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Abstract

Previous research has shown that under time limits, items near the end of the test appear

harder for the speeded examinees than for the non-speeded examinees (Bolt et al.,2002;

Oshima, 1994). Moreover, speeded examinees tend to omit more items near the end of the

test (Bolt et al., 2002; Cohen et al., 2002). Therefore, certain person and item characteristics

related to test speededness may help to explain the differences in estimates of examinees’

abilities and item difficulties. The test speededness models proposed thus far have focused

on modeling speededness effects rather on attempting to explain them. In addition, the

investigation of differential speededness is typically implemented in a two-step procedure.

First, the measurement model is used to identify speeded groups, generally as latent classes.

Next, a statistical analysis is done to examine characteristics of members of speeded and non-

speeded groups. The purpose of this dissertation was to propose a mixture multilevel IRT

model with person and item covariates that could be used to detect test speededness effect

in paper-and-pencil test. Unlike the regular IRT models which treat persons as random and

items as fixed, however, this dissertation treated both as random, making it possible to add

item covariates into the model. De Boeck (2008) has shown that treating items as random

not only makes sense theoretically, but also is promising for identifying DIF items and for

explaining differential item difficulties. A multilevel mixture IRT model was developed in this

dissertation for use in detection of speeded and non-speeded latent classes. Covariates are



illustrated as being incorporated into the model for use in helping to characterize members

of each latent class.

Index words: Test speededness, cross-classified item response model, mixture IRT,
multilevel IRT
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Chapter 1

Introduction

1.1 Statement of the Problem

Time limits on tests usually serve two purposes. Time limits are necessary, when the speed

of responding is a construct that the test is designed to measure, but when the purpose of

setting time limits is administrative, the speed of responding is not usually the construct of

interest. Anastasi (1988) notes that "A pure speed test is one in which individual differences

depend entirely on speed of performance. Such a test is constructed from items of uniformly

low difficulty, all of which are well within the ability level of the persons for whom the test

is designed. The time limit is made so short that no one can finish all the items. Under these

conditions, each person’s score reflects only the speed with which he or she worked. A pure

power test, on the other hand, has a time limit long enough to permit everyone to attempt

all items. The difficulty of the items is steeply graded, and the test includes some items too

difficult for anyone to solve, so that no one can get a perfect score” (pp. 127-128). Anastasi’s

definitions are for pure speed and pure power tests. These are somewhat ideal definitions as

most educational tests are administered under some type of time limits.

For a power test, the expectation (based on Anastasi’s definition) is that all examinees

should have sufficient time to at least consider, if not finish each test item. When some

examinees don’t have sufficient time to try all the items on the test, time limits may affect

their performance at least to some degree. In such a case, the test would be regarded as

speeded and the effects of time limits on examinee performance referred to as speededness

effects (Evans & Reilly, 1972). When this is the case, then speededness should be taken into

account in estimating item and examinee performance.
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When speed of responding is not part of the construct being measured, then test speed-

edness likely introduces construct irrelevant variance, thus potentially jeopardizing the con-

struct validity of the test (Lu & Sireci, 2007). When a test is speeded, in other words, part of

the variance in the test score is potentially related to speededness. If the construct of interest

of the test does not include the speed of responding, then the presence of test speededness

changes the interpretation of the test scores and the inferences based on the test scores.

Briel, O’Neil, and Schueneman (1993) note that the Graduate Record Examinations (GRE)

is primarily a measure of intellectual power rather than rate of responding, and differences in

examines’ response rates constitute an irrelevant source of difficulty in test performance. In

this same regard, time limits have been shown to have an effect on the validity of intelligence

test scores (Wilhelm & Schulze, 2002). Wilhelm and Schulze further note that "the simple

manipulation of relaxing time constraints in the measurement of reasoning (indicates) that

properties of measurement instruments are not stable when conditions of administration are

altered. Speeded and nonspeeded tests of reasoning ability do not equally tap the same con-

structs. Removing the time constraints from reasoning measurement removes mental speed

variance” (p. 551). Mellon, Daggett, MacManus, and Moritsch (1996) found speeded tests

were susceptible to coaching effects, as examinees could be taught to fill in all the items at the

end of the test (i.e., the ones most likely to show speededness effects) as time limits expired.

For those examinees, responses at the end of the test would not reflect the same construct

as responses at the beginning of the test. Sager, Peterson, and Oppler (1994) found speeded

and non-speeded administrations of the General Aptitude Test Battery (GATB) measured

similar but not identical constructs. Using a confirmatory factor analysis (CFA), Sager et al.

showed a speed factor was present for the speeded administration. Lu and Sireci (2007) note

that the presence of omissions at the end of the test poses a threat to the content validity of

the test. If a large number of these items are left blank, in other words, the content domain

represented by these items will not be complete.
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Reliability has also been shown to be affected by test speededness. Evans and Reilly

(1972) found increasing speededness on the LSAT produced a lower KR-20 coefficient for tests

of fee-free examinees compared to regular-fee examinees. Likewise, Attali (2005) found the

internal consistency reliability of multiple-choice tests was lowered by speededness. According

to Attali, examinees who run out of time tend to guess on the remaining items instead of

omitting them. This random guessing behavior introduces noise into examinee’s responses or

creates inconsistent responses, thus lowering the reliability of the test. Schnipke and Scrams

(1997) found higher ability examinees tended to randomly guess more on items near the end

of the test. The effect of random guessing behavior noted by Schnipke and Scrams was to

reduce the variance among the examinee abilities, thereby reducing the reliability of the test.

Item response theory (IRT) models are currently widely used for scaling and scoring of

a large proportion of educational tests. If the IRT model fits the data, the ability scores

estimated by the IRT model are independent of the set of items used on the test. The ability

of examinees who have taken different sets of items calibrated to the same scale, in other

words, can be placed on that same scale. In addition, if the model fits the data, item param-

eters estimated by an IRT model are sample-independent. This means that item parameter

estimates obtained from different samples of examinees can be transformed to the same scale.

To achieve this, however, IRT models require strong assumptions about the data, such as

unidimensionality and local independence. Such assumptions are sometimes difficult to meet

with real test data. If a test is speeded, meaning the construct being measured includes

extraneous variability due to test time limits, then item responses are not unidimensional

and the IRT model likely is not appropriate. Lack of local independence is reflected as a non-

zero correlation among the speeded items near the end of the test. Depending on the extent

of speededness effects, sometimes, the speededness effect may form a secondary dimension

(Lord, 1956; Sager, Peterson, & Oppler, 1994; Wilhelm & Schulze, 2002).

Some previous research has also found the use of IRT models in speeded tests resulted

in inaccurate model parameters. Oshima (1994) found test speededness affected both item
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parameters and ability parameters. Although relative standing of examinees was relatively

stable under speeded conditions, speededness resulted in inaccurate estimates of item param-

eter estimates. Discrimination and difficulty parameters were overestimated and guessing

parameters were underestimated for the speeded items near the end of the test. Yamamoto

and Everson (1997) found similar results using the hybrid model. Not only were item difficulty

and discrimination parameters overestimated, examinees’ abilities were underestimated, par-

ticularly especially for the very able examinees.

1.2 Purpose of the Study

A number of attempts have been made to investigate the differential effects of speededness as

a function of examinee characteristics such as ethnicity, gender, disability status, and native

language (Bridgeman, Cline, & Hessinger, 2003; Lawrence, 1993; Neustel, 1998; Sireci, 2005).

Most of these studies have examined the effect of speededness by comparing the means of

the examinee’s performance as a function of these or similar manifest characteristics. The

development of the mixture IRT models has enabled researchers to examine latent groups of

examinees by dividing them into speeded and non-speeded latent classes rather than basing

an assumption of speededness simply on number of omissions or number of errors on items at

the end of the test. In this regard, Bolt, Cohen, and Wollack (2002) and Cohen et al. (2002)

used a two-class mixture IRT model to investigate the association between speededness and

examinees’ background characteristics. This approach was implemented in two steps. First,

a specially constrained two-class mixture Rasch model was used to identify speeded and non-

speeded examinees. Second, the association between latent class membership and manifest

examinee characteristics such as gender, ethnicity, and age, was examined by correlation or

regression analysis.

Although the two-step approach has been shown to be useful, it is also possible that

some errors are inadvertently allowed into the estimation. Such errors can potentially atten-

uate the relationships between latent group membership and examinee characteristics as the
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two-step procedure doesn’t consider the impact of these covariates on parameter estimates.

Adams, Wilson, and Wu (1997), for example, showed that attenuation occurred in a two-step

regression analysis due to measurement errors. Employing collateral information, however,

led to smaller mean squared errors of the ability estimates than with the two-step procedure.

That is, inclusion of covariates in the regression analysis may help to reduce these errors and,

thereby also may help to reduce the standard errors of the parameter estimates.

In the current study, the two steps will be incorporated into a single step, and manifest

examinee characteristics will be used to help place examinees into either speeded or non-

speeded classes. This will be done by expressing the IRT model as a multilevel model. Fox and

Glas (2001) and Adams, Wilson, and Wu (1997) showed that IRT models can be expressed

as multilevel models and can be used to impose a regression model with examinee covariates

on examinees’ abilities. One advantage of expressing IRT models as multilevel models is to

take into account the nested structure of the data. Another advantage is to examine the

relationship between individual-level variables and aggregation-level variables. In addition,

using latent ability scores as dependent variables instead of observed scores also provides the

possibility of separating the impact of examinee’s ability and item difficulty and modeling

response variation and measurement errors (Fox & Glas, 2001). The model in the current

study incorporates the IRT model and the two-class latent class model (i.e., speeded and

non-speeded latent classes) in the framework of the generalized linear mixed model. Person

and item covariates will be used directly in the model to explain test speeded effects. This

one-step procedure will estimate all the model parameters simultaneously.

1.3 Significance of the Study

Von Davier and Yamamoto (2007) note that using background data that are related to latent

ability should result in smaller conditional variance for latent ability. For the case of mixture

IRT models, there are two latent variables, one is continuous (i.e., ability) and the other

is categorical (i.e., latent class). As Von Davier and Yamamoto (2007) note, ”Given one or
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more conditioning background variables, the multinomial distribution of the class variable

will be more concentrated around certain latent classes as compared to the overall distri-

bution, assuming that class membership and background variables are not independently

distributed” (p. 110). Therefore, adding covariates related to latent class should improve

the estimation accuracy of the class membership. Smit et al. (1999, 2000) estimated latent

class membership using a dichotomous mixture IRT model which incorporated background

variables as covariates into the mixture IRT model. These were used to help in predicting

latent class membership. Studies such as these indicate that the incorporation of background

variables into the model can improve the accuracy of classification of examinees into latent

classes.

The proposed model in the current study will use background data from the examinees

and items and will incorporate these variables into the model for helping determine latent

class membership. In this way, it will be possible to investigate the association between test

speededness and these kinds of background variables simultaneously along with estimation

of mixture IRT model parameters. This one-step procedure should provide more accurate

estimation than the two-step procedure. Van Nijlen and Janssen (2009) note that, if person

covariates fully explain the latent classes, an interaction effect between the person covariate

and items will make the use of mixture IRT models unnecessary. Thus a simpler model could

be used.



Chapter 2

Literature Review

The effects of time limits on examinee performance, referred to as speededness effects (Evans

& Reilly, 1972), typically have negative impacts on test performance. One result of setting

time limits on a test is that some examinees will not have enough time to finish the test.

Such differential effects of response latencies, in general, are not usually considered part of

the construct of interest for most tests (Lord & Novick, 1968).

2.1 Conventional Methods of Evaluating Test Speededness

Approaches to assessing test speededness have generally been of two types: non-IRT-based

methods and IRT-based methods. The conventional methods of evaluating test speededness

are usually not based on IRT models. The methods reviewed in this proposal are only those

related to paper-and-pencil tests, usually consisting of multiple-choice items. The conven-

tional methods can be further divided into single and double- or multiple-administration

approaches. Gulliksen (1950) and Stafford (1971) proposed methods to assess speededness

in a single administration design. Both of their methods are functions of the number of not-

reached items. Gulliksen evaluated speededness using two ratios, one of which is the ratio

of the standard deviation of the number of items answered incorrectly sw and the standard

deviation of the number of items not answered correctly sx. Items not answered correctly

include not-reached, omitted and incorrect answers. The second ratio involves the standard

deviation of the number of items not reached snr and the standard deviation of the number

of items answered incorrectly. According to Gulliksen (1950), a test is primarily speeded,

7
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when the ratio sw

sx
becomes very small (0.1 or less), and a test is primarily a power test, when

snr

sx
is very small (i.e., 0.1 or less).

Stafford (1971) proposed a speededness quotient as the ratio between the number of

not-reached items and the sum of the number of items not reached, omitted and answered

incorrectly. This quotient can be expressed as NRi

Wi+Oi+NRi
, where NRi is the number of not-

reached items, Wi is the number of incorrect answers, and Oi is the number of omitted

items.

Swineford (1974) suggested a rule of thumb for determining whether or not a test is

speeded: A test is unspeeded if at least 80% of the examinees reach the last item and virtually

all examinees reach at least 75% of the items. Swineford notes that this standard is arbitrary.

Secolsky (1989) found this definition provided reasonable distinctions of speeded and non-

speeded tests on TOEFL data. On average, about 99.7% of the examinees reached at least

75% of the items and 80% or more of the examinees reached all the items. Secolsky notes

that the extent of speededness may be underestimated since these criteria didn’t include

examinees who randomly guessed or responded with the same responses to the last 25%

of the test. Secolsky recommended that, if these criteria were to be accepted, more direct

investigations of speededness such as survey or observational study should be conducted

to determine the extent of speededness. Rindler (1979) notes that this standard provides

a dichotomous measure of power, but it provides relatively little information about the

violation of the standard. Further, it offers little help in measuring the degree of speededness.

For multiple test administrations, Cronbach and Warrington (1951) proposed a speed-

edness index, tau, which compares the performance of the same examinee under timed and

untimed test administrations of parallel tests: tau =
rAsBprApBs

rApBsrAsBp
, where r is the correlation

corrected for attenuation between the speeded (s) and power (p) test administrations.

The Cronbach and Warrington approach, though conceptually interesting, is typically

administratively impractical as it requires multiple test administrations. In part, this is

because not all tests have a parallel form. However, even if a parallel form were available,
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it may not be possible to have enough time to administer both forms to the same or even

similar examinees. Moreover, examinees usually are not motivated to take a second test, if

they have already taken the first.

A major problem with the single test administration methods is they are only appropriate

for rights-only scored test. Secolsky (1989) notes, "they are not sensitive enough to the

possibility that some portion of the examinee group did not have enough time to truly

attempt the items near the end of the test. In reality, some non-ignorable portion of the

examinee sample may have responded with random or patterned responses to the items at

the end of the test or test section as the time limit approached” (p. 2). A patterned response

would be one with the same pattern of responses such as over the last few items on the test.

In addition, these methods underestimate test speededness by ignoring the random guessing

that may occur near the end of the test (Secolsky, 1989).

2.2 IRT-Based Methods of Evaluating Test Speededness

2.2.1 Bejar’s Speededness Indices

In view of the shortcomings of the conventional methods noted above, a number of efforts

have focused on assessing speededness within an IRT framework. Bejar (1985) developed

two IRT-based indices for detecting the speededness of right-scored tests. Bejar assumed

that the most difficult items under speeded conditions would be more likely subject to

random guessing. Therefore, an examinee’s performance on these items would not be solely

determined by that examinee’s latent ability. Instead, performance would also be a function

of a speededness factor, thereby introducing construct-irrelevant variance into the test score.

