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CHAPTER 1 

INTRODUCTION 

Understanding the key factors in successful mathematical problem solving is one of the 

central goals of educational psychologists. Conceptual knowledge and procedural knowledge 

have been widely accepted as key factors affecting the development of mathematical ability 

(Hiebert & Lefevre, 1986; Rittle-Johnson & Siegler, 1998). Other researchers assert that a child’s 

explicit metacognitive knowledge leads to flexible use of mathematics strategies, which in turn 

improves mathematics ability (Carr & Jessup, 1995; Lucangeli, Cornoldi, & Tellarini, 1998). 

Despite extensive research examining each factor independently, there is an absence of research 

that explores the possible links and relationships between metacognitive knowledge, conceptual 

knowledge, and procedural knowledge in the development of mathematics problem solving. The 

purpose of this study was to examine the roles of metacognitive, conceptual, and procedural 

knowledge on children’s ability to solve computation and word problems in the fraction domain. 

It is argued that the three types of knowledge work together to improve performance in 

mathematics.   

In the following sections, an argument will be presented for the role of metacognition in 

the development of conceptual and procedural knowledge. First, the literature on metacognitive 

knowledge and its impact on mathematics will be discussed. Following that, conceptual and 

procedural knowledge as predictors of mathematics ability will be discussed. Three 

developmental theories of conceptual and procedural knowledge in mathematics (concept first, 

procedure first, iterative) will be presented and critiqued. Finally, an alternative version of the 



  2 

iterative model that incorporates conceptual, procedural, and metacognitive knowledge will be 

discussed.    

Metacognitive Knowledge 

 Metacognition, as coined by John Flavell in 1971, is “cognition about cognition”. 

Metacognition has two separate but interrelated facets, namely the knowledge and understanding 

of cognitive phenomena, and the regulation and control of cognitive action (Flavell, 1976). The 

notion of the importance of examining one’s own cognitive processes is not a new one. For 

example, Piaget’s (1971) concept of ‘reflective abstraction’ as a mechanism for extracting, 

reorganizing, and consolidating knowledge is similar to the construct of metacognition.    

Earlier studies in the area of metacognition focused primarily on metamemory, or 

knowledge about memory processes and contents. Specifically, metamemory refers to children’s 

knowledge about memory strategies such as rehearsal and elaboration, how they work, and what 

factors influence memory functioning (Flavell, 1971). Researchers have been interested on 

metamemory  because theoretically metamemory plays a critical role in memory performance. 

Empirical findings indeed suggest that children who are aware of the relationship between 

strategy use and recall often perform better in memory tasks than children who do not possess 

such awareness (e.g., Justice, Baker-Ward, Gupta, & Janning, 1997; Schneider & Pressley, 

1997). Based on a meta-analysis of 60 studies (7097 subjects), Schneider and Pressley (1997) 

found that the overall metamemory-memory correlation coefficient was .41, suggesting that 

metamemory makes a reliable contribution to memory performance. The relationship was also 

found to be stronger among older children than among younger children. For example, 

adolescents are more likely than younger children to transfer elaboration strategies. Although 

older grade-school children can be taught many elaboration strategies, they do not transfer those 
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strategies as readily as adolescents. This evidence suggests that metacognitive knowledge is not 

necessarily qualitatively different in development from other kinds of knowledge. Rather, it is 

acquired gradually over time and develops through experience with appropriate strategies.   

More contemporary models of metacognition encompass multidimensional constructs 

including awareness, understanding, monitoring, and management of one’s strategic performance 

of many kinds of cognitive tasks (Carr & Biddlecomb, 1998; Kuhn & Pearsall, 1998). 

Metacognition is believed to play an important role in cognitive activities that are related to 

problem solving and learning. Good information processors, as described by Pressley, 

Borkowski, and Schneider (1987) are reflective, planful, and resourceful. They deploy attention 

appropriately, possess sufficient short-term memory space, and continually monitor their 

performance. In a learning context, metacognition essentially involves knowledge of when to 

use, how to coordinate, and how to monitor various skills in problem solving (Mayer, 1998).  

In line with this, metacognitive theory assumes that at least with cognitive tasks that 

entail effortful cognitive processing, strategy selection and performance are influenced by 

children reflecting upon their understanding of task, available cognitive resources, and their 

experience with similar problems (Kuhn, Garcia-Mila, Zohar, & Anderson, 1995). Kuhn and 

Pearsall (1998) proposed two components associated with metastrategic understanding in their 

reasoning tasks. These two components are the awareness of the nature and requirements of the 

task, and the awareness of the strategies that exist in one’s repository that may be applicable to 

the task. To test this hypothesis, Kuhn and Pearsall (1998) measured the two components of 

metastrategic understanding separately and examined their relation to strategic performance in a 

task that involved inductive causal reasoning in a multivariable context. They used a 

microgenetic method in which fifth-grade students were presented the task repeatedly over a 
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seven-week period. The two portions of the metastrategic knowledge were assessable as distinct 

entities and they were related to the mastery of inductive strategy. Children were unlikely to 

attain strategic mastery until they had reached a minimum level of metastrategic understanding. 

The authors suggested that the two components of metastrategic understanding are necessary but 

not sufficient for mastery in strategic performance. Also, they recognized that multiple 

possibilities exist in the direction of causality between strategic performance and metastrategic 

understanding. They proposed a bidirectional model, in which the successful use of strategies 

may “feed up” to the metastrategic level and result in strengthened awareness of the strategy and 

understanding of its value. Similarly, both components of metastrategic knowledge may “feed 

down” to the strategic level, guiding the application of strategies. In sum, the authors advocate 

for a model of multiple and bidirectiona l paths of influence between strategic performance and 

metastrategic understanding.     

