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ABSTRACT 

 Many agricultural scientists doing technical experiments analyze data themselves. It 

allows them to save high analyzing cost. However, it may cause a problem. Since scientists often 

have their preferred way to analyze data, they usually use the same statistical method even 

though the experiments are conducted with different designs. If the statistical method which they 

use is not appropriate for the data, the corresponding results will not be correct. Statistical 

analyses are important methods for interpreting results of agricultural experiments. Statistical 

analyses also need to be clearly communicated so that readers can properly interpret the results 

of experiments with poultry. Different statistical models and programming statements may lead 

to quite different conclusions.  
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CHAPTER 1 

INTRODUCTION 

Statistical analyses are important methods for interpreting results of agricultural 

experiments. Scientific writing of these results should clearly communicate the particulars of the 

research being described in a way that it can be precisely repeated. Appropriate statistical 

analyses are of primary importance for understanding experimental results. Probabilities (p-

values) are often described in articles in Poultry Science and related journals to compare 

treatment means with each other and to compare regression coefficients to zero. Most published 

data are subjected to ANOVA (analysis of variance) or regression models using the GLM 

(general linear models) procedures of the SAS program (SAS Institute, 2006). The object is to 

test hypotheses and determine the significance levels that means are different. Different 

statistical models and programming statements may lead to quite different conclusions. This 

study compared five models to explain the influence of different statistical approaches on results 

of a two factor nutrition experiment with broiler chickens. The choice of an appropriate 

statistical model is important because conclusions from the subsequent analyses depend on the 

particular model used. Moreover, designs with more than two factors are needed frequently 

because of the complexity of modern broiler and egg production. Statistical analyses need to be 

clearly communicated so that readers can properly interpret the results of experiments with 

poultry. Designs with two or more factors are frequent players in the world of experimental 
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design. The computational burden of the attendant analysis of variance is somewhat eased by the 

presence of statistical packages. Contrary to expectation, it is not clear from texts or the 

Manual(s) how the package(s) can be used to find components of the interaction effects, whether 

the factors are qualitative or quantitative factors. However, SAS can be persuaded to calculate 

these components (A × Linear B, etc., when A is a qualitative and B is a quantitative factor, and 

Linear A × Linear B, etc., when both A and B are quantitative factors). The general principle 

discussed and described in this work applies to many packages. However, the vehicle used here 

to illustrate these principles is the SAS package. 
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CHAPTER 2 

LITERATURE REVIEW 

Many agricultural scientists doing technical experiments analyze data themselves. It 

allows them to save high analyzing cost. However, it may cause a problem. Since scientists often 

have their preferred way to analyze data, they usually use the same statistical method even 

though the experiments are conducted with different designs. If the statistical method which they 

use is not appropriate for the data, the corresponding results will not be correct. 

A primary object of any scientific writing should be to communicate clearly the 

particulars of the research being described in a way that it can be precisely repeated. Statistical 

analyses are often described in articles in Poultry Science and related journals with statements 

like “Differences in treatments (variables) were determined by ANOVA (analysis of variance) 

using the GLM (general linear models) procedures.”, “Data were analyzed by using the GLM 

procedure of SAS (SAS Institute, 2006)” and “Data were subjected to ANOVA using the GLM 

procedure of SAS (SAS Institute, 2006)”. These statements are from the first few papers of a 

recent issue of Poultry Science. Such statements are quite ambiguous since there are several 

ways to program the SAS GLM procedure. Critically, the different analyses may lead to quite 

different results and therefore different conclusions.  

 For instance, some papers showed simple or multiple regression models even though an 

ANOVA model is more appropriate. Dozier et al. (2010) analyzed linear and quadratic trends 
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using PROC REG. They could have used a one-way ANOVA design with Lys (their data and 

included quantitative factor) as a main effect.   

Some papers stopped with a one-way ANOVA model even though they measured more 

variables and could conduct higher order ANOVA designs. When experiments were repeated 

twice under the same conditions, the two experiments can be two levels of an additional factor, 

i.e., with “experiment” as a factor. However, some papers used pooled data from both 

experiments for a one-way ANOVA analysis (e.g., Atteh et al., 2007). In Saez et al. (2010), the 

statistical analysis states the species effect was tested by ANOVA for each age (5, 9, 12, 13, and 

14 wk) and each time period (before and 1, 2, 4, and 8 h after the meal). They tested on species 

using only a one-way ANOVA even though they can have included age and time effects in the 

analysis.  

One goal of the present work is to apply several different models to the same data set; see 

Chapter 3. Any of the models could have been used in many papers, but the details are often 

minimized. The models increase in complexity and ability to provide interpretable results. The 

last one is the most appropriate for the experiment generating the data used in Chapter 3 to 

illustrate the different approaches. Generic criticisms of simple models were made more than 25 

years ago in plant biology (Chew, 1976; Little, 1978; Nelson and Rawlings, 1983; Swallow, 

1984) that also apply to Poultry Science. Criticisms are equally applicable to Poultry Science, but 

have largely gone unheeded. The present analysis includes criticisms and provides an example of 

how to appropriately analyze and interpret data from a typical poultry science research trial. 
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In a different direction, some papers showed a two-way ANOVA model was fitted 

obtaining results for each variable (X1 and X2) separately as well as their interaction term effects. 

These papers can be extended as linear and quadratic terms if the factors are quantitative. 

Yadgary et al. (2010) measured parameters on two different hen ages (30 and 50 wk) and several 

days of incubation (0, 13, 15, 17, 19 and 21 d). They analyzed age and day as main effects using 

two-way ANOVA including their interaction term. Although they provided many plots which 

showed visually there were trends across incubation time (a quantitative factor), they did not 

make any statistical analysis for the presence of trends. 

The availability of statistical packages has eased considerably the computational burden 

of many statistical analyses. Those who use them extensively are grateful. However, those same 

users are also painfully aware of the limitations of any particular package, limits that beguile the 

glossy "covers" (so–to–speak) seemingly promising so much more apparently than can be 

delivered, and/or limits exposed when trying to reconcile inconsistent answers generated by 

supposedly clear but in fact oftentimes obscure Manual instructions. This work in Appendix B 

focuses attention on the use of the SAS package to study trends, and in particular on an aspect of 

the GLM procedure as used in the analysis of experimental design data. More specifically, we 

consider a standard factorial design with two (or more) factors. The factors of interest are A and 

B. Suppose factor B is a quantitative factor. Then, among the usual quantities of interest, we can 

also find appropriate statistics relating to the components of B, such as Linear B, Quadratic B, 

etc. The GLM procedure does this and the documentation is clear on how to carry out this task. 

The difficulties come when we try to find components of the interaction term A × B. If A is a 
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quantitative factor, interest centers on components Linear A × Linear B, Quadratic A × Linear B, 

Linear A × Quadratic B, etc. The SAS Manual provides no evidence that its GLM (or any other) 

procedure will calculate these components. If A is a qualitative factor, we may wish to consider 

components A × Linear B, A × Quadratic B, etc. Here too we are left to believe these 

components cannot be calculated by a SAS procedure, though there is evidence suggesting that 

components Linear B at a (specific) level of A, etc., can be found. Unfortunately, Manual 

instructions to do this are very oblique and are from a practical point of view nonexistent. Not 

surprisingly there is a widespread belief that SAS cannot calculate these components. This is 

unfortunate since the need for these components arises frequently, especially in agricultural and 

biological applications and in social science applications, and too often such applied researchers 

do not take their analyses to these extra steps because they think they “cannot” and/or “need 

not”. 
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ABSTRACT 

Statistical analyses are important methods for interpreting results of agricultural 

experiments for scientific writing, which should clearly communicate the particulars of the 

research being described in a way that it can be precisely repeated. Probabilities (p-values) are 

often described in articles in Poultry Science and related journals to compare treatment means to 

each other and to compare regression coefficients to zero. Most published data are subjected to 

ANOVA (analysis of variance) or regression models using the GLM (general linear models) 

procedures of the SAS program (SAS Institute, 2006). The object is to determine the significance 

levels that means are different. Different statistical models and programming statements may 

lead to quite different conclusions. Data from an experiment with two independent variables (X1 

and X2) and one dependent variable (Y) were analyzed. There were 6 levels of X1 and 2 levels of 

X2. Several ANOVA and regression models are reported here with or without “Class” statements 

in SAS. The ANOVA model requires a Class statement be included for each independent 

variable to signify classification variables. With the Class statement, SAS computes the Sums of 

Squares (SS) with n-1 degrees of freedom where n is the number of levels of each independent 

variable. However, without the Class statement, SAS computes the SS with only 1 degree of 

freedom, as in a regression model. Using either a one-way ANOVA with Duncan’s New 

Multiple Range Test or a two-way ANOVA, no differences between treatments were detected. 

When using a linear regression model, X2 and the X1 × X2 interaction term had significant p-

values (.0222 and .0103, respectively). When using a second order polynomial regression model, 

only X2 had a significant p-value (.0279). When an ANOVA with components including linear 
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and quadratic terms was computed, the interaction term between linear X1 and X2 had a 

significant p-value (.0281). The choice of an appropriate statistical model is important because 

conclusions from the subsequent analyses depend on the particular model used. 

 

Key words: Analysis of Variance, Regression, Interaction, Statistical Analysis 
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INTRODUCTION 

A primary object of any scientific writing should be to communicate clearly the 

particulars of the research being described in a way that it can be precisely repeated. Statistical 

analyses are often described in articles in Poultry Science and related journals with statements 

like “Differences in treatments (variables) were determined by ANOVA (analysis of variance) 

using the GLM (general linear models) procedures.”, “Data were analyzed by using the GLM 

procedure of SAS (SAS Institute, 2006)” and “Data were subjected to ANOVA using the GLM 

procedure of SAS (SAS Institute, 2006)”. These statements are from the first few papers of a 

recent issue of Poultry Science. Such statements are quite ambiguous since there are several 

ways to program the SAS GLM procedure. Critically, the different analyses may lead to quite 

different results and therefore different conclusions.  