Bejar’s method assumes examinees do not answer the items in sequence, but cycle through

the test and leave the most difficult items last. Bejar described an item-level index and

an examinee-level index. The item-level index, distributed as a chi-square, is one in which

examinees are classified into 15 equally-spaced ability level intervals. The item-level index,
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Q, is given as

Q =
15∑

j=1

[Nj(Oij − Eij)]
2

Eij(1− Eij)
, (2.1)

where Nj is the number of examinees in cell j, Qij is the observed proportion of examinees

in cell j who answered item i correctly, and Eij is the predicted proportion of examinees in

cell j who answered item i correctly, based on the estimated item parameters from the IRT

model used. Eij is calculated as:

Eij =
1

Nj

Nj∑

k∈j

Pi(θk), (2.2)

where θk is the ability estimate obtained from the IRT model. Bejar’s Q index assumes that

examinees leave the most difficult items for last and the most difficult items are vulnerable

to test speededness. It compares the predicted number of correct responses and the number

of actual correct responses for each item.

The calculation of the examinee-level index is based on the same assumption as the item-

level index. That is, examinees are assumed to not have answered the items sequentially, but

to have left the most difficult items for last. To calculate the examinee-level index, all the

items are rearranged according to their difficulties with the most difficult items placed at the

end of the test. Then the test is divided into two parts, an easy part which contains the first

75% of the items and a hard part which contains 25% of the items. This division is arbitrary,

but is adaptable to ETS’ rule of thumb for speededness, which states that all the examinees

reached 75% of the items and 80% of the examinees reached all the items (Swineford, 1974).

The examinee-level index compares the predicted and observed performance only on the

hard items since it assumes that only the hard items are vulnerable to test speededness. The

computation of the predicted number of correct answers is based on the IRT model used,

and is computed as

E(θe) =
∑

Pi(θe), (2.3)

where Pi is the probability of getting an item correct based on the IRT model, and θe is the

estimated ability calculated from the easy items. The sum is taken over the hard items. The
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observed number of correct responses is

O =
∑

i

ui, (2.4)

and ui takes on a value of 1 if item i is answered correctly and a value of 0 if not. One problem

with Bejar’s method is that it is circular (Bejar, 1985), because the IRT model parameters

that were used to calculate the expected performance are themselves contaminated by test

speededness. Secolsky (1989) noted that Bejar’s index may incorporate sources of error that

are not solely attributable to test speededness.

2.2.2 Mixture Item Response Model

Recent work in item response modeling has included the development of mixed item response

theory models (MixIRTM) for use in detection of speededness (Bolt, Cohen, & Wollack, 2002;

Yamamoto, 1989; Yamamoto & Everson, 1997). This work is based on mixture IRT models

(e.g., Mislevy & Verhelst, 1990; Rost, 1990). Below, we introduce the MixIRTM followed by

descriptions of how it has been used for detection of speededness.

The use of IRT models requires the strong assumption that item difficulties are constant

for all persons in the population. In fact, this assumption may be violated by some examinees

in the population (Rost, 1990). In some cases, for example, the population may consist of

subpopulations which differ only qualitatively, such as in the particular strategies used for

responding. The mixing proportions of the subpopulations are usually not known beforehand.

The combination of item response model and latent class analysis is a useful statistical

tool for taking into accounts both qualitative differences among examinees. An important

assumption of this model is that the IRT model holds within each latent class. The mixture

IRT models make it possible to divide examinees into latent classes which differ most with

respect to item parameters, thus maximizing the between-group differences. Unlike latent

class analysis, the mixture IRT models ”accounts for ability differences within the mixture

components, whereas latent class analysis assumes no differences in conditional response

probabilities within each class” (Von Davier & Yamamoto, 2007, p. 115).
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Rost (1990) proposed a mixture Rasch model (MRM) which assumes a Rasch model

holds within each latent class, but ability levels of examinees may vary within classes and

item difficulties may differ among classes. In the MRM, each examinee is characterized by

a latent class parameter, g , and an ability parameter, θjg , for examinee j in group g . The

conditional probability of a correct response in the MRM is given as

P (xi = 1|θj, βi, g) =
1

1 + exp[−(θj − βig)]
, (2.5)

where g is the latent group an examinee belongs to; βig is the item difficulty for item i

in latent class g . To remove the indeterminacy of the scale, the sum of the item difficulties

within each class can be constrained to be zero,
∑

i βig=0. An alternative is that the expected

value of the ability estimate is constrained to be zero, E(θ)=0. The unconditional probability

that an examinee j answers item i correctly is :

P (xij = 1|θj, βig) =
G∑

g=1

exp(θj − βig)

1 + exp(θj − βig)
, (2.6)

with the underlying assumptions that
∑

g πg=1 and 0 < πg < 1. The dichotomous mixture

Rasch model has also been extended to include polytomous (Rost, 1991). Under this model,

the probability of observing a response vector of (x1, x2..., xI ) with xi ∈ {0, 1, ...,mi} by an

examinee is given as:

P (X|θ, g) =
I∏

i=1

exp(xiθ − βixig)

1 +
∑xi

y=1 exp(yθ − βiyg)
, (2.7)

where βiyg =
∑x

y=1 αiyg are the class-dependent cumulative item parameters. This model is

equivalent to the partial-credit model by Masters (1982).

2.2.3 Mixture IRT Models for Test Speededness

Bolt et al. (2002) proposed a two-class mixture Rasch model with ordinal constraints to

model speededness effects. In the Bolt et al. approach, a constrained version of a mixture

Rasch model (MRM) developed by Rost (1990) is used to identify two groups of examinees, a
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non-speeded group and a speeded group. The mixture Rasch model describes the probability

of an examinee getting an item correct as

P (xi = 1|θ, βi, g) =
1

1 + exp[−(θ − βig)]
, (2.8)

where g is the latent group an examinee is classified as belonging to and is the difficulty for

item i in latent class g. Bolt et al. assumed that items located near the end of the test were

most likely to be affected by speededness and items at earlier locations were less likely to be

so affected. In the Bolt et al. model, therefore, difficulties of items at the beginning of the

test are constrained to be equal. Items at the end of the test, on the other hand, are assumed

to be affected by speededness and so are constrained to be harder for the speeded examinees

than for the non-speeded examinees. The MRM used by Bolt et al. differs from the model

by Rost by the use of these constraints. In the Bolt et al. formulation, items in the middle

of the test were not included in the model, although this condition can be relaxed. Wollack,

Cohen, and Wells (2003) demonstrated the usefulness of the Bolt et al. model, by showing

that scale stability for a college-level English placement test could be maintained over an

11-year period, if item parameters were estimated from responses of the non-speeded group

only. An important limitation of the two-class mixture Rasch model with ordinal constraint

is it is based on the assumption that the test speededness mainly occurs near the end of the

test. As is noted below, the choice of speededness point is arbitrary.

Yamamoto (1987, 1989) proposed a Hybrid model to incorporate examinees’ strategy

switching. The Hybrid model is a combination of a standard IRT model and a latent class

model (Lazarsfeld & Henry, 1968). Examinee responses are modeled with an IRT model up to

the strategy switching point, and then with a latent class model thereafter. The qualitative

aspects of examinee’s performance are captured by the latent class model. Yamamoto (1990,

1995) extended this model to assume that speededness is reflected in multiple latent classes,

each differing in the number of consecutive items at the end of the test that are answered

randomly. The extended Hybrid model is still based on the assumption that a speeded

examinee is assumed to switch response strategies from the use of the latent ability modeled
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by the IRT model to a random guessing strategy modeled by the latent class model. The

probability of getting an item correct for an examinee is

p(xi = 1|θ, βi, k) = (1 + exp(θ − βi))
mikcmik+1

i , (2.9)

where k is the last speeded item; mik= -1 if i ≤ k and mik = 0, if i > k; xi is the examinee’s

response to item i , βi is the item difficulty parameter; θ is the examinee’s ability; ci is the

expected proportion correct under a patterned (i.e., same responses to all of the last few

items) or a random response strategy. The likelihood of response vector xv, given θv, is

P (xv|θ, βi, kv) =
kv∏
i=1

P (θv, βi)
xivQ(θv, βi)

1−xiv

I∏

i=kv+1

cxiv
i (1− ci)

1−xiv . (2.10)

The extended Hybrid model provides a method for reducing the effect of test speededness

on the estimates of item and ability parameters. However, the Hybrid model shares the

same shortcoming with the two-class mixture Rasch model with ordinal constraint in that

it assumes test speededness occurs only at the end of the test. The Hybrid model is not

capable of capturing a switch in response strategy, in other words, if test speededness occurs

at earlier locations of the test, since the Hybrid model can only allow one strategy switching

point.

2.2.4 Gradual Process Change Model

Both the Hybrid model and the Bolt et al. model consider test speededness effects as begin-

ning not later than a specific point on the test for all speeded examinees. This is a useful

assumption, but it is not the only way to view the beginning of speededness effects. It is also

possible that each examinee may become speeded at a different point on the test (Wollack

et al., 2003). This latter assumption is accommodated in the gradual process change model

(GPCM; Goegebeur et al., 2008). In the GPCM, the speededness point is modeled as an

examinee-specific effect. The model is composed of two parts, one of which is the usual IRT

model and the other, the speededness part. The IRT model holds for that part of the test
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that is not speeded for examinee j . When the test becomes speeded for examinee j , the prob-

ability of success decreases through to the end of the test. The speededness parameters in

the model are examinee specific, so the gradual change model includes both the speededness

point and the speededness rate of each individual examinee. The probability of a correct

response under the gradual change model can be written as

Pij = ci + (1− ci) ∗ Pij|θj
∗min{1, [1− (

i

I
− ηj)]

λj}, (2.11)

where ci is the guessing parameter, I is test length (i = 1 , , I ), ηj is the point on the test

expressed as a fraction of the number of items at which the effects of speededness begin for

examinee j , and λj is the rate at which speededness influences the response of examinee j .

If i ≤ ηj, there is no speededness effect, and either λj equals zero or ηj equals one. The

equation of the gradual change model reduces to the regular IRT model with a guessing

parameter under a non-speeded condition. When λj is not zero, then ηj indicates the point

on the test at which the IRT model no longer completely accounts for the probability of

a correct response. The gradual process change model is more flexible than the Hybrid

model and the two-class mixture Rasch model with ordinal constraint in that it estimates a

speededness rate and a speededness point for each examinee. So, once an examinee becomes

speeded, the model will account for the gradual change of strategy switching from a response

process described by Pij |θ to one that includes a gradual switching to a random response.

The GPCM also allows examinees to become speeded at different locations, i, instead of at a

single arbitrary point like the Bolt et al.two-class mixture Rasch model. The gradual process

change model as in Equation (2.11) can also be extended to a mixture gradual process change

model (MixGPCM) by inclusion of a latent class model into the model. The assumption with

such a model is that different latent classes of speeded or non-speeded examinees may exist,

defined by differential use of response strategies. Wang and Cohen (2008) described a mixture

Rasch version of this model with ordinal constraints. The probability of a correct response
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under the MixGPCM is

Pij =
exp(θj − βig)

1 + exp(θj − βig)
∗min{1, [1− (

i

I
− ηj)]

λj}, (2.12)

To identify a speeded and non-speeded group, certain constraints were applied on λj. That

is, when λj is zero, a class of non-speeded examinees was identified by the model. When λj

is greater than zero, a class of speeded examinees was identified.

2.2.5 Multilevel Item Response Model

The IRT models describe the relationship between the examinee’s latent ability and responses

based on the characteristics of the items. Sometimes examinee characteristics may affect their

performance on the test. As the usual IRT models do not incorporate these person character-

istics into the model, it is common to use a two-step analysis. In the first step, latent ability

is estimated using the IRT model. In the second step, the estimated ability obtained from

the first step is used as the dependent variable and the examinee’s characteristic variables

are used as predictors.

There are some potential problems that can arise using this two-step procedure. One

problem is that in regression analysis, the dependent variable is assumed to be measured

without error, but the ability estimate under IRT models is estimated with heterogeneous

errors. These errors, in turn, will result in non-random errors intruding into the regression

model (Kamata, 1998). Another problem with the two-step approach is that the marginal

maximum likelihood estimation of ability is not consistent, thereby posing another potential

threat to the precision of the regression model. A one-step procedure, however, might be

able to improve the precision of estimation.

In addition to providing a one-step procedure, the model we describe in this section

further takes into account the fact that much educational data are nested. For example,

students are usually nested within classrooms, teachers, schools, districts, neighborhoods, etc.

Both the classical statistical analysis and the regular IRT models assume that observations

are independent. The reality is examinees from the same nested unit may be more similar
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in ability than examinees from other nested units. Neglect of the nested structure of the

data will result in biased estimation of the individual effect (Raudenbush & Bryk, 2002).

Using multilevel models, the effect of the individual unit (e.g., student) may be divided into

a within-group effect and between-group effect.

To overcome this biasing effect, a multilevel item response model has been proposed that

incorporates an IRT model into a multilevel structure. As is shown below, this type of model

can help take care of the biasing effect on estimation of ability that arises when the multilevel

structure is ignored. Further, the threat posed by inconsistent estimates of ability can be

removed. The result is a one-step procedure that can help to reduce the standard errors of the

ability estimates by simultaneously estimating ability and the effects of examinee covariates.

Previous studies of multilevel IRT models showed that the multilevel IRT model could

discriminate better at the individual level and also could explain more variance at the higher

levels than the standard multilevel model (Fox & Glas, 2001). The multilevel IRT model

also is capable of including covariates at each level. By adding examinee covariates into the

IRT models, the effects of examinee characteristic variables at different levels on examinee’s

ability can be taken into account, thus producing improved estimate of ability.

Kamata (1998, 2001) reformulated the Rasch model as a two-level generalized linear

model. The person parameters in Kamata’s model were treated as random effects and the

items were treated as fixed. In Kamata’s model, the first level is the item-level model or the

structural model, and the second level is the person-level model. Consistent with usual prac-

tice with IRT models, a Bernoulli distribution is assumed for the item response data. Under

the Bernoulli distribution, the expected value and the variance of the observed response is

E(yij|pij) = pij (2.13)

and

var(yij|pij) = pijqij = pij(1− pij), (2.14)
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where pij is the probability of examinee j getting item i correct. A logit link is used as the

link function. The logit for getting an item correct is

ηij = log
pij

1− pij

= β0j + β1jX1ij + β2jX2ij + ... + β(k−1)jX(k−1)ij

= β0j +
k−1∑
q=1

βqjXqij

= β0j + βqj, (2.15)

where βqj is the coefficient and β0j is the intercept; Xqji is a dummy variable for person j on

item i, with a value of 1, when q = i and a value of 0, when q 6= i. Xqij is dropped Xqij = 1,

because q = i , and when q 6= i , all other Xqij = 0. So the above equation is basically

ηij = log(
pij

1− pij

)

= β0j + βqjXqij

= β0j + βqj ∗ 1

= β0j + βqj. (2.16)

One of the dummy variables is dropped for person j so that the intercept is the expected

item effect for the dropped item and the other coefficients are obtained as the difference

between the effect of item i and the effect of the reference item (i.e., the dropped item).

The second level of this model is the person-level. At this level, the intercept β0j is

assumed to be a random effect across persons and the item effects are assumed to be fixed

across persons. These specifications can be reflected in the following equation:

β0j = γ00 + µ0j (2.17)

βqj = γq0, (2.18)

where µ0j is the random person effect and is normally distributed with a mean of zero and

unit variance. The item parameters are fixed across persons but vary across items, as there
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is no random effect term added to the item coefficients excluding the intercept. γ00 is the

difficulty of the reference item and γ00 is the effect of item q.

The combined model can be written as

ηij = γ00 + µ0j + γq0. (2.19)

The multilevel Rasch model can be shown to be equivalent to the usual Rasch model:

The probability of getting an item i correct by person j under the multilevel Rasch model is

pij =
1

1 + exp{−[µ0j − (−γq0 − γ00)]
. (2.20)

This is equivalent to the Rasch model which is expressed as

pij =
1

1 + exp(−θj − δi)
, (2.21)

where δi = γq0− γ00. The above multilevel Rasch model can be extended to a latent variable

regression model with person-level predictors, where the level 1 model is the same as above:

ηij = log(
pij

1− pij

)

= β0j + β1jX1ij + β2jX2ij + ... + βkjXkij

= β0j +
k∑

q=1

βqjXqij = β0j + βqj, (2.22)

In the second level model, person-level predictors can be added into the model to account

for the effects of predictors on the latent variable:

β0j = γ00 + γ10W1j + ... + γq0Wqj + µ0j, (2.23)

where Wqj is the person-level predictor and γq0 is the coefficient of the predictor.

