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Abstract

This dissertation consists of a study that examines the importance of indirect energy �ows

in food webs and a multi-taxon gradient analysis study informed by a network perspective.

Food Webs and Network Analysis

Compartment models are widely used to represent ecological networks of stocks and �ows

of conserved substances. Network environ analysis (NEA) has revealed several interesting

properties of �ow�storage networks but can only be applied to systems at a constant steady

state. I developed a computational analog of NEA called dynamic environ approximation

(DEA), which can be used away from steady state. I used DEA to examine the e�ects

of system size and connectance on the importance of indirect energy �ows in a commonly

studied theoretical food web model. Over the full range of parameter values examined, the

mean fraction of energy traveling over indirect paths was 9.2%, but could be as high as 30%.

This quantity increased with system size but peaked at intermediate connectance levels, a

pattern explained by the availability of more pathways at intermediate connectance levels.

Multi-Taxon Gradient Analysis

The extent to which ecological communities are coherent entities as opposed to mere



intersections of species distributions is one of the fundamental questions of ecology. Gra-

dient analysis is commonly used to address this question; however, all such studies have

used organisms from a single guild. This risks missing connections due to non-competitive

interactions, which should be most common among functionally di�erent organisms. I used

two di�erent methods of analyzing species abundance data, elements of metacommunity

structure (EMS) and causal discovery, to examine the importance of species interactions

in structuring communities. The EMS analysis found that the distributions of study taxa

commonly exhibited high coherence, turnover and boundary clumping, the pattern termed

�Clementsian� in EMS. Also, pairs and triplets of directly interacting guilds had higher-than-

expected boundary conjunction values, while those that did not directly interact generally

did not. I also produced a causal interaction network for my study taxa and found that inter-

and intra-guild interactions were equally common. These results highlight the importance

of inter-guild interactions in structuring patterns of cooccurrence.
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Ecological networks, Environ analysis, Food webs, Indirect e�ects, Ecological
communities, Gradient analysis, Elements of metacommunity structure
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Preface: Simplicity

The woods are rich.

Acorns and hickories,

toads, chipmunks, monarch butter�ies

Glorious autumn days

when beech leaves green the sunlight

and poplars paint the ground

And yet I work with symbols

Bloodless on the page,

but lucid, clear

Hieroglyphs showing verbs,

�ows that I glimpse for moments,

when ducks dabble in a lake

or a hawk clutches

the bloody remains of a squirrel

I go

from outside to inside

and then out again

Wanting to transcend
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the hard facts of the land,

the details of this time and place

Waiting for the landscape to become transparent

and to unfold

its intricate simplicity

within my mind
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Chapter 1

Introduction

One of the most common de�nitions of ecology is �the study of how organisms interact with

each other and their nonliving environment� (Brown, 1999). These interactions � predation,

competition, parasitism, pollination, seed dispersal and a myriad others � form networks of

strong and weak links. While a single link may be isolated for study, in the real world, it is

always part of a network, a�ecting and being a�ected by it.

This dissertation describes network-explicit and network-implicit studies of ecological

networks with a focus on trophic interactions. By �network-explicit studies�, I mean those

that examine the network as a network. The network-explicit studies described here are

primarily theoretical in nature; however, inferring a causal network from data, as in Chapter

5, is a network-explicit research. Network-implicit studies, on the other hand, are informed

by the idea of an interaction web but do not model this web explicitly. The multi-guild

gradient analysis described in Chapter 5 is such a study. It envisions a community consisting

of many distinct guilds as a network of interdependencies created by fundamental di�erences

in how organisms make a living, similar to the network of international trade ties created by

economic specialization (Agnew, 2002).

This dissertation consists of a literature review, a new computational method for ana-
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lyzing �ows in ecological models, an application of this method to a commonly studied food

web model, and a �eld study of the importance of interspecies interactions in structuring

biological communities. Chapter 2, the literature review, examines the di�erent questions

that have been asked about ecological networks and how they have been answered. It also

provides an overview of environ analysis, a network analysis method that forms the basis

for Chapters 3 and 4, and argues in favor of using network properties to explain ecological

phenomena.

Traditional environ analysis can only be applied to systems at a constant steady state.

Chapter 3 develops a computationally-oriented generalization of environ analysis, termed

dynamic environ approximation (DEA), and demonstrates its use with some simple mod-

els. Chapter 4 then applies DEA to a commonly studied food web model with the goal of

evaluating the importance of indirect energy �ows in food webs and �nding out what fea-

tures of food web structure determine this, with a focus on the e�ects of network size and

connectance.

Chapter 5 looks at a classic question in ecology � the extent to which ecological communi-

ties are coherent entities as opposed to mere intersections of individual species distributions �

from a network point of view. It simultaneously examines the abundances of taxa belonging

to four interacting guilds � seed plants, soil basidiomycetes, collembola and mesostigmatid

mites � along an elevation gradient, evaluates the coherence of communities, and tests the

hypothesis that coherence is positively related to the number of interacting guilds studied. I

also use a causal discovery algorithm to construct an interaction network for the taxa stud-

ied and investigate whether interguild interactions are more common than intraguild ones.

Finally, Chapter 6 reviews the value and limitations of network approaches to ecology.
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Chapter 2

Literature Review: Ecological Network

Questions and Explanations

�The question is, what is the question?� �John Archibald Wheeler, physicist,

1911-2008

Ecological networks represent systems of pairwise interactions between species or components

of ecosystems. These interactions may be of any type � antagonistic (as in food webs and

host-parasite networks), mutualistic, competitive, or purely physico-chemical.

Many good reviews of both the current state and historical development of network

ecology are available (e.g. Fath and Patten, 1999b, Proulx et al., 2005, Dunne, 2006, Bersier,

2007, Ings et al., 2009), and I will not try to repeat their content here. Rather, this review

will focus on the questions that have been asked about ecological networks and the ways

in which they have been answered. Such a perspective may reveal areas for future research

and clarify or bring into question the assumptions that underlie our research practices. In

particular, I will discuss how features of networks have been explained and how they have

been used to explain ecosystem and community properties.

The most fundamental type of ecological network research is descriptive. This cate-
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gory includes research that simply seeks to identify what interacts with what, as well as

quantitative studies of matter and energy �ow in ecological networks. Studies of network

properties that can only be seen by analyzing models (e.g. Patten, 1986) are also included

in this category if they are oriented toward describing or quantifying these properties more

than explaining them or examining their consequences. A related line of research asks how

networks and network properties change over time. This kind of work spans the spectrum

from mainly descriptive (e.g. Borrett et al., 2006) to mainly explanatory (e.g. Virgo et al.,

2006).

Another prominent type of research attempts to explain why ecological networks have the

structure that they do. This question has been important in the study of food webs and was

later adopted by ecologists studying mutualistic networks; however, it has rarely been asked

about ecosystem models except when highly detailed ones have been incorporated into food

web studies. This disparity may arise from the fact that many ecosystem models are highly

aggregated, so their structure is strongly driven by the modeler's choices. Other studies look

at how disturbances, particularly anthropogenic ones, a�ect network structure and function

(e.g. Cross et al., 2007, Miehls et al., 2009), and how a compartment's position in a network

a�ects the compartment's properties (e.g. Patten and Witkamp, 1967).

Finally, some research tries to use network properties to explain observed phenomena.

This approach has been most prominent in studies that seek to �nd what allows ecological

systems to be stable despite their complexity (May, 1974). It is surprisingly rare elsewhere

in ecology.

Addressing all these types of research is impractical for a review of this length. Rather,

after giving some introductory terminology, I will discuss descriptive research, explanations

of network structure, and network explanations of system characteristics, with a focus on

food webs and ecosystems. I will then make the case for wider use of network explanations

in ecology.
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2.1 Introductory Terminology

Ecosystem models or ecosystem networks trace the �ow of matter or energy, termed the

model's currency, through an ecosystem. A food web displays trophic interactions among a

group of organisms. Unlike an ecosystem model, a food web usually does not include detritus

and detritivores; most food webs are also less aggregated than most ecosystem models. An

interaction web or interaction network can include multiple types of interactions, while a

food web only includes trophic ones.

A mutualistic network is an interaction network depicting a relationship that bene�ts

both parties, such as a pollination network, which depicts connections between plants and

their pollinators, or a common mycorrhizal network (CMN), which depicts connections be-

tween plants and mycorrhizal fungi. The existence of common mycorrhizal networks was

suggested by Newman (1988); previous work on mycorrhizae focused on pairwise interac-

tions.

Many important terms used in network research come from graph theory. A graph

consists of a set of nodes (or vertices) linked by edges, which may be directed or undirected.

Nodes linked by an edge are termed adjacent and the square matrix that has a 1 in the

i, j-th position if nodes i and j are adjacent and a 0 otherwise is called the graph's adjacency

matrix. A sequence of adjacent nodes and edges in which no nodes are repeated is called

a path; if only the �rst and last nodes are repeated, it is called a cycle; in the ecological

literature (e.g. Neutel et al., 2002), the term loop is frequently used. (In graph theory (e.g.

Agnarsson and Greenlaw, 2006), this term typically refers to an edge that starts and ends at

the same node. Here, such edges will be referred to as self-loops and the term �loop� will be

used interchangeably with �cycle�, in keeping with common ecological usage.) The number

of edges in a path is called its length. The distance between two nodes is the length of the

shortest path between them; if no such path exists, we say that the distance is in�nite. The
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diameter of a graph is the distance between the two most distant nodes in the graph.

A component of a graph is a set of nodes such that there is a path between any two

nodes; if there is a path between all possible pairs of nodes in a graph, the graph consists of

one component. A bipartite graph has two sets of nodes, A and B, such that nodes in A are

adjacent only to those in B and vice versa. The degree of a node is the number of edges that

link to it, with self-loops counted twice. In a directed graph, a node has an indegree and an

outdegree (Agnarsson and Greenlaw, 2006).

A network is modular if it is made up of densely connected subnetworks that are loosely

linked among themselves (Newman, 2011). Modules are also referred to as compartments

(Pimm and Lawton, 1980, Krause et al., 2003), communities (Newman, 2011), or blocks

(May, 1974).

