1 ∪ BPM2 is not convex at P = Q1 ∩Q2.

Assume the same settings as in Theorem 2.6. Consider nonzero vectors
v0, v1, v2 ∈ Rn−1 such that vi ⊥ Qi for i = 0, 1, 2. Since P = Q0∩Q1∩Q2 is a
common face of BPM1 and BPM2 that has codimension 2, v0, v1, v2 span a 2-
dimensional vector space of Rn−1 that is a normal section of P , which can be
visualized since it has dimension 2. Figure 2.1 gives its visualization, where
each picture corresponds to the case (i), (ii), (iii), and (iv) as in the proof of
Theorem 2.6. A black dot in the middle represents P . A red line and the
gray dashed line facing each other represent Q0 ⊂ BPM1 and Q0 ⊂ BPM2 ,
respectively. Here, P is a common facet of Q0 ⊂ BPM1 and Q0 ⊂ BPM2 :
P = BPM1|J1 × (a facet of BPM1/J1) = BPM2/J2 × (a facet of BPM2|J2 ), and
we represent Q0 ⊂ BPM1 and Q0 ⊂ BPM2 as a solid line and a dashed
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(i) (ii) (iii) (iv)

BPM1

BPM2

BPM1

BPM2

BPM1

BPM2

BPM1

BPM2

Figure 2.1:

line, respectively. Similarly, in the picture for the case (i), P is a facet of
Q1: P = BPM1|F × (a facet of BPM1/F ), and Q1 is represented as a solid
line. In the picture for the case (ii), P is a facet of Q2: P = BPM2/J1∪F ×
(a facet of BPM2|J1∪F ), and Q2 is represented as a dashed line. Draw 60◦ for
the angle between the same kind of lines, 120◦ otherwise. Dots on the lines
represent codimension 2 faces of the base polytopes that are intersections of
appropriate facets. The colors used in the picture play a role of labeling and
tracking, which is useful especially for the case of rank 3 matroids.

Remark 2.7. The pictures tell us the convexity of BPM1 ∪BPM2 at the codi-
mension 2 face P ⊂ BPM1 ∩ BPM2 of BPM1 ∪ BPM2that is not contained in
∪ni=0 {xi = 0}.

Glued matroids

Suppose that M1 and M2 are two distinct inseprable matroids such that
M1/J1 = M2|J2 where J1 and J2, respectively are non-degenerate flats of M1

andM2 with rank 1 and 2, respectively. Then, their base polytopes BPM1 and
BPM2 fit through their common facet BPM1 ∩ BPM2 = BPM(J1) = BPM(J2).
In this case, we say that M1 and M2 fit through J1 and J2.

Now, one can glue BPM1 and BPM2 to a polytope BPM1 ∪ BPM2 . If
BPM1∪BPM2 is another base polytope, there corresponds a matroidM1#M2,
which is an inseprable matroid since BPM1#M2 = BPM1 ∪ BPM2 has full
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dimension. In this case, we say that the matroids M1 and M2 glue to a
matroid M1#M2 through J1 and J2. SinceM1#M2 is a matroid, by Theorem
1.9, M1#M2 has a unique set of non-degenerate flats. Observe the following:

1. When BPM1 and BPM2 glue, all the facets of both polytopes except
BPM1 ∩ BPM2 remain the same.

2. Near their intersection BPM1 ∩BPM2 , the cases (i)(ii)(iii) in Figure 2.1
are possible. As in Theorem 2.6, let Q1 ∈ BPM1 and Q2 ∈ BPM2 be
any pair of two adjacent facets of BPM1 ∪ BPM2 , F1 := SM1 (Q1) and
F2 := SM2 (Q2) their corresponding non-degenerate flats inM1 andM2,
respectively. In cases (ii)(iii), F1 = F2, and in case (i), F1 ( F2.

In other words, the facets of BPM1 ∪ BPM2 are exactly all the facets of
BPM1 and BPM2 except their common facet, and the non-degenerate flats of
M1#M2 is the union of all non-degenerate flats of both M1 and M2 minus
J1 and J2.

In addition to Theorem 2.6, it is also an interesting combinatorial problem
when the glued matroids M1#M2 becomes a representable matroid, which is
true for k = 2 case by Corollary 3.8. Theorem 3.1 gives a nice criterion for
that: if one can find a hyperplane arrangement corresponding to M1#M2, it
is a represenable matroid. At the end of Chapter 3, we will deal with this
topic briefly. However, it still remains as a very difficult problem to give an
equivalent condition to the representability of M1#M2.

Glued base polytopes at a codimension 2 face

Theorem 2.8. Fix k ≥ 3. Let M1 = (S, r1) and M2 = (S, r2) be two
inseparable matroids such that P ⊂ BPM1 ∩BPM2 is a common face of BPM1

and BPM2 with codimension 2. LetMP = MR⊕MG⊕MB be the corresponding
matroid of P , where R ∪ G ∪ B is a partition of S and MR = (R, rR),
MG = (G, rG) and MB = (B, rB) are inseparable matroids. For i = 1, 2,
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Let Qi1, Qi2 be two facets of BPMi
that contain P . Then, there are 6 cases

for the quadruple ((Q11, Q12) , (Q21, Q22)), up to symmetry and isomorphism.
Let Jij, i, j ∈ {1, 2}, be the corresponding non-degenerate flats of Qij in Mi,
then those 6 cases are given below.

(J11, J12) (R,R ∪G) (R,R ∪G) (R,R ∪G)

(J21, J22) (B,G) (B,B ∪G) (B ∪R,B ∪G)

(J11, J12) (R,G) (R,G) (R ∪G,R ∪B)

(J21, J22) (B,G) (B ∪R,B ∪G) (B ∪R,B ∪G)

Table 2.3:

Proof. Suppose that M1 has the pair (R,R ∪G); see Corollary 2.3. Re-
call that an appropriate pair of a non-degenerate flat J of M1 and a non-
degenerate flat F of M1|J or M1/J determines a facet of BPM1 that contains
P . So, G is a non-degenerate flat ofM1/R for Q11 and R is a non-degenerate
flat of M1|R∪G for Q12.

MP = M1|R ⊕ [M1/R] |G ⊕M1/ (R ∪G) for Q11

= M1|R ⊕ [M1|R∪G] /R⊕M1/ (R ∪G) for Q12

There are 12 cases for a facet Q2 of BPM2 that contains P as follows.

1. R is a non-degenerate flat of M2/B.

2. R is a non-degenerate flat of M2|R∪G.

3. R is a non-degenerate flat of M2/G.

4. R is a non-degenerate flat of M2|R∪B.

5. G is a non-degenerate flat of M2/R.

6. G is a non-degenerate flat of M2|B∪G.
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7. G is a non-degenerate flat of M2/B.

8. G is a non-degenerate flat of M2|R∪G.

9. B is a non-degenerate flat of M2/G.

10. B is a non-degenerate flat of M2|R∪B.

11. B is a non-degenerate flat of M2/R.

12. B is a non-degenerate flat of M2|B∪G.

In each case, the matroid MP is expressed as follows.

1. MP = [M2/B] |R ⊕M2/ (R ∪B)⊕M2|B.

2. MP = M2|R ⊕ [M2|R∪G] /R⊕M2/ (R ∪G).

3. MP = [M2/G] |R ⊕M2|G ⊕M2/ (R ∪G).

4. MP = M2|R ⊕M2/ (R ∪B)⊕ [M2|R∪B] /R.

5. MP = M2|R ⊕ [M2/R] |G ⊕M2/ (R ∪G).

6. MP = M2/ (B ∪G)⊕M2|G ⊕ [M2|B∪G] /G.

7. MP = M2/ (B ∪G)⊕ [M2/B] |G ⊕M2|B.

8. MP = [M2|R∪G] /G⊕M2|G ⊕M2/ (R ∪G).

9. MP = M2/ (B ∪G)⊕M2|G ⊕ [M2/G] |B.

10. MP = [M2|R∪B] /B ⊕M2/ (R ∪B)⊕M2|B.

11. MP = M2|R ⊕M2/ (R ∪B)⊕ [M2/R] |B.

12. MP = M2/ (B ∪G)⊕ [M2|B∪G] /B ⊕M2|B.
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We will check actually which case can be chosen for the facets Q21 and Q22.
(1) L2 := {x (B) = r2 (B)} is the hyperplane in Rn−1 that contains the

facet Q2, while L12 := {x (R ∪G) = r1 (R ∪G)} is the hyperplane that con-
tains Q12. Using the expression of MP , we have r1 (R) = r2 (R ∪B)−r2 (B),
r1 (G ∪R) − r1 (R) = r2 (S) − r2 (R ∪B), r1 (S) − r1 (R ∪G) = r2 (B).
Since x (R ∪G) + x (B) = x (S) = r1 (S) = r2 (S), by the last equal-
ity, x (B) = r2 (B) implies that r1 (S) − x (R ∪G) = r1 (S) − r1 (R ∪G),
x (R ∪G) = r1 (R ∪G). Hence, L2 = L12. Now, {x (R) = r1 (R)} divides
the hyperplane L2 = L12 into two halves, and Q2 is contained in the half
{x (R) ≤ r1 (R)} ∩ L2. Similarly, {x (R) = r2 (R)} divides L2 = L12 into
two halves, and Q12 is contained in {x (R) ≤ r2 (R)} ∩ L12. But, by the
first equality and submodularity of the rank function, x (R) ≤ r1 (R) =

r2 (R ∪B) − r2 (B) ≤ r2 (R). Hence, x (R) ≤ r1 (R) implies x (R) ≤ r2 (R),
so Q2 and Q12 share P and are located in the same side. This means that
Q2∩Q12 has codimension 1, which contradicts that BPM1∩BPM2 ⊃ Q2∩Q12

has codimension 2.
(2) Q2 is contained in {x (R ∪G) = r2 (R ∪G)}. We have r1 (R) =

r2 (R), r1 (G ∪R)−r1 (R) = r2 (R ∪G)−r2 (R), r1 (S)−r1 (R ∪G) = r2 (S)−
r2 (R ∪G) from the expression of MP . Excluding one redundant equation,
one can simplify the above equations into r1 (R) = r2 (R), r1 (R ∪G) =

r2 (R ∪G). Hence, Q2 is contained in

L12 = {x (R ∪G) = r1 (R ∪G) = r2 (R ∪G)}

In addition, {x (R) = r1 (R) = r2 (R)} divides L12 into two halves, but Q2

and Q12 are in the same side {x (R) ≤ r1 (R) = r2 (R)}. This means that
Q2 ∩Q12 has codimension 1, a contradiction.

(5) and (6) are not the cases in the same way.
(3) We have r1 (R) = r2 (R ∪G) − r2 (G), r1 (G ∪R) − r1 (R) = r2 (G),

r1 (S)−r1 (R ∪G) = r2 (S)−r2 (R ∪G). After simplifying, we get r1 (R ∪G) =

r1 (R) + r2 (G) = r2 (R ∪G), and by submodularity, r2 (G) ≤ r1 (G) and
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r1 (R) ≤ r2 (R). Q2 is contained in L2 := {x (G) = r2 (G)}. The facet
inducing inequalities of Q11 and Q12 are x (R) ≤ r1 (R) and x (R ∪G) ≤
r1 (R ∪G), respectively. The facet inducing inequality of Q2 is x (G) ≤
r2 (G), and every point satisfying x (G) ≤ r2 (G) also satisfies x (G) ≤ r1 (G).
In addition, L2∩{x (R ∪G) ≤ r1 (R ∪G)} is {x (G) = r2 (G) , x (R) ≤ r1 (R)},
which has codimension 1 since G ∩R = ∅. L2 ∩ {x (R ∪G) ≤ r1 (R ∪G)} is
contained in the intersection of two half spaces

{x (R) ≤ r1 (R)} ∩ {x (R ∪G) ≤ r1 (R ∪G)}

Since originially Q2 is contained in L2 ∩
{
x (R) ≤ rM2/G (R ∪G) = r1 (R)

}
,

Q2 intersects BPM1 in codimension 1, which is a contradiction.
(4) From the expression of MP , we get r1 (R) = r2 (R), r1 (G ∪R) −

r1 (R) = r2 (S)−r2 (R ∪B), r1 (S)−r1 (R ∪G) = r2 (R ∪B)−r2 (R), which
are simplified into r1 (R) = r2 (R), r1 (R ∪G) + r2 (R ∪B) = r1 (R) + r1 (S).
Q2 is contained in L2∩{x (R) ≤ r2 (R)} where L2 := {x (R ∪B) = r2 (R ∪B)}.
So, Q2 is contained in {x (R) ≤ r1 (R) = r2 (R)} which is a facet induc-
ing inequality for Q11. For the points on L2, the facet inducing inequal-
ity x (R ∪G) ≤ r1 (R ∪G) of Q12 becomes x (R) + x (S) = x (R ∪G) +

x (R ∪B) ≤ r1 (R ∪G) + r2 (R ∪B) = r1 (R) + r1 (S), i.e., x (R) ≤ r1 (R),
which is already satisfied by Q2. Hence Q2 intersects BPM1 in codimension
1, which is a contradiction.

(7)We have r1 (R) = r2 (S)−r2 (G ∪B), r1 (G ∪R)−r1 (R) = r2 (G ∪B)−
r2 (B), r1 (S) − r1 (R ∪G) = r2 (B), which are simplified into r1 (R ∪G) +

r2 (B) = r1 (S) = r2 (S) = r1 (R) + r2 (G ∪B). The facet inducing inequality
of Q2 is x (B) ≤ r2 (B). For every point in the intersection of BPM1 ∩ Q2,
one has x (S) = x (R ∪G) + x (B) ≤ r1 (R ∪G) + r2 (B) = r1 (S), hence
the equality should hold in the intermediate inequality. The same thing
for the inequality x (S) = x (R) + x (G ∪B) ≤ r1 (R) + r2 (G ∪B). There-
fore, BPM1 ∩ Q2 has codimension ≥ 2. By assumption, the codimension of
BPM1 ∩Q2 is ≤ 2. So, Q2 intersects BPM1 in codimension 2.
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(8) We have r1 (R) = r2 (R ∪G) − r2 (G), r1 (G ∪R) − r1 (R) = r2 (G),
r1 (S)− r1 (R ∪G) = r2 (S)− r2 (R ∪G), which are simplified into r1 (R) +

r2 (G) = r1 (R ∪G) = r2 (R ∪G). The facet inducing inequality of Q2 is

x (R ∪G) ≤ r2 (R ∪G) = r1 (R ∪G)

By assumption L12 = {x (R ∪G) = r1 (R ∪G)} already intersects L11 :=

{x (R) = r1 (R)}. But, Q12 is contained in L12 ∩ {x (R) ≤ r1 (R)} and Q2 is
contained in L12∩{x (G) ≤ r2 (G)}. For every point in Q12∩Q2, x (R ∪G) =

x (R) + x (G) ≤ r1 (R) + r2 (G) = r1 (R ∪G), so one has equality in the
intermediate inequality since x (R ∪G) = r1 (R ∪G) for such a point. Hence
Q12 ∩Q2 has codimension 2, and by assumption BPM1 ∩Q2 has codimension
2.