Impact of Metacognitive Knowledge in Mathematics  

The development of metacognitive knowledge is receiving increasing attention among 

educators in response to students’ rote learning and their resulting inability to extend their 

understanding to new contexts (Brown, 1997; Kuhn, 1999). Lucangeli and Cornoldi (1997) 

believed that one of the reasons why mathematical learning is difficult for students is the level of 

specificity of context. For example, being able to carry out arithmetic operations does not 

necessarily guarantee a student’s ability to perform correctly in word problems that resemble a 

real world context. This is because performing arithmetic operations is only a part of 

mathematics problem solving. Mathematics problem solving also requires the student to extract 

relevant information from the problem, decide what needs to be done and when, thus the 

importance of metacognition.  
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Metacognitive theory predicts that correct mathematics strategy use would partly result 

from children’s understanding of why and when to use mathematics strategies and the 

monitoring of problem solving activity (Schoenfeld, 1987). Having multiple strategies provides 

flexibility for children to handle complex information more efficiently and respond to novel 

problems more adaptively. Lucangeli and Cornoldi (1997) hypothesized that metacognitive 

knowledge contributes to the flexibility and attentiveness of one’s conscious use of cognitive 

abilities. Specifically, metacognitive knowledge is more important for some aspects of 

mathematics in which more complex and flexible thought processes are necessary. Aspects of 

mathematics that require mostly automatic processes and overlearned knowledge will not benefit 

from metacognitive reflection. Research findings support this hypothesis. Carr, Alexander, and 

Folds-Bennett (1994) examined how metacognitive knowledge about mathematics strategies 

affects second grade children’s correct use of strategies over a five-month period. They found 

that even second graders possess metacognitive knowledge about mathematics strategies. 

Metacognitive knowledge was related to students’ immediate correct use of mathematics strategy 

and also latent correct use of mathematics strategy five months later. In a follow-up study, Carr 

and Jessup (1995) found that metacognition comes into play in second graders’ strategy use for a 

relatively new and effortful strategy (decomposition) that is in the process of being acquired, but 

is not influential for highly automated, less effortful strategies (retrieval or min strategy). 

Similarly, Lucangeli and Cornoldi (1997) found that metacognitive components are related to 

third and forth graders’ mathematical performance in a standardized test of arithmetic, geometry, 

and problem solving. Specifically, this relationship is stronger for tasks that are less automatized: 

problem solving and geometrical tasks. For arithmetic calculation, the relationship is present 
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only for third graders but not for fourth graders. They proposed that this is due to the higher 

degree of automatization in arithmetic skills for fourth graders in comparison to third graders.     

Garofalo and Lester (1985) presented a cognitive-metacognitive framework in an attempt 

to specify key points at which metacognitive decisions are likely to influence cognitive actions. 

The four stages are namely, orientation (strategic behavior to assess and understand a problem), 

organization (planning of behavior and choice of actions), execution (regulation of behavior to 

conform to plans), and verification (evaluation of decisions made and of outcomes of executed 

plans). Similarly, Mayer (1985) proposed four cognitive processes involved in mathematical 

problem solving. The four processes are, namely, translation (the conversion of problem to 

mental representation), integration (the combination of inferences in a consistent representation 

of the whole problem context), planning (the preparation of an action plan), and execution (the 

action of solving the problem). These theoretical frameworks identify aspects of metacognitive 

skills and have been applied in instructional programs to promote students’ mathematics 

performance.   

 Lucangeli, Cornoldi, and Tellarini (1998) conducted a series of instructional research 

projects to examine the importance of metacognitive knowledge in learning mathematics. The 

theoretical framework used to create the instructional program was similar to the framework put 

forward by Mayer (1985) and Garofalo and Lester (1985). In the first investigation, fifth grade 

high and low achievers in arithmetic reasoning and problem solving were found to differ in their 

metacognitive skills, including prediction of success or failure in a task, planning for correct 

steps leading to a goal, monitoring strategy use and other cognitive activities, and evaluation of 

performance. In the second investigation, an instructional program designed to improve the 

above aspects of metacognitive skills was developed for children between 8 and 12 years of age. 
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The experimental condition participants received the instructional program whereas the control 

group received standard mathematical instruction. After completion of the program, 

experimental condition students were found to be significantly better than the control condition 

students in problem solving and logical reasoning. Hohn and Frey (2002) also developed a 

heuristic strategy instructional program (SOLVED) for solving word problems based on Mayer’s 

(1985) framework. Children were trained over several periods to use the strategy to solve 

different types of word problems. Results of two experiments involving 223 third-, fourth-, and 

fifth-grade students indicated that SOLVED was more effective in aiding both short-term (after 

each lesson) and delayed problem solving (two weeks after instruction) than traditional problem-

solving instruction. Accuracy in problem solving was significantly correlated with metacognitive 

processing. These research findings suggest that metacognition is likely to influence performance 

at various points of problem solving activity. In addition, metacognition is a skill that can be 

improved through appropriate intervention.   

Conceptual and Procedural Knowledge 

The distinction between conceptual and procedural knowledge has been the focus of 

studies in various areas of cognition, including memory (Anderson, 1993), propositional 

reasoning (Byrnes, 1988), and mathematics (Hiebert & Lefevre, 1986). Conceptual knowledge 

consists of the core concepts for a domain and their interrelations (i.e., “knowing that”). 

Procedural knowledge is the ability to execute the steps required to attain various goals (i.e., 

“knowing how”). In the research literature, these two types of knowledge are not always 

considered as distinct entities but may be considered as knowledge developing on a continuum. 

In the following sections, developmental theories of conceptual and procedural knowledge in 

mathematics will be presented.  
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Impact of Conceptual and Procedural Knowledge in Mathematics 

 There are disagreements among researchers regarding the developmental relation 

between conceptual knowledge and procedural knowledge (Rittle-Johnson & Siegler, 1998). 

Attempts to resolve this issue are of both theoretical and practical importance. The widespread 

observation that many American children perform poorly in school mathematics in comparison 

to their counterparts in other countries (Towse & Saxton, 1998) has resulted in calls for 

improved instruction. As a result of differing views of the developmental sequencing and the 

relationship between conceptual and procedural knowledge, instructional reforms have bounced 

back and forth from emphasizing procedures to emphasizing concepts. In response to this, the 

National Council of Teachers of Mathematics (2000) recently recommended that both the 

conceptual understanding and the practice of routine skills be taught. In order to develop 

effective instruction that will incorporate both types of knowledge, it is necessary to first 

understand how conceptual and procedural knowledge develop and work together to play a 

crucial role in mathematical proficiency. There are three theories about the developmental 

relationship between conceptual and procedural knowledge: (1) Conceptual knowledge develops 

before procedural knowledge; (2) Conceptual knowledge develops after procedural knowledge; 

(3) Conceptual and procedural knowledge develop iteratively. Each of these approaches will be 

presented below.    

