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ABSTRACT 

 For the first study a multiple-trait model (MTM), a random regression model utilizing 

Legendre polynomials (RRML), and a random regression model construct with linear spline 

functions (RRMS) were applied for analysis of national beef cattle growth data. The impact of 

the additional information included in the RRML and RRMS were examined through 

correlations of random effect predictions. Results showed decreases in correlations between 

MTM and both RRM when additional information was incorporated into RRM analysis. 

 The second study focused on the modeling of fixed effects within the frame work of a 

RRM. Models utilizing polynomials and two-dimensional splines were evaluated via cross 

validation based on the average squared error (ASE), R
2
, and percent bias. Due to the 

nonlinearity of two-dimensional splines, weighted spline extrapolation had to be used outside the 

two-dimensional grid. Results showed comparable performance between polynomials and two-

dimensional splines.       
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CHAPTER 1 

INTRODUCTION 

Multiple-trait models (MTM) currently used to evaluate growth in beef cattle treat all 

records for a trait as being measured at the same age and having the same parameters. This 

creates the need for age adjustments, establishment of age ranges, and the subsequent elimination 

of records measured outside these ranges. These characteristics of MTM lead to the loss of 

records, particularly for early weaned animals. Random regression models (RRM) utilize 

continuous (co)variance functions to model records taken at any age, thus eliminating the need 

for MTM adjustments.    

RRM utilizing orthogonal Legendre polynomials (RRML) have been widely used for the 

modeling of random effects. Using methods that derive RRML parameters directly from MTM 

(co)variance matrices, stable and reliable functions can be obtained. While much of the focus on 

longitudinal models has centered on RRML, linear splines present a simple alternative. Splines 

are computationally simple and have the ability to use MTM parameters directly. A spline fits a 

series of functions through control points referred to as knots. The use of linear spline functions 

with few knots can eliminate the numerical problems associated with RRML and decrease the 

cost of implementation. 

The accurate modeling of fixed effects in any analysis is crucial for eliminating bias in 

random effect predictions. When evaluating growth, two continuous covariates are commonly 

modeled, the age of dam effect (AOD) and the animal’s age. Currently records are collected for 

MTM and are clustered around birth, weaning (205 days), and yearling (365 days) ages. With 
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such age distributions, nested polynomial functions seem to be an obvious choice for the 

modeling of these effects. However, as RRM models become more widely accepted, larger and 

more continuous age ranges will be recorded for evaluation. This could make nesting more 

difficult and outlying age records could make polynomials vulnerable to artifacts.  

An alternative to polynomial regressions are splines. The piecewise nature of splines 

makes them more resistant to artifacts of data. While one-dimensional splines provide a more 

robust model, they still require nesting when modeling AOD and age of animal. Two-

dimensional splines can provide a generalized and robust model for fixed effects. The selected 

two-dimensional knots provide automatic nesting and implicit modeling of interactions while 

reducing the effects of outlying records.    

 The objective of these studies was to develop a robust and practical longitudinal model 

for the evaluation of growth in beef cattle through effective modeling of both fixed and random 

effects.  
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CHAPTER 2 

REVIEW OF LITERATURE  

The use of random regression models (RRM) to model longitudinal data has been 

discussed since the early 1980’s when introduced by Henderson (1982). Initial interest in the 

field of breeding genetics was focused mainly around the evaluation of test day milk yield in 

dairy cattle (Schaeffer and Dekkers, 1994), but RRM are suited for modeling of any type of 

longitudinal data. This has led to applications of RRM to growth data in animal production. 

Anderson and Pederson (1996) examined the use of RRM to growth and feed intake curves in 

pigs. Meyer and Hill (1997) discussed the use of RRM to model growth in beef cattle data. 

Given the large scope for RRM, this discussion will mainly focus on its use in modeling random 

effects in the context of breeding and genetics, and expand to multiple applications for 

discussion of fixed effects. 

 RRM utilize (co)variance functions to model traits that have measurements that change 

over time. These functions model the changes in a trait, as well as the correlation between 

measurements taken at different time points. RRM can be modeled with any continuous function 

such as polynomials, orthogonal polynomials, and splines.  In an early application of RRM, 

Kirpatrick et al. (1990) examined the modeling of additive genetic (co)variance functions using 

full and reduced models. RRM utilizing orthogonal Legendre polynomials (RRML) were chosen 

to model the function because, unlike spline functions, coefficients from the smooth orthogonal 

polynomials provide information on the changes in genetic variation within growth trajectories. 

Using techniques of stacking matrices, parameters for RRML were derived from multivariate 
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(co)variance matrices. The use of (co)variance functions gave two distinct advantages over 

multivariate analysis; the first being the fact that RRM incorporates spacing in terms of age 

between weight records, and secondly, with RRM the ages at which selection pressure should be 

applied do not need to coincide with the ages at which records are recorded.  

Legendre polynomials partition each order of the regression into orthogonal components. 

This yields coefficients with reduced correlations. This desirable property makes it an appealing 

choice for use in RRM. As a result, the majority of RRM modeling has been done with 

orthogonal polynomials. Van Der Werf et al. (1998) examined the use of Legendre polynomials 

to model (co)variance functions to evaluate yield traits for milk production in dairy cattle. Data 

were collected from 30 randomly selected Australian herds. The data set contained 13,109 

records on 1,903 Friesian cows. Parameters for the covariance function were estimated by 

transformation of parameters for predetermined periods of lactation and directly from the data 

using RRML. The first method gave more stable estimates, especially at the extremes of the 

lactation curve. Goodness of fit procedures showed that RRML and RRM based on lactation 

curves provided very similar fits to the data. Additionally the equivalence of RRM and 

(co)variance functions was shown. 

Tijani et al. (1999) computed parameter estimates for covariance functions on test day 

yield. A RRML was fit to first lactation records from 17,190 cows from 37 herds in Wisconsin 

and Pennsylvania. Parameters for the RRML were derived from the (co)variance matrices for a 

four stage model in which lactation was divided into 75d intervals. Using the (co)variance 

function, twelve 25d lactation stages were created from the four lactation stage model. Estimates 

of genetic and environmental parameters demonstrated the ability of RRML to interpolate and 
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extend (co)variances across the entire lactation. This property makes the RRM an ideal model for 

the evaluation of test day records.   

A comparison of four different test day models for milk yield traits was conducted by 

Lindauer et al. (2003). Milk, protein, and, and fat yield traits from 1,049248 Finnish dairy cattle 

were evaluated with four different models. Full and reduced rank RRM, a repeatability model, 

and a multiple trait (MTM) lactation yield model were each implemented. The mean squared 

error (MSE), correlations of breeding values, and sire rankings were used to evaluate each 

model. MSE was lowest for the full rank RRM with very similar MSE for the reduced rank 

model. Correlations of breeding values were highest for the full and reduced rank RRM. 

Correlations between RRM and the MTM lactation yield model were > .98 for active bulls. With 

young animals, correlations dropped and significant re-rankings were observed. The high 

correlations and low re-rankings between the full and reduced rank RRM show that rank 

reduction has little effect on model predictions. This combined with the improved convergence 

and decreased memory requirements of the reduced rank RRM, make it a practical choice for 

modeling test day records.   

In addition to modeling test day milk yield traits, the use of RRML for modeling growth 

has also been the subject of intensive research in recent years. Anderson and Peterson (1996) 

constructed a polynomial regression with RRM coefficients to model growth and feed intake 

curves in pigs. The data consisted of 96 castrated males and 96 guilts from a single herd. When 

pigs reached 30 kg they were weighed twice a week until they reached 95 or 115 kg. Feed intake 

was recorded for individual pigs by feeding machines. Though plots of weight records showed 

linear growth through the test period, it was found that forth order polynomial models provided 
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the best fit. Additionally it was found that growth rate was not constant, with maximal rates of 

growth attained between 30 and 40 days of age.     