For instance, there are two possible ways to program the SAS GLM procedure when 

there are several levels of the independent variables (the treatments). First, one way is as an 

ANOVA Model in which the SAS GLM procedure requires a “Class” statement identifying each 

independent variable which is being used in the analysis. The SAS GLM procedure will only 

compute regression coefficients if the /SOLUTION option is included with the MODEL 

statement. The SAS program computes relevant Sums of Squares (SS) with n-1 degrees of 

freedom (where n = the number of levels of each independent variable). Second, a 

REGRESSION Model may also be used with no Class statement. The SAS GLM procedure 

computes the SS with 1 degree of freedom for each independent variable and automatically 
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calculates the regression coefficients. Degrees of freedom are important because among other 

roles, they are a measure of the sensitivity of the attendant F-tests and their associated p-values. 

The results of a recent experiment were analyzed by several methods that could all be 

included in a statement like: “Data were analyzed by using the GLM procedure of SAS (SAS 

Institute, 2006)”. Using different programming statements led to different results and 

interpretations. The present comparative analysis was done to: 1) Show how different SAS GLM 

programming statements lead to different interpretations of the same data; 2) Explain how the 

various models should be interpreted; 3) Present the most appropriate model for analyzing the 

illustrating data; and 4) Make suggestions on minimum terminology that should be included 

when describing how experiments were analyzed independent of the statistical software package 

that is being used.  

We apply five models all of which could fit the description of “Data were analyzed using 

GLM procedure of SAS (SAS Institute, 2006)” to our dataset. Any of these models could have 

been used in many papers, but the details are often minimized to the extent that which model was 

actually used is unclear. The five models herein increase in complexity and ability to provide 

interpretable results. The last one is the most appropriate for the particular experiment that 

produced these data. Generic criticisms of simple models were made more than 25 years ago in 

plant biology (Chew, 1976; Little, 1978; Nelson and Rawlings, 1983; Swallow, 1984). Criticisms 

are equally applicable to Poultry Science, but have largely gone unheeded. The present analysis 

includes criticisms (advantages and disadvantages) and provides an example of how to 

appropriately analyze and interpret data from a typical poultry science research trial. 
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The general principle discussed and described in this paper applies to many packages. 

However, the vehicle used here to illustrate these principles is the SAS package. 

 

MATERIALS AND METHODS 

The data were generated in a chick growth trial with two independent variables, X1 

(vitamin D) and X2 (phytase), and one dependent variable, Y (tibial dischondroplasia percent 

incidence). There were 6 levels of X1 and two levels of X2 (Table 3.1). There were either 3 or 4 

replicate observations per treatment combination. The models are provided in Appendix A. 

The SAS statements were used to analyze the data in several ways. The SAS statements 

used for inputting data were (Variables with subscripts in the SAS statements are expressed (e.g., 

as X1 ≡ X1): 

data a (=data name); input X1 X2 $ Y; cards; data;   

Model 1 

The first model was a linear regression model. It was used to see if a linear relationship 

exists between the X variables and Y. The SAS statements are therefore: 

proc GLM; model Y = X1 X2 X1*X2/ss3; run; 

 If the term X1*X2 is omitted, then the model excludes the possibility of the existence of 

an interaction between X1 and X2. 
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Model 2 

Second, a second order polynomial regression model was fitted estimating the coefficient 

for a quadratic term in X1 for each term in model 1, and to determine the probabilities that the 

coefficient is not equal to zero. The SAS statements are now: 

proc GLM; model Y = X1 X2 X1*X1 X1*X2 X1*X1*X2/ss3; run; 

Other models with other kinds of quadratic terms (e.g., X2* X2) could also be 

considered. 

Model 3 

Third, a one-way ANOVA model was fitted including a comparison of pairwise means 

by the Duncan’s test (a pairwise test on means). The one-way ANOVA model analyzed all 

combinations of the X1 and X2 factors as though there was one level, referred to as “treatments” 

with 6 × 2 = 12 levels giving 11 degrees of freedom. The SAS statement to input treatments is: 

data a (=data name); input treatment; cards; data;  

It is necessary to include a class statement. In order to carry out Duncan’s test, a means 

statement is required. Therefore, the SAS statements are:  

proc GLM; class treatment; model Y = treatment; means treatment/Duncan; run; 

Other tests on means (such as Tukey’s test) could also be considered as variations of this 

model. 

Model 4 

Fourth, a two-way ANOVA model was fitted obtaining results for each variable (X1 and 

X2) separately as well as their interaction term effects. The SAS statements become: 
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         proc GLM; class X1 X2; model Y = X1 X2 X1* X2/ss3; run; 

 Note that omission of the X1*X2term (inadvisable) has a consequence that interactions 

between X1 and X2 are not considered. 

Model 5 

Finally, this two-way ANOVA model was repeated but the analysis included looking at 

interaction components such as factor by linear and quadratic terms. Though not evident from its 

Manuals, SAS can be persuaded to calculate these components (X2 × Linear X1, etc.) when X1 is 

a quantitative factor and X2 is a qualitative factor (Appendix B). The procedure can be adapted to 

fit other packages which have provisions for contrast calculations. A perusal of the manual 

suggests these components (e.g., X2 × Linear X1) cannot be calculated by a SAS procedure. 

However, one factor components such as Linear X1 at a specific level (level 1 or 2) can be 

calculated (e.g., Myers, 1971). Further, statistical inference may indicate that the interaction 

effect is not statistically significant when in fact it is significant at differing levels of the factors 

involved. Applying the Appendix B methodology to the current example, we can obtain these 

interaction components from the set of SAS statements displayed in Figure 3.1.  

Likewise, SAS can also be persuaded to calculate these components (X2 × Quadratic X1, 

etc.) when  X1 is a quantitative factor and X2 is a qualitative factor as well as the components 

(Linear X1 × Linear X2, Linear X1 × Quadratic X2, etc.) when both X1 and X2 are quantitative 

factors (see Appendix B). 
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RESULTS 

Casual observation of the data suggests that there is an interaction between X1 and X2 

with respect to how they influence Y (Figure 3.2). Three of the five SAS GLM procedures 

suggest to us different conclusions (Table 3.2).  

For the linear regression model (Model 1; Figure 3.3), we see that X2 and the X1 × X2 

interaction term had significant p-values (0.0222 and 0.0103, respectively). The significant 

interaction indicates that both X1 and X2 are influencing variation in Y, and the influences are 

interdependent. 

The second model was designed to test the hypothesis that there is a second order effect 

of X1 on Y, and an interaction between X1 and X2 with respect to Y (Model 2; Figure 3.4). Using 

a second order polynomial regression model, only X2 had a significant p-value (0.0279).  

Using a one-way ANOVA design with Duncan’s New Multiple Range Test included 

(Model 3; Figure 3.5), we found that no differences between treatments were detected (p = 

0.6709). For the 12 treatments, the means ranged from 700.3,,775.22 127  xx  . Thus, even 

μ7 = μ12 by Duncan’s New Multiple Range Test, for these data, this is because the standard 

deviation is large.  

The fourth model (Model 4; Figure 3.6) was a two-way ANOVA design including 

classification variables. From the ANOVA table for this model, there was very little indication 

that any of the effects (either X1, X2) were influencing the variation in Y since the p-values are 

all substantially greater than 0.05. This includes the interaction effect (p = 0.2913) despite any 

insights suggested by Figure 3.2. 
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The fifth model (Model 5; Figure 3.7) was a two-way ANOVA, as was the fourth model, 

but now the analysis was extended to include main effect and interaction components. In 

particular, since X1 is a quantitative factor (i.e., the levels are numerical values, here, X1 = 0, 3, 

5, 7, 9, 11; Table 3.1). We can test whether or not there is a linear trend across these levels. Here, 

since X2 is a qualitative factor (with or without phytase), we can calculate the component X2 × 

linear X1 (i.e., we are testing: does the linear trend across levels of X1 differ when phytase is 

present or when it is not present). The interaction between linear X1 and X2 had a significant p-

value (0.0281) indicating that indeed the linear trend across levels of X1 is indeed different when 

phytase is present from the corresponding trend when phytase is not present. This statistically 

identifies the significant interaction component observed in Figure 3.2. 

A summary of the analysis for each of the five models is provided in Table 3.2. From 

this, it is clear that different analyses have produced different results. 

 

DISCUSSION 

From a biological perspective, both X1 and X2 are known to influence Y, and the 

experiment was conducted to determine the magnitude of the responses in the range of levels 

studied for a particular genotype. The choice of appropriate statistical models is dependent on 

what the researcher hopes to learn from the experiment.   

Model 1 strengths – Regression is a form of analysis in which the relationship between 

one or more independent variables and the dependent variable as a linear combination of one or 

more model predictor variables is each weighted by so-called “regression coefficients”. A linear 
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regression model is such that the dependent variable is linearly related to each of the predictor 

variables and represents a straight line when the predicted value is plotted against the 

independent predictor variable. When there is only one predictor variable under consideration, 

this is called a simple linear regression. This model is simple, easy to interpret and the error 

degrees of freedom are maximized. Maximizing the error degree of freedom results in better 

estimation of σ2 and so produces a more sensitive test. 

Model 1 weaknesses – One assumption for linear regression is that observations are 

selected at random from the population of interest; another is that the error terms follow identical 

and independent normal distributions, with zero mean and common variance σ2 for all levels of 

the treatments. Violation of the normality assumption on the error terms is usually of no 

consequence unless the sample size is very small. This follows from central limit theorems (Rice, 

1995) which imply that, as long as the error terms have finite variance and are not too strongly 

correlated, the parameter estimates will be approximately normally distributed even when the 

underlying errors are not. Researchers often neglect to check for common variances. Thus, 

violation of the common variance assumption may be considered a weakness. However, it does 

not have to be, because there are variance stability transformations which can be introduced to 

take account of this. 

Model 2 strengths – Since X1 had more than 2 levels, this model could include second 

order terms (e.g., X1
2) and also the interaction of the second order of X1and X2 (X1

2 × X2). Note 

these higher order terms are equivalent to additional first order variables (e.g., X1
2 ≡ X3) so that 

the linear regression model still pertains. The error degrees of freedom are reduced by one for 
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each additional term; but now the possibility of an interaction between X1 and X2 (e.g.) is 

included in the model. 

Model 2 weaknesses – Same as for Model I 

Model 3 strengths – One-way ANOVA is used to test for differences between two or 

more independent factors. The investigator is often interested in determining treatment 

combinations of these factors that maximize or minimize responses. The Duncan’s, Tukey’s, or 

other Multiple Range tests appear to discriminate between these treatments, suggesting one 

treatment is better, the same, or worse than another (Duncan, 1955; Tukey, 1949; Snedecor and 

Cochran, 1967). 