In a nested network, a specialist (species with few links) interacts with species that are a

subset of those with which a generalist (species with many links) interacts. In other words,

in a perfectly nested network, a generalist is linked to all the species that a specialist is

linked to, plus some others (Bascompte et al., 2003). It is possible to compute the degree of

nestedness of a network.

In a random graph, vertices are connected by some random process, independently of any

properties they may have. Such graphs may be contrasted with regular graphs or lattices,

in which each vertex is connected to the same number of vertices. Random graphs can be

traversed rapidly and have low clustering, meaning that the neighbors of linked vertices are

no more likely to be linked themselves than any randomly chosen pair of vertices. On the

other hand, in a regular graph, the distance between two randomly chosen points is large

and clustering is high.

A small world network combines the high degree of clustering of a regular network with

the short distances of a random network. It can be made by randomly rewiring some links

in a lattice to create shortcuts between otherwise distant nodes (Watts and Strogatz, 1998)
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or by a preferential attachment process in which new links are more likely to involve nodes

that already have many links (Barabási and Albert, 1999). In a small world network, most

nodes have relatively few links but a few, termed hubs, are linked to large numbers of other

nodes. Speci�cally, the distribution of degrees in a small world network follows a power law,

an equation of the form N = bD−a in which D is a degree and N is the number of nodes

with that degree (Csermely, 2006).

The terms introduced so far deal exclusively with network structure, but others are

important when considering stocks and �ows. Boundary inputs are in�ows coming from

the system's unmodeled environment; similarly, boundary outputs are outputs that leave the

modeled system. A compartment's through�ow is the sum of its in�ows or its out�ows,

which are equal at steady state. (When non-steady state methods are being used, as in

Chapters 3 and 4, it becomes necessary to distinguish between the total in�ow and out�ow

of a compartment.)

2.2 Descriptive Research

2.2.1 Structure

2.2.1.1 Food Webs

The earliest food webs were assembled by Forbes in the late nineteenth century and Pierce et

al. in the early twentieth century (Forbes, 1880, Pimm et al., 1991). Early food web studies

focused on describing trophic interactions in particular communities.

The �rst comparative studies of food web structure came in the late 1970s and revealed

features of food web structure that did not vary with web size. These patterns, often referred

to as food web laws, included scale-invariant ratios of links to species (Cohen, 1977, Briand

and Cohen, 1984); fractions of top, intermediate and bottom species (Briand and Cohen,
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1984); and proportions of links between di�erent categories (top, intermediate and bottom)

(Cohen and Briand, 1984). Also, omnivory and cycles were supposed to be rare and food

chains were seen to be short (Pimm et al., 1991).

Food web laws faced one crucial problem: inadequate data quality. Most of the food webs

used to derive them were small and all were highly aggregated (Dunne, 2006). Two papers

published in 1991 made this problem clear. Polis' food web of the desert of Coachella Valley,

CA had almost �ve times more links per species than the webs used to derive the food web

laws. Food chains were longer than in these webs and looping and omnivory were common

(Polis, 1991). Martinez's web of Little Rock Lake, discussed in a paper provocatively titled

�Artifacts or Attributes?�, was similarly detailed and also revealed looping, omnivory and

long food chains. Martinez also went a step further in lumping species within the web and

recovering results quite similar to those predicted by food web laws (Martinez, 1991).

2.2.1.2 Small-worldness

Since small world networks were �rst described (Watts and Strogatz, 1998), many ecological

networks have been examined for possible small world structure. Montoya and Solé (2002)

examined four food webs, including two webs of the same ecosystem at di�erent times, and

concluded that a small world model �t their degree distributions much better than a random

network. However, Williams et al. (2002) looked at 16 webs and found that the degree

distributions of most of the webs were not small worlds, having fewer highly connected

species than would be expected in a power law distribution.

Mycorrhizal networks have also been examined for small world structure. CMNs can

be conceptualized in three di�erent ways: as plants linked by fungi (the most common

way, re�ecting the geometry seen in nature), as fungi linked by plants, and as bipartite

networks of plants and fungi. Southworth et al. (2005) found that the mycorrhizal network

of an oak savanna appeared random when modeled as trees linked by fungi but had a degree
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distribution consistent with a truncated power law, indicative of small-world structure, when

fungal morphotypes were viewed as nodes linked by trees. It is important to note that in

this study, trees were considered linked if they shared a fungal morphotype; thus, not all

links in this network were present in the actual physical network underground.

2.2.1.3 Nestedness and modularity

Bascompte et al. (2003) found that plant-pollinator and seed dispersal networks were signif-

icantly nested, much more so than food webs.

Pimm and Lawton (1980) attempted to search for compartments in food webs but found

none beyond those de�ned by habitat. However, their work was limited by the fact that

data were scarce and what data they did have were low-resolution. Also, they had to use

a homegrown algorithm for �nding compartments. By contrast, Krause et al. (2003) were

able to use a module-�nding algorithm from social network research to examine �ve fairly

large, high-resolution webs. They found compartments in three of them; in the Chesapeake

Bay web, compartments corresponded to benthic and pelagic organisms. However, when re-

analyzing the highly aggregated webs used in prior studies, compartments were only found

in one web out of fourteen (Krause et al., 2003).

2.2.2 Flows and Dynamics

In 1942, Lindeman's article �The Trophic-Dynamic Aspect of Ecology� attempted to set

out general principles of �food cycle� organization and dynamics, emphasizing energy �ow

(Lindeman, 1942). Production rates, e�ciencies and energy �ow networks came to be of

great interest to ecologists, especially once radioisotope tracers became available after World

War II (Hagen, 1992). Highly labor-intensive studies such as those of Odum (1957) and Teal

(1962) synthesized large amounts of �eld and laboratory data to diagram energy �ow in the

ecosystems they studied. Such studies were often part of the new subdiscipline of systems
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ecology, which drew upon ideas and techniques from cybernetics and general systems theory.

For example, Odum (1960) and Patten and Witkamp (1967), among many others, used

analog computers to simulate ecosystem dynamics.

Descriptive work on �ows and dynamics in ecological networks continues to this day and

includes research ranging from quantitative food webs and ecosystem models (e.g. Banasek-

Richter et al., 2009) to the question of whether fungal links move carbon from plant to plant

in mycorrhizal networks (e.g. Robinson and Fitter, 1999, Pfe�er et al., 2004). However,

the rest of this section will be devoted to one particular branch of systems ecology, environ

analysis. Although this is a highly mathematical area of research, I am classifying it as largely

descriptive because the role that the mathematics of environ analysis plays in the analysis of

ecosystem models is analogous in many ways to that of a microscope or telescope � or H.T.

Odum's �macroscope� (Odum, 1971). It is more of a tool for seeing ecosystem properties

than for explaining them, although some of the properties found by environ analysis have

been at least partially explained within its framework (e.g. Higashi and Patten, 1986).

2.2.2.1 Environ analysis and formalization

Environ analysis grew from the desire to formalize the concept of environment (Patten et al.,

1976, Patten, 1978, Patten and Auble, 1981, Fath and Patten, 1999b). This formalization

was meant to clarify the concept and link it to general systems theory in order to connect

ecological and other systems. For that reason, Patten et al. (1976) drew heavily upon the

state space system theory of Zadeh and Desoer (1963). To gain precision and generality,

this monograph, which �rst outlined the ideas behind environ analysis, spent a considerable

amount of time on the philosophy of causality and highly abstract representations of dy-

namical systems before moving on to the relatively more familiar (to ecologists) territory of

networks and di�erential equations.

In environ analysis, an organism or ecosystem compartment is seen as the nexus of two
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within-system environments, termed its input environ and output environ (Patten et al.,

1976, Fath and Patten, 1999b, Borrett and Freeze, 2011). The input environ of a compart-

ment traces the �ows responsible for the boundary out�ow from that compartment back to

the system boundary; its output environ traces the fate of boundary input to that compart-

ment as it makes its way through the system to boundary outputs (Patten, 1978). Environs

partition the �ows and stocks in an ecosystem so that summing either the input environs

or the output environs of all compartments reconstitutes the system's stocks and �ows. An

environ can and usually does include �ows and compartments that are not directly linked to

the focal one.

Since the original development of the environ concept, environ analysis has primarily

focused on describing ecosystems. Most contemporary work in environ analysis does not

deal speci�cally with environs. Rather, it uses related techniques and mathematical results

involving power series of matrices to analyze and describe the stocks and �ows in ecosystems.

These techniques fall into �ve categories: structural analysis, �ow analysis, storage analysis,

utility analysis and the most recently developed one, distributed control analysis. This

review will discuss the �rst four.

Structural analysis primarily deals with the increase of path numbers with path length.

Path lengths are calculated using powers of the adjacency matrix, A. The i, j-th entry of

the matrix An gives the number of paths of length n between nodes i and j. If a graph

contains cycles, the numbers of paths between nodes increases rapidly with path length; in

an acyclic graph, such an increase may occur for small path lengths but must eventually

stop, as the longest possible path in an acyclic graph with N nodes has length N − 1

(Agnarsson and Greenlaw, 2006). Since ecosystems must contain decomposers and detritus

and reuse decomposed material, essentially all ecosystem models contain at least one cycle

and thus have large numbers of long paths. This property is termed network proliferation

and underlies many of the network properties and hypotheses described below.
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Through�ow and storage analyses Through�ow analysis has probably been the most

fruitful area of work in environ analysis. It begins with the matrix of intercompartmental

currency �ows, F, oriented from columns to rows. (Self-loops, which represent storage, are

not allowed in the F matrix.) The matrix F̄ is then de�ned as F with negative through�ows

on the diagonal. Then, for a system at steady state, forward- and reverse-time ordinary

di�erential equation descriptions of model dynamics, in matrix notation, are:

dx

dt
= 0 = F̄ · 1 + z (2.1)

dx

dt
= 0 = F̄> · 1 + y (2.2)

(The dynamic case will be discussed in Chapter 3.) The �rst equation represents time-

forward dynamics generated by input z. The second denotes reverse-time trace-back dy-

namics beginning at output y,which serves as the forcing condition. In Eq. 2.2, taking the

transpose of F̄ orients it backwards in time.