The use of RRM to model growth in beef cattle has garnered particular interest in the 

field of breeding and genetics. Alberquerque and Meyer (2001) explored the order of fit required 

for RRM analysis of beef cattle growth data. RRML of varying orders were applied to Brazilian 

Zebu cattle records. The data set contained only animals with three weights. The best models, as 

identified by Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), 

had forth and sixth order regressions on animal direct effects, respectively. The results of the 

model selection strongly implied that adequate modeling of random effects for growth in beef 

cattle required the use of fourth order or higher polynomial functions. 

Currently growth in beef cattle is modeled by multivariate models referred to as multiple 

trait models (MTM), but the longitudinal nature of the data makes the use of RRM a more 

theoretically sound model for evaluation of weight data (Kirkpatrick et al., 1990). Meyer and 

Hill (1997) compared the properties of RRM and MTM for evaluation of growth in beef cattle. It 

was noted that an MTM with the number of traits equal to the number of ages would be greatly 

over-parameterized, while RRM could use a function model (co)variances at any age without 

over-parameterization. Furthermore, eigenvalues from a covariance matrix could provide 

information on how mean growth curves will change under selection pressure. It was also noted 

that (co)variance function parameters could be easily estimated from the data using maximum 

likelihood methodology.    

Meyer (2004) used simulated data to compare the accuracies of RRML and MTM in the 

prediction of breeding values (BV) for growth.  Data were simulated assuming a cubic function 

on age for random effects. Accuracies of the MTM and RRML were calculated as correlations 
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between the true and simulated values.  It was found that when analyzing the same records, the 

RRML was consistently more accurate than the MTM. This was attributed to the more correct 

modeling of the (co)variances in the RRML. When incorporating data outside the MTM ranges 

the increases in the accuracies of the RRML, when compared to RRML utilizing only MTM 

data, depended on the number of records located beyond MTM ranges. Based on these findings it 

was concluded that when large numbers of records were located outside the MTM ranges, the 

RRML’s ability to incorporate such records could yield more accurate BV predictions.  

   While the RRML provides more appropriate modeling of (co)variance, applications of 

RRML to growth, as with milk yield (Van Der Werf, 1998), have revealed potential problems 

concerning the estimation of parameters for Legendre polynomials. Nobre et al. (2003a) 

estimated genetic parameters for Nelore cattle using REML under the framework of RRML and 

MTM. Two data sets were used for parameter estimation. One data set contained only animals 

with complete records collected and the other contained animals with missing records. Parameter 

estimates from data containing missing records were compared to estimates from complete data 

to determine the effects of missing information on RRML parameter estimates. It was found that 

estimates from RRML using incomplete data show large increases in estimates after 600d of age. 

It was concluded that estimates of parameters from RRML in sparse areas of data were subject to 

artifacts of the data.  

Nobre et al. (2003b) applied both MTM and RRML to growth records of 619,989 Nelore 

cattle.  The parameters for both models were from Nobre et al. (2003a). In order to achieve better 

numerical properties for the RRML, parameter matrices were diagonalized and order was 

reduced based on eigenvalues that were close to zero. When diagonalization was not performed 

correlations between iterative solvers and programs that solved via inversion were very low. 
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With diagonaliztion and strict convergence criteria, these correlations jumped to .998. 

Correlations of random effects between MTM and RRML were lower than expected, and were 

likely a result of the differences in parameter estimates between the two models. 

In the absence of comparable parameter estimates it is difficult to compare the 

performance of MTM and RRM when applied to real data. Legarra et al. (2004) notes that unlike 

milk yield records, beef cattle records tend to be clustered around MTM ages. This clustering of 

data makes RRML particularly vulnerable to artifacts when estimating parameters. To eliminate 

this problem a method to derive more accurate and practical parameters was examined. Using 

techniques similar to those used by Kirkpatrick et al. (1990; 1994), RRML parameters were 

derived directly from MTM parameters. The residuals were split into permanent and temporary 

environmental components. Deriving the parameters rather than estimating them from the data 

eliminated problems arising from artifacts, as well as assuring that RRML and MTM parameters 

were equivalent, which allowed more informative comparisons of model performances with real 

data.  

 While much attention has been focused on the use of RRML, splines present a simple 

alternative to model growth data. Splines are simple piecewise functions that are fit through 

control points referred to as knots. The ability of splines to use available MTM parameters 

eliminates problems associated with parameter estimation by RRML. Wold (1974) explored the 

advantages of using spline functions, arising from their piecewise nature. It was acknowledged 

that the localizing effect of the piecewise functions makes splines superior for describing 

disjointed data. Additionally, it was stated that the use of simple polynomials to construct splines 

makes them computationally simple. Due to the splines’ flexibility and local properties, Wold 

concluded that splines were excellent tools for analysis of continuous data.        



 9 

A study conducted by Huisman et al. (2002) examined the use of splines to fit 

(co)variance functions. Both RRML and RRM utilizing a spline function (RRMS) were applied 

to the weight data of pigs. Sire models were used to evaluate 1,315 boars with weights taken at 

three periods. AIC and BIC were used to evaluate the performance of each model. It was found 

that both the RRML and RRMS performed better than MTM. RRMS required fewer parameters 

to model the data than did the RRML, and was favored by AIC. The results of this study showed 

that RRM provided the best fit to pig data. Additionally, results indicated that RRMS was a 

viable alternative to RRML. 

Bohmanova et al. (2005) conducted a simulation study to performance of MTM, RRML, 

and RRMS using linear splines with growth data. Three non-overlapping generations of animals 

were simulated with random mating of males and females. Random effects were simulated with 

cubic Legendre polynomials. Four data sets were created containing three records per animal 

measured at exact intervals, three measurements over varying intervals, five measurements at 

exact intervals, or five records at varying intervals. Comparisons of accuracies showed that both 

RRML and RRMS performed better than MTM when ages were measured over uneven intervals. 

The performance of RRMS was comparable to that of RRML, though RRML had slightly higher 

accuracies with data containing five records measured at uneven intervals. Plots of (co)variance 

functions showed that RRML yielded smoother functions, but addition of knots to the spline 

could reduce such differences. 

Much of the work on RRM has focused on the modeling of random effects. However, 

correct modeling of fixed effects is of equal importance. Schaeffer (2004)    stresses the 

importance of fixed effect modeling in the context of RRM and suggest that careful attention be 

paid to fixed effect functions. Modeling of fixed effects in RRM has been done largely through 
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the use of polynomial regressions on age. Jamrozik et al. (1997) used a model with regressions 

on both fixed and random effects to analyze Holstein milk yield traits. There were 5.1 million 

test day milk yield records collected from four regions in Canada. A subset of the original data 

set containing only first lactation records was used for evaluation. A cross classified herd test day 

effect and polynomials nested in 32 subclasses were used to model fixed effects. While 

polynomials of the same form were used to model both fixed and random effects, it noted that 

covariables for fixed and random effects could differ. Further research in this area was 

recommended.   

Strabel and Misztal (1999) used single- and two-trait RRML to estimate parameters for 

milk yield traits in Polish Black and White cattle. Data contained 131,985 first and second parity 

records on 10,746 cows. Fixed effect models included a cross classified herd test day effect and a 

polynomial regression with three covariates. The polynomial regression was nested in age-season 

classes and was intended to model the mean lactation curve within each class. 

In an application of RRML to modeling of growth in beef cattle, Meyer (2001) analyzed 

42,860 records on 7,185 animals from two herds collected from a selection experiment. RRML 

with orders of fit up to six were examined. To insure direct comparisons of models, all RRML 

used the same fixed effect equations. The fixed effect model included a cubic orthogonal 

polynomial regression on age. Based on previous investigations into fixed effects, it was found 

that the use of higher order polynomial regressions on age yielded negligible decreases in 

residual sums of squares.  

As with random effects, splines can provide an alternative to polynomial regressions 

when modeling fixed effects. Guo (2002) showed that splines can effectively model both fixed 

and random effects using mixed model equations. Unlike polynomials, in which a small subset of 
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data can affect an entire function, splines are defined piecewise, thus localizing the effects of 

sparse data (Wold, 1974). An additional advantage of splines, resulting from their piecewise 

construction, is the ability to use computationally simple polynomials to model complex 

functions (Molinari et al., 2002). Splines have been examined in the context of fixed effect 

modeling in animal breeding and genetics and modeling other types of biological data.  