Model 3 weaknesses – Multiple Range tests (Duncan’s, Tukey’s, etc) are frequently 

used. On balance, it is inadvisable to use them because of a lack of power. Multiple Range tests 

result in too high an experimentwise error rate which does not control Type I error (Boardman 

and Moffitt, 1971). It assumes there is no order among the different levels of the independent 

variables, but there most often really is. That is, it assumes the different treatments could be 

input as A, B, C as well as 1, 2, 3 or B, A, C. In reality, a treatment factor of 2.51 may be that 

best response between 1.00 and 3.00. One-way ANOVA models cannot identify this, whereas a 

multiple regression model could. The same concerns prevail when using the least significant 

difference test (LSD), see Morris (1999, p.166). Furthermore, if interaction exists between the 

factors, fitting one-way ANOVA models on treatment combinations is unable to identify such 

interaction.  
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Model 4 strengths – The model should test for an interaction of two independent 

variables affects on the dependent variable. 

Model 4 weakness – Type I and Type III sums of squares are not equal when the data are 

unbalanced. This can result in confusion as to whether Type I or III SS should be used. 

Model 5 strengths – Error degrees of freedom are greatly reduced compared to Model I 

and any interaction is with the ANOVA procedure (that was limited to the model 4 version). 

Significant differences between input variable levels should be detected as well as whether the 

differences appear to follow linear or quadratic trends, with the default being linear. Although 

the interaction between X1 and X2 may or may not be found to be significant, by testing for 

components of interaction, we can identify any interaction of Linear X1 trends across the various 

levels of X2, which for our data were significant. In our case, when levels of X2 are ignored, the 

interaction effects effectively “cancel” out, and so the interaction (X1 × X2) test alone suggests 

they are not significantly different. 

Model 5 weakness – It is hard to program codes for SAS (SAS Institute, 2006) and other 

programs to extract these interaction components. 

Which model is the most appropriate to answer the question: “Do X1 and X2 influence Y, 

and is there a significant interaction between the variables in the ranges studied?” (Had we 

conducted the third or fourth models first, we may well have concluded there is no effect of 

either X1 or X2 on Y). However, only the simplest regression model (Model 1) and the most 

complex ANOVA (Model 5) indicate that there is, indeed, a significant interaction between X1 

and X2 with respect to Y (Table 3.1). Testing for the quadratic effect of X1 (adding X1 × X1 to 
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the GLM model) obscures the X1 × X2 interaction. The one-way and two-way ANOVA models 

do not indicate the presence of significant interaction components until, in model 5, the X2 × 

Linear X1 effect is factored out of the 5 df for the X1 × X2 interaction. Whenever the interaction 

is significant, it is clear that all the independent variables are influencing the dependent variables 

even though further analyses are necessary to determine the nature of that inter-dependence. 

However, as seen in the present data set, significant p-values for X1 and X2 are not necessary to 

conclude the interacting factors are influencing Y since their influence may be as an interaction 

component such as the X2 × Linear X1 term observed in our dataset.  

In a different direction, there is the issue of whether the Type I or Type III SS should be 

used. The Type I SS is a sequential procedure with the SS for the different effects calculated 

incrementally depending on the order these effects appear in the model statement. For example, 

when the model statement is 

model Y = X1 X2 X1* X2; 

the Type I SS are as shown in Table 3.3 (a). When the model statement is  

model Y = X2 X1 X1* X2; 

 (i.e., the order of X1 and X2 is reversed), the Type I SS are as shown in Table 3.3 (b). Thus, the 

SS associated with the factor X1 differs in the two cases. However, the sum (SS X1 + SS X2) is 

the same for each model. In contrast, the Type III SS shown in Table 3.3 (c) gives the same 

results regardless of the order written in the model statement. The same phenomena prevail if 

there is no interaction term (Table 3.4). Notice that when no interaction term is included, the 

error MS has a different value; and this also clearly impacts on the F- and p-values. 
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 Further, when each variable in X (treatment) has different replications, i.e., when the 

data are unbalanced, Type I and III SS give different results. Again, when the data have different 

numbers of replications per cell, we should use Type III SS. Overall, Searle (1987, 1995) 

suggests that it is preferable to use the Type III SS exclusively rather than the Type I SS, though 

Nelder (1994) prefers the Type I SS approach. Clearly, when there is only one factor (as in 

Model 3 with output in Figure 3.5), the same result occurs for both Type I and Type III SS. 

The PROC ANOVA procedure performs an analysis of variance for balanced designs 

(SAS Institute, 2006). We note here that (with few exceptions such as a one-factor design) to use 

PROC ANOVA, we must have a balanced design. The PROC GLM procedure is generally more 

efficient than ANOVA for these designs. The default use of PROC GLM obviates the need to be 

concerned with unequal replication numbers.  

What terminology should be used to effectively communicate just how ANOVA were 

conducted and how results were calculated? Presently, complete programming statements would 

seem to be necessary when a package is used. As we have illustrated in this paper, in the absence 

of such statements, the reader cannot properly interpret the results or repeat the procedure, since 

accurate details of the analysis used are missing. Detailed explanations of SAS programming 

statements are available on the internet on an unrestricted basis. Therefore, readers practically 

anywhere can learn how calculations were made. Complete explanations of how the statistical 

packages are used should be available, if readers are to properly interpret computations that were 

made and correctly interpret the reported results. It would be better if computational methods 

could be included in manuscripts if they are not excessively long.  
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We reiterate the importance of the earlier papers to plant science (Chew, 1976; Little, 

1978; Nelson and Rawlings, 1983; Swallow, 1984). The arguments are equally important to 

poultry science. Finally, the principles elucidated in the present work extend those of Morris 

(1983, 1999). In particular, the progression of models presented herein do not stop at just 

comparing treatment means, but advocate more detailed analyses by testing for responses 

starting with linear trends and interaction response components.  
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Table 3.1. Partial SAS data set  
OBS Treatment X1 X2 Y 
1 1 0 – 10.0 
2 2 0 + 11.1 
3 3 3 – 11.1 
4 4 3 + 15.4 
5 5 5 – 10.0 
6 6 5 + 11.1 
7 7 7 – 0.0 
8 8 7 + 0.0 
9 9 9 – 0.0 
10 10 9 + 11.1 
11 11 11 – 18.2 
12 12 11 + 0.0 
13 1 0 – 10.0 
14 2 0 + 10.0 
15 3 3 – 0.0 
16 4 3 + 25.0 
17 5 5 – 30.0 
18 6 5 + 20.0 
19 7 7 – 22.2 
20 8 7 + 10.0 
21 9 9 – 14.3 
22 10 9 + 10.0 
23 11 11 – 22.2 
24 12 11 + 0.0 
25 1 0 – 9.1 
26 2 0 + 30.0 
27 3 3 – 30.0 
28 4 3 + 10.0 
29 5 5 – 10.0 
30 6 5 + 0.0 
31 7 7 – 11.1 
32 8 7 + 11.1 
33 9 9 – 0.0 
34 10 9 + 0.0 
35 11 11 – 0.0 
36 12 11 + 11.1 
37 1 0 – 0.0 
38 2 0 + 40.0 
39 3 3 – 0.0 
40 4 3 + 10.0 
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41 5 5 – 0.0 
42 6 5 + 11.1 
43 7 7 – 10.0 
44 9 9 – 33.3 
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Table 3.2. Comparison of SAS models used to analyze the same experimental data 
Model 1. Linear Regression Model (proc glm with no class statement) 
Y = 8.30366 + 0.46911 X1 + 0.02520 X2 – 0.00433 X1 X2 

Source  DF  Type III SS  Mean Square  F Value  Pr > F 
X1  1  65.0253  65.0253  0.70  0.4087 
X2  1  527.9220  527.9210  5.66  0.0222 
X1*X2  1  676.6620  676.6620  7.26  0.0103 
Error  40  3730.1243  93.2531  -  - 
Total  43  4613.1716  -  -  - 

Model 2. Second Order Polynomial Regression Model (proc glm with no class statement) 
Y = 7.61201 + 0.93521 X1 + 0.03027 X2 – 0.04339 X1

2 + 0.00780 X1 X2+ 0.00032 X1
2 X2 

Source  DF  Type III SS  Mean Square  F Value  Pr > F 
X1  1  23.1847  23.1847  0.24  0.6274 
X2  1  506.0086  506.0086  5.23  0.0279 
X1*X1  1  6.3264  6.3264  0.07  0.7996 
X1*X2  1  196.9171  196.9171  2.03  0.1620 
X1*X1*X2  1  42.5457  42.5457  0.44  0.5114 
Error  38  3679.2456  96.8223  -  - 
Total  43  4613.1716  -  -  - 

Model 3. One-way ANOVA (proc glm with class statement) 
Source  DF  Type III SS  Mean Square  F Value  Pr > F 
Treatment  11  960.3716  87.3065  0.76  0.6709 
Error  32  3652.8000  114.1500  -  - 
Total  43  4613.1716  -  -  - 
        Duncan: μ7 = 22.775                                                                                            μ12 = 3.700 
                       A                                                                                                             A 
                       Treatments: 7, 8, 6, 3, 5, 4, 9, 2, 1, 10, 11, 12 

Model 4. Two-way ANOVA (proc glm with class statement)  
Source  DF  Type III SS  Mean Square  F Value  Pr > F 
X1  5  232.5486  46.5097  0.41  0.8400 
X2  1  0.00075  0.00075  0.00  0.9980 
X1*X2  5  738.1765  147.6353  1.29  0.2913 
Error  32  3652.8000  114.1500  -  - 
Total  43  4613.1716  -  -  - 

Model 5. Two-way ANOVA including interaction contrast with Linear and Quadratic 
terms (proc glm with class statement)  

Source  DF  Type III SS  Mean Square  F Value  Pr > F 
X1  5  232.5486  46.5097  0.41  0.8400 
  Lin X1  1  197.7284  197.7284  1.73  0.1975 
  Quad X1  1  16.6435  16.6435  0.15  0.7051 
X2  1  0.00075  0.00075  0.00  0.9980 
X1*X2  5  738.1765  147.6353  1.29  0.2913 
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  Lin X1*X2  1  603.970  603.970  5.29  0.0281 
  Quad X1*X2  1  54.362  54.362  0.48  0.4951 
Error  32  3652.8000  114.1500  -  - 
Total  43  4613.1716  -  -  - 
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Table 3.3. Comparison of Type I SS and Type III SS used to analyze the same 
experimental data 

