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Abstract

Finite mixtures of simpler component models such as mixtures of normals and mixtures

of generalized linear models (GLM) have proven useful for modelling data arising from a het-

erogeneous population, typically under an independence assumption. Mixed-effects models

are often used to handle correlation as arises in longitudinal or other clustered data. In

Chapter 3 of this dissertation, we present a more general class of models consisting of finite

mixtures of generalized linear mixed effect models to handle correlation and heterogeneity

simultaneously. For this class of models, we consider maximum likelihood (ML) as our main

approach to estimation. Due to the complexity of the marginal loglikelihood of this model,

the EM algorithm is employed to facilitate computation. To evaluate the integral in the E-

step, when assuming normally distributed random effects, we consider numerical integration

methods such as ordinary Gaussian quadrature (OGQ) and adaptive Gaussian quadrature

(AGQ). We discuss nonparametric ML estimation (Aitkin, 1999) when we relax the normal

assumption on the random effects. We also present the methods for computing the informa-

tion matrix. In Chapter 4, restricted maximum likelihood method (REML) for Zero-Inflated

(ZI) mixed effect models are developed. Zero-Inflated mixed effect models are submodels of

two-component mixtures of GLMMs with one component degenerate to zero. For this type of



models, we adapt an estimator of variance components proposed by Liao and Lipsitz (2002)

and think this method is more in the spirit of REML estimation in linear mixed effect models.

This estimator is obtained based upon correcting the bias in the profile score function of the

variance components. The idea is from McCullagh and Tibshirani (1990). The estimating

procedure involves Monte Carlo EM algorithm which uses important sampling to generate

random variates to construct Monte Carlo approximations at E-step. Simulation results show

that the estimates of variance component parameters obtained from the REML method have

significantly less bias than corresponding estimates from ML estimation method. In Chapter

5, we discuss some issues we encountered in the research and point out the potential topics

for future research.

Index words: Mixture models, Generalized linear mixed effect models, Maximum
likelihood estimation, Zero-inflated models, Restricted maximum
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Chapter 1

Introduction

Finite mixture models, such as mixtures of normals (Everitt and Hand, 1981; McLachlan and

Basford, 1988) and mixtures of generalized linear models (Jansen, 1993; Dietz and Böhning,

1997) have proven useful for modeling data arising from a heterogeneous population, typically

under an independence assumption. Mixed-effects models (Verbeke and Molenberghs, 2000;

Breslow and Clayton, 1993) are often used to handle correlation as arises in longitudinal or

other clustered data. There are situations where data not only exhibit heterogeneity but also

are correlated by the experimental design. To better explain data with these characteristics,

I develop a new class of regression models consisting of finite mixtures of generalized linear

mixed effect models (mixtures of GLMMs) to handle correlation and heterogeneity simul-

taneously. This class can be viewed as an extension of finite mixtures of generalized linear

models (Jansen, 1993) obtained by adding random effects to each component. Generalized

linear models (GLMs), finite mixtures of GLMs and many other models are special cases of

this broad class.

Parameter estimation is always one of the most important aspects of statistical inference

for any model. Many previous efforts have been made at parameter estimation for GLMMs

and mixtures of GLMs without random effects. In the mixed model context, Hall (2000)

applied ML estimation and Yau and Lee (2001) applied hierarchical likelihood method to

zero-inflated (ZI) mixed models. We present ML estimation with the EM algorithm for

normal random effect mixture of GLMMs and nonparametric maximum likelihood (NPML)

methods when assuming random effect distribution is unknown. Due to the difficulties of

1



2

evaluating the integral in the E step of the EM algorithm, numerical integration methods

are employed.

One of the special cases of the two-component mixture occurs when one component is

a degenerate distribution with point mass of one at zero. Such models are known as zero-

inflated regression models and include zero-inflated Poisson (ZIP; Lambert, 1992), zero-

inflated negative binomial, zero-inflated binomial (ZIB; Hall, 2000) and others (see Ridout,

et al., 1998 for a review). When random effects are incorporated in these models, they

become zero-inflated mixed models, which fall in the general class of mixtures of GLMMs

that we consider here. That is, one component is zero, the other component is a GLMM type

model. In this context, Hall (2000) considered maximum likelihood (ML) estimation for ZI-

mixed Poisson and ZI-mixed binomial models. Yau and Lee (2001) considered an estimation

method based on hierarchical or h-likelihood (Lee and Nelder, 1996). For estimation of the

variance components associated with random effects in these models, the ML estimators are

well known to be biased downward, which motivates a bias corrected variance component

estimator, such as that provided by restricted maximum likelihood (REML, Patterson and

Thompson, 1971) in a linear mixed model context. Yau and Lee propose a REML-like method

of estimation which proceeds by iteratively fitting a linear mixed model via REML. From

the perspective of the model fitting algorithm, this procedure is natural and appealing.

However, it is not clear that this approach eliminates the regression parameter from the

objective function for variance component estimation. That is, its connection to REML as a

nuisance parameter elimination method is unclear. The accuracy of results from this method

is also questionable (simulation study will be provided later). Alternatively, we adapt an

estimator of variance components proposed by Liao and Lipsitz (2002) for ZI-mixed effect

models. This estimator is obtained by correcting the bias in the profile score function of

the variance components. The idea is from McCullagh and Tibshirani (1990). Based on our

simulation results, this estimator has much less bias compared to the other two methods

mentioned above.
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The objectives of this dissertation are to present two-component GLMMs, to estimate

the parameters of this model by ML and nonparametric ML estimation via EM algorithm,

and to construct information matrix for the standard errors of parameter estimates. We also

present REML estimation method for ZI-mixed effect models and carry out simulation study

to compare different estimation methods in that context.

Chapter 2 describes some basic concepts, and reviews GLMMs, finite mixture models, the

theory of the EM algorithm, and the theory of REML estimation. In Chapter 3, we formulate

the two-component mixture of GLMMs, outline the EM algorithm and consider various

methods of handling the required integration with respect to the random effects. At the end

of Chapter 3, two real data examples are discussed and used to illustrate the methodology.

In Chapter 4, REML estimation method is developed for ZI-mixed effect models. We also

describe the algorithm to perform this method. ML estimation, REML estimation and Yau

and Lee’s method are compared via simulation study. A real data set is used to illustrate

our method. Chapter 5 presents a discussion, including some potential future work topics.



Chapter 2

Literature Review and Preliminaries

This chapter provides a review of relevant literature as well as some statistical methods and

techniques that will be needed in subsequent chapters.

2.1 Basic Concepts

2.1.1 Exponential dispersion family

Suppose a random variable Yi (with mean µi) has a probability density function or probability

mass function of the form of

f(yi; θi, φ) = h(yi, φ) exp

{
yiθi − κ(θi)

a(φ)

}
, (2.1.1)

where φ is a (constant) dispersion parameter, θi is the natural or canonical parameter and

can be expressed as some function of mean µi, and κ(θi) is the cumulant generating function.

Then, the distribution of Yi belongs to the exponential dispersion family. Many of the most

commonly used distributions such as the normal, gamma, poisson and binomial are in this

family.

2.1.2 GLM

To unify the analysis of normal and some important types of non-normal data, Nelder and

Wedderburn (1972) proposed the generalized linear model (GLM). GLMs have three parts.

They are:

• Systematic part (linear predictor): ηi = xT
i β.

4
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• Random part: Yi’s are independent random variables each with E(Yi) = µi and each

with density (2.1.1).

• Link function: g(µi) = ηi, where g(.) is a one to one and differentiable function. For

canonical link, θi = ηi.

For GLMs, we have E(Yi) = µi = κ′(θi) and V ar(Yi) = ai(φ)κ
′′
(θi) = ai(φ)v(µi), where

v(µi) is called the variance function. In addition, θi = (κ′)−1[g−1(ηi)].

2.1.3 Score function

If we denote the unknown parameters to be δ = (βT , φ)T and the joint loglikelihood of inde-

pendent Y1, . . . , Yn to be `(δ; y) =
∑n

i=1 `i(δ; yi) =
∑n

i=1 log f(yi; δ), then the first derivative

of the loglikelihood is the score function and can be expressed as:

S = S(δ) :=
∂`(δ; y)

∂δ
=

n∑

i=1

∂`i(δ; yi)

∂δ
=

n∑

i=1

Si, (2.1.2)

with E(S) = E(Si) = 0. Further, we call the second derivative of the loglikelihood the

Hessian matrix and denote it as H. The relationship between the score function and the

Hessian matrix can be expressed as:

V ar(S) = E(SST ) = −E(H). (2.1.3)

Each of the three terms in above equation is the Fisher information matrix which we denote

I(δ). Usually, the Hessian matrix or Fisher information matrix are useful for deriving the

standard errors of parameter estimates.

2.1.4 Asymptotic properties of ML estimates

Under certain regularity conditions (see Fahrmeir and Tutz, Ch.2), we have the following

properties of ML estimates δ̂ of δ:

• Consistency: As n →∞, δ̂n
p→ δ (weak consistency); δ̂n → δ with probability 1 (strong

consistency). Here δ̂n denotes the sequence of ML estimates based on samples of size

n.



6

• Asymptotic Normality:
√

n(δ̂ − δ)
d→ N(0, I−1(δ))

where I(δ) is the Fisher information matrix defined in (2.1.3).

2.1.5 Over-dispersion

The existence of greater variation than predicted by the sampling model is called over-

dispersion (Agresti, 1990). Over-dispersion is not uncommon in practice, especially for

bounded count (seemingly binomial) data and unbounded count (seemingly Poisson) data.

This phenomenon might arise in a number of ways, but there are two common causes. One is

because of clustering in the population. This induces the observations on different subjects to

be positively correlated rather than independent. Families, litters, etc, are common instances

of natural clusters in populations. Another common way overdispersion happens is because

the true sampling distribution is a mixture of different distributions such as Poisson etc.

2.1.6 Heterogeneity

A population is termed heterogeneous (Dietz and Böhning, 1997) if it contains subpopula-

tions with different means, variances, relationships between response and covariates, or other

distributional features. The heterogeneity is called unobserved if it is not known to which

subpopulations the individuals of a sample belong.

2.2 GLMMs

GLMMs extend GLMs naturally by adding random terms in the linear predictor to account

for overdispersion, correlation, and/or heterogeneity in the data. Since correlation is a natural

feature of longitudinal and other clustered data, GLMMs have been used extensively for such

data (Aitkin, 1996; Stiratelli, et al. , 1984; Zeger, et al. , 1988; etc). Generalized linear mixed

models for clustered data are defined as follows.
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Suppose that the observations on the ith cluster consist of responses yij, covariates xij

and zij associated with the fixed and random effects respectively, for i = 1, . . . , K and

j = 1, . . . , ti. Given a q dimensional vector of unobservable random effects bi, the yij are

independent with means E(yij|bi) = µij(bi) and variances var(yij|bi) = ai(φ)v(µij(bi)). We

should note that the conditional means µij depend on random effect bi. Similar to GLMs,

the GLMM components are:

• Linear predictor: ηij(bi) = xT
ijβ + zijbi.

• Random part: Conditional on random effects bi, Yij’s are independent random variables

with conditional densities belong to exponential dispersion family (2.1.1) and have

conditional means and variances as above.

• Link function: g(µij(bi)) = ηij(bi)

• bi has mean 0 and follows distribution F . Commonly F is assumed to be the multi-

variate normal with variance-covariance matrix D = D(θ).

Parameter estimation and statistical properties of such models have drawn a great deal

of attention. As in GLMs, the generally preferred method of estimation is maximum likeli-

hood. However, because of the nonlinearity of the model and the presence of random effects,

obtaining the (marginal) likelihood of the model requires a difficult, often intractable, integra-

tion with respect to the random effects’ distribution. Many approaches have been proposed

to handle this integration so that ML can be accomplished. For lower dimensional random

effects (e.g., ≤ 2), numerical integration methods such as ordinary Gaussian quadrature

and adaptive Gaussian quadrature can be employed to evaluate the integral. For higher

dimensional random effects, simulation-based approximation methods have been proposed

to obtain the ML estimation. This type of method includes Monte Carlo EM (McCulloch,

1997), Monte Carlo Newton-Raphson (McCulloch, 1997), and simulated maximum likeli-

hood where simulation is used to estimate the value of the likelihood directly (Geyer and

Thompson, 1992; Gelfand and Carlin,1993; Durbin and Koopman, 1997). In addition, a
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variety of approximate ML methods have been proposed. These approximate ML approaches

are best categorized as estimating equation methods, and include penalized quasi-likelihood,

marginal quasi-likelihood (Breslow and Clayton, 1993) and various similar methods that go

by a variety of names (see Wolfinger and Lin, 1997 for a partial review and comparison).

Marginal quasi-likelihood (MQL) is a computationally less demanding method than ML

estimation and applies mainly to longitudinal data. The penalized quasi-likelihood (PQL)

approach works reasonably well when the data are approximately normal but can be badly

biased for highly non-normal data (Lin and Breslow, 1996).

Although GLMMs have successfully fitted a number of data sets, they fail many data sets

that have multiple sources of variation. For instance, Olsen and Schafer (2001) motivated a

two-part random effect model for semicontinuous longitudinal data because GLMMs fail to

account for an excess of zeros in an otherwise continuous responses in the Adolescent Alcohol

Prevention Trial. van Duijn and Bockenholt (1995) showed that a mixed model with gamma

distribution did not fit well for a study on spelling errors made by Dutch school-children,

which is repeated count data with heterogeneity coming from different classes. At the same

time they showed mixture models can fit better. In order to explain this adequately, finite

mixture models will be described next.

2.3 Finite Mixture Models

2.3.1 Basic Definition and Interpretation

Suppose Y1, . . . , Yn is a random sample of size n, where Yi can be 1 dimensional random

variable or p dimensional random vector, with probability density function f(yi) (or mass

function in the discrete case) in a sample space R or Rp. We let Y = (Y T
1 , . . . , Y T

n ) represent

the entire sample, where T denotes the vector transpose. We also denote the realization

of a random vector by the corresponding lower case letter; that is, we let y = (y1, . . . , yn)

represent the observed random sample where yi is the observed value of the random vector Yi.

If the distribution of Yi can be represented by a probability density function (p.d.f. hereafter)
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of the form

f(yi) = p1f1(yi) + . . . + pgfg(yi) (2.3.1)

where

pj > 0, j = 1, . . . , g > 1; p1 + . . . + pg = 1

and

fj(.) ≥ 0,
∫

Rp fj(.)dx = 1, j = 1, . . . , g

Then we say that Yi has a g− component finite mixture distribution and f(yi) is a finite

mixture density function. The quantities p1, . . . , pg are called the mixing probabilities or the

mixing proportions and f1(y1), . . . , fg(yg) are called the component densities of the mixture.

It’s easy to verify that f(yi) does define a p.d.f.

Including specific parametric forms, (2.3.1) can be written as

f(yi|δ) = p1f1(yi|θ1) + . . . + pgfg(yi|θg) (2.3.2)

where δ = (p1, . . . , pg, θ
T
1 , . . . , θT

g )T .

In our study of mixture models, the number of components are fixed. Of course, in many

applications, the value of g should be estimated from the data together with parameter

vector δ. In addition, there is no requirement that the component densities in (2.3.1) or

(2.3.2) should all come from the same parametric family, but in most applications, this will

be the case.

Mixture models provide a powerful tool to model unknown distributional shapes. For

example, the method of kernel density estimation, say, with the Gaussian kernel, is essentially

mixture modelling of a density, corresponding to a mixture of a large number of normals. By

choosing appropriate components, mixture models are able to model quite complex distribu-

tions with each components representing a local area of the true distribution. Thus, they can

handle situations where a single parametric distribution is unable to provide a satisfactory

model for local variation in the observed data (McLachlan and Peel, 2000).
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To illustrate, Lindsay (1995) supposes we have a population of animals consisting of two

component types, say one is male, the other is female. We measure the characteristics such

as length. Suppose length is normally distributed with different means in both components

when considered alone. If we sample from the two components without label, the resulting

distribution for length is a mixture of two normals.

2.3.2 Mixture of Normals

The earliest studies on finite mixture models were mainly about mixture of normals. That

is, fj(yi) in (2.3.1) takes the form of a normal density for all j. For example, a frequently

used two-component mixture of normals has the form

f(yi; δ) = pφ(yi; µ1, σ1) + (1− p)φ(yi; µ2, σ2),

where φ(.; µ, σ) denotes the N(µ, σ2) probability density function.

2.3.3 Mixture of GLMs

For a mixture of g component distributions of GLMs in proportions p1, . . . , pg, we have the

density of the ith response variable Yi is given by:

f(yi; δ) =
g∑

j=1

pjfj(yi; θij, φj) (2.3.3)

where fj(yi; θij, φj) has the form (2.1.1) and the link function ηij = xT
i βj. In applications,

the mixing probability may also be modelled as functions of some vector of covariates wi

associated with the response. The generalized logit transform is commonly used to express

the relationship between a multinomial probability vector and a covariate vector. This choice

leads to

pj(wi|γ) = exp(wT
i γj)/



1 +

g−1∑

h=1

exp(wT
i γh)



 (j = 1, . . . , g) (2.3.4)

where γg = 0 and γ = (γT
1 , . . . , γT

g−1)
T contains the logistic regression coefficients.
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The extension of mixtures of normals to mixtures of GLMs greatly enlarges the model

class and has successfully fitted many data sets that have overdispersion relative to a standard

GLM. For example, Wang, Cockburn and Puterman (1998) dealt with overdispersion in

patent data by applying a finite mixture of Poisson regression models; Wang and Puterman

(1998) modelled extra-binomial variation by mixed logistic regression models instead of quasi-

likelihood or beta-binomial regression and emphasize that this mixture model provides an

interpretable alternative to other approaches. ZIP (Lambert, 1992) and ZIB (Hall, 2000)

models also fall into this category. They are designed for Poisson or binomial data with

extra zeros (zero-inflated data). The advantage to mixtures of GLMs in some applications

is not only an improvement in fit to the data but also better understanding of the data-

generating mechanism.

Most parameter estimation methods for mixture models can be classified into two cat-

egories. One is the likelihood-based approach and the other is the Bayesian approach. ML

estimation is greatly facilitated by the EM algorithm, while the Bayesian approach has ben-

efitted from the development of the Gibbs sampler (Gelfand and Smith, 1990). Important

papers on the Bayesian analysis of mixture following MCMC methods include Diebolt and

Robert (1994) and Escobar and West (1995).

Although finite mixtures of normals and finite mixtures of GLMs can model heterogeneity

in the data, they are inappropriate when both heterogeneity and intra-cluster correlation

exist. We present a new class of models based on finite mixtures of GLMMs which can

handle such a situation and which is an extension of mixtures of GLMs.

2.3.4 Mixture of GLMMs

This new class of models combines the properties of GLMMs and mixtures of GLMs. They

are formed by adding random effects to each component in a mixture of GLMs. Similar to

mixture of GLMs, suppose we have g components, where the `th component appears in the
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population with proportion p`. Then the g-component mixture of GLMMs are of the form

f(yij|bi) =
g∑

`=1

p`f`(yij|bi; θ`ij, φ`), (2.3.5)

where i, i = 1, . . . , K index the clusters; j, j = 1, . . . , ti index the observations in cluster

i; bi is the q dimensional vector of random effects for the ith cluster which is assumed

to be independent from one cluster to the next with a multivariate normal distribution

MV Nq(0, D); f`(yij|bi; θ`ij, φ`) are the GLMMs described in Section 2.2; and p` have some

regression form such as (2.3.4).

By comparing the equation (2.3.5) with (2.3.3) and Section 2.2, it is clear that if there

is no random effect, (2.3.5) becomes (2.3.3), if there is only one component, then (2.3.5.)

becomes a GLMM as described in Section 2.2. Due to these connections, some parameter

estimation methods and derivations of standard errors for GLMMs and mixture of GLMs

can be adapted to analyze mixtures of GLMMs.

In particular, when we assume normal random effects, the marginal likelihood is hard

to evaluate, which is the same situation we have for GLMMs. Hence numerical integra-

tion methods such as ordinary Gaussian quadrature and adaptive Gaussian quadrature and

simulation-based methods such as importance sampling used there can be adapted here.

Second, because of the mixture structure, the EM algorithm will facilitate the fitting proce-

dure. So that we may relax the assumption of normality on the random effects, we will con-

sider a nonparametric ML approach. We will restrict our attention to 2-component GLMMs

in Chpater 3 and to ZI-mixed effect models in Chapter 4.

2.4 EM Algorithm

2.4.1 Formulation of The EM Algorithm

The Expectation-Maximization (EM) algorithm is a widely used algorithm for maximum

likelihood estimation in “incomplete-data” situations. Some incomplete-data situations are

obvious such as missing data, censored observations, truncated distribution, etc; some are
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not so clear such as a mixture distribution. Hence we need an appropriate formulation of

the incompleteness to facilitate the application of the EM algorithm so that we obtain a

computational benefit.

Let Y be the random vector corresponding to the observed data y. The distribution of

Y is f(y; δ), where δ is a vector-valued parameter taking values in Ω. In addition, let yc

be the complete data vector with distribution function f c(yc|δ)and u be the missing data

vector. We have yc = (yT , uT )T . In the EM algorithm context, the observed data vector y

is viewed as a function of the complete data vector yc, where the relationship is as follows

(McLachlan and Krishnan, 1997):

f(y; δ) =
∫

χ(y)
f c(yc; δ)dyc.

Here we suppose two sample spaces χ and y, and we observe the incomplete data vector

y = y(x) in y instead of observing the complete data vector yc in χ. There is a many to one

mapping from χ to y.

Let L(δ; y), `(δ; y) be the observed data likelihood and loglikelihood, respectively, and let

Lc(δ; yc), `c(δ; yc) be the complete data likelihood and loglikelihood. In the EM algorithm,

we do not maximize `(δ; y) directly to get ML estimates, but iteratively maximize `c(δ; yc)

averaged over all possible values of the missing data u. That is, the objective function is

defined to be Q(δ|δ(h)) = E[`c(δ; yc)|y, δ(h)], and we iteratively maximize Q(δ|δ(h)).

In more detail, the (h + 1)th iteration for obtaining ML estimates via the EM algorithm

is as follows:

Step 0: Specify a starting value δ0, and a convergence criterion.

Step 1(E-Step): Calculate Q(δ|δ(h)) as defined above. This requires evaluation of the

conditional expectation of the unobservables given the observables.

Step 2(M-Step): Find the value of δ(h+1) in Ω which maximizes Q(δ|δ(h)). That is, find

δ(h+1) such that

Q(δ(h+1)|δ(h)) ≥ Q(δ|δ(h))

for all δ ∈ Ω.
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Steps 1 and 2 are alternated repeatedly until the convergence criterion set in step 0 is

obtained.

2.4.2 Theory of The EM Algorithm

(1) Monotonicity: The EM algorithm increases the observed likelihood L(δ|y) at each iter-

ation, that is, L(δ(h+1)|y) ≥ L(δ(h)|y) for h = 0, 1, . . .. (Dempster, Laird and Rubin, 1977).

(2) Let f c(yc|y; δ) be sufficiently smooth, and suppose a sequence of EM iterates δ(h)

satisfies

∂Q(δ|δ(h))

∂δ
|
δ=δ(h+1) = 0

and δ(h) converge to some value δ∗. Then it follows that

∂`(δ; y)

∂δ
|δ=δ∗ = 0

That is, if the iterates δ(h) converge, they converge to a stationary point of L(δ; y). This

implies that when there are multiple stationary points (local or global maximizers, saddle

points), the algorithm may not converge to the global maximum.