Concept First 

Hiebert and Lefevre (1986) proposed that conceptual knowledge is important for 

procedure selection, procedure monitoring, and the transfer of procedural knowledge to new 

situations. Research findings suggest that in some areas of mathematics, conceptual 

understanding plays an important and leading role in procedure adoption and generation (e.g., 
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Byrnes & Wasik, 1991; Canobi, Reeve, & Pattison, 1998). Canobi, Reeve, and Pattison (1998) 

used a mathematics task that consisted of consecutive problems in which their relational 

properties were manipulated to reflect aspects of additive composition (natural numbers are 

composed by addition), commutativity (a + b = b + a), and associativity principles [(a + b) + c = 

a + (b + c)]. They found that children who were conceptually competent in recognizing and 

explaining properties of addition tended to solve problems more quickly and accurately 

compared to children who were less conceptually competent. Also, children who spontaneously 

used conceptually based procedures were also able to explain and justify these procedures, but 

the reverse was not necessarily true. In the Hiebert and Wearne study (1996), 70 children were 

followed over the first three years of school while they were learning about place value, 

multidigit addition, and subtraction. It was found that students who demonstrated conceptual 

understanding (called the understanders) were more likely than their peers (the 

nonunderstanders) to invent new procedures and modify old ones to solve new problems when 

facing challenging problem solving tasks. Nonunderstanders, however, appeared to be incapable 

of developing appropriate procedures and performing correctly without instruction. These 

findings suggest that early conceptual understanding plays a crucial role in stimulating and 

guiding the development of procedural skills.     

Procedure First 

On the other hand, some theories suggest that procedural knowledge precedes conceptual 

knowledge. For example, Karmiloff-Smith (1992) suggests that knowledge begins at a basic, 

procedural level that becomes increasingly complex and conceptual over time. Several studies 

have shown that young children can count correctly before they understand certain counting 

principles, such as order irrelevance of addition (e.g., Fuson, 1988; Wynn, 1990). Siegler and 
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Stern (1998) used inversion problems (a + b – b, the principle that adding and subtracting the 

same number leaves the result unchanged) to examine the process in which second graders’ 

discover the shortcut strategy based on this principle (simply ignore the number that is both 

added and subtracted). They found that most children generated fast solution times that were 

indicative of use of the shortcut strategy before they could explicitly report using it. In other 

words, children first executed the shortcut strategy at an implicit, unreportable level before they 

were able to report their use of the strategy explicitly. This indicates that procedural knowledge 

develops before the emergence of conceptual knowledge.  

The Iterative Model 

 Due to the use of different assessment tools and examination of different content areas in 

mathematics, the findings on concept-first and procedure-first present a paradox. In view of this, 

Rittle-Johnson and Alibali (1999) argued that such a debate is misguided. As an attempt to 

reconcile the two bodies of research literature, they hypothesized a gradual, bidirectional 

iterative model for the development of conceptual and procedural knowledge. The model 

suggests that conceptual and procedural knowledge develop in a hand-over-hand, mutually 

supportive manner. In other words, none of the knowledge types develops in a global way. 

Instead, increases in one type of knowledge (for example, conceptual knowledge) lead to gains in 

the other type of knowledge (procedural knowledge), which in turn will lead to further increases 

in the first type of knowledge (conceptual knowledge). 

In two intervention studies, Rittle-Johnson, Siegler, and Alibali, (2001) examined the 

iterative development of conceptual and procedural knowledge in children’s learning about 

decimal fractions using multifaceted and continuous measures of knowledge. In both studies, 

conceptual and procedural knowledge appeared to develop in a gradua l, hand-over-hand process.  
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Pretest conceptual knowledge was positively related to the amount of procedural knowledge 

acquired during the intervention phase. In turn, procedural knowledge assessed during the 

intervention phase predicted the improvement of conceptual knowledge from pretest to posttest. 

In addition, the relation between pretest conceptual knowledge and subsequent procedural 

knowledge was substantially reduced when frequency of correct problem representation was 

included in the analyses, suggesting a mediating role for problem representation. In other words, 

forming a correct internal representation of a problem in working memory during problem 

solving is one of the mechanisms underlying the iterative development of procedural and 

conceptual knowledge.      

Purpose of the Present Study 

It is evident that multiple factors interact in mathematics problem solving. However, most 

of the studies examine these factors independently; consequently, we do not have insight into 

how they develop and work together. The dearth of studies linking metacognitive, conceptual, 

and procedural knowledge calls for further research in this area. The present study examined an 

alternative version of the iterative model, in which metacognition is hypothesized to be a 

mediator underlying the relations between conceptual and procedural knowledge. In other words, 

the link from initial conceptual knowledge to improved procedural knowledge will be explained, 

at least in part, by improvement in metacognitive knowledge (refer to Figure 1). As 

metacognition is a multifaceted construct, this study focused on metastrategic understanding 

(Kuhn & Pearsall, 1998) as the mediator of the relationship between procedural and conceptual 

knowledge. Metastrategic understanding includes the awareness of the nature and requirements 

of the task in hand, and also the awareness of the strategy that may be applicable to the task. 

These two components of metastrategic understanding are considered important for 
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mathematical performance and support the connection between conceptual and procedural 

knowledge to be formed. 

Fraction problems were used as the problem task in this study because many children 

encounter significant difficulties in this domain of mathematics (Smith, 1995). There is empirical 

evidence for a relationship between conceptual and procedural knowledge in fraction decimals 

(Byrnes & Wasik, 1991; Hecht, 1998). Byrnes and Wasik (1991) examined conceptual 

knowledge of fraction using tasks of picture-symbols (selecting pictures depicting a fraction), 

simple morphism (identifying drawings of the same fraction), and order problems. To measure 

procedural knowledge, they measured participants’ accuracy on multiplication and addition 

problems. Performance on each of the conceptual knowledge tasks significantly correlated with 

fraction computation accuracy (overall r = .55). Therefore, children who have both conceptual 

and procedural knowledge of fractions tend to perform better in mathematical tasks. 