Druet et al. (2003) examined several functions for the modeling fixed lactation curves of 

French Holstein cows. Ten data sets with a total of 776,858 test day records on 95,823 cows 

were used in analysis. Fifth order Legendre polynomials, the Wilkmink curve, the Ali-

Schafaeffer curve, a fixed classes curve, and regression splines were chosen to model fixed 

lactation curves. The five models were compared based on mean sum of squares of the residual, 

the mean residual, log likelihoods, BIC, and AIC. The regression splines and the fixed classes 

had mean residuals at or very near zero throughout the lactation while all other curves showed 

fluctuating bias. Regression splines showed little local variation as opposed to the fixed classes 

model. It was concluded that regression splines were a compromise between the fixed classes, 

non-linear functions, and the polynomial regression. The regression splines required limited 

parameters, had good flexibility, were smooth, and had limited sensitivity to the data. These 

properties led to the conclusion that regression splines provided the best modeling of fixed 

lactation curves. 

In a study of HIV dynamics, Wu and Zhang (2002) explored the use of natural cubic 

splines in modeling HIV infection over the course of several years. The performance of cubic 

splines models for short term and long term HIV dynamics were compared to parametric models 

traditionally used to model short-term dynamics. Data was collected from 48 HIV-infected 

patients undergoing highly active antiretroviral therapy. Viral load was measured on days 0, 2, 7, 
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10, 14, 21, and 28 as well as weeks 8, 12, 24, and 48 after initial treatments. Both AIC and BIC 

favored the cubic spline model containing one internal knot. The models provided comparable 

short-term estimates, but only the spline model was capable of modeling long-term effects. 

Based on these results it was concluded that the spline model significantly outperformed the 

parametric biexponential model.          

Rosenburge et al. (2003) analyzed risks associated with alcohol consumption and oral 

cancer amongst African Americans in a data set containing 194 cases and 203 controls. Several 

smoothing and linear spline models were used to analyze the data and compared using AIC. It 

was found that for both the smoothing and linear splines, two segment functions with an internal 

knot placed at the median of the data performed the best. Though the smoothing splines provided 

fluent curves, the AIC for both the linear and smoothing splines were very similar. It is 

concluded that the use of splines to model risk factors was a practical advancement over models 

using traditional regression techniques. 

Molinari et al. (2002) examined the use of splines to analyze oxidation of low density 

lipoproteins. Data was collected by continuously recording oxidation of low density lipoproteins 

over a period of 400 minutes. Data was then analysed using a linear spline with three knots. The 

spline model was fit using traditional least square equations. It was found that the use of splines 

provided a computationally simple model for estimation of parameters associated with oxidation 

of low density lipoproteins. 

In a study on the use of splines to model pharmacodynamic data, Aarons et al. (2004) 

fitted a longitudinal spline model to data from a double-blind, placebo-controlled study. The data 

was collected from 100 hundred hypertension patients ranging 21 to 79 years of age receiving 

one of four CR-verapamil doses. The longitudinal spline was constructed using a cubic spline 
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with 11 knots. To test the ability of the spline to handle sparse data, the original data set was 

reduced by 66%. Comparisons of parameter estimates from the full and reduced data set showed 

little change in these estimates. The results demonstrated the longitudinal spline’s ability to 

handle sparse data effectively. 

The use of two-dimensional splines provides an expansion to one-dimensional splines 

along a second plane. Two-dimensional splines allow the joint modeling of variables that have 

dependent curves. The most common use of two-dimensional splines has been in the form of thin 

plate splines used for engineering and graphical applications (Meinguet, 1979). The modeling of 

continuous functions along the axes of two variables can provide considerable advantages over 

one-dimensional splines which model along the axis of a single variable, thus requiring no 

nesting and providing implicit modeling of interactions when variables are not independent.    

Bookstein (1989) describes the thin plate spline as a two-dimensional generalization of 

the one-dimension cubic spline that models the bending of a thin plane of space between sets of 

landmark points or knots. When used for biological applications, it is noted that, these knots can 

be thought of as combinations of two variables that have some meaningful interpretation. It is 

shown that the two dimensional spline can be broken down to a linear part, as well as, a 

nonlinear component that provides a smoothing effect between knots. In an application to x-ray 

data from patients suffering from Apert Syndrome, the mean deviations of eight landmarks in the 

upper jaw were modeled with the thin plate spline. The x and y variables represented the location 

landmark points in the jaw of patients suffering from the syndrome. The use of the two-

dimensional spline allowed easy modeling of the mean deformations in the upper jaw resulting 

from Apert Syndrome. 
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 It has been shown that RRM can provide theoretically sound models for analysis of 

longitudinal data. Due to artifacts of data, models that derive parameters from MTM type 

(co)variance matrices, rather than from the data directly, provide the most reliable parameter 

estimates. Both splines and orthogonal polynomials have been shown to be effective in the 

modeling of random effects. Applications of RRML to large data sets have shown that reduced 

rank models are computationally feasible. The robustness and simplicity of splines make them an 

appealing alternative for modeling of fixed effects. Additionally, the ability of two-dimensional 

splines to jointly model effects could make them a superior model choice in situations where 

fixed effect covariates are not completely independent of each other.  
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Abstract 

Genetic evaluation of growth in Gelbvieh beef cattle was examined by multiple-trait 

(MTM) and random regression (RRM) analysis. The data set contained 541,108 animals with 

1,120,086 records. Approximately 15% of the animals in the dataset had at least one record 

measured outside of the accepted MTM age ranges for weaning weight (Wwt) and yearling 

weight (Ywt), and thus were excluded from MTM evaluations. Fourteen percent of Wwt records 

and 19% of Ywt records were measured outside of the accepted ranges for MTM analysis. Two 

RRM evaluations were performed using cubic Legendre polynomials (RRML) and linear splines 

(RRMS) with 3 knots at 1, 205, and 365 days of age. Data set one (d1) utilized all available 

records, while data set two (d2) included only records measured within MTM ranges (1 d, 160 to 

250 d, and 320 to 410 d). The RRML models did not reach convergence until diagonalization 

was imposed. After diagonalization, it was found that all longitudinal models required fewer 

iterations to converge than the MTM. Correlations between the MTM, RRML-d2, and RRMS-d2 

evaluations were ≥  0.99 for all three traits, indicating that these models were equivalent when 

predicting breeding values from data within the MTM age ranges. Correlations between MTM, 

RRML-d1, and RRMS-d1 were > 0.99 for Bwt and > 0.95 for Wwt and Ywt. The lower 

correlations for Wwt and Ywt indicate that the added information does affect breeding value 

prediction. The RRM has the capability to incorporate records measured at all ages into genetic 

evaluations at a computing cost similar to the MTM.              

 

Key Words: Beef Cattle, Legendre Polynomial, Multiple Trait, Random Regression, Spline 
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Introduction 

Multiple-trait models (MTM) treat all records for a trait as being measured at the same 

age and having the same parameters. This creates the need for age adjustments, establishment of 

age ranges, and the subsequent elimination of records measured outside these ranges. These 

characteristics of MTM have led to the development of random regression models (RRM) for 

growth traits (Meyer and Hill, 1997; Albuquerque and Meyer, 2001). These models eliminate the 

need for MTM adjustments by modeling the changes in (co)variance over time. Meyer et al. 

(2004) showed that these properties of RRM could lead to increases in the accuracy of breeding 

value prediction.   

Although the RRM is theoretically more appealing, previous RRM evaluations using 

Legendre polynomials (RRML) have yielded inaccurate results (Nobre et al., 2003b). Nobre et 

al. (2003a) found that estimates of RRML parameters where little data were available were 

unreliable. Recently Legarra et al. (2004) attempted to eliminate unreliable RRML parameter 

estimates by deriving them directly from MTM parameters using methods similar to those used 

by Kirkpatrick et al. (1990; 1994). Bohmanova et al. (2004) looked at RRM for growth traits 

using simulated data, and found that, in addition to reliable parameters, RRML required 

diagonalization for numerical accuracy.   