Type I SS (a) 
Source  DF  Type I SS  Mean Square  F Value  Pr > F 
X1  1  7.5099  7.5099  0.08  0.7780 
X2  1  198.8754  198.8754  2.13  0.1520 
X1*X2  1  676.6620  676.6620  7.26  0.0103 
Error  40  3730.1243  93.2531  -  - 
Total  43  4613.1716  -  -  - 

Type I SS (b) 
Source  DF  Type I SS  Mean Square  F Value  Pr > F 
X2  1  201.1134  201.1134  2.16  0.1498 
X1  1  5.2720  5.2720  0.06  0.8133 
X2*X1  1  676.6620  676.6620  7.26  0.0103 
Error  40  3730.1243  93.2531  -  - 
Total  43  4613.1716  -  -  - 

Type III SS (c) 
Source  DF  Type III SS  Mean Square  F Value  Pr > F 
X1  1  65.0253  65.0253  0.70  0.4087 
X2  1  527.9220  527.9210  5.66  0.0222 
X1*X2  1  676.6620  676.6620  7.26  0.0103 
Error  40  3730.1243  93.2531  -  - 
Total  43  4613.1716  -  -  - 

 
 

 

 

 

 

 

 

 

 



 

31 

 

Table 3.4. Comparison of Type I SS and Type III SS (no interaction) 
Type I SS 

Source  DF  Type I SS  Mean Square  F Value  Pr > F 
X1  1  7.5099  7.5099  0.07  0.7928 
X2  1  198.8754  198.8754  1.85  0.1812 
Error  41  4406.7862  107.4826  -  - 
Total  43  4613.1716  -  -  - 

Type I SS 
Source  DF  Type I SS  Mean Square  F Value  Pr > F 
X2  1  201.1134  201.1134  1.87  0.1788 
X1  1  5.2720  5.2720  0.05  0.8258 
Error  41  4406.7862  107.4826  -  - 
Total  43  4613.1716  -  -  - 

Type III SS 
Source  DF  Type III SS  Mean Square  F Value  Pr > F 
X1  1  5.2720  5.2720  0.05  0.8258 
X2  1  198.8754  198.8754  1.85  0.1812 
Error  41  4406.7862  107.4826  -  - 
Total  43  4613.1716  -  -  - 
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Figure 3.1. SAS Code for two-way ANOVA including interaction contrast with Linear and 
Quadratic terms (Model 5) 
 
/*QUANTITATIVE-QUALITATIVE MODEL: INTERACTION COMPONENTS*/ 
/*X1 is QUANTITATIVE, X2 is QUALITATIVE*/ 
 
/*To compute X2*linear X1 contrast components*/ 
proc glm outstat = junk; class X2 X1; model Y=X2|X1/ss3; 
contrast ‘linear X1’ X1 -5 -3 -1 1 3 5; 
contrast ‘lin X1@X2_1’ X1 -5 -3 -1 1 3 5 X2*X1 -5 -3 -1 1 3 5; 
contrast ‘lin X1@X2_2’ X1 -5 -3 -1 1 3 5 X2*X1 0 0 0 0 0 0 -5 -3 -1 1 3 5; 
run; 
 
/*To calculate (x2*linear x1) MS*/ 
data three; 
set junk; end=last; 
title ‘X2*linear X1 contrast’; 
 
retain div dfE dfX2 sum 0; 
if _N_ = 1 then div = SS/DF;                     /* Calculates Error MS*/ 
else div = div+ 0; 
if _N_ = 1 then dfE = DF; 
else dfE = dfE + 0;                              /* Keeps Error DF as dfE*/ 
if _N_ = 2 then dfX2 = DF;  
else dfX2 = dfX2 + 0;                            /* Keeps (X2*LinearX1) DF as dfX2*/ 
if _N_ < 5 then SS = 0; 
else if _N_ = 5 then SS = ­SS; 
sum = sum + SS;                                  /* Calculates (X2*LinearX1)SS*/ 
 
/* To retain the contrast needed, and to find the F­ and p­statistics */ 
if last then do;                                 /* Or, ‘if _N_ = 7 then do;’ */ 
   output;                                        
   MSsum = sum/dfX2;                             /* Calculates (X2*LinearX1)MS */ 
   F = MSsum/div;                                /* Calculates (X2*LinearX1) F­value */                          
   p = 1 ­ probf(F, dfX2, dfE);                  /* Calculates (X2*LinearX1) P­value */ 
   file print; 
   put ‘ (X2*LinearX1)SS = ‘ sum;            
   put ‘ (X2*LinearX1)MS = ‘ MSsum; 
   put ‘ F­value = ‘ F; 
   put ‘ P­value = ‘ P; 
end; 
run; 
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Figure 3.2.  Graphical representation of the means of the data. 
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Figure 3.3. Linear Regression Model (Model 1) 
                SAS Output for the model: Proc GLM; model Y = X1 X2 X1*X2. 
 
                                           The SAS System         
                                         The GLM Procedure 
Dependent Variable: Y 
 
                                                Sum of 
        Source                      DF         Squares     Mean Square    F Value    Pr > F 
        Model                        3      883.047306      294.349102       3.16    0.0351 
        Error                       40     3730.124285       93.253107 
        Corrected Total             43     4613.171591 
 
                         R-Square     Coeff Var      Root MSE        Y Mean 
                         0.191419      85.23524      9.656765      11.32955 
 
        Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
        X1                           1      65.0253449      65.0253449       0.70    0.4087 
        X2                           1     527.9209503     527.9209503       5.66    0.0222 
        X1*X2                        1     676.6619641     676.6619641       7.26    0.0103 
 
                                                   Standard 
                 Parameter         Estimate           Error    t Value    Pr > |t| 
                 Intercept      8.303663920      3.73931509       2.22      0.0321 
                 X1             0.469114185      0.56178338       0.84      0.4087 
                 X2             0.025195486      0.01058937       2.38      0.0222 
                 X1*X2         -0.004335211      0.00160937      -2.69      0.0103 
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Figure 3.4.  Second Order Polynomial Regression Model (Model 2) 
                 SAS Output for the model: Proc GLM; model Y = X1 X2 X1*X1 X1*X2 X1*X1*X2. 
 
                                            The SAS System         
                                         The GLM Procedure 
Dependent Variable: Y 
 
                                                Sum of 
        Source                      DF         Squares     Mean Square    F Value    Pr > F 
        Model                        5      933.925967      186.785193       1.93    0.1121 
        Error                       38     3679.245624       96.822253 
        Corrected Total             43     4613.171591 
 
                         R-Square     Coeff Var      Root MSE        Y Mean 
                         0.202448      86.85106      9.839830      11.32955 
 
        Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
        X1                           1      23.1847227      23.1847227       0.24    0.6274 
        X2                           1     506.0086246     506.0086246       5.23    0.0279 
        X1*X1                        1       6.3264077       6.3264077       0.07    0.7996 
        X1*X2                        1     196.9170802     196.9170802       2.03    0.1620 
        X1*X1*X2                     1      42.5457261      42.5457261       0.44    0.5114 
 
                                                   Standard 
                 Parameter         Estimate           Error    t Value    Pr > |t| 
                 Intercept      7.612014301      4.67321885       1.63      0.1116 
                 X1             0.935211448      1.91115739       0.49      0.6274 
                 X2             0.030270467      0.01324121       2.29      0.0279 
                 X1*X1         -0.043394118      0.16976176      -0.26      0.7996 
                 X1*X2         -0.007796010      0.00546661      -1.43      0.1620 
                 X1*X1*X2       0.000320992      0.00048423       0.66      0.5114 
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Figure 3.5.  One way ANOVA Model (Model 3) 
                 SAS Output for the model: Proc GLM; Class treatment; model  

     Y = treatment; means treatment/Duncan. 
 
                                           The SAS System                                          
                                         The GLM Procedure 
Dependent Variable: Y 
 
                                                Sum of 
        Source                      DF         Squares     Mean Square    F Value    Pr > F 
        Model                       11      960.371591       87.306508       0.76    0.6709 
        Error                       32     3652.800000      114.150000 
        Corrected Total             43     4613.171591 
 
                         R-Square     Coeff Var      Root MSE        Y Mean 
                         0.208180      94.30299      10.68410      11.32955 
 
        Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
        treatment                   11     960.3715909      87.3065083       0.76    0.6709 
        Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
        treatment                   11     960.3715909      87.3065083       0.76    0.6709 
 
                                 Duncan's Multiple Range Test for Y 
 
 NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error 
rate. 
 
                                Alpha                           0.05 
                                Error Degrees of Freedom          32 
                                Error Mean Square             114.15 
                                Harmonic Mean of Cell Sizes      3.6 
 
                                  NOTE: Cell sizes are not equal. 
 
    Number of Means      2      3      4      5      6      7      8      9     10     11     12 
    Critical Range   16.22  17.05  17.59  17.97  18.26  18.49  18.68  18.83  18.95  19.06  19.15 
 
                    Means with the same letter are not significantly different. 
 