Kamata’s formulation of the multilevel Rasch model treats persons as random but items

as fixed effects. Noortgate, De Boeck, and Meulders (2003) developed a cross-classified mul-

tilevel logistic IRT model in which both items and persons are treated as random. That

is, the model assumes both items and examinees are random samples from their respective
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populations. The responses are regarded as nested within pairs of persons and items. For

educational measurement applications, it is common to have only one observation in each

cell of the person by item matrix. In the Noortgate et al. model, the logit for each cell has

one fixed component and two random components. One of the components is related to the

item effect and the other to the person effect. The level 1 model of this cross-classified IRT

model is similar to Kamata’s level 1 model and is expressed by the following equation:

ηij = log

(
pij

1− pij

)
= β0j + βij, (2.24)

where β0j is ability for person j and βij is item easiness. (In this model, βij is the negative

of the usual IRT item difficulty.)

The level-2 model then takes into account the random effects introduced by the variation

among persons and the variation among items. At level 2, covariates related to persons and

items also can be added to help explain random variance among persons and items. The

level 2 model can be expressed as

β0j = u1j, (2.25)

βij = γ0 + u2i, (2.26)

where u1j is the random effect associated with the person j. Since the mean of ability is

constrained to be zero to solve the identification problem, the intercept of the ability estimate

is set to zero. Since both u1j and u2i have a mean of 0, the intercept γ0 can be interpreted

as the mean logit. It can also be interpreted as the mean of the item parameters across the

whole test. u2i is the random effect associated with items. The combined cross-classified IRT

model can then be expressed as

ηij = log

(
pij

1− pij

)
= γ0 + u1j + u2i. (2.27)

To improve estimation, the variances of the item residuals are constrained to be equal and

the covariances are constrained to be zero. So, the covariance matrix of the residuals is a

diagonal matrix with equal values on the diagonal and zeros off the diagonal.
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Although the description of the cross-classified IRT model by Noortgate et al. (2003) was

based on the regular Rasch model, the model can also be extended to other IRT models

such as the 2-parameter logistic (2PL) or the 3-parameter logistic (3PL) model. For the

2PL cross-classified IRT model, the rationale is the same as the Rasch model. The only

difference is the 2PL model has one more item parameter which can be interpreted as item

discrimination (Noortgate et al., 2003). Birnbaum (1968) proposed a 2PL IRT model which

can be expressed as:

ηij = αiθj − βi, (2.28)

where αi can be regarded as the item discrimination parameter, θj is still ability for person

j and βi is the item difficulty parameter for item i.

Based on this model, the 2PL cross-classified IRT model is

ηij = γ00 + u1ju3i + u2i, (2.29)

where u1j is the random effect associated with the person’s ability; u2i is the random effect

associated with the item easiness; and u3i is the random effect associated with the item

discrimination. The interaction term u1ju3i indicates the interaction effect of ability and

item discrimination on the probability of getting an item correct.

Covariates for items and persons can be added into the cross-classified IRT model to help

explain the probability of responses. The following is an example of a cross-classified IRT

model with person and item covariates:

ηij = β0 +
A∑

a=1

βaMai +
B∑

b=1

βbNbj +
W∑

w=1

βwWwij + u1j + u2i, (2.30)

where Mai is the item covariate; Nbj is the person covariate; and Wwij is the person by item

interaction covariate. The βs are the coefficients related to each covariate, u1j and u2i are

the random effects associated with the person and item, respectively. To estimate the model,

a normal distribution with a mean of zero and a variance of τ is assumed for both item

and person random effects. The cross-classified IRT models can also be extended to more
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levels such as would be the case if persons are grouped or items are grouped based on some

additional characteristics.

2.2.6 A Mixture Cross-Classified Item Response Model

The multilevel IRT models introduced in the previous section evaluate the examinee’s ability

as a random effect, but sometimes, the population of examinees consists of subpopulations

which do not share the same ability distribution. These subpopulations are not known a

priori, but need to be detected. The regular multilevel IRT models are not capable of mod-

eling this heterogeneity in the examinee population. One model which has the potential to

model this heterogeneity is a multilevel mixture IRT model (MMixIRTM). The MMixIRTM

is a combination of the regular multilevel IRT model and the mixture IRT model. The

model is useful in this regard as it allows different specifications of ability distributions for

the different latent subpopulations. The MMixIRTM models the heterogeneity in the pop-

ulation by identifying latent classes of examinees which are homogeneous within each class.

The multilevel IRT model holds within each latent class, but model parameters may differ

across classes. Cho (2007) incorporated the mixture model into the multilevel IRT model and

extended the model to include both student-level and school-level mixtures. Latent classes of

students and schools who performed differentially on particular items are detected. Mixtures

at student level are classified based on students’ response patterns and school-level latent

classes are identified according to the proportions of student-level latent classes (Cho, 2007).

The multilevel mixture IRT model described here is motivated by Kamata’s hierarchical

generalized linear model and by Noortgate et al.’s cross-classification multilevel logistic

models. Unlike the regular multilevel IRT models, the multilevel mixture IRT model in

this study treats both item and person as random such that covariates related to persons

and items can be added into the model to help explain the effects of test speededness. In

the case of mixture IRT models, the inclusion of covariates can be used to help classify the

examinees into different latent groups (Cho, Cohen, & Kim, 2006; Smit et al., 1999, 2000).
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Level-One Model. Under the generalized linear model framework, Rijmen, Tuerlinckx,

De Boeck, and Kuppens (2003) showed that the Rasch model can be expressed as

ηij = θj + βi, (2.31)

where θj is the person’s ability and βi is the item easiness (that is, -βi is the usual item

difficulty). At the first level, the item responses are regarded as nested under each item ×
person pair. In this way, the level-1 model captures the variation among the responses, and

is formulated as

log

(
Pij

1− Pij

)
= ηij = θj +

I∑
i=1

βigXij = θj + βig, (2.32)

with Yij ∼ Bernoulli(Pij). βig is the item easiness parameter for item i in latent class g and

θj is the ability estimate of examinee j; Xij is a dummy variable which is coded as 0 if person

j responds to item i and a value of 0 if not. As is shown in the right hand side of the above

equation, the indicator Xij can be dropped and only βig for item i in class g is needed.

Level-Two Model. At this level, random effects associated with persons and items can

be specified in the model. The level-2 model is given as

θj = γ0j + u1j (2.33)

γ0j ∼ N(µg, 1) (2.34)

u1j ∼ N(0, σ2
1) (2.35)

with µ1 = 0.

βig = γig + u2i (2.36)

γig ∼ (βg, 1) (2.37)

u2i ∼ N(0, σ2
2). (2.38)

That is, γ0j is the fixed person effect, and is normally distributed with a mean of µg and

variance of one; µg is the mean of the ability estimates; and, u1j is the random person effect,

which is also normally distributed with a mean of zero and variance of σ2
1. The mean ability
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of Class 1 is fixed to zero for identification. γig is the fixed item effect for item i in latent

class g and is assumed to have a normal distribution with a mean of βg, where βg is the

mean of the item easiness estimates, and unit variance. u2i is the random item effect which

is normally distributed with a mean of zero and variance of σ2
2.

The fixed and random effects can also be equivalently specified as the following:

θj ∼ N(µg, σ
2
1) (2.39)

βig ∼ N(βg, σ
2
2) (2.40)

The level-2 model described above is shown without either person or item covariates. This is

referred to as an unconditional model. This unconditional model can also be extended into

a latent variable regression model by incorporating person and item covariates to explain

differences in person ability and item easiness. Person-by-item covariates can also be included

at this level and can be used, for example, to help detect problematic items, such as those

exhibiting DIF. The level-2 model with person and item predictors is given as

The level-2 model can be extended into a latent variable regression model by incorporating

person and item predictors. The level-2 model with person and item predictors is given as

θj = γ0j + u1j (2.41)

γ0j = b0j +
N∑

n=1

bnNj (2.42)

b0j ∼ N(0, 1) (2.43)

u1j ∼ N(0, σ2
1) (2.44)

βig = γig + u2i (2.45)

γig = λig +
M∑

m=1

λmgMi (2.46)

λig ∼ N(0, 1) (2.47)

u2i ∼ N(0, σ2
2). (2.48)
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where γ0j is the fixed person effect, and is usually assumed to be normally distributed with

a mean of µjg and variance of one; b0j is the intercept when the person covariates have no

impact on examinees’ ability estimates.

bn is the coefficient of the person covariates on the ability estimate for examinee j. u1j

is the random person effect which is assumed to be normally distributed with a mean of

zero and variance of σ2
1. γig is the fixed item effect which also has a normal distribution

with a mean of β̄ig and variance of 1. λig are the item parameter estimates in latent class

g, when the item covariates have no influence on the item easiness estimates and λmg is the

coefficient of the item covariates on the estimation of the item easiness in latent class g. u2i is

the random item effect which is normally distributed with a mean of zero and variance of σ2
2.

The random person and item effects are assumed to be equal across the latent groups. The

item variances within each latent class are constrained to be equal and the covariances are

constrained to be zero within each latent class. Therefore, the variance and covariance matrix

for the item parameters within each latent class are diagonal matrices with the same values

on the diagonal and zeros off the diagonal. The level-2 model with covariates is equivalent

to the following specification:

θj ∼ N(µjg, σ
2
1) (2.49)

µjg = b0g +
N∑

n=1

bnNj (2.50)

and

βig ∼ N(βig, σ
2
2) (2.51)

and

βig = λ0g +
M∑

m=1

λmgMi. (2.52)

Combined Model. In this section, we describe the combined unconditional cross-

classified multilevel mixture IRT model (cc-MMixIRTM). The full unconditional model (i.e.,

the model without person or item covariates) is given as

ηij = γ0j + γig + u1j + u2i, (2.53)
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with

γ0j ∼ N(µg, 1) (2.54)

u1j ∼ N(0, σ2
1) (2.55)

γ0ig ∼ N(βg, 1) (2.56)

u2i ∼ N(0, σ2
2). (2.57)

Similarly, the combined conditional cc-MMixIRTM with item and person covariates can

be expressed by the following equation:

ηij = b0j +
N∑

n=1

bnNj + λig +
M∑

m=1

λmgMi + u1j + u2i, (2.58)

where b0g is the mean of ability estimate within latent g , when the person covariate has no

effect on ability estimate. b0g is assumed to follow a normal distribution with a mean of 0

and variance of 1. bpg is the regression coefficient associated with the person covariate within

latent class g . λ0g is the mean of item easiness estimates within latent class g . λmg is the

regression coefficient associated with the item covariate within latent class g . The combined

conditional model is equivalent to the following:

ηij = θj + βig (2.59)

θj ∼ N(µjg, σ
2
1) (2.60)

µjg = b0g +
N∑

n=1

bnNj (2.61)

βig ∼ N(β̄ig, σ
2
2) (2.62)

β̄ig = λ0g +
M∑

m=1

λmgMi. (2.63)

The mean of the ability for latent class 1 is still constrained to zero (b0g = 0).

The conditional cross-classified IRT model given above presents an additional advantage

from treating items as random instead of fixed. When items are treated as fixed and covariates

related to items are included in the conditional model, there is no error term related to the
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item effect included in the model. The absence of errors related to item parameters indicates

these item covariates explain all the variance in the item parameters. This is usually an

unrealistic assumption (see, e.g., De Boeck, 2008). Treating items as random, however, allows

an error term associated with item effects to be included in the model. The inclusion of item

covariates will explain some part of the variance in the item parameters but not all of it.

2.2.7 A Mixture Multilevel IRT Model for Test Speededness

In this section, we describe an application of the multilevel cross-classified mixture IRT

(cc-MMixIRT) model to detection of speededness in a paper-and-pencil test.

Speededness effects can arise, when tests are timed and examinees feel there is insufficient

time to answer all items on the test. Several attempts have been made to detect speededness

effects. In this application, we apply the cc-MMixIRT model to the test speededness problem.

To do this, we use assumptions about speededness similar to those by Bolt et al. (2002): We

assume items at earlier locations of the test are not affected by test speededness, but items

near the end of the test are more affected by test speededness. The Bolt et al. model is

actually a two-class mixture IRT model in which one class is defined by model constraints

to be composed of non-speeded examinees and the second class is defined to be composed of

speeded examinees (i.e., examinees whose responses reflect a speededness effect).

In the mixture IRT model, item parameters for the non-speeded items are fixed to be

equal in both the speeded and non-speeded groups. For items in the speeded locations of the

test, that is, for items near the end of the test, the item easiness parameters are assumed

to be larger for the non-speeded group than for the speeded group. The item variances are

constrained to be equal across the whole test and there is assumed to be no covariation

among items under the local independence assumption of IRT. In the mixture model, the

item variances within each latent class are the same but may differ across classes. The

unconditional multilevel mixture model for test speededness can be expressed by the following
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equations:

ηij = θj + βijg (2.64)

θj ∼ N(µg, σ
2
1) (2.65)

βijg ∼ N(β̄g, σ
2
2) (2.66)

To reflect the assumption about test speededness, constraints are imposed on item param-

eters; that is, β̄1 = β̄2 for items at earlier locations of the test where items are assumed

unaffected by test speededness and β̄1 > β̄2 for items near the end of the test where items

are assumed to most likely be affected by test speededness. For the conditional model, the

same constraints are imposed on item parameters. That is, β̄1 = β̄2 for non-speeded items

at early locations of the test and β̄1 > β̄2 for speeded items at the end of the test.

Smit, Kelderman, and Van der Flier (1999, 2000) show that the incorporation of col-

lateral variables in the mixed Rasch model and the 2 parameter IRT model improved the

classification accuracy of subjects into latent classes and reduced the standard errors of

parameter estimates. When the sample size increases or when the association between col-

lateral variables and the latent class becomes stronger, the accuracy of the class membership

assignment approaches 1. Lubke and Muthén (2007) investigated the effect of covariates on

latent class membership by regressing latent class variable on covariates. Results indicated

correct assignment of latent classes increased with the increase of covariate effects. Even

a small covariate effect reduced the classification error. It is also possible to improve the

recovery of factor means by including covariate.

To differentiate the speeded and non-speeded group in this study, person covariates were

included to help predict latent classes. In the example presented here, an unconditional

cross-classification model with no covariates was run to classify examinees into speeded

and non-speeded groups. Then cross-tabulations were examined between latent groups and

examinee background variables. Those variables which had a significant association with the

latent group membership were subsequently included in a latent variable regression model to

help predict the latent classes. Probabilities of latent classes are modeled as a multinomial
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logit regression due to the inclusion of covariates (Cho, Cohen, & Kim, 2006). The likelihood

of a response vector Xj based on the mixture cross-classified IRT model is expressed as:

P (Xj) =
G∑

g=1

πg

k∏
i=1

pxij(1− p)1−xij (2.67)

and the probabilities of mixtures with covariates can be expressed as:

πjg|Xj =
exp(λ0g +

∑C
c=1 λcgXjc)∑G

g=1 exp(λ0g +
∑C

c=1 λcgXjc)
(2.68)

Where πjg is the probability for examinee j to be in latent class g ; λ0g is the class-specific

intercept when the covariate Xjc has no effect on the probability of group membership; λcg

is the class-specific effects of covariate Xjc on the probability of group membership. λ0g and

λc1 are constrained to be 0 for identification (Cho, Cohen, & Kim, 2006).



Chapter 3

Methods and Research Design

3.1 Estimation for the Multilevel Mixture IRT Model Under a Bayesian

Framework

In this chapter, we present the methods used for estimating the parameters of the new model,

followed by a real data example showing how the model can be used, and then a design for

the simulation study to evaluate the performance of the new model. The cross-classified

multilevel mixture IRT (cc-MMixIRT) models in the present study were estimated using a

Markov chain Monte Carlo (MCMC) algorithm as implemented in the computer program

WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003).