           While much of the interest in longitudinal models has been focused on RRML, linear 

splines present a simple alternative. With splines poorly estimated parameters are not a factor as 

they use MTM parameters. A spline fits a series of functions through control points referred to as 

knots. The use of linear spline functions can eliminate the numerical problems associated with 

RRML and decrease the cost of implementation. 
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 The objective of this study was to compare genetic evaluations of growth data in a large 

beef cattle population using RRM and MTM to determine the practicality of implementing 

longitudinal evaluations for national data sets.              

                                                    Materials and Methods 

 Evaluations were performed on Gelbvieh records spanning 1972-2001. The initial data 

set contained records on 667,174 animals for birth weight (Bwt), weaning weight (Wwt), and 

yearling weight (Ywt). All animals that were less than 50 % Gelbvieh, had dams younger than 

550 days, or were the only animal in a contemporary group were removed. All records greater 

than four standard deviations from the mean weight were removed. Seven age-of-dam classes 

(AOD) were created beginning at 550 days of age. Contemporary groups (CG) included breeder 

defined CG, sex, and percent Gelbvieh. In addition, Bwt CG included birth year and season. Two 

data sets were formed. Data set 1 (d1) contained all available records, while data set 2 (d2) 

contained only the records measured at (1 d, 160 to 250 d, and 320 to 410 d).  

The complete data set (d1) contained 1,120,086 records on 541,108 animals. 

Approximately 15% of the animals had at least one record measured outside the accepted MTM 

age ranges for Wwt and Ywt. Fourteen percent of Wwt records and 19% of all Ywt records were 

measured outside the accepted ranges for MTM analysis. However, nearly 65% of records 

measured outside MTM ranges were within 20 days of age range bounds. A summary of the 

complete data set is found in Table 3.1. 

 All parameters used in this study were from work done by Legarra et al. (2004). Legarra 

et al. (2004) provides detail descriptions of the methods used to estimate all parameters. All 

models and parameters used in this study were the same as those used by Bohmanova et al. 
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(2004) with the exception of fixed effect estimation. Since contemporary groups did not remain 

constant across traits, a continuous regression could not be used in the longitudinal evaluations. 

Fixed effects for all models were determined using the following equation:                  

       jtllttllttlltiijlt aodageageageageageagecgfixed +−+−+−+=
32 )()()( ααα , 

where cgi = contemporary group i; αlt = linear, quadratic, and cubic regression coefficients at age 

l and trait t; agel = age l of animal; aget = equals the reference age of trait t; aodj = age of dam 

class j. In longitudinal models the equation was nested in three dummy variables, representing 

the three traits. In addition, the age of dam classes and contemporary groups were re-numbered 

for Wwt and Ywt traits. These modifications were made to ensure that the equation was 

equivalent for all models used in this study.  

The MTM model presented in scalar notation was: 

ijklmntmtmtktijltijklmnt empematdirfixedy ++++= ,  

where yijklmnt = weight for trait t at age l of contemporary group i, and age of dam group j; dirkt = 

the random direct additive effect of animal k for trait t; matmt = the random maternal effect of 

dam m for trait t; mpemt the maternal permanent environmental effect of dam m for trait t; and 

eijklmnt = random residual effect. Direct and maternal effects were assumed correlated. 

 The RRM using linear splines in scalar notation was: 
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where yijklmn = weight for trait t of contemporary group i, and age of dam group j; dirdk and pedk = 

spline coefficients d for additive direct and permanent environmental effects for animal k; matdm 

and mpedm  = spline coefficients d for maternal and maternal permanent environmental effects for 
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dam m; eijklmn= weighted heterogeneous random residual;  and sdl = dth coefficient of the linear 

spline function for an observation taken at age l.          

    The RRM, constructed with cubic Legendre polynomials, was defined as: 

ijklmndm
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,  

where yijklmn = weight for trait t of contemporary group i, and age of dam group j; dirdk and pedk = 

random regression coefficients d for additive direct and permanent environmental effects for 

animal k; mdm and mpedm = random regression coefficients for maternal and maternal permanent 

environmental effects for dam m; eijklmn= weighted heterogeneous random residual ; and zdl = dth 

coefficient of Legendre polynomial for observation taken at age l. 

The weights for the heterogeneous residual variance were modeled using linear splines, 

as in Bohmanova et al. (2004) and Legarra et al. (2004), and implemented by weighting each 

observation. Solutions were computed by the program BLUP90IOD, which uses iteration on data 

with the precondition conjugate gradient iteration (Tsuruta et al., 2001). 

Results and Discussion 

 In this study, MTM was fit to d2 only, while RRML and RRM with linear splines 

(RRMS) were fit to d1 and d2. The number of iterations required for convergence of each model 

is reported in Table 3.2. Both the RRML and RRMS required fewer iterations than the MTM, 

indicating that longitudinal models do not have higher computational requirements than multiple 

trait models. This is in agreement with earlier results showing that similar RRMs required less 

memory and time than MTM (Nobre et al., 2003b). However, it should be noted that only the 

RRML was diagonalized, as convergence could not be reached otherwise. Bohmanova et al. 

(2004) obtained convergence of RRML without diagonalization using a smaller simulated data 

set. In that case, the diagonalization decreased computing over five times. In order to achieve the 
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most accurate results, a strict convergence criterion of 10
-14

 was assigned to all models. Previous 

work by Nobre et al. (2003b) found that strict convergence criteria were necessary to obtain 

accurate RRML results. Similar strict convergence criterion for the preconditioned conjugate 

gradient iteration was necessary in a study by Tsuruta et al. (2001).  

Table 3.3 shows Pearson correlations of fixed effects between the MTM and longitudinal 

models when applied to data set two. The estimation of fixed effects was equivalent for all 

models used in this study. Correlations for direct effects between all models can be found in 

Table 3.4. As expected, correlations for Bwt were the highest as there are no age ranges for this 

measurement. Due to the longitudinal models’ ability to incorporate changes in (co)variance, the 

correlations were lower for Wwt and Ywt. However, these decreases were relatively small in 

correlations that involved models utilizing data set two. This suggests that the changes in 

variance within the MTM ranges are small. The decrease in correlations of RRML-d1 and 

RRMS-d1 with MTM for Wwt and Ywt were larger, indicating that the inclusion of all available 

records does affect BV predictions. However, due to the low numbers of outlying measurements 

in the data set these correlations were still > 0.95. Inclusion of large amounts of data measured 

outside the MTM age ranges could result in even lower correlations.   

 Correlations for maternal effects are found in Table 3.5.  Some discrepancy exists 

between the RRML-d2 and RRMS-d2 for weaning and yearling maternal effects. The high 

correlations for Bwt were expected, as the models are equivalent when estimating effects at birth. 

The RRML, however, could have some trouble fitting a function for maternal effects at weaning 

due to large biological differences between Bwt and Wwt maternal effects, resulting in lower 

correlations for Wwt maternal effects. Birth maternal effects are largely a measure of amniotic 

effects, while weaning maternal effects are a measure of milking.  The lower correlations for 
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both models at yearling age are relatively unimportant as maternal effects post weaning are 

merely residuals of earlier maternal effects. Albuquerque and Meyer (2001) found that 

heritabilities for maternal effects peak around 110 to 120 days of age, meaning higher responses 

would be expected if selection on maternal effects in this age range were practiced. Unlike the 

RRML, the current MTM does not predict maternal BV at this age. Both the RRMS-d2 and 

RRML-d2 had high correlations with the MTM for maternal permanent environmental (MPE) 

effects at all ages. The correlations, reported in Table 3.6, indicate that the longitudinal models 

and the MTM are very similar in prediction of MPE effects.  

