

SERVICE ORIENTED WEB APPLICATIONS:

GLYCOVAULT AS A CASE STUDY

by

SRIKALYAN C. SWAYAMPAKULA

(Under the Direction of John A. Miller)

ABSTRACT

 There are many Web application frameworks emerging these days. Most of these

frameworks are driven by MVC (Model View Controller) architecture. Web browsers have

become the common client for most of these frameworks. Often, there is no other way to access

data other than using the end client. With the increasing popularity of SOA, there is a strong

need for building Web applications in such a way that the data can be accessed in flexible ways

other than using a Web browser. Using traditional approaches, we end up writing the entire

application from scratch to support newer ways to access the data. The focus of this thesis is to

discuss the emerging framework called SOFEA (Service Oriented Front-End Architecture). This

thesis discusses how to automatically generate the Persistent Object Layer, Service Layer etc.,

from SQL schema. This thesis also discusses a Web application called GlycoVault developed

using SOFEA.

INDEX WORDS: Web services, SOAP, Ontologies, OWL, SOFEA, and GlycoVault.

SERVICE ORIENTED WEB APPLICATIONS:

GLYCOVAULT AS A CASE STUDY

by

SRIKALYAN C. SWAYAMPAKULA

B. Tech, Jawaharlal Nehru Technological University, India, 2007

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2010

© 2010

Srikalyan C. Swayampakula

All Rights Reserved

 SERVICE ORIENTED WEB APPLICATIONS:

GLYCOVAULT AS A CASE STUDY

by

SRIKALYAN C. SWAYAMPAKULA

Major Professor: John A. Miller

Committee: Krzysztof J. Kochut

William S. York

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2010

iv

DEDICATION

To my Mom, Dad, Uncles and Aunts.

v

ACKNOWLEDGEMENTS

 I would like to thank Dr. John A. Miller, my major advisor, for all the guidance and

support given to me in the course of this thesis. I would also like to thank Dr. Krzysztof J.

Kochut and Dr. William S. York for their guidance and support. I would like to thank my

colleague Matthew Eavenson for his help. Lastly, I would like to thank my family members and

friends who were always there whenever I need them.

vi

 TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ...1

2 BACKGROUND ...4

2.1 Web Application Frameworks ...4

2.2 Model Driven Generation of Web Applications ...5

2.3 WSDL ..6

2.4 SAWSDL ...6

2.5 OWL ..7

3 SOFEA ...8

3.1 Principles of SOFEA ...9

3.2 Advantages and Disadvantages of SOFEA ...10

vii

4 GlycoVault ...12

4.1 Architecture ...12

4.2 Information Model ..14

4.3 Persistent Object Layer ...17

4.4 Web Service Layer ..17

4.5 Client Component ..18

4.6 Security ..18

4.7 Transactions ...19

4.8 Data Loading ...20

4.9 Browsing GlycoVault ..21

5 CODE GENERATION FROM SQL SCHEMA ...23

5.1 Forward Engineering from UML to SQL ..24

5.2 Translation from SQL schema to Object Oriented API 26

5.3 Steps to Generate API ...28

6 CONCLUSIONS AND FUTURE WORK ..32

viii

REFERENCES ..33

APPENDICES ...36

A Installation Guide ...36

B SQL Schema for GlycoVault ...37

C Java Doc of Persistent Object Layer ..48

D List of WSDL Files ..50

E UnitTesting ...52

ix

LIST OF FIGURES

Figure 3.1: 3-tier Architecture ...8

Figure 3.2: SOFEA Architecture ...9

Figure 4.1: Architecture of GlycoVault ...12

Figure 4.2: UML Class Diagram of GlycoVault ...16

Figure 4.3: A Sample Spreadsheet ...21

Figure 4.4: Sample Browse Path ..22

Figure 5.1: One-to-One Association ..24

Figure 5.2: One-to-Many Association ...25

Figure 5.3: Many-to-Many Association ...25

Figure 5.4: Generalization-Specialization Relationship ..25

1

CHAPTER 1

INTRODUCTION

 There are many Web application frameworks emerging these days. Most of these

frameworks are driven by Model View Control (MVC) [1] architecture pattern and are quite

mature. The main problem with these frameworks is that they assume Web browser as their end

client, so there is no other way to access the data other than using a Web browser. The main

intension of any Web application is to access the data using a user friendly interface. With the

increasing popularity of the Service Oriented Architecture (SOA) [2], there is a strong need for

developing Web applications in such a way that they can support different ways of data access.

Implementing multiple ways for accessing data results in writing the entire application from

scratch. This is not a good idea as maintainability becomes a huge issue. So, there is need to

develop an API which is language independent, platform/client independent. Service oriented

Front-End Architecture (SOFEA) [3] defines a good approach for building the Web applications.

The details about SOFEA are discussed as a separate chapter (SOFEA is sometimes referred to

as SOUI).

 We have developed a Web application based on the SOFEA architecture called

GlycoVault. GlycoVault is a Web application which acts as a repository to store the data from

scientific experiments. The main objective behind GlycoVault is to share the experimental data.

We have developed a user friendly frontend to access this data. In case a research group prefers

not to use our frontend, but is interested in accessing the experimental data, they can invoke the

Web services upon which our frontend is built. This is one advantage of SOFEA. Most of the

experimental data in our case are either in the form of spreadsheets or XML documents. We can

2

extract the data from XML documents as these documents have a standard consistent structure

but the spreadsheets do not have a standard structure. Some of these spreadsheets are

automatically generated from the instruments which perform the experiments and produce the

results in the form of spreadsheets. We need to extract the information from the important cells

of these spreadsheets to populate our database. In order to automate this process, we have

defined workflows to extract the data from the spreadsheets and populate the GlycoVault

database.

 Building any application involves defining/creating several different layers like Persistent

Object Layer, Service Layer etc., specific to an application. Creating these layers is quite a

tedious task. This becomes especially annoying when changes are made periodically to the

design. Most of the Web applications perform four major common steps, i.e., save the data,

update the data, delete the data and select/fetch the data (update and delete operations are

invoked significantly less often than read or save operations). Most of these Web applications

have databases as their backend and data are organized in the form of tables and columns in

these databases. The major purpose of the above layers is to read/write the data from/to tables

and columns. This is very true even for the GlycoVault. Changes to the design of the GlycoVault

are periodically made. GlycoVault also perform the same four operations. So, we have defined

an approach using which we can automatically generate the persistent object layer, API and its

implementation sub layer , factory sub layer and service layer code. Also, we have added

security features in this automatic code generation process to prevent any unauthorized access to

the data or any unauthorized writes/updates to the data. We are generating the code from a SQL

(Structure Query Language) schema using techniques from reverse engineering. We choose the

SQL schema instead of Unified Modeling Language (UML) to generate the code because many

3

legacy systems do not have a UML design, but they have solid SQL schema. We are interested in

supporting every Web application system. Also, UML to SQL Schema generation often requires

the purchase of an enterprise version of a UML tool.

The thesis is organized as follows. Chapter 2 discusses background information related to

this thesis. Chapter 3 discusses SOFEA. Chapter 4 focuses on the implementation of GlycoVault.

Chapter 5 explains the code generation process from the SQL schema. Chapter 6 is presents

conclusions and future work.

4

CHAPTER 2

BACKGROUND

2.1 Web Application Frameworks

Web application frameworks are designed to support the development of Web based

applications. Web application frameworks help developers by providing quick and easy solutions

to build, maintain and debug Web applications. Most Web application frameworks follow the

MVC architecture pattern, which separates the Model, View and Controller modules that helps in

dividing the work among different groups like Web designers, business logic developers, etc.

Based on directionality of the data access, the MVC architecture patterns are broadly classified

into two types 1) Push-based MVC and 2) Pull-based MVC. In Push-based MVC, actions

perform the required data processing and push the data to the view layer to display the result.