(9)(10)(11)(12) are possible cases which can be checked in the similar
way.

Hence, for the facet Q21 and Q22, (7)-(12) cases are possible. In case
that Q21 has the non-degenerate flat B as in (7), by Lemma 2.1, G as in
(9) or B ∪ G as in (12) is the non-degenerate flat for Q22. In case that Q21

has the non-degenerate flat R ∪ G as in (8), by Lemma 2.1 again, Q22 has
non-degenerate flat G as in (3) or B ∪ G as in (6), which we already know
is not possible. In case that Q21 has the non-degenerate flat G as in (9), the
non-degenerate flat for Q22 is B as in (7) which we already counted, or B∪G
as in (6) which is not a case. In case Q21 has the non-degenerate flat R ∪B
as in (10), B ∪G as in (12) or B as in (1) which is not possible corresponds
to Q22. Hence, (B,G), (B,B ∪G), and (B ∪R,B ∪G) are possible pairs
of non-degenerate flats for Q21, Q22. So, the first line in the table can be
checked. The remaining cases do not add more possibilities.

Likewise, one can compute by hands the possible quadruples of non-
degenerate flats for ((Q11, Q12) , (Q21, Q22)), which are given as in the table.
The section that is normal to P can be visualized as in Figure 2.2.
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BPM1

BPM2

BPM1 BPM2 BPM1

BPM2

BPM1 BPM2 BPM1

BPM2 BPM1 BPM2

Figure 2.2:

Using Lemma 2.1, Theorem 2.6 and Theorem 2.8, we get a useful theorem
that classifies the local pictures of the glued base polytopes at P .

Corollary 2.9. Fix (k ≥ 3, n). Let P ⊂ Rn−1 be a codimension 2 base poly-
tope that is not contained in ∪nj=1 {xj = 0}. Suppose that one has base poly-
topes that contains P and are all face-fitting. Then, the maximal unions of
them are given up to symmetry in the table below, and any such union is a
part of one of them. The pictures of the normal section at P are given in
Figure 2.3.
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M1 M2 M3 M4

M5 M6

(i)
(R,G) (G ∪B,G ∪R) (G,B) (B ∪R,B ∪G)

(R,B) (R ∪G,R ∪B)

(ii)
(R,R ∪G) (G ∪B,G ∪R) (G,B) (B ∪R,B ∪G)

(R,B)

(iii) (R,R ∪G) (G ∪B,G ∪R) (B,B ∪G) (R,B)

(iv) (R,R ∪G) (G,G ∪B) (B ∪R,B ∪G) (R,B)

(v) (R,R ∪G) (G,G ∪B) (R,R ∪B)

Table 2.4:

BPM1 BPM3

BPM2

BPM5

BPM6 BPM4

BPM1

BPM3

BPM2

BPM5

BPM4

BPM1

BPM2

BPM4

BPM3

BPM1

BPM2

BPM3

BPM4

BPM1

BPM2

BPM3

Figure 2.3:
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Chapter 3

Hyperplane arrangements

3.1 Hyperplane arrangements

Let S := {1, ..., n}, F a field and V ∼= Fk for some k ≥ 2. A hyperplane
arrangement over a field F is a pair (PV, (B1, ..., Bn)) where Bi, i = 1, ..., n,
are hyperplanes in a projective space PV ∼= Pk−1 such that ∩i∈SBi = ∅.

Theorem 3.1 ([GGMS87]). A hyperplane arrangement (PV, (B1, ..., Bn))

with V ∼= Fk, gives a loopless representable matroid of rank k ≥ 2. In addi-
tion, for any loopless representable matroid M of rank k ≥ 2, there exists a
hyperplane arrangement whose corresponding matroid is M .

Proof. Let fi ∈ V ∗ be a linear equation defining Bi, i.e.,

Bi = {u ∈ PV | fi (u) = 0}

Defining codimPV (∅) = r one has:

dimV ∗ span {fi | i ∈ I} = codimPV (∩i∈IBi)

If ∩i∈SBi = ∅, then the map (Fn)∗ → V ∗ by xi 7→ fi is surjective, which
induces an injective map ι : V ↪→ Fn, where xi, i = 1, ..., n, are the stan-
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dard coordinate functions of Fn. Then Bi are indentified as the intersec-
tions of ι (PV ) ⊂ Pn−1 with {xi = 0}. Hence, a hyperplane arrangement
(PV, (B1, ..., Bn)) defines a representable matroid M = (S, r) with the rank
function r (I) = dim span {fi | i ∈ I} for a subset I ⊂ S. In addition, it is
obvous that M is loopless.

Now, letM = (S, r) be a loopless matroid of rank k which is representable
over F. Then, there is a set of non-zero vectors

{
fi ∈ Fk | i ∈ S

}
which is a

spanning set of Fk. Let V =
(
Fk
)∗ ∼= Fk and consider the hyperplanes

Bi = {u ∈ PV | fi (u) = 0}. Then, one has:

r (I) = dimV ∗ span {fi | i ∈ I} = codimPV (∩i∈IBi)

Since k = r (S) = codimPV (∩i∈SBi) implies ∩i∈SBi = ∅, (PV, (B1, ..., Bn)) is
a hyperplane arrangement.

Remark 3.2. The dimension of the family of hyperplane arrangements in
general linear position is (k − 1) (n− k − 1). So, the correspondence

(hyperplane arrangements)→ (loopless representable matroids)

in Theorem 3.1 is not one-to-one, in general. However, we can define an
equivalence relation on hyperplane arrangements that two hyperplane ar-
rangements are equivalent if they give the same matroid. We say they have
the same type.

For a hyperplane arrangement (PV, (B1, ..., Bn)) with dimV = k, let
M = (S, r) be its corresponding matroid. Then, Aut (PV, (B1, ..., Bn)) =

(F×)
κ(M)−1, where κ (M) is the number of the connected components of M

as in (S7).

Definition 3.3. Let M be a loopless matroid of rank k. We say that for a
subset J ⊂ S with |J | ≥ k, the hyperplanes Bj, j ∈ J , are in general linear
position if M |J ∼= Uk

|J |.

42



Lemma 3.4. Let M = (S, r) be a loopess matroid of rank k. If there is
J ⊂ S such that M |J ∼= Uk

k+1, then M is an inseparable matroid.

Proof. Suppose that suchM is separable, and let T and T c be two nonempty
separators of M , then r (T ) + r (T c) = k. By (S7) r (T ∩ J) + r (T c ∩ J) =

r (J). Since M |J ∼= Uk
k+1 is an inseparable matroid, r (T ∩ J) = 0 or

r (T c ∩ J) = 0. Let r (T c ∩ J) = 0 without loss of generality, i.e., T c∩J = ∅,
J ⊂ T since M is loopless. Then, k = r (T ) + r (T c) = k + r (T c) implies
that r (T c) = 0, T c = ∅, a contradiction.

Remark 3.5. For k = 3, (PV, (B1, ..., Bn)) has 3 + 1 lines in general linear
position if and only if M is inseparable. For it suffices to prove the converse
of Lemma 3.7 for k = 3. Since M has rank 3, there is a basis, say {1, 2, 3}.
Let Tj = {j}, j = 1, 2, 3. Then T1 ∪ T2 ∪ T3 is a disjoint union that is
a proper subset of S since M is inseparable. So, there exists an element of
S−T1∪T2∪T3 and consider its closure, say 4 and T4 = {4}. Note that the lines
Z (Ti), i ∈ {1, 2, 3} are in general linear position. If Z (Ti), i ∈ {1, 2, 3, 4}
are in general linear position, J = {1, 2, 3, 4}. If not, T4 is contained in one
of T1 ∪ T2, T1 ∪ T3, T2 ∪ T3 since Ti, i ∈ {1, 2, 3, 4} are distinct rank 1 flats.
Say T4 ⊂ T1 ∪ T2 then M |T1∪T2∪T3∪T4 is separable. Since M is inseparable,
S−T1∪T2∪T3∪T4 is not empty, and there is a rank 1 flat T5 different from
Ti, i ∈ {1, 2, 3, 4}. If T5 is not contained in T1 ∪ T2, either T5 * T1 ∪ T3 or
T5 * T2 ∪ T3. Suppose not, then T1 ∪ T3 and T2 ∪ T3 are two minimal flats
containing T3 by (F3). Since T1 ∪ T3 ∩ T2 ∪ T3 is a flat containing T3, one
has T1 ∪ T3 ∩ T2 ∪ T3 = T3, which implies that T5 ⊂ T3, a contradiction. So,
suppose that T5 * T1 ∪ T3. Then Z (Ti), i ∈ {2, 3, 4, 5} are in general linear
position. If T5 is contained in T1 ∪ T2, there is a rank 1 flat T6 different from
Ti, i ∈ {1, 2, 3, 4, 5}. If T6 is not contained in T1 ∪ T2, similarly one can find
a 3 + 1 lines in general linear position. Otherwise, there is a rank 1 flat T7

different from Ti, i ∈ {1, 2, 3, 4, 5, 6}. Likewise, we keep this process, which
will terminate with 3 + 1 lines in general linear position since our matroid M
is finite.
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We use the shorthand notation ZM (I) := ∩i∈IBi. If the matroid is clear
from the context, we write simply Z (I) without M .

Lemma 3.6. Consider a hyperplane arrangement
(
Pk−1, (B1, ..., Bn)

)
, k ≥ 2,

and its associated matroid M = (S, r). Let J be a flat of M with r (J) = s.
Then, Z (J) ∼= Pk−s−1 and

(a) M/J gives a hyperplane arrangement in Pk−s−1.

(b) M |J gives a hyperplane arrangement in Ps−1.

Proof. (a) Since J is a flat, any other hyperplane Bi, i ∈ J c, intersects
Z (J) ∼= Pk−s−1 such that dimBi ∩ Z (J) = k − s− 2. Write

π (I) := ∩i∈I (Bi ∩ Z (J)) = Z (I) ∩ Z (J) = Z (I ∪ J)

for I ⊂ J c. Evidently, π (J c) = Z (S) = ∅. Moreover,

codimZ(J)π (I) = codimPk−1π (I)− codimPk−1Z (J)

= r (I ∪ J)− r (J)

= rM/J (I)

Hence, M/J defines a hyperplane arrangement
(
Pk−s−1, (π (i))i∈Jc

)
.

(b) ForBj = {u ∈ PV | fj (u) = 0} with j ∈ J , let B̃j := {u ∈ V | fj (u) = 0}

and consider W :=
(
∩j∈JB̃j

)⊥
. W has dimension k − (k − s) = s. Let

ρ (j) := P
(
W ∩ B̃j

)
, then ρ (j) are hyperplanes in PW ∼= Ps−1. Since
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∩j∈I
(
W ∩ B̃j

)
= W ∩W⊥ = {0}, ρ (J) = ∅. Moreover, for I ⊂ J ,

codimPWρ (I) = codimW ∩j∈I
(
W ∩ B̃j

)
= codimV ∩j∈I B̃j since W :=

(
∩j∈JB̃j

)⊥
= dimV ∗ span {fj | j ∈ I}

= rM |J (I)

Hence, M |J defines a hyperplane arrangement
(
Ps−1, (ρ (i))i∈J

)
.

Hyperplane arrangements on P2−1

Consider a loopless representable matroid M of rank 2, then 1 ≤ κ (M) ≤ 2;
see (S7). By Theorem 3.1, there exists a hyperplane arrangement on P1.
Recall that all non-degenerate flats are exactly those flats of rank 1; see
Lemma 1.3. In addition, since M is a loopless matroid of rank 2, S has a
partition into rank 1 flats by (M6).

κ(M) = 1 κ(M) = 2

Figure 3.1:

1. If κ (M) = 1, M is inseparable. So, there are at least 3 point loci in
general linear position, which looks like the first panel of Figure 3.1.

2. If κ (M) = 2, M is separable, and there are exactly two point loci on
P1; see the second panel of Figure 3.1.

Moreover, the following two lemmas say that every rank 2 matroid is repre-
sentable.
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Lemma 3.7. Let M = (S, r) be a loopless matroid with r (M) = 2. Then,
there exists a hyperplane arrangement on P1 whose corresponding matroid is
M . Hence M is representable.

Proof. We construct a hyperplane arrangement from M . Since M is a loop-
less matroid of rank 2, S has a partition into rank 1 flats by (M6): S = ∪mi=1Fi.
Assign to Fi distinct points ψ (Fi) := Pi on P1, which is possible if |F| ≥ m

for any field F. Then ψ induces a map ψ̃ : S → P1 defined by j 7→ Pi

where j ∈ Fi for some i. This map defines a hyperplane arrangement
(P1, (ψ̃ (1) , ..., ψ̃ (n))). Note that ψ is a 1-1 correspondence between non-
trivial flats and point loci on P1. It is easy to check that matroid conditions
(F1)-(F3) are satisfied, and M is the associated matroid of the constructed
hyperplane arrangement. Hence, M is a representable matroid by Theorem
3.1.

Since loops do not impact the representability of a matroid, we have the
following corollary.

Corollary 3.8. Any matroid of rank 2 is representable.

Hyperplane arrangements on P3−1

Consider a loopless representable matroid M of rank 3, then 1 ≤ κ (M) ≤
3. By Theorem 3.1, there exists a hyperplane arrangement on P2 whose
corresponding matroid is M .

1. If κ (M) = 1, M is inseparable. So, by Remark 3.5, there are at least
4 line loci in general linear position, which looks like the first panel of
Figure 3.2.

2. If κ (M) = 2, there exists an inseparable flat J of rank 2 such that
M = M |J⊕M |Jc by (M6), whereM/J = M |Jc by (S2) and rM (J c) = 1.
Since M |J is an inseparable matroid of rank 2, J is a disjoint union of
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J

J c

T3

T1

T2

κ(M) = 1 κ(M) = 2 κ(M) = 3

Figure 3.2:

rank 1 flats Fi such that the number of rank 1 flats is ≥ 3 by (M6).
Then Fi and J c are all rank 1 flats of M , so Z (Fi) and Z (J c) are
all line loci of the given hyperplane arrangement, which looks like the
second panel of Figure 3.2.

3. If κ (M) = 3, M = M |T1 ⊕M |T2 ⊕M |T3 by (M6), where T1, T2, T3 are
only three rank 1 flats. So, Z (T1) , Z (T2) , Z (T3) are only three line
loci on P2, which looks like the third panel of Figure 3.2.

Lemma 3.9. Fix k = 3. Consider a hyperplane arrangement (P2, (B1, ..., Bn))

and its associated matroid M . Then the facets of BPM are in 1-1 correspon-
dence with those flats ∅ 6= F ( S such that:

(a) r (F ) = 1 and M/F is inseparable, or

(b) r (F ) = 2 and F is inseparable.

Proof. Apply Lemma 1.4 and Theorem 1.9.

Lemma 3.10. Fix k = 3. Consider a hyperplane arrangement (P2, (B1, ..., Bn))

and its associated matroid M . Let F be a non-degenerate flat.