                  Duncan Grouping          Mean      N    treatment 
 
                                A        22.775      4    2 
                                A        15.100      4    4 
                                A        13.467      3    11 
                                A        12.500      4    5 
                                A        11.900      4    9 
                                A        10.825      4    7 
                                A        10.550      4    6 
                                A        10.275      4    3 
                                A         7.275      4    1 
                                A         7.033      3    8 
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                                A         7.033      3    10 
                                A         3.700      3    12 
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Figure 3.6. Two-way ANOVA Model (Model 4) 
                SAS Output for the model: Proc GLM; Class X1 X2; model Y = X1 X2 X1*X2; 
 
Dependent Variable: Y 
 
                                                Sum of 
        Source                      DF         Squares     Mean Square    F Value    Pr > F 
        Model                       11      960.371591       87.306508       0.76    0.6709 
        Error                       32     3652.800000      114.150000 
        Corrected Total             43     4613.171591 
 
                         R-Square     Coeff Var      Root MSE        Y Mean 
                         0.208180      94.30299      10.68410      11.32955 
 
        Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
        X1                           5     232.5485913      46.5097183       0.41    0.8400 
        X2                           1       0.0007500       0.0007500       0.00    0.9980 
        X1*X2                        5     738.1765324     147.6353065       1.29    0.2913 
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Figure 3.7. Illustration of partial SAS (SAS Institute, 2006) output generated from two-way 
ANOVA including interaction contrast with Linear and Quadratic terms (Model 5) 
 
Dependent Variable: Y                                                                                
                                                                                                     
                                                Sum of                                               
        Source                      DF         Squares     Mean Square    F Value    Pr > F                                          
        Model                       11      960.371591       87.306508       0.76    0.6709                                          
        Error                       32     3652.800000      114.150000                                                               
        Corrected Total             43     4613.171591                                               
                                                                                                     
                                                                                                     
                         R-Square     Coeff Var      Root MSE        Y Mean                                                                             
                         0.208180      94.30299      10.68410      11.32955                          
                                                                                                     
                                                                                                     
        Source                      DF     Type III SS     Mean Square    F Value    Pr > F                                            
        X2                           1       0.0007500       0.0007500       0.00    0.9980          
        X1                           5     232.5485913      46.5097183       0.41    0.8400          
        X2*X1                        5     738.1765324     147.6353065       1.29    0.2913          
                                                                                                                             
        Contrast                    DF     Contrast SS     Mean Square    F Value    Pr > F                                          
        Linear X1                    1     197.7284444     197.7284444       1.73    0.1975          
        Lin X1@X2_1                  1      59.5808546      59.5808546       0.52    0.4753          
        Lin X1@X2_2                  1     742.1171463     742.1171463       6.50    0.0158          
                                                                                                    
        Contrast                    DF     Contrast SS     Mean Square    F Value    Pr > F                                 
        Quad X1                      1     16.64350409     16.64350409       0.15    0.7051          
        Quad X1@X2_1                 1      5.99802647      5.99802647       0.05    0.8202          
        Quad X1@X2_2                 1     65.00714569     65.00714569       0.57    0.4560    
 
                                        X2*LinearX1 Contrast                                                                                                         
 (X2*LinearX1)SS = 603.96955642                                                                                   
 (X2*LinearX1)MS = 603.96955642                                                                                                                                                                   
 (X2*LinearX1)F = 5.291016701                                                                                               
 (X2*LinearX1)P-value = 0.028105195                                                                  
                                                                                                           
                                         X2*QuadX1 Contrast                                                                                                           
 (X2*QuadX1)SS = 54.361668079                                                                                                                                                                                                 
 (X2*QuadX1)MS = 54.361668079                                                                                                                                                        
 (X2*QuadX1)F = 0.476230119                                                                                                                                                                            
 (X2*QuadX1)P-value = 0.4951098148   

 

 

 

 



 

40 

 

 

 

CHAPTER 4 

GENERAL CONCLUSION 

There are multiple ways of using SAS and other statistical software packages to analyze 

experimental data. The approaches illustrated here are capable of extracting more information, 

and lead to more insightful interpretations, than are usually presented by researchers. Presently, 

complete programming statements would seem to be necessary when a package is used. As we 

have illustrated in this thesis, in the absence of such statements, the reader cannot properly 

interpret the results or repeat the procedure, since accurate details of the analysis used are 

missing. Detailed explanations of SAS programming statements are available on the internet on 

an unrestricted basis. Therefore, readers practically anywhere can learn how calculations were 

made. Complete explanations of how the statistical packages are used should be available, if 

readers are to properly interpret computations that were made and correctly interpret the reported 

results. It would be better if computational methods could be included in manuscripts if they are 

not excessively long.  

 

 

 

 

 

 

 



 

41 

 

APPENDIX A: Models in Chapter 3 
 

The linear regression model (Model 1): 
 iiiiii eXXXXY  21322110   
 
The second order polynomial regression model (Model 2): 

iiiiiiiii eXXXXXXXY  2
2
15214

2
1322110   

 
The one-way ANOVA model (Model 3): 

Yij = μ + τi + eij    i =1, . . . , t 
                                j = 1, . . . , ri 

where μ = overall mean 
                       τi = ith treatment effect  
                       eij = observational error for (ij)th observation 
            Yij = observation for jth replication on treatment 
 
The two-way ANOVA model (Model 4): 

Yijk = μ + Ai +Bj+(AB)ij+ eijk    i =1, . . . , a 
                                                    j = 1, . . . , b 
                k = 1, . . . , r 

where μ = overall mean 
                       Ai = ith A factor effect  
            Bj = jth B factor effect  
                       ABij = interaction between factor A and B effect 
                       eijk = observational error for (ijk)th observation 
            Yijk = observation for kth replication on factor A and B effect 
 
The two-way ANOVA model including linear and quadratic terms (Model 5): 

Yijk = μ + Ai +Bj+(AB)ij+ eijk    i =1, . . . , a 
                                                    j = 1, . . . , b 
                k = 1, . . . , r 

where μ = overall mean 
                       Ai = ith A factor effect  
            Bj = jth B factor effect  
                       ABij = interaction between factor A and B effect 
                       eijk = observational error for (ijk)th observation 
            Yijk = observation for kth replication on factor A and B effect 
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APPENDIX B: CALCULATING INTERACTION CONTRASTS WITH SAS1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1L. Billard, M. Y. Shim and G. M. Pesti. To be submitted to journal related to poultry. 
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ABSTRACT 

Appropriate statistical analyses are of primary importance for understanding 

experimental results.  Chapter 3 detailed the influence of different statistical approaches on 

results of a two factor nutrition experiment with broiler chickens. However, frequently designs 

with more than two factors are needed because of the complexity of modern broiler and egg 

production.  Statistical analyses need to be clearly communicated so that readers can properly 

interpret the results of experiments with poultry. Designs with two or more factors are frequent 

players in the world of experimental design. The computational burden of the attendant analysis 

of variance is somewhat eased by the presence of statistical packages. Contrary to expectation, it 

is not clear from texts or the Manual(s) how the package(s) can be used to find components of 

the interaction effects, whether the factors are qualitative or quantitative factors. We show how 

SAS can be persuaded to calculate these components (A × Linear B, etc., when A is a qualitative 

and B is a quantitative factor, and Linear A × Linear B, etc., when both A and B are quantitative 

factors). The procedure can be adapted to fit other packages which have provision for contrast 

calculations. The results presented here extend and clarify the analyses of Chapter 3 on the 

advantages and disadvantages of various techniques for analyzing results from experiments on 

poultry with more than two factors. 

 

Keywords: Qualitative and quantitative factors, A × linear B, linear A × linear B contrasts. 
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INTRODUCTION 

Chapter 3 pointed out clear ambiguities in the way statistical procedures are presented in 

Poultry Science (and many other journals). Statements appearing in Poultry Science like “Data 

were analyzed by using the GLM procedure of SAS (SAS Institute, 2006)” make it impossible for 

readers to understand, and especially repeat, the methods that were applied. Chapter 3 

demonstrated the influence of several different statistical analytical approaches to a data set from 

an experiment with broiler chickens. They showed how different models may lead to different 

conclusions from the same experimental results.  They listed possible advantages and 

disadvantages of the several statistical techniques that may be applied to a relatively simple two 

factor experimental design. In this paper, we extend the results of Chapter 3 and show how 

experiments with two or more than factors, some quantitative and other qualitative, may be 

analyzed as they apply to experiments with poultry. 

The availability of statistical packages has eased considerably the computational burden 

of many statistical analyses. Those who use them extensively are grateful. However, those same 

users are also painfully aware of the limitations of any particular package, limits that beguile the 

glossy "covers" (so–to–speak) seemingly promising so much more apparently than can be 

delivered, and/or limits exposed when trying to reconcile inconsistent answers generated by 

supposedly clear but in fact oftentimes obscure Manual instructions. This note focuses attention 

on the use of the SAS package, and in particular on an aspect of the GLM procedure as used in 

the analysis of experimental design data. More specifically, we consider a standard factorial 

design with two (or more) factors. The factors of interest are A and B. Suppose factor B is a 
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quantitative factor. Then, among the usual quantities of interest, we can also find appropriate 

statistics relating to the components of B, such as Linear B, Quadratic B, etc. The GLM 

procedure does this and the documentation is clear on how to carry out this task. The difficulties 

come when we try to find components of the interaction term A × B. If A is a quantitative factor, 

interest centers on components Linear A × Linear B, Quadratic A × Linear B, Linear A × 

Quadratic B, etc. The SAS Manual provides no evidence that its GLM (or any other) procedure 

will calculate these components. If A is a qualitative factor, we may wish to consider 

components A × Linear B, A × Quadratic B, etc. Here too we are left to believe these 

components cannot be calculated by a SAS procedure, though there is evidence suggesting that 

components Linear B at a (specific) level of A, etc. can be found. Unfortunately, Manual 

instructions to do this are very oblique and are from a practical point of view nonexistent. Not 

surprisingly there is a widespread belief that SAS cannot calculate these components. This is 

unfortunate since the need for these components arises frequently, especially in agricultural and 

biological applications and in social science applications including in particular poultry 

scientists, and too often such applied researchers therefore do not take their analyses these extra 

steps because they think they “cannot” and/or “need not”. 

However, in fact, SAS can be persuaded to yield calculations on these interaction 

components. Our purpose here is to indicate how this can be done. Thus, we consider the case 

that both factors are quantitative, and we look at interaction components when one factor is 

qualitative and one is quantitative. We also draw attention to a related issue. Throughout, we will 

assume there are only two factors, A and B, with replications. Generalization to more than two 
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factors, with or without replications, follows readily, and is considered briefly below. While the 

vehicle to develop these results is that for the SAS package, the principles described herein can 

be adapted to fit other software packages which allow the calculation of basic contrast 

components. 

Our approach will be developed by way of an illustrative example using the data of Table 

4.1. These data were extracted from the results of an experiment reported in Chamruspollert et al. 

(2002). 

 

MATERIALS AND METHODS 

Both Factors Quantitative 

 The vehicle for illustrating the methodology is a factorial design investigating the 

influence of two quantitative factors A (Arg) and B (Met) on the response variable (Average 

body weight gain in 14 d) of chickens.  