Examples of Push-based MVC are Spring MVC and Ruby on Rails. In Pull-based MVC, the

view layer pulls the data from different actions and displays the result. Examples of Pull-based

MVC are Struts 2 and Wicket. MVC has two major versions MVC1 and MVC2. In MVC1, the

controller is decentralized as the currently displayed page determines the next page to be

displayed. In MVC2, the controller centralizes the logic and forwards the requests to correct

views based on the request URL, parameters and state of an application. Based on the type of

controller, [4] has classified the Web application frameworks into two types 1) Server-centric

Web frameworks and 2) Client-centric Web frameworks. In Server-centric Web frameworks, the

controller responsible for rendering the data onto the client Web browser resides on the server-

side. Most of the existing frameworks are Server-centric Web frameworks. Some examples of

Server-centric Web frameworks are Struts, JSF (Java Server Faces), Spring MVC, Wicket and

5

Stripes. In Client-centric Web frameworks, the controller responsible for rendering the data on

the client Web browser resides on the client-side. Client-centric Web frameworks are emerging

frameworks and most of them have a controller written in JavaScript. Some Examples of Client-

centric Web frameworks are Adobe‟s flash, Microsoft‟s Silverlight/Moonlight and JavaFX. Most

commonly used Web browsers are built on top of JavaScript engines like WebKit, V8 engine and

SpiderMonkey which render the data differently. This is a major concern for the Client-centric

Web frameworks. There are many JavaScript libraries like jQuery, Yahoo‟s YUI, Ext JS and

MochiKit which reduces the differences in the rendering styles of different JavaScript engines.

2.2 Model Driven Generation of Web Applications

Model-Driven Engineering (MDE) [5] offers a good approach for building Web applications.

MDE automatically generates the code from a model. MDE [6] is extremely helpful in building

Web systems whose design changes regularly. MDE specifies that model should be treated as a

most important element in any phase of the software development life cycle and should be used

in all phases of the software development process. MDE helps developers to focus on the

problem and ignore the specification of its implementation or solution, i.e., developers can

concentrate on what is the functionality of the system rather than focusing on how to develop the

system. MDE defines a new specialized area of engineering under software engineering called

“Web Engineering”. Web engineering addresses the most common problems faced during the

development of Web based software systems. Some Web engineering approaches are OO-H [7],

WebML [8] and UWE [9]. The most popular MDE approach is the Model Driven Architecture

(MDA) defined by the Object Management Group (OMG) [10]. Most of these approaches

automatically build solutions by splitting the problem space horizontally, i.e., layer-by-layer.

6

2.3 WSDL

Web Service Description Language (WSDL) [11] is an XML notation language used to describe

Web services. A WSDL document describes Web services with the following tags/elements

types, message, portType, operation, binding and service. The <types> tag is used to define the

data types that are used by the Web service. The <message> tag is used to define the data

elements of an operation. A message tag can contain one or more part tags where each part tag

represent a parameter of an operation. The <portType> tags are used to represent a set of

operations defined in this service. Each operation has messages depending up on the type of the

operation. The <binding> tags are used to define the message exchange format and protocol

details for each operation. The <service> tag is used to specify the location of the Web service.

WSDL have two major versions, i.e., WSDL 1.1 [12] and WSDL 2.0 [13]. WSDL 1.1 supports

only Simple Object Access Protocol (SOAP) [14] based Web services. WSDL 2.0 supports both

SOAP based and Representation State Transfer (REST) [15] based Web services.

2.4 SAWSDL

Semantic annotations for WSDL and XML schema (SAWSDL) [16] are extensions to WSDL to

semantically annotate WSDL and XML schema elements using ontology. Annotations are

specified using the following attributes “modelReference”, “liftingSchemaMapping”,

“loweringSchemaMapping”. A modelReference tag is used to specify an association between

WSDL element and a concept in ontology. A liftingSchemaMapping is used to specify the

transformation of WSDL data to ontology instance data, i.e., lift the data from WSDL and put it

in an ontology instance. A loweringSchemaMapping is used to specify the transformation of

ontology data to WSDL XML data, i.e., lower the data from ontology and put it in WSDL.

7

SAWSDL annotations are usually represented as attributes of WSDL elements. There is one

exception in which SAWSDL had defined the <attrExtensions> tag to specify the annotations for

operations in WSDL 1.1.

2.5 OWL

The Web Ontology Language (OWL)[17]. It is a standard used to define ontologies in XML. It is

built on top of Resource Description Framework (RDF) [18]. OWL is designed for processing

information over the Web and is designed to be understood by machines. OWL has three sub

languages OWL Lite, OWL DL and OWL Full. These languages are designed based on

expressiveness and decidability. OWL Lite is the least expressive sublanguage and fully

decidable. OWL DL is based on Description logic and OWL Full is the most expressive

sublanguage. OWL Full is not decidable. Every OWL Lite valid conclusion is an OWL DL

conclusion and every OWL DL valid conclusion is an OWL Full conclusion. OWL Lite should

be used in situations where there is need for the least expressiveness. OWL DL should be used

where users need maximum expressiveness and still be decidable. OWL Full should be used only

where importance is given to expressiveness and not to decidability. OWL DL is the most

popular of the three sub languages. There are two main java packages used for parsing these

documents 1) JENA [19] 2) OWLAPI [20].

8

CHAPTER 3

SOFEA

Service Oriented Front-End Architecture (SOFEA) [3] is an emerging standard for building Web

applications. Traditionally, Web application frameworks are developed according to the 3-tier or

4-tier architecture. The graphical representation of the 3-tier architecture is shown in figure 3.1

Figure 3.1: 3-tier Architecture.

 A client‟s user interface (UI) communicates with the Business / Application logic over

the network and Business/Application logic communicates with the Back-end / Database. This

approach works well, but the problem is that there is no other way to access the data other than

using the client UI. However, with the increasing popularity of SOA, we need a newer approach

9

to build Web applications that supports data access in different ways other than using a client UI

(e.g. through Web browser). SOFEA helps in providing data access through Web services. This

is one major advantage of the SOFEA architecture. The architecture of the SOFEA is graphically

represented in figure 3.2

Figure 3.2: SOFEA Architecture.

3.1 Principles of SOFEA

The three major principles of SOFEA [3] are the following:

1. Decouple the different layers in 3-tier or N-tier architecture. SOFEA states that

Application logic, Presentation logic, Business logic must be independent instead of

sharing a closely connected relationship. Business logic is the part of the software system

that performs the required data processing, e.g., extracting the data from the database,

10

saving the data into database, etc. Application logic is the part of the Web based system

that performs the operations, including how to implement security, how to manage and

access the user state, etc. Presentation logic is the part of the Web based system which

specifies how the data is rendered on the end user‟s system. This is the main principle of

SOFEA.

2. Presentation logic should be controlled by the client-side component. Also, client state

must be managed by a client-side controller. This principle strongly opposes the

traditional approaches for building Web applications. In traditional Web applications, the

presentation logic is typically controlled by a server side component.

3. More emphasis should be placed on the data exchange between the client-side component

and the service layer. Since, the client-side component controls the presentation logic, the

only thing that the client-side controller needs is the data so more emphasis should be

given on the data exchange between the service layer and client-side component.

3.2 Advantages and Disadvantages of SOFEA

The major advantages of SOFEA are the following:

1. Data can be accessed in many ways instead of just providing access via a Web browser.

2. Extensibility becomes easy as one has to write only the presentation logic and client-side

controller specific to an application.

11

The major disadvantages of SOFEA are the following:

1. Having a client side controller to control the presentation logic results in some security

issues. For example, a client side controller exposes presentation logic to the end user.

2. SOFEA results in downloading the entire client side application and client-side controller

on to the end user‟s system, so sufficient network bandwidth is needed for SOFEA to be

an effective approach. There are situations where the application is smaller than the fully

formatted data. For example, animations developed using Adobe‟s flash. In such

situations bandwidth is less of an issue.

12

CHAPTER 4

GLYCOVAULT

 GlycoVault is a Web application built using the principles of SOFEA. GlycoVault acts as

a repository for storing data from scientific experiments.

4.1 Architecture

The architecture of GlycoVault is shown in the figure 4.1

Figure 4.1: Architecture of GlycoVault

13

As you can see GlycoVault closely follows SOFEA principles with slight variations. We have a

Proxy Layer which acts as a mediator between Web services and Client-side controller. We had

Proxy Layer to avoid direct invocations of Web services through JavaScript as it makes our

development much faster and it is much easier to maintain the code base. The Service Layer is

currently implemented using SOAP based Web services and is written in Java. The Client-side

controller and Presentation logic are implemented using HTML and JavaScript. The Client-side

controller interacts with the Proxy Layer which interacts with the Service Layer. The proxy layer

is implemented in Java. The API is implemented in Java.