The microgenetic approach will be used to detect the gradual, bidirectional relations 

between conceptual and procedural knowledge. Unlike a prototypic microgenetic study, the 

present study involved only a single session assessment. However, the spirit of microgenesis was 

followed by using dense sampling of behavior and trial-by-trial analysis. The problem solving 

tasks are designed to assess conceptual knowledge (understanding of why strategy is 

appropriate), procedural knowledge (the ability to execute the algorithmic steps), and 

metastrategic knowledge (the ability to perceive the relationship between a consecutive pair of 

problems based on the requirements of the task, and applicable strategies for the problems). 
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CHAPTER 2 

METHOD 

Participants 

 Fifty-six fifth-grade students, 29 boys and 27 girls, from five classrooms in three 

suburban elementary schools participated in this study. Students participated near the end of their 

school year in May with permission from parents and schools. Fifth graders were selected for 

this study because fraction comparison and fraction addition were part of the mathematics 

instruction for fifth grade. However, as fifth graders had been exposed to fraction knowledge 

only for one year, it was expected that the participants would show lower level of performance. 

This was desirable for the study as it allowed the observation of the growth of knowledge in the 

fraction domain. In the beginning of the data collection, the researcher entered classrooms to 

invite the students to participate and gave out consent forms. Only those children who returned 

completed consent forms were interviewed. 

Procedures 

 The children were interviewed individually, outside of the classroom. All of the 

interviews were audiotaped for later coding. The children were told explicitly that they were not 

being tested and that the researcher was only interested in learning about the different ways 

children solve problems. The researcher told the participants that they would be asked questions 

about how they solved the problems and about why they solved the problems the way they did. 

The researcher presented the mathematics task, which consisted of twenty fraction problems, to 

each participant. The participants were instructed to solve the problems using paper and pencil. 
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They had unlimited time to solve each problem and were encouraged to write down their work in 

as much detail as possible. 

Mathematics Task  

The mathematics task was designed to assess participants’ conceptual and procedural 

knowledge of fractions involved in solving computational problems and word problems. 

Participants’ ability to monitor and connect their knowledge between computational problems 

and word problems was assessed as a part of this task and served as an index for metastrategic 

knowledge.  

The mathematics problems were generated from several mathematics textbooks 

recommended by the Georgia Department of Education. The complete mathematics task can be 

found in Appendix A. The task involved twenty fraction problems of two domains, namely 

fraction comparison and fraction addition. Within each domain there were ten problems, half 

were the computation problem type and half were the word problem type. As can be seen from 

Appendix A, each computation problem was paired up with a word problem. Each pair of  

problems required the same conceptual and procedural knowledge necessary to solve the 

particular pair of problems accurately. Paired computation and word problems were always 

presented consecutively with the order of presentation being random (computation first or word 

first). Problem pairs of the two domains (comparison and addition) were presented in alternating 

order. A pilot study with ten participants was conducted before the actual study was conducted to 

ensure that the mathematics task was appropriate in level of difficulty and length.   

Assessment and Coding of Conceptual and Procedural Knowledge 

Studies in the research literature that assess conceptual and procedural knowledge use 

different assessment tasks (e.g., Byrnes & Wasik, 1991; Rittle-Johnson & Alibali, 1999; Rittle-
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Johnson, Siegler, Alibali, 2001). For example, Byrnes and Wasik (1991) measured conceptual 

knowledge using picture-symbols (selecting pictures depicting a fraction), simple morphism 

(identifying drawings of the same fraction), and order problems. For procedural knowledge, they 

used multiplication and addition problems of fractions. An argument against this approach is that 

it assumes the assessment tasks only measure one particular type of knowledge. This assumption 

can be problematic because conceptual and procedural knowledge are intertwined and it may not 

be clear what type of knowledge the assessment task is really measuring. An alternative 

approach is to assess both conceptual and procedural knowledge using the same task. For 

example, in the Canobi, Reeve, and Pattison (1998) study described above, conceptual 

understanding was assessed by the ability to spontaneously apply the relational properties of the 

problems in the procedure of problem solving. In this way, both the conceptual and the 

procedural understanding that are required to solve the same problem are assessed. 

In this study, both approaches to assessing conceptual and procedural knowledge were 

used (described below). After solving each problem, the children were prompted with questions 

and asked to explain their problem solving procedure: "What did you do just now to solve the 

problem?” Children were also asked to explain the rationale of their procedure: “Why did you 

solve the problem this way?" The coding of conceptual and procedural knowledge was 

approached in two ways: 

(a)  Same-Problem Approach 

Conceptual knowledge.  For each problem, children received two points for a 

verbal response that showed complete conceptual understanding (e.g., the fraction with bigger 

numerator is bigger because it has more parts; you need to change the fractions into the same 

unit in order to add them). One point was awarded for a response that showed partially correct 
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conceptual understanding (e.g., ¼ and 2/5 are the same because their numerators are equally 

away from denominators; to add fractions you need to change the smaller denominator to the 

bigger one). Zero points were given for a response that indicated no conceptual understanding. 

The total possible conceptual score across all problems was 40.    

Procedural knowledge. For each problem, procedural knowledge was coded based 

on both verbal reports and procedures written on paper. Two points were awarded when the child 

used the correct procedures and got the right answer. One point was awarded when the correct 

procedure was used but the answer was wrong due to a computational error. Zero points were 

given when the wrong answer was shown and the procedures were incomplete or incorrect. The 

total possible procedural score across all problems was 40.  

(b) Different-Problem Approach 

Conceptual knowledge. Conceptual knowledge about fractions is theoretically  

linked to fraction word problem solving skills (Hecht, 1998). This is because conceptual 

understanding may be used during the process of constructing mental models for fraction word 

problems. Conceptual knowledge was coded based on participants’ ability to translate the word 

problems into appropriate computation equations. Two points were given for a completely 

correct computation equation. One point was given for a partially correct computation equation 

and zero points when the equation was totally incorrect or when the child was unable to construct 

an equation. The total possible conceptual score was 20.   

 Procedural knowledge. Procedural knowledge was coded based on participants’ 

ability to solve the computation problems. Two points were awarded when the child used the 

correct procedures and got the right answer. One point was awarded when the correct procedure 

was used but the answer was wrong due to a minor computational error. Zero points were given 
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when the wrong answer was shown and the procedures were incomplete or incorrect. The total 

possible procedural score was 20.  