(a) If r (F ) = 1, Z (F ) ∼= P1 has more than 2 point loci.

(b) If r (F ) = 2, Z (F ) ∼= P0 is the intersection of more than 2 line loci.
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Proof. (a) Let r (F ) = 1. M/F is an inseparable matroid of rank 2: rM/F (F c) =

r (F c ∪ F ) − r (F ) = 3 − 1 = 2. By (M6), the number of nontrivial flats of
M/F is > 2. By Lemma 3.6(a), M/F defines a hyperplane arrangement(
P1, (π (i))i∈F c

)
with rank function rM/F (I) = codimZ(F )π (I) for I ⊂ F c.

Note that for any nontrivial flat I of M/F , ZM/F (I) is a point on Z (F ).
Hence, Z (F ) ∼= P1 has more than 2 point loci.

(b) Let r (F ) = 2. M |F is an inseparable matroid of rank 2. By (M6),
the number of nontrivial flats of M |F is > 2. By Lemma 3.6(b), M |F defines
a hyperplane arrangement (P1, (B̃j ∩ E)j∈F ) with rank function rM |F (I) =

codimE ∩j∈I (B̃j ∩ E) for I ⊂ F . Since any nontrivial flat I of M |F has
rank 1, ZM |F (I) is a point on E and ZM (I) is a line locus on P2, since
rM |F (I) = r (I). Therefore, Z (F ) ∼= P0 is the intersection of more than 2
line loci.

Lemma 3.11. Fix k = 3. Let M be an inseparable matroid that has a flat
F of rank 1 such that M/F is separable. Then

(a) F is one and only one flat of rank 1 such that M/F is separable.

(b) Any flat J of rank 2 with J ∩ F = ∅ is separable.

(c) There are exactly two flats of rank 2 that are inseparable, which contain
F .

Proof. Suppose that F is a rank 1 flat such thatM/F is separable. Consider
the associated hyperplane arrangement on P2 of the matroidM . Then, Z (F )

is a line with only two intersection points; see Figure 3.1. Since Z (F ) meets
any line Z (i) with i ∈ S\F , the hyperplane arrangement looks like the Figure
3.3. It is easy to see all three statements are true using Lemma 3.10.

Corollary 3.12. Fix k = 3. Let M be an inseparable matroid that has a
degenerate flat F of rank 1. Then F is one and only one rank 1 degener-
ate flat. Moreover, there are exactly two rank 2 non-degenerate flats, which
contain F .
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Z(F )

Figure 3.3:

Proof. Apply Lemma 3.9 and 3.8.

Remark 3.13. Lemma 3.11 is not generalized to higher rank. Indeed, consider
a matroid M = (S,F) of rank 4 such that S = {1, ..., 7} and all dependent
flats of M are given in Table 3.1. M is a graphic matroid as seen in Figure

rank Dependent flats of M

1 None
2 {1, 4, 7}, {2, 4, 6}, {3, 5, 7}
3 {2, 3, 4, 6}, {2, 3, 5, 7}, {2, 4, 5, 6}, {3, 5, 6, 7}, {1, 2, 4, 6, 7}, {1, 3, 4, 5, 7}
4 S

Table 3.1:

3.4, hence a regular matroid. Moreover, M is inseparable with rank 4. For

7

5

3

1

2

6

4

Figure 3.4:
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convenience, we mean {a1, ..., al} by a1 · · · al. Then,

rM/{7} (1246) + rM/{7} (35) = [r (12467)− r (7)] + [r (357)− r (7)]

= [3− 1] + [2− 1] = 3

= rM/{7} (123456)

rM/{4} (1357) + rM/{4} (26) = [r (13457)− r (4)] + [r (246)− r (4)]

= [3− 1] + [2− 1] = 3

= rM/{4} (123567)

So, {4} , {7} are inseparable flats of rank 1 such thatM/ {4} andM/ {7} are
separable.

Construction of hyperplane arrangements when k = 3

Fix k = 3. We introduce three special hyperplane arrangements below; see
Figure 3.5.

(a) Let S = AtBtC. Suppose thatM1 = (Ac, r1) andM2 = (Bc, r2) are
inseparable matroids of rank 2 such that B is a nontrivial flat ofM1 and A is a
nontrivial flat ofM2. Recall thatM1 andM2 are representable over some field
F with |F| � 1 by Lemma 3.7. By Lemma 3.10,M1 andM2 define hyperplane
arrangements H1 :=

(
P1,
(
P1, ..., Pn−|A|

))
and H2 :=

(
P1,
(
Q1, ..., Qn−|B|

))
,

respectively. Since B is a flat of M1 of rank 1, ZM1 (B) is a point locus.
ZM2 (A) is also a point locus by the same reason. Embed those two hyper-
plane arrangements into P2 as two distinct lines ∼= P1 that intersect each
other at ZM1 (B) = ZM2 (A). For each i ∈ A, let Li be the embedded image
of P1 for H1. Similarly for each i ∈ B, let Li be the embedded image of P1

for H2. Draw a line passing through ZM1 (i) and ZM2 (i) on P2 for i ∈ C and
denote it by Li. Hence, we get a hyperplane arrangement (P2, (L1, ..., Ln))
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which gives a representable loopless matroidM by Theorem 3.1. This hyper-
plane arrangement is not necessarily unique, but if the underlying field is large
enough, for instance infinite, we can construct one such that no non-trivial in-
cidence relations are made outside of ZM (A)∪ZM (B). Note thatM/A = M1

and M/B = M2. Since M1 and M2 are inseparable, r1 (C) = 2 = r2 (C).
Then, ZM (A) and ZM (B) have at least 3 distinct point loci. So, there are
at least 4 lines in general linear position, and M is inseparable.

(b) Let S = A t B t C. Suppose that M1 = (Ac, r1) and M2 = (Bc, r2)

are inseparable matroids of rank 2 such that C is a nontrivial flat of both
M1 and M2. Pick two distinct points O1, O2 ∈ P2. Draw a line passing
through O1 and O2, and denote it by LC . For i ∈ C, assign a line Li = LC

to i. Let A1, ..., Am1 be all nontrivial flats of M1 that are contained in A.
Since M1 is a loopless rank 2 matroid, A is their disjoint union. For each
Aj, draw a distinct line passing through only O1 but not O2, and denote
it by LAj

. Assign the line LAj
to any l ∈ Aj. Similarly, let B be the

disjoint union of flats B1, ..., Bm2 of M2 of rank 1. For each Bj, draw a
distinct line passing through only O2 but not O1, and denote it by LBj

which
should be assigned to any l ∈ Bj. Hence, we construct a unique hyperplane
arrangement (P2, (L1, ..., Ln)), and a loopless representable matroid M by
Theorem 3.1. Furthermore, M |Ac = M1 and M |Bc = M2. Since M1 and
M2 are inseparable, there are at least 3 distinct rank 1 flats for each. So,
without counting the line LC , there are at least 4 lines in general linear
position, which means that M is inseparable. Note that this matroid M

satisfies Lemma 3.11, where C is one and only one degenerate flat of rank
1, and A,B are only two inseparable flats of rank 2. Also, note that this
hyperplane arrangement can be obtained in (a).

Remark 3.14. The corresponding matroid to the hyperplane arrangement
constructed in (b) satisfies Lemma 3.11 and Corollary 3.12, where C is the
degenerate flat of rank 1, and Ac and Bc are the two non-degenerate flats of
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rank 2 (which contains C).

(c) Let S = A t B t C t D. Suppose that M1 = (Ac\D, r1) and M2 =

(Bc\D, r2) are inseparable matroids of rank 2 such that B is a nontrivial
flat of M1 and A is a nontrivial flat of M2. Using Construction (a), there is
a hyperplane arrangement with the associated matroid on A t B t C being
inseparable. Now, for a partition of D = ∪mj=1Dj, draw a line passing through
Z (A) ∩ Z (B) for each Dj. As in (a), we can draw Dj without generating
extra nontrivial incidence relations except at Z (A) ∩ Z (B). In this way, we
construct another hyperplane arrangement, and the corresponding matroid
M which is inseparable, since it already has 4 lines in general position. In
this construction, M3 := M |A∪B∪D is a rank 2 inseparable matroid, and we
see that M1, M2, M3 detemines a matroid.
If M1 and M3 are given first, we can consider a separable rank 2 matroid
M2 whose nontrivial flats are {A ∪D} and {C}. Then, draw a hyperplane
arrangement of M1 on P2. For a partition of D = ∪mj=1Dj into rank 1 flats,
draw a line for each Dj that passes through the point ZM1 (B) ⊂ P2. Draw
a line for B that passes through ZM1 (B) too, then pick a point 6= ZM1 (B)

for C on this line and draw lines that connect Z (C) and the points on the
line Z (A). This way of construction gives an alternative for the construction
(b).

To summarize, given rank 2 inseparable matroids M1 and M3, there are
two types of hyperplane arrangements that can be constructed, which de-
pends on the degeneracy of the rank 2 matroid M2.

3.2 Glued matroids for k = 3 and its repre-

sentability

Theorem 2.6 gives an equivalent condition phrased in terms of matroids for
when the union of two full dimensional base polytopes BPM1∪BPM1 becomes
another base polytope, where M1 and M2 are inseparable matroids of rank
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Figure 3.5:

k ≥ 3. As in Theorem 2.6, let J1 and J2 be the non-degenerate flats of
M1 and M2 with r1 (J1) = 1 and r2 (J2) = 2, respectively, that correspond
to BPM1 ∩ BPM2 . In addition, suppose that H1 and H2 are hyperplane
arrangements whose corresponding matroids are M1 and M2, respectively.
By Theorem 3.1, if one can find a hyperplane arrangement corresponding
to M1#M2, M1#M2 is a representable matroid. In other words, if one can
draw all together in Pk−1 the hyperplanes of H1 except ZM1 (J1) and the
hyperplanes of H2 except ZM2 (J2) in a way that gives M1#M2, M1#M2 is
the corresponding matroid of the resulting hyperplane arrangement, hence
representable. If the hyperplanes ZMi

(j), j ∈ J1, and ZMi
(j′), j′ ∈ J2, for

fixed i = 1, 2 behave independently in both hyperplane arrangements Hi,
such a drawing is always possible, and M1#M2 is represnentable. When
k = 3, we can slightly weaken this condition as in Theorem 3.17. We review
first the gluing of matroids for k = 3.

Lemma 3.15. Fix k = 3. Let M1 = (S, r1,F1) and M2 = (S, r2,F2) be
rank 3 inseparable matroids such that M1/J1 = M2|J2, where J1 and J2,
respectively are non-degenearte flats of M1 and M2 with r1 (J1) = 1, r2 (J2) =

2. Then, M1 and M2 glue to a matroid M1#M2 if and only if there is at
most one rank 1 flat F ⊂ J2 of M2 that is not a rank 1 flat of M1, in which
case F is a degenerate flat of M2.
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Proof. By (M8), T is a flat ofM1/J1 if and only if J1∪T is a flat ofM1. Rank
1 flats T ⊂ J2 of M2 are exactly rank 1 flats of M2|J2 . Since M2|J2 = M1/J1

by assumption, T ⊂ J2 is a rank 1 flat of M2 if and only if J1 ∪ T is a flat of
M1. Since J1 is a rank 1 flat of M1, M1|J1∪T is separable if and only if T is
a rank 1 flat in M1.

(⇐) If every rank 1 flat T ⊂ J2 of M2 is a rank 1 flat of M1, M1|J1∪T
is separable, hence by Theorem 2.6, no matter M2/T is separable or not,
BPM1 ∪ BPM2 is a base polytope; see Table 2.2. Therefore, M2|J2 = M1/J1.
Since M2/J2 = M1|J1 ∼= U1

|J1|, M1 and M2 glue to a matroid M1#M2.
Else if there is a rank 1 flat F ⊂ J2 of M2 that is not a rank 1 flat of M ,

by assumption F is only one such rank 1 flat and F is a degenerate flat of
M2, i.e., M2/F is separable. By Theorem 2.6 again, BPM1 ∪ BPM2 is a base
polytope which implies that M1 and M2 glue to a matroid M1#M2.

(⇒) Suppose that F ⊂ J2 is a rank 1 flat of M2 that is not a rank 1 flat
of M1. Then, M1|J1∪F is inseparable. By Theorem 2.6, M2/F is separable,
i.e., F is a degenearte flat. But, by Lemma 3.11, F is one and only one such
flat.

Definition 3.16. Fix k = 3. For a loopless representable matroid M =

(S, r), we say two disjoint subsets A,B ⊂ S behave independently in M if for
any pair of elements (a ∈ A, b ∈ B), one has {a} 6= {b} and {a, b} = {a}∪{b}.
In other words, in its associated hyperplane arrangement, the lines Z (a) and
Z (b) are distinct, and no other lines pass through their intersection point
Z (a) ∩ Z (b) = Z (a, b).

Theorem 3.17. Fix k = 3. Let M1 = (S, r1,F1) and M2 = (S, r2,F2) be
rank 3 inseparable matroids that are representable. Suppose that M1 and M2

glue to a matroid M1#M2 through J1 ∈ F1 and J2 ∈ F2 with r1 (J1) = 1,
r2 (J2) = 2. By Lemma 3.15, there is at most one rank 1 flat F ⊂ J2 of M2

that is not a rank 1 flat of M1, in which case F is a degenerate flat of M2.
Suppose that:
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1. J1 and J2 behave independently in M2 if every rank 1 flat T ⊂ J2 of
M2 is non-degenerate.

2. J1 and J2\F behave independently in M2 if F is a degenerate rank 1
flat of M2.

Then, M1#M2 is representable.

Proof. Let H1 = (P2
M1
, (ZM1(i))i∈S) and H2 = (P2

M2
, (ZM2(i))i∈S) be two

hyperplane arrangements whose corresponding matroids are M1 and M2, re-
spectively. Let T be any rank 1 flat of M1/J1 = M2|J2 . Suppose that (1)
every rank 1 flat T ⊂ J2 of M2 is non-degenerate. Then, T and J1 behave
independently in M1, i.e., ZM1 (T ) is a line in H1 that makes only triv-
ial incidence relation with the line ZM1 (J1) in H1. Then, we can choose
an isomorphism f2 = ϕ ◦ f1 : P2

M2
→ P2

M1
where f1 : P2

M2
→ P2

M1
and

ϕ : P2
M1
→ P2

M1
are isomorphisms; see the following diagram. For a generic

P2
M2

P2
M1

P2
M1

'
f2

f1 ϕ ∈ PGL3(F)

choice of ϕ ∈ PGL3 (F),

• (ϕ ◦ f1) (ZM2 (j1)) with j1 ∈ J1 are different from ZM1 (j2) with j2 ∈ J2,
and

• (ϕ ◦ f1) (ZM2 (j1))∩ZM2 (j2) is a point and no other lines pass through
it.