4.1.1 Modifications to SOFEA

As you can see from the figure 4.1, we have slightly modified the principles of SOFEA because

of the reasons we observed during the development process. We believe that having a client-side

controller for presentation logic may not be ideal, as it exposes various security issues. We think

that the decision of having a client-side controller should not be made mandatory. In fact, we

think the decision of having a client-side or server-side controller must be left to the

developer/designer group who are responsible for developing the application. A client-side

controller is good when the application is fairly small. However, for large Web applications

developing/managing client-side controller becomes a challenge.

4.1.2 Proposed Hybrid Architecture

SOFEA and traditional Web frameworks have major advantages, but they also have some major

drawbacks too. We are proposing a Hybrid Architecture which is a combination of both SOFEA

and traditional Web frameworks which attempts to minimize the drawbacks of each. The major

14

drawback of the Web frameworks is that they lack access to data other than using a Web

browser. The major disadvantage of SOFEA is having a client-side controller. Our proposed

Hybrid architecture combines both the ideas by defining a service layer similar to SOFEA, but

instead of having a client component, we define a Persistent Object Layer which acts as a

database to the traditional Web frameworks.

4.2 Information Model

The UML class diagram of the GlycoVault is shown in figure 4.2. The UML class diagram

presents three different views 1) Experiment Design View 2) Experiment Setup View and 3)

Experiment Execution View.

Experiment Design View presents the design point of view of the GlycoVault.

Experiments usually have a design which is followed while conducting experiments.

“ExperimentDesign” is the class that represents the design of an experiment. Each

ExperimentDesign have a set of rules or protocol templates which are represented by the class

“Protocol” and these protcols are the part of Experiment Design. Each protocol is monitored by a

set of observables and is varied by set of parameters, so we have classes called “Parameter” and

“Observable” to represent them.

Experiment Setup View presents the view of the GlycoVault in terms of experiment

setup. In order to conduct an experiment we make an experiment design first and follow the

design to create an experiment setup, which is represented by the class called

“ExperimentSetup”. Experiment design have a set of protocols which are varied across various

experiment setups, so we have a called “ProtocolVariant” to represent the variations in the

15

“Protocols”. This variation is established by the “ParamValue” class, which represents the value

for the parameters involved in the Protocol.

Experiment Execution View represents the implementation point of view of an

experiment setup. Each experiment setup is followed by conducting or executing an experiment

which is represented by “Experiment” class and each step in an experiment is represented as an

instance of the “Task” class. Each step in an experiment produces some samples or data, which

are represented by the class “ExperimentalObject”. An experiment object can also be used by an

experiment.

An experiment object can be classified into “PhysicalObject” to represent the physical

samples like biological samples or a “DigitalObject” to represent the digital data. A physical

object is further classified into “BiologicalSample” to represent the biological samples

used/produced by a task and “MolecularObject” to represent the molecular objects such as genes,

enzymes, transcripts, protiens, lipids and glycans involved in a task. An experiment usually starts

with some initial sample which is represented by class “SourceSample”. A “DerivedSample”

class is used to represent those samples which are produced at the end of an experiment step or

task. Some experiment steps also yield digital data in the form of files so we have a class called

“File” to represent them. These files can be simple plain texts, spreadsheets, images, etc., so their

types are represented by the class “FileType”. We also extract some important information

represented by “Observable” instances, from these files and store them in our database. The

extracted data are stored in the “ScalarValue” class. These values can be either strings or floats.

The “Vector” class is used to represent the order in which these scalar values are stored.

16

Experiments are usually carried out by scientists, so we have a class “User” to represent

them. The “Laboratory” class is used to represent the labs in which these scientists work. The

“ControlledObject” class is used to implement the security features in GlycoVault.

Figure 4.2: UML Class Diagram of GlycoVault

17

4.3 Persistent Object Layer

A good software system should follow the principles of object oriented programming, including

abstraction, inheritance, polymorphism etc., in order to build a secure system. Layers like

Persistent Object Layer, Service Layer etc., and sub layers like API, its implementation, factory

etc., are defined for a software system to ensure that the principles of object oriented

programming are maintained. We have defined an API layer for GlycoVault so that we can hide

its implementation and provide the necessary documentation to access the data by an end user.

The entire API layer of GlycoVault is generated automatically, so we need to specify the

methods that are defined in the API and how they are generated. We are generating this API

layer from the database schema and we made sure that this API layer matches our UML class

Diagram. For every class in the UML diagram, we have a corresponding class in the API. Each

class has getters and setters for the fields defined in the UML class. For the relationships, we

have defined methods to get and set the corresponding class objects depending upon the

relationship. Details about the code generation process are discussed in chapter 5.

4.4 Web Service Layer

The main intention of GlycoVault is to share the data, so we have defined Web services in the

service layer to share the data with other organizations. The service layer hosts SOAP based Web

services allow users to the data. As mentioned earlier, we have automated the code generation

for most parts of the service layer, except for the login service. Every Web service has a close

resemblance to a class in the API and its factory. Each operation in a Web service corresponds to

a method in the corresponding class of the API or its factory with one exception, i.e., each

operation in the service layer has one additional parameter called “sessionId” which is a string

18

returned when the user invokes the login service. This sessionId string is used to authenticate the

user and also check his read and write access rights.

4.5 Client Component

Most programming languages provide an API for invoking SOAP based Web services. There are

many Web 2.0 client libraries services such as jQuery‟s SOAP Client and codeplex‟s JavaScript

SOAP Client with which one can invoke these Web services. These Web 2.0 client libraries also

enable us to embed the service invocation in a Web page which makes it transparent to the end

users. End users can interact with these Web service as if they are interacting with any Web site.

We have introduces proxy servlets and invoked them using AJAX.

4.6 Security

Security is a major issue for any Web based application. The same is true for GlycoVault. We

could have used a security module of the underlying database. The problem with this approach is

that the lowest level on which we can impose the built in security of database is at the Table

level. Most open source databases cannot impose row level security natively (at present), so we

had to implemented the row level security ourselves. We have implemented a UNIX like security

system in the GlycoVault. The “ControlledObject” and “UserGroup” are classes used to

implement the security in GlycoVault. The Controlled object class is used to determine the

access rights of a user. Most of the classes of the GlycoVault are subclasses of the Controlled

Object. The Controlled Object class has four important fields, i.e., isOwnedBy, isReadableBy,

isWritableBy and publicAccess to provide access restrictions. isOwnedBy is a reference to user

which determines the owner of a record in the database. isReadableBy and isWritableBy are

19

references to userGroup to determine which group has read permissions and write permissions.

publicAccess is an enum which can take either “write”, “read” or “none”. We can determine if a

user has read rights for a record of a table by extracting the controlled object record associated

with the record under consideration. A user can read a record only if he/she is owner of that

record or he/she is a member of group that has write access or read access to that record or public

access for that record is not “none”. Similarly, a user can write/update a record only if he/she is

owner of that object or he/she is a member of a group that has write access to that object or

public access for that object is “write”.

We have created user groups to provide access restrictions on the records in the database.

The sessionId is used to perform this authentication. A user gets this sessionId string by invoking

the login operation of the login SOAP service. Users have to provide the session id while

invoking any other service. In case a user does not provide a valid session id, then an exception

is thrown with a message to indicate his activity. This “sessionId” string which is generated

using “Secured Hash Algorithm 1” with a dynamic key, making it harder to predict the string.

We store this “sessionId” as a key in hash map with user details as its corresponding value of the

hash map. This hash map record is automatically removed after a certain period of inactivity. In

case a user attempts to login more than once, we return the same “sessionId” to avoid duplicate

sessions.

4.7 Transactions

Defining transactions for Web services is quite a challenging problem. Defining transactions for

an operation is a good starting approach, but the problem with this approach is that it fails to

rollback a transaction at the workflow level. Defining a transaction at the workflow level is also

20

a good approach, but the problem with this approach is that services have no idea on how users

are going to define their workflow. In order to overcome these problems, we have defined a Web

service to start a transaction and terminate a transaction as operations. User can start a

transaction and stop it whenever he/she needs, by invoking the corresponding operations. Also,

we made sure that an uncommitted transaction rolls back automatically after a certain period of

time and logs out the user to avoid infinite wait times. If a user wishes not to use this transaction

service, then he can still perform the rollback by invoking those operations which delete the

corresponding objects that he created during the execution of the workflow. In this case,

transactions are performed at the operation level.