Assessment and Coding of Metastrategic Knowledge 

For both approaches, participants’ ability to detect the connection between the 

computational and word problems served as an index for metastrategic knowledge. This is 

because in order to detect the connection between the computational and word problem, 

participants had to be aware of the requirement and nature of the problems, and the strategies 

that were applicable to the problems. After solving each pair of questions, participants were 

provided a probe to elicit their understanding of the connection between the computational 

problem and the word problem within the same set: “You have just solved these two problems. 

Do you see anything special about them?” The participants’ verbal response was coded 

according to two criteria, that is, understanding that the two problems had the same objective or 

requirement, and understanding how the same strategy was applicable to both problems. Zero 

points were given for a response that indicated no understanding of the similarities between the 

problems. One point was awarded for a response that indicated that the child understood only 

one of the above criteria, but not both. Two points were awarded for a response that indicated 

understanding of both criteria. The total possible metastrategic score was 20.  
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CHAPTER 3 

RESULTS 

 The results are presented in two sections. First, an overview of children’s performance 

across trials is presented. Next, correlation analyses among the main variables (conceptual, 

procedural, and metastrategic knowledge) are presented. Within each section, results are 

presented both from the same problem approach and from the different problem approach. No 

gender difference was found in the analyses.    

Overview of Performance Across Trials 

 (a) Same Problem Approach 

 Overall means and standard deviations for conceptual, procedural, and metastrategic 

scores are presented in Table 1. As expected, participants performed poorly in the measures of 

conceptual, procedural, and metastrategic knowledge because the mean scores of each 

knowledge types were only 50% or less out of the total possible score. Conceptual and 

procedural scores of comparison problems were similar in magnitude compared to the conceptual 

and procedural scores of addition problems.  

On the basis of the iterative model, changes of conceptual and procedural knowledge 

were expected to be related to each other. To examine the pattern of change across trials, 

composite conceptual and procedural scores were created by summing scores for paired 

computation and word problems. Then, percentages of this composite sum across all participants 

(N = 56) were computed to create two variables: percentage conceptual score and percentage 

procedural score. Similarly, metastrategic scores for each pair of problems across all participants  
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were computed and converted to a percentage metastrategic score. A line graph depicting the 

changes of percentage of conceptual, procedural, and metastrategic scores can be found in Figure 

2 (for comparison problems) and Figure 3 (for addition problems). 

Visual inspection of the figures indicates that conceptual and procedural scores showed 

similar patterns for both comparison and addition problems. Despite the relatively poor 

performance of children on these tasks, there was relatively little change in conceptual and 

procedural score across trials. However, there was a gradual growth of metastrategic knowledge 

across trials for both types of problems.   

(b) Different Problem Approach 

Overall means and standard deviations for conceptual, procedural, and metastrategic 

scores are presented in Table 2. As can be seen from the table, the levels of conceptual, 

procedural, and metastrategic knowledge were generally low (the mean scores of each 

knowledge types were only 50% or less out of the total possible scores). Similar to the same 

problem approach, participants performed similarly on the measures conceptual and procedural 

knowledge for comparison problems but showed a gap in their conceptual and procedural scores 

for addition problems.   

To examine the pattern of change across trials, composite conceptual and procedural 

scores were created within problem domains (comparison or addition problem) by summing 

across all participants and converting to percentages (percentage conceptua l score and 

percentage procedural score). As with the same problem approach, composite metastrategic 

scores for each pair of problems across all participants were computed and converted to a 

percentage metastrategic score. A line graph depicting the changes of percentage of conceptual, 
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procedural, and metastrategic scores can be found in Figure 4 (for comparison problems) and 

Figure 5 (for addition problems). 

For comparison problems, visual inspection of the figures indicates that conceptual and 

procedural scores showed some slight fluctuations. Conceptual and procedural scores were 

similar in magnitude except at trial two. The reason for this fluctuation is not clear and may be 

just due to the problems’ different level of difficulty. For addition problems, conceptual and 

procedural scores showed similar patterns of change. Overall, similar to the results yielded from 

the same problem approach, there was relatively little change in levels of conceptual and 

procedural knowledge for both comparison and addition problems. 

 Notice that the levels of conceptual and procedural knowledge are closer to each other in 

the comparison problem than in the addition problem. This is found in both the same problem 

approach and the different problem approach. These may be due to the effect of classroom 

instruction. When the study was conducted, students had received some amount of instruction on 

fraction comparison. They possessed sufficient levels of conceptual knowledge and procedural 

knowledge about fraction comparison problems to carry out the calculations. On the other hand, 

students were just learning fraction addition. They may have known that they needed to have an 

equal denominator to add two fractions, but did not yet possess the procedural skills to carry out 

the computation. Metastrategic scores, on the other hand, showed a gradual growth across trials 

from both the same problem approach and the different problem approach. As children solved 

more problems, an understanding of the nature of the problems started to emerge. In other words, 

they became better at perceiving the connections between the computation and word problems. 

Also, they become aware that the same potential strategies could be applied to the problems.  
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Correlation Analyses 

 (a) Same Problem Approach 

 If conceptual, procedural, and metastrategic knowledge interact iteratively during 

learning, conceptual, procedural, and metastrategic score should correlate with each other. To 

test this, the total number of correct answers, and conceptual, procedural, and metastrategic 

scores across all problems were correlated. The correlation matrix of these variables is presented 

in Table 3. Children who were more likely to correctly solve the problems were more likely to 

have high scores on the conceptual, procedural, and metastrategic measures. In line with Figure 2 

and Figure 3, conceptual and procedural scores showed the highest positive correlation, 

reflecting the stability of both types of knowledge across problems. Metastrategic scores also 

showed lower but significant correlations with conceptual and procedural scores.  

On the basis of the iterative model, the relationships among the three types of knowledge 

were expected to grow stronger across trials. In order to examine the development of the 

relationships among conceptual, procedural, and metastrategic knowledge, participants’ 

performance on these measures was split into halves, the first half (questions one to ten) and the 

second half (questions 11 to 20). Correlation analyses among the variables were conducted with 

each half (see Table 4). As can be seen from the table, the overall correlations among conceptual, 

procedural, and metastrategic knowledge were found to be higher in the second half of the task. 

The correlation between conceptual and procedural score, which was already very high in the 

first half, showed a small increase in the second half.  Whereas the correlation between 

metastrategic score and the other two scores showed higher increases.     