(3) When there are multiple stationary points (local or global maximizers, saddle points),

convergence of the EM sequence δ(h) to either type depends on the choice of starting value.

When L(δ; y) is unimodal in Ω with δ∗ being the only stationary point of L(δ; y), and

∂Q(δ|δ(h)/∂δ is continuous in δ and δ(h), then δ(h) converges to the unique maximizer δ∗ of

L(δ; y) (the unique ML estimates), irrespective of its starting point.

(4) Dempster, Laird and Rubin (1977) showed the convergence of the EM algorithm is

linear and the rate of convergence depends on the amount of missing information about δ.

Hence it’s possible that the EM algorithm can be very slow if a large portion of data are

missing.

2.4.3 Incomplete Data Structure of Mixture Problem

Obtaining the ML estimates of the parameters in mixture density (2.3.1) becomes easier with

the EM algorithm if we regard the component from which each datum comes as the missing
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data. Corresponding to the formulation of the mixture density in Section 2.3.1, we define

the vector of indicator variables U i = (Ui1, . . . , Uig)
T with realization ui = (ui1, . . . , uig)

T

by ui` = 1, if yi is from component `, otherwise, ui` = 0. If (Y1, . . . , Yn) are i.i.d, then

(U 1, . . . , Un) are i.i.d according to a multinomial distribution consisting of one draw from g

components with probabilities pi1, . . . , pig respectively. We can write

U 1, . . . , Un
iid∼ Multg(1, p)

Treating y as observed data and u as the missing data, then the complete data yc = (y, u)

has loglikelihood:

log f(y, u; δ) = log[f(y|u; δ)f(u; δ)]

=
g∑

`=1

n∑

i=1

ui`{log pi` + log f`(yi; δ)}

Following the formulation of EM algorithm in Section 2.4.1 , we define Q(δ|δ(h)) in the

mixture problem as:

Q(δ|δ(h)) = E[log f(y, u; δ)|y; δ(h)]

=
g∑

`=1

n∑

i=1

E{ui`{log pi` + log f`(yi; δ)}|yi; δ
(h)}

=
g∑

`=1

n∑

i=1

û
(h)
i` log pi` +

g∑

`=1

n∑

i=1

û
(h)
i` log f`(yi; δ),

where

û
(h)
i` = E[ui`|yi; δ

(h)] =
pi`f`(yi; δ

(h))

f(yi; δ
(h))

for i = 1, . . . , n and ` = 1, . . . , g

Hence, by using the incomplete structure of mixture problem, the M step of the EM

algorithm has been separated into two parts: one involves only the mixing probabilities, the

other involves only the component distributions. That means fitting the mixture model can

be done by iteratively fitting standard non-mixture models since we can solve g+1 estimating

equations in M-step that have the form of weighted GLM score equations. Thus, estimation

in the mixture problem is greatly simplified with the EM algorithm.
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2.5 Monte Carlo EM Algorithm via Importance Sampling for GLMMs

2.5.1 Importance Sampling

Monte Carlo integration (e.g., Tanner, 1993) can be carried out using sets of random variates

picked from any arbitrary probability distribution. The choice of distribution obviously makes

a difference to the efficiency of the method. For example, Monte Carlo integration carried

out using uniform probability distributions gives very poor estimates of high-dimensional

integrals and is not a useful method of approximation. In 1953, however, Metropolis et.

al. introduced an algorithm that enabled the incorporation of “importance sampling” into

Monte Carlo integration. The idea is to choose a distribution that generates values that are

in the region where the integrand is large because this region is where the most important

contributions are made to the value of the integral.

To be more specific, assume the following integration problem:

h(y) =
∫

f(y|x)g(x)dx

If we can not directly sample from g(x), importance sampling can be used. Let I(x) be a

density that is easy to sample from and that approximates g(x) (see Tanner, 1993). We draw

i.i.d. samples x1, . . . , xm from I(x). Then the above integral is approximated by

ĥm(y) =
∫

f(y|x)g(x)dx ≈ 1

m

m∑

i=1

wif(y|xi),

where wi = g(xi)/I(xi). The distribution I(x) is called the importance sampler. The theo-

retical basis for this estimator is the strong law of large numbers, which says as m → ∞,

ĥm(y) → h(y), almost surely. For a general discussion of importance sampling, see Hesterberg

(1990).

2.5.2 Monte Carlo EM Algorithm for GLMMs

McCulloch (1994) describes a Monte Carlo EM algorithm (MCEM) based on the Gibbs

sampler that can handle complicated mixed model structure but is limited to a binary
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response with a probit link. A Monte Carlo EM algorithm (MCEM) based on the Metropolis

algorithm (Tanner, 1993) is developed by McCulloch (1997) to deal with more general type of

GLMMs. Booth and Hobert (1999) proposed two new implementations of the EM algorithm

for GLMMs. One of these methods uses importance sampling to generate random variates

to construct Monte Carlo approximations at the E-step. This is different from the MCEM

described by McCulloch (1994, 1997). In each iteration of McCulloch’s algorithm a Markov

chain with stationary distribution equal to the exact conditional distribution of b given y

is used to approximate the E-step. Booth and Hobert (1999) state that “the use of random

samples has significant advantages over dependent samples arising from Markov chains”

(see Booth and Hobert, 1999, p.266-267 for detailed comparisons.) Because of difficulties of

assessing convergence to stationarity and the error in estimates, Evans and Swartz (1995)

comment that “Markov chain methods are recommended only when there is no adequate

alternatives.” This is reiterated by Jones and Hobert (2001) who state, ”before resorting

to MCMC, one should try the Monte Carlo methods based on independent samples, for

example, rejection sampling or important sampling.” (Jones and Hobert, 2001, p.331)

For simplification, let δ = (β, φ, θ) be the unknown parameter vector for GLMMs in

section 2.2. We further assume the unknown random effects b play the role of missing data.

Then the complete data vector can be written as (u, b) and the EM algorithm computes

Q(δ|δ(h)) = E{`c(δ; y, b)|y; δ(h)} (2.5.1)

=
K∑

i=1

∫
`c(δ; yi, bi)f(bi|yi; δ

(h))dbi.

The integrals in equation (2.5.1) are now with respect to the random effects b only. We

consider an importance sampling approach to approximate this integral.

Suppose I(bi), i = 1, . . . , K are the importance samplers which have similar distributional

shape as f(yi|bi; δ
(h))φq(bi). Here bi1, . . . , bim are independently drawn from I(bi). Then

equation (2.5.1) can be approximated by

Q(δ|δ(h)) ≈
K∑

i=1

∑m
`=1 w∗

i``
c(δ; yi, bi`)∑m

`=1 w∗
i`
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=
K∑

i=1

m∑

`=1

wi``
c(δ; yi, bi`)

=
K∑

i=1

ti∑

j=1

m∑

`=1

wi` log f(yij|bi`; β, φ) +
K∑

i=1

m∑

`=1

wi` log φq(bi`; θ), (2.5.2)

where w∗
i` = f(yi|bi`; β

(h))φq(bi`; θ
(h))/I(bi`) and wi` = w∗

i`/
∑m

`=1 w∗
i`.

Booth and Hobert (1999) point out that a good choice for the importance sampler I(bi)

for the conditional distribution of bi given yi is a multivariate t-density with approximately

the same mean and covariance as the true conditional distribution of bi given yi. That is to

say, suppose we can find the mean and covariance of f(bi|yi), then the multivariate t-density

we use as importance sampler has this mean and variance.

To find the mean and variance of f(bi|yi), define

h(bi|yi; δ
(h)) = L−1

i exp{`(bi)}

where Li is an unknown normalizing constant given by
∫

f(yi|bi; β
(h), φ(h))φq(bi; θ

(h))dbi

and `(bi) = log f(yi|bi; β
(h), φ(h)) + log φq(bi; θ

(h)). Let `(1)(bi) denote the vector of first

derivatives of `(bi) and `(2)(bi) the second derivative matrix of `(bi). Suppose that b̃i is the

maximizer of `(bi) satisfying the equation `(1)(bi) = 0. When the random effects are normal,

Booth and Hobert (1998) use a Laplace approximation to show that

E(bi|yi; δ
(h)) ≈ b̃i

var(bi|yi; δ
(h)) ≈ −`

(2)
i (b̃i)

−1.

This conclusion is very convenient for programming purposes.

2.6 REML Estimation Method

2.6.1 REML Estimation for Classical Linear Models

Suppose we want to estimate the residual variance σ2 in the classical linear regression model

Y = Xβ + ε, where Y = (Y1, . . . , Yn) and X a (n× p) full rank known design matrix. It is
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assumed that all elements in ε are independently normally distributed with mean zero and

variance σ2. Then the ML estimator of σ2 is

σ̂2 = (Y −X(X ′X)−1X ′Y )′(Y −X(X ′X)−1X ′Y )/n (2.6.1)

which is well known to be biased by a factor of n/(n-p). The REML estimator is n
n−p

σ̂2 which

is clearly unbiased.

2.6.2 REML Estimation for Linear Mixed Models

For normal theory linear mixed models, REML is generally regarded as superior to ML

(Diggle et al., 1994). For the linear mixed model for clustered data, REML is described by

Verbeke and Molenberghs (2000). We briefly summarize their discussion.

In the LMM, we assume

Y i = X iβ + Zibi + εi (2.6.2)

with

εi ∼ N(0,Σi), i = 1, . . . , K

bi ∼ N(0, D),

εi and bi are independent,

εi are independent,

bi are independent. Hence the marginal model is

Y i ∼ N(X iβ, ZiDZ ′
i + Σi),

where D is the variance-covariance matrix for random effect bi and Σi is the intra-cluster

variance-covariance matrix for εi. Let θ be the vector of variance-component parameters,

which consists of all unknown parameters in D and Σi, where i = 1, . . . , K; further let

V i = ZiDZ ′
i + Σi and denote the total parameter vector to be δ = (βT , θT )T . Then the

loglikelihood function is

`ML(δ) =
K∑

i=1

{
−ni

2
log 2π − 1

2
log |V i(θ)| − 1

2
(Y i −X iβ)T V −1

i (θ)(Y i −X iβ)
}

. (2.6.3)
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The ML estimators are given by

β̂(θ̂) =

(
K∑

i=1

X ′
iV

−1
i (θ̂)X i

)−1 K∑

i=1

X ′
iV

−1
i (θ̂)Y i (2.6.4)

and θ̂s the solution of

K∑

i=1

tr

{
V −1

i

[
(Y i −X iβ)T (Y i −X iβ)− V i

]
V −1

i

∂V i

∂θs

}
s = 1, . . . , dim(θ)

(cf. Jennrich and Schluchter, 1986).

However, it is well known that θ̂ is, in general, a biased estimator. Therefore, a bias

corrected estimator θ̃ is often used based on maximizing a “concentrated” or restricted

likelihood. The so-called restricted ML estimator of θ maximizes the loglikelihood function

of a set of error contrasts U = A′Y where A is any n×(n−p) (n is total sample size) matrix

with n − p linearly independent columns orthogonal to the columns of the X matrix. The

distribution of U has mean zero vector and covariance matrix A′V (θ)A. Harville (1974) has

showed that this objective function and the resulting REML estimator θ̃ does not depend

on the particular choice of error contrasts (i.e., the choice of A). The objective function that

maximized to obtain the REML estimator of θ is

`REML(θ) = −1

2
log

∣∣∣∣∣
K∑

i=1

X ′
iV

−1
i (θ)X i

∣∣∣∣∣ + p`ML(θ), (2.6.5)

where p`ML(θ) is the profile loglikelihood function given by (2.6.3), but where β has been

replaced by (2.6.4).

Notice that `REML(θ) differs from p`ML(θ) only by the additional term

−1
2
log

∣∣∣∑K
i=1 X ′

iV
−1
i (θ)X i

∣∣∣. This term serves as an adjustment or penalty for the esti-

mation of β. Hence REML estimation is sometimes called a penalized likelihood method of

estimation.

Note for the classical linear regression model, the fixed effect parameter estimator

β̂ = (X ′X)−1X ′Y is independent of the residual variance σ2 and hence does not change if

REML estimates are used for variance components instead of ML estimates (2.6.1). This is

not true for linear mixed models because of the dependence of β̂ on θ (see formula 2.6.4).
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That is to say, in the linear mixed-effects model context, although REML estimation is con-

structed for the variance components in the model, the corresponding estimator for fixed

effects is no longer the same as that from ML estimation.

2.6.3 Approximate REML Estimation for GLMMs

The REML method has been extended to GLMMs by several authors (e.g. McGilchrist,

1994; Breslow and Clayton, 1993) and most of them apply REML to a linearized version of

the nonlinear models. Hence we give the name approximate REML to these methods. We

briefly summarize these approaches.

The PQL method presented by Breslow and Clayton (1993) is based on the quasi-

likelihood

K∏

i=1



|D|−1/2

∫
exp


− 1

2φ

ni∑

j=1

dij(yij; µij(bi))− 1

2
bT

i D−1bi


 dbi



 ,

where dij(yij; µij(bi)) = −2
∫ µ
y

y−u
aijv(u)

du denotes the deviance and µij(bi) = E(yij|bi). They

then use Laplace’s method to approximate the integral which leads to

K∑

i=1



−

1

2
log |I + ZT

i W iZi| − 1

2φ

ni∑

j=1

dij(yij; µij(bi))− 1

2
bT

i D−1bi



 , (2.6.6)

where W i is the ni×ni diagonal matrix with diagonal terms wij = {φaijv(µij(bi))[g
′(µij(bi))]

2}−1,

which can be thought as the GLM iterated weights. The first term in (2.6.6) is omitted

by assuming those weights vary slowly as a function of mean. What is left to maximize is

Green’s (1987) PQL

− 1

2φ

ni∑

j=1

dij(yij; µij(bi))− 1

2
bT

i D−1bi. (2.6.7)

To solve for β̂ and b̂i for given θ, the Fisher scoring algorithm is employed, which leads to

iteratively solving the system




XT
i W iX i XT

i W iZiD

ZT
i W iX i I + ZT

i W iZiD







β

v


 =




XT
i W iY i

ZT
i W iY i


 , (2.6.8)



22

where bi = Dv. The equation (2.6.8) is Henderson’s mixed model equation from the normal

theory model (2.6.4) but with bi ∼ N(0, D), εi ∼ N(0, W−1) and with Y i the working

dependent variable having element Yij = ηij(bi)+(yij−µij(bi))g
′(µij(bi)). Hence this is equiv-

alent to best linear unbiased estimation of β and best linear unbiased prediction of bi based

on the linearized mixed models. Denoting the estimates of β, bi by β̂(θ) and b̂i(θ), and plug-

ging back into the approximate quasi-loglikelihood (2.6.6) produces an approximate profile

quasi-loglikelihood function for the variance parameter θ. Further replacing dij(yij; µij(bi))

by the Pearson chi-squared statistic
∑

(yij − µij(bi))
2/aijv(µij(bi)), the approximate profile

quasi-loglikelihood function is

q`(θ) ≈
K∑

i=1

{
−1

2
log |V i(θ)| − 1

2
(Y i −X iβ̂(θ))T V −1

i (θ)(Y i −X iβ̂(θ))
}

(2.6.9)

where V i(θ) = W−1
i + ZiDZT

i . Note (2.6.9) is the kernel of (2.6.3). Hence the REML

estimate of θ can be obtained from the corresponding version of (2.6.5), which is

q`(θ)REML = q`(θ)− 1

2
log

∣∣∣∣∣
K∑

i=1

X ′
iV

−1
i (θ)X i

∣∣∣∣∣ . (2.6.10)

As described by Breslow and Clayton, “Implementation involves repeated calls to normal

theory procedure for REML estimation in variance components problems.”

Another approximate REML estimation in GLMM setting is proposed by McGilchrist

(1994), and applied by Yau and Lee (2001) for ZI-Poisson data. For normal error model, the

BLUP procedure to obtain estimates of β, θ and a predictor of b consists of maximizing the

joint loglikelihood of y and b, which can be expressed as

`(y, b) = `(y|b) + `(b), or ` = `1 + `2, (2.6.11)

where `(y|b) is the (normal) log density of y conditional on the random effects b. This term

involves both β and b, while the second term `(b) involves b only. Harville (1977) and other

researchers showed how to develop ML and REML estimators of variance components from

BLUP estimators under normal error model. The formulas are summarized as (3.1) and

(3.2) in McGilchrist (1994). In the GLMM context, the normal error assumption no longer
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holds. That is, `(y|b) or `1 in (2.6.11) has some not-necessarily normal form. In this case

McGilchrist states that “provided that [`(y, b)] is approximately quadratic in β and [b], then

we may consider the BLUP estimation as having been derived from the very approximate

asymptotic [normal] distribution of β̂ and [b̂] “with mean equal to β and b and variance

matrix given by the information matrix for β̂ and b̂, which is



XT

ZT


 B(X, Z),

where B = −E(∂2`1/∂η∂ηT ) ”. That means, the objective function (2.6.11) changes to

`∗ = `∗1 + `2

where

`∗1 = constant− 1

2




β̂ − β

b̂− b







XT

ZT


 B(X, Z)




β̂ − β

b̂− b




= constant− 1

2
(y∗ −Xβ −Zb)T B(y∗ −Xβ −Zb)

and the working depend variable becomes y∗ = Xβ̂ + Zb̂ (see McGilchrist, 1994 for the

details). Hence the nonlinear problem changes to a normal theory linear model BLUP esti-

mation problem for `∗ = `∗1 + `2. Corresponding REML estimation of variance component

can be derived by formula (3.2) in McGilchrist (1994) as under normal error model.

The relationship between this method and Breslow and Clayton’s method has been stated

in McGilchrist (1994): “the approach is similar in principle to penalized likelihood approaches

and in basic aims has elements in common with Breslow and Clayton [(1993)].”

In summary, the REML methods employed by Breslow and Clayton and McGilchrist are

not nuisance parameter elimination technique. Therefore, the natural questions to be asked

are, How accurate are Breslow and Clayton’s approximations which lead to their REML

approach? (Even Breslow and Clayton stated in their paper that “Our “derivation” of the

penalized quasi-likelilhood [2.6.7] and modified profile quasi-likelihood [(2.6.10)] involved sev-

eral ad hoc adjustments and approximations for which no formal justification was given”.)
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How much information is lost? Is it possible to work on the loglikelihood from the nonlinear

model directly and still apply a REML-like method to get better estimate of variance com-

ponent? Liao and Lipsitz (2002) proposed a REML-type estimator which we think follows

the original idea of REML method (eliminating the effect of estimating fixed effect parame-

ters) and is based on the loglikelihood from nonlinear model directly. We will extended this

method to ZI-mixed effect models in Chapter 4.

2.7 Some Useful Tools for Computation

2.7.1 Unconstrained Cholesky Parameterization

Let Σ denote a symmetric positive definite n× n variance-covariance matrix corresponding

to a random vector Y = (Y1, . . . , Yn)T . Since it is symmetric, only n(n + 1)/2 parameters

are needed to represent it. Since Σ is positive definite, it can be factored as

Σ = LT L, (2.7.1)

where L is an n× n upper triangular matrix. Setting θ to be the upper triangular elements

of L gives the unconstrained Cholesky parameterization (see Pinheiro and Bates, 1996 for

more details).

For example, a symmetric positive definite matrix

A =




1 1 1

1 5 5

1 5 14




can be factored as

A =




1 0 0

1 2 0

1 2 3







1 1 1

0 2 2

0 0 3




By convention, we stack the elements of the upper triangular part of L columnwise to get

θ = (1, 1, 2, 1, 2, 3)T .
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Lindstrom and Bates (1988) reported this parameterization dramatically improved the

convergence properties of the optimization algorithm for fitting nonlinear mixed models when

compared to a constrained estimation approach.

2.7.2 Newton-Raphson Algorithm

Suppose we want to solve f(x) = 0, we need to find x∗ satisfying f(x∗) = 0. We require

|f ′(x∗)| > 0. By Taylor expansion of f(x∗), we get

0 = f(x∗) = f(x) + f ′(x)(x∗ − x) + . . .

This implies that

x∗ ≈ x− f(x)

f ′(x)

for x close to x∗. This suggests the iteration

x(m+1) = x(m) − f(x(m))

f ′(x(m))
.

In multiple dimensions, the iteration becomes

x(m+1) = x(m) −
[

∂

∂x(m)T
f(x(m))

]−1

f(x(m)).

2.7.3 Finite Difference Approximations of Derivatives

To approximate a first-order derivatives, by forward difference approximations (Press et al,

1992; Dennis and Schnabel, 1983), we use

∂f

∂θi

≈ f(θ + hiei)− f(θ)

hi

,

where hj = ε
1
2 (1 + |θj|), ε is the machine precision and ei is an indicator vector with 1 in the

ith position and 0’s elsewhere. Similarly, to approximate a second-order derivatives, we use

∂2f

∂θiθj

≈ f(θ + hiei + hjej)− f(θ + hiei)− f(θ + hjej) + f(θ)

hihj

,

where hj = ε
1
3 (1 + |θj|).
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If we use central difference approximations of derivatives, for first-order derivatives, it

can be expressed as

∂f

∂θi

≈ f(θ + hiei)− f(θ − hiei)

2hi

,

while for second-order derivatives, it can be expressed as

∂2f

∂θiθj

≈ f(θ + hiei + hjej)− f(θ + hiei − hjej)− f(θ − hiei + hjej) + f(θ − hiei − hjej)

4hihj

and

∂2f

∂θ2
i

≈ −f(θ + 2hiei) + 16f(θ + hiei)− 30f(θ) + 16f(θ − hiei)− f(θ − 2hiei)

12h2
i

,

where hj = ε
1
3 (1 + |θj|).
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Chapter 3

Mixtures of Generalized Linear Mixed-effects Models for

Cluster-Correlated Data

3.1 Introduction

Finite mixture models with regression structure have a long and extensive literature and

have been used commonly in fields such as epidemiology, medicine, genetics, economics,

engineering, marketing and in the physical and social sciences. Much of this work has focused

on mixtures of normal distributions; see, for example, Everitt and Hand (1981), McLachlan

and Basford (1988), Hasselblad (1966) and Aitkin and Wilson (1980). It has only been

relatively recently that regression models based on mixtures of non-normals have been given

much attention. Some of this work has included regression structure in the linear predictor

only (Hasselblad, 1969; Jansen, 1993; Dietz and Bohning, 1997), while other authors have

considered covariates in both the linear predictor and the mixing probability (Thompson,

Smith and Boyle, 1998; Wang and Puterman, 1998; Wang, Cockburn and Puterman, 1998;

McLachlan and Peel, 2000). Of course, models without covariates occur as a special case,

and such models have been considered by Titterington, et al. (1985), Leroux and Puterman

(1992), and Lindsay (1995). A special case of the two-component mixture occurs when one

component is a degenerate distribution with point mass of one at zero. Such models are

known as zero-inflated regression models and include zero-inflated Poisson (ZIP; Lambert,

1992), zero-inflated negative binomial, zero-inflated binomial (ZIB; Hall, 2000) and others

(see Ridout, et al., 1998 for a review). Finite mixture models are known as mixture-of-experts

(ME) models in the neural network field, where they have an extensive literature that dates

back at least to Jacobs et al. (1991); see also Jiang and Tanner (1999).