Take the lines f2 (ZM2 (i)) for i ∈ J1 and ZM1 (i) for i ∈ J2 on P2
M1

, which
gives a new hyperplane arrangement on P2, say H3. By Theorem 3.1, there
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corresponds a loopless representable matroid M3. H3 has 4 lines in general
linear position, since H1 already has four. So, M3 is an inseparable matroid.
By construction ofH3, all nontrivial incidence relations but J1 and J2 in both
H1 and H2 remain the same, while J1 and J2 are discarded. So, M1#M2 =

M3 which is representable.
Suppose that (2) F is a degenerate rank 1 flat of M2. Similarly as in the

case (1), we choose ϕ such that

• (ϕ ◦ f1) (ZM2 (j1)) with j1 ∈ J1 are different from ZM1 (j2) with j2 ∈ J2,

• (ϕ ◦ f1) (ZM2 (j1))∩ZM2 (j2) for j2 ∈ J2\F is a point and no other lines
pass through it, and

• (ϕ ◦ f1) (ZM2 (J1 ∪ F )) = ZM1 (J1 ∪ F ), which is a point.

Take the lines f2 (ZM2 (i)) for i ∈ J1 and ZM1 (i) for i ∈ J2 on P2
M1

, which
gives a new hyperplane arrangement on P2, say H3. By the same argument,
M1#M2 = M3 which is representable.
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Chapter 4

Puzzle-pieces and their gluing

Assume S = {1, ..., n} unless separately mentioned.

4.1 Puzzle-pieces

Abstract hyperplane arrangements

Let M = (S, r,F) be a loopless matroid of rank k, F the geometric lattice of
M . For any flat F ∈ F , M/F is a loopless matroid by (M3). Consider the
set of loopless matroids H (M) = {M/F |F ∈ F} and define a partial order
on it: for any two flats F ( J ∈ F , M/J ≺ M/F . Define the dimension
of M/F in H (M) to be dimH(M) (M/F ) = k − 1 − r (F ). Now, assign to
i ∈ S ψ (i) := M/{i}. We call

(
H (M) , (ψ (i))i∈S

)
an abstract hyperplane

arrangement. In other words, ψ (i), i ∈ S, are abstract hyperplanes, and flats
of M other than S give local incidence relations. Since there corresponds a
loopless matroid to every hyperplane arrangement, the abstract hyperplane
arrangement of a loopless representable matroid M can be thought of as the
type of the hyperplane arrangements; see Remark 3.2.

Remark 4.1. For a loopless matroid M of rank 3, any two distinct lines, say
ψ (1) and ψ (2), meet at a point. Indeed, ψ (1) = M/{1} 6= M/{2} = ψ (2)
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implies {1}∩{2} = ∅. Write F1 := {1}, F2 := {2}, and F3 := F1 ∪ F2. Then,
F3 is a unique rank 2 flat that contains F1 and F2 by (M9). Hence, ψ (1) and
ψ (2) meet at a point.

Puzzle-pieces

Let M = (S, r) be an inseparable matroid of rank k. For any face Q of
BPM that is not contained in ∪ni=1 {xi = 0}, there exists a sequence of faces
Q1 � · · · � Qc that are also not contained in ∪ni=1 {xi = 0}, where Qj is
a facet of Qj−1, c = n − 1 − dimQ, Qc = Q and dimQj = n − 1 − j for
j = 1, ..., c. Let F1 := SM (Q1) and M0 = M0,1 := M . By Theorem 1.9, as in
Lemma 2.1, there exists a sequence of matroids M1, ...,Mc that correspond
to Q1, ..., Qc, respectively, and a sequence of subsets F1, ..., Fc of S such that:

1. Mj = Mj,1 ⊕ · · · ⊕Mj,j+1 where Mj,l, l = 1, ..., j + 1, are inseparable
matroids.

2. Each Fj is a non-degenerate flat of Mj−1,l for some l.

3. Mj is obtained by replacing Mj−1,l with Mj−1,l|Fj
⊕Mj−1,l/Fj in the

direct sum decomposition of Mj−1.

The set P (M) of such matroids is called a puzzle-piece.
We define a puzzle-piece for a separable loopless matroid M as follows.

M can be written as a direct sum of inseparable matroids by (S7), and P (M)

is defined to be the set of the direct sum of elements of P (L) where L are
summands of the given direct sum decomposition of M . We say that two
puzzle-pieces P (M) and P (M ′) are isomorphic as puzzle-pieces if P (M) ∼=
P (M ′)⊕N or P (M ′) ∼= P (M)⊕N for some matroid N . P (M) ∼= P (M ′)⊕
N means that for every matroid L ∈ P (M) appears L′ ⊕ N for a matroid
L′ ∈ P (M ′) and vice versa. We say that P (M ′) is a sub-puzzle-piece of
P (M) if there is an element N of P (M) that is isomorphic to M ′ as puzzle-
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pieces. We call a sub-puzzle-piece of P (M) a face of P (M). We call sub-
puzzle-pieces of M with dimension d strata of M with dimension d.

We mean by SP(M)
(P (M ′)) or SM (M ′) the ordered sequence of flats

(F1, ..., Fc). If SM (M ′) is a singleton, we write it without parentheses. In
this notation we may replace the matroid, puzzle-piece, or non-degenerate
flat as before with each other as long as it makes consistent sense.

Let Q (M) be the set of BPM itself and the faces of BPM that are not
contained in ∪ni=1 {xi = 0}. Let P+ (M) be the set of faces of P (M), i.e.,
P+ (M) = P (M) \ {M}, and Q+ (M) = Q (M) \ {BPM} which is the set
of the faces of BPM that are not contained in ∪ni=1 {xi = 0}. There is a 1-
1 correspondence between P+ (M) and Q+ (M) by Theorem 1.9. Define a
partial order on P+ (M) such that for L1, L2 ∈ P+ (M), L1 ≺ L2 if Q1 ≺ Q2

where Q1, Q2 ∈ Q+ (M) are the faces of BPM that correspond to L1, L2,
respectively. We can give a geometric structure of a puzzle-piece as follows:

1. For any inseparable matroid N of rank s, define the dimension of N to
be dimN := s− 1.

2. For L = N1 ⊕ · · · ⊕Nκ(L) ∈ P (M) where Ni are inseparable matroids,
define dimL := dimN1 + · · ·+ dimNt = k − κ (L).

Define dimP (M) := dimM . A 0-dimensional puzzle-piece is called a point,
and 1-dimensional puzzle-piece is called a line. Observe that

dimL+ codimBPM
Q = k − 1 or dimQ− dimL = n− k

where Q ∈ Q+ (M) is the corresponding facet of L ∈ P+ (M).
Fix F = C. Consider a hyperplane arrangement (PV, (B1, ..., Bn)) and

its associated matroid M of rank k. Suppose that M is inseparable. Bi,
i = 1, ..., n, are thought of as the intersections of PV ⊂ Pn−1 with {xi = 0},
where xi are the standard coordinate functions of Pn−1. Since the torus
T = (C×)

n
/diagC× acts on Pn−1, T also acts on the grassmanian G(k, n).
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For [PV ] ∈ G(r, n), let Y := T. [PV ] be the closure of its orbit, U the
universal family over G(r, n) whose fibers are isomorphic to Pk−1. Consider
the fiber product UY := U ×G(k,n) Y and the GIT quotient UY //1 T . For
the dimensions, dimV = k, dimUY = n + k − 2, dimT = n − 1, and
dimUY //1 T = k − 1. The automorphism group Aut (PV, (B1, ..., Bn)) is
trivial. (Recall that we assumed M is inseparable.)

Theorem 4.2 ([Ale08]). (a) UY //1 T is the log canonical model of the hy-
perplane arrangement.

(b) Y ∩Ge(r−1, n−1) = UY //1 T . (For the notion of Y ∩Ge(r−1, n−1),
see the Hacking-Keel-Tevelev’s paper [HKT06].)

The strata of codimension c > 0 of a puzzle-piece P (M) is defined to be
the set of matroids L ∈ P+ (M) such that κ (L) = c+ 1.

Theorem 4.3 ([HKT06]). Let X = ∪Xi be a stable variety, ∆ = ∪BPi the
polyhedral decomposition of ∆ into the base polytopes BPi that are associated
to Xi. Then the strata of ∪Xi are in 1-1 correspondence with the strata of
∪BPi\ ∪nj=1 {xj = 0}.

Combining Theorem 4.1(a) and 4.2(a), we obtain the following theorem.

Corollary 4.4. The strata of P (M) are in 1-1 correspondence with the strata
of UY //1 T which is a variety.

Hence, if M is a loopless representable matroid over C, the strata of the
puzzle-piece P (M) are in one-to-one correspondence of the log canonical
model UY //1 T of the associated hyperplane arrangement.

Puzzle-pieces when k = 2

Let M be an inseparable matroid of rank 2, then P (M) has dimension 1,
hence a line. Codimension 1 strata of P (M) are points. Evidently, there
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are no codimension 2 strata of P (M). So, P (M) can be identified with
the abstract hyperplane arrangement of M . M is representable over C by
Corollary 3.8. If M is separable, P (M) has dimension 0, hence a point.

Puzzle-pieces when k = 3

Assume thatM is an inseparable representable matroid of rank 3, then P (M)

has dimension 2. Codimension 1 strata of P (M) are lines, and codimension
2 strata are points. If P (N) is a point or a line, we sometimes say simply N
is a point or a line as long as the meaning is clear. We can identify the set
of lines of P (M) with the set of non-degenerate flats of M . Indeed, take a
line P (M |J ⊕M/J) for a non-degenerate flat J of M . If J has rank 1, M |J
is an inseparable matroid of rank 1, M/J is an inseparable matroid of rank
2. So, P (M |J) is a point, and L := P (M/J) is a line that is isomorphic
to P (M |J ⊕M/J) as a puzzle-piece. Similarly, if J has rank 2, P (M/J)

is a point and L := P (M |J) is a line isomorphic to P (M |J ⊕M/J) as a
puzzle-piece. So, there is a bijection between the lines of P (M) and the
non-degenerate flats of M .

Recall that dimL + codimBPM
Q = k − 1 where Q ∈ Q+ (M) is the

corresponding facet of L ⊂ P+ (M). Every facet Q ∈ Q (M) corresponds to
a line ∈ P (M) and every codimension 2 face P ∈ Q (M) corresponds to a
point ∈ P (M), and vice versa.

Now, any line L is identified with an abstract hyperplane arrangement.
We can visualize the puzzle-piece M by giving the pictures of local incidence
of lines at points. Draw a solid line for L = M/J , a dashed line for L =

M |J . For two lines L1, L2, draw 60◦ for the angle between them if both are
obtained from M by the same operation (restriction or contraction), draw
120◦ otherwise.

IfM is a separable representable matroid of rank 3, P (M) has dimension
0 or 1; see Figure 4.1, where the first line pictures are hyperplanes in P2 and
the second line pictures are their corresponding puzzle-pieces.
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∅

codimension 1 codimension 2 codimension 3

Figure 4.1:

Remark 4.5. Since codimension 2 face of a base polytope is the intersection
of exactly two facets, any point of a 2-dimensional puzzle-piece is the inter-
section of exactly two lines. Then, any two distinct lines of P (M) can be
represented as two sides of the connected part of the boundary of one of the
polygons in Figure 4.2, up to symmetry, where each side of the connected
part represents a line in P (M) and the vertices on it represent points in
P (M).

Figure 4.2:

Indeed, let L1 and L2 be any two distinct lines of P (M). For each i = 1, 2,
its non-degenerate flat Fi has rank 1 or 2. If r (Fi) = 1, Li is isomorphic to

62



P (M/Fi) as puzzle-pieces. If r (Fi) = 2, Li is isomorphic to P (M |Fi
).

Assume that there is no degenerate flat of rank 1.

1. Suppose that r (F1) = r (F2) = 1, then L1 and L2 are lines in H (M).
By Remark 4.1, L1 and L2 meet at a point M/J of H (M) with J =

F1 ∪ F2. If J is inseparable, by Lemma 1.4, J is non-degenerate flat. So,
L3 := P (M |J ⊕M/J) ∼= P (M |J) is a line in P (M), and by Remark
4.5, L1 and L2 meet L3 once, but they do not meet each other. The
line segment for L3 is drawn to be a dashed line with length |J | −
|F1| − |F2|. The line segment for Li, i = 1, 2, is drawn to be a solid
line such that the angle between Li and L3 is 120◦. For the length
we need to choose a point on it, equivalently a non-degenerate flat
Ti of M/Fi. Its length is the number of indices of the points on Li

except two vertices, i.e., |(Fi)c| − |J − Fi| − |Ti| = n − |J | − |Ti|. If
J is separable, L1 and L2 are two lines of P (M) that meet at the
point P

(
M |F1 ⊕M |F2 ⊕M |(F1∪F2)c

)
. The line segments are drawn in

the same way. By Remark 4.5, we can keep this process at the vertices
as long as the lines are forming a connected part of the boundary of a
polygon.

2. Suppose r (F1) = r (F2) = 2, then P (M/Fi), i = 1, 2, are two distinct
points on H (M). If those two points are connected on H (M), call
it L′0. Choose a line L′i = M/Ji 6= L0 on H (M) that passes through
the point M/Fi, where Ji are flats. L′1 and L′2 meet at a point on
H (M), and if there corresponds a non-degenerate flat to this point,
there corresponds a line L′3 of P (M). Consider those lines of H (M)

lying on P (M). Draw the lines L1, L2, L
′
1, L

′
2, L

′
0, L

′
3 of P (M) following

the same directions as above.

3. Suppose that r (F1) = 1, r (F2) = 2 without loss of generality. Choose
a line L′3 6= L1 on H (M). Do the same thing as above two cases.
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Assume that there is a degenerate flat F of rank 1. By Lemma 3.11, F is
only one such flat.

4. Suppose r (F1) = r (F2) = 2, then F1 and F2 are only two non-
degenerate flats of rank 2 by Lemma 3.11. Choose a line L′i = M/Ji

on H (M) such that Ji 6= F are non-degenerate flats of rank 1. Draw
those lines L1, L2, L

′
1, L

′
2 of P (M) in the same way as before, which

will form a rhombus as in the third panel of Figure 4.2.

For the other cases, the process is essentially the same as before, so we omit
those. Figure 4.3 gives pictorial examples of Remark 4.5.