4.8 Data Loading

Some experiments generate spreadsheet files and we have defined workflows with which we can

extract the data from these spreadsheets and populate the GlycoVault database. We also save the

spreadsheet file in GlycoVault for a reference. Loading spreadsheet files into GlycoVault

database has its own importance. Most of these spreadsheets have a similar pattern or structure

which varies across the categories of spreadsheets, so extraction of data becomes straight

forward, yet tedious. We plan to explore techniques for automating this in the future. A sample

spreadsheet is shown in the figure 4.3. We have defined workflows for extracting the required

data specific to the class of the spreadsheet. In order to load these spreadsheets into GlycoVault

we need to have some initial data which is present in our ontologies. There are no Web services

at present that can extract the data defined in these ontologies into our database. So, we have

loaded the required data extracting the spreadsheets which contain the required information and

invoke our Web services to insert the data.

21

Figure: 4.3 A Sample Spreadsheet

4.9 Browsing GlycoVault

From the UML Class Diagram (figure 4.2), we can clearly observe that browsing GlycoVault is

not a linear process. We have defined two approaches to search for data 1) Task centric which

focuses on a path from a selected class to the Task class and 2) Neighborhood centric search

which provides a view of a selected class along with its neighboring relationships. A Sample set

of tree paths for the Task centric approach is shown in the figure 4.4. Finding out the steps of an

experiment instance is the main objective for the several of the users in the GlycoVault. Steps of

an experiment instance are represented by the “Task” class. The Task class is placed on the top

to indicate that it is the final point for Task centric search. We can navigate to Task from

22

Protocol Variant, Biological Sample, Source Sample, Molecular Object, etc., so they are

represented as immediate children of the Task (figure 4.4) indicating that we can navigate to

Task using a single filter. A user can search for steps of an experiment instance starting from any

node in the tree and navigating towards Task. For instance, we can search for the steps of an

experiment setup which have some specified observables since Observables are not immediate

children of Task, so we may have to apply further search filters on Protocol and Protocol Variant

class to get the required Task.

Figure: 4.4 Sample Browse Path

23

CHAPTER 5

CODE GENERATION FROM SQL SCHEMA

 Most of the Web applications are developed to access data from a database through a

user-friendly interface. The four most common operations performed by any Web applications

are the following:

1) Saving data to the database or backend.

2) Retrieving the data from the database.

3) Updating the data from the database.

4) Deleting the data from the database.

We develop the APIs to read/write a data from/to the database. Most databases organize data

using tables and columns. It is quite a tedious task to do similar development for each and every

Web application. It is especially annoying if there are periodic changes made to the design of the

Web application. These two things are very true for GlycoVault, so, we came up with an

approach with which we can generate the code for the Persistent Object Layer and Service Layer

and sub layers such as API, API Implementation, factory etc., from the SQL schema using

techniques from reverse engineering. We have used an SQL schema instead of an UML design,

because there are many Web applications which do not follow UML, but have a solid working

SQL Schema. We are interested in supporting each and every system. We generate the code in

24

such a way that it can prevent any unauthorized access to the data and also any unauthorized

writes to the data. In order to understand the reverse engineering technique, one should first have

an understanding of how forwarding engineering produces an SQL schema from UML.

5.1 Forward Engineering from UML to SQL

[23] and [24] explains how to generate a schema from a UML Class diagram. An SQL schema

may be generated from an UML Class Diagram using following steps:

1) For every class in the UML class diagram, create a Table with the table name as the UML

class name. Also, for each field in the class create a column in the table with the column

name as the class field name.

2) For each one-to-one association as shown in the figure 5.1, add a foreign key column to

the side opposite of the side whose multiplicity lower bounds equals mini (a, b). In figure

5.1, a foreign key should be added to the Table A, if „b‟ is smaller than „a‟ else the

foreign key should be added to the Table B.

Figure 5.1: One-to-One Association

3) For each one-to-many/many-to-one association as shown in the figure 5.2, add a foreign

key to the table which is opposite to the one whose multiplicity upper bound is one. In

figure 5.2, a foreign key is added to Table A.

25

Figure 5.2: One-to-Many Association

4) For each many-to-many association as shown in figure 5.3, a new table should be created

and the primary keys of both the tables should be added as foreign keys in the newly

created table. In figure 5.3, a new table should be created with two foreign keys pointing

to Table A and Table B.

Figure 5.3: Many-to-Many Association

5) For each generalization-specialization or parent-child relationship as shown in figure 5.4,

make the primary key of the specialized table as the foreign key by referencing it to the

generalized table. In Figure 5.4, we need to make the primary key of Table B as the

foreign key by referencing it to Table A.

Figure 5.4: Generalization-Specialization Relationship

26

6) For each aggregation or whole-part relationship, add foreign key columns to part table

referencing the primary keys of the whole tables. Note, we are assuming part objects are

not shared (i.e., no many-to-many aggregations).

We are also assuming that there are no higher arity relationships (i.e., only binary relationships).

Now that we have some background on how the UML-SQL schema transformation occurs. We

can proceed with our reverse engineering inspired technique to automatically generate the code.

5.2 Translation from SQL schema to Object Oriented API

We can use the approach discussed in section 5.1 to generate the code from an SQL schema. In

order to proceed we need to define few things.

1) In order to check if a table is introduced because of a many-to-many relationship, we

need to find the set of foreign key columns for the table and find the set of composite

primary keys for the tables. If both sets are not null and set of foreign key columns are a

subset of the primary key columns, then it is a many-to-many relationship table, else it is

not a many-to-many relationship table.

2) In order to check for parent child relationship, we need to check if the table has a column

that is a primary key (not a composite primary key) and also foreign key. If this column is

both primary key and foreign key then this table is subclass of the class representing the

foreign key table.

Note, we assume that all entity tables have single-column primary keys when they are being

referenced. In order to achieve our goal we have defined class which are used to automatically

Java generate code from the SQL schema file.

27

class Table

tableName, // represents the table name of the table

compositePrimaryKey, // represents the list of composite primary key columns.

compositeUniqueKey, // represents the list of column which are composite unique keys.

columns // represents list of columns for this table.

end

class Column

columnName, // represents the name of the given column.

columnType, // represents the language implementation data type for the column.

isPrimaryKey, // true if this column is a primary key.

isForeignKey, // true if this column is a foreign key.

isUnique, // true if this column is Unique.

isNotNULL, // true if this column does not accept null values.

defaultValue, // represents the default value for the column.

isAutomatic, // true if this column gets its value from the database automatically.

foreignKeyTable, // represents a pointer to the table to which this column is foreign key.

foreignKeyColumn // represents a pointer to the column of the foreignKeyTable to which

//this column is foreign key.

end

Now that we have defined the helper classes, we can define the algorithms for basic functions.

// this function checks if this table is introduce because of many-to-many relationship or not.

function checkIfManyToMany(table)

 foreignkeys=getForeignKeys(table)

 if foreignkeys is null then

 return false

 compositePrimaryKey=table.compositePrimaryKey

 if compositePrimaryKeys is null then

28

 return false

 if foreignkeys ⊆ compositePrimaryKeys then

 return true

 return false

end

// this functions gets the list of tables in which there exists a column which has a foreign key

// table pointing to give table and list of tables. The complete list of tables is passed as the second

// parameter.

function getReferencedByTable(table, tables)

 referencingTables= φ

 for each table1 in tables do

 for each column in table1.columns do

 if column. isForeignKey and column.foreignKeyTable == table then

 referencingTables.add(table1)

break

return referencingTables

end

We can define many other useful functions, but for the sake of simplicity we have defined only

the minimum required functions.

5.3 Steps to Generate API

a) parse the SQL schema file and generate the list of tables

b) for each table in tables do

1. if checkIfManyToMany(table) then continue

29

2. create a class with class name as table name.

3. if temp = getParentTable (table) != null then

a. extend your class to represent the subclass relationship.