Ricci and Ye (2009) compared penalized quasi-likelihood (PQL) estimation, and used

MCMC algorithms for estimating the model parameters of the cross-classified IRT model.

Results indicated that using an MCMC algorithm provided better parameter estimates than

using PQL estimation in terms of lower estimation bias and Type I error rates of both

item and person covariates. The MCMC algorithm also has been found useful for estimating

complex IRT models (Baker, 1998; Kim & Bolt, 2007; Patz & Junker, 1999) such as mixture

IRT models (Bolt et al., 2001).

To implement MCMC estimation, Markov chains, which are sequences of random samples

for each of the parameters being estimated in the model, were constructed using Gibbs

sampling. In MCMC estimation, random samples are repeatedly drawn from the full posterior

distributions of the model parameters. After sufficient iterations (burn-in) have been run so

that the chains can be assumed to have converged to a stationary distribution, then the

remaining iterations are used to approximate the expectations of the model parameters.

30
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With MCMC estimation, we are interested in obtaining the joint posterior distribution

of all the model parameters and the observed responses. The joint posterior distribution is

proportional to the joint prior distribution and the probability distribution of the observed

responses. In the hierarchical part of the multilevel model we assume the prior distributions

for the model parameters are not known and have their own prior distributions.

As in equation 3.2, the probability of getting an item correct depends only on the model

parameters; the hyper-parameters affect the probability only through the model parameters.

As an example, for the unconditional multilevel mixture IRT model, the prior distribution

can be expressed as

P (µg, β̄g, σ
2
1, σ

2
2, θj, g, βig) = P (µg, β̄g, σ

2
1, σ

2
2)× P (θj, g, βig|µg, β̄g, σ

2
1, σ

2
2), (3.1)

where µg, β̄g,σ
2
1, σ2

2 are the hyper-priors, that is, the prior distributions of the upper levels

of the hierarchical priors; and θj, g , and βig are the model parameters. The joint posterior

distribution for the unconditional model is

P (µg, β̄g, σ
2
1, σ

2
2, θj, g, βig|Yij)

∝ P (µg, β̄g, σ
2
1, σ

2
2, θj, g, βig)× P (Yij|µg, β̄g, σ

2
1, σ

2
2, θj, g, βig)

= P (µg, β̄g, σ
2
1, σ

2
2)× P (θj, g, β̄g, λ0c, λcg|µg, β̄g, σ

2
1, σ

2
2)× P (Yij|θj, g, β̄g, λ0c, λcg),

(3.2)

and the posterior distribution for the conditional model with gender covariate is

P (µg, β̄g, σ
2
1, σ

2
2, λ0c, λcg, θj, g, βig|Yij)

∝ P (µg, β̄g, σ
2
1, σ

2
2, λ0c, λcg, θj, g, βig)× P (Yij|µg, β̄g, σ

2
1, σ

2
2, λ0c, λcg, θj, g, βig)

= P (µg, β̄g, σ
2
1, σ

2
2)× P (θj, g, β̄g, λ0c, λcg)|µg, β̄g, σ

2
1, σ

2
2)× P (Yij|θj, g, β̄g, λ0c, λcg),

(3.3)

where P (Yij|θj, g, βig) is the probability of answering item i correctly by examinee j under

the mixture Rasch model.

3.1.1 Priors

As in all Bayesian analysis, the specification of prior distributions should be consistent with

knowledge about the problem. When there is no prior knowledge about the distributions of
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parameters, then non-informative priors should be used. The parameter estimates obtained

using non-informative priors are basically the same as those obtained by the maximum

likelihood estimation method. The use of priors may reduce the variability measures and

pull the parameter estimates toward the prior means, particularly with small sample sizes

(Kim, 2007). It is often practical to start with a simple and relatively non-informative prior

distribution on the hyper-priors and then try to use more informative prior distributions if

that seems appropriate. For the unconditional model with no covariate,

ηij = θj + βijg (3.4)

with

θj ∼ N(µg, σ
2
1) (3.5)

and

βijg ∼ N(β̄g, σ
2
2), (3.6)

the following priors were used in this study:

θj ∼ N(µg, σ
2
1) (3.7)

µ1 = 0 (3.8)

µ2 ∼ N(0, 1) (3.9)

σ2
1 ∼ uniform(0, 2) (3.10)

βig ∼ (β̄g, σ
2
2) (3.11)

β̄g ∼ N(0, 1) (3.12)

σ2
2 ∼ uniform(0, 2) (3.13)

The constraint on µ1 was used for identification. For the conditional model with item and

person covariates, the priors were the same as those for the unconditional model.
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3.1.2 Checking Convergence

The convergence of an MCMC algorithm refers to situations in which the Markov chain

reaches its stationary distribution. The stationary distribution is the posterior distribution

following burn-in. Burn-in is that part of the MCMC chain that is discarded as the sampled

parameters are not assumed to be from the correct or target distribution. That is, it is

assumed to be the correct target distribution that is obtained when the MCMC chain has

converged. This stationary distribution is then used to generate subsequent values in the

MCMC chain. Once convergence has been realized, subsequent sampled values are used to

estimate the posterior distribution for each parameter being estimated.

An important characteristic of a stationary distribution is that the sampled values drawn

from the stationary distributions (i.e., after burn-in) are independent of the initial values.

Generally, it is not clear about how many iterations in the MCMC chain need to be run to

reach a stationary distribution. Further, the length of the burn-in may differ for different

parameters given the data. Several tools exist for assessing convergence in the computer soft-

ware WinBUGS (Spiegelhalter et al., 2003). The trace plots of the parameter estimates can

be examined across iterations to see if the patterns of estimates have stabilized. When exam-

ining trace plots, for converged chains, there should be no horizontal bands with upward or

downward trends. WinBUGS also provides autocorrelations between estimates of a parameter

in a chain. Low or high autocorrelations imply fast or slow mixing within a chain indicating

whether a chain is converging quickly or slowly. The lower the autocorrelation, the closer the

chain is to converging. If the autocorrelation approaches zero, the simulation is considered

to have reached a stationary state and the model converged.

Additional tools in the form of statistical tests for checking convergence are available

in the computer program Bayesian Output Analysis Program (BOA; Smith, 2005). The

following tools from BOA also were employed to check the convergence of the model. One

of these, the Geweke convergence diagnostic is appropriate for the analysis of individual

chains. Geweke (1992) proposed a method to compare the means of the sampled values from
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two non-overlapping parts (usually the first 0.1 and last 0.5 portions) of the chain to check

the independence between the two means. The Z-statistic calculated based on the difference

between the two means should be not statistically significant, if the model converges (Smith,

2005). In this study, this statistic was evaluated at α = .05.

Another diagnostic statistic used from BOA is the Heidelberg and Welch diagnostic. This

diagnostic consists of two parts. The first part calculates the Cramer-von-Mises statistic

using the whole chain to test whether the chain has reached its stationary state, indicating

the model has converged. If there is evidence of nonstationarity, then the first 10% of the

iterations are discarded and the test is repeated. The test continues to be repeated until the

chain converges or at least 50% of the iterations are discarded. The Heidelberg and Welch

diagnostic reports the number of iterations discarded and the number of iterations needed

to keep to reach the stationary distribution. The second part of the diagnostic is a halfwidth

test in which the portions of the chain which passed the stationary test are used to calculate

half the width of the (1-α)% credibility interval around the posterior mean. If the halfwidth

test fails, a longer run is required to accurately estimate the posterior mean of the parameter.

3.2 A Simulation Study

The purpose of this simulation study was to determine how conditional and unconditional

forms of the mixture cross-classified model performed for detection of test speededness.

Recall that the unconditional form was the cc-MMixIRT model without covariates and the

conditional form was the model with covariates.

3.2.1 Simulation Conditions

Two factors were simulated in the simulation study. One factor to be manipulated was sample

size. The usual result with IRT models is that item parameter estimates and scores tend to

be estimated more accurately as sample size increases. In addition, for Bayesian estimation,

when the sample size is small, the parameter estimates tend to be pulled more strongly
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toward the means of the priors. When the sample size is large, however, the likelihood based

on the data will usually dominate the parameter estimates. Li, Cohen, Kim, and Cho (2009)

showed that when a test had 30 items, a sample size of 600 recovered the model parameters

well for the mixture Rasch model. Therefore, the sample sizes of 1,000, 2,000 and 3,000 were

simulated in this study. A pilot run using sample sizes of 1,000 and 3,000 were run on the

unconditional model. The results for the two sample sizes were compared with the results

for a sample size of 2,000. The standard errors decreased with the increase in the sample

size, but the differences in the standard errors between the sample of 2,000 and the sample

of 3,000 were very small (two points in the second decimal place). Therefore, a sample of

3,000 was viewed as sufficient for estimation of recovery performance in a large sample.

Another factor manipulated was the proportion of speeded and non-speeded examinees.

Three proportions of test speededness were simulated: little speededness, moderate speeded-

ness and high speededness. To simulate these proportions, 10%, 20% and 30% of the samples

included speeded examinees. The classification accuracy of the mixture cross-classified Rasch

model was checked by comparing these proportions with the proportions recovered from the

estimated obtained from the generated data.

There were a total of 9 conditions for the unconditional model: 3 sample size × 3 propor-

tions of speededness and a total of 9 conditions for the conditional model: 3 sample size × 3

proportions of speededness. Thus, there were a total of 18 conditions for both models with

20 replications for each condition, resulting in a total of 360 simulated data sets analyzed in

the simulation study.

3.2.2 Data Simulation Procedures

In the simulation study, the response data of the unconditional model were generated based

on equations (2.64, 2.65, and 2.66). For the conditional model, gender was simulated as a

covariate on the latent group membership; its impact was modeled as in equation (2.68).
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During the generation of the response data for the conditional model, the gender effects

were fixed.

Item parameters estimated from a real data set by the unconditional model and the con-

ditional model were used as generating values for the unconditional and conditional models,

respectively. There were 28 items in the real data analysis. The first 20 items were assumed

not to be affected by test speededness. Therefore, the item parameters for the first 20 items

were fixed and were assumed to be equal across latent classes. The last 8 items were assumed

to be most affected by test speededness and their item parameters were constrained to be

unequal across latent classes. Therefore, the item parameters for the first 20 items were not

estimated during the estimation of the model. Only the parameters of the last 8 items were

estimated.

A one-group cross-classified Rasch model was applied to a real data set and the item

parameter estimates from Item 1 to Item 20 from the real data were fixed in both the

unconditional and conditional model. The item easiness parameters from Item 21 to Item

28 were generated by fixing the variances of the random item and person effects obtained

from a real data. After generating the item easiness parameters for the last 8 items, the

item easiness parameters for all the items were fixed for each of the conditions during the

generation of the response data. The generating variances of the random item and person

effects are presented in Table 3.1. The generating items parameters for the unconditional

model and the conditional model are presented in Tables 3.2 and 3.3, respectively. Abilities

for each of the latent classes under both models were generated from a normal distribution

with a mean of 0 and variance of 1.

The proportions of speeded and non-speeded examinees were manipulated by specifying

the latent group membership of each examinee during data generation procedure. The pro-

portions of speeded and non-speeded examinees simulated are listed in table 3.4. Response

data were generated based on the unconditional model and the conditional model.
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Table 3.1: Generating Variances of the Random Item and Person Effects for the
Unconditional and Conditional Models.

σ2
i σ2

p

Unconditional Model 1.116 1.149
Conditional Model 1.146 1.193

Table 3.2: Item Easiness Generating Parameters for the Unconditional Model.

Item Parameters
Items Speeded Group Non-Speeded Group

1 0.889 0.889
2 1.802 1.802
3 1.665 1.665
4 0.755 0.755
5 1.693 1.693
6 1.979 1.979
7 1.146 1.146
8 -0.205 -0.205
9 1.463 1.463

10 0.702 0.702
11 1.566 1.566
12 0.912 0.912
13 -0.176 -0.176
14 -0.399 -0.399
15 0.432 0.432
16 0.835 0.835
17 -0.641 -0.641
18 1.622 1.622
19 0.760 0.760
20 -1.012 -1.012
21 -0.694 0.512
22 -2.168 1.073
23 -2.875 -1.156
24 -1.508 -0.226
25 -1.070 -0.832
26 -3.720 -0.636
27 -2.861 -1.370
28 -2.021 -0.086
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Table 3.3: Item Easiness Generating Parameters for the Conditional Model.

Item Parameters
Items Speeded Group Non-Speeded Group

1 0.889 0.889
2 1.802 1.802
3 1.665 1.665
4 0.755 0.755
5 1.693 1.693
6 1.979 1.979
7 1.146 1.146
8 -0.205 -0.205
9 1.463 1.463

10 0.702 0.702
11 1.566 1.566
12 0.912 0.912
13 -0.176 -0.176
14 -0.399 -0.399
15 0.432 0.432
16 0.835 0.835
17 -0.641 -0.641
18 1.622 1.622
19 0.760 0.760
20 -1.012 -1.012
21 -0.319 0.592
22 -1.744 1.134
23 -2.428 -1.022
24 -1.106 -0.123
25 -3.246 -0.709
26 -2.414 -0.520
27 -1.603 -1.229
28 -2.871 0.012

Table 3.4: Generating Proportions of Speeded and Non-Speeded Examinees.

Speeded Non-Speeded
10 90
20 80
30 70
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3.2.3 Recovery Analysis

A recovery analysis was done to examine the performance of the mixture cross-classified

Rasch model for test speededness. The objective of this analysis was to determine the extent

to which the generating parameters could be recovered from the simulated data sets generated

by the unconditional and conditional models under the different simulation conditions. The

recovery analysis compared the generating values with the estimates for each of the following:

item easiness parameters, variances of the random person and item effects, and proportions

of speeded and non-speeded examinees. For the recovery of the item easiness parameters,

the root mean square error (RMSE), and bias were computed across replications and items.

The bias of item easiness parameter is

biasβ =

∑I
i=1

∑R
r=1(β̂ir − βig)

RI
, (3.14)

and the RMSE is expressed as:

RMSEβ =

√∑I
i=1

∑R
r=1(β̂ir − βig)2

RI
, (3.15)

where βir is the estimated item easiness parameter for item i in replication r and βig is the

generating item easiness parameter for item i. R is the number of replications and I is the

number of items. The bias and RMSE of the variances of the random item and person effects

were calculated in a similar way:

biasσ2
i

=

∑R
r=1(σ̂

2
ir − σ2

ig)

R
(3.16)

biasσ2
p

=

∑R
r=1(σ̂

2
pr − σ2

pg)

R
, (3.17)

where

• σ2
i is the variance of the random effect for item i;

• σ̂2
ir is the estimated variance of the random item effect for replication r;

• σ2
ig is the generating variance of the random item effect;
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• σ2
p is the variance of the random effect for person p;

• σ̂2
pr is the estimated variance of the random person effect for replication r;

• σ2
pg is the generating variance of the random person effect;

• R is the number of replications.

The RMSEs for the variances of the random item and person effects are specified as:

RMSEσ2
i

=

√∑R
r=1(σ̂

2
ir − σ2

ig)
2

R
(3.18)

RMSEσ2
p

=

√∑R
r=1(σ̂

2
pr − σ2

pg)
2

R
(3.19)

The recovery of the proportions of speeded and non-speeded examinees was examined by

calculating the proportions of examinees who were correctly classified into the speeded and

non-speeded groups.

Before calculating the bias and RMSE for the item easiness parameters, the estimated

item easiness parameters were first transformed onto the same metric with the generating

item parameters. This was done by subtracting the difference in the means of ability param-

eters as expressed by the following equation:

β∗T = βT − (µT − µB), (3.20)

where T is the target scale or the estimated scale in the simulation study; B is the base

scale or the scale of the generating data, βT is the estimated item easiness parameter, µT

is the estimated mean of the ability parameter from the generated data sets, and µB is the

generating mean of the ability parameter.