Through�ow analysis uses �ow intensity matrices, termed N and N′, that convert bound-

ary inputs and outputs into steady-state through�ows:

T = Nz (2.3)

T = N′y (2.4)

Here, N = (I − Gn×n)�1 and N′ = (I − G′n×n)�1, where In×n is the identity matrix,

the elements of G are gij = fij/Tj, and those of G′ are g′ij = fij/Ti. Both G and G′ are

dimensionless. Inputs, z, outputs, y, and through�ows, T, all have the same dimensions, so

N and N′, Eqs. (2a), are dimensionless transformations from boundary �ows, z and y, to
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interior through�ows, T. Both Eqs. 2.3 and 2.4 have in�nite power series equivalents that

re�ect the trajectories of boundary �ows over all interior pathways of all lengths traveled in

reaching the points where the steady-state through�ows, T, are registered: T = (I + G +

G2 + . . . + Gk + . . . )z and T = (I + G′ + G′2 + . . . + G′k + . . . )y.

Storage analysis is similar to through�ow analysis but examines the conversion of bound-

ary inputs to stocks. System dynamics are written using the stock-normalized �ow matrices

C and C′, in which cij = fij/xj and c′ij = fij/xi. (The C matrix is a special case of the

community matrix used in population and community ecology, especially work on stability.)

We then have

dx

dt
= Cx + z (2.5)

dx

dt
= −C′x− y (2.6)

The C and C′ matrices can also be derived from a matrix of �ow probabilities, as is

done in Patten (1985) and Fath and Patten (1999b). Then, at steady state, the matrices

S = (−C)−1 and S′ = (−C′)−1 transform in�ows and out�ows into stock values (Matis and

Patten, 1981):

x = Sz (2.7)

x = S′y (2.8)

Through�ow and storage analyses have revealed several properties of ecosystems. For

example, in most ecosystem models, more currency travels over indirect pathways than direct

ones (Patten, 1986, Higashi and Patten, 1989, Patten, 1990, Borrett et al., 2010). This is

termed network nonlocality or dominance of indirect e�ects, and supports the hypothesis that
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control in ecosystems is also predominantly indirect. Such distributed control has become

an active area of research, drawing on control theory from engineering (e.g. Schramski et al.,

2007).

Network internal ampli�cation is another property found through storage and through-

�ow analyses. It refers to the �nding that currency introduced into one compartment will

often appear more than once in that compartment (Jørgensen et al., 2007). While this has

long been known to happen with elements, network environ analysis revealed that it also oc-

curs with energy (Patten, 1985, 1986, Fath and Patten, 1999b). While such cycling appears

at �rst glance to violate the second law of thermodynamics, no such thing happens. Rather,

the fact that the net �ow of energy through an ecosystem is one-way does not preclude local

cycles. These cycles are like eddies in a stream. In such eddies, water can temporarily �ow

uphill, even though the overall �ow of the stream is downhill.

Network trophic dynamics Network trophic dynamics applies the methods of environ

analysis to networks of trophic interactions, with a focus on concepts, such as trophic levels

and progressive e�ciency, that have traditionally been important to this area of ecology.

The goals of research in network trophic dynamics have been to improve or clarify concepts

and describe new properties of ecosystems.

The trophic level concept has been very important to both community ecology and net-

work trophic dynamics. The background of this idea was put into place by Semper in the late

nineteenth century and Elton in the early twentieth century (Cousins, 1987); however, the

trophic level concept was �rst explicitly articulated by Hutchinson, as quoted in Lindeman

(1942). Hutchinson's trophic levels were groups of organisms, and they were discrete and se-

quential, although Lindeman indicated that higher trophic levels tended to blur (Lindeman,

1942).

Two revisions of the trophic level concept were put forward as solutions to the prob-
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lem of blurring. One, associated with community ecology, sees an organism's trophic level

as a measure of its position in a food web and resolves the blurring problem by allowing

non-integer trophic levels (Levine, 1980, Williams and Martinez, 2004). The other, more

common within ecosystem ecology, retains integer trophic levels and de�nes them as stages

of energy processing (Odum, 1968). In this view, any species may occupy several trophic

levels simultaneously.

Network trophic dynamics starts with the concept of discrete trophic levels as stages

of energy processing and develops it using �ow analysis. This network unfolding shows an

inde�nite proliferation of trophic levels (Higashi et al., 1991), which are sometimes called

transfer levels, as not all �ows are strictly trophic ones (Whipple and Patten, 1993, Whipple,

1998). In general, each transfer level is made up of portions of multiple compartments. The

concept of progressive e�ciency (the ratio of productivities of successive trophic levels),

which only makes sense for discrete trophic levels, can be applied to unfolded networks

(Higashi et al., 1991).

Network trophic dynamics research has described an ecosystem property that has been

termed network homogenization. When matter or energy �rst enters an ecological network,

it travels over pathways that are fairly well de�ned. However, as cycling proceeds, the

amounts �owing over various paths become more equal (Higashi et al., 1993b,a, Fath and

Patten, 1999a, Borrett and Salas, 2010). Other research in network trophic dynamics has

characterized transfers between trophic levels using information theory (Higashi et al., 1991),

partitioned currency �ows into �rst passage and cycling (Higashi et al., 1993b), and linked

environ analysis to the energy-based analyses of H.T. Odum (Patten, 1992).

Utility analysis Ecological relationships are classi�ed by whether each species bene�ts

from or is harmed by the relationship. For example, a competitive relationship is repre-

sented as (-,-), a mutualistic one as (+,+), and predation as (+,-). This can be extended
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to species that interact only indirectly. For example, in a three-species food chain, the pri-

mary producer and predator have an indirect mutualistic relationship because an increase

in producer biomass bene�ts the predator by increasing prey abundance and and increase in

predator abundance bene�ts the producer by reducing herbivory.

Utility analysis attempts to use �ow matrices to systematically infer the ultimate rela-

tionships between species or ecosystem compartments. This is done using power series of the

D matrix, which is de�ned as dij =
fij−fji

Ti
and dji =

fji−fij
Tj

. (Since, as before, self-loops are

disallowed, dii = 0.) Essentially, the D matrix describes whether a compartment obtains a

net gain or loss of currency in an interaction and scales this gain or loss by the compartment's

total through�ow (Patten, 1991).

The D matrix describes local interactions. To obtain ultimate interactions, local interac-

tions are integrated over the network using a power series: U = I+D+D2 + ... = (I−D)−1.

However, U does not always exist, as the power series only converges when the magnitude of

the dominant eigenvalue of D is less than one (Patten, 1991). In addition, the interpretation

of the power series used to compute U is less straightforward than the interpretation of those

used to compute N and S.

Despite these di�culties, utility analysis has been used to demonstrate two related prop-

erties of ecosystems. The �rst, network synergism, is the tendency for ultimate utilities to

be more positive than direct utilities (Fath and Patten, 1998), while the second, network

mutualism, is the tendency for ultimate utility matrices to contain a greater number of pos-

itive entries than direct utility matrices (Fath, 2007). Network synergism is universal but

network mutualism is not.

Utility analysis as currently practiced su�ers from some conceptual di�culties. The D

matrix is derived from the �ow matrix, which is a purely descriptive, �bookkeeping� model

and says nothing about the functional forms of causal relationships. Environ analysis typi-

cally assumes linear, donor-dependent dynamics, but this does not work for utility analysis.
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For example, under donor-dependent dynamics, the producer and predator species in a

three-species food chain cannot have a mutualistic relationship because an increase in the

predator's abundance has no e�ect on the herbivore and, thus, no e�ect on the producer.

Similarly, if the dynamics are purely recipient-controlled, an increase in producer biomass

cannot a�ect the herbivore or predator. However, utility analysis demonstrates indirect mu-

tualism in three-species food chains (Patten, 1991), implying that �ow rates depend on both

donor and recipient abundance. This makes good biological sense, but it is disturbing that

such a substantive dynamical assumption has crept into the analysis without anyone having

explicitly made it.

Another di�culty with performing utility analysis based on a purely phenomenological

model is that investigating whether a species bene�ts from another one means asking what

would happen to species i if the abundance of species j changed. The �ow matrix, being

purely observational, gives us no information about what would happen to the system under

such an intervention or perturbation (Pearl, 2009). A model that explicitly describes the

causal relationships between species or compartments is necessary.

How, then, might we perform utility analysis? A possible approach would use the com-

munity matrix, K, which gives the coe�cients of a generalized Lotka-Volterra model (the

direct e�ects of each species on all other species) or could be extended to include other

functional forms, in which case it would have to be evaluated at a stable �xed point. The

community matrix gives the signs of local utility, but to perform the scaling that takes into

account how important a particular �ow is to a compartment, it is necessary to transpose the

community matrix and multiply it by a matrix containing the state values on the diagonal:

D = K>x∗ (2.9)

In order to �nd ultimate utility, it is necessary to keep in mind that utility does not
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propagate over the network; only in�uence propagates. Therefore, we must use a power

series of K and then scale it as in Eq. 2.9 to compute utility:

U = (I + K + K2 + ...)>x∗ (2.10)

The question then becomes whether this power series is convergent. The constraints

imposed upon the community matrix by an ecosystem model with a conservative currency

should increase the probability of convergence. However, even if this particular approach to

utility analysis fails, any subsequent attempts must obey two basic principles: utility can

only be calculated for a causal model, and utility does not propagate.

2.3 Explanations of Network Structure

2.3.1 Food Webs

Two types of models have been used to explain food web structure: community and evolu-

tionary models. In community models, species and their traits are taken as given; the model's

goal is to describe the rules by which these traits result in observed network structures. In

evolutionary models (e.g. Rossberg et al., 2005), species traits can change or speciation can

occur. The model still needs some linking rules, but the emphasis is on the consequences of

evolution. This review will only discuss community models.