In Table 3.7 sire rank correlations between MTM and the longitudinal models are 

presented. These correlations are for sires with 50 or more progeny records for at least one of the 

three traits. The high rank correlations indicate that implementing a longitudinal evaluation will 

have little impact on the rank of moderate to high accuracy sires with greater than 50 progeny 

when the models use only information measured within the usual MTM age ranges. However, 

lower rank correlations between RRML-d1 and RRMS-d1 with MTM were observed for Wwt 

and Ywt. Table 8 shows that when all available data are used the number of progeny records 

increase considerably for some sires. Furthermore many new sires are generated by the inclusion 

of all available records. Table 9 shows that the increase in records does have an effect on 

predicted breeding values, especially Wwt breeding values. These factors contribute to the lower 

sire rank correlations when all available data is used. 

 Although no age restrictions were placed on d1, the majority of records in d1 were close 

to the MTM age ranges. While the RRML and RRMS evaluations were similar when using d1, 

the models may not agree when large numbers of early Wwt and late Ywt records are present.  A 

3-knot spline was used in RRMS, the third knot being at 365 days. As a result, the variance of 
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records measured after 365 days of age was determined using an extension of the linear function 

between weaning and yearling knots. As an animal’s age increases beyond 365 days, the 

interpolation becomes less accurate. Bohmanova et al. (2004) compared variances between 

RRML and RRMS. While variances and correlations were quite similar for points between Wwt 

and Ywt, the variances as approximated by RRMS around 100 d were visibly smaller (and 

correlations larger) than those obtained from the RRML, and the reverse was true for 

observations over 365 d. Adding a knot at 100 d strongly decreased the differences in variances 

and correlations. When many records are available around 100 d and over 400 d, it may be useful 

to add extra knots to RRMS. Furthermore, as age increases, growth approaches an asymptotic 

value that, in addition to little data being available, can cause high order polynomial regressions 

like those used by RRML to become erratic.  

Implications 

The results of this study indicate that longitudinal models can be implemented effectively 

in beef cattle growth evaluations. The simplicity and easy implementation of the linear spline 

random regression model makes it an appealing alternative to the current multiple-trait model. 

The random regression model utilizing cubic Legendre polynomials requires diagonalization, 

however, it allows for smoother (co)variance functions. Both random regression models give 

practical and more flexible evaluations, while providing a more theoretically sound alternative to 

the multiple-trait model with relatively small cost of implementation.         
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Table 3.1. Characteristics of the data set
 

a
Bwt = birth weight. Wwt = weaning weight. Ywt = yearling weight.  

   Weight, kg                Age, d   

Traits
a 

Records Sires  Mean   SD Min  Max Mean  Min Max 

Bwt    508,918 16,786   38.9  5.3   19.1   59.0 - - - 

Wwt    460,346 16,069 258.3 45.8 75.3   440.9 202.4 76 328 

Ywt    150,822   9,743 449.7 81.2 162.8 772.0 357.84 216 501 
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Table 3.2. Convergence in iterations
 

Model
a 

Iterations 

MTM 678 

RRML-d1 456 

RRML-d2 274 

RRMS-d1 556 

RRMS-d2 254 

a
MTM = multiple trait model. RRML = random regression model utilizing Legendre 

polynomials. RRMS = random regression utilizing linear splines. d1= complete data set. d2= 

data set containing only records measured within MTM age ranges.                
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Table 3.3. Correlations of fixed effects between multiple trait and longitudinal models
 

Effect
a 

Birth Weight Weaning Weight Yearling Weight 

CG 0.999 0.998 0.999 

AOD 0.999 0.999 0.999 

a
CG = contemporary group. AOD = age of dam class.                         
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Table 3.4. Correlations for direct additive effects
 

a
MTM = multiple trait model. RRML = random regression model utilizing Legendre 

polynomials. RRMS = random regression utilizing linear splines. 
b
Data set 1= complete data set. 

Data set 2= data set containing only records measured within MTM age ranges.           

Model
a 

Birth 

Weight 

 Weaning 

Weight 

 Yearling 

Weight 

 

   Data Set 2
b 

   

 RRML MTM     

RRMS 0.999 0.999 0.998 0.992 0.996 0.992 

RRML  0.998  0.992  0.991 

   Data Set 1    

 RRML MTM     

RRMS 0.999 0.994 0.996 0.953 0.993 0.951 

RRML  0.990  0.959  0.956 
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Table 3.5. Correlations of maternal effects between multiple trait and longitudinal models
 

 aRRML = random regression model  utilizing Legendre polynomials. RRMS = random 

regression utilizing linear splines. d2= data set containing only records  

 measured within MTM age ranges.     

Model
a 

Birth    Weight Weaning Weight Yearling Weight 

RRMS-d2 0.995 0.988 0.970 

RRML-d2 0.991 0.975 0.981 
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Table 3.6. Correlations of maternal permanent environmental effects between multiple-trait and 

longitudinal models
 

a
RRML = random regression model utilizing Legendre polynomials. RRMS = random regression 

utilizing linear splines. d2= data set containing only records measured within MTM age ranges.     

Model
a 

Birth Weight Weaning Weight Yearling Weight 

RRMS-d2 0.984 0.985 0.986 

RRML-d2 0.983 0.985 0.986 
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Table 3.7. Rank correlations of sires with greater than 50 progeny between Multiple trait and 

longitudinal models 

a
RRML = random regression model utilizing Legendre polynomials.  RRMS = random  

regression utilizing linear splines. d1= complete data set. d2= data set containing only records 

measured within MTM age ranges.  

                     

Model
a 

Birth Weight Weaning Weight Yearling Weight 

RRMS-d2 0.999 

 

0.992 

 

0.990 

 

RRML-d2 0.999 

 

0.993 

 

0.987 

 

RRMS-d1 0.996 

 

0.961 

 

0.956 

 

RRML-d1 0.995 

 

0.965 

 

0.948 
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Table 3.8. Increases in sire information when all available data are utilized versus MT data
 

 
a
Increase = the increase in progeny records due to the utilization of all available data. 

a
Bwt = 

birth weight. Wwt = weaning weight. Ywt =   yearling weight. 
b
New sires = animals that had no 

progeny records in the edited data set, but had at least one progeny record in the complete data 

set    

                                No. Sires
a
 

Increase
b 

Wwt Ywt 

New sires    626    648 

> 0% 9,008 4,898 

≥ 100%    655    545 

≥ 500%      31      38 



 37 

Table 3.9. Correlations of sires that gain greater than 100% more progeny records when all data 

was utilized
 

Model
a 

Weaning Weight Yearling Weight 

 MTM MTM 

RRMS-d1 0.876 0.927 

RRML-d1 0.884 0.919 

a
MTM = multiple trait model. RRML = random regression model utilizing cubic Legendre 

polynomials. RRMS = Random regression model utilizing linear splines. d1= complete data set.  

d2= data set containing only records measured within MTM age ranges.                     
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CHAPTER 4 

 

JOINT LONGITUDINAL MODELING OF AGE OF DAM AND AGE OF ANIMAL
1

                                                 
1
 Robbins, K. R., Misztal, I., J. K. Bertrand. To be submitted to the Journal of Animal Science.  
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Abstract 

We examined the joint modeling of age of dam (AOD) and age of animal in a random 

regression model analysis of growth in Gelbvieh cattle. The first method (M1) was analogous to 

the multiple trait analysis and consisted of AOD as a nested class variable and a cubic 

polynomial regression on age nested within birth, weaning and yearly weights. The second 

method (M2) utilized two-dimensional linear splines, with age knots at 150 d, 205 d, 270 d, 340 

d, and 390 d. The AOD knots were placed at 725 d, 1464 d, and 2189 d. A data set containing 

Gelbvieh growth records was split along contemporary groups into two data sets. Data set 1 (D1) 

contained 316,078 records and was used for prediction by mixed model equations. Data set 2 

(D2) contained 164,167 records and was used for cross validation. Models were evaluated based 

on R
2
, average squared error (ASE), percent bias, and plots of solutions. ASE for weights 

associated with birth weight, weaning weight and yearling weight for M1 were 15, 505, and 703 

kg
2
. Due to the nonlinearity of M2, large jumps in fixed effect estimates were observed outside 

the two-dimensional grid. To eliminate this problem, weighted one-dimensional splines were 

used for extrapolation beyond the two-dimensional grid. For M2, with hybrid spline 

extrapolation, the ASE were 15, 542, and 777 kg
2
. Creation of optimal two-dimensional splines 

is difficult when data is clustered.  