Chapter 4

Results

4.1 Simulation Results

The simulation results are presented in this section separately for the unconditional model

and the conditional model.

4.1.1 Simulation Results of the Unconditional Model

There were 9 conditions for the unconditional model: 3 sample sizes × 3 proportions. The

recovery of item easiness parameters and the variances of random item and person effects

under each simulation condition were evaluated by bias and RMSE statistics for each of

the estimated parameters. The recovery analysis across 20 replications for sample size and

proportion of speededness conditions is summarized in Table 4.1 to Table 4.5.

The recovery of the item easiness parameters for the speeded group and the non-speeded

group was evaluated separately since the speeded group had a much smaller number of

examinees than the non-speeded group. Because of the difference in sample size, the expected

result was that larger biases and larger RMSEs might be expected for the items in the

speeded group than in the non-speeded group. The proportions of speeded and non-speeded

examinees were compared with the generating proportions and the differences between them

were computed.

Recovery of Item Easiness Parameters for the Unconditional Model. The bias

and RMSE statistics for item easiness parameters for the speeded and non-speeded groups

for the unconditional model are presented in Table 4.1. The estimated item easiness param-

eters were equated by adjusting the differences between the estimated ability mean and

41
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the generating ability mean. The bias and RMSE of the item easiness parameters for the

speeded group were, in general, much larger than those of the non-speeded group. The abso-

lute values of the bias of the item easiness parameters for the speeded group ranged from

0.022 to 0.180 and the absolute values of the bias of the item easiness parameters for the non-

speeded group ranged from 0.001 to 0.102. The RMSE of the item easiness parameters for

the speeded group ranged from 0.128 to 0.630 and the RMSE of the item easiness parameters

for the non-speeded group ranged from 0.098 to 0.586. These results seem reasonable since

the speeded group has a much smaller sample size than the non-speeded group. As expected,

the bias of item parameters decreased with an increase in sample size. For example, for the

1,000 examinee condition, when the proportion of speededness increased from 10% to 20%,

the bias in the item easiness parameters decreased from 0.18 to 0.064 for the speeded group

and from 0.102 to 0.021 for the non-speeded group.

Some patterns can be identified within the speeded and non-speeded groups, respectively.

For example, within the speeded group, the bias and RMSE decreased with the increase

of sample sizes or with the increase of proportions of speeded examinees. The bias and

RMSE were lower with increases in proportions of speededness, because more examinees were

involved in the estimation of item parameters, when the proportions increased. For the non-

speeded group, the bias and RMSE were very similar across the simulation conditions. There

was a small amount of reduction in the bias and RMSE of item easiness parameters with

the increase in sample size or in the proportion of speeded examinees. The smallest sample

size for the non-speeded group across all the simulation conditions was 700 examinees. This

sample size was sufficiently large to be able to obtain accurate recovery of the generating

parameters.

Recovery of Random Item Effects. In Table 4.2, the bias and RMSE for the variances

of the random item effects were compared under each simulation condition. The biases and

RMSEs for the variances of the random item effects are much smaller than those of the fixed

effects of the item parameters. A general trend is observed, that is, the bias and RMSE of the
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random item effects are reduced with the increase of either the sample size or the proportion

of speeded examinees. This pattern is more obvious with the increase of sample size than

with the increase of proportion of speeded examinees. The reduction in bias and RMSE was

small when the proportions increased from 20% to 30%.

Recovery of Variances of Person Effects for Unconditional Model. Table 4.3

presents the bias and RMSE of the variances of the random person effects. The bias and

RMSE of the variances of the random person effects are smaller than those of item easiness

parameters and the variances of the random item effects, a result which is due to a much

larger sample size of examinees than the number of items. The bias of the variances of the

random person effects ranges from 0.023 to 0.002 and the RMSE ranges from 0.075 to 0.036.

This indicates a very good recovery for the variances of random person effects. The patterns

in the bias and RMSE of the random person effect were slightly different from those in the

bias and RMSE of the item effects. The bias and RMSE of the random person effects decrease

with the increase of sample sizes. However, the bias and RMSE of the random person effects

are similar among the three proportions with each sample size. That is, the bias and RMSE

of the random person effects are similar when the proportions of speeded examinees increased

from 10% to 30% and the total sample size remain the same.

Recovery of Latent Classes for Unconditional Model. Table 4.4 presents the dif-

ferences in the simulated proportions of speeded examines and the estimated proportion of

speeded examinees by the unconditional model. The differences between the simulated and

recovered proportions of speeded examinees were the largest (4.0%) for the 1,000 examinees

conditions and 10% speededness and the differences were the smallest (0.1%)for the 3,000

examinees conditions and 30% speededness. The recovery of latent classes was affected by

the proportions of speededness. With the increase of proportions of speededness, the recovery

of latent classes was improved.

Summary of Recovery Analysis for Unconditional Model. In summary, the

recovery of model parameters associated with person effects was better than the recovery of



44

parameters associated with item effects. One possible explanation may be due to the larger

number of examinees and smaller number of items. In the simulation study, 8 items were

assumed to be affected by speededness. So only these 8 items were used to estimate the

parameters associated with item effects.

4.1.2 Simulation Results of the Conditional Model

For the conditional model, gender effect on the latent group membership was included in the

model. Gender was indicated in the data by a dummy code with 0 = male and 1 = female,

and its impact on the latent group membership was modeled as a multinomial logit regres-

sion as in equation (2.68). As in the unconditional model, 9 conditions were simulated for

the conditional model: 3 sample sizes × 3 proportions of speeded examinees. The recovery

of item easiness parameters and the variances of the random item and person effects for

each simulation condition across 20 replications were evaluated by the bias and RMSE of

these parameters. The recovery of proportions of speeded and non-speeded examinees was

examined by calculating the differences in the generating proportions of the speeded exam-

inees and the recovered proportions of speeded examinees in the generated data sets across

20 replications of each simulation condition. The recovery results for the conditional model

were summarized in Table 4.5 to Table 4.8.

Recovery of Item Easiness for the Conditional Model. The bias and RMSE indices

for the item easiness parameters for the speeded and non-speeded group by the conditional

model are shown in Table 4.5. The item easiness parameters were equated by adjusting the

differences in the estimated ability mean and the generating ability mean. The bias statistics

of the item easiness parameters for the speeded and non-speeded groups were larger for the

conditional model than for the unconditional model. However, the RMSE indices for the item

easiness parameters for both the speeded group were smaller than that of the unconditional

model and the RMSE indices for the item easiness parameters for the non-speeded group

were similar to that of the unconditional model.
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Table 4.2: Bias and RMSE of the Variances of Random Item Effect: Unconditional Model.

Proportion
10 20 30

N Bias RMSE Bias RMSE Bias RMSE
1000 0.067 0.215 -0.014 0.116 -0.040 0.119
2000 0.049 0.184 0.019 0.122 0.036 0.086
3000 0.022 0.149 0.019 0.102 0.009 0.123

Table 4.3: Bias and RMSE of the Variances of Random Person Effect: Unconditional Model.

Proportion
10 20 30

N Bias RMSE Bias RMSE Bias RMSE
1000 0.017 0.075 0.023 0.067 0.021 0.063
2000 0.005 0.042 -0.002 0.049 -0.012 0.037
3000 -0.003 0.044 -0.008 0.030 0.003 0.036

Table 4.4: Differences Between the Generating and Recovered Proportions of Speeded
Examinees: Unconditional Model.

Proportion
N 10 20 30

1000 4.0 2.0 0.1
2000 0.2 1.0 1.0
3000 1.0 1.0 0.1
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For the speeded group, the bias of item easiness parameters decreased with the increase

of the proportions of speeded examinees for sample sizes of 1,000 examinees and 2,000.

For example, for the sample size of 1,000, the bias decreased from 0.315 to 0.042 for the

speeded group, when the proportion increased from 10% to 30%. For the sample size of

3,000 examinees, the bias statistics were similar across the three speededness proportions.

Bias statistics across the three speededness proportions for the sample of 3,000 examinees

were all around 0.050.

The RMSEs for item easiness parameters in the speeded group decreased with the increase

in sample size or with the increase in proportion of speeded examinees. For the 10% speeded-

ness condition, the RMSEs of the item easiness parameters of the speeded group decreased

from 0.655 to 0.325, when the sample size increased from 1,000 to 3,000. The RMSEs

decreased from 0.655 to 0.241 when the proportion of speededness increased from 10% to

30% for the 1,000 examinee sample size.

For the non-speeded group, the bias and RMSE for the item easiness parameters decreased

a little bit with the increase of sample sizes, but they are similar across the three speeded-

ness proportions for the same sample size. For example, the bias index for the item easiness

parameters for the sample size of 1000 examinees and 1 10% speededness proportion was

0.168 and it decreased to 0.007 when the sample size inceased to 3000 with the same speeded-

ness proportioin. The bias statistics decreased from 0.168 to 0.044 for the non-speeded group

across the nine simulation conditions. The bias has a larger reduction when the sample size

increased from 2,000 to 3,000 examinees than from 1000 to 2000. For example, the bias statis-

tics of the non-speeded group for the 2000 examinee condition were all larger than 0.110.

When the sample size increased to 3000, all bias statistics decreased to less than 0.100.

The RMSE of the item easiness parameters for the non-speeded group decreased with

an increase in sample sizes and remained similar across the three proportions of speeded

examinees. The RMSEs of the non-speeded group decreased from 0.277 to 0.124, when the

sample size increased from 1,000 to 3,000 for the speededness proportion of 10%.
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Recovery of Variances of Random Item Effects for Conditional Model. Table

4.6 presents the bias and RMSE statistics for the variances of random item effects. Bias and

RMSE statistics for the random item effects were smaller when the sample size increased

from 1,000 to 3,000. In addition, bias decreased with an increase in the proportions of speeded

examinees. The bias and RMSE indices for the random item effects by the conditional model

were similar to those for the unconditional model for most simulation conditions.

Recovery of Random Person Effects for Conditional Model. The bias and RMSE

statistics for the variances of the random person effects are presented in Table 4.7. As was

the case with the unconditional model, bias and RMSE for the random person effects were

much smaller than those of the item easiness parameters or the random item effects. The

bias and RMSE of the random effects for the conditional model also were smaller those

for the unconditional model. This finding was consistent with the previous research which

found that inclusion of a covariate on latent group membership improved the accuracy of

parameter estimates (Von Davier & Yamamoto, 2007). The RMSEs of the random person

effects decreased with the increase in sample size, but did not change much as the proportion

of speeded examinees increased. The reduction in bias and RMSE was very small, when

sample size increased from 2,000 to 3,000, suggesting that a sample size of 2,000 probably

would be large enough to get stable estimates of the random person effects.

Recovery of Latent Classes for Conditional Model. Presented in Table 4.8 are the

differences between the simulated the recovered proportions of speeded examinees. After the

inclusion of a covariate on latent group membership, the recovery of the classifications of

examinees into latent classes improved. This result was consistent with previous studies which

found the incorporation of background variables associated with latent class membership into

the model can improve the accuracy of classification of examinees into latent classes (Smit

et al., 1999, 2000). The differences in the simulated and recovered proportions of speeded

examinees were relatively small, but did decrease somewhat with an increase in sample size.

The differences between the generating proportions and the recovered proportions for sample
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sizes of 2,000 and 3,000 examinees were quite small, suggesting that a sample size of 2,000

should be sufficient for stable estimates of the proportions of speeded examinees for the

conditional model.

4.2 Example: Analysis of Speededness on a College-Level Mathematics

Placement Test

Although the association between gender and latent class membership has been studied

in previous speededness research, however, the association between gender and latent class

membership is not a consistent one in the speededness literature. Bolt et al. (2002) found no

significant association between gender and latent class membership on a mathematics course

placement test at a Midwestern university. Cohen et al., (2002) examined the association

between speeded and non-speeded groups and student’s background and academic achieve-

ment and found no association between gender and latent class membership for students with

weaker mathematics backgrounds. For students with a stronger mathematics background,

however, a significant association was found between gender and latent class membership.

Males were found to have a higher mean math score than females. Both of these studies imple-

mented the analysis in two steps. As suggested earlier, this two-step approach may attenuate

the association between gender and latent class membership, since estimation errors in the

first step may not be accounted for in the second step. In this study, we examined the effect

of gender and its association with latent classes in a single step on a new set of data. For

purposes of this study, the gender effect was assumed not to differ across latent classes.

Speededness Models. Several models used for detection of speededness effects in paper-

and-pencil tests were fit to the data in this example. These include the following models: the

cross-classified multilevel mixture Rasch model as in equations (2.53 and 2.58), the Hybrid

Rasch model as in equation (2.9), the two-class mixture Rasch model as in equation (2.8) and

the mixture gradual process model with a Rasch measurement model as in equation (2.12).
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Table 4.6: Bias and RMSE of the Variances of Random Item Effects: Conditional Model.

Proportion
10 20 30

N Bias RMSE Bias RMSE Bias RMSE
1000 0.155 0.267 0.060 0.156 -0.044 0.116
2000 0.093 0.132 0.037 0.109 0.034 0.055
3000 0.028 0.143 -0.009 0.097 -0.008 0.079

Table 4.7: Bias and RMSE of the Variances of Random Person Effects: Conditional Model.

Proportion
10 20 30

N Bias RMSE Bias RMSE Bias RMSE
1000 0.002 0.059 -0.028 0.073 0.009 0.063
2000 -0.001 0.040 -0.001 0.032 -0.001 0.052
3000 -0.001 0.034 0.012 0.030 -0.009 0.037

Table 4.8: Differences Between the Generating and Recovered Proportions of Speeded
Examinees: Conditional Model.

Proportion
N 10 20 30

1000 1.8 1.7 1.6
2000 0.7 0.4 0.2
3000 0.1 0.1 0.1
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The item parameter estimates from these models were also compared with those obtained

by the Rasch model.

For the cross-classified multilevel mixture Rasch model, two separate models were esti-

mated: An unconditional mixture multilevel Rasch model and a conditional mixture Rasch

model. The unconditional model was estimated first followed by estimation of the conditional

model. Gender was used as the covariate on the mixing proportions of the conditional model

to help classify examinees into speeded and non-speeded groups.

To reflect the assumption of the Hybrid model and the MRM with an ordinal constraint,

the item difficulty parameters for the first twenty items were constrained to be equal. The

item difficulties of the last eight items were constrained to be larger for the speeded group

than those for the non-speeded group. For the mixture gradual process change model, the

speededness rate parameters λj were constrained to be zero for the non-speeded group and

estimated for the speeded group.

4.2.1 Methods

Data. Data used in this study were from a mathematics placement test administered

to entering college students at a large Midwestern university system. All the items were

multiple-choice with five alternatives. There were three forms of the placement test, Form

A, Form B and Form C. Form A and Form C had 35 items, and Form B had 40 items.

Students were counseled to take Forms A and B if they had fewer than 2 1
2

years of high

school mathematics or if they had not taken any trigonometry. Students who had at least

2 1
2

years of high school mathematics and who had taken trigonometry were counseled to

take Forms B and C. Only items on Forms A and B were used in this study. Three tryout

items in Form A and 4 items in Form B were embedded at different locations in the test.

These items were excluded from the analysis, leaving 32 operational items on Form A and

36 operational items on Form B that were analyzed in this study.
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The first 20 operational items on Form A and the last 8 on Form B were included in

the analysis. Items in the middle of the test were not used for the analysis. Although these

items may be affected by test speededness, the effects of speededness were assumed to not be

enough to be modeled. The first 20 items were assumed to be not affected by test speededness

and the last 8 items were assumed to be most affected by test speededness. This is the same

logic as used by Bolt et al. (2002).

Only the sample of 14,878 examinees who took Form A and Form B were included in

the analysis. Those who had missing values on gender also were excluded from the analysis

resulting in a sample of 13,336. A random sample of 2,017 examinees (approximately 15

percent) was selected from the sample of 13,336 examinees. There were 809 males and 1,207

females in the sample.