4. for each column in table.columns do

a. if column is not foreign key then

i. create getter and setter definitions (mutator) definitions for that

column with column type as type of that field.

5. for each column in getForeignKeys in table do

a. if column is not primary key then

i. create mutator definitions for that column with column type as

column.foreignKeyTable

6. for each table1 in getReferencedByTable(table, tables) do

a. if checkIfManyToMany(table1) then

i. for each col1 in table1.foreignkeycolumns do

1. create iterator definitions for the col1 with column type as

col1.foreignKeyTable where col1.foreignKeyTable !=

table1

ii. else go to step b.

30

b. create iterator definition for table1

In this way we can generate the API code. Similarly, we can also generate the implementation

code. The only difference is in API implementation sub-layer we have to define the body of the

definitions, add constructors and methods to save, update delete and select data along with

methods defined in the API layer.

 In order to perform save, update, delete and select data we should store these table

structures in the class as static objects and perform the corresponding action. We can also

introduce security for preventing any unauthorized activity.

 For select we should include all the fields of the class and its parent class and also fields

of other classes in which this class is a foreign key table as parameters. The type of each

parameter should be a generic filter class if the type is either a string or double. We should use

filters as they give all sorts of permutations and combinations for a given parameter. The

structure of the filter is

class Filter

isString; //either Double or String.

minS, maxS; // incase if it is a string filter.

minD, maxD; // incase if it is double filter.

isRegex; // incase if it a regex.

regex; // value of the regex.

end

In the factory sub layer, all we need to do is provide a means to create an instance of the

corresponding API Class and select method to search for the objects. This can be done by

31

following an approach similar to the one used for developing the API and its implementation.

For Service Layer, we can extend this approach to create a service level object and Web services

by providing JAXB annotations.

 The problem we faced lately with this approach is to find a way to determine the ordering

of a set of pairs. As an ordered set of pairs results in creation of one additional column and we

would not have any idea on how to populate this column automatically unless manually

specified. So, we have specified an annotation to represent an ordered set by adding @ordered in

the comment section of the corresponding column. Most Web applications have a “Select-

Option” pane to select an element. This “Select-Option” pane usually displays some text to the

end user and hides an integer or a key with which applications find the right element. We have

defined annotation called @blindSide to denote a column of a table that appears to the end user

and hides the key of the element in a select-option pane. We have defined an annotation called

@ignoreAtService to denote those columns which should not be shown to the end user. We have

defined an annotation called @apiClassDoc to add the contents following this annotation in the

javadoc section of the API.

 We could easily generate the entire code within few seconds and found out that it is 90-

95% complete. The rest of the codebase deals with adding security snippets which have to be

manually specified. This code snippet should be specified only once and should be changed only

if there is a change in the underlying security model for the system.

32

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We have successfully built a Web application based on SOFEA. We have successfully generated

Persistent Object Layer and Service Layer using our automatic approach. Except for the security

part most of the code is automatically generated. We have successfully defined a few annotations

on an SQL schema to improve our automation process. We have manually developed a Web

frontend which interacts with the defined Web services and have demonstrated that this system

actually works.

In the future, we plan to explore the related issues of caching and transaction

management for persistent objects. We plan to handle the UML association classes. To improve

our ability to extract data from spreadsheets, we will explore the development of annotated

spreadsheet templates. Since we are auto generating the code, we intend to also auto generate a

test suite for testing the generated code. Finally, we plan to extend the code generation process to

implement REST based Web services.

33

REFERENCES

1. Avraham Leff, James T. Rayfield, "Web-Application Development Using the

Model/View/Controller Design Pattern," Enterprise Distributed Object Computing

Conference, IEEE International, p. 0118, Fifth IEEE International Enterprise Distributed

Object Computing Conference, 2001.

2. Erl, T. 2005 Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall

PTR.

3. SOFEA:http://wisdomofganesh.googlegroups.com/web/Life+above+the+Service+Tier+v1_1

.pdf

4. Vosloo, I. and Kourie, D. G. 2008. Server-centric Web frameworks: An overview. ACM

Comput. Surv. 40, 2 (Apr. 2008), 1-33.

5. Kraus, A.K.A., Koch, N.: Model-driven generation of web applications in UWE. In: Model-

DrivenWeb Engineering (MDWE‟07), Como, Italy, July (2007).

6. Fraternali, P. and Paolini, P. 2000. Model-driven development of Web applications: the

AutoWeb system. ACM Trans. Inf. Syst. 18, 4 (Oct. 2000), 323-382.

7. Jaime Gómez, Cristina Cachero. “OO-H: Extending UML to Model Web

Interfaces”.Information Modeling for Internet Applications. IGI Publishing, 2002.

34

8. Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, Maristella

Matera. “Designing Data-Intensive Web Applications”. Morgan Kaufman, 2003.

9. Nora Koch. “Transformations Techniques in the Model-Driven Development Process of

UWE”. Proc. 2nd Wsh. Model-Driven Web Engineering (MDWE‟06), Palo Alto, 2006.

10. Object Management Group (OMG). MDA Guide Version 1.0.1. omg/2003-06-01,

http://www.omg.org/docs/omg/03-06-01.pdf

11. Christensen, E., et al. W3C Web Services Description Language (WSDL). 2001; Available

from: http://www.w3c.org/TR/wsdl.

12. Christensen, E., et al. Web Services Description Language (WSDL) 1.1. 2001; Available

from: http://www.w3.org/TR/wsdl.

13. Chinnici, R., et al. Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language. 2006; Available from: http://www.w3.org/TR/wsdl20/.

14. SOAP. Simple Object Access Protocol 1.2. 2003; Available from:

http://www.w3.org/TR/soap12-part1/.

15. Fielding, R. T. and Taylor, R. N. 2002. Principled design of the modern Web architecture.

ACM Trans. Internet Technol. 2, 2 (May. 2002), 115-150.

16. Jacek Kopecky, Tomas Vitvar, Carine Bournez, Joel Farrell, "SAWSDL: Semantic

Annotations for WSDL and XML Schema," IEEE Internet Computing, pp. 60-67,

November/December, 2007.

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.w3c.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/soap12-part1/

35

17. Dean, M., Schreiber, G. (eds.): OWL Web ontology language reference, W3C

Recommendation, 10 February 2004. Available at: http://www.w3.org/TR/2004/REC-owl-

ref-20040210/

18. O. Lassila and R. Swick, Resource Description Framework (RDF) Model and Syntax

Specification, W3C Recommendation, World Wide Web Consortium, Feb. 1999;

www.w3.org/TR/REC-rdf-syntax.

19. Matthew Horridge, Sean Bechhofer, and Olaf Noppens. Igniting the OWL 1.1 Touch Paper:

The OWL API. OWLED 2007 (submitted), 2007.

20. B. McBride. Jena: A semantic web toolkit. IEEE Internet Computing, 6(6):55–59, 2002.

21. Krys J. Kochut, Amit P. Sheth and John A. Miller, "ORBWork: A CORBA-Based Fully

Distributed, Scalable and Dynamic Workflow Enactment Service for METEOR," Technical

Report #UGA-CS-TR-98-006 Department of Computer Science, University of Georgia,

Athens, Georgia (Fall 1998) pp. 1-11.

22. Ivan Vasquez, John A. Miller and Kunal Verma, "Providing Fault Tolerance for

Transactional Web Services," Technical Report #UGA-CS-LSDIS-TR-06-012, Department

of Computer Science, University of Georgia, Athens, Georgia (September 2006) pp. 1-33.

23. Davor Gornik, “Entity Relationship Modeling with UML”, White Paper, Rational Software.

June 2003.

24. Davor Gornik, “Relational Modeling with UML”, White Paper, Rational Software, June

2003.

http://www.w3.org/TR/REC-rdf-syntax
http://cs.uga.edu/~jam/papers/zLSDISpapers/KSM98.pdf
http://cs.uga.edu/~jam/papers/zLSDISpapers/KSM98.pdf
http://cs.uga.edu/~jam/home/theses/ivan_thesis/ivan_journal.pdf
http://cs.uga.edu/~jam/home/theses/ivan_thesis/ivan_journal.pdf

36

APPENDIX A

Installation Guide

This guide is intended for the developers who would like to generate the code from a SQL

schema file. Please make sure that the following software modules are installed on the

machine where you would like to run the code generator.