 

Key Words: polynomial regression, two-dimensional spline, cross validation. 

  

Introduction 

While much work has been done on the modeling of random effects in random regression 

models (RRM) for growth, relatively little attention has been paid to the modeling of fixed 
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effects in this context. When evaluating growth, two continuous covariates are commonly 

modeled, the age of dam effect (AOD) and the animal’s age. Multiple trait models (MTM) are 

currently used to analyze growth in beef cattle and as a result, records tend to be clustered around 

birth, weaning and yearling ages. With such age distributions, polynomial functions nested 

within each trait seem to be an obvious choice for the modeling of these effects. However, as 

RRM models become more widely accepted, larger and more continuous age ranges will be 

recorded for evaluation. This could make nesting more difficult and outlying age records could 

make polynomials vulnerable to artifacts.  

An alternative to polynomial regressions are splines. Splines are a series of polynomial 

functions fit through control points, referred to as knots. It has been shown that spline functions 

are resistant to artifacts (Aarons et al., 2004; Druet et al., 2003). Unlike polynomial regressions 

in which a small subset of data can affect the entire function, splines are defined by a series of 

polynomials that are affected only by their bounding knots (Molinari et al., 2002). While one-

dimensional splines provide a more robust model, they still require nesting when modeling AOD 

and age of animal. Two-dimensional splines can provide a generalized and robust model for 

fixed effects. The selected two dimensional knots provide automatic nesting and implicit 

modeling of interactions while reducing the effects of outlying records.   

The purpose of this cross validation study was to compare the performance of several 

models in evaluating growth in beef cattle, and provide a basic methodology for fitting two-

dimensional splines to biological data. 

Materials and methods 

Two methods were employed to model AOD and age of animal. Method 1 (M1) modeled 

AOD as a within-trait nested class variable and utilized a within-trait nested cubic polynomial 
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regression to model age of animal. Method 2 (M2) jointly modeled AOD and age of animal with 

a two-dimensional spline. All evaluations were performed on the data set used by Robbins et al. 

(2005). The data set was split within contemporary groups (CG). All CG with less than 15 

animals were eliminated to ensure accurate estimation of CG by the prediction data set.. Data set 

1 (D1) contained 316,078 growth records on Gelbvieh cattle and was used for mixed model 

evaluation. Data set 2 (D2) contained 164,167 records and was used for cross validation. 

Solutions obtained by the program BLUP90IOD (Tsuruta et al., 2001) from the analysis of D1 

were used to predict the records of animals in D2. Using the actual and predicted D2 records, the 

average squared errors (ASE) and percent bias were computed for each model at each trait (birth 

weight, Bwt; weaning weight, Wwt; and yearling weight, Ywt). The ASE, percent bias, R
2
, and 

plots of fixed effect solutions were used to evaluate each model. 

All random effects were modeled using linear splines. The equation for random effects in 

scalar notation was: 

ijklmdm
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where randomijklm = sum of random effects for trait t, and age of dam group j; dirdk and 

pedk = spline coefficients d for additive direct and permanent environmental effects for animal k; 

matdm and mpedm  = spline coefficients d for maternal and maternal permanent environmental 

effects for dam m; eijklm= weighted heterogeneous random residual;  and sdl = dth coefficient of 

the linear spline function for an observation taken at age l. This is the same equation as used by 

Robbins et al. (2005). 

 The fixed effect model using within-trait nested cubic polynomial regressions on age and 

within-trait nested AOD classes was: 
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       jttllttllttlltiijlt AODageageageageageagecgfixed +−+−+−+=
32 )()()( ααα

, 

where cgi = contemporary group i, comprised of animals of the same sex, percent 

Gelbvieh, and from the same breeder defined management groups; αlt = linear, quadratic, and 

cubic regression coefficients at age l and nested in trait t; agel = age l of animal; aget = the 

reference age of trait t; AODj = age of dam class j nested in trait t. The age of dam classes were 

renumbered for Wwt and Ywt traits for nesting purposes. 

A second model that contained the same within-trait fixed effects plus an additional AOD 

by age of animal interaction was fit to the data and is described below: 

)*()()()( 32

ljltjtllttllttlltiijlt ageAODaodageageageageageagecgfixed αααα ++−+−+−+=

  

where AODj*agel = the interaction of AOD class j by age of animal 1. 

The two dimensional spline model can be written as: 

)1)(1()1)(1()1()1()1(1)1( ****
−−−−−−−−

++++= jljljljljjlljljiijl cfcfcfcfcgfixed αααα
  

where cf = the coefficient of an animal with age and AOD such that:  

age(l-1) < age ≤ agel and AOD(j-1) < AOD ≤ AODj ; and αlj = the estimated knot value for age l and 

AODj.     

 The coefficients for the two dimensional splines were determined as: 

                                                  
22

yxcf lj +=
 

 where x is 1- the distance of the age of animal from the knot for age of animal; y is 

determined by 1- the distance of the AOD from the knot for AOD when 0<=distance<=1.  

Since the two-dimensional spline was poor at extrapolation beyond the two-dimensional 

grid, a model was run that used the weighted sum of 1-dimesional splines for extrapolation 

beyond the grid knots. The equation was: 
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where wi = weighting factor for 1-dimensional splinei; lcf = the linear spline coefficient a 

for 1-dimesional spline extrapolation; knotad = the two dimensional spline knot for age of animal 

a and age of dam d; nk = the number of one-dimensional spline functions. An alternative is to 

create a function with an asymptote such that knot ad = a one-dimensional spline knot at age a, 

with age a being 1day beyond the bound of the two-dimensional grid, and age of dam d, with age 

of dam d being 1 day beyond the bound of the two dimensional grid. This results in a non-

continuous model with an increased number of knots.   

 Since evaluation models were over parameterized, mean squared error could not be used 

as there were no degrees of freedom. Therefore, the ASE was used to evaluate the fixed effect 

models. The ASE was computed as: 

n
yyASE i

n

i

i

2

1

)ˆ( −= ∑
=

 

where yi = the weight of animal i; ŷi = the predicted record of animal i; n = the number of 

records contained in the test data set.  In addition to ASE, percent bias was calculated as: 

100*])ˆ([
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∑∑
==
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n

i

ii

n

i

i yyybiaspercent  

 The steps involved in model selection differ greatly between M1 and M2. These 

differences represent an important distinction between model types and should be taken in to 

consideration when formulating a fixed effect model. To construct the polynomial model one 

needs to consider the order of the polynomial as well as the need and location for nesting. Since 

AOD was modeled as categorical, class boundaries had to be defined. Such considerations make 

model selection a relatively simple process for M1. 
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Creating an optimal two-dimensional spline model can be much more time consuming 

than with polynomial regressions. Splines are approximations that depend heavily on the location 

of the knots. There must be enough knots to adequately model the shape of the function, and 

there must be enough records in each interval between knots to accurately estimate knot values. 

Unfortunately, there is no automatic procedure for the selection of knots; however, there are 

some general rules that can aid this process. Wold (1974) suggests the use of as few knots as 

possible, no more than one extremum and one inflection point per interval, and the location of 

knots close to inflection points. In the case of the two dimensional spline, the application of these 

rules to each variable separately can provide a good starting point. In addition, the two-

dimensional spline’s inability to model data outside the two-dimensional grid necessitates the 

placement of knots at extreme values. However, if data is sparse around the extremums, the use 

of weighted spline extrapolation may give the best results.    

Once a base model has been established there are some generalized procedures for the 

addition of knots to the model. One procedure is to place an additional knot at the median of the 

existing interval (Rosenburg et al., 2003). This process could be useful when the data is 

continuously distributed. In the case of growth data in beef cattle, both age and AOD are 

clustered, thus limiting the areas in which knots can be placed. In such a case the median may 

not be the best place to add additional knots, however, the general principles of this procedure 

can be useful in expanding the base model.  When dealing with disjointed data placing knots at 

the end points of each cluster may be a good idea, however, if data is sparse at the endpoints 

placing the knots closer to the center can provide better results. 