Any analysis starts by entering the data appropriately, typically by using an INFILE 

statement or a DATALINE (or CARDS) statement followed by the actual data. Table 4.2(i) 

shows one version. We note that in this example factor A has four levels (1.52, 2.02, 2.52, 

3.52%), factor B has three levels (0.35, 0.45, 0.55%), and there are three replications. This Table 

4.2(i) also shows SAS statements asking the procedure GLM to execute the standard analysis 

which produces the usual statistics associated with A, B, and the interaction A × B. Also, it is 

reasonably straight–forward to calculate a linear component of A using SAS (SAS Institute, 

2006). Thus, we include a CONTRAST statement 
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contrast ‘Linear A’ A –3 –1 1 3, 

after the MODEL statement. Likewise, the statement 

contrast ‘Linear B’ B –1 0 l, 

will calculate the linear component of B. These determinations are easily made by following 

appropriate guidelines such as those in the SAS Manual. The numbers (–3, –1, 1, 3) used in the 

Linear A contrast are those weights needed to construct a linear function across the levels of A. 

We recall that, in general, a contrast across “treatments” T1,  . . . , Tk is defined as, for equal 

replications per treatment, 

                                                           



k

i
iiTz

1

  with .0
1




k

i
i                                                (1) 

In this context, the different levels of A constitute the treatments. Let us represent the weights as 

the vector 

                                                               W= (ω1, . . . , ωk).                                                           (2) 

Thus, the vector of weights associated with the Linear A and Linear B contrasts in our example 

are written, respectively, as 

Al = (–3, –1, 1, 3) and Bl = (–1, 0, 1). 

Suppose now we wish to calculate the Linear A × Linear B component of the interaction A × B. 

This is achieved by inserting the statement 

contrast  ‘Linear A × Linear B’ A * B 3 0 –3 1 0 –1 –1 0 1 –3 0 3;                                 (3) 

between the MODEL and RUN statements. Similarly, to calculate the Linear A × Quadratic B, 

Quadratic A × Linear B, and Quadratic A × Quadratic B components, we use the statements 

contrast  ‘Linear A × Quadratic B’ A * B –3 6 –3 –1 2 –1 1 –2 1 3 –6 3; 
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contrast  ‘Quadratic A × Linear B’ A * B –1 0 1 1 0 –1 1 0 –1 –1 0 1; 

contrast  ‘Quadratic A × Quadratic B’ A * B 1 –2 1 –1 2 –1 –1 2 –1 1 –2 1; 

respectively, likewise, for other components of the A × B interaction. 

These interaction component contrasts are but examples of the basic contrast definition in 

equation (1), where now the treatments correspond to the twelve (= 4 × 3) linear–linear levels of 

A × B. Formally, the weights are given by the vector 

                                                           C = vec(Al´#Bl)´                                                                 (4) 

where if the column vector A´ (of dimension a) has elements ai and the row vector B (of 

dimension b) has elements bj , then the matrix D = (A´#B) is of dimension ab and has elements 

dij = aibj , and where vec(D´) is the vector obtained by listing out the row elements of D´ in order. 

For example, Table 4.3(a) gives the matrix elements found from evaluating (–3, –1, 1, 3)´#(–1, 0, 

1). Hence, the weights for the Linear A × Linear B contrast and in the order they are to be used 

become readily apparent. Table 4.3 also provides the weights and their ordering for the Linear A 

× Quadratic B, Quadratic A × Linear B, and Quadratic A × Quadratic B contrast statements. The 

complete set of PROC GLM statements for these linear and quadratic contrasts is displayed in 

Table 4.2(ii), and its output is given in Table 4.2(iii). 

 

Qualitative and Quantitative Factors 

Let us now consider the case when one factor (A) is qualitative and one factor (B) is 

quantitative. First, the contrasts over B are evaluated at each level of A, separately. Thence, the 

final interaction contrast is subsequently calculated. Let us denote the levels of A by A1, . . . , A4 
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Therefore, to calculate the A × Linear B contrast, we first calculate the contrasts Linear B at the 

level Ai, i = 1, . . . , 4. For example, the Linear B at A1 contrast is evaluated by inserting the 

statement 

contrast ‘Linear B at A1’ B –1 0 1 A * B –1 0 1 0 0 0 0 0 0 0 0 0;                                   (5) 

between the MODEL and RUN statements. Since weights not specified at the end of a weight 

vector are automatically set at zero, we can write this CONTRAST statement more simply as 

contrast ‘Linear B at A1’ B –1 0 1 A * B –1 0 1; 

In contrast to the case when both factors are quantitative (where only weights for A * B were 

required, see, e.g., (3)), note there are two parts to this statement, one with weights appropriate to 

the Linear B component, viz., Bl = (–1, 0, 1) and one appropriate to the A×B component. The 

weights associated with A * B are as given by the general formula of equation (4), but now the 

weights for A(·) equate to the vector of 0's except that a weight 1 appears in the ith place when 

dealing with the ith level of A. See Table 4.4 for the (A2#Bl) matrix for use in calculating the 

Linear B at the second level of component A, for example. 

      Therefore, to determine Linear B at A2, we include the statements 

contrast ‘Linear B at A2’ B –1 0 1 A * B 0 0 0 –1 0 1; 

and similarly for levels A3 and A4. We also need to calculate separately the Linear B component 

of the main effect of B. The complete set of SAS statements for the PROC GLM part of the 

program is displayed in Table 4.5(i), and the output is shown in Table 4.5(ii). 

      The completed sum of squares (SS) value is then readily found from 





4

1  j
j B)SS(Linear  - )SSAat  B(Linear   B)SSLinear  (A                                                  (6) 
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“by hand” if need be, but see below. Thence, for the data of our example, 

(A × Linear B)SS = (552.25 + … + 8.00) – 18.0625 = 884.1875. 

Hence, the F– and P– statistics, etc., can be evaluated. 

Suppose further we wish to instruct SAS to carry out the calculations of equation (6). 

This is achieved by changing the PROC GLM, statement to the statement 

proc glm data = <datafilename> outstat = <filename>; 

 (where in our case the datafile name is “one” and the outstat file name is "junk", see Table 4.6), 

and by adding the set of statements as provided in Table 4.6. Before elaborating on this, it may 

be instructive to look more closely at what SAS is doing internally. 

The OUTSTAT option allows us to keep (for subsequent use) internal SAS (SAS 

Institute, 2006) output not automatically printed in the standard output. To see the contents of 

this OUTSTAT data set, we can print them in the usual way. Thus, Table 4.7(i) gives the SAS 

statements needed to affect this, with the printed output shown in Table 4.7(ii). [Since we will 

only be using the information in the degrees of freedom (DF) and sum of squares (SS) columns, 

we may prefer to delete the other information. In this case, the program statements of Table 

4.7(iii) can be used giving the printed output of Table 4.7(iv) instead.] Critically, the structure of 

this OUTSTAT data set instructs us on how to write our program for the calculation of the sum 

of squares of the A × Linear B contrast of (6). More specifically, we want to add the SS terms for 

"observations" OBS = 6, . . . , 9 and to subtract that for OBS = 5. 

Most importantly at this stage is the realization that there is a hidden DO loop, with the 

consequence that the intuitive step of doing a natural DO loop on the OBS variable does not 
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work. This is circumvented by the IF/ELSE statements on the (also hidden) automatic variable 

_N_ (SAS Language Manual; SAS Institute, 2006). Thus, to calculate the (A × Linear B)SS, we 

use the SAS (SAS Institute, 2006) statements 

retain sum 0; 

if _N_ < 5 then SS = 0; 

else if _N_ = 5 then SS = –SS; 

sum = sum + SS; 

as in Table 4.6. Running totals are still automatically retained, as is illustrated by the output 

shown in Table 4.8(i). The required answer is the last value calculated, in this example, (A × 

Linear B)SS = 884.1875. Suppression of all but this last summation can be incorporated into the 

program [by asking for output only at the end, e.g.,. if last then output,]. 

In like manner, with appropriate use of the automatic variable _N_, the Error MS and 

hence the F– and p– statistics can be calculated. These have been done in the SAS statements of 

Table 4.6. The corresponding output is shown in Table 4.8(ii). 

The complete SAS program for obtaining the A × Linear B contrast statistics as well as 

those for the A × Quadratic B contrast, is provided in Appendix B(i), and the output is shown in 

Appendix B(ii). 

 

Not to Confuse the Issue ... But 

In qualitative and quantitative factors, we developed program statements that would 

instruct the SAS package to calculate the A × Linear B, etc., contrast statistics. In particular, 
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appropriate weights to insert into a CONTRAST statement, such as those in Table 4.5(i), were 

determined. It is critical to note that the order in which the factors A and B are inserted into the 

CLASS statement is also important. Reversing the order from (A B) to (B A) necessitates 

changes in the CONTRAST statements. 

To illustrate, let us suppose that now factor A is quantitative and factor B is qualitative, 

and suppose we wish to calculate the (B × Linear A)SS. A set of CLASS and CONTRAST 

statements to be used are given in Table 4.9. Thus, we use 

class B A; 

contrast ‘Linear A at B1’ A –3 –1 1 3 A * B –3 –1 1 3; 

contrast ‘Linear A at B2’ A –3 –1 1 3 A * B 0 0 0 0 –3 –1 1 3; 

and so on. Or, we can use 

class A B; 

contrast ‘Linear A at B1’ A –3 –1 1 3 A * B –3 0 0 –1 0 0 1 0 0 3 0 0;                           (7) 

contrast ‘Linear A at B2’ A –3 –1 1 3 A * B 0 –3 0 0 –1 0 0 1 0 0 3 0; 

and so on. However, the following will not work: 

class A B; 

contrast ‘Linear A at B1’ A –3 –1 1 3 A * B –3 –1 1 3; 

since the order of (A B) in the class statement is incorrect for this format of the CONTRAST 

weights. To see this, we refer to the matrix of weights appropriate to the Linear B at A1 contrast 

in Table 4.10, when the “class A B,” statement is used. It is immediately clear that the row vector 

C of weights (from equation (4)) produces the CONTRAST statement (7) above. 
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How a reversal of the factors in the CLASS statement affects the program when both 

factors are quantitative, if at all, is left as an exercise for the reader. 

 

Two or More Factors 

The same principles used in the previous sections apply when there are three or more 

factors, with each factor either qualitative or quantitative. We illustrate this briefly for the case 

where all factors are quantitative, and where one factor is qualitative and two factors are 

quantitative factors. Suppose all factors have three levels. 

When all three factors are quantitative, the methods of both factors quantitative apply. 