1) JDK 1.6

2) Apache Ant

In order to auto generate the code, developers should have the source code of the package

“SQLEater”. Open the ParserConstant.java file present under the source folder of SQLEater

and change the “DESTINATION_FOLDER” to the path where you would like to have your

java code generated (this step is optional). Also, change the “SOURCE_SQL” field to the

path where your SQL schema file is located and save the file (this step is optional). You also

need to modify the additionalConstantsFile.txt to add the appropriate connection url, user

name and password to establish JDBC connection to your database. Open a terminal or

cmd.exe and navigate to the SQLEater project and run the following commands

1) To clean the project, execute “ant clean”.

2) To build the project, execute “ant”.

3) To run the project, execute “ant run”.

The step 3 results in generation of the code in the destination folder.

To run the GlycoVault project follow the above steps with our GlycoVault SQL

schema as the SOURCE_SQL and generate the code. Build a war file using the generated

code along with the appropriate JDBC Driver.

To run the project, you need to install following software on your machine

1) JBoss server.

2) Postgresql database management system.

Run the GlycoVault SQL schema and insert data SQL files to create and initially populate

the PostgreSQL database. This creates the required tables and the necessary data for the

GlycoVault project. Deploy the above generated war file onto the JBoss server. The server

side is now ready for access from either Web service clients or Web browser based user

interfaces.

37

APPENDIX B

SQL Schema for GlycoVault

--

-- Create the database schema for GlycoVault

-- version 1.0

-- Matthew Eavenson, Srikalyan Swayampakula, John Miller

-- Sun Apr 25 13:32:42 EDT 2010

--

DROP SCHEMA public CASCADE;

create schema public;

SET search_path TO public;

DROP TABLE IF EXISTS ControlledObject CASCADE;

…

.

-- ControlledObject

CREATE TABLE ControlledObject (-- @apiClassDoc * ControlledObject is used for controlling access.

 sid bigserial PRIMARY KEY,

 isOwnedBy bigint NOT NULL,

 isReadableBy bigint default null,

 isWritableBy bigint default null,

 publicAccess varchar(20) DEFAULT 'none',

 CHECK (publicAccess in ('read','write','none'))

);

-- Laboratory

CREATE TABLE Laboratory (-- @apiClassDoc * Laboratory provides descriptions of labs.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

);

38

-- User

CREATE TABLE "User" (-- @apiClassDoc * User info for registered users.

 sid bigint PRIMARY KEY,

 worksFor bigint,

 name varchar(255) NOT NULL UNIQUE, -- @blindSide

 password varchar(255) NOT NULL,

 email varchar(255) NOT NULL,

 touched timestamp without time zone NOT NULL DEFAULT Now(), -- @ignoreAtService

 registration timestamp without time zone NOT NULL DEFAULT Now(), -- @ignoreAtService

 lastLogin timestamp without time zone NOT NULL DEFAULT Now(), -- @ignoreAtService

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid) DEFERRABLE,

 CONSTRAINT User_worksFor_fkey FOREIGN KEY (worksFor) REFERENCES Laboratory (sid)

DEFERRABLE

);

-- UserGroup

CREATE TABLE UserGroup (-- @apiClassDoc * UserGroup maintains the set of approved user groups.

 sid bigint PRIMARY KEY,

 -- Group names are short symbolic string keys.

 -- The set of group names is open-ended, though in practice

 -- only some predefined ones are likely to be used.

 -- At runtime $wgGroupPermissions will associate group keys

 -- with particular permissions. A user will have the combined

 -- permissions of any group they're explicitly in, plus

 -- the implicit '*' and 'user' groups.

 groupName varchar(16) NOT NULL, -- @blindSide

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

);

-- MemberOfGroup

CREATE TABLE MemberOfGroup (-- @apiClassDoc * MemberOfGroup holds the user, group relationship.

 "user" bigint NOT NULL,

 grp bigint NOT NULL,

 PRIMARY KEY ("user", grp),

 FOREIGN KEY ("user") REFERENCES "User" (sid),

 FOREIGN KEY (grp) REFERENCES UserGroup (sid)

);

39

-- ExperimentObject

CREATE TABLE ExperimentObject (-- @apiClassDoc * ExperimentObject for inputs/outputs of experiments.

 sid bigint PRIMARY KEY,

 producedBy bigint DEFAULT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

 -- FOREIGN KEY (producedBy) REFERENCES Task (sid)

);

-- Annotation

CREATE TABLE Annotation (-- @apiClassDoc * Annotation holds notes about other controlled objects.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 added timestamp without time zone NOT NULL DEFAULT Now(),

 value varchar(2048) NOT NULL,

 annotates bigint NOT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid),

 FOREIGN KEY (annotates) REFERENCES ControlledObject (sid)

);

-- ExperimentDesign

CREATE TABLE ExperimentDesign (-- @apiClassDoc * ExperimentDesign holds a list of Protocols.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 scientist varchar(256) NOT NULL,

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

);

-- ExperimentSetup

CREATE TABLE ExperimentSetup (-- @apiClassDoc * ExperimentSetup holds a list of ProtocolsVariants.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 scientist varchar(256) NOT NULL,

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 follows bigint NOT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid),

 FOREIGN KEY (follows) REFERENCES ExperimentDesign (sid)

40

);

-- Experiment

CREATE TABLE Experiment (-- @apiClassDoc * Experiment holds a list of experimental Tasks.

 sid bigint PRIMARY KEY,

 follows bigint NOT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid),

 FOREIGN KEY (follows) REFERENCES ExperimentSetup (sid)

);

-- ProtocolType

CREATE TABLE ProtocolType (-- @apiClassDoc * ProtocolType specifies the category of a Protocol.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 descriptionURI varchar(256) DEFAULT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

);

-- Protocol

CREATE TABLE Protocol (-- @apiClassDoc * General plan for an experimental step.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 displayName varchar(256) NOT NULL,

 scientist varchar(256) NOT NULL,

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 classifiedAs bigint NOT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid),

 FOREIGN KEY (classifiedAs) REFERENCES ProtocolType (sid)

);

-- PartOfExperimentDesign

CREATE TABLE PartOfExperimentDesign (-- @apiClassDoc * PartOfExperimentDesign associates

ExperimentDesign with Protocol.

 design bigint NOT NULL,

 protocol bigint NOT NULL, -- @blindSide

 step int NOT NULL, -- @ordered

 PRIMARY KEY (design, protocol, step),

 FOREIGN KEY (design) REFERENCES ExperimentDesign (sid),

 FOREIGN KEY (protocol) REFERENCES Protocol (sid)

41

);

-- ProtocolVariant

CREATE TABLE ProtocolVariant (-- @apiClassDoc * ProtocolVariant is a variant of a Protocol with

parameters specified.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 displayName varchar(256) NOT NULL,

 scientist varchar(256) NOT NULL,

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 isPartOf bigint NOT NULL,

 isVariantOf bigint NOT NULL,

 sequenceNumber integer NOT NULL, -- @ordered

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid),

 FOREIGN KEY (isPartOf) REFERENCES ExperimentSetup (sid),

 FOREIGN KEY (isVariantOf) REFERENCES Protocol (sid)

);

-- WorkflowInstance

CREATE TABLE WorkflowInstance (-- @apiClassDoc * WorkflowInstance indicates which workflow

inserted the data.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL UNIQUE, -- @blindSide

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

);

-- Task

CREATE TABLE Task (-- @apiClassDoc * Task records info about experimetal steps/tasks.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 displayName varchar(256) NOT NULL,

 scientist varchar(256) NOT NULL,

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 dateStart timestamp without time zone NOT NULL DEFAULT Now(),

 dateEnd timestamp without time zone NOT NULL DEFAULT Now(),

 isExecutionOf bigint NOT NULL,

 isControlledBy bigint DEFAULT NULL,

 isPartOf bigint NOT NULL,

42

 sequenceNumber integer NOT NULL, -- @ordered

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid),

 FOREIGN KEY (isExecutionOf) REFERENCES ProtocolVariant (sid),

 FOREIGN KEY (isControlledBy) REFERENCES WorkflowInstance (sid),

 FOREIGN KEY (isPartOf) REFERENCES Experiment (sid)