Modeling Speededness. To model test speededness effects, we assumed the first 20

items were not affected by test speededness and the last 8 items were most affected by

test speededness. An examination of the simple statistics shows that the proportions of

correct responses to the first 19 items were in general higher than the last 10 items and the

proportions of incorrect responses to the non-speeded items were lower than the speeded

items. This was the case except for Items 8, 13, 14, and 17. The high proportions of incorrect

responses to these items may not be due to test speededness but due to other characteristics

of these items. Item 20 was assumed not to be affected by test speededness, although, it had

a relatively high proportion of incorrect responses. It is possible that this may indicate the

beginning of speededness effects. The impact of test speededness on Item 20, however, may

not be as strong as the impact on the last 8 items, since there was not a large number of

omitted items over these last 8 items. The last 8 items did have a much larger proportion

of omitted responses, however, than did the non-speeded items. Mroch and Bolt (2006)

have noted that omissions for items near the end of the test are a possible indicator of test

speededness. Female examinees tended to have slightly lower proportions of correct responses

and higher proportions of omitted responses than male examinees over the last 8 items. This
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may be an indication that female students might be more affected by test speededness on

this test than male students.

Estimation of Model Parameters. Parameters of the conditional and unconditional

models were estimated on the real data sample using MCMC estimation as implemented in

the software WinBUGS (Spiegelhalter et al., 2003). For MCMC estimation, the means of the

posterior distributions for the sampled parameter values following burn-in were used as the

parameter estimates. Examinees were assigned to one of the latent classes at each iteration.

The posterior probability of latent class membership was used as the estimate of latent class

membership.

The unconditional model was run for 10,000 iterations. The Heidelberg and Welch diag-

nostic from BOA (Smith, 2005) suggested the model converged after 3,000 iterations. The

same MCMC algorithm was run on the conditional, Rasch, MRM, Hybrid and MixGPCM

for 10,000 iterations. The Heidelberg and Welch diagnostic suggested the MRM converged

after the first iteration, the Hybrid model and the MixGPCM converged after 1,000 itera-

tions. All models converged at less than 5,000 iterations. Therefore, a conservative burn-in of

5,000 iterations was used. These iterations were discarded and the remaining 5,000 iterations

were used to estimate the model parameters. The amount of time needed to estimate the

unconditional model for 10000 iterations is 1.55 hours on an HP BL460c 2.00 GHz server

blade with a Quad-Core Intel Xeon processor and 3.25GB RAM running a Windows 2003

server operating system.and the amount of time needed to estimate the conditional model is

1.39 hours. The amount of time needed to estimate the MRM is about 1.51 hours and 1.59

hours for the Hybrid model and 8.50 hours for the MixGCM.

4.2.2 Results of Real Data Analysis

Descriptive Statistics for Test Items. The descriptive statistics for these 28 items for

male and female students are reported in Table 4.9. The mean raw score for male students

was 0.83 units higher than for female students. An independent samples t-test between male



55

Table 4.9: Descriptive Statistics For Male and Female Students.

N M SD
Male 809 16.66 5.06
Female 1208 15.83 5.12

and female students produced a t statistic of 3.60 with a p-value of .00. This indicates that

male and female students differed significantly in mean total raw score over these 28 items.

In addition to the above descriptive statistics, the proportions of correct, incorrect and

omitted responses to the 28 items were also examined. The proportions of correct, incorrect

and omitted responses to the 28 items by all the examinees and male and female exami-

nees are reported in Table 4.10. For the total sample, the proportion of correct responses

decreased beginning with Item 21, where the ordinal constraints were imposed. The pro-

portions of incorrect responses for the total sample increased from about Item 20 and the

proportion of omissions increased steadily from Item 21. Similar patterns of correct, incorrect

and omitted responses can be observed for male and female examinees. Following Item 20,

where test speededness was assumed to begin (and so the ordinal constraints were imposed),

the proportions of correct responses were higher for male examinees than female examinees.

Credibility Intervals on Posterior Estimates. One advantage of Bayesian estimation

is that it will produce not only a point estimate of the parameters, but also an interval around

this estimate called a credibility interval. The credibility interval is the interval which is

assumed to contain the parameter of interest. A significance test can be performed on the

model parameters based on this interval. For posterior estimates, if the credibility interval

includes 0, then the parameter estimate is considered not to be significantly different from 0.

Otherwise, it is considered to be significantly different from 0. Results for the unconditional

model are summarized in Table 4.11.
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Table 4.11: Item and Person Effects: Results for the Unconditional Model.

Parameter Group Estimates SD 2.5% 97.5%

Fixed Item effects(βg) Speeded(β1) -1.78 0.43 -2.62 -0.96
Effects Non-speeded(β2) -0.30 0.36 -1.04 0.44

Person effects(µg) Speeded(µ1) 0.32 0.11 0.12 0.55
Non-speeded(µ2) 0.00

Variance of Item effects(σ2
2) 1.05 0.47 0.47 2.23

Random effects Person effects(σ2
1) 0.87 0.04 0.80 0.95

The item parameter estimates in Table 4.11 are for item and person effects under the

unconditional model. Item difficulty estimates can be obtained by multiplying the item

easiness effects by -1. As can be seen, the mean item easiness for the speeded group (M =

−1.78) was lower than for the non-speeded group (M = −0.30). (These values for item

difficulty would be 1.78 and 0.30 for the speeded and nonspeeded groups, respectively.) This

ordering of means for item easiness was due to the way the ordinal constraints on the item

parameters were implemented to model the speededness assumption in the last 8 items.

Examinees in the speeded group also had a higher mean ability than those in the non-

speeded group. The variance of the random person effects (σ2
1 = 0.87) was smaller than the

variance of the random item effect (σ2
2 = 1.05). The smaller variance for the random person

effects was probably due to the larger sample size (N=2,017) and to the small number of

items (n=28).

The results for the conditional model are presented in Table 4.12. Recall that the prob-

ability of latent class membership was modeled as a multinomial logistic regression using

gender as a covariate. Gender was dummy coded with male examinees coded as 0 and female

examinees coded as 1.
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Table 4.12: Item and Person Effects: Results for the Conditional Model.

Parameter Group Estimates SD 2.5% 97.5%
Intercept(γ0g) Speeded(γ01) -1.51 0.37 -2.55 -0.89

Gender Non-speeded(γ02) 0.00
Effects Slope(γ1g) Speeded(γ11) 0.39 0.19 0.03 0.79

Non-speeded(γ12) 0.00

Fixed Item effects(βg) Speeded(β1) -1.47 0.37 -2.24 -0.76
Effects Non-speeded(β2) -0.24 0.33 -0.89 0.43

Person effects(µg) Speeded(µ1) 0.28 0.10 0.10 0.50
Non-speeded(µ2) 0.00

Variance of Item effects(σ2
2) 0.99 0.44 0.46 2.16

Random effects Person effects(σ2
1) 0.87 0.04 0.81 0.95

As was observed for the unconditional model, the mean item easiness for the speeded

group (M = −1.47) was lower than for the non-speeded group (M = −0.24). The average

ability of the speeded group (0.28), however, was higher than that of the nonspeeded group.

Consistent with results from Smit, et al. (1999, 2000), the standard errors and the credi-

bility intervals for the model parameters would be smaller for the conditional model than for

the unconditional model. The results for the fixed item effects for the unconditional model

were 0.43 (see Table 4.11) and for the conditional model, 0.37 (see Table 4.12). The standard

error of the fixed item effects of the non-speeded group was reduced slightly from 0.36 in

the unconditional model to 0.33 in the conditional model. The standard error of the random

item effects was also slightly reduced from 0.47 in the unconditional model to 0.44 in the

conditional model. Any reduction of standard errors of the fixed person effects or the random

person effects between conditional and unconditional models was not obvious. The variance

of the random item effect was smaller in the conditional model than the unconditional model

indicating the inclusion of covariate helped explain part of the random variances in items.
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The credibility interval shown in Table 4.12 from 2.5% to 95%, does not include zero for

gender, indicating that gender had a significant impact on the classification of an examinee’s

latent group membership. The 95% credibility interval for the intercept and the slope of

the gender effect also did not include zero, which likewise indicates that male and female

examinees differed significantly in the probability of latent class membership. Since male

examinees were coded as 0 and female examinees were coded as 1, the positive slope (0.39)

indicates that female examinees had a higher probability of being classified into Class 2 which

was the speeded group. Thus, female examinees tend to be more affected by test speededness

than male examinees. The simple descriptive statistics of the proportions of incorrect and

omitted responses by male and female examinees in Table 4.10 indicate a similar conclusion.

To examine the performance of the mixture cross-classified Rasch model for test speed-

edness, the estimates of the parameters and the classifications by the unconditional and

conditional models were compared with those of the Rasch model, two-class MRM, Hybrid

model and the MixGPCM. The unconditional model, conditional model, MRM and Hybrid

model all analyzed 28 items, the first 20 and the last 8 items. The MixGPCM included 50

of the items on the test, including the first 32 items on Form A and the last 18 items on

Form B. This is because the purpose of the MixGPCM was to model the gradual change in

speededness over the course of the test for both latent classes.

The proportions of speeded and non-speeded examinees classified by each of the models

are reported in Table 4.13. It is possible to directly compare the mixture cross-classified IRT

models with the other models from this table.

As shown in Table 4.13, after adding gender as a covariate, the proportions of speeded

examinees increased from 11.25% for the unconditional model to 13.98%. The MRM identi-

fied the largest proportion of examinees as speeded and the MixGPCM identified the smallest.

The proportion of speeded examinees classified by the unconditional mixture cross-classified

Rasch model was smaller than the MRM (26.03%) and the Hybrid model (13.63%), but rela-

tively close to the MixGPCM (10.1%). The proportion of speeded examinees classified by the
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Table 4.13: Proportions of Speeded and Non-Speeded Examinees For all Five Models.

Unconditional Conditional MRM Hybrid MGCM
Model Model Model Model Model

Speeded 11.25 13.98 26.03 13.63 10.10
Non-speeded 88.75 86.02 73.97 86.37 89.90

Table 4.14: Cross-Tabulation of Group Membership by the Unconditional and Conditional
Models.

Unconditional Model Total
Speeded Non-speeded

Speeded 225 57 282
Conditional (11.2%) (2.8%) (14.0%)
Model Non-speeded 2 1733 1735

(.1%) (85.9%) (86.0%)
Total 227 1790 2017

(11.3%) (88.7%) (100%)

conditional model (13.98%) was similar to that for the Hybrid model (13.63%). After adding

gender as covariate, approximately 2.8% more of the non-speeded examinees were identified

as speeded by the conditional model than by the unconditional model. A cross-tabulation

of the group memberships identified by the unconditional and conditional models indicating

the changes in latent classes is shown in Table 4.14.

The chi-squares between latent classes for each model and for gender are reported in

Table 4.15. Chi-squares were calculated in a two-step approach. The five models (i.e., the

MRM, Hybrid model, MixGPCM, the unconditional cross-classified model and the condi-

tional cross-classified model) were applied to classify examinees into speeded and non-speeded

groups. Then Chi-squares computed between gender and latent class for each model failed

to show a significant association with latent class for the MRM, the unconditional cross-
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Table 4.15: Chi-squares Between Gender and Group Membership.

Unconditional Conditional MRM Hybrid MGCM
χ2 1.692 18.811 1.694 4.657 0.046
P-value 0.197 0.000 0.196 0.034 0.830

classified multilevel mixture Rasch model and the MixGPCM. Gender did have a significant

association, however, for latent classes from the Hybrid model (p <= .05). The associa-

tion between gender and latent classes for the conditional cross-classified multilevel mixture

Rasch model, however, was also significant (p < .001). This finding was consistent with the

previous research and suggested that the two-step approach, as was used with the uncondi-

tional model, MRM, and MixGPCM, permitted measurement errors in the first step for these

models to intrude into the estimates at the second step, resulting in attenuated relationships

between gender and latent classes.

The percentages of speeded and non-speeded examinees for males and females were also

examined. Females had a slightly higher percentage of speeded examinees than males. This

was the case under both the conditional model and the unconditional model. The percentages

of speeded and non-speeded examinees for male and female examinees are summarized in

Table 4.16. Since gender was significantly associated with latent classes, it was interesting

to further examine the composition of latent classes by gender based on the MRM, Hybrid

and MixGPCM.

Results presented in Table 4.16 indicate that a higher percentage of female examinees

than males were classified as speeded by both the unconditional and the conditional models.

Further, after including gender in the model (i.e., the conditional model), the change in the

percentage of speeded examinees was larger for female examinees than for male examinees.

The percentages of female examinees in the speeded class increased from 12.0% to 16.7%

and the percentage of male examinees decreased from 10.1% to 9.9%. More female examinees
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Table 4.17: Item Difficulty Estimates for the Non-Speeded Group By Each Model.

Item
Difficulty Conditional Unconditional MRM Hybrid Rasch MixGPCM
Item 21 -0.914 -0.888 -0.930 -0.693 -0.699 -0.893
Item 22 0.414 0.450 0.373 0.063 0.564 0.440
Item 23 1.136 1.162 1.116 0.562 1.283 1.141
Item 24 1.126 1.163 0.985 0.681 1.456 1.412
Item 25 -0.672 -0.624 -0.817 -0.625 -0.241 -0.353
Item 26 0.032 0.049 0.0142 -0.260 0.232 0.077
Item 27 0.012 0.060 -0.057 -0.278 0.324 0.234
Item 28 0.971 0.996 0.850 0.501 1.296 1.160

also were classified as speeded than male examinees by the MRM and Hybrid model. The

percentages of speeded male and female examinees identified by the MixGPCM were about

the same.

Correlations between Item Difficulty Estimates from the Different Models.

The item difficulty parameters from the unconditional model and the conditional model

were compared with those from the Rasch model, MRM, Hybrid model and the MixGPCM.

Recall that the item parameters obtained by the mixture cross-classified Rasch model for

test speededness were item easiness parameters. To compare these estimates with the item

difficulty estimates from other models, the item easiness parameters should be transformed

to item difficulty parameters by multiplying -1. The mixture unconditional and conditional

cross-classified IRT models, the MixGPCM and MRM all produced two classes of item

parameters. The Hybrid model and Rasch model only produced a single set of item parameter

estimates. The estimates from these latter two models were somewhat like those for the non-

speeded groups from the other three models. The unequated item difficulty parameters for

the non-speeded group are presented in Table 4.17 and the item difficulties of the speeded

group are reported in Table 4.18.
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Table 4.18: Item Difficulty Estimates for the Speeded Group By Each Model.

Item
Difficulty Conditional Unconditional MRM MixGPCM
Item 21 0.128 0.235 -0.129 -1.676
Item 22 1.144 1.136 1.075 -0.441
Item 23 1.842 1.878 1.762 0.944
Item 24 3.048 3.302 2.845 -0.594
Item 25 1.384 1.639 1.049 -3.421
Item 26 1.039 1.169 0.796 -0.555
Item 27 1.568 1.669 1.276 -2.838
Item 28 2.889 3.181 2.544 0.418

Table 4.19: Correlations Between Item Difficulties for Last 8 Items In the Non-Speeded
Group.

Unconditional Conditional MRM Hybrid MixGPCM Rasch
Unconditional 1.000
Conditional .999 1.000
MRM .997 .998 1.000
Hybrid .989 .989 .983 1.000
MGCM .989 .987 .974 .980 1.000
Rasch .993 .992 .981 .985 .998 1.000

The correlations between item difficulty parameters in the speeded and non-speeded

groups from the different models were also examined. As correlations do not need item

parameters to be put on the same metric, no equating was needed to compare the item

parameter estimates from each model. The correlations of the item difficulty parameters in

the non-speeded group by each model are presented in Table 4.19 and the correlations in the

speeded-group by each model are presented in Table 4.20.

Table 4.19 shows that correlations of item difficulty estimates for the non-speeded groups

identified by each of the models were very high, with a maximum correlation of .999 and a



65

Table 4.20: Correlations Between Item Difficulties for Last 8 Items In the Speeded Group.