Suppose we want to find the contrast Linear A × Linear B × Linear C. Thus, we need to calculate 

A ĺ#Bl#Cl. The weights for Linear A × Linear B are first calculated, as shown in both factors 

quantitative, i.e., A ĺ#Bl = (1, 0,–1, 0, 0, 0,–1, 0, 1). These in turn are multiplied by the linear C 

weights Cl = (–1, 0, 1) again as shown in Section 2; see Table 4.11. Therefore, the CLASS and 

CONTRAST statements are 

class A B C; 

contrast ‘Linear B × Linear C’ A * B * C –1 0 1 0 0 0 1 0 –1 

0 0 0 0 0 0 0 0 0 1 0 –1 0 0 0 –1 0 1; 

Consider now the case where factor A is qualitative and each of B and C is a quantitative 

factor. Suppose in particular we are want to calculate the A × Linear B × Linear C contrast. 

Then, the appropriate linear weights are Bl = Cl = (–1, 0, 1). Hence, first, from (4), the weights 

for Linear B × Linear C become B ĺ#Cl = (1, 0,–1, 0, 0, 0,–1, 0, 1) in the analogous manner to 
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that described in both factors quantitative and Table 4.3(a). Since A is a qualitative factor, then 

these weights are applied at each level of A analogously to that described in qualitative and 

quantitative factors. 

The CLASS and CONTRAST statements become 

class A B C; 

contrast ‘Linear  B × Linear C’ B * C 1 0 –1 0 0 0 –1 0 1; 

contrast ‘Linear B × Linear C @ A1’ B * C 1 0 –1 0 0 0 –1 0 1 

A * B * C 1 0 –1 0 0 0 –1 0 1; 

contrast ‘Linear B × Linear C @ A2’ B * C 1 0 –1 0 0 0 –1 0 1 

A * B * C 0 0 0 0 0 0 0 0 0 1 0 –1 0 0 0 –1 0 1; 

contrast ‘Linear B × Linear C @ A3’ B * C 1 0 –1 0 0 0 –1 0 1 

A * B * C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 –1 0 0 0 –1 0 1; 

Then, the different interaction component contrasts are used to find the overall (A × Linear B × 

Linear C)SS, and hence the relevant F– and p– values as shown in qualitative and quantitative 

factors. 

 

RESULTS AND DISCUSSION  

The interpretation of the various interaction components can be facilitated by reference to 

Figure 4.1 which shows a surface plot of the means at each combination of the levels of A (Arg) 

and B (Met). For example, the analysis of the contrast interaction A × Linear B revealed this to 

be a significant component (p = 0.0014, see Table 4.8 (ii)). This tells us that there is a significant 
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linear trend in B (Met) across the different levels of A (Arg) and that this trend is different for 

different levels of A (Arg). These differences for different A values are clearly evident in Figure 

4.1. Note that depending on the data, it can be that there is no significant linear trend in B, but 

there are significant A × Linear B components (e.g., Chapter 3). Likewise, were we to consider 

the factor A as a quantitative factor and B as a qualitative factor (see not to confuse the issue … 

but), then the dotted lines corresponding to the three levels of B suggest that there is a different 

trend line across the levels of A. Indeed, in this case, the B × Linear A component has a 

significant value (p = 0.0002) and also there is a significantly different quadratic trend across A 

for the differing levels of B (p = 0.0425). That is, the linear trend of Arg across the levels of Met 

is significant and the quadratic trend across Arg for the differing levels of Met is significant at p 

< 0.05, and different for differing levels of Met.   

When there are one qualitative and two quantitative variables, the surfaces will be as in 

the example of Figure 4.2. The data for this design were extracted from Chamruspollert et al. 

(2004), and consists of two levels (25, 35ºC) of a qualitative factor A (Temperature) and three 

levels (1.52, 2.52, 3.52% and 0.35, 0.55, 0.75%) for each of quantitative factors B (Arg) and C 

(Met). For the purposes of this illustration, it is assumed the design here is a standard factorial 

design. For these data, the visual suggestion that the Linear B × Linear C interaction differs for 

the two levels of A is corroborated by the statistical analysis for which p < 0.0001. In these kinds 

of designs, the surfaces correspond to the different level of A (Ai, i = 1, . . . ,r). There are linear 

surfaces across the levels of Arg and Met combinations, but this surface is different for different 
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values of temperature.  In this case, if there is a significant difference (p < 0.05) in the A × 

Linear B × Linear C interaction component, then these surfaces will assume different ‘shapes’.  

 As illustrated in Chapter 3, there are multiple ways of using SAS and other statistical 

software packages to analyze experimental data. The approaches illustrated here are capable of 

extracting more information, and lead to more insightful interpretations, than are usually 

presented by the researcher. Complex experiments with multiple input factors are becoming 

increasingly important as poultry producers seek to balance multiple factors to maximize 

performance and profits while trying to minimize environmental impacts. Going the extra steps 

illustrated here should aid researchers and producers in properly interpreting trials where 

multiple factors influence productivity.  

 Finally, while this paper has illustrated how the SAS (SAS Institute, 2006) package can 

be adapted to obtain these interaction components, where possible the same principles can be 

applied to adapt other packages appropriately. 
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Table B.1: Illustrative Data 

 B1  B2  B3 
A1 327.63 308.13 320.63  386.13 372.50 372.00  345.00 389.00 381.00 
A2 278.75 264.38 211.36  363.63 359.88 345.75  331.93 349.38 352.00 
A3 254.25 191.50 206.00  314.75 355.25 338.13  313.63 355.75 418.75 
A4 181.50 144.50 157.50  176.63 240.50 290.50  369.00 336.50 385.86 
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Table B.2(i): Basic SAS Program 

/* QUANTITATIVE × QUANTITATIVE MODEL. INTERACTION COMPONENTS */ 

options ls=72 nodate pageno=1 formdlim=’  ’;  /* List desired options */ 
title ‘Quantitative/Quantitative Example’; 
data one; 
do A = 1 to 4; 

do B = 1 to 3; 
do rep = 1 to 3; 

input y@@; 
output; 

end; 
end; 

end; 
datalines;  /*  Or, ‘cards,’  */ 
327.63  308.13  320.63  386.13  372.50  372.00  345.00  389.00  381.00 
278.75  264.38  211.36  363.63  359.88  345.75  331.93  349.38  352.00 
254.25  191.50  206.00  314.75  355.25  338.13  313.63  355.75  418.75 
181.50  144.50  157.50  176.63  240.50  290.50  369.00  336.50  385.86 
; 
proc glm; 
class A B; 
model y = A|B /ss3; 
run; 
 

 

Table B.2(ii): Contrast Statements 

/*Contrast statements*/ 

proc glm; 
class A B; 
model y = A|B /ss3; 
contrast ‘Linear A × Linear B’ A * B 3 0 –3 1 0 –1 –1 0 1 –3 0 3; 
contrast ‘Linear B × Quadratic B’ A * B –3 6 –3 –1 2 –1 1 –2 1 3 –6 3; 
contrast ‘Quadratic A × Linear B’ A * B –1 0 1 1 0 –1 1 0 –1 –1 0 1; 
contrast ‘Quadratic A × Quadratic B’ A * B 1 –2 1 –1 2 –1 –1 2 –1 1 –2 1; 
run; 
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Table B.2(iii): SAS Output 
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Table B.3: Both A and B Quantitative Factors 

 (a) Linear B  (b) Quadratic B 
Linear A –1     0     1  1      –2      1 

–3  3        0      –3  –3       6      –3 
–1  1       0     –1  –1       2      –1 
1 –1    0     1  1      –2      1 
3 –3    0     3  3      –6      3 
 A ĺ#Bl  A ĺ#Bq 

 

 (c) Linear B  (d) Quadratic B 
Quadratic A –1     0     1  1      –2      1 

1 –1      0      1  1      –2      1 
–1   1       0     –1  –1       2      –1 
–1 –1      0    –1  –1       2      –1 
1 –1    0     1  1      –2      1 
 A´q#Bl  A´q#Bq 

 

  

Table B.4: A Qualitative and B Quantitative Factors 
Weight Matrix. Linear B at A2 

 
  Linear B 
  –1 0 1 

A1 0 0 0 0 
A2 1 –1 0 1 
A3 0 0 0 0 
A4 0 0 0 0 

 

 

 

 

 



 

62 

 

Table B.5(i): Contrast Statements 

/* QUALITATIVE × QUANTITATIVE MODEL. INTERACTION COMPONENTS */ 
/* A is QUALitative, B is QUANTitative*/ 
 
[Data input, etc., statements] 
 
proc glm; 
class A B; 
model y = A|B /ss3; 
contrast ‘Linear B’ B –1 0 1; 
contrast ‘Linear B at A1’ B –1 0 1 A * B –1 0 1; 
contrast ‘Linear B at A2’ B –1 0 1 A * B 0 0 0 –1 0 1; 
contrast ‘Linear B at A3’ B –1 0 1 A * B 0 0 0 0 0 0 –1 0 1; 
contrast ‘Linear B at A4’ B –1 0 1 A * B 0 0 0 0 0 0 0 0 0 –1 0 1; 
run; 
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Table B.5(ii): SAS Output 
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Table B.6: Computing the A × Linear B Contrast Statistics 

/* QUALITATIVE × QUANTITATIVE MODEL. INTERACTION COMPONENTS */ 
/* A is QUALitative, B is QUANTitative*/ 
 
[Data input, etc., statements, see Table 2(i)] 
 
proc glm data=one outstat=junk; 
 
[Other statements for A × Linear B contrast components, see Table 5(i)] 
 
/* To compute (A × Linear B)MS */ 
 
data three; 
set junk end=last; 
title ‘A × Linear B Contrast’; 
 
retain div dfE dfA sum 0; 
if N = 1 then div = SS/DF;                                              /* Calculates Error MS */ 
else div = div +0; 
if N = 1 then dfE = DF; 
else dfE =dfE + 0;                                                           /* Keeps Error DF as dfE */ 
if N = 2 then dfA = DF; 
else dfA =dfA + 0;                                                          /* Keeps A DF as dfA */ 
if N < 5 then SS = 0; 
else if N = 5 then SS = –SS; 
sum = sum + SS;                                                             /* Calculates (A × Linear B)SS */ 
 