31
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Recently, many researchers have incorporated random effects into a wide variety of regres-

sion models to account for correlated responses and multiple sources of variance. In a mixture

model context, van Duijn and Bockenholt (1995) presented a latent class-Poisson model for

analyzing overdispersed repeated count data. Hall (2000) added random effects to ZIP and

ZIB models (see also Yau and Lee, 2001). Zero-inflated regression models for continuous data

have also been considered by Olsen and Schafer (2001) and Berk and Lachenbruch (2002).

In these papers, random effects are included to account for within-cluster correlation. Rosen,

Jiang and Tanner (2000) extend ME models to the clustered data case by incorporating

generalized estimating equations in the fitting algorithm. In this paper, we formulate a class

of regression models based on a two-component mixture of generalized linear mixed effect

models (two-component GLMMs). This class can be viewed as an extension of finite mix-

tures of generalized linear models (Jansen, 1993) obtained by adding random effects to each

component. Generalized linear models (GLMs), finite mixtures of GLMs, ZIP, ZIB and many

other models are special cases of this broad class.

The difficulty of parameter estimation in mixture models is well known. A major advance

came with the publication of the seminal paper of Dempster, Laird, and Rubin (1977) on

the EM algorithm. With the EM algorithm, finite mixture models can be fit by iteratively

fitting weighted versions of the component models. So, for example, a K-component finite

mixture of GLMs can be fit via maximum likelihood by fitting K weighted GLMs, updating

the weights, and iterating to convergence. Mixture models with random effects pose an

additional challenge to maximum likelihood (ML) estimation since the marginal likelihood

involves an integral that cannot be evaluated in closed form. This challenge is similar to that

found with ordinary (non-mixture) GLMMs and other nonlinear mixed models.

In the estimation of GLMMs, several approaches have been considered to evaluate the

loglikelihood. Various authors have considered analytic approximations such as the Laplace

approximation (e.g., Wolfinger, 1993; Steele, 1996) to motivate fitting algorithms or esti-

mating equations. (e.g., Breslow and Clayton, 1993; Wolfinger and O’connell, 1993; Wolfinger
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and Lin, 1997; Lindstrom and Bates, 1990). In addition, some authors have cast GLMMs in

a Bayesian framework and utilized Bayesian computational techniques such as importance

sampling (Ii and Raghunathan, 1991) and Gibbs sampling (Besag, York, and Mollie, 1991;

Zeger and Karim, 1991). A third approach, which we pursue in this paper, is to evaluate

the integral numerically via ordinary Gaussian (Gaussian-Hermite) quadrature, or adaptive

Gaussian quadrature (Pinheiro and Bates, 1995; Liu and Pierce, 1994). We also consider a

nonparametric quadrature approach that has been used in a GLMM context by Hinde and

Wood (1987) and Aitkin (1999), where we drop the assumption of normality on the random

effects.

The paper is organized as follows: we formulate the two-component mixture of GLMMs

in section 3.2. In section 3.3, we outline the EM algorithm and consider various methods

of handling the required integration with respect to the missing data. Section 3.4 discusses

the computation of appropriate standard errors for parameter estimators when using the

EM algorithm. The model class and estimation methods are illustrated with two real data

examples in section 3.5. Finally, we give a brief discussion in section 3.6.

3.2 Two-Component Mixture of GLMMs

Suppose we observe an N -dimensional response vector y containing data from K independent

clusters, so that y = (yT
1 , . . . , yT

K)T , where yi = (yi1, . . . , yiti)
T . We assume that, conditional

on a q-dimensional vector of random effects bi, the random variable Yij associated with

observation yij follows a two-component mixture distribution

Yij|bi ∼




F1(yij|bi; ζ1ij, σ1), with probability pij;

F2(yij|bi; ζ2ij, σ2), with probability 1− pij.

Here, F1 and F2 are assumed to be exponential dispersion family distributions, with densities

f1(yij|bi; ζ1ij, σ1) = h1(yij, σ1) exp[{ζ1ijyij − κ1(ζ1ij)}wij/σ1],

f2(yij|bi; ζ2ij, σ2) = h2(yij, σ2) exp[{ζ2ijyij − κ2(ζ2ij)}wij/σ2],
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respectively, where the wij’s are known constants (e.g., binomial denominators). The

functions κ1 and κ2 are cumulant generating functions, so F1 and F2 have (conditional)

means µ1ij = κ′1(ζ1ij) and µ2ij = κ′2(ζ2ij) and (conditional) variances v1(µ1ij)σ1/wij and

v2(µ2ij)σ2/wij where v`(µ) = κ′′` (µ), ` = 1, 2, are (conditional) variance functions.

We assume the canonical parameters ζ1i = (ζ1i1, . . . , ζ1iti)
T and ζ2i = (ζ2i1, . . . , ζ2iti)

T are

related to covariates and cluster-specific random effects through GLM-type specifications.

That is, for canonical link functions we have

ζ1i(µ1i) = η1i = X iα + U iD
T/2
1 bi, or µ1i = ζ−1

1i (η1i),

ζ2i(µ2i) = η2i = Ziβ + U iD
T/2
2 bi, or µ2i = ζ−1

2i (η2i).

Here, X i and Zi are ti× r1 and ti× r2 design matrices, respectively, for fixed effects param-

eters α and β; U i is a ti× q design matrix for the random effects bi; b1 . . . , bK are assumed

to be independent, each with mean 0 and variance Iq; and D
T/2
` , ` = 1, 2 are lower trian-

gular scale matrices for the variance and covariance components associated with bi. That

is, var(η`) = U iD`U
T
i , ` = 1, 2, where D` contains variance components along the diag-

onal, and covariance components on the off-diagonal. We assume that D1 and D2 have the

same structure, but are parameterized by vectors θ1 and θ2 that have the same dimension

but are allowed to differ. We adopt an unconstrained Cholesky parameterization (Pinheiro

and Bates, 1996) where the elements of θ` are the nonzero entries in the upper triangular

Cholesky factor D
1/2
` , ` = 1, 2. That is, θ` = vech(D

1/2
` ), ` = 1, 2, where vech stacks the

columns of its matrix argument including only those elements on and above the diagonal.

(Note that our definition of vech differs from the usual usage in which the elements on and

below the diagonal are stacked.) Although canonical links are convenient, they are not nec-

essary. In general, we allow known links g1 and g2 so that µ1ij = g−1
1 (η1ij), µ2ij = g−1

2 (η2ij).

In addition, we assume that the mixing probabilities pi = (pi1, . . . , piti)
T , i = 1, . . . , K, each

following a regression model of the form gp(pi) = W iγ, involving a known link function gp,

unknown s−dimensional regression parameter γ, and ti × s design matrix W i. Typically,
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gp will be taken to be the logit link, but the probit, complementary-log-log, or other link

function can be chosen here.

Let α̃ = (αT , θT
1 )T and β̃ = (βT , θT

2 )T , and denote the combined vector of model param-

eters as δ = (α̃T , β̃
T
, γT , σ1, σ2)

T . If we assume b1, . . . , bK are independent N(0, I) random

vectors, then the loglikelihood for δ based on y is given by

`(δ; y) =
K∑

i=1

log





∫ ti∏

j=1

f(yij|bi; δ)φq(bi)dbi



 , (3.2.1)

where

f(yij|bi; δ) = {pij(γ)}f1(yij|bi; α̃) + {1− pij(γ)}f2(yij|bi; β̃),

φq(·) denotes the q−dimensional standard normal density function, and the integral is

q−dimensional over (−∞,∞)× · · · × (−∞,∞) (q times).

3.3 Fitting The Two-Component Mixture Model via The EM Algorithm

The complications of parameter estimation in mixture models are simplified considerably by

applying the EM algorithm. Let the Bernoulli random variable uij, i = 1, . . . , K, j = 1, . . . , ti

denote the component membership; uij equals one if Yij is drawn from distribution F1 and

equals zero if Yij is drawn from F2. Then the “complete” data for the EM algorithm are

(y, u, b). Among them, (u, b) play the role of missing data, where u = (u11, . . . , uKtK )T .

Based on the complete data (y, u, b), the loglikelihood is given by

log f(b) + log f(u|b; δ) + log f(y|u, b; δ), (3.3.1)

which has kernel

`c(δ; y, u, b) =
K∑

i=1

ti∑

j=1

[uij log pij(γ) + (1− uij) log{1− pij(γ)}]

+
K∑

i=1

ti∑

j=1

uij(log h1(yij, σ1) + wij[ζ1ij(α̃)yij − κ1{ζ1ij(α̃)}]/σ1)

+
K∑

i=1

ti∑

j=1

(1− uij)(log h2(yij, σ2) + wij[ζ2ij(β̃)yij − κ2{ζ2ij(β̃)}]/σ2),

(3.3.2)
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where, b = (b1, . . . , bK)T . Based on this complete data loglikelihood, the EM algorithm is

applied both to ML estimation in section 3.3.1 and to nonparametric maximum likelihood

estimation (NPML) in section 3.3.2.

3.3.1 ML Estimation for Normal Random Effects

Given a starting value for the parameter vector δ, the EM algorithm proceeds iteratively

to obtain ML estimates, alternating between an expectation step and a maximization step.

Convergence is obtained when the change in successive values of parameter estimates is small

relative to a convergence criterion ε.

E-step

In the (h + 1)th iteration of EM algorithm, we compute

Q(δ|δ(h)) = E{log f(y, u, b; δ)|y, δ(h)}

in the E-step, where the expectation is with respect to the joint distribution of u, b given y

and δ(h). This conditional expectation can be taken in two stages by writing

Q(δ|δ(h)) = E[E{log f(y, u, b; δ)|y, b, δ(h)}|y, δ(h)],

where the inner expectation is with respect to u only. Since log f(y, u, b; δ) is linear with

respect to u, this inner expectation can be taken simply by substituting u(h) = E(u|y, b, δ(h))

for u. The vector u(h) is easily computed, with elements

u
(h)
ij (bi) = E(uij|y, bi, δ

(h))

=


1 +

1− pij(γ
(h))

pij(γ(h))

f2{yij|bi; ζ2ij(β̃
(h)

), σ
(h)
2 }

f1{yij|bi; ζ1ij(α̃
(h)), σ

(h)
1 }



−1

. (3.3.3)

Here, the superscript (h) indicates evaluation at the value obtained in the hth step of the

algorithm. Note that u(h) is a function of bi, so we have indicated that dependence in the

notation u
(h)
ij (bi). Taking the outer expectation and dropping terms not involving δ, we
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obtain

Q(δ|δ(h)) = E{log f(y, u(h), b; δ)|y, δ(h)}

=

∑K
i=1

∑ti
j=1

∫
`c(δ; yij, u

(h)
ij (bi))f(yi|bi; δ

(h))φq(bi)dbi∫
f(yi|bi; δ

(h))φq(bi)dbi

. (3.3.4)

The integrals in (3.3.4) are now with respect to the random effects b only. We consider two

numerical approximation methods to evaluate this integral: ordinary Gaussian quadrature

(OGQ) and adaptive Gaussian quadrature (AGQ).

(1) Ordinary Gaussian Quadrature

Several authors (e.g., Hinde, 1982; Anderson and Aitkin, 1985; Hedeker and Gibbons,

1994) have dealt with a similar challenge in the GLMM context by employing OGQ to

integrate with respect to Gaussian random effects to obtain the marginal loglikelihood of

the model. Pinheiro and Bates (1995) describe this method and several others for approxi-

mating the loglikelihood in nonlinear mixed-effects models. It is also a natural and convenient

approach to employ here. We follow the notation of these authors (Pinheiro and Bates, §2.4)

in our presentation.

Let b∗` and π`, ` = 1, . . . , m, denote respectively the abscissas and weights for m−point

OGQ (see, e.g., Abramowitz and Stegun, 1972, for tables of these values), and define g
(h)
i as

g
(h)
i ≡

m∑

`1

· · ·
m∑

`q

f(yi|b∗`1,...,`q
, δ(h))π`1 . . . π`q ≈

∫
f(yi|bi; δ

(h))φq(bi)dbi,

where b∗`1,...,`q
= (b∗`1 , . . . , b

∗
`q

)T . Then Q(δ|δ(h)) in formula (3.4) is approximated by

∑

i,j

(
m∑

`1,...,`q

w
(h)
i`1,...,`q

[u
(h)
ij (b∗`1,...,`q

) log pij(γ) + {1− u
(h)
ij (b∗`1,...,`q

)} log{1− pij(γ)}]

+
m∑

`1,...,`q

w
(h)
i`1,...,`q

u
(h)
ij (b∗`1,...,`q

)
[
log h1(yij, σ1) +

wij

σ1

{ζ∗1ijyij − κ1(ζ
∗
1ij)}

]

+
m∑

`1,...,`q

w
(h)
i`1,...,`q

{1− u
(h)
ij (b∗`1,...,`q

)}
[
log h2(yij, σ2) +

wij

σ2

{ζ∗2ijyij − κ2(ζ
∗
2ij)}

]
), (3.3.5)

where w
(h)
i`1,...,`q

= f(yi|b∗`1,...,`q
, δ(h))π`1 . . . π`q/g

(h)
i are weights evaluated at δ(h) and b∗`1,...,`q

,

and ζ∗kij, k = 1, 2, are the canonical parameters evaluated at δ and b∗`1,...,`q
.
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Ordinary Gaussian quadrature is easy to understand and to apply. However, the number

of quadrature points m necessary for a particular application must be established, and can

be quite high. Recently, several authors (Albert and Follmann, 2000; Lesaffre and Spiessens,

2001; Rabe-Hesketh, 2002) have pointed out that OGQ can perform poorly for too few

quadrature points even in quite simple models. This is consistent with our experience fitting

two-component GLMMs with OGQ. We encountered all of the problems described by Lesaffre

and Spiessens (2001): dependence of the computed loglikelihood and its derivatives on m;

numerical instability for large values of m; and erroneous multimodality of the likelihood

surface for m too small, generating spurious local maxima. Essentially, the problem with

OGQ is that the integrand is evaluated on a fixed grid of points, regardless of its behavior

over the range of integration. There may be, and in our experience often are, regions of

this range in which the integrand behaves badly (not like a low-order polynomial) (Thisted,

1988, §5.4) which may be under-represented or even completely missed (see, e.g., Albert

and Follmann, 2000) in the OGQ rule. In such cases, it is advantageous to customize the

quadrature to the shape of the integrand, concentrating quadrature points in the regions of

this “bad behavior”. This is the idea behind adaptive Gaussian quadrature.

(2) Adaptive Gaussian quadrature

Adaptive Gaussian quadrature has been described by Liu and Pierce (1994) and Pinheiro

and Bates (1995). In this procedure, the grid of abscissas is centered at the conditional modes

of the integrand, rather than at 0 as in OGQ, and rescaled according to the curvature of

the integrand. According to Liu and Pierce, “the requirement for effective results [with

AGQ] is that the ratio of [the integrand] to some Gaussian curve be a moderately smooth

function. This arises frequently, for example when [the integrand] is a likelihood function, the

product of a likelihood function and a Gaussian density, and the product of several likelihood

functions, etc.” (Liu and Pierce, 1994, p.625) The integrands in (3.3.4) both satisfy this

requirement.
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Following the notation of Liu and Pierce (1994), let b̂
1

i , b̂
2

i , respectively, denote the modes

of the integrands

g1(bi) ≡
ti∑

j=1

`c(δ; yij, u
(h)
ij (bi))f(yi|bi; δ

(h))φq(bi)

and

g2(bi) ≡ f(yi|bi; δ
(h))φq(bi)

from equation (3.3.4). In addition, let Γ̂1i, Γ̂2i be the Hessian matrices of log g1(bi) and

log g2(bi) evaluated at b̂
1

i , b̂
2

i , and let π`1,...,`q = (π`1 , . . . , π`q)
T and z`1,...,`q = (z`1 , . . . , z`q)

T ,

where π1, . . . , πm and z1, . . . , zm are m-point OGQ weights and abscissas, respectively. Then

the quadrature points under AGQ are shifted and rescaled versions of z`1,...,`q , as follows:

b1∗
i`1,...,`q

= (b1∗
i`1

, . . . , b1∗
i`q

)T = b̂
1

i + 2q/2Γ̂
−1/2

1i z`1,...,`q

and

b2∗
i`1,...,`q

= (b2∗
i`1

, . . . , b2∗
i`q

)T = b̂
2

i + 2q/2Γ̂
−1/2

2i z`1,...,`q ,

for g1(bi) and g2(bi), respectively. The corresponding AGQ weights are w∗
`1,...,`q

= (w∗
`1

, . . . , w∗
`q

)T ,

where w∗
i = πi exp(z2

i ). Hence, at the E step, Q(δ|δ(h)) is approximated by

∑

i,j

(
m∑

`1,...,`q

w
(h)
i`1,...,`q

[u
(h)
ij (b1∗

i`1,...,`q
) log pij(γ) + {1− u

(h)
ij (b1∗

i`1,...,`q
)} log{1− pij(γ)}]

+
m∑

`1,...,`q

w
(h)
i`1,...,`q

u
(h)
ij (b1∗

i`1,...,`q
)
[
log h1(yij, σ1) +

wij

σ1

{ζ∗1ijyij − κ1(ζ
∗
1ij)}

]

+
m∑

`1,...,`q

w
(h)
i`1,...,`q

{1− u
(h)
ij (b1∗

i`1,...,`q
)}

[
log h2(yij, σ2) +

wij

σ2

{ζ∗2ijyij − κ2(ζ
∗
2ij)}

]
),

(3.3.6)

where

w
(h)
i,`1,...,`q

=
|Γ̂1i|−1/2f(yi|b1∗

i`1,...,`q
; δ(h))φq(b

1∗
i`1,...,`q

)
∏q

n=1 w∗
`n

|Γ̂2i|−1/2
∑m

`1,...,`q

[
f(yi|b2∗

i`1,...,`q
; δ(h))φq(b

2∗
i`1,...,`q

)
∏q

n=1 w∗
`n

]

are weights that do not involve δ, the parameter vector with respect to which Q(δ|δ(h)) is

maximized in the M step.

M-step
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In the (h + 1)th iteration of the algorithm, the M-step maximizes the approximation to

Q(δ|δ(h)) given by either (3.3.5) or (3.3.6) with respect to δ. Whichever approximation is

used, Q(δ|δ(h)) has a relatively simple form which allows it to be maximized in a straight-

forward way. Using either OGQ (3.3.5) or AGQ (3.3.6), the approximation can be seen to

be a sum of three terms: the first a weighted binomial loglikelihood involving γ only; the

second a weighted exponential dispersion family loglikelihood involving only α, θ1 and σ1;

and the third a weighted exponential dispersion family loglikelihood involving only β, θ2

and σ2. Therefore, the M step for δ can be done in three stages by separately maximizing

the three terms in Q(δ|δ(h)). For each term, this can be done by fitting a weighted version

of a standard GLM.

M Step for γ. Maximization of Q(δ|δ(h)) with respect to γ can be accomplished by fitting

a weighted binomial regression of the u
(h)
ij (b∗`1,...,`q

)’s on W i ⊗ 1mq with weights w
(h)
i`1,...,`q

.

Here 1k is the k × 1 vector of ones. For instance, for gp taken to be the logit link, we

would perform a weighted logistic regression with a Nmq × 1 response vector formed by

stacking the u
(h)
ij (b∗`1,...,`q

)’s in such a way so that the indices i, j, `1, . . . , `q cycle through their

values most quickly from right to left. The design matrix for this regression is the matrix

formed by repeating each row of W = (W T
1 , . . . , W T

K)T mq times, and the weight for the

(i, j, `1, . . . , `q)
th response is given by w

(h)
i`1,...,`q

(constant over j).

M Step for α̃, σ1. Maximization of Q(δ|δ(h)) with respect to α̃ and σ1 can be done

simultaneously by again fitting a weighted GLM. Let X∗ = [(X⊗1mq), U ∗] where U ∗ is the

Nmq× q(q +1)/2 matrix with (i, j, `1, . . . , `q)
th row equal to {vech(b∗`1,...,`q

U ij)}T , where U ij

is the jth row of the random effects’ design matrix U i. Then maximization with respect to

α̃ and σ1 can be accomplished by fitting a weighted GLM with mean g−1
1 (X∗α̃), response

vector y⊗1mq and weight w
(h)
i`1,...,`q

u
(h)
ij (b∗`1,...,`q

) corresponding to the (i, j, `1, . . . , `q)
th element

of the response vector.

M Step for β̃, σ2. Maximization with respect to β̃ and σ2 can be done by maximizing

the third term of Q(δ|δ(h)). This step proceeds in the same manner as the M step for α̃
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and σ1. Again we fit a weighted GLM based on an expanded data set. The design matrix in

this regression is Z∗ = [(Z ⊗ 1mq), U ∗], the mean function is g−1
2 (Z∗β̃), the response vector

is y ⊗ 1mq , and the weight associated with the (i, j, `1, . . . , `q)
th response is w

(h)
i`1,...,`q

{1 −
u

(h)
ij (b∗`1,...,`q

)}.

3.3.2 NPML Estimation

One limitation of the modeling approach described above is the normality assumption on

the random effects. The effects on parameter estimation of misspecification of the random

effects distribution in GLMMs have been studied by Neuhaus, Hauck, and Kalbfleisch (1992)

and, more recently, Heagerty and Kurland (2001). The results of these authors indicate that

regression parameter estimators are asymptotically biased in this situation, although the size

of the bias is typically small unless the mixing distribution assumptions are grossly violated.

In situations in which little is known about the mixing distribution, or if it is believed

to be highly skewed or otherwise non-normal, an alternative approach is to estimate the

random effects’ distribution nonparametrically. This approach, known as NPML, has been

developed by many authors (e.g., Hinde and Wood, 1987; Follmann and Lambert, 1989;

Aitkin, 1996, 1999) in simpler contexts; we follow Aitkin (1999) and adapt his methods to

the two-component GLMM setting.

Aitkin’s (1999) approach to NPML estimation can be seen as a modification of OGQ in

which the quadrature weights (i.e., mass points) and abscissas are estimated from the data

rather than taken as fixed constants. This can be done as part of the EM algorithm as outlined

in section 3.3.1 by incorporating the abscissas and masses as parameters of the complete data

loglikelihood. The procedure is most easily described for one dimensional random effects, so

for the moment assume a random intercept model with q = 1. In our two-component mixture

of GLMMs, the two GLMMs have linear predictors η1ij = xT
ijα+ θ1bi and η2ij = zT

ijβ + θ2bi,

respectively. In each component, there is mixing over the continuous distribution of θkbi,

k = 1, 2. In NPML we replace these continuous distributions with discrete ones with masses
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at the unknown values b∗k = (b∗k1, b
∗
k2, . . . , b

∗
km)T , k = 1, 2. Thus for each observation i, j,

we obtain m linear predictors in each component: η1ij` = xT
ijα + b∗1`, ` = 1, . . . , m, and

η2ij` = zT
ijβ + b∗2`, ` = 1, . . . , m, with unknown masses π = (π1, . . . , πm)T . The parameters

b∗1, b∗2, and π describing the mixing distribution are regarded as nuisance parameters, with

interest centered on the regression paramaters α, β and γ.

To describe the EM algorithm for NPML, redefine δ ≡ (α, σ1, b
∗
11, . . . , b

∗
1m, β, σ2, b

∗
21, . . . , b

∗
2m, γ)T .