  When using two-dimensional splines, variables may behave differently depending on the 

value of another variable. In such a case placing knots based on each variable’s curve alone may 
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not be optimal. To account for possible interactions or nesting effects, conditional plots can be of 

value. Plotting a variable by each interval of the other variable can help in determining how the 

two variables interact. In such a case, it is best to place as few knots as possible that allow 

enough flexibility to model possible interactions and nesting effects. It is important to remember, 

that while an optimized spline is robust against artifacts, the flexibility of the spline model makes 

it highly susceptible to artifacts when knots are poorly placed (Wold, 1974). 

Results and Discussion 

 Cross validation results in Table 4.1 show that M1 performed well. The model containing 

AOD by age of animal interactions did have lower R
2 

values than models without the interaction 

effect, suggesting no interaction is present in the data. The interaction model showed increases in 

ASE and negative biases for Wwt and Ywt. The relatively large and negative percent bias values 

show that the interaction model is over predicting records, this is likely due to over fitting of the 

model to D1.  It was expected that the nested polynomials would perform well given the 

disjointed nature of the age distributions. The fact that these data were collected for multiple trait 

evaluation provides obvious nesting choices. The distinct Bwt, Wwt, and Ywt groups, coupled 

with the high density of records within each group, makes nested polynomials an appealing 

model choice. However, as RRM become more widely used, distinctions between nesting groups 

will become blurred, and areas of sparse, outlying data could affect the polynomial regressions. 

The fixed effect plot for M1 can be seen in Figure 4.1. The function on age shows a 

period of steep linear growth between 75 d and 275 d, followed by a period of declining slope 

between 275 and 325 days of age. The declining slope is the result of the non-continuity of the 

nested regressions. The point at 275 d is calculated with the regression nested in Wwt while the 

point at 325 d is calculated by the regression nested in Ywt. Clearly the two nested functions are 
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disjointed. Beyond 325 d another period of steep linear growth can be seen. When looking at the 

AOD functions at birth and yearling in figure 4.2, there is a period of linear increase until 1500 d 

followed by a shallow incline to a relatively flat plateau at 2200 d. At yearling age the AOD 

function shows a linear incline to at plateau at 1500 d.  

For this application, the best fitting two dimensional spline models contained 5 age knots 

at 150, 205, 270, 340, and 390 days of age, with birth being analyzed separately. The function 

below 150 d was modeled as a decreasing function from 150 d towards zero. The function above 

390 d was modeled as an increasing function. Models that contained more age knots were erratic 

and seemed to be influenced by artifacts, while models with fewer knots performed poorly in 

cross validation. For AOD, three knots were placed at 725, 1464, and 2190 d. The AOD function 

was much more sensitive to artifacts than age of animal and thus only a few knots could be used. 

As AOD increases, data becomes considerably sparser. It was found that forcing a flat function 

through later dam ages at birth, weaning, and yearling yielded the best results. It should be noted 

that there is some flexibility in choosing knots, as several combinations of knots yielded 

comparable results to the above noted model. The exclusion of Bwt in the two-dimensional 

spline models had only a small effect on ASE and percent bias, but did provide the best model. 

As seen in Table 4.1, M2 performed well with the extended grid and weighted spline 

extrapolation methods. The parity of M1 and M2 at birth would be expected as there is no age 

variation, with the modeling of AOD effects being the only difference between models. Though 

there are some differences in R
2
, ASE, and percent bias at Wwt and Ywt, M1 and M2 had similar 

fits for these traits. These results suggest that M2 is capable of automatically nesting AOD within 

age of animal, but does not provide a superior fit to the data. While M1 does have seven 
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additional fixed effect parameters than M2, their effect on model complexity is negligible when 

weighted against the over 16,000 contemporary groupings.   

 When looking at the graph of M2 in Figure 4.3a, it appears that utilizing two-dimensional 

functions to extrapolate beyond the grid can result in large jumps in the estimated effects. This 

results from the fact that, unlike one-dimensional splines, two-dimensional coefficients must be 

forced to sum to a constant. Once outside the grid this restriction is removed and knot 

coefficients suddenly jump to values that no longer sum to this constant. As seen in figure 4.3b, 

the use of weighted spline extrapolation greatly alleviates this problem. The weighted spline 

function allows the sum of knot values to gradually increase or decrease from one. As well as 

giving smoother graphs, the use of the weighted interpolation gives lower ASE and percent bias 

as shown in Table 4.1. Another solution to this problem is the extension of the two-dimensional 

grid to encompass all data. This method performs well in terms of ASE and percent bias, but 

graphs of solutions in Figures 4.3c show it can be subject to artifacts. An alternative to the 

previously described M2 methods involves the elimination of the bounding knot farthest from 

any given data point. This would leave only three knots, allowing for a linear formulation of knot 

coefficients. In addition to this simplified triangular methodology, the inclusion of both fixed and 

random interaction effects could be effective for modeling of data sets containing multiple 

growth curves.   

The graph of M2, found in Figure 4.3b, shows an almost linear growth throughout the 

function with some curvature present. This linear growth is also observed in each of the two 

polynomial regressions found in Figure 4.1, however, with M2 the function is continuous. This 

property of M2 could make it a better choice for modeling data distributed continuously across 

all ages. The graph of the AOD effect at birth, found in Figure 4.2, shows a linear incline to a flat 
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plateau. When looking at AOD curves for weaning and yearling, slowly increasing functions can 

be seen prior to 1300 d followed by steeper linear inclines that plateau. For birth and weaning 

these plateaus are reached at 2200 d as do the M1 AOD functions. For yearling, M2 curves reach 

a plateau at around 1500 d much like M1. This is not surprising as AOD has little effect after 

weaning and AOD curves tend to be flatter. The AOD curves seemed particularly sensitive to 

artifacts when more than 3 or 4 knots were used. Such curves were very erratic and yielded poor 

results in cross validation. As can be seen in Figure 4.2, estimates of AOD effects obtained from 

M1 are of a larger magnitude than estimates obtain from M2. This is due to the location of the 

overall mean in each model. In M2, the overall mean was contained in contemporary group, and 

as a result, is not present in the AOD and age graphs. With the polynomial regression, some of 

the overall mean is present in the cross classified AOD effect, and therefore is present in the 

AOD and age graphs. The presence and absence of this mean has an impact on the magnitude of 

age and AOD estimates. However, putting scale issues aside, the graphs of M1 and M2 are 

similar for age of animal and AOD.    

The clustering of data around birth, 205 d, and 365 d makes the use of nested 

polynomials a relatively simple and effective way to model fixed effects in this application. 

However, as the use of RRM models becomes a more standard practice, the nesting of 

polynomials will become increasingly difficult as collection of data across ages becomes more 

continuous. Due to the disjoint nature of the nested polynomials, evaluation of animals with 

records located between Wwt and Ywt age ranges could be problematic. 

Given the current state of the industry in which records are clustered within predefined 

age ranges, M2 does not have an advantage over traditional polynomial regressions. Previous 

applications of two-dimensional splines have been in the form of thin plate splines used in the 
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context of engineering and graphical applications (Meinguet, 1979). In such instances, data is 

collected in a grid like manner or such that observations are located at key points given a known 

three-dimensional shape Bookstein (1989). Under such conditions, thin plate splines are very 

effective; however, in the present application neither of these conditions is met. This does not 

mean that two-dimensional splines cannot be effective, but they may not provide optimal 

performance. Despite this, the polynomial regression’s potential susceptibility to artifacts could 

make two-dimensional splines a more attractive choice.       