Figure 4.3:

The polygons in Figure 4.2 can be drawn in a triangular guide grid as in
Figure 4.4, where the unit length of line segment is assumed to be 1. Figure
4.5 gives the classification of polygons that appear in a grid, up to symmetry.
For fixed n, the boundary of a guide grid is a regular triangle with side length
n− 3. Figure 4.6 is a guide grid when n = 6. This triangular guide grid with
boundary is coordinatized by the following discrete set up to permutation
group S3: {

(x, y, z) ∈ Z3|x, y, z ≥ 1 and x+ y + z = n
}
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Figure 4.4:

Figure 4.5:

Then, a center P := P (MA ⊕MB ⊕MC) can take a point (|A| , |B| , |C|)
in a guide grid up to S3, where MD

∼= U1
|D| denotes a loopless matroid of

rank 1 with ground set D. Figure 4.7 explains how much information we
have when moving from one point in a grid to another point: if two centers
P1 := P (MA1 ⊕MB1 ⊕MC1) and P2 := P (MA2 ⊕MB2 ⊕MC2) take points
in a grid that lie on the same line, exactly one of |A1| = |A2|, |B1| = |B2|,
|C1| = |C2| is true, say without loss of generality |A1| = |A2|, |B1| 6= |B2|,
|C1| 6= |C2|. In addtion, if P1 and P2 are connected by a line, i.e., by a
1-dimensional puzzle-piece, then their points in a grid are connected by a
line segment, and exactly one of A1 = A2, B1 = B2, C1 = C2 is true, and
the other two equalites change to strict containments in opposite way, say
without loss of generality A1 = A2, B1 ) B2, and C1 ( C2.
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Figure 4.6:

C

A

B

|A| ↑

|B| ↑ |C| ↑

Figure 4.7:

Log canonical model of a hyperplane arrangement on P2

The following two theorems are due to Alexeev; see [Ale13] Theorem 5.7.2.

Theorem 4.6. Fix k = 3 and F = C. Consider a hyperplane arrangement
and its log canonical model UY //1 T (by Theorem 4.2(a)). Then, UY //1 T
is obtained by successive blowups of P2 at a certain number of points and at
most one contraction of a curve.

Corollary 4.7. The log canonical model of any hyperplane arrangement on
P2 is isomorphic to P1 × P1 or BlptsP2.

Then, puzzle-pieces when k = 3 work as type for log canonical models of
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hyperplane arrangements on P2.

4.2 Gluing puzzle-pieces

Since there is a 1-1 correspondence between P (M) and Q (M), we can define
the gluing of puzzle-pieces that have the same rank and the same ground set
as the counterpart of gluing of base polytopes. If two base polytopes BPM1

and BPM2 glue to BPM1#M2 through the common facet BPM1 ∩ BPM2 ∈
Q+ (M1) ∩ Q+ (M2), we say that two puzzle-pieces P (M1) and P (M2) glue
to P (M1#M2) through the corresponding facet P+ (M1) ∩P+ (M2). Gluing
of puzzle-pieces is just combinatorial translation of the topological gluing of
base polytopes. For k = 2, 3 cases, this translation is very useful since one
can draw 1- or 2-dimensional local pictures for the gluing.

1-dimensional puzzle-pieces

For k = 2 case, the gluing is extremely simple, since all strata are points.
Let M1 = (S, r1) and M2 = (S, r2) be rank 2 inseparable matroids, J1 and
J2 be nontrivial flats of M1 and M2, respectively, then Ji, i = 1, 2, are
non-degenerate flats of Mi by Lemma 1.3. If J1 ∪ J2 is a partition of S,
one has M1|J1 = M2/J2 since both are loopless matroids of rank 1 with
ground set J1 by (M3), hence isomorphic to U1

|J1| by (M5). Similarly, one has
M1/J1 = M2|J2 , so BPM1 and BPM2 glue to a base polytope by Theorem 2.5.

2-dimensional puzzle-pieces

For k = 3 case, suppose that M1 = (S, r1) and M2 = (S, r2) are inseparable
flats of rank 3. We say that two full dimensional puzzle-pieces P (M1) and
P (M2) face-fit or simply fit if their corresponding base polytopes BPM1 and
BPM2 meet nicely, i.e., BPM1∩BPM2 ∈ Q+ (M1)∩Q+ (M2) or BPM1∩BPM2 ⊂
∪ni=1 {xi = 0}, which counts the case BPM1 ∩ BPM2 = ∅. We say BPM1 and
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BPM2 fit in ∆+ if ∅ 6= BPM1 ∩ BPM2 ∈ Q+ (M1) ∩ Q+ (M2). Note the
following.

• BPM1 and BPM2 fit in ∆+ and BPM1∩BPM2 has codimension c ≤ k−1 if
and only if P (M1) and P (M2) fit and P (M1)∩P (M2) has codimension
c ≤ k − 1.

• If BPM1∩BPM2 ⊂ ∪ni=1 {xi = 0}, then P (M1)∩P (M2) has codimension
k, i.e., P (M1) ∩ P (M2) = ∅.

If two puzzle-pieces P (M1) and P (M2) fit and P (M1) ∩ P (M2) has codi-
mension c ≤ k − 1, those can be depicted in a grid as polygons such that:

(G1) The polygons of two puzzle-pieces share a line segment and lie on the
different sides if and only if those puzzle-pieces fit through the common
facet, which is a common line in both puzzle-pieces.

(G2) The polygons of two puzzle-pieces share only a point and do not over-
lap except the point if and only if those puzzle-pieces fit through the
common face with codimension 2, which is a common point in both
puzzle-pieces.

Then, Figure 2.1 and 2.2 work as local pictures of two face-fitting puzzle-
pieces whose intersection is not empty. So, we take Figure 2.3 as the clas-
sification of the local pictures at a center Z of the face-fitting puzzle-pieces
whose intersection is Z. For an example, see Figure 4.8. P (M1) and P (M2)

have full dimension since each associated hyperplane arrangement has 4 lines
in general linear position. Figure 4.9 illustrate two face-fitting puzzle-pieces
P (M1) and P (M2) in a grid (for n = 8).

Now, if BPM1 and BPM2 glue to a base polytope BPM1#M2 , the puzzle-
pieces P (M1) and P (M2) glue to a puzzle-piece P (M1#M2). Hence, using
gluing of puzzle-pieces, we can construct a new puzzle-piece.
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Construction of puzzle-pieces when k = 3

Consider the hyperplane arrangements in Figure 3.5. For cases (a) and (b),
let Z be the 0-dimensional puzzle-piece that is the intersection of two lines
P (M1) and P (M2). For case (c), note that M |A∪B∪D is a rank 2 inseparable
matroid, say M3. Recall that M1,M3 determines a hyperplane arrangement
as in the second paragraph of 3.2.(b). Let Z be a point that is the intersection
of two lines P (M1) and P (M3). Then, Figure 4.10 shows the local pictures
of the puzzle-pieces at Z obtained from those hyperplane arrangements in
Figure 3.5. For the explicit pictures, the puzzle-pieces of (a) look like those
in Figure 4.11. If a puzzle-piece is obtained in the way of (c) such that M2

is inseparable, it looks like one of Figure 4.12. Otherwise, it looks like 5© of
Figure 4.11 but the opposite vertex, with two dashed lines.

If two puzzle-pieces glue in such a way as their base polytopes glue to
another base polytope, their union becomes another puzzle-piece.

1. For consider an inseparable matroid N1 as in Figure 3.5(a) that is
constructed by N1/A and N1/B1 where A and B1 are non-degenerate
flats of N1 with rank 1 such that the flats of N1/A are flats of N1.
Consider another inseparable matroid N2 as in Figure 3.5(b) that is
constructed by N2|Ac and N2|Bc

2
, where Ac and Bc

2 are rank 2 non-
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Figure 4.9:
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Figure 4.10:

degenerate flats of N2. Then, the flats of N2|Ac are flats of N2. Suppose
that N1/A = N2|Ac . Then, by Lemma 3.15, N1 and N2 glue to N1#N2,
hence we obtain a new puzzle-piece P (N1#N2). Moreover, N1 and
N2 satisfies the premises of Theorem 3.17, hence N1#N2 comes from a
hyperplane arrangement. For the local pictures, see Figure 4.13.

2. Suppose that N2 is given the same, but N1 is given differently: N1

is constructed by N1/A and N1|Bc as in 3.2.(c) where A,Bc are non-
degenerate flats of N1 with rank 1,2, respectively such that the flats
of N1/A are flats of N1. Suppose that N1/A = N2|Ac . Then, N1
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Figure 4.12:

and N2 glue to N1#N2 by Lemma 3.15. N1#N2 is also representable
by Theorem 3.17. The difference with above case is that the flat F
mentioned in Theorem 3.17 is allowed. The pictures for the polygons
of P (N1) that contain the line N1|F are given in Figure 4.14. The
pictures of the polygons that do not contain N1|F are already given in
Figure 4.13.
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Figure 4.13:

Figure 4.14:
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Chapter 5

Flakes, puzzles, quilts and
β-puzzles

We fix k = 3 throughout this chapter.

5.1 Flakes, puzzles and quilts

Definition 5.1. A flake centered at a point Z = P (MZ) is a collection of
full dimensional puzzle-pieces Xi = P (Mi) with ∩Xi = Z such that BPMi

fit
in ∆+. We say that the center Z = ∩Xi is an interior center if BPMZ

is not
contained in the boundary of ∆k

n. In other words, MZ
∼= U1

|J1| ⊕ U
1
|J2| ⊕ U

1
|J3|

with a partition of S = ∪3
i=1Ji such that |Ji| > 1. We say that two distinct

flakes X and X ′ are compatible if for any point Z of X or X ′, the collection
of puzzle-pieces of X and X ′ that contains Z is again a flake.

Recall that Figure 2.3 classifies the local pictures of a flake at the center,
up to symmetry. There are two generalizations of the notion of flake: puzzles
and quilts. A tiling or complete cover of ∆ is a face-fitting subdivision of ∆

into base polytopes. A partial tiling is a union of face-fitting base polytopes
that are contained in ∆.
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Definition 5.2. A puzzle is a collection of full dimensional puzzle-pieces
Xi = P (Mi) such that ∪BPXi

\ ∪nj=1 {xj = 0} is a partial tiling of ∆+ that
is connected in ∆+.

If X = {Xi | i ∈ Ω} and X ′ = {X ′i | i ∈ Ω′} are two puzzles such that
{BPXi

| i ∈ Ω} refines
{

BPX′i
| i ∈ Ω′

}
, we say that X is a refinement of X ′

or X is a decomposition into puzzle-pieces that is finer than X ′.
The notion of quilt is weaker than that of puzzle.

Definition 5.3. A quilt is a collection of full dimensional puzzle-pieces Xi =

P (Mi) such that for any point Z of Xi for any i, the collection of those
puzzle-pieces that contain Z, which is denoted by FX (Z), is a flake centered
at Z. In other words, a quilt is a collection of compatible flakes. A quilt X ′

is called a sub-quilt of a quilt X if X ′ ⊂ X.

Remark. A flake is a puzzle, and a puzzle is a quilt.

For a quilt X, we define a local chart at a center Z to be a grid such that

(i) FX (Z) is depicted as a collection of polygons in the grid,

(ii) each point in a grid occupied by at most one center of the quilt, and

(iii) those points occupied by centers in the grid are connected by line seg-
ments.

Remark. The local chart is for local computations, not global ones. Never-
theless, the guide grid can be used to track puzzle-pieces that are connected,
but we do not require any point in it to be occupied by at most one center.

Let Y = P (MY ) be a 1-dimensional sub-puzzle-piece with an inseparable
matroid MY = (SY , rY ) with rank 2. Y is called open in a quilt X =

{Xi | i ∈ Ω} if Y is a line of some puzzle-piece Xi such that |SY | < n− 1 and
Y is not an intersection of two distinct 2-dimensional puzzle-pieces of X.
In other words, BPMY

× BPU1
n−|SY |

is not contained in ∪ni=1 {xi = 1} and is
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not a common facet of two distinct full dimensional base polytopes BP1 and
BP2, where BP1 and BP2, respectively, are base polytopes that correspond
to some puzzle-pieces Xi1 and Xi2 of X.

If Y is not open, we say Y is saturated or closed in X. Y is called a
boundary puzzle-piece of X if either Y is open in X or |SY | = n − 1, i.e.,
BPMY

× BPU1
n−|SY |

is contained in ∪ni=1 {xi = 1}.
We say that a quilt is complete if it has no open puzzle-pieces. We say

that a flake X with center Z is saturated at Z if X has no open puzzle-pieces
containing Z.

For every center Z of a quilt X, FX (Z) can be expressed in a local chart.
The family of such local charts not only visualizes the gluing of puzzle-pieces
of X, but also describes X itself.

Lemma 5.4. Any flake X with center Z can be saturated at Z.

Proof. It suffices to consider Figure 2.2 for X. For the first panel of the first
line pictures, let X = {P (M1) ,P (M2)} as seen in Figure 5.1. Let P (N1)

be the line represented by a red line segment and P (N2) the line represented
by a blue line segment. With N1 and N2, we can construct a hyperplane
arrangement (b) in Figure 3.5, hence a puzzle-piece P (M3) of type (b) in
Figure 4.10 fits to X through both P (N1) and P (N2) by (G1) and (G2).
Now, let P (N3) be the line represented by the dashed line segment with green
points and P (N4) the line represented by the green line segment. With N3

and N4, we can construct a hyperplane arrangement as in (c) of Figure 3.5
such that its associated puzzle-piece P (M4) looks like (c) in Figure 4.10.
P (M4) fits through P (N3) and P (N4), and we obtain a new flake that has
no open puzzle-pieces containing Z, i.e., X is saturated at Z; see Figure 5.1.
X also can be saturated as the second line of pictures of Figure 5.1. The
other cases are all similar.

Let X be a quilt, Z one of its centers. FX (Z) is depicted in a local chart.
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Figure 5.1:

Extend this picture as far as possible in the same local chart such that no
two distinct centers occupy the same point on the chart. Then, the collection
of those puzzle-pieces that are drawn in the chart that way is a quilt and a
subquilt of X. This extension need not be unique, since the local chart is
only for local computations.

Definition 5.5. A quiltX is called planar if the puzzle-pieces ofX can be ex-
pressed as polygons in one grid according to (G1) and (G2). This grid works
as a local chart for each point in the grid. We define a PlanarSupport (X) to
be the union of the polygons in the grid.

Quilts connected in codimension 1

Definition 5.6. For a quilt X = {Xi | i ∈ Ω}, we say that X is connected in
codimension 1 if ∪Xi is connected in codimension 1.

Let X = {Xi | i ∈ Ω} be a flake with center Z that is connected in codi-
mension 1. Each full dimensional puzzle-piece of X is expressed in a local
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chart as a polygon with a vertex representing Z with two neighboring sides
with angle 60◦ or 120◦. Since Xi are connected in codimension 1, their poly-
gons are also connected in codimension 1, so we define the angle of X at Z
to be the angular defect of a vertex corresponding to Z in a local chart (see
Figure 2.3) and denote it by ∠XZ. In other words, ∠XZ is defined to 360◦

minus (the sum of angles of two neighboring sides of the polygons at the
vertex representing Z). ∠XZ takes its value 0◦, 60◦, 120◦, 180◦, 240◦, 300◦.

A quilt X is called locally connected in codimension 1 if for any center Z
of X, FX (Z) is a flake that is connected in codimension 1.

If a quilt X is connected in codimension 1 and locally connected in codi-
mension 1, we define the angle of X at Z to be the angle of the flake FX (Z)

at Z and denote it by ∠XZ.
The dual graph of a quilt X is a graph that has a vertex corresponding to

each full dimensional puzzle-piece, and an edge joining two full dimensional
puzzle-pieces that fit through their common facet.