Then the E step yields Q(δ, π|δ(h), π(h)), given by

∑

i,j

(
m∑

`=1

w
(h)
i` [u

(h)
ij (b

∗(h)
1 , b

∗(h)
2 ) log pij(γ) + {1− u

(h)
ij (b

∗(h)
1 , b

∗(h)
2 )} log{1− pij(γ)}]

+
m∑

`=1

w
(h)
i` u

(h)
ij (b

∗(h)
1 , b

∗(h)
2 )

[
log h1(yij, σ1) +

wij

σ1

{ζ∗1ij`yij − κ1(ζ
∗
1ij`)}

]

+
m∑

`=1

w
(h)
i` {1− u

(h)
ij (b

∗(h)
1 , b

∗(h)
2 )}

[
log h2(yij, σ2) +

wij

σ2

{ζ∗2ij`yij − κ2(ζ
∗
2ij`)}

]

+
m∑

`=1

w
(h)
i` log(π`)) (3.3.7)

(cf. equation (3.3.5)), where

w
(h)
i` =

f(yi|b∗(h)
1` , b

∗(h)
2` ; δ(h))π

(h)
`∑m

k=1 f(yi|b∗(h)
1k , b

∗(h)
2k ; δ(h))π

(h)
k

,

and the canonical parameters ζ∗1ijl and ζ∗2ijl are evaluated at the linear predictors

η∗1ijl = xT
ijα + b∗1`,

η∗2ijl = zT
ijβ + b∗2`.

Comparing the above expression for Q(δ, π|δ(h), π(h)) to (3.3.5), the corresponding quantity

in OGQ, we see that we have much the same form, with just an extra term for π in (3.3.7).

Therefore, the M step proceeds in much the same manner as described previously.

M Step for γ. This can be done by fitting a weighted binomial regression of the

u
(h)
ij (b

∗(h)
1 , b

∗(h)
2 )’s on W i ⊗ 1m with weights wi`.

M Step for α, σ1, b
∗
1. Maximization of Q(δ|δ(h), π(h)) with respect to α, σ1 and b∗1 can be

done simultaneously by again fitting a weighted GLM. Let X∗ = [(X ⊗1m), In⊗1N ]. Then
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maximization with respect to α, σ1 and b∗1 consists of fitting a weighted GLM with mean

g−1
1 {X∗(αT , b∗T1 )T}, response vector y ⊗ 1m and weight w

(h)
i` u

(h)
ij (b∗1`, b

∗
2`) corresponding to

the (i, j, `)th element of the response vector.

M Step for β, σ2, b
∗
2. Maximization with respect to β, σ2 and b∗2 can be done by maxi-

mizing the third term of Q(δ|δ(h), π(h)). Again we fit a weighted GLM based on an expanded

data set. The design matrix in this regression is Z∗ = [(Z⊗1m), In⊗1N ], the mean function

is g−1
2 (Z∗[β, b∗2]), the response vector is y ⊗ 1m and the weight associated with the (i, j, `)th

response is w
(h)
i` {1− u

(h)
ij (b∗1`, b

∗
2`)}.

M Step for π. Maximization with respect to π can be done by maximizing the fourth

term of (3.3.7). This maximization yields the closed-form solution

π
(h+1)
` =

K∑

i=1

tiw
(h)
i` /

K∑

i=1

ti, ` = 1, . . . , m.

Extension to more than 1 dimensional random effects is straight-forward. For example,

suppose we have two random effects z and u; we can estimate the joint distribution of z and

u nonparametrically. Suppose the number of quadrature points is 2; then we have zi and

uj, where i, j = 1, 2. The discrete mass points are (z1, u1), (z1, u2), (z2, u1), (z2, u2), extending

the data to be 4 times their original length. We can then estimate k = 4 components in the

(z, u) plane together with their masses πk, k = 1, . . . , 4.

3.4 Computation of Information Matrix

A common criticism of the EM algorithm is that, unlike Newton-Raphson and other gradient

methods, it does not produce a variance-covariance matrix for parameter estimators as a

by-product of estimation. Hence, many authors have considered how to obtain a variance-

covariance matrix, or at least standard errors, with minimal extra effort when using the EM

algorithm. In this paper we employ a method of calculating the observed information matrix

presented by Oakes (1999) for the OGQ and AGQ approaches and a method of calculating

the expected information matrix introduced by Friedl and Kauermann (2000) for the NPML

approach.
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Following Oakes (1999), we can obtain the observed information matrix from Q(δ|δ(h)),

the conditional expectation of the complete data loglikelihood given the observed data. The

relationship can be expressed as:

∂2`(δ(h); y)

∂δ(h)∂δ(h)T
=

{
∂2Q(δ|δ(h))

∂δ∂δT +
∂2Q(δ|δ(h))

∂δ∂δ(h)T

} ∣∣∣∣∣
δ=δ(h)

. (3.4.1)

This relationship is valid for all δ, hence it is valid at the ML estimator δ(h) = δ̂ also.

The first term of (3.4.1) is block-diagonal, with components that are given by the neg-

ative information matrices associated with the GLM fits conducted in the M step. That

is, {∂2Q(δ|δ(h)
)

∂δ∂δT }|
δ=δ(h) is automatically obtained as part of the M step from the variance-

covariance matrices output by the GLM fitting routine.

Based on equation (3.3.5), the second term ∂2Q(δ|δ(h)
)

∂δ∂δ(h)T can be written as

∑

i,j,`1,...,`q

∂

∂δ
{log pij(γ)− log{1− pij(γ)}} ∂w

(h)
i`1,...,`q

u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

))

∂δ(h)T

+
∑

i,j,`1,...,`q

∂

∂δ

{
log f1ij`1,...,`q(yij`1,...,`q |b1∗

ı`1,...,`q
; α̃)

} ∂w
(h)
i`1,...,`q

u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

))

∂δ(h)T

− ∑

i,j,`1,...,`q

∂

∂δ

{
log f2ij`1,...,`q(yij`1,...,`q |b1∗

ı`1,...,`q
; β̃)

} ∂w
(h)
i`1,...,`q

u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

))

∂δ(h)T

+
∑

i,j,`1,...,`q

∂

∂δ

{
log{1− pij(γ)}+ log f2ij`1,...,`q(yij`1,...,`q |b1∗

ı`1,...,`q
; β̃)

} ∂w
(h)
i`1,...,`q

)

∂δ(h)T

(3.4.2)

for the OGQ approach. Based on equation (3.3.6), the second term of (3.4.1) can be written

as

∑

i,j,`1,...,`q

∂ log pij(γ)

∂δ

∂(w
(h)
i`1,...,`q

u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

))

δ(h)T

+
∑

i,j,`1,...,`q

∂ log{1− pij(γ)}
∂δ

∂(w
(h)
i`1,...,`q

{1− u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

)})
δ(h)T

+
∑

i,j,`1,...,`q

∂ log f1ij`1,...,`q(yij`1,...,`q |b1∗
ı`1,...,`q

; α̃)

∂δ

∂(w
(h)
i`1,...,`q

u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

))

δ(h)T

+
∑

i,j,`1,...,`q

∂2 log f1ij`1,...,`q(yij`1,...,`q |b1∗
ı`1,...,`q

; α̃)

∂δ∂δ(h)T
(w

(h)
i`1,...,`q

u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

))
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+
∑

i,j,`1,...,`q

∂ log f2ij`1,...,`q(yij`1,...,`q |b1∗
ı`1,...,`q

; β̃)

∂δ

∂(w
(h)
i`1,...,`q

{1− u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

)})
δ(h)T

+
∑

i,j,`1,...,`q

∂2 log f2ij`1,...,`q(yij`1,...,`q |b1∗
ı`1,...,`q

; β̃)

∂δ∂δ(h)T
(w

(h)
i`1,...,`q

{1− u
(h)
ij`1,...,`q

(b1∗
ı`1,...,`q

)})

(3.4.3)

for the AGQ approach. Although (3.4.2) and (3.4.3) seem complicated, there is not much

extra work involved in calculating them. Every term in these two formula used to obtain the

derivatives has been calculated when fitting the model. At convergence, numerical differen-

tiation can be applied to these terms to get a variance-covariance matrix.

Friedl and Kauermann’s (2000) paper provides a way to obtain an approximation to the

expected information matrix for normally distributed random effects and in the NPML con-

text as well. The idea can be more easily explained under the assumption of normal random

effects, though extension to NPML is straightforward. This method is based on using OGQ

and embedding the EM algorithm into the estimating equation context by defining gδ(δ) =

∂Qm(δ̃|δ)/∂δ̃|˜δ=δ
(cf. Friedl and Kauermann, 2000, p.763), where Qm means the m point

OGQ approximation to Q. EM estimates are solutions to the estimating equation gδ(δ) = 0,

while the true parameters solve Em{gδ(δ)} = 0. Since Em

(
− ∂gδ(δ)

∂δT

)
= Em

(
gδ(δ)gT

δ(δ)
)

in

the GLM setting, gδ(δ) behaves like a score equation. Thus, the variance-covariance matrix

for the MLE’s can be obtained by inverting Em

(
− ∂gδ(δ)

∂δT

)
.

For NPML, one more estimating equation is needed for the quadrature weights (π`, ` =

1, . . . , m). Denote the combined estimating function as g(δ, π) = (gδ(δ, π)T , gπ(δ, π)T )T .

Then the variance-covariance matrix of the NPML estimators is obtained in the same manner

as described for ML estimates, by working with g(δ, π) rather than gδ(δ).

When applying this method to our setting, the estimating function gδ(δ, π) can

be obtained as follows. Define Qm(δ|δ(h)) =
∑

i,j,` w
(h)
i` log{f(yij, u

(h)
ij (b`)|b`; δ)π`}; then,

∂Qm(δ|δ(h)
)

∂δ is

∑

i,j,`

w
(h)
i`

∂

∂δ
log{f(yij, u

(h)
ij (b`)|b`; δ)}
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=
∑

i,j,`

w
(h)
i`

[
u

(h)
ij

∂

∂δf1(yij|b`; δ)

f1(yij|b`; δ)
+ (1− u

(h)
ij )

∂

∂δf2(yij|b`; δ)

f2(yij|b`; δ)

]

+
∑

i,j,`

w
(h)
i`

[
u

(h)
ij

∂

∂δpij(δ)

pij(δ)
− (1− u

(h)
ij )

∂

∂δpij(δ)

1− pij(δ)

]
.

Letting δ = δ(h), the above formula becomes

∑

i,j,`

w
(h)
i`

[
u

(h)
ij

∂

∂δ(h) f1(yij|b`; δ
(h))

f1(yij|b`; δ
(h))

+ (1− u
(h)
ij )

∂

∂δ(h) f2(yij|b`; δ
(h))

f2(yij|b`; δ
(h))

]

+
∑

i,j,`

w
(h)
i`

[
u

(h)
ij

∂

∂δ(h) pij(δ)

pij(δ
(h))

− (1− u
(h)
ij )

∂

∂δ(h) pij(δ
(h))

1− pij(δ
(h))

]
.

Since u
(h)
ij = pij(δ

(h))f1(yij|b`; δ
(h))/f(yij|b`; δ

(h)), we obtain

∂Qm(δ|δ(h))

∂δ

∣∣∣∣
δ=δ(h)

=
∑

i,j,`

w
(h)
i`

∂

∂δ(h)
log f(yij|b`; δ

(h)).

In Friedl and Kauermann’s (2000) notation, we write gδ(δ, π) =
∑

i,j,` wi`
∂

∂δ log f(yij|b`; δ).

This corresponds to formula (10) and the definition of gθ(θ, ϑ) in their paper. In addition,

the estimating function for π, gπ(δ, π), for our setting is exactly the same as that in their

paper (equation (11)). Based on these two estimating functions, the steps leading to the

expected information matrix follow exactly as in section 3 of Friedl and Kauermann’s paper.

3.5 Examples

3.5.1 Measles Data

As an illustration of our methodology, we analyze annual measles data that were collected for

each of 15 counties in Texas between 1985 and 1991. For each county, the annual number of

preschoolers with measles was recorded as well as two variables related to measles incidence:

immunization rate and density of preschoolers per county. These data are given in Sherman

and le Cessie (1997) and analyzed by these authors as well. They employed a bootstrap

method for dependent data to get bootstrap replicates from 15 counties. For each bootstrap

resample, the parameters were estimated by maximizing the independence likelihood using
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GLM methodology with Poisson response variable and the natural logarithm of the number

of children as the offset. The clustered data structure and the bimodal shape of Figure 1

in their paper (see, Sherman and le Cessie, 1997, p.914) motivated us to consider a two-

component GLMM for these data. In addition, from the plot of measles incidence for each

county in Figure 3.1, there appears to be a mix of high and low incidences across the years.

Intuitively, we can think of these high and low counts as corresponding to epidemic and

non-epidemic years. This structure suggests that a two component model may fit well. In

addition, such a model will allow us to separately quantify covariate effects in epidemic and

non-epidemic years.

Let yij be the number of cases in county i, (i = 1, . . . , 15) in year j, (j = 1, . . . , 7), and let

bi be a 1-dimensional random county effect for county i. Then the two-component GLMM

for the measles data can be expressed as

Yij|bi ∼ pijPoisson(λ1ij|bi) + (1− pij)Poisson(λ2ij|b2),

log(λ1ij) = α0 + α1rateij + σ1bi + log(nij),

log(λ2ij) = β0 + β1rateij + σ2bi + log(nij), (3.5.1)

where α0, β0 are fixed intercepts and α1, β1 are fixed effects of immunization rate for the

two components respectively. In addition, log(nij) represents an offset corresponding to the

natural logarithm of the number of children in the ith county during the jth year, and λ1ij,

λ2ij are (conditional) means for each Poisson component.

We fit models with (3.5.1) and two different choices of linear predictor for logit(pij): one

with a constant mixing probability logit(pij) = γ0, and the other assumed logit(pij) is linearly

related to immunization rate; see models 4 and 5 in Table 3.1. Based on AIC, we selected

the model with rate as a covariate in the linear predictor for logit(p). This model yielded a

maximum log likelihood of -1069.3 and a AIC of 2154.5.

For comparison, we fit a two-component GLM with the same linear predictors for each

component as in (3.11), but with no random county effect. The results are in Table 3.1 (see

models 2 and 3). The model with no covariate in the linear predictor for logit(pij) gave a
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maximum log likelihood of -1356.2 and a AIC of 2720.3, whereas, the model with a covariate

for logit(pij) yielded a maximum log likelihood of -1356.0 and a AIC of 2724.0. There is no

significant difference in fit between these two models according to a likelihood ratio test,

but when compared with two-component GLMMs, the inclusion of a random county effect

bi improved the fit significantly.

We also fit a non-mixture GLMM with the same linear predictor as in (3.5.1) to these

data. Such a model may be a first choice to account for intra-county correlation. From Table

3.1, model 1, we can see this model clearly fit the data badly compared with the other models

giving a maximum log likelihood of -5087.0 and a AIC of 10180.0.

To further investigate the suitability of the models we fit in this example, we follow the

approach of Vieira et al. (2000) who suggested the use of half-normal plots as goodness-

of-fit tools. Half-normal plots for the GLMM (model 1), two-component GLM (model 3)

and two-component GLMM (model 5) appear in Figure 3.2 (a-c). The plots display the

absolute values of the Pearson residuals versus half-normal scores, with simulated envelopes

based on the assumed model evaluated at the estimated parameter values. A suitable model is

indicated by the observed values falling within the simulated envelope. The Pearson residuals

are defined as [yij − ̂E(Yij)]/
√

̂var(Yij), where E(Yij) = E{E(Yij|bi)}, var(Yij) = E(Y 2
ij) −

{E(Yij)}2 = E{E(Y 2
ij |bi)}−{E(Yij)}2 for the mixed models. The marginal expectations here

were evaluated using 20-point OGQ and the hats indicate evaluation at the final parameter

estimates, which were obtained using 11-point AGQ. For the two-component GLM, E(Yij) =

pijλ1ij + (1 − pij)λ2ij, var(Yij) = pij(λ1ij + λ2
1ij) + (1 − pij)(λ2ij + λ2

2ij) − {E(Yij)}2, where

λ1ij and λ2ij are means for each Poisson component.

Figure 3.2(a) clearly indicates that the one component GLMM model is inadequate for

the measles data since almost all points fall outside of the simulated envelope. Figure 3.2(b)

shows that the two-component GLM improves the fit, but in the left half of the plot there

are still many points outside the envelope. In Figure 3.2(c) nearly all points are along the

simulated means, confirming that the two-component GLMM fits these data best.
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The fitting results above are consistent with expectations based on a preliminary exam-

ination of the data and some consideration of the epidemiology of this disease. Because

of the mixture of large and small incidences of measles and the epidemic phenomenon, we

expected that two components would be necessary to model these data. This is borne out by

the vast improvement in fit from a one to a two component GLM. Of course, the data are

clustered as well, so the within county correlation must be accounted for somehow. We have

chosen to account for this correlation through a random county effect, and this approach

improves the fit compared with the fixed effect two component GLM. Clearly, there are other

valid approaches for accounting for within-cluster correlation. Alternatives include marginal

models (Rosen et al. , 2000) and transition models (Park and Basawa, 2002). As in the

non-mixture case, which approach is most appropriate for accounting for the correlation will

depend upon the application.

As mentioned earlier, fitting two-component GLMMs involves evaluation of the integral

in the E step of the EM algorithm. The most straightforward method is OGQ. We now

illustrate the limitations of this approach. We fit model (3.5.1) with logistic regression for p:

logit(pij) = γ0 + γ1rateij. (3.5.2)

Table 3.2 illustrates the effects of the number of quadrature points on the loglikelihood,

parameter estimates of the immunization rate effect and their standard errors. The results

are obtained for the number of quadrature points m ranging from 5 to 35. Standard errors

are calculated from diagonal elements of the observed information matrix (inverse negative

Hessian). P-values are obtained using Wald tests. From Table 3.2 it is clear that the loglikeli-

hood, parameter estimates, and standard errors vary considerably with m. In addition, these

values have not yet settled down and become close to the more accurate AGQ values. We can

see Table 3.3 for m as large as 35. The closest value of the loglikelihood to those obtained

with AGQ occurs for m = 11, but the values of α̂1 and β̂1 are quite different than for AGQ.

More importantly, perhaps, the p-values for these immunization rates are considerably dif-
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ferent from those based on AGQ. In contrast, from Table 3.3, we see parameter estimates,

standard errors, and loglikelihood values for AGQ, show relatively little dependence on m.

Another way that dependence of OGQ on the number of quadrature points can be seen

is via plots of the loglikelihood surface. We calculated the marginal loglikelihood for model

5 on a grid of parameter values centered at the ML estimates obtained from AGQ with

11-points. We changed the coefficient of rate for component 1 (α1) from -0.135 to -0.09 by

0.0075, and the coefficient of rate for component 2 (β1) from -0.065 to -0.04 by 0.004 and kept

other parameter values unchanged. Figure 3.3 shows the OGQ results for quadrature points

ranging from 5 to 21 by 2 (cf. Lesaffre and Spiessens, 2001, Figure 5). Figure 3.4(a-c) shows

the surface plots for m=5, 9, 15 when using OGQ. In both figures, it is clear that the marginal

loglikelihood changes dramatically due to numerical inaccuracy. In addition, we see that

multimodality of the loglikelihood surface does occur, allowing the maximization procedure

to converge to a local maximum. In contrast, for AGQ, the maximized loglikelihood and

loglikelihood surface show little dependence on m. In Figure 3.3, note that the loglikelihood

for m=25, 27, 29 are actually for m=5, 7, 9 with AGQ. This figure shows that AGQ can

obtain the true loglikelihood for small m, whereas a much higher value of m is necessary for

OGQ. We also plotted the loglikelihood surface plots for AGQ using the same grid in Figure

3.4, d-f). As expected, the surfaces do not change nearly as much as for OGQ. Hence results

from the AGQ method appear to be reliable, and we recommend this method over OGQ in

general.

Dropping the normality assumption on the random effect, we used the NPML method

to fit the model based on (3.5.1) and (3.5.2) (model 5). We followed the strategy described

by Friedl and Kauermann (2000) and started the fitting procedure from a large value of m

(m = 12), and then reduced m systematically until all quadrature points are different and

no quadrature weights are very small (less than 0.01). For the measles data, we stopped

the fitting procedure at m=7. For m=7, we have α1=-0.0944, β1=-0.14295, γ0=0.3029 and

γ1=0.009392 with loglikelihood equal to -957.03.
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3.5.2 Whitefly Data

Our second example involves data from a horticulture experiment to investigate the efficacy

of several different means of applying pesticide to control whiteflies on greenhouse-raised

poinsettia plants. The data arise from a randomized complete block design with repeated

measures taken over 12 weeks. Eighteen experimental units were formed from 54 plants, with

units consisting of 3 plants each. These units were randomized to six treatments in 3 blocks.

The response variable of interest here is the number of surviving whiteflies out of the total

number placed on the plant two weeks previously. These data are discussed in more detail

in van Iersel, Oetting, and Hall (2000). In that paper, ZIB regression models were used to

analyze these data, with random effects at the plant level to account for correlation among

the repeated measures on a given plant. We return to this problem to investigate whether

a two-component mixture of GLMMs can improve upon the fit of a ZIB-mixed model for

these data.

Let yijk` be the number of live adult whiteflies on plant k (k = 1, . . . , 54) in treatment i

(i = 1, . . . , 6) in block j (j = 1, . . . , 3) measured at time ` (` = 1, . . . , 12). Let nijk` be the

total number of whiteflies placed on the leaf of plant k in treatment i in block j measured at

time `. Further let αi be the ith treatment effect, βj be the jth block effect, τ` be the `th week

effect, and bk be a 1-dimensional random plant effect for plant k. For simplicity, we consider a

model containing only main effects (treatment, block and week). The two-component GLMM

for these data with main effects can be expressed as

Yijk`|bk ∼ pijk`Binomial(nijk`, π1ijk`|bk) + (1− pijk`)Binomial(nijk`, π2ijk`|bk),

logit(π1ijk`) = µ1 + α1itreatmenti + β1jblockj + τ1`week` + σ1bk,

logit(π2ijk`) = µ2 + α2itreatmenti + β2jblockj + τ2`week` + σ2bk. (3.5.3)

We fit model (3.5.3) with the linear predictor for the mixing probability pijk` specified as

logit(pijk`) = µ3 + α3itreatmenti + β3jblockj + τ3`week`. (3.5.4)
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The results are in Table 3.4. This model yields a maximum loglikelihood of -803.48 and a

AIC of 1724.96. We also fit a one-component GLM, a one-component GLMM, a ZIB model,

a ZIB mixed model, and a two-component GLM. The linear predictors for the components

and mixing probability contain the main effects (treatment, block and week) with or without

plant random effects. That is, each of these models was chosen to be the closest and most

comparable model to that given in (3.5.3) and (3.5.4) in its model class. The fitting results

are shown in Table 3.4 also.

From Table 3.4, we find that the two component models are better than the corresponding

one component models. In addition, models with random plant effects are better than the

corresponding models without random effects. From these results, it is clear that both random

effects and a second component are necessary here. In addition, a non-degenerate (non-zero)

second component also improves the fit over a ZIB model. That is, the two-component

GLMM fits best.

In this example the reported results are all based on 5-point AGQ. As in the previous

example, we examined the performance of OGQ and AGQ for different values of m. For

brevity, we omit the details of this comparison, but the results are much the same as before.