The cascade model of food web structure was proposed to explain food web laws and

acyclicity (Cohen and Newman, 1985). This model makes the assumption that species in a

food web can be placed in order along some dimension such that a consumer can only eat

species that rank lower than itself along that dimension (Cohen, 1978, Cohen et al., 1990).

For reasons of stability, connectance is assumed to decline with species richness; thus, the

number of links per species is constant (Pimm et al., 1991).
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The niche model (Williams and Martinez, 2000) is similar to the cascade model in assign-

ing each species a random �niche value�. However, instead of allowing each species to eat

anything with a lower niche value, it assumed the each species could feed within a distribu-

tion centered on a random niche value lower than that of the consumer species (Williams and

Martinez, 2000). The niche model embodies the assumption that connectance, not the num-

ber of links per species, remains constant as a food web grows in size (Martinez, 1992, 1993).

It predicts a number of food web characteristics, including fractions of top, intermediate and

basal species, the variances of numbers of prey and predators a species has, the mean and

standard deviation of food chain length, and the prevalence of cannibalism and omnivory.

Williams and Martinez's choices of parameters to measure were not arbitrary; rather, they

were related to previously identi�ed patterns in food web structure, as described above.

The nested hierarchy model (Cattin et al., 2004), was meant to model phylogenetic

constraints on species' potential food sources, although it does not explicitly incorporate

evolution. It shares a basic structure with the niche model but, unlike the cascade and

niche models, can give a consumer a set of prey that are not contiguous in niche space.

The nested hierarchy model gives a better �t to the data than the niche model with regard

to some network features but performs worse with regard to many others (Martinez and

Cushing, 2005). Other modi�cations of the niche model to allow non-contiguous sets of prey

species have been developed, including the generalized niche model (Stou�er et al., 2006),

the minimum potential niche model (Allesina et al., 2008) and the probabilistic niche model

(Williams et al., 2010). The method by which the latter two models were tested against data

di�ers in important ways from how earlier models were tested and will be discussed below.

2.3.2 Mutualistic Networks

The structure of mutualistic networks has been studied using models similar to those used

for food webs, albeit less work has been done in this area. Pires et al. (2011) actually
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applied the niche and cascade models, modi�ed for bipartite networks, to plant-pollinator

and plant-frugivore networks and obtained a good �t, which they explained with the fact

that these mutualisms are based on consumer-resource relationships (Pires et al., 2011). An

earlier paper, Santamaria and Rodriguez-Gironés (2007), tested models incorporating trait

complementarity, barriers, or both. They concluded that both were involved in structur-

ing plant-pollinator networks; however, they tested the models in an unusual way. Rather

than comparing individual model realizations to data, Santamaria and Rodriguez-Gironés

regressed network nestedness against connectance and number of links using real and sim-

ulated data and judged the goodness of �t of a model by how closely it approximated this

regression.

2.3.3 How Should We Evaluate Models of Network Structure?

No model describes all aspects of the entity it represents. If it did, it would be as complicated

as nature itself and therefore useless as an aid to understanding. This simple realization has

important implications for how models should be tested against data.

Articles such as Williams and Martinez (2000) compare models to data by computing a

number of summary statistics and comparing modeled values to observed ones. However,

recent papers such as Allesina et al. (2008) and Williams et al. (2010) use a likelihood-

based approach that evaluates models based on how well they reproduce the presence or

absence of individual links in a web. Similarly, in �Current food web models cannot explain

the overall topological structure of observed food webs�, Fox (2006) quanti�ed a measure

called structural stability for real, niche model, and cascade model food webs in order to

test the performance of the models in predicting the �details� of web structure. Fox starts

out by saying that food web models attempt to explain observed patterns in web structure,

which is correct, but quickly slides to �the rules governing food web topology� (Fox, 2006),

apparently without any awareness of the huge step he has just taken. While these papers
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share the seemingly unobjectionable goal of subjecting models to more rigorous tests, they

may focus too much on the details of food web structure.

The structure of real food webs is determined by both general factors such as body size

and nutrient stoichiometry and a myriad of natural history details ranging from the secondary

metabolite composition of plants to the times of day when particular animals are active. This

makes the food web itself a poor object of explanation, as a small change in the biology of

the species in the web will change the detailed structure of the network. To understand

why this makes a given food web a poor object of explanation, consider a speeding driver

who crashes into another vehicle. When blamed for having caused the accident by speeding,

he replies that if he hadn't eaten breakfast that morning, he also would not have had that

accident, so there is no reason to single out his speeding as having caused the crash. The

driver is de�ning �that accident� very narrowly so that a small change would result in him

not having had �that accident�, even if he would likely have had a similar one (Gar�nkel,

1981).

Just as we are not interested in why the speeding driver's accident happened at the

exact place and time that it did, we do not really want to know why a particular food

web has the precise structure that it does.1 Such an explanation, if it existed, would be

too detailed to be comprehensible and would tell us nothing about food webs other than

the one under study. A scienti�cally useful model should explain the regularities of food

web structure, not the accidental features of particular webs. Therefore, such models are

better judged by their prediction of ecologically interesting summary statistics or network

descriptors, as in the older literature, than by their prediction of the presence or absence of

individual links, as in the likelihood approach. Structural stability may well be a network

1The biochemist and writer Nick Lane makes the same point when he writes, �The quest for the origin
of life is not an attempt to reconstruct what happened at 6:30 a.m. on Thursday morning in the year 3,851
million BC, but for the general rules that must govern the emergence of any life, anywhere in the universe,
and especially on our planet, the only example we know� (Lane, 2009).
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characteristic worth predicting, but we should test how well food web models predict this or

other characteristics only if we are interested in the characteristics themselves rather than

using arbitrary characteristics as a way of quantifying the details of web structure.

2.4 Network Explanations

In the 1960s, two working-class Boston neighborhoods were the subjects of urban renewal

plans. The residents of Charlestown were able to successfully organize to resist the plans;

those of the West End were not. Comparing sociological studies of the two neighborhoods

(as well as others), Granovetter (1973) hypothesized that West End residents were unable to

organize because their community was fragmented into tight cliques with few bridges, while

the Charlestown residents, who had more opportunities for forming ties between people who

were not relatives or close friends, could e�ectively organize against the city's plans.

Granovetter's explanation of the di�erent responses of the two neighborhoods is of a

particular kind. It uses an aspect of network structure (the abundance or scarcity of weak

ties) to explain an observed macro-level property (the ability or lack of ability to organize).

In another example, Eagle et al. (2010) found a strong positive correlation between the

diversity (but not volume) of phone contacts people in a community had and the prosperity

of that community. They interpreted this �nding to indicate that diversity of social contacts

helps community development, helping to explain it.

2.4.1 Diversity and Stability

In ecology, network explanations have been most prominent in research on the relationship

between diversity and stability. A good history of this line of work is given by Justus (2008),

so I will only address its network-related aspects.

The idea that species diversity raises community stability was �rst articulated in the late
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1940s and 1950s. MacArthur (1955) de�ned stability as the tendency of a perturbation in the

numbers of one species in a food wed to diminish as it was propagated to other species in the

web. His conception of stability was quantitative � an ecosystem could be more or less stable,

not just stable or unstable � and based on energy �ow considerations. MacArthur reasoned

that if a food web had many links, unusual concentrations of energy in one compartment

would be rapidly distributed throughout the web. Furthermore, if a species had many prey

items, an increase in its abundance would a�ect each prey species only a little. Thus, species

richness would stabilize an ecosystem.

Despite some empirical and theoretical work suggesting that the relationship between

ecosystem complexity and stability was not a simple one, this consensus lasted through the

early 1970s. In 1972, however, Robert May published a paper in Nature entitled, �Will a large

complex system be stable?� (May, 1972). This was followed by Stability and Complexity in

Model Ecosystems (May, 1974). Both the book and the paper showed that, in classic Lotka-

Volterra community models with randomly chosen interaction coe�cients, stability actually

became less likely as species were added to the system. Increasing connectivity (the fraction

of possible connections among community members that actually exist) or mean interaction

strength also lowered the probability that a system would be stable.

At this point, it is worth comparing May's and MacArthur's work on complexity and

stability. MacArthur's argument was qualitative � only one equation appears in the paper,

and that is for a purported index of stability � but his conception of stability was a quanti-

tative, graduated one, albeit vaguely de�ned. MacArthur reasoned in terms of energy and

the dissipation of unusually high amounts of energy in a compartment. May, on the other

hand, used the more abstract interaction coe�cients of Lotka-Volterra models and de�ned

stability as local or Lyapunov stability. Under this de�nition, a system is stable if, after an

in�nitesimal perturbation, all populations return to equilibrium, de�ned in the mathemati-

cal sense of no change in population numbers. If the system is not at equilibrium to begin
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with, this stability concept does not apply. However, a �eld ecologist would be extremely

surprised to see all populations remain absolutely constant year after year, even in the ab-

sence of disturbance. Living systems change, although they do so within bounds. Most of

the post-May attempts to show how complex communities can be stable have focused on one

or another of his randomness assumptions; however, the simple equating of stability with

absence of change is equally open to question.

Despite his repeated use of the word �population�, MacArthur's conception of food webs

was an ecosystem one, couched in terms of energy �ow rather than the more abstract interac-

tion coe�cients of Lotka-Volterra models. MacArthur assumed that there was a limit to how

much energy a predator population of a given size could use, so there could not be a large

number of strong links. May's Lotka-Volterra models were subject to no such constraint.

Other ecologists have studied the e�ects of interaction parameters to determine how real-

life complex ecosystems can persist. Yodzis showed the importance of parameter choice in

forty real food webs, assigning interaction coe�cients in a way guided by the real biology

of each species (Yodzis, 1981). Yodzis performed a test in which all interaction parameters

were randomly permuted while preserving topology and self-limitation. Almost none of the

resulting models were stable. Switching pairs of coe�cients rather than individual numbers

produced a similar but somewhat weaker result. Clearly, real ecological interaction strengths

are not random and this nonrandomness is biologically signi�cant.