 If metastrategic knowledge mediated the relation between conceptual and procedural 

knowledge, the correlation between conceptual and procedural scores found previously should be 
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reduced when metastrategic score is controlled. Partial correlation analyses were conducted to 

examine the metastrategic score as a mediator between conceptual and procedural scores. For the 

first half of the task, the correlation between conceptual and procedural scores dropped from 

0.834 to 0.788 after the metastrategic score was entered as a control variable. For the second half 

of the task, the correlation between conceptual and procedural score dropped more from 0.900 to 

0.735 after the metastrategic score was entered as a control variable. The correlations between 

conceptual and procedural score were still significant in both analyses even after the 

metastrategic score was controlled. However, the more drastic drop at the second half of the task 

suggested that metastrategic knowledge played a higher contribution in the relation between 

conceptual and procedural knowledge at the later phase.    

These results are consistent with the hypothesis that metastrategic knowledge is 

important in the iterative relationship between conceptual and procedural knowledge. Children’s 

conceptual and procedural knowledge were found to be correlated with each other. These 

components of knowledge were found to be correlated with the total number of correct answers 

in the mathematics task, suggesting that they are important for success in mathematics problem 

solving. In addition, metastrategic knowledge was found to be related to conceptual and 

procedural knowledge. The relationships among the three variables grew stronger over trials, 

indicating a developing link among the three knowledge types. In addition, the reduced 

correlation between conceptual and procedural knowledge after metastrategic knowledge was 

controlled suggested the role of metastrategic knowledge as an underlying factor linking 

conceptual and procedural knowledge.  
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(b) Different Problem Approach 

Similar analyses based on the same rationales were conducted using the data from the 

different problem approach. First, the correlation matrix of the total number of correct answers, 

conceptual, procedural, and metastrategic scores is presented in Table 5. Similar to the results 

yielded from the same problem approach, children who were more likely to correctly solve the 

problems were also more likely to have high scores on the conceptual, procedural, and 

metastrategic measures. Conceptual and procedural scores showed a lower but still significant 

positive correlation (r = 0.57 compared to r = 0.92 from the same problem approach). This 

correlation is more in line with the magnitude of correlation that is usually found in the research 

literature. Metastrategic scores showed similar correlations with conceptual and procedural 

scores, and total number of correct answers as with the same problem approach.  

Correlation analyses among conceptual, procedural, and metastrategic knowledge were 

conducted with the first and second half of the task (see Table 6). As can be seen from the table, 

the correlations among conceptual, procedural, and metastrategic knowledge were once again 

found to be higher at the second half of the task. In line with the gradual growth of metastrategic 

score depicted in the line graphs, the correlation between metastrategic score and the other two 

scores (conceptual and procedural score) were higher at the second half of the task.  

In the next step, partial correlation analyses were conducted to examine metastrategic 

knowledge as a mediator between conceptual and procedural knowledge. For the first half of the 

task, the correlation between conceptual and procedural scores dropped from 0.428 (p=.001) to a 

nonsignificant 0.222 (p=.10). For the second half of the task,  the correlation between conceptual 

and procedural scores dropped from 0.487 (p=.000) to a nonsignificant –0.167 (p= .22). It is 

apparent that by using the different problem approach to assess conceptual and procedural 
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knowledge, metastrategic knowledge showed a stronger role in the relationship between the two 

types of knowledge. This suggests that metastrategic knowledge was more relevant to the kinds 

of conceptual and procedural knowledge that were assessed in the different problem approach. In 

this approach, conceptual knowledge was assessed by the participants’ ability to transform word 

problems into working equations and theoretically this ability should be related to the awareness 

of task requirement component of metastrategic knowledge. In line with this, procedural 

knowledge was assessed by the participants’ ability to carry out computational steps correctly in 

the computation problems. This ability is more in line with the awareness of potential strategy 

component of metastrategic knowledge. This is the possible reason why metastrategic knowledge 

contributed more variance to conceptual and procedural knowledge in the different problem 

approach. 
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Table 1 

Means and Standard Deviations (in parentheses) for Conceptual, Procedural, and Metastrategic 
Scores Using the Same Problem Approach 
 

Knowledge              Problem Domain 

       Comparison   Addition 

Conceptual     9.04 (3.79)   9.93 (5.79) 

Procedural     8.18 (4.15)   6.25 (7.46) 

Metastrategic      3.16 (2.67)   4.59 (2.88) 

Note: Possible scores for conceptual and procedural knowledge range from zero to 20. Possible  

scores for metastrategic knowledge range from zero to 10. 
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Table 2 

Means and Standard Deviations (in parentheses) for Conceptual, Procedural, and Metastrategic 
Scores Using the Different Problem Approach 
  

Knowledge              Problem Domain 

       Comparison   Addition 

Conceptual     4.18 (1.90)   5.79 (2.56) 

Procedural     3.98 (2.28)   3.43 (4.09) 

Metastrategic      3.16 (2.67)   4.59 (2.88) 

Note: Possible scores for conceptual, procedural, and metastrategic knowledge range from zero 

to 10.  
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Table 3 

Intercorrelations Between Conceptual, Procedural, Metastrategic Scores and Number of Correct 
Answers across All Problems Using the Same Problem Approach 
 

Variable     1     2     3     4 

1. Conceptual   -  0.923** 0.771** 0.838** 

2. Procedural          -  0.691** 0.864**  

3. Metastrategic          -  0.620** 

4. Number of correct          - 

** p < .01 
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Table 4 

Intercorrelations Between Variables in First Half and Second Half of Task Using the Same 
Problem Approach 
 
Variables   Conceptual  Procedural  Metastrategic 
 
               
First Half 
 
Conceptual           -     0.834**     0.590** 
 
Procedural           -         -      0.450** 
 
Metastrategic            -           -          - 
 
 
Second Half 
 
Conceptual          -       0.900**    0.832** 
 
Procedural          -           -      0.769** 
 
Metastrategic           -           -         - 
 
** p < .01 
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Table 5 

Intercorrelations Between Conceptual, Procedural, Metastrategic Scores and Number of Correct 
Answers across All Problems Using the Different Problem Approach 
 