Parameter estimates, standard errors and loglikelihoods were highly dependent on m for

OGQ, but not for AGQ. It appears that AGQ is necessary to achieve sufficient numerical

accuracy when fitting these models.

3.6 Discussion

In this paper we have formulated a class of two component mixtures of GLMMs for clustered

data and described how the EM algorithm, combined with quadrature methods, can be used

to fit these models using ML estimation. Extension of this model class to more than two

components is possible, and is, in principle, straightforward. However, the complexity of

the model, its notation, and its fitting algorithm will grow rapidly with the number of

components, and it is not clear that the practical value of such models justifies consideration
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of cases beyond two or three components. We envision that these finite mixture extensions

of GLMMs will have application primarily in problems where there is some readily identified

heterogeneity in the population so that the data represent a small number (two or three) of

subpopulations that cannot be directly identified. For example, disease counts from epidemic

and non-epidemic years, weekly epileptic seizure counts from patients who have “good weeks”

and “bad weeks”, arrhythmia counts from a sample of clinically normal patients that is

contaminated with abnormal patients (e.g., patients with an undetected genetic defect for

cardiomyopathy), etc.

Our model class allows for correlation due to clustering to be accounted for through the

inclusion of cluster-specific random effects. Extension to multilevel models (multiple nested

levels of clustering), crossed random effects, and other more general random effects structures

is an important areas of future research. One attractive approach for this extension is to use a

Monte Carlo EM algorithm (McCulloch, 1997) in place of our EM algorithm with quadrature.

The main challenge to implementing the Monte Carlo EM in this context is sampling from the

conditional distribution of random effects given the observed data. We have had some success

with this approach, but have found that the computing time is prohibitively long for practical

use. Another possibility is to use approximate ML or estimating equation methods such as

penalized quasi-likelihood (Breslow and Clayton, 1993) and its extensions. These approaches

have some drawbacks in terms of bias in the parameter estimators for highly non-normal

data (e.g. binary data); but they can be applied to general random effects structures and

work reasonably well in some problems. Such methods can be applied to a finite mixture of

GLMMs with general random effects structures by replacing the M-step in the EM algorithm

with the solution of an estimating equation. This idea is due to Rosen et al. (2000) and leads

to an ES (expectation-solution) algorithm to produce approximate MLEs rather than an EM

algorithm to produce MLEs. Elaboration of these ideas will appear elsewhere.
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Table 3.1: Comparison of different models for the measles data

Model Method W T
ijγ -2 Log likelihood AIC

1 GLMM none 10174.0 10180.0
2 Two-component GLM none 2712.3 2720.3
3 ” γ0 + γ1rate 2712.0 2724.0
4 Two-component GLMM none 2166.0 2178.0
5 ” γ0 + γ1rate 2138.5 2154.5
5* NPML γ0 + γ1rate 1914.1 1964.1

* without normality assumption on the random effects

Table 3.2: Fitting Results From Ordinary Gaussian Quadrature

Component 1 Component 2
Q. Points Loglikelihood α1 std. error p-value β1 std. error p-value

m=5 -1112.93 -0.0684 0.0026 <0.0001 -0.0353 0.0095 0.0022
m=9 -1093.49 -0.0628 0.0031 <0.0001 -0.0239 0.0117 0.0603
m=11 -1069.69 -0.1006 0.0046 <0.0001 -0.0439 0.0104 0.0009
m=15 -1082.27 -0.0809 0.0029 <0.0001 -0.0342 0.0101 0.0043
m=19 -1079.21 -0.0806 0.0030 <0.0001 -0.0336 0.0102 0.0054
m=21 -1078.15 -0.0804 0.0031 <0.0001 -0.0332 0.0103 0.0061
m=25 -1082.84 -0.0804 0.0030 <0.0001 -0.0328 0.0101 0.0057
m=30 -1081.35 -0.0806 0.0030 <0.0001 -0.0336 0.0101 0.0051
m=35 -1077.68 -0.0796 0.0029 <0.0001 -0.0316 0.0103 0.0080

Table 3.3: Fitting Results From Adaptive Gaussian Quadrature

Component 1 Component 2
Q. Points Loglikelihood α1 std. error p-value β1 std. error p-value

m=5 -1069.26 -0.1170 0.0262 0.00053 -0.0537 0.02297 0.0348
m=7 -1069.24 -0.1187 0.02667 0.00055 -0.0553 0.02301 0.0307
m=9 -1069.235 -0.1193 0.02646 0.00049 -0.05592 0.02262 0.0269
m=11 -1069.233 -0.1193 0.02590 0.00041 -0.05596 0.02213 0.0241
m=15 -1069.23 -0.1191 0.02591 0.00042 -0.05573 0.02210 0.0244
m=19 -1069.23 -0.1195 0.02615 0.00044 -0.05604 0.02226 0.0246
m=21 1069.23 -0.1194 0.02617 0.00044 -0.05601 0.02228 0.0248
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Table 3.4: Comparison of different models

Model Method -2 Log likelihood AIC
1 GLM 2593.57 2631.6
2 GLMM 2408.97 2449.0
3 ZIB 1928.69 2004.7
4 ZIB mixed 1883.33 1961.3
5 Two-component GLM 1628.17 1742.2
6 Two-component GLMM 1606.96 1724.96
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Figure 3.1: Texas measles data. Years are grouped together for each county 1985-1991 from
left to right.
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Figure 3.2: Half-normal plot for assessing goodness of fit of models 1 (Figure a), 3 (Figure
b) and 5 (Figure c). Theses three models are a GLMM, two-component GLM, and two-
component GLMM, respectively.
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Figure 3.3: Loglikelihood as a function of the number of quadrature points m from 5 to 21
for ordinary Gaussian quadrature and m + 20 for adaptive Gaussian quadrature.
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Figure 3.4: Surface plots for OGQ and AGQ approaches based on the measles data.
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Chapter 4

Restricted Maximum Likelihood Method for ZI-mixed Effect Models

4.1 Introduction

Restricted Maximum Likelihood Method (REML) for linear models was originally formulated

by Patterson and Thompson (1971) for estimating intra-block and inter-block weights in the

analysis of incomplete block designs with block sizes not necessarily equal. They proposed

a set of error contrasts whose likelihood function depends only on the variance components

and not the regression parameter of the model. Their proposal was to maximize the likeli-

hood function of those error contrasts rather than the likelihood of the data. This idea was

generalized to the context of the linear mixed model by Corbeil and Searle (1976a). The

purpose of REML in linear mixed effects models is to estimate variance components using a

general likelihood-based methodology that leads to estimators with less bias than ML esti-

mators. In special cases such as balanced ANOVA models, REML estimation leads to the

classical unbiased ANOVA-type estimators which can be thought of bias-corrected MLEs

where adjustments have been made to account for degrees of freedom lost in estimating

regression parameters.

The merits of REML and ML estimators for variance-covariance components have been

discussed by several authors (Patterson and Thompson, 1971; Harville, 1977; Diggle et

al., 1994; Verbeke and Molenberghs, 2000). ML and REML estimation methods are both

likelihood-based, and the estimators have useful properties such as consistency, asymptotic

normality and efficiency. But in general, ML estimators do not adjust for the loss of degrees

of freedom resulting from the estimation of the model’s fixed effects and produce biased

65
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estimators of the variance-covariance parameters. According to Diggle et al., “... the dis-

tinction between the maximum likelihood and REML estimation is important only when p

[number of fixed effect parameters] is relatively large” and “In summary, maximum likeli-

hood and REML estimators will often give very similar results. However, when they do differ

substantially, REML estimators should be less biased.” (Diggle et al., 1994, p.69).

The REML method has been extended to GLMMs by several authors. In the GLMM con-

text, Drum and McCullagh (1993) apply REML to logistic mixed effect models. Breslow and

Clayton (1993) proposed a REML-type adjustments for penalized quasi-likelihood. Another

approximate REML estimation in GLMM setting is proposed by McGilchrist (1994). His

method is based on hierarchical or h-likelihood (Lee and Nelder, 1996). However, the latter

two approaches only apply to approximate ML methods for GLMMs, where the model

is approximated by successive LMMs. These approaches are quite similar, as noted by

McGilchrist (1994), who writes, “the approach [McGilchrist (1994)] is similar in principle

to penalized likelihood approaches and in basic aims has elements in common with Breslow

and Clayton [(1993)].” Actually, the REML methods employed by Breslow and Clayton

and McGilchrist are not nuisance parameter elimination technique. Therefore, the natural

questions to be asked are, How accurate are Breslow and Clayton’s approximations which

lead to their REML approach? How much information is lost? Is it possible to work on the

loglikelihood from the nonlinear model directly and still apply REML method to get better

estimate of variance component? Liao and Lipsitz (2002) proposed a REML-type estimator

for GLMM model based upon correcting the bias in the profile score function of the variance

components, an idea by McCullagh and Tibshirani (1990). The idea is more in the spirit of

REML estimation in LMM because, like REML but unlike the other methods, Liao and Lip-

sitz’s approach is based upon reducing or eliminating the effect of the nuisance parameters

(the fixed effects) in the estimator of the variance component.

Currently, variance-covariance parameters in ZI-mixed effect models have been estimated

by ML approach (Hall, 2000) and approximate REML approach (Yau and Lee, 2001) based
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on McGilchrist (1994). We think Liao and Lipsitz approach to REML can be extended to

ZI-mixed effects models, and expect it to improve upon ML estimation and Yau and Lee’s

approximate REML in that context.

Section 4.2 presents the proposed REML-like estimator for ZI-mixed effect models. The

fitting algorithm is provided in section 4.3. In section 4.4, a simulation study is performed to

compare ML and REML estimators for variance components. Standard errors are discussed

in section 4.5. In section 4.6, a real data analysis is given and at the end, a discussion is

given in section 4.7.

4.2 REML Estimator for ZI-Mixed Effect Models

A special case of the two-component mixture occurs when one component is a degenerate

distribution with point mass of one at zero. Such models are known as zero-inflated regression

models and include zero-inflated Poisson (ZIP; Lambert, 1992), negative binomial, binomial

(ZIB; Hall, 2000) and others (see Ridout, et al., 1998 for a review). Recently, Hall (2000)

and Yau and Lee (2001) considered ZI-Poisson model with cluster-specific random effects.

Hall (2000) also considered ZI-Binomial model with random effects. Zero-inflated regression

models with random effects for continuous data have been considered by Olsen and Schafer

(2001) and Berk and Lachenbruch (2002).

4.2.1 Formulation of ZI-Mixed Effect Models

The ZI-mixed effect models can be expressed as

Yij|bi ∼




0, with probability pij;

F1(yij|bi; ζij, σ), with probability 1− pij.

Here, F1 is assumed to be an exponential dispersion family distribution, with density

f1(yij|bi; ζij, σ) = h(yij, σ) exp[{ζijyij − κ(ζij)}wij/σ].

Usually, F1 is Poisson or binomial, but other distributions can and have been considered in the

literature (e.g. negative binomial). As before, the wij’s are known constants (e.g., binomial
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denominators), σ is the dispersion parameter. The function κ is a cumulant generating

function, so F has means µij = κ′(ζij) and variances v(µij)σ/wij where v(µ) = κ′′(µ), is the

variance function.

We assume the canonical parameters ζi = (ζi1, . . . , ζiti)
T are related to covariates and

cluster-specific random effects through GLM-type specifications. That is, for canonical link

function we have

ζi(µi) = ηi = X iβ + U ibi, or µi = ζ−1
i (ηi).

Here, X i is a ti× r design matrix for fixed effects parameters β; U i is a ti× q design matrix

for the random effects bi; b1 . . . , bK are assumed to be independent, each with mean 0 and

variance-covariance matrix V q. We assume V q is parameterized by the vector θ. In addition,

we assume the structure for mixing probabilities is gp(pi) = W iγ, where pi = (pi1, . . . , piti)
T ,

i = 1, . . . , K, γ is an unknown s−dimensional regression parameter, W i is a ti × s design

matrix, and gp is a known link function. Typically, gp will be taken to be the logit link, but

the probit, complementary-log-log, or other link function can be chosen here.

Let δ = (βT , σ,γT )T denote the fixed effect parameter vector, θ denote the variance com-

ponent parameter vector of random effects, and δc = (βT , σ,γT , θT )T denote the combined

vector of model parameters. If we assume b1, . . . , bK are independent N(0, V q(θ)) random

vectors, then the loglikelihood for δc based on y is given by

`(δc; y) =
K∑

i=1

log





∫ ti∏

j=1

f(yij|bi; δ)φq(bi; θ)dbi



 , (4.2.1)

where f(yij|bi; δ) = {pij(γ) + (1− pij(γ))f1(yij|bi; β, σ)}zij {(1− pij(γ))f1(yij|bi; β, σ)}1−zij ,

and zij = 1 if yij = 0, otherwise zij = 0. In addition, φq(·) denotes the q−dimensional normal

density function, and the integral is q−dimensional over (−∞,∞)×· · ·×(−∞,∞) (q times).

4.2.2 Complete Data Loglikelihood for EM Algorithm

The EM algorithm is convenient for fitting ZI-mixed effects models (Hall, 2000). Define the

Bernoulli random variable Uij = 1 if Yij is drawn from zero state, Uij = 0 if Yij is drawn
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from distribution F1, where i = 1, . . . , K, j = 1, . . . , ti. Then the “complete” data for the

EM algorithm are (y, u, b), where u = (u11, . . . , uKtK )T contain the realizations of the Uij’s.

Here, (u, b) play the role of missing data. Based on (y, u, b), the complete data loglikelihood

is given by

`c(δc; y, u, b) = log f(y|u, b; δc) + log f(u|b; δc) + log φq(b)

=
K∑

i=1

ti∑

j=1

(1− uij) (log f1(yij|bi; β, σ))

+
K∑

i=1

ti∑

j=1

{uij log pij(γ) + (1− uij) log[1− pij(γ)]}

+
K∑

i=1

log φq(bi; θ). (4.2.2)

In the current literature, Hall (2000) obtains the parameter estimates of ZIP and ZIB

mixed models by maximum likelihood method via the EM algorithm. Given θ, Yau and Lee

(2001) use the Newton-Raphson algorithm to iteratively maximize the joint loglikelihood

of y and b, while the estimate of θ is obtained by modifying REML estimation equation

(3.2) and the REML information matrix of McGilchrist (1994). Alternatively, the REML

estimation method proposed by Liao and Lipsitz (2002) uses the Monte Carlo EM algorithm

(MCEM) to get fixed effect parameter estimates given the variance component parameter

θ, and then θ is obtained by iteratively solving a bias-corrected profile score function. Our

estimation approach for ZI-mixed model is based on their work.

4.2.3 Definition of REML estimator of Variance Components

Following Liao and Lipsitz (2002) and our ZI-mixed effect model description above, let δ =

(βT , σ,γT )T be the vector of fixed effect parameters, let δc = (δT , θT )T , let (θ̂MLE, δ̂MLE)

be the ML estimator of variance component and fixed effects parameters respectively, let θ̂
y

δ

be the ML estimator of θ for known δ. The “y” superscript here denotes that this quantity

is based on the observed data y rather than generated data as described below. In order to
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develop a REML estimator θ̂REML that has smaller bias than θ̂MLE, we need to compare

the profile score function for θ̂MLE with the score function for θ̂
y

δ.

Score Function for θ̂
y

δ:

The observed data loglikelihood of the ZI-mixed effect model is given in equation (4.2.1).

Suppose the fixed effects parameters δ are known, then the maximum likelihood estimate of

the variance component parameter θ is obtained by solving ∂`(δc
;y)

∂θ = 0, where

∂`(δc; y)

∂θ
= −1

2

K∑

i=1

∂

∂θ

{
log |V θ|+ tr

[
V −1

θ E(bib
T
i |yi; δ, θ)

]}
. (4.2.3)

This quantity can be obtained from the EM algorithm based on the complete data loglike-

lihood (4.2.2). Notice that only the last term in equation (4.2.2) involves θ. Hence, given

δ known, maximizing Q(δc|δc(h)) is equivalent to maximizing the expectation of the last

term of equation (4.2.2) with respect to θ. Thus, the score function for θ based on the EM

algorithm is

∂Q(θ|θ(h))

∂θ
= −1

2

K∑

i=1

∂

∂θ

{
log |V θ|+ tr

[
V −1

θ E(bib
T
i |yi; δ, θ(h))

]}
.

It follows that

∂`(δ; y)

∂θ
=

∂Q(θ|θ(h))

∂θ
|
θ(h)

=θ
.

Profile Score Function for θ̂MLE:

Usually, we don’t know δ, but must estimate δ by the ML estimator δ̂
y

θ for fixed θ. We

name the score function obtained by plugging the ML estimator δ̂θ into the observed data

loglikelihood as the profile score function of the variance component θ. For the ZI-mixed

model, the profile score function for θ is

ps(θ; y) =
∂`(δc; y)

∂θ
= −1

2

K∑

i=1

∂

∂θ

{
log |V θ|+ tr

[
V −1

θ E(bib
T
i |yi; δ̂

y

θ, θ)
]}

. (4.2.4)

Bias Correction:

Comparing equation (4.2.3) with (4.2.4), we notice that the only difference lies in the

expectation terms in those equations. Define

h(θ, S) = −1

2

K∑

i=1

∂

∂θ

{
log |V θ|+ tr

[
V −1

θ S
]}

,
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where S = E(bib
T
i |yi; δ, θ) in equation (4.2.3) and S = E(bib

T
i |yi; δ̂

y

θ, θ) in equation (4.2.4).

Let θr be the rth element of θ; then the rth element of h(θ, S) is

− 1

2

K∑

i=1

tr

{
V −1

θ

[
S − V θ

]
V −1

θ
∂V θ
∂θr

}
(4.2.5)

(see Jennrich and Schuchter, 1986, p809). If S = E(bib
T
i |yi; δ, θ), (4.2.5) is an unbiased

estimating function for θ because

Eyi;δ,θ

{
E(bib

T
i |yi; δ, θ)

}
= E(bib

T
i ; δ, θ) = V θ.

But if S = E(bib
T
i |yi; δ̂

y

θ, θ), (4.5) is biased, with bias equal to

B(θ, δ) = 1/K
K∑

i=1

{
Eyi;δ,θ

[
E(bib

T
i |yi; δ̂

y

θ, θ)
]
− Eyi;δ,θ

[
E(bib

T
i |yi; δ, θ)

]}
.

(4.2.6)

In practice, we don’t know δ in equation (4.2.6). Following Liao and Lipsitz, we substi-

tute δ̂
y

θ for δ and define our estimated bias as B(θ, δ̂
y

θ). Correcting this bias in the profile

score function (4.2.4) and solving the resulting equation, we obtain the REML type esti-

mator θ̂REML. In this approach, E(bib
T
i |yi; δ̂

y

θ, θ) in equation (4.2.4) has been replaced by

E(bib
T
i |yi; δ̂

y

θ, θ)−B(θ, δ̂
y

θ).

With the replacement of δ by δ̂
y

θ, we no longer have an unbiased estimating function for

θ. However, Liao and Lipsitz (2002) have argued that “the dependence of [B(θ,δ)] on [δ]

should be weak and the difference between [B(θ,δ)] and [B(θ, δ̂
y

θ)] should thus be small.”

We investigate the validity of this claim in the context of our problem in section 4.5.

4.3 The Algorithm for REML Estimator of Variance Components

Following Liao and Lipsitz (2002), the fitting algorithm we present involves the MCEM

algorithm using importance sampling (Booth and Hobert, 1999). Based on (4.2.2), the E-

step of the EM algorithm is approximated in three parts which allows the maximization to be

done by solving three separate problems: (1) maximizing a weighted binomial loglikelihood
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involving γ only; (2) maximizing a weighted exponential dispersion family loglikelihood

involving α and σ only; (3) and solving an estimating equation involving θ only.

The complete algorithm for computing the REML estimator is as follows:

1. Given θ = θ(h) and data y, (1) and (2) are used to get the ML estimator δ̂
y

θ, where θ =

θ(h). E(bib
T
i |yi; δ̂

y

θ, θ) is obtained as a by-product of the MCEM algorithm (see Appendix

for the derivation of MCEM algorithm for ZI-inflated model), because we have already drawn

random variates from the conditional distribution of bi given yi.

2. Generate a random sample Y (h) that has the same dimension as the observed data

vector y from the ZI-mixed model with parameter θ = θ(h) and δ = δ̂
y

θ.

3. Using (1) and (2) and taking θ = θ(h) as known parameters, obtain fixed effect param-

eter estimator δ̂
Y

θ. Again, E(bib
T
i |Y i; δ̂

Y

θ, θ) and E(bib
T
i |Y i; δ̂

y

θ, θ) are by-products of the

MCEM algorithm, because we have already drawn random variates from the conditional

distribution of bi given Y i. Note, for simplification, Y = Y (h) and Y i = Y
(h)
i in this step.

4. As in Liao and Lipsitz (2002, p.405), the bias is calculated by

Bh+1 = (1− h−1)Bh + h−1

{
1

K

K∑

i=1

[
E(bib

T
i |Y i; δ̂

Y

θ, θ)− E(bib
T
i |Y i; δ̂

y

θ, θ)
]}

,

where θ = θ(h), Y = Y h and B0 = 0.

5. Correct the bias in the profile score function and obtain the (h + 1)th iteration of θ

(θ(h+1)) by solving

h
(
θ, E(bib

T
i |yi; δ̂

y

θ, θ)−Bh+1

)
= 0.

Repeat step 1-5 until convergence of θ, which yields θ̂REML. By conducting one more

step, we obtain the REML estimates of the fixed effect parameters δ.

4.4 Inference for Fixed Effect Parameters

Inference for fixed effect parameters is a very challenging topic for GLMM models, mixtures

of GLMM models and ZI-inflated models. As is well know, as we know, likelihood based-

inference on the fixed effects can be done based on the Hessian matrix. In small samples,
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this may not be the best way to do the inference, but it is a reasonable first choice. In our

context, the 5 steps of the algorithm presented in section 4.3 performed iteratively until

convergence of θ. After convergence, step 1 is performed again to obtain the REML estimate

of the fixed effect parameter δ (refer to the first two terms of formula A.3 in the Appendix.

At convergence of this step, the Hessian matrix of fixed effect parameters is a by product,

which is the second derivative of the first two terms of formula (A.3) in the Appendix.

Usual Wald-based inference for the fixed effects can be based on the negative inverse of

this matrix. Of course, as in linear mixed effect models, this asymptotic variance-covariance

estimator does not take any account of the error introduced by having to estimate θ, and

the resulting inferences may be poor in small samples. A worthwhile area of future research

would be to improve upon asymptotic inference methods for ZI-mixed models fit with ML

or our proposed REML-like procedure. It may be possible to produce small sample F tests

in a manner similar to what Kenward and Roger (1997) proposed in the linear mixed model

context. Inference for fixed effect can based on this.

4.5 Simulation Study

In order to compare the ML estimator (θ̂ML) and the proposed REML type estimator

(θ̂REML) presented in section 4.2, a simulation study was carried out. In this study, we

simulated data sets from a ZI-mixed Poisson distribution. The study design is adapted from

Breslow and Clayton (1993) and also from Liao and Lipsitz (2002).