/* To retain the contrast needed, and to find the F– and p– statistics */ 
if last then do;                                                                 /* Or, 'if N = 9 then do,' */ 

output; 
MSsum = sum/dfA;                                            /* Calculates (A × Linear B)MS */ 
F = MSsum/div;                                                  /* Calculates (A × Linear B) F–value */ 
p = 1 – probf(F,dfA,dfE) ;                                  /* Calculates (A × Linear B) p–value */ 
file print; 
put  ’ (A × Linear B)SS = ’ sum 10.4;                   /*Keep 4 decimal places */ 
put  ’ (A × Linear B)MS = ’ MSsum 10.4; 
put  ’ F–value = ’ F 8.4; 
put  ’ p–value = ’ p 6.5; 

end; 
run; 
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Table B.7(i): OUTSTAT Data Program 

/* QUALITATIVE × QUANTITATIVE MODEL. INTERACTION COMPONENTS */ 
/* A is QUALitative, B is QUANTitative*/ 
[Data input, and PROC GLM statements] 
/* To print outstat data */ 
proc print data=junk, 
title 'Outstat data from PROC GLM', 
run, 
 

 

Table B.7(ii): SAS OUTSTAT Output 

 
Outstat data from PROC GLM - [ _N_ NAME SOURCE TYPE] 

 
OBS    NAME          SOURCE                 TYPE           DF            SS               F            PROB 
   
   1           Y                ERROR                 ERROR         24        21419.87          .                 . 
   2           Y                     A                          SS3             3         48038.59      17.942     0.000003 
   3           Y                     B                          SS3             2         97474.63      54.608     0.000000 
   4           Y                 A × B                       SS3             6         27490.38       5.134      0.001612 
   5           Y               Linear B              CONTRAST     1         91472.75     102.491    0.000000 
   6           Y          Linear B at A1         CONTRAST     1          4192.86         4.698     0.040343 
   7           Y          Linear B at A2         CONTRAST     1         12956.77      14.517     0.000850 
   8           Y          Linear B at A3         CONTRAST     1         31737.92      35.561     0.000004 
   9           Y          Linear B at A4         CONTRAST     1         61582.30      69.000     0.000000 
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Table B.7(iii): OUTSTAT Data Program – DF and SS only 

/* To keep and print DF and SS data */ 
 
data two; 
set junk;  
keep DF SS; 
proc print data=two; 
title ‘A × Linear B. DF/SS data only’; 
run, 
 

 

Table B.7(iv): Portion SAS OUTSTAT Output 

A × Linear B: DF/SS data only 
 

OBS     DF          SS 
   1        24      21419.87 
   2         3       48038.59 
   3         2       97474.63 
   4         6       27490.38 
   5         1       91472.75 
   6         1        4192.86 
   7         1       12956.77 
   8         1       31737.92 
   9         1       61582.30 
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Table B.8(i) Contrast SS: Output as Running Totals 

A × Linear B Contrast 

(A × Linear B)SS = 0 
(A × Linear B)SS = 0 
(A × Linear B)SS = 0 
(A × Linear B)SS = 0 
(A × Linear B)SS = –91472.750 
(A × Linear B)SS = –87279.894 
(A × Linear B)SS = –74323.129 
(A × Linear B)SS = 18997.085 
(A × Linear B)SS = 18997.085 
 

 

Table B.8(ii): SAS Output for A × Linear B Contrast Statistics 

A × Linear B Contrast 

(A × Linear B)SS = 18997.085 
(A × Linear B)MS = 6332.362 
F = 7.0951 
P = 0.00141 
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Table B.9: Reversing the CLASS Statements 

/* QUALITATIVE × QUANTITATIVE MODEL. INTERACTION COMPONENTS */ 
/* A is QUALitative and B is QUANTitative */ 
 
[Data input, etc. statements] 
 
/* To compute the B × Linear B */ 
 
proc glm data=one outstat=junkl; 
class A B; 
model y = A|B /ss3; 
contrast ‘Linear A’ A –3 –1 1 3; 
contrast ‘Linear A at Bl’ A –3 –1 1 3 A * B –3 0 0 –1 0 0 1 0 0 3 0 0; 
contrast ‘Linear A at B2’ A –3 –1 1 3 A * B 0 –3 0 0 –1 0 0 1 0 0 3 0; 
contrast ‘Linear A at B3’ A –3 –1 1 3 A * B 0 0 –3 0 0 –1 0 0 1 0 0 3; 
run; 
 
/*OR, Alternatively: */ 
 
proc glm data=one outstat=junkl; 
class B A; 
model y = A|B /ss3; 
contrast ‘Linear A’ A –3 –1 1 3; 
contrast ‘Linear A at Bl’ A –3 –1 1 3 A * B –3 –1 1 3; 
contrast ‘Linear A at B2’ A –3 –1 1 3 A * B 0 0 0 0 –3 –1 1 3; 
contrast ‘Linear A at B3’ A –3 –1 1 3 A * B 0 0 0 0 0 0 0 0 –3 –1 1 3; 
run; 
 
/* To compute B*QuadraticA contrast components*/ 
 
proc glm data=one outstat=junk2; 
title 'Qualitative × Quantitative Example'; 
class A B; 
model y = A|B /ss3; 
contrast ‘Quad A’ A –1 1 1 –1; 
contrast ‘Quad A at Bl’ A –1 1 1 –1 A * B –1 0 0 1 0 0 1 0 0 –1 0 0; 
contrast ‘Quad A at B2’ A –1 1 1 –1 A * B 0 –1 0 0 1 0 0 1 0 0 –1 0; 
contrast ‘Quad A at B3’ A –1 1 1 –1 A * B 0 0 –1 0 0 1 0 0 1 0 0 –1; 
run, 
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Table B.10: Factor A Quantitative and Factor B Qualitative 
Weight Matrix. Linear A at B1 

 
 

 B1 B2 B3 
Linear A 1 0 0 

–3 –3 0 0 
–1 –1 0 0 
1 1 0 0 
3 3 0 0 
 A ĺ#Bl 

 
  

 

Table B.11: Factors A, B, C Quantitative 
Weight Matrix. Linear A × Linear B × Linear C 

 
  Linear A × Linear B 

Linear C 1 0 –1 0 0 0 –1 0 1 
C1 –1 –1 0 1 0 0 0 1 0 –1 
C2 0 0 0 0 0 0 0 0 0 0 
C3 1 1 0 –1 0 0 0 –1 0 1 

  A ĺ#Bl#Cl 
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Figure B.1: Response Surface for Factors A and B 
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Figure B.2: Response Surfaces for B and C at Ai, i = 1, 2 
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APPENDIX C(i): SAS Program. A × Linear B and A × Quadratic B Contrasts 
 
/* QUALITATIVE × QUANTITATIVE MODEL....INTERACTION COMPONENTS */ 
/* A is QUALitative and B is QUANTitative */ 
 
dm ‘output; clear; log; clear’; 
options ls=72 nodate formdlim=’  ’ ; 
title ‘Qualitative × Quantitative Example’; 
data one; 
infile ‘(data directory path) dataname.dat’; 
input ABy@@; 
output; 
run; 
 
/* To compute A × Linear B contrast components */ 
 
proc glm data=one outstat=junkl; 
class A B; 
model y = A|B /ss3; 
contrast ‘Linear B’ B –1 0 1; 
contrast ‘Linear B at Al’ B –1 0 1 A × B –1 0 1; 
contrast ‘Linear B at A2’ B –1 0 1 A × B 0 0 0 –1 0 1; 
contrast ‘Linear B at A3’ B –1 0 1 A × B 0 0 0 0 0 0 –1 0 1; 
contrast ‘Linear B at A4’ B –1 0 1 A × B 0 0 0 0 0 0 0 0 0 –1 0 1; 
run; 
 
/* To calculate (A × Linear B)SS */ 
 
data two; 
set junkl end=last; 
title ‘A × Linear B Contrast’; 
 
/*Note. There is a hidden DO loop. 
Therefore the output is a running total, 
the required answer is the last one given.*/ 
 
retain div dfA dfE sum 0; 
if _N_ = 1 then div = SS/DF; 
else div = div + 0; 
if _N_ = 1 then dfE = DF; 
else dfE = dfE + 0; 
if _N_ = 2 then dfA = DF; 
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else dfA = dfA + 0; 
if _N_ < 5 then SS = 0; 
else if _N_ = 5 then SS = –SS; 
sum = sum + SS; 
 
/* To retain the contrast needed, and to find the F– and p– statistics */ 
 
if last then do; 

output; 
MSsum = sum/dfA; 
F = MSsum/div; 
p = l–probf(F,dfA,dfE), 
file print, 
put /’ (A × Linear B)SS = ’ sum ’(A × Linear B)MS = ’ MSsum; 
put /’ F = , F ’ p–value = , p1; 

end; 
run; 
 
/* To compute A × Quadratic B contrast components */ 
 
proc glm data=one outstat=junk2; 
class A B; 
model y = A|B /ss3; 
 
contrast ‘Quadratic B’ B 1 –2 1; 
contrast ‘Quadratic B at A1’ B 1 –2 1 A * B 1 –2 1; 
contrast ‘Quadratic B at A2’ B 1 –2 1 A * B 0 0 0 1 –2 1; 
contrast ‘Quadratic B at A3’ B 1 –2 1 A * B 0 0 0 0 0 0 1 –2 1; 
contrast ‘Quadratic B at A4’ B 1 –2 1 A * B 0 0 0 0 0 0 0 0 0 1 –2 1; 
run; 
 
/* To calculate (A × Quadratic B)SS */ 
/*Note the program code is similar to that for the (A × Linear B)SS, except that 
the <outstat> dataset differs since the contrast statements differ. 
Marco statements can be used instead.*/ 
/* Note. There is a hidden DO loop*/ 
 
data three; 
set junk2 end=last; 
title ‘A × Quadratic B Contrast’; 
 
retain div dfA dfE sum 0; 
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if _N_ = 1 then div = SS/DF; 
else div = div + 0; 
if _N_ = 1 then dfE = DF; 
else dfE = dfE + 0; 
if _N_ = 2 then dfA = DF; 
else dfA = dfA + 0; 
if _N_ < 5 then SS = 0; 
else if _N_ = 5 then SS = –SS; 
sum = sum + SS; 
if _N_ = 9 then do; 

output; 
MSsum = sum/dfA; 
F = MSsum/div; 
p = 1–probf(F,dfA,dfE); 
file print; 
put /’ (A × Quadratic B)SS = ’ sum ’(A × Quadratic B)MS ’ MSsum; 
put /’ F = ’ F ’ p–value = ’ p; 

end; 
run; 
 

 



 

75 

 

APPENDIX C(ii): SAS Output: A × Linear B and A × Quadratic B Contrasts 
 

 