);

-- UsedByTask

CREATE TABLE UsedByTask (-- @apiClassDoc * UsedByTask relates Task with ExperimentObject.

 task bigint NOT NULL,

 expObj bigint NOT NULL,

 PRIMARY KEY (task, expObj),

 FOREIGN KEY (task) REFERENCES Task (sid),

 FOREIGN KEY (expObj) REFERENCES ExperimentObject (sid)

);

-- Observable

CREATE TABLE Observable (-- @apiClassDoc * Observable indicates the types of experimental outputs.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 displayName varchar(256) NOT NULL,

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 -- monitoredBy bigint NOT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

 -- FOREIGN KEY (monitoredBy) REFERENCES Protocol (sid)

);

-- MonitoredByProtocol

CREATE TABLE MonitoredByProtocol (-- @apiClassDoc * MonitoredByProtocol relates Observable with

Protocol.

 protocolId bigint NOT NULL,

 observableId bigint NOT NULL,

 PRIMARY KEY (protocolId, observableId),

 FOREIGN KEY (protocolId) REFERENCES Protocol (sid),

 FOREIGN KEY (observableId) REFERENCES Observable (sid)

);

-- Parameter

CREATE TABLE Parameter (-- @apiClassDoc * Parameter indicates the types of experimental inputs.

43

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 displayName varchar(256) NOT NULL,

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

);

-- VariedByParameter

CREATE TABLE VariedByParameter (-- @apiClassDoc * VariedByParameter relates Parameter with

Protocol.

 protocol bigint NOT NULL,

 parameter bigint NOT NULL,

 PRIMARY KEY (protocol, parameter),

 FOREIGN KEY (protocol) REFERENCES Protocol (sid),

 FOREIGN KEY (parameter) REFERENCES Parameter (sid)

);

-- ParameterValue

CREATE TABLE ParameterValue (-- @apiClassDoc * ParameterValue holds values of Parameters of

ProtocolVariants.

 sid bigint PRIMARY KEY,

 -- for generality values are strings, in future may need a type specifier?

 value varchar(256) DEFAULT NULL, -- @blindSide

 isValueOf bigint NOT NULL,

 establishedBy bigint NOT NULL,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid),

 FOREIGN KEY (isValueOf) REFERENCES Parameter (sid),

 FOREIGN KEY (establishedBy) REFERENCES ProtocolVariant (sid)

);

-- PhysicalObject

CREATE TABLE PhysicalObject (-- @apiClassDoc * PhysicalObject specifies biological/chemical entities.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 displayName varchar(256) NOT NULL,

 description varchar(256) DEFAULT NULL,

 descriptionURI varchar(256) DEFAULT NULL,

 FOREIGN KEY (sid) REFERENCES ExperimentObject (sid)

);

44

-- DigitalObject

CREATE TABLE DigitalObject (-- @apiClassDoc * DigitalObject holds data from experiments.

 sid bigint PRIMARY KEY,

 hasParent bigint DEFAULT NULL,

 describes bigint DEFAULT NULL,

 isValueOf bigint DEFAULT NULL,

 FOREIGN KEY (sid) REFERENCES ExperimentObject (sid),

 FOREIGN KEY (hasParent) REFERENCES DigitalObject (sid),

 FOREIGN KEY (describes) REFERENCES PhysicalObject (sid),

 FOREIGN KEY (isValueOf) REFERENCES Observable (sid)

);

-- Vector

CREATE TABLE Vector (-- @apiClassDoc * Vector is used when DigitalObject is vector valued.

 sid bigint PRIMARY KEY,

 FOREIGN KEY (sid) REFERENCES DigitalObject (sid)

);

-- ScalarValue

CREATE TABLE ScalarValue (-- @apiClassDoc * Vector is used when DigitalObject is scalar valued.

 sid bigint PRIMARY KEY,

 value varchar(256) DEFAULT NULL, -- @blindSide

 type varchar(15) NOT NULL,

 vId bigint DEFAULT NULL,

 seq bigint NOT NULL, -- @ordered

 storedIn bigint DEFAULT NULL,

 UNIQUE (vId, seq), -- if vId is not null then make sure vId and seq is unique

 FOREIGN KEY (sid) REFERENCES DigitalObject (sid),

 FOREIGN KEY (vId) REFERENCES Vector (sid),

 FOREIGN KEY (storedIn) REFERENCES File (sid)

);

-- FileType

CREATE TABLE FileType (-- @apiClassDoc * FileType indicates the MIME type of the file.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL, -- @blindSide

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

);

45

-- File

CREATE TABLE File (-- @apiClassDoc * File stores a file as a byte array in the database.

 sid bigint PRIMARY KEY,

 name varchar(256) NOT NULL UNIQUE, -- @blindSide

 uploaded timestamp without time zone NOT NULL DEFAULT Now(),

 version varchar(256) NOT NULL,

 contents bytea NOT NULL,

 hasType bigint NOT NULL,

 FOREIGN KEY (sid) REFERENCES DigitalObject (sid),

 FOREIGN KEY (hasType) REFERENCES FileType (sid)

);

-- DescriptorType

CREATE TABLE DescriptorType (-- @apiClassDoc * DescriptorType indicates the category for

PhysicalObject descriptors.

 sid bigint PRIMARY KEY,

 displayName varchar(256) NOT NULL,

 -- ex. organism, cell-type, tissue, disease, molecule-type

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid)

);

-- PhysicalObjectDescriptor

CREATE TABLE PhysicalObjectDescriptor (-- @apiClassDoc * PhysicalObjectDescriptor describe

PhysicalObjects.

 sid bigint PRIMARY KEY,

 namespace varchar(256) NOT NULL,

 identifier varchar(256) NOT NULL,

 displayName varchar(256) NOT NULL, -- @blindSide

 hasType bigint NOT NULL,

 descriptionGroupNumber integer,

 FOREIGN KEY (sid) REFERENCES ControlledObject (sid),

 FOREIGN KEY (hasType) REFERENCES DescriptorType (sid)

);

-- BiologicalSample

CREATE TABLE BiologicalSample (-- @apiClassDoc * BiologicalSample records info about samples used in

experiments.

 sid bigint PRIMARY KEY,

 isActive bool NOT NULL,

 ontoURI varchar(256) DEFAULT NULL, -- @blindSide

46

 location varchar(256) NOT NULL,

 FOREIGN KEY (sid) REFERENCES PhysicalObject (sid)

);

-- SourceSample

CREATE TABLE SourceSample (-- @apiClassDoc * SourceSample records original BiologicalSamples.

 sid bigint PRIMARY KEY,

 source varchar(256) NOT NULL, -- @blindSide

 dateObtained timestamp without time zone DEFAULT Now(),

 FOREIGN KEY (sid) REFERENCES BiologicalSample (sid)

);

-- DerivedSample

CREATE TABLE DerivedSample (-- @apiClassDoc * DerivedSample records BiologicalSamples produced by

experiments.

 sid bigint PRIMARY KEY,

 FOREIGN KEY (sid) REFERENCES BiologicalSample (sid)

);

-- MolecularObject

CREATE TABLE MolecularObject (-- @apiClassDoc * MolecularObject provides info about molecules used

in experiments.

 sid bigint PRIMARY KEY,

 shortName varchar(256) NOT NULL, -- @blindSide

 synonym1 varchar(256) NOT NULL,

 synonym2 varchar(256) NOT NULL,

 ontoURI varchar(256) NOT NULL,

 FOREIGN KEY (sid) REFERENCES PhysicalObject (sid)

);

-- SampleDescriptor

CREATE TABLE SampleDescriptor (-- @apiClassDoc * SampleDescriptor provides descriptions

SourceSamples.

 sid bigint PRIMARY KEY,

 describes bigint NOT NULL,

 seq bigint NOT NULL, -- @ordered

 FOREIGN KEY (sid) REFERENCES PhysicalObjectDescriptor (sid),

 FOREIGN KEY (describes) REFERENCES SourceSample (sid)

);

-- MoleculeDescriptor

47

CREATE TABLE MoleculeDescriptor (-- @apiClassDoc * MoleculeDescriptor provides descriptions of

MolecularObjects.

 sid bigint PRIMARY KEY,

 describes bigint NOT NULL,

 seq bigint NOT NULL, -- @ordered

 FOREIGN KEY (sid) REFERENCES PhysicalObjectDescriptor (sid),

 FOREIGN KEY (describes) REFERENCES MolecularObject (sid)

);

--

-- ALTER TABLE commands required for circular FOREIGN KEY constraints.