Implications 

 While nested polynomials perform well, their sensitivity to artifacts and need for nesting 

could create problems as records are measured for increasingly wide age ranges. Although two-

dimensional splines do not have superior performance with clustered data, their automatic 

nesting and robustness could make them an appealing choice for data sets in which nesting is 

difficult and areas of sparse outlying data are present. When modeling data collected for 

longitudinal analysis, the continuous nature of the two-dimensional spline may yield superior 

performance relative to the disjointed, nested polynomial model.     
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Appendix 4.1 

 An example of the calculations for the weights (wi) and spline coefficients (cf) utilized 

for extrapolation with weighted splines. The wi and cf for an animal’s record taken at 216d of age 

with a 3000d old dam is computed. Assuming the model used in this study, the bounding age 

knots for this record are at 205d and 270d with the last age of dam knot place at 2190d. If the 

extrapolation function is modeled as decreasing beyond age of dam 2190 the wi and cf would be 

calculated as follows: 
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    w1 = 1-[(216-205)/(270-205)] = .83 

    w2 = [(216-205)/(270-205)] = .17  

    cf = (2190/3000) = .73 

    Weighted spline extrapolation = .83*.73*knot(205,2190) + .17*.73*knot(270,2190) 

where knot(205,2190)  is the two-dimensional spline knot, as estimated by the mixed model 

equations, at 205d of age and a dam age of 2190d. Knot(270,2190) )  is the two-dimensional spline 

knot at 270d of age and a dam age of 2190d. 
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Table 4.1. Cross validation results 

Measurement
 

Birth Weight Weaning Weight Yearling 

Weight 

M1    

R
2 

ASE 

%bias 

 .40 

15 kg
2 

.56 

.74 

505 kg
2
 

-0.14 

.87 

703 kg
2
 

0.10 

M1 with interaction    

R
2 

ASE 

%bias 

.40 

15 kg
2
 

.56 

.72 

545 kg
2
  

-2.34 

.85 

837 kg
2
  

-2.53 

M2    

R
2 

ASE 

%bias 

.40 

15 kg
2
  

1.12 

.70 

600 kg
2
 

1.31 

.84 

876 kg
2
 

1.12 

M2 with weighted spline 

extrapolation 

   

R
2 

ASE 

%bias 

.40 

15 kg
2
 

.74 

.73 

542 kg
2
 

.36 

.86 

777 kg
2
 

0.52 

M2 with extended grid    

R
2 

ASE 

%bias 

.40 

15 kg
2
 

.87 

.72 

547 kg
2
 

.52 

.86 

802 kg
2
 

0.65 
a
ASE = the average squared error. M1= polynomial regression on age nested in trait  

an age of dam classes nested in trait. M2= Two-dimensional spline.  
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Figure 4.1. 3-d plots of Polynomial regression model nested in trait
 a

 

 

a
 There are no observations plotted between 275 d and 325 d of age. 
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 Figure 4.2. Plot of age of dam effect by age
a 

 

a
 The nested polynomial model is represented by the dashed line. The two-dimensional spline 

with weighted spline extrapolation is represented by the solid line.
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Figure 4.3. 3-D plots of two-dimensional splines 

 

a. 
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b. 
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c. 
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CHAPTER 5 

CONCLUSIONS 

 The results of these studies have shown that computationally feasible and robust 

longitudinal models can be implemented for nation beef cattle evaluations of growth. By 

deriving parameters from multiple-trait (co)variance matrices, stable and reliable parameters for 

orthogonal cubic Legendre polynomials can be obtained. Furthermore, diagonalization of 

Legendre polynomial parameters greatly decreases computational cost. Random regressions 

utilizing linear splines are computationally simple and have the capability to use existing 

multiple-trait parameters. Models utilizing splines and Lengedre polynomial required fewer 

iterations to converge than did the multiple-trait model.  

 Testing of random regression models showed that two-dimensional splines can 

effectively estimate fixed effects. The joint modeling of age of dam and age of animal eliminates 

the need to nest functions based on the animal’s age, and abolishes the need to explicitly model 

age of dam by age of animal interactions. The use of splines functions can also reduce the effects 

of sparse data fixed effect estimations. The coupling of two-dimensional splines for fixed effect 

estimation, and computationally feasible random regressions can yield a practical and robust 

model for evaluation of growth in beef cattle.        
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APPENDIX A  

 PARAMETERS USED FOR RANDOM EFFECTS 

 

Table A.1. Additive genetic effects (direct and maternal) for multiple trait models and random 

regression models utilizing linear splines 

a
Bwt = birth weight parameter. Wwt = weaning weight parameter. Ywt= yearling weight 

parameter. 

 

 

  Direct   Maternal  

Trait
a
 Bwt Wwt Ywt Bwt Wwt Ywt 

Bwt 

Wwt 

Ywt 

Bwt 

Wwt 

Ywt 

7.854 18.626 

144.909 

22.104 

163.930 

290.221 

-0.939 

-3.881 

-5.584 

2.348 

-3.734 

-15.433 

-22.205 

2.103 

43.228 

-4.091 

-16.910 

-24.331 

1.569 

41.693 

47.119 
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Table A.2.Additive genetic effects (direct and maternal) for random regression models utilizing 

cubic Legendre polynomials. 

a
d = direct effect parameter for each of the four orders of the cubic Legendre polynomial. m=  

maternal effect parameter for each of the four orders of the cubic Legendre polynomial. 

 

 

              Direct             Maternal  

Item
a 

d1 d2 d3 d4 m1 m2 m3 m4 

d1 510.104 0 0 0 -43.762 -0.900 -1.885 3.170 

d2  0.643 0 0 0.673 0.014 0.029 -0.049 

d3   47.938 0 -5.130 -0.105 -0.221 0.372 

d4    69.935 0.954 0.020 0.041 0.069 

M1     63.023 0 0 0 

M2      10.845 0 0 

M3       0.250 0 

M4        2.567 
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Table A.3. Maternal permanent environmental effect parameters for multiple trait models and 

random regressions utilizing linear splines 

a
Bwt = birth weight parameter. Wwt = weaning weight parameter. Ywt= yearling weight 

parameter. 

 

 

 

Trait
a 

Bwt Wwt Ywt 

Bwt 0.040 0.986 0.976 

Wwt  45.600 49.496 

Ywt   57.100 
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Table A.4. Maternal permanent environmental effects for random regressions utilizing cubic 

Legendre polynomials 

a
mpe = maternal permanent environmental parameter for each of the four orders of the cubic 

Legendre polynomials.  

 

 

 

 

 

 

Item mpe1 mpe2 mpe3 mpe4 

mpe1 0.002 0 0 0 

mpe2  2.413 0 0 

mpe3   3.899  

mpe4    78.375 
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Table A.5. Permanent environmental effect parameters for random regression models utilizing 

linear splines 

a
Bwt = birth weight parameter. Wwt = weaning weight parameter. Ywt= yearling weight 

parameter. 

 

 

 

 

Trait
a 

Bwt Wwt Ywt 

Bwt 1.031 7.240 8.998 

Wwt  187.511 298.101 

Ywt   557.360 
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Table A.6. Permanent environmental effect parameters for random regression models utilizing 

cubic Legendre polynomials  

a
pe = permanent environmental parameter for each of the four orders of the cubic Legendre 

polynomials.  

 

 

 

 

 

 

 

Item
a 

pe1 pe2 pe3 pe4 

pe1 0.071 0 0 0 

pe2  24.033 0 0 

pe3   117.598  

pe4    925.211 
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Table A.7. Residual parameters for multiple trait models 

a
Bwt = birth weight parameter. Wwt = weaning weight parameter. Ywt= yearling weight 

parameter. 

 

 

 

 

 

Trait
a 

Bwt Wwt Ywt 

Bwt 9.850 9.906 10.160 

Wwt  344.700 345.800 

Ywt   728.500 
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Table A.8. Residual parameters for random regressions utilizing linear splines and cubic 

Legendre polynomials 

a
Bwt = birth weight parameter. Wwt = weaning weight parameter. Ywt= yearling weight 

parameter. 

 

 

 

 

 

 

 

 

 

 

Trait
a 

Bwt Wwt Ywt 

Bwt 8.831 0 0 

Wwt  121.944 0 

Ywt   214.396 