Unconditional Conditional MRM MixGPCM
Unconditional 1.000
Conditional .996 1.000
MRM .982 .994 1.000
MGCM .341 .385 .447 1.000

minimum correlation of .974. Table 4.20 presents similar correlations for the speeded group.

The correlations for the non-speeded group were higher than those for the speeded group.

This is reasonable since the Hybrid model, MRM and MixGPCM model reduce to the regular

Rasch model when speededness effects are absent.

As can be seen from Table 4.20, the correlations of the item difficulty parameters for

the speeded group were relatively high between estimates from the unconditional model,

conditional model and MRM with a minimum of .982. However, the correlations for the

speeded group between the MixGPCM and the other three models were much lower, ranging

from .341 to .447. A possible explanation for these lower correlations might be that the

assumptions about test speededness were quite different for the MixGPCM that for the other

three models. The unconditional model, conditional model and MRM assume items near the

end of the test are harder for the speeded examinees than for the non-speeded examinees.

Therefore, inequality constraints reflecting this assumption were imposed directly on the item

parameter estimates for the last 8 items. Although the same assumption was implemented

for the MixGPCM, the probability of getting an item correct for the speeded examinees

under this model also was reduced by a speededness component, min{1, [1 − ( i
I
− ηj)]

λj}.
This difference likely was the cause of the large differences in the correlations from the other

three models with those from the MixGPCM.
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Figure 4.1: Proportion of omissions by the unconditional model.

Figure 4.2: Proportion of omissions by the conditional model.
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Figure 4.3: Proportion of omissions by the Hybrid model.

Figure 4.4: Proportion of omissions by the MRM model
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Figure 4.5: Proportion of omissions by the MixGPCM model.

Omitted Responses. The proportions of omitted responses to the 28 items by exam-

inees in the speeded and non-speeded groups estimated for the unconditional, conditional,

Hybrid and MRM are plotted in Figures 4.1 to 4.4, respectively. The proportions of omis-

sions to the 50 items by the MixGPCM are presented in Figure 4.5. Both the speeded and

nonspeeded groups had more omitted responses toward the end of the test for all models.

The proportions of omitted responses to the first 20 items by the unconditional, conditional,

Hybrid and MRM were similar between the speeded and non-speeded group. However, the

proportion of omitted responses to the last 8 items was much higher for the speeded group

than the non-speeded group. There was an abrupt increase in the omissions for the speeded

group to items near the end of the test where test speededness effects were assumed to be

present. This is not surprising as the last 8 items were separated by 40 items from the 20

items at the beginning of the test that were assumed to not have any speededness effects.

For the MixGPCM, the omissions to the first few items were similar between the speeded
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Figure 4.6: Proportion of correct responses by the unconditional model.

and non-speeded group. However, there was an increasing trend in the differences in the

proportions of omissions between the speeded and non-speeded group toward the end of the

test. This is reasonable since the MixGPCM models test speededness as a gradual change

process rather than as an abrupt change as was modeled by the other four models.

Proportions of Correct and Incorrect Responses. The proportions of correct and

incorrect responses by the speeded and non-speeded groups identified by each model are

plotted in Figure 4.6 to 4.15.

Results plotted in Figures 4.6 to 4.8 show that for the first 20 items, which were assumed

to be unaffected by test speededness, the proportions of correct responses were higher for the

speeded group than for the nonspeeded group. This was true for the latent groups identified

by the unconditional, conditional and MRM models. Figure 4.9 shows that the proportions

of correct responses to the first 20 items were similar between the latent groups identified

by the Hybrid. However, for the last 8 items, which were assumed to be most likely affected
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Figure 4.7: Proportion of correct responses by the conditional model.

Figure 4.8: Proportion of correct esponses by the MRM model.
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Figure 4.9: Proportion of correct responses by the Hybrid model.

Figure 4.10: Proportion of correct responses by the MixGPCM model.
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by test speededness, the nonspeeded group had consistently higher proportions of correct

responses than the speeded group. This was true for the latent classes identified by all

four models. The proportions of correct responses by the speeded and non-speeded groups

identified by the MixGPCM were reported in Figure 4.10. A different pattern was found

for this model in the proportions of correct responses. Unlike the patterns in the other four

models, the nonspeeded group for the MixGPCM had a consistently higher proportion of

correct responses from the beginning of the test to the end of the test.

As was suggested above for omissions, the differences in the patterns of correct and incor-

rect responses may be due to the way the speededness assumptions were implemented in the

different models. The conditional and unconditional cross-classified mixture Rasch models,

the Hybrid model and the MRM assume examinees become speeded at an arbitrary point

and, from that point, at the same rate. The MixGPCM assumes examinees become speeded

at different points with different rates. Therefore, even though examinees were classified into

the speeded groups by the MixGPCM, they appeared to be affected by test speededness

at different locations of the test. It is also likely that their speededness rates also might be

different.

The results shown by the MixGPCM also suggest an additional conjecture. It appears

that almost the same examinees were classed as speeded or nonspeeded by the MixGPCM

as by the conditional, Hybrid, and MRM. This may indicate that examining the last 8 items

on the test is sufficient for detection of speeded and nonspeeded groups.

The proportions of incorrect responses by the latent groups identified by each model are

reported in Figure 4.11 to 4.15. Similar patterns to those for the correct responses can be

found in the proportions of incorrect responses by the two cross-classified mixture Rasch

models and the MRM. The proportions of incorrect responses to the first 20 items were

higher for the non-speeded group than for the speeded group. For the items toward the end

of the test, the proportions of incorrect responses by the speeded group were higher than

for the non-speeded group. For the Hybrid model, the proportions of incorrect responses
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Figure 4.11: Proportion of incorrect responses by the unconditional model.

Figure 4.12: Proportion of incorrect responses by the conditional model.
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Figure 4.13: Proportion of incorrect responses by the Hybrid model.

Figure 4.14: Proportion of incorrect responses by the MRM model.
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Figure 4.15: Proportion of incorrect responses by the MixGPCM model.

to items at earlier locations of the test were similar between the speeded and non-speeded

groups. For items near the end of the test, similar pattern to those for the other models

were found; that is, the proportions of incorrect responses were higher for the speeded group

than for the non-speeded group. As for the proportions of correct responses, the MixGPCM

showed a different pattern in the proportions of incorrect responses than was observed for

the other models. The speeded group identified by the MixGPCM showed a consistently

higher proportion of incorrect responses than the non-speeded group.

Raw Score for Speeded and Nonspeeded Groups. The raw scores for the first 20

items are reported for each latent class in Figures 4.16 t0 4.25. Figures of the raw scores

calculated using the first 20 items show the raw scores of the speeded groups were higher than

the nonspeeded groups by the unconditional and conditional cross-classified mixture Rasch

models and the MRM. For the unconditional model, the speeded examinees had an average

raw score of 15.30 for the first 20 items and the non-speeded examinees had an average raw
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Figure 4.16: Raw scores of the first 20 Items by the non-speeded group-unconditional
model.

Figure 4.17: Raw scores of the first 20 items by the speeded group-unconditional model.
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Figure 4.18: Raw scores of the first 20 items by the non-speeded group-conditional model.

Figure 4.19: Raw scores of the first 20 items by the speeded group-conditional model.
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Figure 4.20: Raw scores of the first 20 items by the non-speeded group-Hybrid model.

Figure 4.21: Raw scores of the first 20 items by the speeded group-Hybrid model.
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Figure 4.22: Raw scores of the first 20 items by the non-speeded group-MRM model.

Figure 4.23: Raw scores of the first 20 items by the speeded group-MRM model.
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Figure 4.24: Raw scores of the first 20 items by the non-speeded group-MixGPCM model.

Figure 4.25: Raw scores of the first 20 items by the speeded group-MixGPCM model.



81

score of 12.68. The difference in the mean raw scores between the speeded examinees and

the nonspeeded examinees was 2.62. For the conditional model, the speeded examinees had a

mean raw score of 14.94 and the nonspeeded examinees had a mean raw score of 12.65. The

difference in the mean raw scores was 2.29. The average raw scores of the speeded examinees

identified by the MRM for the first 20 items was 14.79. The nonspeeded examinees had an

average raw score of 12.33. The difference in the average raw score was 2.46. This pattern

of differences indicated that, in the absence of test speededness, the speeded group tended

to have a higher score than the nonspeeded group. However, the same order of differences

in the mean raw scores was not observed in the results based on the Hybrid model. The

average mean raw scores for the first 20 items was 12.90 for the speeded examinees identified

by the Hybrid model and 12.98 for the nonspeeded examinees. The difference between these

two means of .08 was not a meaningful difference. The raw scores for the first 20 items by

the MixGPCM had a different pattern. The speeded examinees by the MixGPCM had an

average raw score of 7.51 and the non-speeded examinees had an average raw score of 13.58.

This difference was much larger than for the other models.

Histograms of the total raw scores calculated over the last 8 items, that were assumed to

be most affected by test speededness, are presented in Figure 4.26 to 4.35.

The average raw scores over the last 8 items for speeded examinees and non-speeded

examinees identified for the unconditional model were 1.41 and 3.42, respectively. The non-

speeded examinees had an average raw score of 2.01 points higher than the speeded examinees

for these items. For the conditional model, the speeded examinees had a mean raw score of

1.45 and the non-speeded examinees, a mean raw score of 3.48. The differences in the mean

raw scores between the speeded and non-speeded examinees was 2.03. The mean raw scores

of the speeded group and non-speeded group classified by the MRM were 2.05 and 3.60,

respectively. The differences in these mean raw scores was 1.55 points. The same order of

differences was observed for the Hybrid model. The speeded examinees identified by the

Hybrid model had an average raw score of 2.08 and the non-speeded examinees have an
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Figure 4.26: Raw scores of the last 8 items for the non-speeded group: unconditional model.

Figure 4.27: Raw scores of the last 8 items for the speeded group: unconditional model.
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Figure 4.28: Raw scores of the last 8 items for the non-speeded group: conditional model.

Figure 4.29: Raw scores of the last 8 items for the speeded group: conditional model.
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Figure 4.30: Raw scores of the last 8 items for the non-speeded group: Hybrid model.

Figure 4.31: Raw scores of the last 8 items for the speeded group: Hybrid model.
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Figure 4.32: Raw scores of the last 8 items for the non-speeded group: MRM.

Figure 4.33: Raw scores of the last 8 items for the speeded group: MRM.
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Figure 4.34: Raw scores of the last 8 items for the non-speeded group: MixGPCM.

Figure 4.35: Raw scores of the last 8 items for the speeded group: MixGPCM.
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average raw score of 3.37 with a difference of 1.29 points. Unlike the raw score patterns

for the first 20 items, the pattern in the raw scores to the last 8 items by the MixGPCM

was consistent with the patterns in the other models, that is, the average raw scores for the

non-speeded group (3.36) was higher than the raw scores for the speeded group (1.74).

The differences observed for each model in raw scores between speeded and nonspeeded

examinees was consistent with previous research (e.g., Cohen et al., 2002). This finding

suggests that speeded examinees were of slightly higher ability. The differences in raw scores

over the last 8 items was largely a function of the way that speededness was modeled. That

is, the last 8 items were constrained to be harder for the speeded than for the non-speeded

group, resulting in lower scores for the speeded examinees.



Chapter 5

Discussion

This dissertation described a cross-classified multilevel mixture IRT model for detection of

test speededness effects. Unlike the usual IRT models, which treat person effects as random

and item effects as fixed, the cross-classified IRT model treats both persons and items as

random effects. This allows the inclusion of person or item covariates in the model. As was

noted earlier, treating items as random effects is more realistic than treating them as fixed

effects. This is because items are typically assumed to be sampled from a domain. Treating

items as random, furthermore, allowed the inclusion of an error term in the latent variable

regression. When items were treated as fixed, however, the item covariates are assumed to

explain all the differences in item parameters, that is, without error. The assumption in this

dissertation was that this may not be either realistic or appropriate.

Two forms of the mixture cross-classified IRT model were presented, one with no covari-

ates (the unconditional model) and the other with covariate (the conditional model). The

covariates applied to the conditional model were on latent group membership for the purpose

of helping model latent group membership.

The proposed models were then estimated using an MCMC algorithm as implemented in

the software WinBUGS (Spiegelhalter et al., 2003), and a simulation study was conducted

to examine the recovery of the parameters of the model under various practical testing

conditions. Two primary factors were manipulated in the simulation study, sample size and

proportion of speeded examinees. A real data example was also presented to demonstrate

the application of the mixture cross-classified IRT model for detection of test speededness.

88
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5.1 Discussion of Simulation Study

For the unconditional model, the recovery of item easiness parameters improved with the

increase in sample size or with an increase of proportion of speeded examinees. As sample size

or the proportion of speeded examinees increased, the reduction in bias and RMSE of item

easiness parameters was greater in the speeded group that in the non-speeded group. This is

reasonable, since more examinees were involved in the estimation of item easiness parameters

for the speeded group when the sample size or the proportion of speeded examinees increased.

The corresponding reduction in the bias and RMSE for the sample of non-speeded examinees,

however, was very small as these two factors increased. This was because the sample sizes of

non-speeded examinees were large in all the simulation conditions. Therefore, the increases

in sample sizes in the simulation study did not improve the estimates of the item parameters

much.

The recovery of random item effects was better than the recovery of item easiness parame-

ters. Similar patterns to those for the item easiness parameters were observed for random item

effects. That is, the bias and RMSE of the random item effects decreased with the increase

in either sample size or proportion of speeded examinees. Recovery of random person effects

also was good across all simulation conditions. Although the bias and RMSE of the random

person effects tended to be smaller with an increase in either sample size or the proportion

of speeded examinees, the reductions were small. The random person effects were recovered

well with a sample size of 1,000 examinees and 10% speeded examinees. The recovery of the

classification of examinees into speeded and non-speeded groups improved with the increase

in sample sizes. This was most obvious between the conditions of 1,000 examinees and 2,000

examinees. When the sample size increased from 2,000 to 3,000, the improvement in the

recovery of classifications was small. The recovery of classification of examinees improved

with an increase in proportions of speeded examinees but only for the conditions of 1,000

examinees. For the conditions of 2,000 and 3,000 examinees, improvement was not observed.
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For the conditional model, gender was used as a covariate on the latent group member-

ship. After the inclusion of gender as a covariate, the bias and RMSE of the item easiness

parameters for the speeded group became smaller than for the unconditional model. Similar

to the unconditional model, however, the bias and RMSE of the item easiness parameters

for the speeded group decreased with an increase in either sample size or the proportion

of speeded examinees. However, the bias and RMSE of the item easiness parameters for

the non-speeded group was not smaller in the conditional model than in the unconditional

model. Thus the inclusion of covariate on the latent class membership seemed to be of most

help in improving recovery of item easiness parameters in the non-speeded group. A similar

pattern to the unconditional model was also found in the non-speeded group. That is, the

bias and RMSE of the item easiness parameters decreased with the increase of sample size

and the proportion of speeded examinees. However, the improvement in the recovery of item

easiness parameters for the non-speeded group was small, when the sample size increased

from 1,000 to 2,000 or the proportions increased from 20% to 30%. The reduction in bias and

RMSE of the item easiness parameters in the non-speeded group was more obvious, when

the sample size increased from 2,000 to 3,000 indicating a large sample size was needed to

improve recovery of item parameters for the non-speeded group.

5.2 Discussion of Results for the Real Data Example

Both an unconditional model and a conditional model were fit to the same set of college-

level placement data. The unconditional model, that is, the cross-classified multilevel mixture

Rasch model without item or person covariates, was compared with the conditional model,

that included covariates for latent group membership. Gender was included as a covariate on

the probabilities of latent class memberships in the conditional cross-classified model. This

was done to help explain differences in person effects and to help classify examinees into

latent classes.
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Modeling Speededness. To model the effect of test speededness, the approach used in

this dissertation imposed constraints on item parameters of both the unconditional model and

the conditional model to reflect the assumption that items near the end of the test differed

in easiness for speeded and non-speeded examinees. These same constraints were used for

the MRM, Hybrid, and MixGPCM models as well. The constraints were implemented as

inequality constraints on the item easiness parameters for the last 8 items on the test. The

item easiness parameters were constrained to be lower than for the speeded group than for

the non-speeded group.