If X is connected in codimension 1, its dual graph is connected. We can
add more information to the dual graph by attaching to a vertex an edge
for each open sub-puzzle-piece of the corresponding full dimensional puzzle-
piece, and by marking an arrow for each edge such that the arrow goes from
X1 = P (M1) to X2 = P (M2), where M1 = (S, r1) and M2 = (S, r2) fit
through J1 and J2 with r1 (J1) = 1 and r2 (J2) = 2. We call the graph
obtained in this way the extended dual graph of a quilt. For an example, the
dual graph and the extended one of the quilt {P (M1) ,P (M2)} in Figure 4.8
are given in Figure 5.2.

Lemma 5.7. Let X be a quilt that is connected in codimension 1 and locally
connected in codimension 1. Then for any two distinct puzzle-pieces X0 and
X1 of X, there is a sequence of full dimensional puzzle-pieces X1, X2, ..., Xf =

X0 of X such that {Xi | i = 1, ..., f} is a quilt and its dual graph is a simple
path in the dual graph of X.
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Figure 5.2:

Proof. Since X is connected in codimension 1, take a sub-quilt X ′ of X that
is also connected in codimension 1 and contains X0 and X1 such that the
number of full dimensional puzzle-pieces is the smallest. Then, the dual
graph of X ′ is a simple path. For start with X1. There is a center Z1

such that FX′ (Z) \X1 is not empty and connected in codimension 1 by the
construction of X ′. Write FX′ (Z) = {Xi | i = 1, ...,m1} such that Xi and
Xi+1 fit through a line. By Figure 2.3 and the minimality of X ′, ∠X′Z > 0

and m1 < 6. The dual graph of FX′ (Z) is a simple path.
Now, suppose that FX′ (Z) = {Xji | i = 1, ...,m} with j1 < · · · < jm such

that Xji and Xji+1
fit through a line. By the Figure 2.3 and the minimality

of X ′, ∠X′Z > 0 and m < 6. Then, no Xl with l > jm intersects Xl′ with
l′ ≤ j1. Indeed, suppose that Xl with l > jm intersects Xl′ with l′ ≤ j1.
Recall that any two distinct lines in a full dimensional puzzle-piece can be
reprsented as two sides of the boundary of a polygon of Figure 4.5; see
Remark 4.5. So, Xl ∩Xl′ is a point or line, either way Xl, Xl′ are contained
in a flake FX′ (Z ′) that is connected in codimension 1 for some center Z ′.
Then, cast away the puzzle-pieces Xl′+1, ..., Xl−1 and construct a new quilt
connected in codimension 1 that contains X0 and X1 such that the number
of full dimensional puzzle-pieces is smaller than that of X ′, a contradiction.
Thus, finally we end up with a sequence of full dimensional puzzle-pieces
X1, ..., Xf = X0 such that {Xi | i = 1, ..., f} is a quilt and its dual graph is a
simple path in the dual graph of X; see Figure 5.3.
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Figure 5.3:

Regular quilts

Suppose that X is a quilt that is connected in codimension 1 and locally
connected in codimension 1. Then, FX (Z) is connected in codimension 1 for
any center Z of X. We say that X is regular at a center Z if ∠XZ 6= 60◦.
For two distinct codimension 2 puzzle-pieces Z,Z ′, we say that X is regular
at the pair (Z,Z ′) if the following properties are satisfied:

1. X is regular at both Z and Z ′.

2. If Z and Z ′ are connected by open lines P (Mi/J) of X whereMi, i ∈ Λ

are inseparable rank 3 matroids with the same non-denerate flat J of
rank 2, then either one of ∠XZ, ∠XZ

′ is bigger than 120◦.

Pictorially, X is not allowed to have the part like Figure 5.4.

Y0 Yl−1
Z1 Zl−1Z = Z0 Zl = Z ′

120◦ 120◦

Figure 5.4:

Definition 5.8. A quilt X = {Xi | i ∈ Ω} that is connected in codimension 1
and locally connected in codimension 1 is called a regular quilt if it is regular
at all of its centers and at all pairs of its centers. A regular puzzle is a puzzle
that is a regular quilt at the same time.

Let X be a regular quilt, and Y0 one of its open lines. Since Y0 is an
open puzzle-piece of X, there is exactly one full dimensional puzzle-piece of
X that contains Y0, say X0 = P (M0).
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Suppose that SX0 (Y0) has rank 1 in M0. Take a local chart for Y0, where
one needs to choose 2 distinct centers Z1, Z2 of Y0. Take any full dimensional
puzzle-piece Xa of X. Then, as in Lemma 5.7, there is a shortest path in the
dual graph of X, say {X0, X1, ..., Xm−1, Xm = Xa} with Xi = P (Mi), i =

0, 1, ...,m, where Xi+1 is the immediate successor of Xi such that X1 contains
one of Z1, Z2, and two puzzle-pieces Xi, Xi+1 fit through their common facet
Xi ∩Xi+1. Suppose that X1 contains Z1, in which case X1 does not contain
Z2. Then, in the given grid, the polygons of Xi will be depicted according to
(G1) and (G2), and we see that there is an area of the given grid such that
no puzzle-piece Xi has its polygon that intersecting inside of the area. We
call this area the safe zone for Y0 with Z1, Z2, which is depicted in the first
panel of Figure 5.5.

Suppose that SX0 (Y0) has rank 2 in M0, and P (M1/J1 ⊕M1|J1) is an
open puzzle-piece where J1 is a rank 1 non-degenerate flat of M1 such that
{X0, X1} is a quilt with angle 120◦. The safe zone for Y0 is either the second
panel picture or the third panel picture.

We list below several conectures on the regular quilts with the sketch of
possible proofs.

Conjecture 5.9. Every planar regular quilt is a puzzle.

Proof. (Sketch of a possible proof) Let X = {Xi | i ∈ Ω} be a planar regular
quilt. Since X is planar, there is one grid that contains PlanarSupport (X);
see Definition 5.5. Sometimes in the grid the boundary of a polygon is broken.
But, such broken part happens only in the boundary of PlanarSupport (X)

because X is planar. Cut off the safe zones along the line segments in the
boundary of PlanarSupport (X) which represent boundary puzzle-pieces of
X. Since X is regular, observe that a safe zone of the second or the third
panel of Figure 5.5 is removed when the safe zones of first panel are cut off
from the grid. So, cutting off the safe zones of first panel in Figure 5.5 is
enough. Except the broken part of the boundary of PlanarSupport (X), the
shape of PlanarSupport (X) is obtained by cutting off all the safe zones along
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Figure 5.5:

the boundary of PlanarSupport (X), which is regular; see Figure 5.6 for an
example where a black shaded echelon represents a removed safe zone.

Let X1 and X2 be two distinct full dimensional puzzle-pieces of X. We
need to show that X1 and X2 fit, i.e., BPX1 and BPX2 meet nicely. If X1

and X2 are contained in a flake at the same time, then BPX1 and BPX2

meet nicely by definition of a flake. So, suppose not. Then, because the grid
has triangular shape, there exist two distinct parallel separating lines in a
grid such that the polygons of X1 and X2 do not intersect the middle area
that those two parallel lines make. Without loss of generality, assume that
those two lines in the grid are x (B) = 1 and x (B′) = 1 with |B1| > |B2|
and let Z and Z ′, respectively be two centers of X1 and X2 whose points
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Figure 5.6:

in the grid are one the lines x (B1) = 1 and x (B1) = 1 with coordinates
(G,R,B) and (G′, R′, B′) respectively; see Figure 5.7. Then, the polygons of
the puzzle-pieces of X that are contained in the middle area are connected
in codimension 1, and there exists a simple path consisting of line segments
that connect points contained in the middle area starting from the point
for Z ending at the point for Z ′. In addition, such a path that does not
increase back the B-coordinates can be found because the broken part of
PlanarSupport (X) happens only in the boundary of PlanarSupport (X) not
inside, and the shape of PlanarSupport (X) is regular; see the paragraph of
Figure 4.7 for the direction.

Let Z = Z0, Z1, ..., Zf−1, Zf = Z ′ be the centers whose points are in the
simple path such that the coordinates Zi are (Gi, Ri, Bi), and for a fixed
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i < f , Zi+1 is the immediate successor of Zi. Then, we see that B0 ⊇
B1 ⊇ · · · ⊇ Bf−1 ⊇ Bf and B = B0 ) Bf = B′. Moreover, we have
BPX1 ⊂ {x (B) ≤ 1} and BPX2 ⊂ {x (S\B′) ≤ 2}. Then,

BPX1 ∩ BPX2 ⊂ {x (B) ≤ 1, x (S\B′) ≤ 2}

But, since B ) B′, one has x (S) +x (B\B′) = x (B) +x (S\B′) ≤ 1 + 2 = 3,
which means that x (B\B′) ≤ 0, x (B\B′) = 0 since x (S) = 3. Now,
B\B′ 6= ∅ implies that BPX1 ∩ BPX2 ⊂ ∪ni=1 {xi = 0}. Hence, BPX1 and
BPX2 meet nicely.
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We will see that every regular quilt for n ≤ 7 is a puzzle in Theorem 6.4.
For n = 8, 9, it remains as a conjecture.

Conjecture 5.10. Every regular quilt when n = 8, 9 is a puzzle.

Proof. (Sketch of a possible proof) Assume n = 9. Let X be a regular quilt.
Take any two distinct full dimensional puzzle-pieces X0 and X1 of X. Take
a shortest path X ′ := {X1, ..., Xf} connecting X1 and Xf = X0. Draw first
a polygon of X0 in a grid and keep locating a polygon of each Xi in order.
The size of the grid is 6 which is too small for X ′ to be not planar: wherever
the polygon of X0 is located, X ′ should have regular shape, otherwise its
minimality is violated. Indeed, locate a polygon of X0 in the leftmost corner
of a grid as in Figure 5.8. Since X is a regular quilt, Xi cannot make a turn
with 60◦ in view of the inner boundary of PlanarSupport (X ′), but a turn
with 120◦, since otherwise the minimality of X ′ would be violated. Once a
120◦ turn is made, by the same reason, Xi cannot make a turn even with
120◦ anymore. Hence, X ′ is a regular planar quilt. Then, by Conjecture 5.9,
X ′ is a puzzle, which means that X0 and X1 fit. Therefore, X is a regular
quilt. The cases for n = 8 are similar.

Conjecture 5.11. Every complete quilt for n = 8, 9 is a puzzle.

Proof. Let X be a complete quilt. Z is an interior center of X if and only if
∠XZ = 0◦. Since X has no open puzzle-piece, if Z is not an interior center,
then ∠XZ = 180◦ or 240◦. So, X is regular at every center and every pair of
centers. Hence, X is a regular quilt, and a puzzle by Theorem 5.10.

5.2 β-puzzle

Definition 5.12. We say that a partial tiling ∪BPMi
is a partial cover of ∆β

if ∪BPMi
⊃ ∆β and BPMi

∩ int∆β 6= ∅ for all BPMi
. A β-puzzle is a puzzle

X = ∪Xi that comes from a partial cover of ∆β for some weight vector β.
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X1

Figure 5.8:

The following theorem is a corollary to Theorem 4.3.

Theorem 5.13. Let ∪Vi be a stable variety, ∪BPi the polyhedral decom-
position of ∆ into the base polytopes BPi that are associated to Vi, ∪Xi the
corresponding β-puzzle. Then there is a 1-1 correspondence between the strata
of ∪Vi, the strata of ∪BPi\ ∪nj=1 {xj = 0}, and the strata of ∪Xi.

Lemma 5.14. Any β-puzzle is a sub-quilt of a regular quilt.

Proof. (Sketch of a possible proof) Let X = {Xi | i ∈ Ω} be a β-puzzle. X
is connected in codimension 1 since ∪BPXi

covers ∆3
β which is a convex

polytope. Suppose that X0 = P (M0) for M0 = (S, r0) is a 2-dimensional
puzzle-piece of X and a line Y0 = P (M0/A⊕M0|A) is a open puzzle-piece
of X with r0 (A) = 1, i.e., SX0 (Y ) = A with |A| ≥ 2 and r0 (A) = 1. We will
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separate two cases and prove that X is a regular quilt for each case, which
is a long argument. After that, for the case r0 (A) = 2, we will show that X
is a part of a regular quilt.

Let Z = P (MA ⊕MB ⊕MC) be a point on Y0 such that SY0 (Z) = B,
A∪B ∪C = S is a partition of S, where MD denotes a matroid ∼= U1

|D| with
ground set D. Then, r0 (C) > 1 since M0 is inseparable and r0 (A ∪B) = 2.
One has β (C) > 1, otherwise BPX0 ⊂ {x (C) ≤ β (C) ≤ 1, x (A ∪B) ≤ 2}
has codimension 1.

Moreover, not both β (A) > 1 and β (B) > 1 hold true at the same
time. Suppose not: β (A) − 1, β (B) − 1, β (C) − 1 > 0. Note that there
exists a point P0 = (p1, ..., pn) ∈ BPZ\ ∪ni=1 {xi = 0} that is not contained in
∪a∈A {xa = 1}. Consider a point Pε = (q1, ..., qn) such that qa = pa + 2ε

|A| for
a ∈ A, qb = pb − ε

|B| for b ∈ B, and qc = pc − ε
|C| . There exists 0 < ε � 1

such that qa ≤ β (a), qb > 0, qc > 0, hence 0 < qi ≤ β (i) for all i = 1, ..., n.
By the following equality, one has Pε ∈ ∆β:

n∑
i=1

qi =
∑
a∈A

qa +
∑
b∈B

qb +
∑
c∈C

qc

=

(∑
a∈A

pa + 2ε

)
+

(∑
b∈B

pb − ε

)
+

(∑
c∈C

pc − ε

)
=

∑
a∈A

pa +
∑
b∈B

pb +
∑
c∈C

pc

= 3

Also, note that: ∑
a∈A

qa >
∑
a∈A

pa = r0 (A)∑
b∈B

qb <
∑
b∈B

pb = r0 (B)∑
c∈C

qc <
∑
c∈C

pc = r0 (C)
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which implies that Pε /∈ BPX0 . Now, using Corollary 2.9, one can check that
Pε should be contained in the interior of BPX1 where X1 is a 2-dimensional
puzzle-piece of the β-puzzle X that contains Y0. This contradicts that Y
is an open puzzle-piece of X. Hence, one of the inequalities β (A) > 1 and
β (B) > 1 is not true.

(a) Suppose that β (A) > 1, then β (B) ≤ 1 for any rank 1 non-degenerate
flat B ⊂ Ac of M0. The line P (M0/B ⊕M0|B) is an open puzzle-piece of X,
since otherwise Y1 = X0 ∩X1 for some 2-dimensional puzzle-piece X1 where
BPX1 ⊂ {x (Bc) ≤ 2}, but β (B) ≤ 1, so we have:

BPX1 ⊂ {x (Bc) ≤ 2, x (B) ≤ β (B) ≤ 1}

If β (B) < 1, BPX1 is a empty set, otherwise BPX1 is contained in a codi-
mension 1 polytope, which is a contradiction.