Interaction strengths again come to the forefront in �Weak trophic interactions and the

balance of nature� (McCann et al., 1998). The models discussed in this paper, while similar

to Lotka-Volterra models in that population interactions are controlled by the product of

predator and prey abundances, incorporate logistic growth of the basal species and consumer

preference for one prey type over another, which results in weak links. These weak links

stabilize trophic interactions in a way similar to MacArthur's original conception. The

introduction of weak links changes chaotic dynamics to oscillatory ones and oscillations to
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equilibria.

McCann et al. do not address any form of stability; however, it has been found that

selectively removing weak links from an ecosystem model increased the time it took to

approach equilibrium after a disturbance (Pinnegar et al., 2005). Interestingly, Allesina and

Tang (2012) analytically found that, in Lotka-Volterra predator-prey models, weak links

should actually be destabilizing, but their use of models without a saturating functional

response and the fact that they assigned prey and predator interaction strengths indepently

of each other limits the biological applicability of their work. Their focus on local stability

is also problematic for the reasons described above.

2.5 Conclusions and Future Directions

One of the primary goals of science is the explanation of natural phenomena. Some of the

most important theories in all of science gained their status because of the explanations they

provided. Newton's theory of gravity explained Kepler's laws of planetary motion and gained

acceptance because of its explanatory successes (Toulmin, 1961, Putnam, 1991). The theory

of evolution by natural selection explained why species change, as well as other facts such

as biogeographical distributions and patterns of embryological development. The theory of

plate tectonics explained correspondences between the shapes of continents, as well as the

locations of earthquakes and volcanoes and the distributions of fossils.

In the social sciences, network structure has been used to explain various phenomena, as

discussed above. In a more ecologically relevant example, Rothenberg et al. (1998) describe

a population at high risk for contracting HIV (prostitutes, injecting drug users, and their

sexual partners) in which HIV transmission was, in fact, low. This is explained by the fact

that the social and sexual networks in this population were highly fragmented, with no highly

connected subgroups (Rothenberg et al., 1998). By contrast, a syphilis outbreak in another
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population was associated with an increase in network cohesiveness (Potterat et al., 1999).

Network-oriented ecologists have come up with a plethora of network properties and

measures, including degree distributions, mean trophic level, Finn's cycling index, ascen-

dency, the ratio of indirect to direct �ows, network homogenization, network mutualism,

and many others (Borrett and Salas, 2010, Fath et al., 2001, Ulanowicz, 1997). The drivers

of these properties have been studied, but the properties themselves have, with the excep-

tion of research on stability, not been used as explanations themselves. If such uses are

possible, as I believe they are, this is a tremendous missed opportunity; if they are not pos-

sible, empirically-oriented ecologists may justi�ably ask why they should care about all this

network stu�.

What kinds of community and ecosystem properties might network characteristics be

able to explain? Some possibilities include invasibility, susceptibility to eutrophication and

biomagni�cation (a high amount of cycling should increase biomagni�cation), and di�erences

in ecosystems' resilience and resistance to perturbations. For example, it would be very

interesting to �nd out whether communities that withstand extinctions well have higher

proportions of indirect energy �ow than less robust systems. Such work will require close

collaboration between empirical and theoretical ecologists; ideally, we should try to do both

kinds of research.

I am not arguing that explanation is the only thing network ecologists should be doing.

Descriptive work continues to be important, as does theoretical modeling. Yet, we are in the

business of explaining nature and network explanations may be the most important thing

systems ecologists have to o�er to the rest of the discipline.
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Chapter 3

Dynamic Environ Analysis of

Compartmental Systems: A

Computational Approach1

1Shevtsov, J., Kazanci, C. and B.C. Patten. 2009. Ecological Modelling. 220:3219-3224. Reprinted here
with permission of the publisher.
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Abstract

Ecosystems are often modeled as stocks of matter or energy connected by �ows. Network

environ analysis (NEA) is a set of mathematical methods for using powers of matrices to

trace energy and material �ows through such models. NEA has revealed several interesting

properties of �ow�storage networks, including dominance of indirect e�ects and the tendency

for networks to create mutually positive interactions between species. However, the applica-

bility of NEA is greatly limited by the fact that it can only be applied to models at constant

steady states. In this paper, we present a new, computationally oriented approach to environ

analysis called dynamic environ approximation (DEA). As a test of DEA, we use it to com-

pute compartment through�ow in two implementations of a model of energy �ow through an

oyster reef ecosystem. We use a newly derived equation to compute model through�ow and

compare its output to that of DEA. We �nd that DEA approximates the exact results given

by this equation quite closely � in this particular case, with a mean Euclidean error ranging

between 0.0008 and 0.21 � which gives a sense of how closely it reproduces other NEA-related

quantities that cannot be exactly computed and discuss how to reduce this error. An appli-

cation to calculating indirect �ows in ecosystems is also discussed and dominance of indirect

e�ects in a nonlinear model is demonstrated.

3.1 Introduction

Compartment models (Matis et al., 1979) are widely used to represent ecological networks of

stocks, xi (i = 1, 2, .., n), and �ows, fij (i, j = 1, 2, .., n), of conserved substances (energy or

matter). The �ows are generated by boundary inputs, zj, and they terminate in boundary

outputs, yi . Through�ows are the sums of in�ows, T in
i , and out�ows, T out

i , to and from

each stock. Within-model environments of the compartments are environs (Patten, 1978).

These may be found using the system's mathematical description by network environ analysis
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(NEA), a set of methods derived from Leontief (1936, 1966) input�output analysis. NEA

has revealed several interesting properties of �ow�storage networks, including dominance of

indirect e�ects (Patten, 1984, Higashi and Patten, 1989) and the tendency for networks to

create mutually positive interactions between species (Patten, 1991).

At least three aspects of dynamical behavior limit the applicability of present NEA meth-

ods. (1) The methodology can only be applied to models at constant steady states where

inputs balance outputs. This greatly limits the range of applicability because (2) not all

models reach constant steady states, and (3) those that do may also have signi�cant, but

unanalyzable, transient behavior. Previous attempts to respond to these limitations and

develop methods for non-steady-state linear (Hippe, 1983) as well as nonlinear (Hallam and

Antonios, 1985) systems have not found use, in part because of their mathematical di�culty.

This paper describes a computational approach to dynamic environ analysis. Like NEA,

the dynamic methodology can be applied to any compartment model that satis�es two

properties. First, either all compartments that have an input must have a boundary output

or, failing that, every block of compartments that receives an input must have a boundary

output. Second, at least one compartment must receive input from outside the system to

prevent system descent to the zero state (although zero-input transient dynamics from a

nonzero initial state may be of interest, and could be analyzed using DEA).

3.2 The method

3.2.1 Overview of standard environ analysis

For a compartmental system, let xn×1 = (xi), zn×1 = (zj), and yn×1 = (yi) be stock, input,

and output vectors, respectively; let 1n×1 be a vector of ones, and F> the transpose of the

matrix of �ows, Fn×n = (fij). We de�ne F̄ as the �ow matrix F with negative through�ows

on the diagonal, so f̄ = fij for i 6= j and f̄ = =Ti . Then, for a system at steady state,
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input- and output-driven ordinary di�erential equation descriptions of model dynamics, in

matrix notation, are

dx

dt
= 0 = F̄·1 + z (3.1a)

0 = −F̄> · 1− y (3.1b)

The �rst equation represents time-forward dynamics generated by input, z. The second

denotes reverse-time trace-back dynamics beginning at output, y, which serves as the forcing

condition. (The �ows z and y may be termed boundary �ows.) In Eq. 3.1b, taking the

transpose of F̄ orients it to backward movement of time, signi�ed by the negative signs of

both terms.

Standard NEA converts boundary inputs (in output-environ analysis) and outputs (in

input-environ analysis) into steady-state through�ows, Tn×1 = (T in
i ) = (T out

i ), and storages

(stocks), xn×1 = (xi), employing �ow intensity matrices, Nn×n and N′nÖn for through�ow

analysis, and Sn×n and S′n×n for storage analysis:

T = Nz = N′y (3.2a)

x = Sz = S′y (3.2b)

Here, N = (I=Gn×n)=1 , N′ = (I=G′n×n)−1 , S = =C−1n×n , and S′ = −C′−1n×n , where

In×n is the multiplicative identity matrix, gij = fij/Tj and cij = fij/xj . Both G and G′ are

dimensionless, while C and C′ have the dimensions of reciprocal time; note that C is the

familiar �community matrix� used in population and community ecology.

Inputs, z, outputs, y, and through�ows, T, have the same dimensions, therefore N and
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N′, Eq. 3.2a, are dimensionless transformations from boundary �ows, z and y, to interior

through�ows, T. Both Eqs. (2a) and (2b) have in�nite power series equivalents re�ect

trajectories of the boundary �ows over all interior pathways of all lengths traveled in reaching

the points where the steady-state through�ows, T, are registered. For Eq. 3.2a, these series

are

T = [I + G + G2 + · · ·+ Gk + · · ·]z (3.3a)

= [I + G′ + G′2 + ···+ G′k + ···]y (3.3b)

3.2.2 The dynamic case

The equation that governs the dynamics of a single compartment k is

dxk
dt

= T in
k (t)− T out

k (t) (3.4)

where T in(t) and T out(t) are functions that represent rates of input to and output from

compartment k at time t. Note that T in (t) is a k combination of environmental and

inter-compartmental �ows:

T in
k =

n∑
i=1

fki(t) + zk(t) (3.5)

Combining Eqs. 3.4 and 3.5, we get, for i 6= k,

n∑
i=1

fki(t) + zk(t) = T out
k +

dxk
dt

(3.6)

As before, we de�ne G, the �ow matrix normalized with respect to through�ows (T out
k ),

as gik = fik/Tout . Replacing F with G in Eq. 3.6, we get
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Figure 3.1: Energy �ows in an oyster reef ecosystem. The stock and �ow values are for a
constant steady state. Note that only Compartment 1 receives direct boundary in�ow. From
Patten (1986).

zk −
dxk
dt

= T out
k −

n∑
i=1

gkiT
out
i (3.7)

Using matrix notation, the equation above can be expressed as follows:

z− dx

dt
= (I−G)Tout (3.8)
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Step Description Implementation in oyster
model analysis

1 Numerically simulate the system
using discrete time steps, δt, to

obtain stocks, x(tm)

δt = 0.025 day

2 At time steps ∆t ≥ δt, compute
inputs z(tm), outputs y(tm),
interior �ows F(tm) and
through�ows T(tm)

∆t = 0.25 day (one time unit
in the empirical model)

3 Letting VNEA denote any of Eq.
3.2 transformation matrices (N,

N′, S, or S∗) relating these
quantities, derive corresponding

DEA versions, VDEA

The NDEA matrix was
calculated using a moving

window of length 20

4 Perform any of the customary
NEA computations using VDEA

instead of VNEA matrices

As a test of the method, T
was calculated using the
equation T = NDEAz.