Results for Conditional and Unconditional Models. The unconditional model clas-

sified about 11.3% of the examinees as speeded while the conditional model classified about

14.0% of the same examinees as speeded. After including gender as a covariate on group mem-

bership, more examinees who were classified as non-speeded by the unconditional model were

subsequently classified as speeded by the conditional model, than the reverse. A significance

test on gender indicated female examinees tended to be more affected by test speededness,

as defined in the models studied here, than did male examinees. An examination of latent

classes by gender showed there were more female examinees than male examinees in the

speeded group classified by both the unconditional model and the conditional model. The

differences in the proportions of speeded examinees between male and female examinees were

increased after the inclusion of gender as a covariate.

The number of omitted responses to items at earlier nonspeeded locations of the test

were similar for he speeded and nonspeeded examinees. However, speeded examinees had a

consistently higher number of omissions near the end of the test than nonspeeded examinees

for both models. For items at earlier locations of the test where test speededness was assumed

to be absent, the number of correct responses were larger for the speeded group than for the

non-speeded group and the number of incorrect responses were lower for the speeded group

than for the non-speeded group. This situation was reversed for items near the end of the

test where test speededness was assumed to be present. An examination of the raw scores
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calculated using the first 20 items and the last 8 items respectively showed the same pattern.

In general, the raw scores for the first 20 items were higher for the speeded group than the

non-speeded group and the raw scores for the last 8 items were lower for the speeded group

than for the non-speeded group.

Comparisons of Item Parameters with Rasch, MRM, Hybrid, and MixGPCM

Models. The results of the unconditional and conditional cross-classified multilevel mixture

Rasch models were compared with results from the MRM, Hybrid, MixGPCM and Rasch

model. The MixGPCM identified the smallest proportion of speeded examinees (10.10%)

among the five models, and the MRM classified the most examinees as speeded (26.03%). The

proportion of speeded examinees identified by the conditional model (13.98%) was similar

to that by the Hybrid model (13.63%), and the proportion of speeded examinees identified

by the unconditional model (11.25%) was similar to that by the MixGPCM (10.10%).

The item parameters obtained with each model were also compared. For the item param-

eters in the speeded group, the unconditional model, the conditional model, the MixGPCM

and the MRM produced two groups of item difficulties. The Hybrid and Rasch models pro-

duced a single set of item difficulties, and these were compared with the nonspeeded group.

So, comparisons of item parameters for the nonspeeded group were made among all the five

models. The item parameters for the speeded group, however, were only compared among

the conditional model, the unconditional model, the MRM, and MixGPCM models.

Comparisons of item parameter estimates were made by calculating the correlations

among the item parameters by each model. In the nonspeeded group, correlations of the

item parameter estimates with those from the other five models were very high. The smallest

was 0.974. The similarities of the item parameters for the two cross-classified models and

the MRM might be due to the similarity in the way the speededness constraints were imple-

mented. However, the item difficulties correlations in the speeded group were not consistently

high among any of the models. The correlations among the two cross-classified multilevel

mixture Rasch models and the MRM were high and similar to those in the non-speeded
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group. The correlations between the MixGPCM and the other two models, however, were

very low.

Comparisons of Omitted Responses. The responses to the speeded and non-speeded

items by each latent group were also compared. The speeded group identified by the cross-

classified multilevel mixture Rasch models, the MRM and the Hybrid model showed a con-

sistently higher proportion of omitted responses to items near the end of the test than

the nonspeeded group. In addition, The speeded groups had a lower proportion of correct

responses and a higher proportion of incorrect responses to these same items. For items

at earlier location of the test, the speeded groups had similar proportions of omissions, a

higher proportion of correct responses and a lower proportion of incorrect responses than the

nonspeeded groups. For the MixGPCM, responses showed a different pattern. The speeded

group showed an increasing trend in the proportion of omitted responses over most of the 50

items. The differences in the proportions of omissions between the speeded and nonspeeded

groups by the MixGPCM started at an earlier location of the test than the other models,

as this model considered more item near the end of the test than just the last 8. For the

MixGPCM, the nonspeeded group had a consistently higher proportion of correct responses

and a lower proportion of incorrect responses than the speeded group throughout the whole

test.

5.3 limitations and future studies

Two factors were manipulated in the simulation study, sample size and proportion of speed-

edness examinees. Other factors might be considered in future research. Results from the

MixGPCM, for example, suggest that speededness effects might be evident earlier in the

test. In this study, the item parameters of the first 20 items were fixed at values estimated

using MULTILOG, and the speeded items, that is, the last 8 items, were estimated along

with other model parameters. If the number of speeded items to be estimated changed,

the accuracy of the item easiness parameters might also vary. It might be helpful to vary
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the number of items to be estimated to look at its impact on the estimation of the model

parameters.

Another limitation associated with the simulation study is the sample sizes. In this disser-

tation, the number of examinees simulated was large. It might be useful to simulate smaller

sample sizes to determine recovery of model parameters.

Some other limitations of this dissertation include the assumptions about speededness

effects. These were based on those used in Bolt et al. (2002), and as a result, they share

limitations similar to those used with the MRM and Hybrid model. These models consider

speededness from the same point in the test for all examinees. If test speededness occurred

at earlier locations of the test, this model would be unable to capture it. The MixGPCM,

however, does recognize that the choice of speededness point is arbitrary. Although it is a

complex model, developing a cross-classified version of that model could provide a useful

methodology.

Second, the mixture cross-classified IRT model assumes speeded examinees are affected

by test speededness in the same way and so produces estimates for only one speeded group. In

reality, examinees may differ in speededness patterns, and more than one speeded groups may

exist. Speededness may be exhibited, for example, by differential difficulties in one speeded

group, by different patterns of omissions in another speeded group, and possibly by some

other type of response strategy in yet a third group. Extending the current cross-classified

multilevel mixture IRT model to detect multiple speeded groups should be straightforward,

but this conjecture will need to be studied.

Third, the current study only used the Rasch version of the cross-classified multilevel

mixture IRT model. This model can be extended to the 2PL and 3PL models, but this

would need to be studied. Using more highly parameterized IRT models than the Rasch

model could result in examinees being placed into different latent classes (Alexeev, Templin,

& Cohen, 2010). A 2PL or 3PL version of the cross-classified models, for example, might
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produce different compositions of latent groups or might reveal other differences between

speeded and non-speeded groups.

Fourth, in this study, only a single person covariate was included in the model. If more

item or person covariates were to be included, the proportion and classification of latent

classes might also change.

Finally, the cross-classified multilevel mixture IRT models also can be applied to data

sets with testlets. Testlet effects could be modeled either at a higher level or as an item

covariate. As for other extensions of this model, this kind of extension will also need to be

studied.
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Appendix A

WinBUGS Code for the unconditional mixture cross-classified IRT model

for test speededness

#N: number of examinees

#T: number of items

#gmem: latent group membership

#sd.p: standard deviation of random person effect

#sd.i: standard deviation of random item effect

#tau.p: precision of random person effect

#tau.i: precision of random item effect

#mu: mean of ability

#mbeta: fixed item effect or the mean of item parameter

model

for ( j in 1:N)

for (k in 1:T)

resp[j,k]∼ dbern(p[j,k])

logit(p[j,k])< − theta[j]+beta[gmem[j],k]

gmem[j]∼ dcat(pi[1:2])

#level-2 model

for ( j in 1:N)

theta[j]∼ dnorm(mu[gmem[j]], tau.p)

#fix beta for items 1-20

beta[1,1]< − 0.8893
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beta[1,2]< − 1.802

beta[1,3]< − 1.665

beta[1,4]< − 0.7547

beta[1,5]< − 1.693

beta[1,6]< − 1.979

beta[1,7]< −1.146

beta[1,8]< − -0.2046

beta[1,9] < − 1.463

beta[1,10]< −0.7018

beta[1,11]< −1.566

beta[1,12]< −0.9116

beta[1,13]< − 0.1759

beta[1,14]< − -0.399

beta[1,15]< − 0.4316

beta[1,16]< − 0.8347

beta[1,17]< −-0.6414

beta[1,18]< −1.622

beta[1,19]< −0.7596

beta[1,20]< −-1.012

beta[2,1]< − 0.8893

beta[2,2]< − 1.802

beta[2,3]< − 1.665

beta[2,4]< − 0.7547

beta[2,5]< −1.693

beta[2,6]< −1.979

beta[2,7]< −1.146

beta[2,8]< −-0.2046
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beta[2,9] < − 1.463

beta[2,10]< − 0.7018

beta[2,11]< − 1.566

beta[2,12]< − 0.9116

beta[2,13]< − -0.1759

beta[2,14]< − -0.399

beta[2,15]< − 0.4316

beta[2,16]< − 0.8347

beta[2,17]< − -0.6414

beta[2,18]< − 1.622

beta[2,19]< − 0.7596

beta[2,20]< − -1.012

for (k in 21:T)

beta[1,k]∼ dnorm(mbeta[1], tau.i)

beta[2,k]∼ dnorm(mbeta[2],tau.i)I(,beta[1,k])

mbeta[1]∼ dnorm(0,0.001)

mbeta[2]∼ dnorm(0,0.001)

#variance of person random effect using vague prior

sd.p ∼ dunif(0,2)

tau.p < − 1/(sd.p*sd.p)

var.p< − 1/tau.p

# variance of random item effect tau.i.1 is the group 1 precision; tau.i.2 is group 2

precision

sd.i ∼ dunif(0,2)

tau.i< − 1/(sd.i*sd.i)

var.i< − 1/tau.i

mu[1]< − 0
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mu[2]∼dnorm(0,0.001)

# Priors for mixture parameters (priors for person fixed effect)

pi[1:G]∼ ddirch(alpha[])

list(N=2017 , T=28 , G=2, alpha=c(0.5,0.5),

resp=structure(.Data=c(

1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,1,1,

1,0,1,1,1,1,0,1,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,

...

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1), .Dim=c(2017,28)))



Appendix B

WinBUGS Code for the conditional mixture cross-classified IRT model

for test speededness

model

for ( j in 1:N)

for (k in 1:T)

resp[j,k]∼ dbern(p1[j,k])

logit(p[j,k])< − theta[j]+beta[gmem[j],k]

p1[j,k]< − max(0.00001,min(p[j,k],0.99999))

#level 2 model

for ( j in 1:N)

theta[j] dnorm(mu[gmem[j]], tau.p)

gmem[j]∼ dcat(pi[j,1:G])

# fix the first 20 items using item parameters from the unconditional model

beta[1,1]< − 0.8893

beta[1,2]< − 1.802

beta[1,3]< − 1.665

beta[1,4]< − 0.7547

beta[1,5]< − 1.693

beta[1,6]< − 1.979

beta[1,7]< − 1.146

beta[1,8]< − -0.2046

beta[1,9]< − 1.463
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beta[1,10]< − 0.7018

beta[1,11]< − 1.566

beta[1,12]< − 0.9116

beta[1,13]< − -0.1759

beta[1,14]< − -0.399

beta[1,15]< − 0.4316

beta[1,16]< − 0.8347

beta[1,17]< − -0.6414

beta[1,18]< − 1.622

beta[1,19]< −0.7596

beta[1,20]< −-1.012

beta[2,1]< − 0.8893

beta[2,2]< − 1.802

beta[2,3]< − 1.665

beta[2,4]< − 0.7547

beta[2,5]< − 1.693

beta[2,6]< − 1.979

beta[2,7]< − 1.146

beta[2,8] < − -0.2046

beta[2,9] < − 1.463

beta[2,10]< − 0.7018

beta[2,11]< − 1.566

beta[2,12]< − 0.9116

beta[2,13]< − -0.1759

beta[2,14]< − -0.399

beta[2,15]< − 0.4316

beta[2,16]< − 0.8347
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beta[2,17]< − -0.6414

beta[2,18]< − 1.622

beta[2,19]< − 0.7596

beta[2,20]< −¡- -1.012

for (k in 21:T)

beta[1,k]∼ dnorm(mbeta[1], tau.i)

beta[2,k]∼ dnorm(mbeta[2],tau.i)I(,beta[1,k])

mbeta[1]∼ dnorm(0,1)

mbeta[2]∼ dnorm(0,1)

#variance of random person and item effect

sd.p∼dunif(0,2)

sd.i∼dunif(0,2)

tau.i< −1/(sd.i*sd.i)

tau.p< −1/(sd.p*sd.p)

var.i< −1/tau.i

var.p< −1/tau.p

mu[1]< −0

mu[2]∼ dnorm(0,1)

for(j in 1:N)

for (g in 1:G)

pi[j,g]< −alph[j,g]/sum(alph[j,1:G])

log(alph[j,g])< −gamma0[g]+gamma1[g]*gender[j]

for (j in 1:2000)

gender[j]∼ dbern(0.5)

#covariate identification

gamma0[1]< −0

gamma1[1]< −0
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gamma0[2]∼ dnorm(0,1)

gamma1[2]∼ dnorm(0,1)

for (j in 1:N)

for(g in 1:G)

indprob[j,g]< −equals(gmem[j], g)

list(N=2017 , T=28 , G=2, gender=c(1,1,0,...0,0,1),

resp=structure(.Data=c(

1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,1,1,

1,0,1,1,1,1,0,1,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,

...

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1), .Dim=c(2017,28)))



Appendix C

Convergence figures for one selected condition under the unconditional

model
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Figure C.1: The autocorrelation plot for pi for the condition of 1000 examinees with the
proportion of 20% speededness

Figure C.2: The trace plot for pi for the condition of 1000 examinees with the proportion of
20% speededness
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Figure C.3: The autocorrelation plot for beta for the condition of 1000 examinees with the
proportion of 20% speededness
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Figure C.4: The trace plot for beta for the condition of 1000 examinees with the proportion
of 20% speededness
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Figure C.5: The autocorrelation plot for mbeta for the condition of 1000 examinees with
the proportion of 20% speededness
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Figure C.6: The trace plot for mbeta for the condition of 1000 examinees with the
proportion of 20% speededness

Figure C.7: The autocorrelation plot for the precision of random item and person effects for
the condition of 1000 examinees with the proportion of 20% speededness
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Figure C.8: The trace plot for the precision of random item and person effects for the
condition of 1000 examinees with the proportion of 20% speededness

Figure C.9: The autocorrelation plot for mu for the condition of 1000 examinees with the
proportion of 20% speededness
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Figure C.10: The trace plot for mu for the condition of 1000 examinees with the proportion
of 20% speededness



Appendix D

convergence figures for one selected condition under the conditional

model
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Figure D.1: The autocorrelation plot for betas for the condition of 1000 examinees with the
proportion of 20% speededness
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Figure D.2: The trace plot for betas for the condition of 1000 examinees with the
proportion of 20% speededness
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Figure D.3: The autocorrelation plot for mbeta for the condition of 1000 examinees with
the proportion of 20% speededness

Figure D.4: The trace plot for mbeta for the condition of 1000 examinees with the
proportion of 20% speededness
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Figure D.5: The autocorrelation plot for tau.i and tau.p for the condition of 1000
examinees with the proportion of 20% speededness

Figure D.6: The trace plot for tau.i and tau.p for the condition of 1000 examinees with the
proportion of 20% speededness
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Figure D.7: The autocorrelation plot for mu for the condition of 1000 examinees with the
proportion of 20% speededness

Figure D.8: The trace plot for mu for the condition of 1000 examinees with the proportion
of 20% speededness
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Figure D.9: The autocorrelation plot for gamma0 and gamma1 for the condition of 1000
examinees with the proportion of 20% speededness

Figure D.10: The trace plot for gamma0 and gamma1 for the condition of 1000 examinees
with the proportion of 20% speededness