(i) For any non-degenerate flat J of M0 that strictly contains A, since
r0 (J) ≥ r0 (A) = 1 and A is a flat, one has r0 (J) = 2. Then,
the puzzle-piece Y1 = P (M0|J ⊕M0/J) is an open puzzle-piece. In-
deed, if Y1 = X0 ∩ X1 for a 2-dimensional puzzle-piece X1 = P (M1)

with M1 = (S, r1), one has r1 (J c ∪ A) = 2 since M1/J
c = M0|J

and r1 (J c ∪ A) = rM1/Jc (A) + r1 (J c) = rM0|J (A) + 1 = 1 + 1 = 2.
But, J\A = (J c ∪ A)c is a rank 1 flat of M0/A ⊕M0|A and not both
β (A) > 1 and β (J\A) > 1 hold true at the same time. Then,
β (J\A) ≤ 1 since we already have β (A) > 1. Now, BPX1 is con-
tained in {x (J\A) ≤ β (J\A) ≤ 1, x (J c ∪ A) ≤ 2} which has at least
codimension 1. This contradicts that BPX1 has full dimension, hence
Y1 is an open puzzle-piece of X. Moreover, at the point Y0 ∩ Y1, the
angle ∠X0Y0 ∩ Y1 is 240◦.

(ii) For any non-degenerate flat J of M0 with r0 (J) = 1 such that J 6= A,
i.e., J ∩ A = ∅, Y1 = P (M0|J ⊕M0/J) is an open puzzle-piece. For
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suppose that X0 ∩X1 = Y1 for some 2-dimensional puzzle-piece X1 =

(S, r1) of X. β (J) ≤ 1 since J is a non-degenerate flat of M0|J ⊕M0/J

and not both β (A) > 1 and β (J) > 1 hold true at the same time. Then,
BPX1 is contained in {x (J) ≤ β (J) ≤ 1, x (J c) ≤ 2} since r1 (J c) = 2.
This is again a contradiction, so Y1 is an open puzzle-piece of X. The
angle ∠X0Y ∩ Y1 is 300◦.

Remark. As a result of (ii), for any rank 1 flat F of M0, β (F ) ≤ 1. In
addition, if Y1 is not an open puzzle-piece of X, J := SX0 (Y1) has rank
r0 (J) = 2 and does not intersect A.

Suppose Y1 = X0 ∩X1 for some 2-dimensional puzzle-piece X1 = P (M1) of
X with M1 = (S, r1). Then, A1 := J c is a rank 1 flat of M1. Consider any
line Y2 of X1 that intersects Y1 and let J1 := SX1 (Y2). By Lemma 2.1, either
J1 ) A1 with r1 (J1) = 2 or J1 ∩ A1 = ∅ with r1 (J1) = 1.

(iii) Suppose that J1 ) A1 with r1 (J1) = 2. J1\A1 is a non-degenerate flat
ofM (Y1) = M0|J⊕M0/J , and also a flat ofM0 such that r0 (J1\A1) = 1

and J1\A1 6= A. So, β (J1\A1) ≤ 1 by the previous argument. If Y2 =

P (M1|J1 ⊕M1/J1) is not an open puzzle-piece ofX, write Y2 = X2∩X3

for some 2-dimensional puzzle-piece X3 = P (M3) with M3 = (S, r3).
The point Y1 ∩ Y2 of X3 is the intesection of two lines of X3, say Y2

and Y3, where Y3 is different from Y1 since Y1 is an open puzzle-piece
of X. Then SY2 (Y2 ∩ Y3) = A1. Let J2 := SX3 (Y2). Then, J2 = A1 or
J2 = J c1 ∪A1 by Lemma 2.1. In either case BPX3 ⊂ {x (J c1 ∪ A1) ≤ 2}.
But, β (J1\A1) ≤ 1 forces BPX3 to have a positive codimension, which
is a contradiction. So, Y2 is a open puzzle-piece of X. Then, the angle
of the flake X1 ∪X2 at Y1 ∩ Y2 is 180◦ if J1\A1 is a degenerate flat of
M0, 120◦ otherwise.

(iv) Suppose that J1 ∩ A1 = ∅ with r1 (J1) = 1. J1 is a non-degenerate flat
of M (Y1) = M0|J ⊕M0/J , and also a flat of M0 such that r0 (J1) = 1

and J1 6= A. So, β (J1) ≤ 1 by the previous argument, which means
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that Y2 is a open puzzle-piece of X. The angle of the flake X1 ∪X2 at
Y1 ∩ Y2 is 240◦ if J1\A1 is a degenerate flat of M0, 180◦ otherwise.

Remark. For any rank 1 flat F 6= A1 of M1 , β (F ) ≤ 1. In addition, if Y2 is
not an open puzzle-piece of X, J1 := SX1 (Y2) has rank r1 (J1) = 2 and does
not intersect A1.

If Xj+1 glues to Xj, Xj+1 inherits the properties of above two remarks. This
makes the β-puzzle X regular at every point and every pair of points. The
dual graph of X is a tree and in the extended dual graph of X, X0 is one
and only one sink; see Figure 5.9.

X1

Y0

X0

X3

X2

Y0

X0

X0

X1 X2

X3

Figure 5.9:

(b) Recall the setting given in the early part of this proof. If there is
a center Z such that β (A) > 1, the argument (a) says everything for that.
So, we may suppose that β (A) ≤ 1 for all such A. Now, fix Z. Simi-
larly as in (a), X is regular at every point. To prove that X is regular
at every pair of points, suppose that there is a 2-dimensional puzzle-piece
X1 = P (M1) with M1 = (S, r1) and a line Y1 = P (M1|J1 ⊕M1/J1) where
J1 = Bc is a non-degenerate flat of M1 with rank r1 (Bc) = 2, such that
Y1 ∩ Y0 = Z = P (MA ⊕MB ⊕MC). Then any non-degenerate flat F of
M1|J1 ⊕ M1/J1 is a rank 1 flat of M1 which is contained in A, for which
we use Figure 2.3. So, we have β (F ) < β (A) ≤ 1, which implies that
P (M1/F ⊕M1|F ) is an open puzzle-piece; see Figure 5.10. Therefore, X is

89



Y0

X0

not allowed
Y0

X0

Y0

X0

Figure 5.10:

regular at any pair of points (Z,Z ′). Since Z is arbitrary, X is regular at
every pair of points. Thus, any β-puzzle is a regular quilt.

Now, go back to the early stage of this proof and suppose that Y0 is an
open puzzle-piece of X such that Y0 is contained in a full dimensional puzzle-
piece of X, say X0 and r0 (A) = 2. Let Z = P

(
MA\B ⊕MB ⊕MAc

)
be a

center on Y0. Similarly as in above argument, there are two cases: either
β (B) ≤ 1 or β (A\B) ≤ 1 while β (C) > 1 is always true.

(c) Suppose that β (B) ≤ 1. Then, near Z, X looks like Figure 5.11. So,

Y0

X0

Z

Figure 5.11:

X is regular at Z and every pair (Z,Z ′) for any center Z ′.
(d) Suppose that β (A\B) ≤ 1. Near Z, X looks like the first panel of

Figure 5.12. Then, X can be extended to a quilt that is regular at Z and
every pair (Z,Z ′) by saturating with the puzzle-pieces obtained in Figure
4.11 as seen in the second panel of Figure 5.12.
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Y0

X0

Z

Y0

X0

Z

Figure 5.12:

91



Chapter 6

Extension of a regular quilt

We fix k = 3 throughout this chapter.

Definition 6.1. Let X0 = P (M0) with M0 = (S, r0) be a full dimensional
puzzle-piece. X0 or M0 is called simple if r0 (F ) = 1 implies |F | = 1, i.e,
there is no flat F of rank 1 with |F | > 1. This is equivalent to saying that
every singleton set is a flat since we assume the matroids of puzzle-pieces to
be loopless. For a flat J of M0, we say that J is a simple incidence relation
if M0|J is simple.

X0 is called irrelevant or almost simple if there is at most one flat F of
rank 1 with |F | > 1.

Irrelevancy is defined the same way for 1-dimensional puzzle-pieces.
X0 is called planar if all of its open puzzle-pieces can be depicted in one

local chart as a part of the boundary of a polygon in Figure 4.5. X0 is called
planar up to irrelevancy if X0 is planar after ignoring irrelevant lines.

Lemma 6.2. Fix n ≤ 9. Let X = {Xi | i ∈ Ω} be a regular quilt, Y0 an open
puzzle-piece of X. If Y0 is irrelevant, it can be saturated with a full dimen-
sional irrelevant puzzle-piece X00 so that {X00} ∪ {Xi | i ∈ Ω} is a regular
quilt.

Proof. Y0 is a line of some full dimensional puzzle-piece X0 = P (M0) of
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X with M0 = (S, r0). Then, J := SX0 (Y0) has rank 1 or 2 in M0. If J
has rank 1, consider hyperplanes Bi, i ∈ S, on P2 such that only nontrivial
incidence relation is codim ∩j∈J Bj = 2. In other words, only nontrivial flat
of the corresponding matroid M1 is J . Then, M0/J = M1|J and two puzzle-
pieces P (M0) and P (M1) glue through the line Y0 = P (M0/J ⊕M0|J) =

P (M1|J ⊕M1/J). Observe that there are at least 4 lines in general linear
position since |J | ≥ 2, so M1 is inseparable and X00 has full dimension.
Moreover, X1 is irrelevant. At every point Z on Y0, the angle ∠X′Z = 180◦,
where X ′ = {X00} ∪ {Xi | i ∈ Ω}. X ′ has no open line passing through Z.
Hence, X ′ is regular.

If J has rank 2, consider hyperplanes Bi, i ∈ S, on P2 such that only
nontrivial incidence relation is codim∩j∈J Bj = 1. By the similar argument,
there is an irrelevant full dimensional puzzle-piece X00 so that X ′ is a regular
puzzle.

Corollary 6.3. Fix n ≤ 9. If a regular quilt X contains only irrelevant
puzzle-pieces, X can be extended to a complete quilt.

Remark. Lemma 6.2 says that irrelevant puzzle-pieces are irrelevant to gluing
puzzle-pieces to a regular puzzle. Therefore, it makes sense to consider gluing
of puzzle-pieces up to irrelevancy.

Theorem 6.4. Every regular quilt X for n ≤ 7 is a puzzle and can be
extended to a complete puzzle.

Proof. Fix n ≤ 7, and let X be a regular quilt. In the following pictures
of puzzle-pieces M , a solid line segment for the line ∼= P (M/J) is drawn
doubled as many times as the cardinality |J | of J . The colors play a role of
labelling.

(a) If n = 4, note that U3
4 is only one inseparable matroid with cardinality

4 ground set. Equivalently, there is only one hyperplane arrangement that
has 4 lines in general linear position. Also, ∆3

4 is only one full dimensional
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Figure 6.1:

base sub-polytope of itself. So, there is only one quilt, which is obviously a
puzzle.

(b) If n = 5, see Figure 6.1 for a grid. Any interior center P (MA ⊕MB ⊕MC)

takes a point in a grid with coordinate (|A| , |B| , |C|) up to the permutation
group S3. So, there is no interior center by Figure 6.1. Using Figure 2.3, one
can check that X is a subquilt of one of the three quilts given in Figure 6.2
(up to symmetry) that are actually puzzles.

Figure 6.2:

(c) If n = 6, see Figure 4.6 for a grid. Observe that there is at most one
interior center.

(i) If there is one interior center for X, using Figure 2.3 one can check that
X is, up to decomposition and up to symmetry, a subquilt of one of the
five complete quilts X̃ given in Figure 6.3. In other words, there exists
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a quilt X ′ that is obtained by decomposing and gluing puzzle-pieces of
one of the quilts given in Figure 6.3 such that X is a sub-quilt of X ′.
Those five quilts X̃ are actually puzzles since all of them are, up to
symmetry, decompositions of one of the flakes given in Figure 6.4; see
Figure 4.13 and 4.14 for the decomposition of a puzzle-piece that is in
use. If follows that X is a puzzle and can be extended to a complete
puzzle. Maximally decomposed puzzles are given in Figure 6.5.

Figure 6.3:

Figure 6.4:

(ii) Assume that there is no interior center for X. Then, all puzzle-pieces of
X are irrelevant puzzle-pieces. By Corollary 6.3, X can be extended to
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Figure 6.5:

a complete quilt. Indeed, there is only one maximally decomposed quilt
X̃ for this case. Its local pictures are depicted in Figure 6.6 together
with its dual graph. Also X̃ is a decomposion of a flake, hence it is a

Figure 6.6:

puzzle. So, X is a puzzle and can be extended to a complete puzzle.

(d) If n = 7, see Figure 6.7 for a grid. Observe that X has at most 3 interior
centers. If X has 3 interior centers, a triangle or a rhombus would take those
3 interior centers. Figure 6.8 classifies such regular quilts as sub-quilts of
complete quilts up to decomposition and up to symmetry. Moreover, each
complete quilt X̃ in Figure 6.8 is a decomposition of a flake centered at some
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interior center, hence X̃ is a puzzle. Therefore, X is a puzzle that can be
extended to a complete puzzle.

If X has 2 interior centers, a rhombus, a pentagon, or a hexagon can
take those 2 interior centers as in Figure 6.9. In this case, the quilt X has
simpler form than above case. By computation by hands, one can see that
Figure 6.8 classifies such X up to decomposition and up to symmetry. If X
has 1 interior center, similarly one has the same result. It follows that X is
a puzzle and can be extended to a complete puzzle.

If X has no interior centers, by Corollary 6.3, X can be extended to a
complete quilt. Similarly as above, by computation by hands, one can check
that such a complete quilt that has no interior centers is a puzzle.

Figure 6.7:

For n = 8, 9, we have a conjecture that is a weaker statement than The-
orem 6.4.

Conjecture 6.5. Every regular quilt X for n = 8, 9 can be extended to a
complete quilt.

Proof. (a) Fix n = 8, see Figure 4.9 for a grid. We will show that any
open puzzle-piece of a regular quilt X can be saturated to give a new regular
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Figure 6.8:

quilt. Then, since there are only finitely many puzzle-pieces, eventually the
saturating process must terminate, which means that we will end up with a
regular quilt with no open lines, i.e, a complete quilt.

Note that if an open line Y0 of a regular quilt has less than three interior
centers on itself, then there is no compatibility issue when saturating Y0.
Indeed, since Y0 has at most two interior centers, choose a grid and a line
segment for Y0 so that those interior centers take end points of the line
segment of Y0 in a grid. Then, because no full dimensional puzzle-piece can
take a point in the safe zone for Y0, whatever we fit to Y0, there is no conflict
for Y0 to be saturated to give a new regular quilt.

Now, see Figure 6.9. We saturate Y0 with the puzzle-pieces constructed
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Figure 6.9:

in Figure 4.10. It is easy to see that the new quilt is regular since the number
of lines is 8 and there is not enough room for the new quilt to have irregular
shape. Observe that actually it suffices to consider the case of the third line
pictures of Figure 6.10 up to decomposition and symmetry, since the number
of points on each side of X0 is 2 or less. In Figure 6.12, one of puzzle-pieces
has 3 points on its side, but it doesn’t make a difference. Figure 6.10 and
Figure 6.11 explain enough how the quilt X is extended to a regular quilt by
saturating Y0 for the similar cases.