Indirect �ows were calculated
as NDEA − I−G.

Table 3.1: Steps of dynamic environ approximation and illustration using oyster reef model.

Assuming that the matrix I=G is invertible and N = (I=G)=1 as before, we get

N(z− dx

dt
) = Tout (3.9)

Note that at steady state, dx/dt = 0 and the above equation reduces to Eq. 3.2a.

We will now show how N is obtained in the dynamic case, where dx/dt 6= 0.

3.2.3 Dynamic environ approximation

The constant matrices G and G′ of static NEA do not re�ect the reality that systems and

their �ow coe�cients change over time, including the (in�nite) time required for the power

series in Eq. 3.3a to become equal to the transformation matrices (I=G)=1 and (I=G′)=1 of
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Eqs. 3.2. In NEA, the matrix powers in Eq. 3.3a are interpreted as corresponding to pathway

lengths, implying that (as k → ∞) all pathways of all lengths are utilized in the limit in

bringing T (Eqs. 3.3) to its measured or modeled value. In through�ow analysis, paths are

pathways lacking self-loop subsequences, ...i→ i→ ...→ i.... If each adjacent link, denoting

a pathway of length 1, is associated with a discrete time of passage, ∆t = tm+1=tm , then the

time required to traverse pathways of lengths m = 0, 1, 2, ...,∞ is m∆t. Therefore, matrix

powers may also be viewed as representing numbers of time steps (Patten, 1985, Patten et al.,

1990). This interpretation is helpful in understanding dynamic environ approximation. DEA

involves four computational steps:

Step 1. Generate a numerical solution of the system di�erential equations (Eq. 3.1a or

3.1b) using discrete computational time steps, δt, to obtain stocks, x(tm). This computa-

tional interval may be constant or time-varying; in the latter case, it will be necessary to

interpolate x(tm) for all integer values of m until the end of the time series.

Step 2. At sampling times ∆t = nδt, where n is an integer, compute from the simulated

values at times tm the NEA quantities indicated in Eqs. 3.1a-3.2b: inputs z(tm), outputs

y(tm), interior �ows F(tm) and through�ows T(tm).

Step 3. Letting VNEA denote any of the Eq. 3.2 transformation matrices (N, N′, S, or

S′) relating these quantities, derive corresponding DEA versions, VDEA.

Step 4. Perform any of the customary NEA computations using VDEA instead of VNEA

matrices.

Integer powers, m, of any scalar or matrix quantity, say W, correspond to m=1 repeated

multiplications of that quantity: Wm = W ·W · ... ·W (m terms). The innovation behind

DEA is the recognition that this makes it possible to substitute a non-constant, time- and

pathway-varying product series for each constant-generated time- and pathway-varying term

of the NEA power series. Thus, if the generalized NEA form of the power series in Eq. 3.3a

is
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VNEA = W0 + W1 + W2 + W3 + ···+ Wm + ... (3.10a)

= I + W + W·W + W·W·W + ···+ [W·W·...(m terms)...·W] + ... (3.10b)

then the corresponding DEA form can be written as:

VDEA(t0) = V0 + V1 + V2 + V3 + · · ·+ Vm + ... (3.11a)

This expression can be expanded to get:

VDEA(t0) = W0 + [W0 ·W1] + [W0 ·W1 ·W2] + · · ·+ [W0 ·W1 ·W2 · ... ·Wm] + ... (3.11b)

where W0 = I. Truncation after m+ 1 terms gives the approximation:

VDEA(t0)≈W0 + [W0·W1] + [W0·W1·W2] + ···+ [W0·W1·W2·...·Wm] (3.11c)

where V and W represent any appropriately related pair of NEA matrices. Here, m+ 1

is the length of the longest product in the series as well as the number of terms in the sum.

In general,

VDEA(tk) =W(tk) + [W(tk)·W(tk + 1)] + [W(tk) ·W(tk+1) ·W(tk+2)] + ···

+ [W(tk) ·W(tk+1) · ... ·W(tk+m)] (3.11d)

These calculations can be thought of as stepping a moving window of �xed length m

along the simulated dynamics at a �xed sampling interval, ∆t, which must be at least as
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large as the numerical integration step size. At each sampling step, a value for VDEA(tk) is

calculated. The interpretation of VDEA is simplest when ∆t = 1.

The forms for VDEA = N and VDEA = N′ (with W0 = G0 = G′0 = I omitted from the

m > 1 terms, as multiplication by I does not a�ect the results) are as follows:

NDEA(tk) = I + G(t1) + G(t1)·G(t2) + G(t1)·G(t2)·G(t3) + ... (3.12a)

N′DEA(tk) = I + G(t1) + G(t1)·G(t2) + G(t1)·G(t2)·G(t3) + ... (3.12b)

where G is the matrix of �ows normalized by donor through�ows and G′ is the matrix of

�ows normalized by recipient through�ows. Using this methodology, non-steady- or steady-

state analyses can be performed, and a dynamic analysis applicable to nonlinear as well as

linear systems becomes possible. Standard NEA becomes a special case of the more general

DEA approach, which, in principle, becomes arbitrarily exact as t → δt and δt → 0. That

is, the approximations of Eq. 3.11 can be improved by re-simulating the dynamical model

with coe�cients re-calculated using a smaller time unit (e.g. hours instead of days). This is

particularly important for systems that exhibit high-frequency dynamics.

There is a trade-o� involved in increasing window size (m). Notice that V(t) is de�ned

at a particular time, t, but computed using W(t + 1), W(t + 2) and other future values.

This creates an unavoidable error, and introducing more distant time points will increase

this error, while decreasing the error due to truncation of the in�nite series de�ning V(t).

Note that terms added to the end of Eq. 3.11d will be very small. In general, there is little

gain from using a window size larger than about 20.

3.2.4 Numerical test of DEA methodology

Dame and Patten (1981) modeled energy �ow in an intertidal oyster reef in South Carolina,

36



USA (Fig. 3.1). This model has one nonzero boundary input, z1, six compartments (x1 to

x6) each dissipating energy to nonzero outputs (y1 to y6), and twelve empirically measured

internal �ows (fij, i, j = 1, 2, ..., 6). The �ow units are kcal/m2/day and the stocks kcal/m2.

Two implementations of this model, described below, were used to test dynamic environ

approximation methods. Table 3.1 gives a summary of the analysis.

A linear time-forward model (Eq. 3.1a) was formulated by de�ning interior �ows as scalar

multiples of the donor compartments, fij = cijxj. In Step 1 the model was simulated using

EcoNet (Kazanci, 2007). A 200-time unit (50 day) run with the initial �lter feeder stock,

x1(t0), displaced from 2000 to 4000 kcal/m2 is shown in Fig. 3.2a. In Step 2, stock vectors,

x(t), and community matrices, C(t), were assembled for each sample time step of δt = 0.1

day. Using the C matrices, F(t) (Eq. 3.1a), and G(t) matrices were computed for each

sampling time in Step 3, then used to compute NDEA (Eq. 3.12a) with a window size of 20.

A nonlinear, mass-action version of the Fig. 3.1 model was formulated by making �ows

functions of the product of the donor and recipient stocks, fij = aijxixj. Flows to De-

tritus (x2) remained donor-dependent, as in the linear model. The same computations as

described for the linear model above were performed. For both models, the NDEA matrix

was used to calculate the through�ow vector, T (Eq. 3.9). Through�ow for each compart-

ment was also computed directly as the sum of out�ows in the dynamic simulation program

Berkeley Madonna 8.0.1 (www.berkeleymadonna.com). Since the analysis presented here

is forward-looking (i.e., Eq. 3.12a), Ti was de�ned as the sum of out�ows from compart-

ment i; a backward-looking analysis (i.e., Eq. 3.12b) would have used the sum of in�ows to

compartment i. Error was calculated using the Euclidean norm:

Error =
√

(T calc
1 − T 2

1 )2 + ...+ (T calc
n − T actual

n )2 (3.13)

(Here, n is the number of compartments in the model.) The error thus de�ned was cal-
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Figure 3.2: Di�erence, in kcal/day/m2 , between actual and calculated through�ows in linear
(a) and nonlinear (b) simulations of the oyster reef model. Error is the Euclidean distance
between a through�ow vector computed with the NDEA matrix (Eq. 3.9) and one computed
as the sum of out�ows in the dynamic simulation. Compartment names (x1, ..., x6) are
explained in Fig. 3.1.

culated for ten randomly selected time points in both model implementations. The mean

error in the linear model was 0.0008 with a standard deviation of 0.0004; that of the non-

linear model was 0.2171 with a standard deviation of 0.11. Di�erences between actual and

calculated through�ows are displayed in Fig. 3.2.

3.3 Application to indirect e�ects

Output from the linear and nonlinear dynamic oyster reef model implementations was an-

alyzed to compute the fraction of �ow between pairs of compartments that traveled over

pathways of lengths greater than one (indirect �ow fraction). This quantity was calculated
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by dividing entries in NDEA − I − G, which isolates indirect �ows, by the corresponding

entries in N, which represents total �ows. If there is no directed path of any length between

two compartments, the ratio is unde�ned; in this case, it was arbitrarily set equal to zero.