Variable     1     2     3     4 

1.    Conceptual   -  0.570** 0.726** 0.640** 

2.    Procedural        -  0.698** 0.855**  

3.    Metastrategic          -  0.620** 

4.    Number of correct             - 

** p < .01 
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Table 6 

Intercorrelations Between Variables in First Half and Second Half of Task Using the Different 
Problem Approach 
 
Variables   Conceptual  Procedural  Metastrategic 
 
               
First Half 
 
Conceptual           -     0.428**     0.564** 
 
Procedural           -         -      0.472** 
 
Metastrategic            -           -          - 
 
 
Second Half 
 
Conceptual          -       0.487**    0.739** 
 
Procedural          -           -      0.759** 
 
Metastrategic           -           -         - 
 
** p < .01 
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Figure 1. Iterative model for the development of conceptual and procedural knowledge 
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Figure 2. Percentage of conceptual, procedural, and metastrategic scores for comparison 

problems using the same problem approach. 
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Figure 3. Percentage of conceptual, procedural, and metastrategic scores for addition problems 

using the same problem approach. 
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Figure 4. Percentage of conceptual, procedural, and metastrategic scores for comparison 

problems using the different problem approach. 
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Figure 5. Percentage of conceptual, procedural, and metastrategic scores for addition problems 

using the different problem approach. 
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CHAPTER 4 

DISCUSSION 

This study examined the relationship of conceptual and procedural knowledge in the 

domain of fraction knowledge. Based on the iterative model, children’s conceptual and 

procedural knowledge were expected to be correlated and develop hand- in-hand. Despite 

differences in the magnitude of correlation, both the same problem approach and the different 

problem approach used to assess the relationship between conceptual and procedural knowledge 

indicated that conceptual and procedural knowledge were related to each other. Furthermore, the 

relationship between conceptual and procedural knowledge strengthened with practice. The 

correlation was stronger during the second half of the mathematics task, suggesting a growing 

relationship between the two knowledge types as the children worked on the problems. These 

findings are in line with other research indicating that conceptual and procedural knowledge 

influence one another and develop in tandem (Rittle-Johnson & Alibali, 1999).  

In addition, the correlation between conceptual and procedural knowledge was reduced 

after controlling for metastrategic knowledge, suggesting that metastrategic knowledge played a 

role in the relationship between conceptual and procedural knowledge. The correlation between 

conceptual and procedural knowledge was reduced more during the second half of the 

mathematics task. This shows that the relationships among the three knowledge types grew 

stronger over trials, indicating a developing link among them. The findings of the present study 

add to the iterative model suggesting that metastrategic knowledge is a mechanism underlying 

the relationship between conceptual and procedural knowledge. Metastrategic understanding 
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includes the awareness of the nature and requirements of the task, and the awareness of the 

strategies available in one’s repertory that are potentially applicable to the task (Kuhn & Pearsall, 

1998). Theoretically, both types of metastrategic understanding are relevant to the development 

of conceptual and procedural knowledge. For mathematical competence, one needs to have 

adequate cognitive resources (such as working memory, attentional resources, conceptual 

knowledge, and procedural knowledge) and use them well by having metastrategic knowledge to 

control over what is done and how it is done. By having an understanding of the nature of a task, 

it is easier for children to learn and develop the conceptual knowledge that is necessary to solve 

the task accurately. Similarly, by having an awareness of the strategies potentially applicable to a 

task, the process of selecting the appropriate procedures and strategies is facilitated and made 

easier. In the present study, the children who were more likely to perceive the connections 

between the word and computation problems possessed higher levels of conceptual and 

procedural knowledge, and hence showed better performance in the mathematics task.  

Even though not directly examined in this study, it is important to note that 

the above processes do not function independently, but mutually influence each other in a 

bidirectional way (Kuhn & Pearsall, 1998). Over time, with increasing conceptual and 

procedural knowledge, the growth of metastrategic knowledge will be supported. In turn, the 

emergence of metastrategic knowledge will support the connection between conceptual and 

procedural knowledge to promote mathematical competence. Therefore, within the iterative 

model, conceptual and procedural knowledge supports the emergence of  metastrategic 

knowledge, which in turn allows conceptual and procedural knowledge to develop faster and 

more fluently. 
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Prior research found that teaching children to use elaborative strategies and related 

metacognitive knowledge resulted in improved mathematics achievement (e.g., Lucangeli, 

Cornoldi, & Tellarini, 1998). Children who know why, when, where, and how to use different 

strategies are more successful in mathematics than students who do not have this knowledge.  

Metacognition is most related to strategies that are both effortful and in the process of being 

acquired, but not to highly automated, less effortful strategies (Carr & Jessup, 1995). In general, 

there seems not to be a linear relationship between metacognition and mathematical competence. 

Rather, metacognition plays an important role in the process of learning and that metacognition 

is a skill that facilitates learning, but is not required for learning. Also, metacognition is not 

needed as much when strategies are already well acquired and are being used in a familiar 

context.    

Although the present study provides some information about the role of metastrategic 

knowledge in the relationship between conceptual and procedural knowledge, many questions 

remain to be answered. This study is limited by a number of methodological constraints. 

Specifically, conceptual, procedural and metastrategic knowledge were assessed over only a 

short period of time. As a result, conceptual and procedural knowledge were found to be 

relatively stable in this study. This may be due to the nature of the domain in that fraction 

knowledge is an area that many students find difficult to master despite extensive experience 

(Smith, 1995). It is likely that additional instruction is necessary to allow for significant growth 

in conceptual and procedural knowledge of fraction knowledge. In addition, most of the findings 

in this study was based on correlational analyses. Therefore, the next step will be to use multiple 

sessions to assess the causal links between conceptual knowledge and procedural knowledge.  
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In order to examine closely the causal relationship among the knowledge types, 

experiments should be conducted such that children are randomly assigned to conditions in 

which one type of knowledge is instructed over multiple sessions, and the other type of 

knowledge is examined. This will allow an examination of the initial state of conceptual and 

procedural knowledge and how the two knowledge types develop gradually in tandem over time.  