If an open line Y0 has at least three interior centers on itself, it may be
possible that there is a compatibility issue when saturating Y0. Now, since
n = 8, there is at most 3 interior centers on Y0. Similarly as in above, it
suffices to check the case as seen in Figure 6.13. The first line pictures show
the local pictures of X, the second pictures are the local pictures of the

99



X0

Z1 Z2

X0

Z1 Z2

X0

Z1 Z2

X0

Z1 Z2

X0

Z1 Z2

X0

Z1 Z2

X0

Z1 Z2

Figure 6.10:

Z1 Z2

X0

Z1 Z2

X0

Figure 6.11:

same puzzle-piece that we glue with in order to saturate Y0. The third line
pictures show the local pictures of the resulting puzzle-piece. It is also easy
to check that the new one is regular. For our better understanding, we do
one more example in a slightly different way. Suppose that X is given with
its local pictures as the first line pictures of Figure 6.14. We saturate Y0 with
a puzzle-piece that is slightly different from that of Figure 6.13. In this case
the puzzle-piece we glue with has only two green lines, and it is easy to see
that there is no compatibility issue as seen in Figure 6.15, and we obtain a
new regular quilt as in Figure 6.16.
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X0

Z1 Z2

X0

Z1 Z2Z1 Z2

Figure 6.12:

X0

Z1 Z3

X0

Z2 Z3

X0

Z1 Z2

X0

Z1 Z3

X0

Z2 Z3

X0

Z1 Z2

Figure 6.13:

(b) For n = 9, see Figure 5.6 for a grid. The number of interior centers
that an open line Y0 = P (N0) can have is still at most 3. A newly added
case we need to check is when |N0| = 6 as depicted in Figure 6.17. It suffices
to consider the case in Figure 6.18 up to decomposition and symmetry, since
the number of points on each side of X0 is 2 or less.

Write F = {7, 8, 9}, J1 = {1, 2}, J2 = {3, 4} and J3 = {5, 6}. Let X1 =

P (M1) , X2 = P (M2) , X3 = P (M3) be puzzle-pieces as seen in Figure 6.18,
and Y1, Y2, Y3 open lines of X that are contained in X1, X2X3, respectively.
We want to construct a hyperplane arrangement H (M4) whose puzzle-piece
X4 := P (M4) glues to X0 through Y0 without compatibility issue. There are
4 possibilities for the point arrangement for each Yi, i = 1, 2, 3 as follows:
rank 1 flats of M (Yi), i = 1, 2, 3, are given in Table 6.

If two of M (Yi) have the same non-trivial rank 1 flat, say M (Y1) and
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X0

Z1 Z3

X0

Z2 Z3

X0

Z1 Z2

Figure 6.14:

Figure 6.15:

M (Y2) have a flat {8, 9}, construct a hyperplane arrangement as in Figure
6.19, and glue its puzzle-piece X4 to X0 as in Figure 6.20. Now, at Z3,
Y3 can be saturated with a planar puzzle-piece of type (a) in Figure 3.5 and
4.10. The new quilt is regular.

If at least one of M (Yi) has a non-trivial rank 1 flat, but none of them
have the same non-trivial flat, we can construct a hyperplane arrangement
as in Figure 6.21. Glue the puzzle-piece X4 obtained from this hyperplane
arrangement through Y0. Similarly as above, one can check that the new
quilt is regular, and X is extended to a regular quilt.

Else if none of M (Yi) have a non-trivial rank 1 flat, it is easy to see that
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Figure 6.16:

F
12 34 56

Z1 Z2 Z3

12 34 56

Z1 Z2 Z3

Figure 6.17:

the quilt X is extended to a regular quilt.
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X0

Y1

X1

Y3

X3Z1 Z3

X0

Y2

X2

Y3

X3Z2 Z3

X0

Y1

X1

Y2

X2Z1 Z2

Figure 6.18:

M (Y1) M (Y2) M (Y3)

1 7, 8, 9, 3456 7, 8, 9, 1256 7, 8, 9, 1234
2 7, 89, 3456 7, 89, 1256 7, 89, 1234
3 8, 79, 3456 8, 79, 1256 8, 79, 1234
4 9, 78, 3456 9, 78, 1256 9, 78, 1234

Table 6.1:

7

89

Figure 6.19:

X0

Y3

X3Z1 Z3

X0

Y3

X3Z2 Z3

X0

Z1 Z2

Figure 6.20:

7
8

9

Figure 6.21:
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Chapter 7

Surjectivity of the reduction map

Fix k = 3 and F = C. Consider the moduli spaces of weighted stable hy-
perplane arrangements and reductions maps ρ1,β : M1 (3, n) → Mβ (3, n)

with weights β ≤ 1. We show that there exists a counter-example to the
surjectivity of the reduction map ρ1,β when n = 10.

Theorem 7.1. There exists a β-puzzle for ∆3
10 that is not extended to a

complete puzzle.

Proof. Consider the hyperplane arrangements H (Mi), i = 0, 1, 2, 3 as in
Figure 7.1. Their puzzle-pieces Xi = P (Mi) are depicted with a choice of
boundary lines in Figure 7.2. Their non-degenerate flats F with |F | ≥ 2 are
given in Table 7.1 and the describing inequalities of BPXi

are given in Table
7.2, where xc1c2···cm with ci ∈ S = {0, 1, ..., 9} denotes

∑m
i=1 x (ci).

M0 7890, 127890, 347890, 567890
M1 78, 3456, 34567890
M2 78, 90, 1256, 12567890
M3 90, 1234, 12347890

Table 7.1:

Then, {X0, X1, X2}, {X0, X1, X3} and {X0, X2, X3} are puzzles. Indeed,
X0 fits to Xi, i = 1, 2, 3. Also, X1 and X2 fit since BPX1 ⊂ {x34 56 ≤ 1},
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H(M0) H(M1) H(M2) H(M3)

Figure 7.1:

P(M0) P(M1) P(M2) P(M3)

Figure 7.2:

BPX2 ⊂ {x1256 78 90 ≤ 2} implies BPX1 ∩ BPX2 ⊂ {x34 56 ≤ 1, x1256 78 90 ≤ 2},
and the following inequality means that x56 ≤ 0, x56 = 0:

3 + x56 = xS + x56 = x34 56 + x1256 78 90 ≤ 1 + 2

Hence BPM1 and BPM2 meet nicely, which means that X1 and X2 fit to-
gether. Similarly, X1 and X3 fit together, so do X2 and X3. Therefore,
{X0, X1, X2, X3} is a puzzle; see Figure 7.3 for the local pictures.

This puzzle X cannot be extended to a complete puzzle. Indeed, consider
the open puzzle-piece Y0 = P (M0/ {7, 8, 9, 0}) of X0 that is represented
by multiple green lines and let Zi, i = 1, 2, 3, be three points on Y0 with
SY0 (Z1) = {1, 2}, SY0 (Z2) = {3, 4}, SY0 (Z3) = {5, 6}. If X is extended to
a complete puzzle, Y0 should be saturated with some 2-dimensional puzzle-
piece X4 = P (M4). In other words, M4 is an inseparable matroid of rank
3, and S\ {7, 8, 9, 0} = {1, 2, 3, 4, 5, 6} is a non-degenerate flat of M4 such
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M0 BPM0 = {x7890 ≤ 1, x12 7890 ≤ 2, x34 7890 ≤ 2, x56 7890 ≤ 2}.
M1 BPM1 = {x78 ≤ 1, x3456 ≤ 1, x3456 78 90 ≤ 2}
M2 BPM2 = {x78 ≤ 1, x90 ≤ 1, x1256 ≤ 1, x1256 78 90 ≤ 2}
M3 BPM3 = {x90 ≤ 1, x1234 ≤ 1, x1234 78 90 ≤ 2}

Table 7.2:

Z1 Z2

X0

X1 X2

Y0
Z1 Z3

X0

X1 X3

Y0
Z2 Z3

X0

X2 X3

Y0

Figure 7.3:

that M4|{1,2,3,4,5,6} = M0/ {7, 8, 9, 0}. Then, SX4 (Y0) = {1, 2, 3, 4, 5, 6}, and
{1, 2}, {3, 4}, {5, 6} are rank 1 flats of both M4|{1,...,6} and M4. Z (123456)

is a point in H (M4) which is the intersection of Z (12), Z (34) and Z (56);
see the first panel of Figure 7.4.

12 56 34 34 56

12

Z2 Z3

Figure 7.4:

Suppose that for a flat F ∈ {{1, 2} , {3, 4} , {5, 6}}, Z (F ) ∩ Z (789) is
a point in H (M4), say F = {1, 2}, then for other flats F ′ = {3, 4} , {5, 6},
Z (F ′) ∩ Z (789) = ∅, since otherwise the lines Z (7) , Z (8) , Z (9) coincide
at two distinct points, hence Z (7) = Z (8) = Z (9). Then, r4 (S) = 3 =

2 + 1 = r4 (123456) + r4 (789), which implies that M4 = (S, r4) is separable,
a contradiction. So, the lines Z (34) and Z (56) have three distinct points
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on themselves. Then, {3, 4} and {5, 6} are non-degenerate flats of M4 by
Lemma 3.10, and X4 locally looks like the second panel of Figure 7.4. By the
classification theorem of a flake (see Figure 2.3), X4 and X2 fit through their
common facet, and X4 and X3 also fit through their common facet. So, one
has M2|{1,2,5,6,7,8} = M4/ {3, 4} and M3|{1,2,3,4,7,8} = M4/ {5, 6}; see Figure
7.5. M2|{1,2,5,6,7,8} = M4/ {3, 4} implies that Z (7) ∩ Z (8) ∩ Z (34) is a point

Z2 Z3

X0

X2 X3

Y0

34 56

12

Figure 7.5:

that is different from Z (12) ∩ Z (789). Then the lines Z (7) and Z (8) pass
through two distinct points at the same time, hence Z (7) = Z (8). However,
M3|{1,2,3,4,7,8} = M4/ {5, 6} implies that Z (7) ∩ Z (8) ∩ Z (56) = ∅, which is
a contradiction since Z (7) ∩ Z (8) ∩ Z (56) = Z (7) ∩ Z (56) is a point. For
other choice of F = {3, 4} , {5, 6}, we get contradictions in the same way.

Suppose that Z (F )∩Z (789) is empty for any flat F ∈ {{1, 2} , {3, 4} , {5, 6}}.
Then, one has:

M1|{3,4,5,6,7,8} = M4/ {1, 2}

M2|{1,2,5,6,7,8} = M4/ {3, 4}

M3|{1,2,3,4,7,8} = M4/ {5, 6}

which implies that the lines Z (7) and Z (8) coincide at two distinct points,
so Z (7) = Z (8) = Z (78). Then, r3 (78) = 2 from Table 6.2. However, the
following equation tells that M3|{1,2,3,4,7,8} 6= M4/ {5, 6}, which is a contra-
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diction.

rM4/{5,6} (78) = r4 (5678)− r4 (56) = 2− 1 = 1 6= 2 = r3 (78)

Therefore, X cannot be extended to a complete puzzle.
Now, we will show that X is a β-puzzle. For let:

β =

(
1, 1, 1, 1, 1, 1,

1

4
,
1

4
,
1

4
,
1

4

)
then, BPXi

∩ int∆β 6= ∅ for i = 0, 1, 2, 3. Indeed, for X0, let:

υ =

(
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

4
,
1

4
,
1

4
,
1

4

)
∈ BPX0

One can decrease υ7, υ8, υ9, υ0 by 0 < ε � 1 and increase υ1, ..., υ6 by 4ε
6
so

that the new point is still contained in BPX0 and also in int∆β. For X1, let:

υ =

(
1

2
,
1

2
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4

)
∈ BPX1

One can decrease υ7, υ8, υ9, υ0 and υ3, υ4, υ5, υ6 by 0 < ε � 1 and increase
υ1, υ2 by 8ε

2
so that the new point is contained in both BPX0 and int∆β. The

other cases are similar.
Moreover, ∪3

i=0BPXi
covers ∆β. For suppose that there exists a point

υ ∈ ∆β\ ∪3
i=0 BPXi

. This means that υ violates at least one inequality for
each base polytope. Observe that then since υ7890 ≤ β7890 = 1, one has
υ3456 > 1, υ1256 > 1, υ1234 > 1 for BPX1 ,BPX2 ,BPX3 , respectively. Whatever
is violated out of 3 inequalities x12 7890 ≤ 2, x34 7890 ≤ 2, x56 7890 ≤ 2 for BPM0 ,
one reaches a contradiction because:

3 = υ12 7890 + υ3456 > 2 + 1 = 3 or
3 = υ34 7890 + υ1256 > 2 + 1 = 3 or
3 = υ56 7890 + υ1234 > 2 + 1 = 3.
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Therefore, ∆β\ ∪3
i=0 BPXi

is empty, which means that ∪3
i=0BPXi

covers ∆β.

Corollary 7.2. When n = 10, there exists a weight vector β such that the
reduction map ρ1,β : M1 (3, 10)→Mβ (3, 10) is not surjective.

Proof. Fix n = 10. Let X0, X1, X2, X3 be the puzzle-pieces obtained in The-
orem 7.1.Then, the codimension 1 puzzle-pieces Yi := Xi ∩ X0, i = 1, 2, 3

have exactly 3 distinct point loci on themselves. Consider the varieties
V0, V1, V2, V3 that give puzzle-pieces X0, X1, X2, X3, respectively. Recall that
there is a one-to-one correspondence between the strata of the log canonical
model of a hyperplane arrangement and that of its corresponding puzzle-
piece. Let W1,W2,W3 be the 1-dimensional subvarieties of V1, V2, V3, re-
spectively, that give the puzzle-pieces Y1, Y2, Y3. Let W ′

1,W
′
2,W

′
3 be the 1-

dimensional subvarieties of V0 that give Y1, Y2, Y3, respectively. Observe that
Wi,W

′
i , i = 1, 2, 3 are 1-dimensional hyperplane arrangemnts that are all

isomorphic to P1 with 3 distinct points. Because (P1, 3pts) has no moduli,
V0, Vi, i = 1, 2, 3 uniquely glue to a variety.

Recall that any element of Mβ (3, n) gives a partial cover of ∆β, and this
correspondence is commutative with reduction maps. If ρ1,β : M1 (3, 10) →
Mβ (3, 10) is surjective, there must exist a tiling of ∆ = ∆1 such that ∆ is
an extension of ∆β, in other words, there must exist a complete puzzle that
is an extension of the β-puzzle that corresponds to the given partial cover of
∆β. But, in Theorem 7.1, we see that the β-puzzle X0 ∪X1 ∪X2 ∪X3 is not
extended to a complete puzzle, a contradiction. Hence, ρ1,β : M1 (3, 10) →
Mβ (3, 10) is not surjective for β given in Theorem 7.1.
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