The results of this calculation for the linear model are shown in Fig. 3.3b; those for the

nonlinear model appear in Fig. 3.4b�e. The Matlab function used to do these calculations

is given in Appendix A.

In the linear model, direct to indirect �ow ratios remained constant as the system evolved;

in the nonlinear model, they varied with time. The mean and median values for the two

models were similar: between 0.45 and 0.6. Typically, direct to indirect �ow ratios in the

nonlinear model changed gradually and, over the 45 days simulated, underwent proportion-

ately much less change than stock values (Fig. 3.4b�e). This relationship should be explored

in future research, as should the constancy of indirect �ow fractions in linear models.

3.4 Discussion

The dynamic environ approximation approach described in this paper potentially has a broad

range of applications. Here, we have described the approach and given an example of its

accuracy.

Previous attempts to develop a dynamic environ analysis were primarily analytical (Hippe,

1983, Hallam and Antonios, 1985). (Hippe's approach appears related to the dynamic inverse

in input�output analysis (Leontief, 1970, Kendrick, 1972, Johnson, 1985, ten Raa, 2006) and

deeper exploration of the relationship between the two methodologies may prove worthwhile.)

The strength of DEA lies in the fact that, like NEA, it makes no assumptions about the

underlying dynamics of the model being analyzed. Although two simulation models were

used in the present instance to produce the background data for DEA, the analysis could

also proceed based on purely empirical time series data gathered in context of a de�ned
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Figure 3.3: Evolution of stock values (a) and direct to indirect �ow ratios (b) in the oyster
model after the oyster compartment was doubled. x1 and x2 are on the left scale; all other
stocks are on the right scale. Compartment abbreviations (x1...x6) are explained in Fig. 3.1.
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Figure 3.4: Evolution of stock values (a) and direct to indirect �ow ratios (b�e) in a non-
linear version of the oyster reef model (explained in text) after the oyster compartment was
doubled. x1 and x2 are on the left scale; all other stocks are on the right scale. Compartment
abbreviations (x1...x6) are explained in Fig. 3.1.

41



network model. Only output is used; what happens in the equations stays in the equations.

This lets DEA sidestep the mathematical di�culties associated with prior methods.

Borrett et al. (2010) have found that, in empirically based trophic and biogeochemical

models at a constant steady state, indirect e�ects become dominant after only a few terms

of the in�nite series expansion of the N matrix. These results are consistent with our �nding

that a window size of about 20 is su�cient to closely approximate N. We note that there

might be better approximations than our method. However, the value of DEAmethodology is

in its intuitive de�nition. Eqs. 3.4 and 3.7 imply that any network characteristic investigated

by NEA can also be studied with DEA, provided that the measure in question makes sense

for a system away from steady state. It should be possible to investigate energy cycling

(Patten, 1985) and system properties such as dominance of indirect e�ects (Patten, 1984),

as well as the de�ned network properties of environs (e.g. Patten, 1995, Fath and Patten,

1999b). Other promising areas of application for dynamic environ approximation include the

analysis of bioenergetic food web models, the study of system-level properties of individual-

based models, including those incorporating evolution, and investigation of exact stochastic

simulations of trophic dynamics. Applications such as these could provide a much-needed

link between conventional and systems ecology.
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Chapter 4

Indirect Energy Flows in Niche Model

Food Webs: E�ects of Size and

Connectance

4.1 Introduction

Food webs are icons of complexity, depicting intricate networks of feeding interactions. Since

food webs can be studied both from the point of view of population dynamics and that of

matter and energy �ows, they bridge community and ecosystem ecology. Moreover, their

study has led to insights that apply to other complex systems (McCann et al., 1998, Berlow,

1999, Csermely, 2006).

Examining food webs reveals a wide variety of indirect interactions, such as indirect

matter and energy �ows, trophic cascades, apparent competition, indirect mutualism and

commensalism, and exploitative competition (Wootton, 1994). Indirect �ows take place

when energy or nutrients move between two species by a path, termed an indirect path,

that includes one or more intermediate species (Figure 4.1). Previous work has shown that,
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(a)

(b)

Figure 4.1: Direct and indirect �ows. In the module shown in 4.1a, species A and C are
linked by both direct and indirect �ows, while in the module shown in 4.1b, they are linked
exclusively by indirect �ows.

although individual indirect �ows may be small, their great number makes them important

in ecosystems. In fact, in many empirically-based ecosystem models, the fraction of total

energy �ow that travels over indirect paths (�ow indirectness or FI) is greater than 50%,

a property often described as �dominance of indirect e�ects� (Higashi and Patten, 1986,

Patten, 1986, Higashi and Patten, 1989, Fath and Patten, 1999b, Fath, 2004).

The mathematical and conceptual framework that allows �ow indirectness and many

other network properties to be quanti�ed, termed environ analysis (Patten, 1978, Matis and

Patten, 1981, Patten and Matis, 1982, Fath and Patten, 1999b), has not previously been

applied to theoretical food web models with structures similar to those of �eld webs and

empirically-based dynamics. Most studies of indirect matter and energy �ows have focused

on small, highly aggregated ecosystem models (Patten, 1985, Higashi and Patten, 1989, Fath,

2004), although some have looked at large, highly simpli�ed, theoretical models (Fath, 2004)

and steady-state empirical models of various sizes (Borrett et al., 2010).

This study investigates the importance of indirect energy �ow in food webs by measuring
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the �ow indirectness of theoretical food web models and examining how it is a�ected by web

size and connectance, de�ned as the fraction of possible directed links that actually exist.

Its purpose is not to provide a comprehensive examination of �ow indirectness in various

ecological models but simply to measure it in one commonly studied model and demonstrate

the potential usefulness of environ analysis and DEA. The models studied here use the niche

model (Williams and Martinez, 2000) for structure and the n-species Yodzis-Innes model

(Yodzis and Innes, 1992, Williams et al., 2007) for dynamics. The niche model assumes that

species in a community can be ordered along a �niche� dimension (Cohen, 1978), such that

consumers mainly feed on species with a lower niche value than their own but may also feed

on those with a higher niche value. The niche value is correlated with, but not identical to,

body size (Williams and Martinez, 2000, Woodward et al., 2005, Williams et al., 2010). Each

species feeds on all species (including, potentially, its own) whose niche value lies within a

speci�ed range. For species i with niche value ni, the feeding range has width ri and can be

centered anywhere in the interval [ri/2, ni] (Williams and Martinez, 2000).

The n-species Yodzis-Innes model uses consumer functional responses and the scaling of

metabolic rate with body size (Schmidt-Nielsen, 1984, West et al., 1997, Brown et al., 2004)

to add realism to a simple model of trophic dynamics. (Since, as described below, the analysis

used to quantify �ow indirectness requires a conservative currency, the model's state variables

were taken to be the total energy contents of each species.) Including a functional response

that saturates at high prey density improves model realism by acknowledging the fact that

there is a limit to how much food an individual can consume. The use of scaling relationships

helps incorporate biologically reasonable sets of parameter values into a theoretical model.

The model, which employs variables and parameters whose dimensions and values are listed

in Table 4.1, is described below. In keeping with environ analysis convention, we consider

energy to �ow from column j to row i, not the other way around, as is the convention in

dynamic food web modeling.
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In the absence of consumers, producer j grows logistically at rate rjBj(1 − Bj
Kj

), where

Bj is the total energy content (or population size) of species j, rj is its maximum growth

rate and Kj is the environment's carrying capacity for species j. To obtain the rate at which

species j is eaten by species i, we reason as follows. The rate of consumption of j by i

is proportional to the population size of i, Bi. The quantity yij is the maximum rate at

which species i can consume species j, divided by i's metabolic rate, xi. Multiplying this

quantity by xi gives xiyij, the maximum per-capita consumption rate for i preying on j.

The functional response, Fij(B), gives the consumption rate as a fraction of this maximum

rate, yielding xiyijFij(B)Bi for the actual rate. However, the predator does not ingest and

assimilate all the prey it captures, so its consumption rate must increase to compensate for

this. Dividing the previously obtained rate by the predator's e�ciency, eij, accomplishes

this, giving the expression xiyijFij(B)Bi/eij.

We now turn to the functional response. Following Berlow et al. (2009), a sigmoidal

(Holling Type III) functional response with predator interference (Skalski and Gilliam, 2001)

was chosen, in part because it stabilizes the dynamics of food web models (Williams et al.,

2006). In this model, the consumer's search rate is proportional to prey abundance raised

to the power q, a non-negative real number (Gurney and Nisbet, 1998), and consumers of

a given species interfere with each other with strength c (Skalski and Gilliam, 2001). As a

result,

Fij(B) =
B1+q

i

B1+q
0 + cB1+q

0 Bj +
∑

k=prey B
1+q
k

(4.1)

Following Berlow et al. (2009), the values q = 1 and c = 1 were used. (Table 4.1) The

expression is dimensionless, as term by term analysis based on the dimensions listed in Table

4.1 reveals.

The overall di�erential equation for producer species j is:
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dBj

dt
= rjBj(1−

Bj

Kj

)−
∑

i=predators

xiyijBiFij(B)/eij (4.2)

Consumers of species i lose energy to metabolism at rate xiBi, gain it from prey item j at

rate xiBiyijFij(B), and lose it to consumers of species k at rate xkykiBkFki(B)/eki (Williams

et al., 2007). Overall, we have:

dBi

dt
= −xiBi + xiBi

∑
j=prey

yijFij(B)−
∑

k=predators

xkykiBkFki(B)/eki (4.3)

Table 4.1 summarizes the model's parameters and their values.

To parametrize the model, empirically documented relationships between trophic level

and body mass (Brose et al., 2006) were used to assign body masses to species in the model.