More specifically, the model we use in the simulation study is:

Yij|bi ∼




0, with probability pij;

Poisson(λij|bi), with probability 1− pij,

where

log λij = β1 + β2x1ij + β3x2ij + b1i + b2ix1ij,

pij = γ1 + γ2x1ij + γ3x2ij,

bi = (b1i, b2i)
T ∼ N(0, V 2(θ)),
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and where V 2(θ) is the diagonal matrix




θ2
1 0

0 θ2
2


.

We let i = 1, . . . , 50 index 50 independent clusters; j = 1, . . . , 10 index 10 subjects

within each cluster, and we let the true parameters be (β1, β2, β3) = (2, 1,−1), (γ1, γ2, γ3) =

(−0.5,−0.5, 0.1), and (θ1, θ2) = (0.5, 0.5). In addition, we assume x1ij = (j − 5)/4, x2ij = 0

for i = 1, . . . , 25 and x2ij = 1 for i = 26, . . . , 50. We fit two models: the first model (model

1) is the model we use to generate the data. The second model is an overspecified model

with 3 extra covariates x3ij, x4ij, x5ij. We assume these covariates are independent and are

generated from separate standard normal distributions.

Two hundred and forty data sets were generated. Due to computing time demands, 240

data sets are use to compute θ̂
y

δ, but only 100 data sets are used to compute θ̂ML, θ̂REML

and θ̂BLUP . Here, θ̂BLUP represents the estimator obtained from the approximate REML

method proposed by McGilchrist (1994) and applied by Yau and Lee (2001).

The simulation results are presented in Table 4.1 and Table 4.2. In Table 4.1, we compare

ML and REML estimates of θ with the true parameter values of θ when the fixed effects

parameters are known. In Table 4.2, we compare ML and REML estimates of θ with the

estimated θ (θ̂
y

δ). From Table 4.1, several conclusions can be drawn:

(1) θ̂
y

δ are essentially unbiased and the standard deviation is small. Note that the esti-

mated θ̂
y

δ are the same for models 1 and 2 since they are estimated assuming fixed effect

parameters are known.

(2) As expected, the ML estimator of the variance component parameters are biased

downward. The bias is very severe for θ1 for both of the models. In addition, when the

number of fixed effect parameters increase, the bias becomes more severe for model 2 than

for model 1.

(3) As expected, the REML method presented in section 4.3 effectively reduces the bias.

On average, it reduces about 38 percent of the bias relative to the ML estimator of θ1, 18

percent of the bias relative to the ML estimator of θ2 for model 1, and 40 percent and 21
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Table 4.1: Simulation results for Zero-Inflated Poisson data with two dimensional random effects:
compare with the true parameter value of θ

Model 1 Model 2
Statistics Parameter Simulation size Mean Standard Mean Standard

deviation deviation
θ̂

y

δ θ1 240 0.49097 0.06254 0.49097 0.06254
θ2 240 0.48925 0.067157 0.48925 0.06715

θ̂ML-0.5 θ1 100 -0.02641 0.06733 -0.02645 0.06691
θ2 100 -0.02454 0.06886 -0.02557 0.06972

θ̂REML-0.5 θ1 100 -0.01630 0.06748 -0.01586 0.06716
θ2 100 -0.02009 0.06959 -0.02019 0.07019

θ̂BLUP -0.5 θ1 100 -0.02493 0.06792 -0.02469 0.06748
θ2 100 -0.02411 0.06903 -0.02461 0.06983

percent for θ1 and θ2, respectively for model 2. We would expect that as the number of fixed

effects increases, the practical effect of reducing the bias via REML estimation will increase.

(4) Comparing the approximate REML estimation method of Yau and Lee (2001) with

ML, the estimators from the former method have smaller bias, but not nearly as small as

our proposed method has. On average, the Yau and Lee approach reduces the bias by about

5.6 percent relative to ML for θ1 and by 1.8 percent for θ2 in model 1, and by 6.7 and 3.8

percent for θ1 and θ2, respectively, for model 2.

Similar conclusions can be drawn from Table 4.2.

In order to verify that the dependence of the bias defined in (4.2.6) on δ is weak, and the

difference between B(θ, δ) and B(θ, δ̂
y

θ) is small, we add one more step in our simulation

work to compute the value of B(θ, δ̂
y

θ) for 100 simulated data sets. We think small variability

in B(θ, δ̂
y

θ) resulting from the variation of δ̂
y

θ from those simulated data sets will confirm

our belief. In another words, we are trying to demonstrate that B(θ, δ̂
y

θ) has no or little

dependence on δ̂
y

θ. The results are shown in Table 4.3.
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Table 4.2: Simulation results for Zero-Inflated Poisson data with two dimensional random effects

Model 1 Model 2
Statistics Parameter Simulation size Mean Standard Mean Standard

deviation deviation
θ̂

y

δ θ1 240 0.49097 0.06254 0.49097 0.06254
θ2 240 0.48925 0.067157 0.48925 0.06715

θ̂ML-θ̂
y

δ θ1 100 -0.01477 0.01993 -0.01482 0.02083
θ2 100 -0.00710 0.01199 -0.00813 0.01228

θ̂REML-θ̂
y

δ θ1 100 -0.00466 0.01989 -0.00423 0.02094
θ2 100 -0.00266 0.01327 -0.00276 0.01346

θ̂BLUP -θ̂
y

δ θ1 100 -0.01329 0.02170 -0.01306 0.02256
θ2 100 -0.00668 0.01287 -0.00718 0.01343

Table 4.3: Calculation of B(θ, δ̂
y

θ) using model 1 and model 2

Model 1 Model 2
Elements of B(θ, δ̂

y

θ) Mean Standard deviation Mean Standard deviation
(1,1) -0.00828 0.01183 -0.00835 0.01216

(1,2), (2,1) -0.00179 0.00804 -0.00194 0.00801
(2,2) -0.00362 0.00646 -0.00406 0.00649
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From Table 4.3 we see that the means of B(θ, δ̂
y

θ) (the average magnitude of bias correc-

tion) are reasonably small comparing to the magnitude of the variance component parameter

estimates. But compared with the means of B(θ, δ̂
y

θ), the corresponding standard deviations

are not as small as expected. The reason for large standard deviations relative to the means

may be due to inherent variability in the random generation of samples from the model

relative to the computational accuracy of the numerical expectations taken in the E step.

Despite this somewhat surprising finding, the simulation results of Tables 4.1 and 4.2 suggest

that the proposed REML approach works very well.

The algorithm to implement the proposed method of estimation is not difficult to imple-

ment, but computing time can be long. We implemented all four estimation methods using

FORTRAN90 programs. In the simulation study it took approximately one and half hours

to fit model 1 to a single data set using the proposed REML approach.

4.6 Example–Whitefly Data

As mentioned in Chapter 3, the whitefly data are discussed in more detail in van Iersel,

Oetting, and Hall (2000). In that paper, ZIB regression models were used to analyze the

data, with random effects at the plant level to account for correlation among the repeated

measures on a given plant. We return to this problem to fit a ZIB-mixed model for these

data using the REML method we have developed here.

Let yijk` be the number of live adult whiteflies on plant k (k = 1, . . . , 54) in treatment i

(i = 1, . . . , 6) in block j (j = 1, . . . , 3) measured at time ` (` = 1, . . . , 12). Let nijk` be the

total number of whiteflies placed on the leaf of plant k in treatment i in block j measured

at time `. Further let β2i be the ith treatment effect, β3j be the jth block effect, β4` be the

`th week effect, and bk be a 1-dimensional random plant effect for plant k. For simplicity, we

consider a model containing only main effects (treatment, block and week). The ZI-binomial

model for these data with main effects can be expressed as

Yijk`|bk ∼ {pijk` + (1− pijk`)(1− πijk`)
nijk`}uijk` {(1− pijk`)Binomial(nijk`, πijk`|bk)}(1−uijk`) ,
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where

uijk` =





1, if yijk` = 0

0, if yijk` = 1,

and

logit(πijk`) = β1 + β2itreatmenti + β3jblockj + β4`week` + σbk

logit(pijk`) = γ1 + γ2itreatmenti + γ3jblockj + γ4`week`.

The estimates of the fixed effect parameters and the variance component parameter σ are

given in Table 4.4. It can be seen that the fixed effect parameter estimates are different but

similar in magnitude for the ML and REML estimation methods. In addition, the variance

component parameter σ has been adjusted upward a small amount by the REML method.

4.7 Discussion

Although this REML method is computationally intensive, the improvement in the estimator

is impressive. Encouraged by this and since the ZI-mixed effect models are special cases of

two-component GLMMs, a natural extension of REML to two-component GLMMs context

appears worthwhile. We did some work on this topic, but it turned out to be difficult to

apply REML in this context due to the shared random effects in both components (further

discussions of this issue are included in Chapter 5). In addition, the proposed method of

inference is based on large sample asymptotic properties, and improved methods for finite

samples are desirable. In this research area, Kenward and Roger (1997) proposed a scaled

Wald statistic used for small sample inference for fixed effects from restricted maximum

likelihood method. Kackar and Harville (1984) investigated how much increase of the mean

squared errors when we use estimators of fixed and random effects instead of the true values

of them and proposed a general approximation of it. We think it is desirable to extend these

efforts to the inference problems of the GLMM and ZI-mixed model cases.
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Table 4.4: REML and ML estimates for Whitefly data

Parameter REML estimate ML estimate Parameter REML estimate ML estimate
β1 -0.6957 -0.5733 γ1 -0.3502 -0.4261
β21 -0.9306 -1.0577 γ21 0.0445 0.0796
β22 -0.4187 -0.6270 γ22 0.3277 0.4118
β23 -0.8351 -1.0894 γ23 0.5154 0.4552
β24 -0.3997 -0.5479 γ24 0.5487 0.6156
β25 2.8065 2.6677 γ25 -3.4491 -3.3269
β31 0.3664 0.3960 γ31 0.0328 0.0504
β32 0.3301 0.2544 γ32 0.1302 0.1584
β41 0.1849 0.1636 γ41 -0.4537 -0.5168
β42 -0.2557 -0.2342 γ42 -0.3491 -0.3754
β43 0.6186 0.5705 γ43 0.5167 0.5711
β44 -0.1455 -0.2271 γ44 1.2075 1.2579
β45 0.0632 -0.1457* γ45 1.1518 1.1664
β46 -0.2346 -0.4278 γ46 0.3859 0.3691
β47 0.1119 -0.0111* γ47 0.4467 0.4247
β48 -0.4038 -0.4898 γ48 1.0452 1.0606
β49 -0.0492 -0.1609* γ49 0.4198 0.4266
β4,10 -0.0075 -0.0322* γ4,10 0.7942 0.8028
β4,11 0.6303 0.6855 γ4,11 -0.3637 -0.3339

σ 0.5622 0.5417

*

not significantly different from 0 at α = 0.5
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Chapter 5

Some Review and Future Research

This dissertation focuses on two component mixtures of GLMMs and the special case of

zero-inflated mixed effect models. First, we consider ML estimation with the EM algorithm

used to facilitate the computations. Then a REML-like estimation method is developed for

ZI-inflated mixed effect models. Actually, our original purpose was to apply this REML

method to two component mixture of GLMMs. We believed that as long as we can separate

the loglikelihood into two parts with one part involving variance component parameters the

other part involving fixed effect parameters, we can apply the REML method in Chapter 4.

However, we encountered several problems.

First problem comes with assuming that, for two component GLMMs, both components

share the same random effects but with different magnitude. For univariate random effects,

this can be expressed as σ1bi and σ2bi, and bi ∼ N(0, I). This is the definition used in

chapter 3. As shown above, with this definition, the observed data loglikelihood is (3.2.1)

and the complete data loglikelihood is given by (3.2.2). The first term of (3.2.2) is log f(b),

which involves no parameters. The last two terms (log f(u|b; δ) and log f(y|u, b; δ)) involve

both variance component parameter θ and fixed effect parameter δ. Suppose δ are known,

then the score function for θ is

∂

∂θ
`(δc; y) =

K∑

i=1

∂

∂θ
log





∫ ti∏

j=1

f(yij|bi; δ
c)φq(bi)dbi





=
K∑

i=1

∫ 



ti∑

j=1

∂

∂θ
log f(yij|bi; δ

c)



 f(bi|yi; δ

c)dbi

=
K∑

i=1

ti∑

j=1

E

[
∂

∂θ
log f(yij|bi; δ, θ)|yi; δ, θ

]
, (5.0.1)
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where δc = (δT , θT )T ) and f(yij|bi; δ
c) = {pij(γ)}f1(yij|bi; α̃) + {1 − pij(γ)}f2(yij|bi; β̃).

Correspondingly, supposing δ has been estimated by the ML estimator δ̂θ for fixed θ, the

profile score function for θ is

p`(θ, y) =
K∑

i=1

ti∑

j=1

E

[
∂

∂θ
log f(yij|bi; δ̂θ, θ)|yi; δ̂θ, θ

]
, (5.0.2)

where f(yij|bi; δ̂θ, θ) = {pij(γ̂)}f1(yij|bi; ˆ̃α) + {1 − pij(γ̂)}f2(yij|bi;
ˆ̃β). Then the bias of

estimating θ by not knowing the fixed effect parameters can be expressed as

Eyij

{
E

[
∂

∂θ
log f(yij|bi; δ̂θ, θ)|yi; δ̂θ, θ

]
− E

[
∂

∂θ
log f(yij|bi; δ, θ)|yi; δ, θ

]}
(5.0.3)

for i = 1, . . . , K and j = 1, . . . , ti. Since the variance component parameters are included

in each linear predictor, it is not possible to separate them from the conditional density of

the observed data. That means the formula (5.0.3) cannot be further simplified to involve

only the variance component parameters for us to calculate their bias easily. So, the bias

correction idea is very difficult to implement, and the REML method in Chapter 4 can not

be extended in this area.

Another finding for the two component GLMMs sharing the same random effects was

that

∂`(δc; y)

∂θ
6= ∂Q(δc|δc(h))

∂θ
|
δc(h)

=δc ,

where

∂Q(δc|δc(h))

∂θ
|
δc(h)

=δc =
K∑

i=1

ti∑

j=1

uijE

[
∂

∂θ
log f1(yij|bi; δ, θ)|yij; δ, θ

]

+
ti∑

j=1

(1− uij)E

[
∂

∂θ
log f2(yij|bi; δ, θ)|yij; δ, θ

]

uij =
pij(γ)f1(yij|bi; δ, θ)

f(yij|bi; δ, θ)
,

which also prevents us from using REML for two component GLMMs. In summary, the

reason for these two difficulties is we can’t separate variance component parameters θ from

the component loglikelihood.
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To get around this problem, we considered using separate, but possibly correlated, random

effects in each component. This approach is problematic for two reasons. First, we think this

assumption is not reasonable or practical. How can the random factor affect one component

but not the other? For example, in the measles data set, it is natural to think both compo-

nents have a random county effect. Same thought is given for random plant factor in whitefly

data. It is more understandable to assume different random effects for mixing probability

and component. But this is a topic which is not addressed in this research. Second, supposing

that the assumption of separate random effects in each component were deemed reasonable,

denote one set as b1i, the other set as b2i. Then, depending upon whether we assume these

random effects to be independent or dependent, their joint distribution can be expressed as



b1i

b2i


 ∼ N(0,




V θ1
0

0 V θ2


)

or



b1i

b2i


 ∼ N(0,




V θ1
Covθ3

CovT
θ3

V θ2


),

where θ1, θ2 denote the unknown variance component parameter vectors for b1i and b2i, and

θ3 denote the correlation parameters. Then similar to Section 3.2, the link functions of two

component GLMMs can be written as

ζ1i(µ1i) = η1i = X iα + U 1ib1i

ζ2i(µ2i) = η2i = Ziβ + U 2ib2i,

which involve no variance-covariance parameters. In another words, the loglikelihood can

now be separated into two parts with one part involving only fixed effect parameters and

the other part involving only variance-covariance parameters. The REML method can now

be easily extended here just as in Chapter 4. We tried this approach. However, problems

were encountered with singular matrices in the fitting algorithm. We suspect that this is due

to the unreasonableness of the modelling assumption. In practice, we expect that random
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effects acting upon each component may have different variances but will often be perfectly

correlated. This leads to a singular normal random effects distribution, which we believe

caused the problems encountered in trying to fit the model.

For estimating the variance-covariance matrix of parameter estimates in two component

GLMMs, we had thought about using results obtained for the ES (Expectation-Solution)

algorithm proposed by Rosen, Jiang and Tanner (2000). This algorithm is used to fit mixture

of experts model for independent or correlated outcome data. It is essentially the same as

EM, but with the M step replaced by the solution of an estimating equation, which does

not necessarily correspond to a maximization problem. We wanted to see if this approach

provide us a better way to calculate the variance-covariance matrix of parameters. Following

the notation used by Rosen, Jiang and Tanner (2000), if we define

q(.) =
∂

∂δ
log f(y, u, b; δ),

then

S(δ|δ(h)) = E{ ∂

∂δ
log f(y, u, b; δ)|y, δ(h)}. (5.0.4)

It’s not hard to show that S(δ|δ(h)) is an unbiased estimating equation and satisfies the

proposition (a) and (b) in their paper (p.401). Based on these properties, we derive

φ̂ = ∇S(δ̂|δ̂) = E{ ∂2

∂δ̂
2 log f(y, u, b; δ̂)|y, δ̂}

v̂ =
K∑

i=1





[
E(

∂

∂δ̂
log f(yi, ui, bi; δ̂)|yi, δ̂)

] [
E(

∂

∂δ̂
log f(yi, ui, bi; δ̂)|yi, δ̂)

]T




and according to their paper, the asymptotic variance of δ̂ can be estimated by ˆavar(δ̂) =

φ̂−1v̂φ̂−T . This is robust variance estimator. Comparing this estimator with the estimators

we proposed in section 3.4, we conclude that there is no significant advantage for variance

estimation because

1. The calculation of ˆavar(δ̂) still involves problem of how to approximate integral. So it

is difficult to apply this methodology unless we use OGQ.
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2. S(δ|δ) in Rosen, Jiang and Tanner (2000) is equivalent to gδ(δ) = ∂Qm(δ̃|δ)/∂δ̃|˜δ=δ

in Friedl and Kauermann (2000) (see section 3.4), as long as we use OGQ to approximate

the integral. Note Qm means the m point OGQ approximation to Q. Rosen et. al. prove

E{S(δ|δ)} = 0 while Friedl and Kauermann prove Egδ(δ) = 0.

There are many problems left unsolved for mixture modelling. Based on our experience,

potential future research will focus on following topics:

Model Diagnostics

Developing model diagnostics tool is a challenging topic not only for GLMMs but also

for mixture of GLMMs. For these type of models, model diagnostics and goodness of fit

issues are not as well developed as methods of estimation and inference. The commonly used

methods include graphical tools such as half-normal plots (Vieira et al, 2000), diagnostic

measures such as deviance and deviance residuals (Yau and Lee, 2001; Dietz and Böhning,

1997; Wang and Puterman, 1998; McCullagh and Nelder, 1989), Pearson residuals (Wang

and Puterman, 1998), model selection tools such as AIC and BIC (Wang, Cockburn and

Puterman, 1998; McLachlan, 2000). Simulation study is another model checking method

used very often to examine the properties of the model (Albert and Follmann, 2000), or the

performance of the estimates (Olsen and Schafer, 2001; Wang and Puterman, 1998). Half-

normal plots also involve simulation by which the simulated envelops are obtained using the

estimated parameters.

Based on our experience, some of the existing tools are questionable for mixture of

GLMMs. For example, when we fit a negative binomial model for measles data, we obtained

lower AIC and BIC (lower is better)for this model than mixture of Poisson model. However,

the residual plot from fitting the negative binomial model exhibit a clear bimodal shape. So

it is hard for us to believe that a one component model is enough. It is possible that current

AIC and BIC criteria or the definition of residuals may not suitable for mixture of GLMMs

and need adjustment. Some work on this issue has been done by Lindsay and Roeder (1992)

and we think model diagnostics are a worthy topic of future study for mixture of GLMMs.
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Appendix A

Derivation of MCEM Algorithm for ZI-inflated Models

The complete data loglikelihood is (4.2). So the EM algorithm computes

Q(δ|δ(h)) = E{`c(δ; y, u, b)|y; δ(h)}

= E
{
E[`c(δ; y, u, b)|y, b; δ(h)]|y; δ(h)

}
. (A.0.1)

The inner expectation is with respect to the distribution of u given y, b and δ(h) only. Since

`c(δ; y, u, b) is linear with respect to u, this expectation is simply `c(δ; y, u(h)(b), b) where

the element of u(h)(b) is given by

u
(h)
ij (bi) = E{uij|yij, bi; δ

(h)}

= Prob(uij = 1|yij, bi; δ
(h))

=
f(uij = 1, yij|bi; δ

(h))

f(yij|bi; δ
(h))

=
pij(γ

(h))f(yij|uij = 1, bi; β
(h), σ(h))

pij(γ(h))f(yij|uij = 1, bi; β
(h), σ(h)) + (1− pij(γ(h)))f(yij|uij = 0, bi; β

(h), σ(h))

=





0, if yij > 0;

pij(γ(h))

pij(γ(h))+(1−pij(γ(h)))f1(yij |bi;β
(h)

,σ(h))
, if yij 6= 0.

Plugging this quantity into (1) yields

Q(δ|δ(h)) = E{`c(δ; y, u(h)(b), b)|y; δ(h)}

=
K∑

i=1

∫
`c(δ; yi, u

(h)
i (bi), bi)f(bi|yi; δ

(h))dbi

=
K∑

i=1

∫ `c(δ; yi, u
(h)
i (bi), bi)f(yi|bi; β

(h), σ(h))φq(bi; θ
(h))dbi∫

f(yi|bi; β
(h), σ(h))φq(bi; θ

(h))dbi

. (A.0.2)

The integrals in equation (A.2) are now with respect to the random effects b only. We

consider an importance sampling approach to approximate this integral.
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Suppose I(bi), i = 1, . . . , K are the importance samplers which have similar distributional

shape as f(yi|bi; δ
(h))φq(bi). Here bi1, . . . , bim are identically independently drawn from I(bi).

Then equation (2) can be approximated by

Q(δ|δ(h)) ≈
K∑

i=1

∑m
`=1 w∗

i``
c(δ; yi, u

(h)
i (bi`), bi`)∑m

`=1 w∗
i`

=
K∑

i=1

m∑

`=1

wi``
c(δ; yi, u

(h)
i (bi`), bi`)

=
K∑

i=1

ti∑

j=1

m∑

`=1

wi`

[
u

(h)
ij (bi`) log pij(γ) + (1− u

(h)
ij (bi`)) log{1− pij(γ)}

]

+
K∑

i=1

ti∑

j=1

m∑

`=1

wi`(1− u
(h)
ij (bi`)) log f1(yij|bi`; β, σ)

+
K∑

i=1

m∑

`=1

wi` log φq(bi`; θ), (A.0.3)

where w∗
i` = f(yi|bi`; β

(h), σ(h))φq(bi`; θ
(h))/I(bi`) and wi` = w∗

i`/
∑m

`=1 w∗
i`.