Experimental manipulation on metastrategic knowledge will allow direct examination of 

metastrategic knowledge as a mediator between the development of conceptual and procedural 

knowledge. For example, participants can be assigned to experimental condition in which they 

have to generate self-explanation regarding the nature and applicable strategies of the 

mathematics task in hand. Findings from Crowley and Siegler (1999) suggest that generating 

verbal explanation of a newly acquired strategy facilitates generalization of the strategy to other 

contexts. This is probably because explanation promotes more effective management of the new 

strategy’s goal structure by making it easier to keep track of subgoal execution within the 

strategy. Therefore, manipulating whether or not children make verbal explanation will allow us 

to examine the effects of metastrategic knowledge on the development of conceptual and 

procedural knowledge.   

The converging evidence produced by the same problem approach and the different 

problem approach suggests that using both approaches may be worthwhile and useful to assess 

conceptual and procedural knowledge. Instead of using assessment tasks that assess types of 

knowledge dichotomously on the basis of arbitrary criteria, using both approaches to analyze the 

data may yield more meaningful and convincing evidence. Nevertheless, both same problem 

approach and different problem approach used in this study were dependent on verbal ability and 
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may have underestimated the actual level of participants’ knowledge. Nonverbal methods or 

methods that rely less on verbal ability need to be developed for future studies. 

 Instructional research suggests that high and low performers differ in terms of their 

metacognitive understanding (Hohn & Frey, 2002; Lucangeli, Cornoldi, & Tellarini, 1998). The 

present study did not have sufficient sample size to allow the comparison of high and low 

performers on the measures of knowledge types. However, the correlation between total number 

of correct and metastrategic score indicated that students who performed better in the math task 

had higher metastrategic knowledge. This is because students who performed better in the math 

task were also more capable of seeing the connections between the computation and the word 

problems. This is somewhat in line with the findings from Chi, Feltovich, and Glaser (1981) that 

showed that experts and novices in physics differ in their categorization of physics problems. 

Whereas experts focused on the deep structure of the problems (underlying physical principles) 

for categorization, novices tended to rely on surface features (words and diagrams) of the 

problems for categorization. Therefore, future research should address the possible qualitative 

and quantitative differences between low and high performers in terms of their conceptual, 

procedural and metastrategic knowledge, and the relationships among these knowledge types 

Theoretically, high performers should make more explicit connections among the three types of 

knowledge, which in turn should help them to perform better in mathematics tasks.     

The connection between performance and understanding has been a topic that has 

received much attention from educators (Salomon & Perkins, 1989). It has been suggested that 

students in the United States acquire facts that they cannot access and use appropriately and that 

it is the passive nature of learning that results in poor performance and understanding (Brown, 

1997). Strategy instruction that is passive and does not require students to actively process what 
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is being learned does not guarantee that students will continue to use the strategies (maintenance) 

or flexibly deploy these strategies in a new context (transfer). Therefore, the question of how 

metastrategic knowledge as a form of explicit awareness relates to performance in mathematics 

is one worthy of investigation. Theoretically, effective learners operate best when they possess 

insight into their own strengths and weaknesses and have access to their knowledge of problem 

solving strategies. Instead of making children learn facts and information via passive, rote 

memorization, the ultimate goal of educators should be to see that children develop into adaptive 

problem solvers who are capable of solving problems flexibly in different contexts. Within the 

mathematics domain, it has been recommended that both conceptual and procedural knowledge 

be taught in the classrooms (NCTM, 2000). The results of the current study suggest that 

metastrategic knowledge should also be included in the instructions to support the development 

of conceptual and procedural knowledge.   
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APPENDIX  

MATH TASK 
 
Comparison Problems (in consecutive pairs of computation and word problem):  
 
1) Compare the fractions and list them in order from the least to the greatest: 

1/4, 2/5 
2) John’s party has 1 pizza for 4 people and Gary’s party has 2 pizzas for 5 people. At which 
party would you eat the most pizza if all the pizza was eaten, and everyone had the same 
amount? 
 
3) Is 84/100 or 17/25 larger? 
4) Jenny correctly answered 84 out of the 100 questions on a science test. John answered 17 out 
of 25 correctly. Who received the higher score? 
 
5) List the following fractions from the greatest to the least. 

4, 3 1/3, 16/4 
6) To make a cake, Elaine uses a total of 11 1/3 cups of flour. She uses 16/4 cups of whole wheat 
flour, 4 cups of white flour, and 3 1/3 cups of regular flour. Which kind of flour does Elaine use 
least in the cake? 
 
7) Give one number that is right in the middle between 3/5 and 6/5.  
8) Mary is making rice for dinner. To make a cup of rice, 3/5 cup of water is needed. To make 2 
cups of rice, 1 1/5 cup of water is needed. Mary wants to make 1 ½ cups of rice. How much 
water does she need? 
 

9) List the following fractions from the greatest to the least: 
 5/12, 1/4, 2/3  

10) Mary has 18 ounces of juice. She divides it evenly among 3 glasses so that each glass holds 
the same amount of juice.  Glass A is 2/3 full, Glass B is 5/12 full, and Glass C is 1/4 full. Which 
glass has the biggest size? 
 
Addition Problems (in consecutive pairs of computation and word problem): 
  
11) ¼ + ¼ + 1/6 + 1/6 = ? 
12) There are 30 days in April. Last week Gary went to school for 2 days. Each day it took him 
1/4 hour to get to the school and 1/6 hour to get back home. How many hours did he spend on 
traveling back and forth the school last week? 
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13) 6/8 + ¾ = ? 
14) Every week, Mabel watched 3/4 hour of science video and 1/2 hour of cartoon. Tom watched 
1/5 hour of cartoon and 6/8 hour of science video. How many hours of science video do they 
watch in 1 week?  
 
15) 5/8 + 1/4 = ? 
16) On the editorial staff of a local newspaper, 5/8 of them are reporters,  1/8 of them are writers, 
and 1/4 of them are photographers. How many reporters and photographers are there on the 
editorial staff?  
      
17)  1/3 + 2/5 = ? 
18) A mosaic design has red, yellow, and green tiles. 4/15 are yellow, 1/3 are red, and 2/5 are 
green. How many tiles are not yellow? 
 
19) 2/3 + 1/6 = ? 
20) 5th graders at Green Elementary voted on what symbol to use on their school T-shirts. How 
many students did not vote for the bear and for the eagle? 
 
 

 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2/3 bulldog 

1/6 
Drag
on 

1/12 
bear 

1/12 
eagle 