-- constraint name required when FOREIGN KEY is NOT NULL.

--

ALTER TABLE ControlledObject ADD constraint ControlledObject_isOwnedBy_fkey FOREIGN KEY

(isOwnedBy) REFERENCES "User" (sid) DEFERRABLE;

ALTER TABLE ControlledObject ADD FOREIGN KEY (isReadableBy) REFERENCES UserGroup (sid)

DEFERRABLE;

ALTER TABLE ControlledObject ADD FOREIGN KEY (isWritableBy) REFERENCES UserGroup (sid)

DEFERRABLE;

ALTER TABLE ExperimentObject ADD FOREIGN KEY (producedBy) REFERENCES Task (sid)

DEFERRABLE;

48

APPENDIX C

Java Doc of Persistent Object Layer

Package edu.uga.cs.glycovault.api

Interface Summary

Annotation
Annotation holds notes about other controlled objects.

BiologicalSample
BiologicalSample records info about samples used in experiments.

ControlledObject
ControlledObject is used for controlling access.

DerivedSample
DerivedSample records BiologicalSamples produced by experiments.

DescriptorType
DescriptorType indicates the category for PhysicalObject descriptors.

DigitalObject
DigitalObject holds data from experiments.

Experiment
Experiment holds a list of experimental Tasks.

ExperimentDesign
ExperimentDesign holds a list of Protocols.

ExperimentObject
ExperimentObject for inputs/outputs of experiments.

ExperimentSetup
ExperimentSetup holds a list of ProtocolsVariants.

File
File stores a file as a byte array in the database.

FileType
FileType indicates the MIME type of the file.

Laboratory
Laboratory provides descriptions of labs.

file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Annotation.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/BiologicalSample.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/ControlledObject.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/DerivedSample.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/DescriptorType.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/DigitalObject.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Experiment.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/ExperimentDesign.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/ExperimentObject.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/ExperimentSetup.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/File.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/FileType.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Laboratory.html

49

MolecularObject
MolecularObject provides info about molecules used in experiments.

MoleculeDescriptor
MoleculeDescriptor provides descriptions of MolecularObjects.

Observable
Observable indicates the types of experimental outputs.

Parameter
Parameter indicates the types of experimental inputs.

ParameterValue
ParameterValue holds values of Parameters of ProtocolVariants.

PhysicalObject
PhysicalObject specifies biological/chemical entities.

PhysicalObjectDescriptor
PhysicalObjectDescriptor describe PhysicalObjects.

Protocol
General plan for an experimental step.

ProtocolType
ProtocolType specifies the category of a Protocol.

ProtocolVariant
ProtocolVariant is a variant of a Protocol with parameters specified.

Removable
Removable object is used to remove objects from database.

SampleDescriptor
SampleDescriptor provides descriptions SourceSamples.

Savable
Savable is used to save objects into database.

ScalarValue
Vector is used when DigitalObject is scalar valued.

SourceSample
SourceSample records original BiologicalSamples.

Task
Task records info about experimetal steps/tasks.

Updatable
Updatable is used to update objects in the database.

User
User info for registered users.

UserGroup
UserGroup maintains the set of approved user groups.

Vector
Vector is used when DigitalObject is vector valued.

file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/MolecularObject.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/MoleculeDescriptor.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Observable.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Parameter.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/ParameterValue.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/PhysicalObject.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/PhysicalObjectDescriptor.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Protocol.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/ProtocolType.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/ProtocolVariant.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Removable.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/SampleDescriptor.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Savable.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/ScalarValue.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/SourceSample.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Task.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Updatable.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/User.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/UserGroup.html
file:///E:/myJava/GVsoap2/dist/javadoc/edu/uga/cs/glycovault/api/Vector.html

50

APPENDIX D

List of WSDL Files

1. http://ra.cs.uga.edu:8080/GVsoap2/PhysicalObjectSoap?wsdl

2. http://ra.cs.uga.edu:8080/GVsoap2/SampleDescriptorSoap?wsdl

3. http://ra.cs.uga.edu:8080/GVsoap2/FileSoap?wsdl

4. http://ra.cs.uga.edu:8080/GVsoap2/ExperimentSoap?wsdl

5. http://ra.cs.uga.edu:8080/GVsoap2/ObservableSoap?wsdl

6. http://ra.cs.uga.edu:8080/GVsoap2/VectorSoap?wsdl

7. http://ra.cs.uga.edu:8080/GVsoap2/PhysicalObjectDescriptorSoap?wsdl

8. http://ra.cs.uga.edu:8080/GVsoap2/TaskSoap?wsdl

9. http://ra.cs.uga.edu:8080/GVsoap2/ScalarValueSoap?wsdl

10. http://ra.cs.uga.edu:8080/GVsoap2/ParameterValueSoap?wsdl

11. http://ra.cs.uga.edu:8080/GVsoap2/DescriptorTypeSoap?wsdl

12. http://ra.cs.uga.edu:8080/GVsoap2/DerivedSampleSoap?wsdl

13. http://ra.cs.uga.edu:8080/GVsoap2/BiologicalSampleSoap?wsdl

14. http://ra.cs.uga.edu:8080/GVsoap2/UserSoap?wsdl

15. http://ra.cs.uga.edu:8080/GVsoap2/ParameterSoap?wsdl

16. http://ra.cs.uga.edu:8080/GVsoap2/MoleculeDescriptorSoap?wsdl

17. http://ra.cs.uga.edu:8080/GVsoap2/FileTypeSoap?wsdl

18. http://ra.cs.uga.edu:8080/GVsoap2/UserGroupSoap?wsdl

19. http://ra.cs.uga.edu:8080/GVsoap2/ProtocolSoap?wsdl

20. http://ra.cs.uga.edu:8080/GVsoap2/DigitalObjectSoap?wsdl

21. http://ra.cs.uga.edu:8080/GVsoap2/ExperimentDesignSoap?wsdl

22. http://ra.cs.uga.edu:8080/GVsoap2/ExperimentObjectSoap?wsdl

51

23. http://ra.cs.uga.edu:8080/GVsoap2/ExperimentSetupSoap?wsdl

24. http://ra.cs.uga.edu:8080/GVsoap2/SourceSampleSoap?wsdl

25. http://ra.cs.uga.edu:8080/GVsoap2/AnnotationSoap?wsdl

26. http://ra.cs.uga.edu:8080/GVsoap2/ProtocolVariantSoap?wsdl

27. http://ra.cs.uga.edu:8080/GVsoap2/MolecularObjectSoap?wsdl

28. http://ra.cs.uga.edu:8080/GVsoap2/ProtocolTypeSoap?wsdl

29. http://ra.cs.uga.edu:8080/GVsoap2/LaboratorySoap?wsdl

30. http://ra.cs.uga.edu:8080/GVsoap2/LoginSoap?wsdl

31. http://ra.cs.uga.edu:8080/qrtPCRReader/ReadqrtPCRExcelSoap?wsdl

52

APPENDIX E

Unit Testing

 We have written a test suite to perform unit testing at the service layer. Since the

entire application is automatically generated, it is good approach to perform the tests using a

good testing framework. We have used JUnit testing framework for testing the API. We have

performed unit testing by creating many objects for each class in the API and invoking the

functions of that class.

 In order to perform testing at API level, we need to have a copy of our

“GlycoVaultTest” package. In order to run the test, we need to make sure that the system has

the postgreSQL installed and it is up and running, the glycovault schema SQL and insert data

SQL files are also installed in the postgreSQL. Also, make sure that Java 1.6 is installed and

Apache ant is also installed. Follow the steps specified in the Appendix A and create a “jar”

file not “war” file. Copy the created jar file into the “jarBox” folder of the GlycoVaultTest.

Run the suite by navigating to GlycoVaultTest package and run “ant clean” to clean the

project, “ant” to build the project and “ant run” to run the suite. If a test case fails then the

program will terminate by printing out the exception to indicate the failure.