Appendix B

Part of MATLAB Programs for Measles Data Example in Chapter 31

B.1 Main Programs

MEASLESOGQ.M

MEASLESAGQ.M

MEASLESNPML.M

/****** Program name : MEASLESOGQ.M ******/

/* Purpose : read in data and set initial parameters for OGQ methods*/

global Y ID N N2 XMAT ZMAT WMAT BINN1 BINN2 ERRDIST1 ERRDIST2

PLINK MU1LINK; global MU2LINK;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION SCALEPAR

INCCONST;

global OFFSET1 OFFSET2 WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

load ’measles.dat’;

countyid=measles(:,1); ID=countyid;

N=size(ID,1); N2=max(ID);

Y=measles(:,2);

rate=measles(:,3);

nkids=measles(:,4);

year=measles(:,5);

BINN1=ones(N,1); BINN2=BINN1; 1);

1For complete programs, please contact Lihua Wang at lwang@stat.uga.edu.
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yearmat=fac(year);

OFFSET1=log(nkids); OFFSET2=log(nkids);

ID2=zeros(N,1);

for i=1:N2;

ID2(ID==i)=[1:size(ID(ID==i),1)]’;

end;

PLINK=’logit’; MU1LINK=’log’; MU2LINK=’log’;

ERRDIST1=’poisson’; ERRDIST2=’poisson’;

XMAT=[ones(N,1), rate]; ZMAT=[ones(N,1), rate]; WMAT=[ones(N,1)];

glmlab;

alphainit=[-2.0308 -0.0684]’; betainit=[-7.6017 -0.0356]’;

gammainit=[2.19 -.05]’; sigmainit=[0.3029 0.1971]’;

mquad=7

diary measlesoakes.diary

[alpha,beta,gamma,sigma,converge,covoakes]=oemoakes(alphainit,betainit,

gammainit, sigmainit,mquad)

covoakes;

cc=diag(covoakes)

sdoakes=sqrt(cc)

diary off

/****** Program name : MEASLESAGQ.M ******/

/* Purpose : read in data and set initial parameters for AGQ methods*/

global Y ID N N2 XMAT ZMAT WMAT BINN1 BINN2 ERRDIST1 ERRDIST2

PLINK MU1LINK;

global MU2LINK;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION SCALEPAR INC-

CONST;
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global OFFSET1 OFFSET2 WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

load ’measles.dat’;

countyid=measles(:,1); ID=countyid;

N=size(ID,1); N2=max(ID);

Y=measles(:,2); rate=measles(:,3); nkids=measles(:,4); year=measles(:,5);

BINN1=ones(N,1); BINN2=BINN1; logn=log(BINN1);

yearmat=fac(year);

OFFSET1=log(nkids); OFFSET2=log(nkids);

ID2=zeros(N,1);

for i=1:N2;

ID2(ID==i)=[1:size(ID(ID==i),1)]’;

end;

PLINK=’logit’; MU1LINK=’log’; MU2LINK=’log’;

ERRDIST1=’poisson’; ERRDIST2=’poisson’;

XMAT=[ones(N,1), rate]; ZMAT=[ones(N,1), rate]; WMAT=[ones(N,1), rate];

glmlab;

alphainit=[-2.0308 -.0684]’; betainit=[-7.6017 -.0356]’;

gammainit=[2.19 -.05]’; sigmainit=[0.3029 0.1971]’;

diary emagq.diary

[alpha,beta,gamma,sigma,converge]=em(alphainit,betainit,gammainit,sigmainit,7,100,7)

diary off

/****** Program name : MEASLESNPML.M ******/

/* Purpose : read in data and set initial parameters for NPML methods*/

global Y ID N N2 XMAT ZMAT WMAT BINN1 BINN2 ERRDIST1 ERRDIST2

PLINK MU1LINK;

global MU2LINK YVAR LINKFUNCTION XVARS ERRDISFUNCTION SCALEPAR
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INCCONST;

global OFFSET1 OFFSET2 WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

load ’measles.dat’;

countyid=measles(:,1); ID=countyid;

N=size(ID,1); N2=max(ID);

Y=measles(:,2); rate=measles(:,3);

nkids=measles(:,4); year=measles(:,5);

BINN1=ones(N,1); BINN2=BINN1;

yearmat=fac(year);

OFFSET1=log(nkids); OFFSET2=log(nkids);

ID2=zeros(N,1);

for i=1:N2;

ID2(ID==i)=[1:size(ID(ID==i),1)]’;

end;

PLINK=’logit’; MU1LINK=’log’; MU2LINK=’log’;

ERRDIST1=’poisson’; ERRDIST2=’poisson’;

XMAT=[rate]; ZMAT=[rate]; WMAT=[ones(N,1), rate];

glmlab;

alphainit=[-0.0944]’; betainit=[-0.14295]’; gammainit=[0.3029 0.009392]’;

mquad=7;

diary npmlfridel.diary

[alpha,beta,gamma,quadwts,quadvals1,quadvals2,converge]=emnpmlfridel(alphainit,

betainit,gammainit,mquad)

diary off
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B.2 Core Subroutines

OEMOAKES.M

EM.M

EMNPMLFRIDEL.M

/****** Program name : OEMOAKES.M ******/

/* Purpose : Fit two component GLMMs using OGQ*/

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION SCALEPAR

INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

global Y ID ID2 N N2 XMAT ZMAT WMAT BINN1 BINN2 ERRDIST1 ERRDIST2

MU1LINK global MU2LINK PLINK OFFSET1 OFFSET2;

mquad

clear paramtrs;

[toler,maxits,illctol]=myparamtrs

converge=0;

[quadwts,quadvals]=getgaussherm(mquad);

quadwts=quadwts./sqrt(3.14159265358979);

quadvals=sqrt(2).*quadvals;

alpha=alphainit; beta=betainit; gamma=gammainit; sigma=sigmainit;

dimbeta=size(beta,1); dimgamma=size(gamma,1);

dimalpha=size(alpha,1); dimsigma=2;

dimparm=dimalpha+dimbeta+dimgamma+dimsigma;

its=0;

fail=0;

loglik = getloglik(alpha,beta,gamma,sigma,mquad,quadwts,quadvals)

while (its < maxits)
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emitcount=0;

while (emitcount < 5000)

emitcount=emitcount+1

its=its+1

alphaold=alpha; betaold=beta; gammaold=gamma; sigmaold=sigma;

alp=OFFSET1+XMAT*alpha; blp=OFFSET2+ZMAT*beta;

glp=WMAT*gamma; p=getmixp(glp);

warning off

newmodel;

clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION SCALEPAR

INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

warning on

NAMEXV=’[’;

for i=1:size(WMAT,2)

NAMEXV=strcat(NAMEXV,’G’);

NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(WMAT,2))

NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Constant’];

for i=1:size(WMAT,2)-1

NAMELIST=str2mat(NAMELIST,[’Gvar ’,num2str(i)]);

end;

INCCONST=0;
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fofyijcond=zeros(N,mquad);

mu1cond=zeros(N,mquad); mu2cond=zeros(N,mquad);

u=zeros(N,mquad); u1=zeros(N,1);

for l=1:mquad

mu1cond(:,l)=getmu1(alp+sigma(1)*quadvals(l),BINN1);

mu2cond(:,l)=getmu2(blp+sigma(2)*quadvals(l),BINN2);

temp= getf1cond(Y,mu1cond(:,l),BINN1).*p;

fofyijcond(:,l)= temp+(1-p).*getf2cond(Y,mu2cond(:,l),BINN2);

cc = temp+(1-p).*getf2cond(Y,mu2cond(:,l),BINN2);

u1(cc==0) = zeros(size(cc(cc==0),1),1);

u1(cc =0) = temp(cc =0)./cc(cc =0);

u(:,l)=u1;

end;

YVAR=[stackrows(u),ones(N*mquad,1)]; LINKFUNCTION=PLINK;

XVARS=kron(WMAT,ones(mquad,1)); ERRDISFUNCTION=’binoml’;

OFFSET=zeros(size(YVAR,1),1); WEIGHTS=zeros(size(YVAR,1),1);

count1=0; count2=0;

prodi=zeros(N2,mquad);

for i=1:N2

prodi(i,:)=prod(fofyijcond(ID==i,:));

ti=size(ID(ID==i),1);

for j=1:ti;

count2=count2+1;

for l=1:mquad;

count1=count1+1;

WEIGHTS(count1)=prodi(i,l)*quadwts(l)/(prodi(i,:)*quadwts);

end;
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end;

end;

WEIGHTS(isinf(WEIGHTS)—isnan(WEIGHTS))=0;

[gamma, fits, resids, glmcovgamma, covd, devlist]=glmfit;

gamma=gamma(:,1);

warning off

newmodel;

clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION

SCALEPAR INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

warning on

NAMEXV=’[’;

for i=1:size(XMAT,2)+1

NAMEXV=strcat(NAMEXV,’A’); NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(XMAT,2))

NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Constant’];

for i=1:size(XMAT,2)

NAMELIST=str2mat(NAMELIST,[’Avar ’,num2str(i)]);

end;

if strcmp(ERRDIST1,’binoml’)

YVAR=kron([Y,BINN1],ones(mquad,1));

else

YVAR=kron([Y],ones(mquad,1));
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end;

LINKFUNCTION=MU1LINK;

XVARS=[ kron(XMAT,ones(mquad,1)), kron(ones(N,1),quadvals)];

ERRDISFUNCTION=ERRDIST1;

SCALEPAR=1; INCCONST=0;

OFFSET=kron(OFFSET1,ones(mquad,1)); WEIGHTS=zeros(size(YVAR,1),1);

count1=0; count2=0;

for i=1:N2

ti=size(ID(ID==i),1);

for j=1:ti;

count2=count2+1;

for l=1:mquad;

count1=count1+1;

WEIGHTS(count1)=u(count2,l)*prodi(i,l)*quadwts(l)

/(prodi(i,:)*quadwts);

end;

end;

end;

WEIGHTS(isinf(WEIGHTS)—isnan(WEIGHTS))=0;

[alphatmp fits resids glmcovalpha covd devlist]=glmfit;

alpha=alphatmp(1:size(XMAT,2),1); sigma(1)=alphatmp(end,1);

warning off

newmodel;

clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION

SCALEPAR INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;
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warning on

NAMEXV=’[’;

for i=1:size(ZMAT,2)+1

NAMEXV=strcat(NAMEXV,’B’);

NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(ZMAT,2))

NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Constant’];

for i=1:size

NAMELIST=str2mat(NAMELIST,[’Bvar ’,num2str(i)]);

end;

if strcmp(ERRDIST2,’binoml’)

YVAR=kron([Y,BINN2],ones(mquad,1));

else

v YVAR=kron([Y],ones(mquad,1));

end;

LINKFUNCTION=MU2LINK;

XVARS=[ kron(ZMAT,ones(mquad,1)), kron(ones(N,1),quadvals)];

ERRDISFUNCTION=ERRDIST2;

SCALEPAR=1; INCCONST=0;

OFFSET=kron(OFFSET2,ones(mquad,1));

WEIGHTS=zeros(size(YVAR,1),1);

count1=0; count2=0;

for i=1:N2

ti=size(ID(ID==i),1);
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for j=1:ti;

count2=count2+1;

for l=1:mquad;

count1=count1+1;

WEIGHTS(count1)=(1-u(count2,l))*prodi(i,l)*quadwts(l)

/(prodi(i,:)*quadwts);

end;

end;

end;

WEIGHTS(isinf(WEIGHTS)—isnan(WEIGHTS))=0;

[betatmp fits resids glmcovbeta covd devlist]=glmfit;

beta=betatmp(1:size(ZMAT,2),1); sigma(2)=betatmp(end,1);

maxchange=max(abs([alpha-alphaold;beta-betaold;gamma-gammaold;

sigma-sigmaold]))

loglik= getloglik(alpha,beta,gamma,sigma,mquad,quadwts,quadvals)

if (maxchange¡toler)

converge=1

its=maxits+1;

end;

if (converge==1)

emitcount=5000;

minus2loglik=-2*loglik

conexpfullhess= [inv(glmcovgamma), zeros(dimgamma,dimalpha+

dimbeta+2);zeros(dimalpha+1,dimgamma), inv(glmcovalpha),

zeros(dimalpha+1,dimbeta+1); zeros(dimbeta+1,dimgamma+

dimalpha+1), inv(glmcovbeta)]

[part1, part2]=oakespart(alpha,beta,gamma,sigma,mquad,quadwts,quadvals);
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oldpart1=part1; oldpart2=part2;

[score1, score2]=oakesdelta(oldpart1, oldpart2,alpha,beta,gamma,

sigma,mquad,quadwts,quadvals);

[uweight, weight]=oakesweightu(alpha,beta,gamma,sigma,

mquad,quadwts,quadvals);

olduw=uweight; oldw=weight;

[uwscore1, wscore2]=oakesdeltah(olduw, oldw,alpha,beta,gamma,sigma,

mquad,quadwts,quadvals);

term1=zeros(dimparm, dimparm); term2=zeros(dimparm, dimparm);

count=0;

for i=1:N2

ti=size(ID(ID==i),1);

for jj=1:ti

for l=1:mquad

count=count+1;

result1=score1(:,:,count)*uwscore1(:,:,count);

term1=term1+result1;

result2=score2(:,:,count)*wscore2(:,:,count);

term2=term2+result2;

end;

end;

end;

oakes2=term1+term2;

infooakes=conexpfullhess-oakes2;

covoakes=inv(infooakes);

end;

end;
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end;

/****** Program name : EM.M ******/

/* Purpose : Fit two component GLMMs using AGQ*/

function [alpha,beta,gamma,sigma,converge]=em(alphainit,betainit,gammainit,

sigmainit,mquad1,changeit,mquad2)

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION SCALEPAR

INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

global Y ID ID2 N N2 XMAT ZMAT WMAT BINN1 BINN2 ERRDIST1

ERRDIST2 MU1LINK global MU2LINK PLINK OFFSET1 OFFSET2;

clear paramtrs; [toler,maxits,illctol]=paramtrs

BIG=1.0e10; SMALL=1.0e-10; converge=0;

[quadwts,quadvals]=getgaussherm(mquad1);

oquadvals=sqrt(2).*quadvals; oquadwts=quadwts./sqrt(3.14159265358979);

mquad=mquad1;

alpha=alphainit; beta=betainit; gamma=gammainit; sigma=sigmainit

dimbeta=size(beta,1); dimgamma=size(gamma,1);

dimalpha=size(alpha,1); dimsigma=2;

dimparm=dimalpha+dimbeta+dimgamma+dimsigma;

its=0; fail=0;

while (its < maxits)

emitcount=0;

while (emitcount < 5000)

emitcount=emitcount+1

its=its+1

if (its==changeit)
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[quadwts,quadvals]=getgaussherm(mquad2);

oquadwts=quadwts./sqrt(3.14159265358979);

oquadvals=sqrt(2)*quadvals;

mquad=mquad2;

end;

alphaold=alpha; betaold=beta; gammaold=gamma; sigmaold=sigma;

alp=OFFSET1+XMAT*alpha; blp=OFFSET2+ZMAT*beta;

glp=WMAT*gamma; p=getmixp(glp);

if (its==1)

b2vec=zeros(N2,1); b1vec=zeros(N2,1);

end;

blupits=0; blup1converge=0; blup2converge=0;

blupfail=1; maxblupits=20;

while (blupits¡maxblupits)

blupits=blupits+1;

b2vecold=b2vec; b1vecold=b1vec;

if (blup2converge==0)

b2score=getb2score(p,alp,blp,sigma,b2vec);

b2neghessdiag= -nrdb2score(b2score,p,alp,blp,sigma,b2vec);

end;

if (blup1converge==0)

b1score=getb1score(p,alp,blp,sigma,b1vec);

b1neghessdiag= -nrdb1score(b1score,p,alp,blp,sigma,b1vec);

end;

if (blup2converge==0)

b2vec=b2vec+ b2score./b2neghessdiag;

blup2maxchange=max(abs(b2vec-b2vecold));
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if (blup2maxchange¡toler AND norm(b2score)¡toler)

blup2converge=1

end;

end;

if (blup1converge==0)

b1vec=b1vec+ b1score./b1neghessdiag;

blup1maxchange=max(abs(b1vec-b1vecold));

if (blup1maxchange¡toler AND norm(b1score)¡toler)

blup1converge=1

end;

end;

if (blup1converge AND blup2converge)

blupits=maxblupits+1;

blupfail=0;

end;

end;

blupfail=blupfail

if (blupfail)

b1vec=b1vec; b1neghessdiag=b1neghessdiag

b2vec=b2vec; b2neghessdiag=b2neghessdiag

end;

b2score=getb2score(p,alp,blp,sigma,b2vec);

b2neghessdiag= -nrdb2score(b2score,p,alp,blp,sigma,b2vec);

b1score=getb1score(p,alp,blp,sigma,b1vec);

b1neghessdiag= -nrdb1score(b1score,p,alp,blp,sigma,b1vec);

b1neghessdiag(b1neghessdiag¡=0)=1;

b2neghessdiag(b2neghessdiag¡=0)=1;
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for l=1:mquad;

b1vecstar(:,l)=b1vec + sqrt(2)*quadvals(l)./sqrt(b1neghessdiag);

b2vecstar(:,l)=b2vec + sqrt(2)*quadvals(l)./sqrt(b2neghessdiag);

end;

warning off

newmodel;

clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION

SCALEPAR INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

warning on

NAMEXV=’[’;

for i=1:size(WMAT,2)

NAMEXV=strcat(NAMEXV,’G’); NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(WMAT,2))

NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Constant’];

for i=1:size(WMAT,2)-1

NAMELIST=str2mat(NAMELIST,[’Gvar ’,num2str(i)]);

end;

INCCONST=0;

fofyijcond=zeros(N,mquad);

mu1cond=zeros(N,mquad); mu2cond=zeros(N,mquad);

u=zeros(N,mquad); ublup=zeros(N,1);

W=zeros(N2,mquad); Wdenom=zeros(N2,mquad);
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fofyijcondi1=zeros(N2,mquad); fofyijcondi2=zeros(N2,mquad);

for l=1:mquad;

for i=1:N2

condalpi=alp(ID==i)+sigma(1)*b1vecstar(i,l);

condblpi=blp(ID==i)+sigma(2)*b1vecstar(i,l);

mu1condi=getmu1(condalpi,BINN1);

mu2condi=getmu2(condblpi,BINN2);

tempi= getf1cond(Y(ID==i),mu1condi,BINN1(ID==i)).*p(ID==i);

fofyijcondi1(i,l)= prod(tempi+(1p(ID==i))

.*getf2cond(Y(ID==i),mu2condi,BINN2(ID==i)));

u(ID==i,l)= tempi./(tempi+(1-p(ID==i)).*getf2cond(Y(ID==i),

mu2condi,BINN2(ID==i)));

condalpi=alp(ID==i)+sigma(1)*b2vecstar(i,l);

condblpi=blp(ID==i)+sigma(2)*b2vecstar(i,l);

mu1condi=getmu1(condalpi,BINN1);

mu2condi=getmu2(condblpi,BINN2);

tempi= getf1cond(Y(ID==i),mu1condi,BINN1(ID==i)).*p(ID==i);

fofyijcondi2(i,l)= prod(tempi+(1-p(ID==i)).*getf2cond(Y(ID==i),

mu2condi,BINN2(ID==i)));

end;

W(:,l)= sqrt(2)*quadwts(l)*exp(quadvals(l)*quadvals(l))

*fofyijcondi1(:,l).*normpdf(b1vecstar(:,l))./sqrt(b1neghessdiag);

Wdenom(:,l)= sqrt(2)*quadwts(l)*exp(quadvals(l)*quadvals(l))

*fofyijcondi2(:,l).*normpdf(b2vecstar(:,l))./sqrt(b2neghessdiag);

end;

for l=1:mquad;

W(:,l)=W(:,l)./sum(Wdenom,2);
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W(W(:,l)==Inf,l)=zeros(sum(W(:,l)==Inf),1);

end;

YVAR=[stackrows(u),ones(N*mquad,1)];

WEIGHTS=zeros(N*mquad,1);

for i=1:N2;

ti=size(ID(ID==i),1);

WEIGHTS((((i-1)*ti*mquad)+1):(i*ti*mquad))=

stackrows( kron(W(i,:),ones(ti,1)));

end;

wts=WEIGHTS;

if any(YVAR(:,1).*wts¡0)

junk=YVAR(:,1).*wts; YVAR(junk¡0,1); wts(junk¡0)

end;

LINKFUNCTION=PLINK; XVARS=kron(WMAT,ones(mquad,1));

ERRDISFUNCTION=’binoml’; OFFSET=zeros(size(YVAR,1),1);

[gamma, fits, resids, glmcovgamma, covd, devlist]=glmfit;

gamma=gamma(:,1);

warning off

newmodel; clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION

SCALEPAR INC-CONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

warning on

NAMEXV=’[’;

for i=1:size(XMAT,2)+1

NAMEXV=strcat(NAMEXV,’A’); NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(XMAT,2))
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NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Constant’];

for i=1:size(XMAT,2)

NAMELIST=str2mat(NAMELIST,[’Avar ’,num2str(i)]);

end;

if strcmp(ERRDIST1,’binoml’)

YVAR=kron([Y,BINN1],ones(mquad,1));

else

YVAR=kron([Y],ones(mquad,1));

end;

LINKFUNCTION=MU1LINK;

XVARS=[ kron(XMAT,ones(mquad,1)),zeros(N*mquad,1)];

for i=1:N2;

ti=size(ID(ID==i),1);

XVARS((((i-1)*ti*mquad)+1):(i*ti*mquad),dimalpha+1)=

stackrows( kron(b1vecstar(i,:),ones(ti,1)));

end;

ERRDISFUNCTION=ERRDIST1;

SCALEPAR=1; INCCONST=0;

OFFSET=kron(OFFSET1,ones(mquad,1)); WEIGHTS=wts.*stackrows(u);

[alphatmp fits resids glmcovalpha covd devlist]=glmfit;

alpha=alphatmp(1:size(XMAT,2),1);

sigma(1)=alphatmp(end,1);

warning off

newmodel;
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clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION

SCALEPAR INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

warning on

NAMEXV=’[’;

for i=1:size(ZMAT,2)+1

NAMEXV=strcat(NAMEXV,’B’); NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(ZMAT,2))

NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Constant’];

for i=1:size(ZMAT,2)

NAMELIST=str2mat(NAMELIST,[’Bvar ’,num2str(i)]);

end;

if strcmp(ERRDIST2,’binoml’)

YVAR=kron([Y,BINN2],ones(mquad,1));

else

YVAR=kron([Y],ones(mquad,1));

end;

LINKFUNCTION=MU2LINK;

XVARS=[ kron(ZMAT,ones(mquad,1)),zeros(N*mquad,1)];

for i=1:N2;

ti=size(ID(ID==i),1);

XVARS((((i-1)*ti*mquad)+1):(i*ti*mquad),dimbeta+1)=

stackrows( kron(b1vecstar(i,:),ones(ti,1)));
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end;

ERRDISFUNCTION=ERRDIST2;

SCALEPAR=1; INCCONST=0;

OFFSET=kron(OFFSET2,ones(mquad,1)); WEIGHTS=wts.*stackrows(1-u);

[betatmp fits resids glmcovbeta covd devlist]=glmfit;

beta=betatmp(1:size(ZMAT,2),1); sigma(2)=betatmp(end,1);

maxchange=max(abs([alpha-alphaold;beta-betaold;

gamma-gammaold;sigma-sigmaold]))

loglik= getloglikb(alpha,beta,gamma,sigma,quadwts,

quadvals,b2vecstar,b2neghessdiag)

if (maxchange¡toler)

converge=1; its=maxits+1;

end;

if (converge==1)

emitcount=5000;

alp=OFFSET1+XMAT*alpha; blp=OFFSET2+ZMAT*beta;

glp=WMAT*gamma; p=getmixp(glp);

blupits=0; blup2converge=0; blupfail=1;

maxblupits=30;

while (blupits < maxblupits)

blupits=blupits+1; b2vecold=b2vec

if (blup2converge==0)

b2score=getb2score(p,alp,blp,sigma,b2vec);

b2neghessdiag= -nrdb2score(b2score,p,alp,blp,sigma,b2vec);

end;

if (blup2converge==0)

b2vec=b2vec+ b2score./b2neghessdiag;
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blup2maxchange=max(abs(b2vec-b2vecold));

if (blup2maxchange¡toler AND norm(b2score)¡toler)

blup2converge=1

end;

end;

if (blup2converge)

blupits=maxblupits+1; blupfail=0

end;

end;

b2score=getb2score(p,alp,blp,sigma,b2vec);

b2neghessdiag= -nrdb2score(b2score,p,alp,blp,sigma,b2vec);

b2neghessdiag(b2neghessdiag¡=0)=1;

for l=1:mquad;

b2vecstar(:,l)=b2vec + sqrt(2)*quadvals(l)

./sqrt(b2neghessdiag);

end;

loglik= getloglikb(alpha,beta,gamma,sigma,quadwts,quadvals,

b2vecstar,b2neghessdiag)

NRhess = gethessbaseloglik(loglik,b2vecstar,b2neghessdiag,

alpha,beta,gamma,sigma,mquad,quadwts,quadvals)

cov=inv(-NRhess)

end;

end;

end;

/****** Program name : EMNPMLFRIDEL.M ******/

/* Purpose : Fit two component GLMMs using NPML*/
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function [alpha,beta,gamma,quadwts,quadvals1, quadvals2,converge]=emnpmlfridel(

alphainit ,betainit,gammainit,mquad)

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION SCALEPAR

INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV identity;

global Y ID ID2 N N2 XMAT ZMAT WMAT BINN1 BINN2 ERRDIST1 ERRDIST2

MU1LINK global MU2LINK PLINK OFFSET1 OFFSET2;

clear paramtrs;

[toler,maxits,illctol]=myparamtrs

converge=0;

quadwtsinit =[ 0.07718399665045 0.136462301 0.13888795910759

0.17504762830876 0.20555368975748 0.06733699007994 0.19952743383709]’;

quadvals1init =[ 3.53232834327429 -4.36151188124223 -5.43777170255962

-6.27835886715718 -3.79456097829275 -2.26994797826750 -4.05724872099781]’;

quadvals2init =[ 3.27828414975511 3.35678302771616 1.73019687339642

3.17321509199899 2.91127651348920 3.34647540589581 1.68645207260083]’;

identity=eye(mquad);

alpha=alphainit; beta=betainit; gamma=gammainit

quadwts=quadwtsinit; quadvals1=quadvals1init; quadvals2=quadvals2init

dimbeta=size(beta,1); dimgamma=size(gamma,1); dimalpha=size(alpha,1);

dimvals1=size(quadvals1,1); dimvals2=size(quadvals2,1); dimwts=size(quadwts,1)-1;

dimparm2=dimwts; dimparm1=dimalpha+dimbeta+dimgamma+dimvals1+dimvals2;

dimparm=dimparm1+dimparm2;

its=0; fail=0;

loglik= getloglik(alpha,beta,gamma,mquad,quadwts,quadvals1,quadvals2)

while (its < maxits)

emitcount=0;
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while (emitcount < 5000)

emitcount=emitcount+1

its=its+1

alphaold=alpha; betaold=beta; gammaold=gamma;

quadwtsold=quadwts; quadvals1old=quadvals1; quadvals2old=quadvals2;

alp=OFFSET1+XMAT*alpha; blp=OFFSET2+ZMAT*beta;

glp=WMAT*gamma; p=getmixp(glp);

fofyijcond=zeros(N,mquad);

for l=1:mquad

mu1cond=getmu1( alp + identity(l,:)*quadvals1,BINN1);

mu2cond=getmu2( blp + identity(l,:)*quadvals2,BINN2);

fofyijcond(:,l)= p.*getf1cond(Y,mu1cond,BINN1)+(1-p)

.*getf2cond(Y,mu2cond,BINN2);

end;

w=zeros(N2,mquad);

for i=1:N2;

ti=size(ID(ID==i),1);

denom = prod(fofyijcond(ID==i,:))*quadwts;

if (denom==0)

w(i,:)=(zeros(mquad,1))’;

else

w(i,:) =ti*(prod(fofyijcond(ID==i,:)).*(quadwts’))/denom;

end;

end;

quadwtsnew = sum(w)/N; quadwtsnew=quadwtsnew

warning off

newmodel;
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clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION

SCALEPAR INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

warning on

NAMEXV=’[’;

for i=1:size(WMAT,2)

NAMEXV=strcat(NAMEXV,’G’);

NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(WMAT,2))

NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Constant’];

for i=1:size(WMAT,2)-1

NAMELIST=str2mat(NAMELIST,[’Gvar ’,num2str(i)]);

end;

INCCONST=0;

fofyijcond=zeros(N,mquad);

mu1cond=zeros(N,mquad);

mu2cond=zeros(N,mquad);

u=zeros(N,mquad);

u1=zeros(N,1)

for l=1:mquad

mu1cond(:,l)=getmu1(alp+(identity(:,l))’*quadvals1,BINN1);

mu2cond(:,l)=getmu2(blp+(identity(:,l))’*quadvals2,BINN2);

temp = getf1cond(Y,mu1cond(:,l),BINN1).*p;
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fofyijcond(:,l)= temp+(1-p).*getf2cond(Y,mu2cond(:,l),BINN2);

cc=(temp+(1-p).*getf2cond(Y,mu2cond(:,l),BINN2));

u1(cc==0) = zeros(size(cc(cc==0),1),1);

u1(cc =0) = temp(cc =0)./cc(cc =0);

u(:,l)=u1;

end;

YVAR=[stackrows(u),ones(N*mquad,1)];

LINKFUNCTION=PLINK;

XVARS=kron(WMAT,ones(mquad,1));

ERRDISFUNCTION=’binoml’;

OFFSET=zeros(size(YVAR,1),1);

WEIGHTS=zeros(size(YVAR,1),1);

count1=0; count2=0; prodi=zeros(N2,mquad);

for i=1:N2

prodi(i,:)=prod(fofyijcond(ID==i,:));

ti=size(ID(ID==i),1);

for j=1:ti;

count2=count2+1;

for l=1:mquad;

count1=count1+1;

aa = (prodi(i,:)*quadwts);

if (aa==0)

WEIGHTS(count1)=0;

else

WEIGHTS(count1)=prodi(i,l)*quadwts(l)/aa;

end;

end;
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end;

end;

[gamma, fits, resids, glmcovgamma, covd, devlist]=glmfit;

gamma=gamma(:,1);

warning off

newmodel;

clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION

SCALEPAR INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

warning on

NAMEXV=’[’;

for i=1:(size(XMAT,2)+mquad)

NAMEXV=strcat(NAMEXV,’A’);

NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(XMAT,2))

NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Alpha’];

for i=1:mquad

NAMELIST=str2mat(NAMELIST,[’Avar ’,num2str(i)]);

end;

if strcmp(ERRDIST1,’binoml’)

YVAR=kron([Y,BINN1],ones(mquad,1));

else

YVAR=kron([Y],ones(mquad,1));
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end;

LINKFUNCTION=MU1LINK;

XVARS=[ kron(XMAT,ones(mquad,1)), kron(ones(N,1),identity)];

ERRDISFUNCTION=ERRDIST1;

SCALEPAR=1; INCCONST=0;

OFFSET=kron(OFFSET1,ones(mquad,1)); WEIGHTS=zeros(size(YVAR,1),1);

count1=0; count2=0;

for i=1:N2

ti=size(ID(ID==i),1);

for j=1:ti;

count2=count2+1;

for l=1:mquad;

count1=count1+1;

aa = (prodi(i,:)*quadwts);

if (aa==0)

WEIGHTS(count1)=0;

else

WEIGHTS(count1)=u(count2,l)*prodi(i,l)*quadwts(l)/aa;

end;

end;

end;

end;

[alphatmp fits resids glmcovalpha covd devlist]=glmfit;

alpha=alphatmp(1:size(XMAT,2),1);

quadvals1=alphatmp(size(XMAT,2)+1:end,1);

warning off

newmodel;
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clear global YVAR XVARS;

global YVAR LINKFUNCTION XVARS ERRDISFUNCTION

SCALEPAR INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

warning on

NAMEXV=’[’;

for i=1:size(ZMAT,2)+1

NAMEXV=strcat(NAMEXV,’B’);

NAMEXV=strcat(NAMEXV,int2str(i));

if (i =size(ZMAT,2))

NAMEXV=strcat(NAMEXV,’,’);

end;

end;

NAMEXV=strcat(NAMEXV,’]’); NAMEYV=’[y]’; NAMELIST=[’Beta’];

for i=1:mquad

NAMELIST=str2mat(NAMELIST,[’Bvar ’,num2str(i)]);

end;

if strcmp(ERRDIST2,’binoml’)

YVAR=kron([Y,BINN2],ones(mquad,1));

else

YVAR=kron([Y],ones(mquad,1));

end;

LINKFUNCTION=MU2LINK;

XVARS=[ kron(ZMAT,ones(mquad,1)), kron(ones(N,1),identity)];

ERRDISFUNCTION=ERRDIST2;

SCALEPAR=1; INCCONST=0;

OFFSET=kron(OFFSET2,ones(mquad,1));
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WEIGHTS=zeros(size(YVAR,1),1);

count1=0; count2=0;

for i=1:N2

ti=size(ID(ID==i),1);

for j=1:ti;

count2=count2+1;

for l=1:mquad;

count1=count1+1;

aa=(prodi(i,:)*quadwts);

if (aa==0)

WEIGHTS(count1)=0;

else

WEIGHTS(count1)=(1-u(count2,l))*prodi(i,l)*quadwts(l)/aa;

end;

end;

end;

end;

[betatmp fits resids glmcovbeta covd devlist]=glmfit;

beta=betatmp(1:size(ZMAT,2),1);

quadvals2=betatmp((size(ZMAT,2)+1:end),1);

if (its > 5)

quadwts=quadwtsnew’;

end;

maxchange=max(abs([alpha-alphaold;beta-betaold;gamma-gammaold]))

loglik = getloglik(alpha,beta,gamma,mquad,quadwts,quadvals1, quadvals2)

if (maxchange < toler)

converge=1; emitcount=5000;
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its=maxits+1;

end;

end;

end;

FEM = fridel(alpha, beta, gamma, Y, mquad, quadvals1,

quadvals2, quadwts,dimparm1, dimparm2)

B=100; FMCft=zeros(dimparm,dimparm);

for t = 1:mquad

Bt=floor(1+B*quadwts(t));

lamda1=exp(alp+identity(t,:)*quadvals1);

lamda2=exp(blp+identity(t,:)*quadvals2);

sum=zeros(dimparm,dimparm);

for b = 1:Bt

z = rand(N,1);

poi1 = poissrnd(lamda1);

poi2 = poissrnd( lamda2);

yijstar = (z ¡= p).*poi1 + (z ¿ p).*poi2;

Ftb=fridel(alpha, beta, gamma, yijstar, mquad, quadvals1, quadvals2,

quadwts,dimparm1, dimparm2);

sum=sum+Ftb;

end;

Ft = quadwts(t)*sum / Bt;

FMCft = FMCft + Ft;

end;

Covfridel = inv(FMCft)*FEM*inv(FMCft)



Appendix C

Part of MATLAB Programs for Whiteflies Data Example in Chapter 41

C.1 Main Programs

/****** Program name : WFLY.M ******/

/* Purpose : read in data and set initial parameters for REML methods*/

global Y ID ID2 N N2 GMAT BMAT BINN;

global PLINK MULINK ERRDISTP ERRDISTMU;

load ’wflyid.dat’;

plantid=wflyid(:,7); ID=plantid;

N=size(ID,1); N2=max(ID);

Y=wflyid(:,6); week=wflyid(:,2); rep=wflyid(:,3); trt=wflyid(:,4);

BINN=wflyid(:,5);

trtmat=fac(trt,6); weekmat=fac(week); repmat=fac(rep);

ID2=zeros(N,1); for i=1:N2;

ID2(ID==i)=[1:size(ID(ID==i),1)]’;

end;

GMAT=[ones(N,1), trtmat, repmat,weekmat];

BMAT=[ones(N,1), trtmat, repmat,weekmat];

PLINK=’logit’; MULINK=’logit’;

ERRDISTP=’binoml’; ERRDISTMU=’binoml’;

1For complete programs, please contact Lihua Wang at lwang@stat.uga.edu. In
addition, the symbol of power calculation in MATLAB has been changed to “**”
because of LATEX recognotion issue.
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glmlab;

betainit = [ 0.9441 -0.365 -0.89 -0.39 -0.98 0.248 1.0319 0.452 -0.979 -1.402 -1.063

-2.082 -1.860 -2.19 -1.64 -2.506 -1.68 -2.27 -0.848]’;

gammainit =[ 0.3202 1.172 0.371 1.846 0.434 0.662 0.4100 0.347 -0.925 -1.200 -0.500

0.225 -0.018 -0.31 -0.12 -0.195 -0.12 -0.39 -0.455]’;

sigmainit =[0.1]’;

diary outputlast30.diary

mquad=7;

[beta,gamma,sigma,converge]=main(Y,betainit,gammainit,sigmainit,mquad)

diary off

C.2 Core Subroutines

MAIN.M

EMNR.M

/****** Program name : MAIN.M ******/

/* Purpose : Fit data with REML estimation method*/

function [beta,gamma,sigma,converge]=main(Y, betainit,gammainit,sigmainit,mquad)

global YVAR LINKFUNCTION ERRDISFUNCTION SCALEPAR INCCONST;

global OFFSET WEIGHTS DETAILSFILE NAMEXV NAMELIST NAMEYV;

global ID ID2 N N2 GMAT BMAT BINN ERRDISTP ERRDISTMU MULINK;

global PLINK OFFSET;

clear paramtrs;

[toler,maxits,illctol]=paramtrs

BIG=1.0e10; SMALL=1.0e-10; converge=0;

[quadwts,quadvals]=getgaussherm(mquad);

beta=betainit gamma=gammainit sigma=sigmainit
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dimbeta=size(beta,1); dimgamma=size(gamma,1); dimsigma=1;

dimparm=dimbeta+dimgamma+dimsigma;

its=0; fail=0;

bk=0;

while(its < maxits)

its=its+1

betaold=beta; gammaold=gamma; sigmaold=sigma;

[beta,gamma,bb1, bb2,converge] = emnr(Y,beta,gamma,sigma,mquad,

quadvals, quadwts);

bb3=bb2

[yy] = gerdata(beta,gamma,sigma);

[beta,gamma,bb1,bb2,converge] = emnr(yy,beta,gamma,sigma,mquad,

quadvals, quadwts);

bias = bb2-bb1;

bk=(1-1/its)*bk+1/its*bias;

sigma = sqrt(bb3-bk)

maxchange=max(abs(sigma-sigmaold))

if (maxchange < toler*10)

converge=1

its=maxits+1;

end;

end;

[beta,gamma,bb1, bb2,converge] = emnr(Y,beta,gamma,sigma,mquad,

quadvals, quadwts);

nbeta=beta; ngamma=gamma; nsigma=sigma

/****** Program name : EMNR.M ******/

/* Purpose : ML estimation */
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function [beta,gamma,bb1, bb2,converge] = emnr(y,beta,gamma,sigma,mquad,

quadvals, quadwts);

global ID ID2 N N2 GMAT BMAT BINN ERRDISTP ERRDISTMU MULINK

global PLINK ;

clear paramtrs;

[toler,maxits,illctol]=paramtrs

BIG=1.0e10; SMALL=1.0e-10; converge=0;

dimbeta=size(beta,1); dimgamma=size(gamma,1);

dimparm=dimbeta+dimgamma;

its2=0; fail=0;

b1vecini=zeros(N2,1); b2vecini=zeros(N2,1);

while(its2 < maxits)

its2=its2+1

betaold=beta; gammaold=gamma; sigmaold=sigma;

blp=BMAT*beta; glp=GMAT*gamma; p=getmixp(glp);

kp=kron(p, ones(1,mquad));

b1vec=b1vecini; b2vec=b2vecini;

[hatb1,neghessdiagb1,hatb2,neghessdiagb2]=optimb(b1vec,b2vec,

y,beta,gamma,sigma,blp,p,toler);

b1vecini=hatb1;

for l=1:mquad;

b1vecstar(:,l)=hatb1 + sqrt(2)*quadvals(l)./sqrt(neghessdiagb1);

b2vecstar(:,l)=hatb2 + sqrt(2)*quadvals(l)./sqrt(neghessdiagb2);

end;

nb1vecstar=zeros(N, mquad); nb2vecstar=zeros(N, mquad);

count1=0; count2=0;

for i=1:N2
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ti=size(ID(ID==i),1);

count1=count2+1; count2=count2+ti;

nb1vecstar(count1:count2,:)=kron(b1vecstar(i,:),ones(ti,1));

nb2vecstar(count1:count2,:)=kron(b2vecstar(i,:),ones(ti,1));

end;

ky=kron(y, ones(1,mquad));

kbmat=kron(BMAT, ones(mquad,1));

kgmat=kron(GMAT, ones(mquad,1));

kbinn=kron(BINN, ones(1,mquad));

u=(y==0);

kforpi1=zeros(N, mquad); kforbin1=zeros(N, mquad);

kforpi2=zeros(N, mquad); kforbin2=zeros(N, mquad);

for l=1:mquad

kforpi1(:,l)=getdkappa([BMAT,nb1vecstar(:,l)]*[beta;1]);

kforbin1(:,l)=getfcond(y,getmu([BMAT,nb1vecstar(:,l)]*[beta;1],BINN),BINN);

kforpi2(:,l)=getdkappa([BMAT,nb2vecstar(:,l)]*[beta;1]);

kforbin2(:,l)=getfcond(y,getmu([BMAT,nb2vecstar(:,l)]*[beta;1],BINN),BINN);

end;

fofycond1=zeros(N2,mquad); fofycond2=zeros(N2,mquad);

for i=1:N2

term1=(kp(ID==i)+(1-kp(ID==i))

.*(1-kforpi1(ID==i))**(kbinn(ID==i)))**(ku(ID==i));

term2=((1-kp(ID==i)).*kforbin1(ID==i))

**(1-ku(ID==i));

fofycond1(i,:)=prod(term1.*term2);

term1=(kp(ID==i)+(1-kp(ID==i)).*

(1-kforpi2(ID==i))**(kbinn(ID==i)))**(ku(ID==i));
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term2=((1-kp(ID==i)).*kforbin2(ID==i))**(1-ku(ID==i));

fofycond2(i,:)=prod(term1.*term2);

end;

W=zeros(N2,mquad); Wdenom=zeros(N2,mquad);

for l=1:mquad

W(:,l)= sqrt(2)*quadwts(l)*exp(quadvals(l)*quadvals(l))

*fofycond1(:,l).*normpdf(b1vecstar(:,l),0, sigma)./sqrt(neghessdiagb1);

Wdenom(:,l)= sqrt(2)*quadwts(l)*exp(quadvals(l)*quadvals(l))

*fofycond2(:,l).*normpdf(b2vecstar(:,l), 0, sigma)./sqrt(neghessdiagb2);

end;

loglik=sum(log(sum(Wdenom,2)))

for l=1:mquad;

W(:,l)=W(:,l)./sum(Wdenom,2);

W(W(:,l)==Inf,l)=zeros(sum(W(:,l)==Inf),1);

end;

weight=zeros(N, mquad);

count1=0; count2=0;

for i=1:N2

ti=size(ID(ID==i),1);

count1=count2+1; count2=count2+ti;

weight(count1:count2,:)=kron(W(i,:),ones(ti,1));

end;

if (its2==1)

bb1=sum(1./neghessdiagb2 + hatb2.*hatb2)/N2

end;

wts=stackrows(weight);

cc=kp+(1-kp).*(1-kforpi1)**kbinn;
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term1=ku.*(1-kp).*(-kbinn).*kforpi1.*(1-kforpi1)**kbinn./cc;

term2=(1-ku).*(ky-kbinn.*kforpi1);

nrscoreb=(stackrows(term1).*wts)’*kbmat + (stackrows(term2).*wts)’*kbmat;

term1=ku.*kp.*(1-kp).*(1-(1-kforpi1)**kbinn)./cc;

term2=(1-ku).*(-kp);

nrscoreg=(stackrows(term1).*wts)’*kgmat + (stackrows(term2).*wts)’*kgmat;

nrscore=[nrscoreb,nrscoreg]’;

nrhess=zeros(dimparm, dimparm);

termb1=ku.*(-kbinn).*(1-kp).*(kforpi1.*(1-kforpi1)**(kbinn+1)-

kbinn.*kforpi1**2.*(1-kforpi1)**kbinn)./cc;

aa=kbinn.*(1-kp).*kforpi1.*(1-kforpi1)**kbinn;

termb2=ku.*aa.*aa./(cc.*cc);

termb3=(1-ku).*(-kbinn).*kforpi1.*(1-kforpi1);

term=stackrows(termb1-termb2+termb3).*wts;

term=sparse(diag(term));

nrhess(1:dimbeta,1:dimbeta)=kbmat’*term*kbmat;

termg1=ku.*(1-(1-kforpi1)**kbinn).*kp.*(1-kp).*(1-2.*kp)./cc;

aa=kp.*(1-kp).*(1-(1-kforpi1)**kbinn);

termg2=ku.*aa.*aa./(cc.*cc);

termg3=(1-ku).*kp.*(1-kp);

term=stackrows(termg1-termg2-termg3).*wts;

term=sparse(diag(term));

nrhess((dimbeta+1):dimparm,(dimbeta+1):dimparm)= kgmat’*term*kgmat;

termbg1=ku.*kbinn.*kforpi1.*(1-kforpi1)**kbinn.*kp.*(1-kp)./cc;

termbg2=ku.*(1-kp).*kbinn.*kforpi1.*(1-kforpi1)

**kbinn.*kp.*(1-kp).*(1-(1-kforpi1)**kbinn)./(cc.*cc);

term=stackrows(termbg1+termbg2).*wts;
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term=sparse(diag(term));

nrhess(1:dimbeta,(dimbeta+1):dimparm)= kbmat’*term*kgmat;

nrhess((dimbeta+1):dimparm,1:dimbeta)=(nrhess(1:dimbeta,(dimbeta+1):dimparm))’;

para=[beta’,gamma’]’;

update=inv(nrhess)*nrscore;

para=para-update;

beta=para(1:dimbeta); gamma=para((dimbeta+1):dimparm)

maxchangefix=max(abs([beta-betaold;gamma-gammaold]))

if (maxchangefix¡toler)

converge=1

its2=maxits+1;

end;

if (converge==1)

b2vec=b2vecini; b1vec=b1vecini;

[hatb1,neghessdiagb1,hatb2,neghessdiagb2]=

optimb(b1vec,b2vec,y,beta,gamma,sigma,blp,p,toler);

b2vecini=hatb2;

b1vecini=hatb1;

bb2=sum(1./neghessdiagb2 + hatb2.*hatb2)/N2

end;

end;