Following Williams and Martinez (2004), the (usually non-integer) trophic level of each

species was computed as the mean of two quantities: (1) the integer distance between the

target species and the closest basal species (those that do not prey on any other species); and

(2) Levine's (Levine, 1980) usually non-integer �ow-based trophic position, computed under

the assumption that predators receive equal fractions of their diet from all prey species. The

equal �ows assumption allows �ow-based trophic positions to be assigned to species in a

purely topological web. The expression for �ow-based trophic position is:

TLi = 1 +
S∑

j=1

TLjpji (4.4)

where TLi is the trophic level of species i, S is the total number of species in the food web,

and pji is the fraction of species i's diet provided by species j. The mean of this quantity

and distance from a basal species was used because it can be computed from topological

information and provides a close approximation to the true �ow-based trophic position in

food webs for which �ow data are available (Williams and Martinez, 2004). Species were
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then assigned metabolic rates using the 3/4-power scaling relationship between metabolic

rate and body size (Schmidt-Nielsen, 1984, West et al., 1997, Brown et al., 2004).

A new �ow-based dynamic network analysis method called dynamic environ approxima-

tion (DEA; Shevtsov et al. (2009)) was used to compute FI. The basic logic of DEA is as

follows. If a food web has adjacency matrix A, then Ak gives the number of paths of length k

between each pair of species and
∑m

k=1 Ak gives the total number of paths of length m or less

between each such pair (Patten et al., 1976, Agnarsson and Greenlaw, 2006). If the structure

of the network changed over time, then the number of paths would be given by the product

series A(t)+A(t)A(t+1)+...+(A(t)A(t+1)...A(t+m)). DEA uses a related product series of

matrices describing energy �ows in the food web to trace the �ows through the system. The

�ow matrix is then normalized by by the total out�ow from the donor species to create a ma-

trix, G, of nondimensional �ow intensities for each integer time step. Then, for a window ofm

time steps, we have integral �ow N(t) = I+G(t)+G(t)G(t+1)+...+(G(t)G(t+1)...G(t+m))

and FIij(t) = (Nij(t)−Gij(t))/Nij(t) (Fath and Patten, 1999b, Shevtsov et al., 2009). This

method was used to compute FI for each web and the entries of the FI(t) matrix were then

averaged.

4.2 Methods

4.2.1 Web Construction and Simulation

The goal of this study was to explore the importance of indirectness in a commonly studied

theoretical food web model, the niche model (Williams and Martinez, 2000). This model was

selected because it is frequently studied and reproduces many features of real food webs with

a fair degree of accuracy (Williams and Martinez, 2000). In this model, each species has a

niche value, ni, a feeding range width, ri, that can be interpreted as the fraction of possible

niche values that can be consumed by species i, and a feeding range center. The niche value
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Quantity Meaning Dimensions (MLT) Value used

Bi energy content of
compartment i

energy ([M ][L]2[T ]−2)

rj intrinsic growth rate 1/time ([T ]−1) 1 for producers, 0
otherwise

Kj carrying capacity for
producers

energy ([M ][L]2[T ]−2) 1

xi body mass-speci�c
metabolic rate

relative to maximum
producer growth rate

1/time ([T ]−1) 0.138 for producers,
0.314m

−1/4
i

otherwise

yij consumption rate for
i consuming j
normalized by

metabolic rate of i

none 8

eij conversion e�ciency
for i consuming j

none 0.45 for feeding on
producers, 0.85

otherwise
q reward sensitivity in

Holling Type III
functional response

none 1

B0 half-saturation
density in functional

response

energy ([M ][L]2[T ]−2) 0.5

c strength of predator
interference in

functional response

1/energy ([T ]2[M ]−1[L]−2) 1

Table 4.1: Parameters and variables of n-species Yodzis-Innes model where mi is the body
mass of species i. Parameter values were taken from Berlow et al. (2009).
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for each species is drawn from a uniform distribution ranging from 0 to 1. Range centers are

drawn from a uniform distribution ranging from ri/2 to ni. A uniform distribution is used

both for its simplicity and to re�ect the hypothesis that niche values in real ecosystems are

roughly uniformly distributed.

Species' range widths are generated by drawing values from a beta distribution whose

mean is twice the connectance of the web and multiplying them by the species' niche value.

(The formula for the beta distribution is p(x) = xα−1(1−x)β−1´ 1
0 xα−1(1−x)β−1dx

and the niche model uses

α = 1 and β = 1−2C
2C

, where C = 2L/S2, the connectance of the web, and L is the number of

links.) The beta distribution is used because it is a tractable distribution that ranges from

0 to 1 and whose mean can be de�ned by an input variable. Since the expected value of the

beta distribution is 2C and that of ni is 0.5, this procedure results in range width having an

expected value of C. Because niche values are uniformly distributed on the [0,1] interval and

a consumer's feeding range width is the fraction of this interval that contains potential prey,

the fraction of species a given consumer preys on is approximately its range width. This

gives the food web the desired connectance. Each species is assumed to prey on all species

within its range, including itself, and a food web directed adjacency matrix is assembled.

Candidate webs generated by this method were tested to ensure that they had at least

one producer and consisted of only one set of connected species, termed a component in

graph theory (Agnarsson and Greenlaw, 2006). For the latter test, the Laplacian matrix,

L, was used. This matrix is de�ned as the di�erence between the degree matrix D, which

has the degree of the graph's nodes on the diagonal and zeros elsewhere, and the undirected

adjacency matrix A (a symmetric matrix with aij = aji = 1 if a link exists between i and j

and 0 otherwise), from which self-loops are excluded, making aii = 0. The equation for the

Laplacian matrix is then L = D−A. The number of times 0 appears as an eigenvalue of the

Laplacian is the number of components in the graph (Anderson and Morley, 1971, Mohar,

1991).
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If a web passed these tests, trophic levels were assigned to each species as the mean of

distance from the closest basal species and the �ow-based trophic position method (Eq. 4.4),

computed under the assumption that predators receive equal fractions of their diet from all

prey species (Levine, 1980, Williams and Martinez, 2004). (The equal �ows assumption

allows trophic levels to be computed for a purely topological web.) Taking the mean of these

two methods used provides a good approximation to real trophic levels in quantitative food

webs and ecosystem models (Williams and Martinez, 2004). Trophic levels were then used

to assign body sizes as 10Ti−1 where Ti is the trophic level of species i (Brose et al., 2006),

and mass-speci�c metabolic rates were assigned using 3/4-power scaling (Schmidt-Nielsen,

1984, West et al., 1997, Brown et al., 2004). Initial abundances were drawn from a uniform

distribution ranging from 0.5 to 1, ensuring that the simulation results were not artifacts of

a particular set of initial conditions and that all species were initially present at ecologically

signi�cant levels. The simulation was then run for 1000 time steps using fourth-order Runge-

Kutta integration with a step size of 0.01, after which time steady state had been reached or

closely approximated. At that point, any extinct species were removed and the simulation

run for 1000 more time steps. In order to avoid transient dynamics, only this second run

was analyzed with DEA.

The e�ect of food web size (10 to 50 species) and connectance (0.1 to 0.48, in increments

of 0.02) on �ow indirectness was examined. Because the niche model is stochastic, 250 model

realizations were generated and simulated for each pair of size and connectance values.

4.2.2 Dynamic Environ Approximation

In the standard Yodzis-Innes model, the amount of energy gained by a predator in a pre-

dation event is less than the amount lost by the prey. The boundary inputs and outputs

required to balance the system's energy budget are not explicitly tracked. Therefore, in order

to create the conservative �ow matrix required for environ analysis, producer growth was
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conceptualized as an input to the system, while uneaten or unassimilated food and metabolic

losses were conceptualized as outputs. For each integer time step, a �ow matrix consisting of

the second terms of Eq. 4.3 (with negative out�ows from each compartment on the diagonal)

was set and used to compute the through�ow-normalized �ow matrix G (gii = 0, gij =
fij
toutj

,

where fij is the energy �ow from j to i and toutj is the total out�ow from j). This was then

used to perform DEA with a window size of 20, which previous work indicated is typically

enough to capture all relevant dynamics (Shevtsov et al., 2009, Borrett et al., 2010). As a

large majority of simulation runs had reached or nearly reached a constant steady state, the

N matrix was only computed for one starting time. Flow indirectness (FI) was then calcu-

lated as N−G and the mean for each web was computed. In only 62 runs out of 205,000,

FI values larger than 1 or less than 0 were obtained; it was concluded that the integration

step size was too large for the dynamics of these runs and they were excluded from further

analysis. FI values for diagonal entries, which represent cycles linking a species to itself,

were taken to be 0.

4.3 Results

Over the full range of parameter values, the mean �ow indirectness of the model food webs

was 0.092, with a standard deviation of 0.0279. It increased with system size but peaked at

intermediate connectance levels, resulting in the pattern seen in Figure 4.2.

4.3.1 Determinants of �ow indirectness

A classi�cation and regression tree (CART) analysis performed in R (R Development Core

Team, 2009) using the package rpart (Terry M Therneau and Beth Atkinson. R port by

Brian Ripley., 2010) was used to explore which aspects of web structure were most strongly

correlated with mean FI. Of 27 potential ecological and graph-theoretic predictor variables,

52



Figure 4.2: Mean �ow indirectness as a function of nominal system size and connectance.

only �ve (mean path length, dominant eigenvalue of the adjacency matrix, connectance, mean

trophic level and fraction of species belonging to intermediate trophic levels) were selected

by the CART algorithm as best accounting for variation in the data. Two of these (mean

path length and dominant eigenvalue of the adjacency matrix) were dominant. (Figure 4.3)

The CART model accounted for 82.2% of the variation in FI. A full list and explanation of

the potential predictor variables used is given in Appendix B.

4.3.2 Application to Field Data

The simulation results were compared to eight commonly studied topological food webs

whose sizes and connectances fell within the range of the parameter scan. (References are in

Table 4.2.) As Figure 4.4 shows, most of the relationships among food web size, connectance,

mean path length and dominant eigenvalue in empirical food webs fall well within the range

53



Figure 4.3: Classi�cation and regression tree for �ow indirectness. If the node condition
is met, the left-hand branch is taken; otherwise, the right-hand branch is taken. Key to
variables: PathLen - mean path length; DomEig - dominant eigenvalue of adjacency matrix;
ConAct - actual connectance; TrophInter - fraction of species with both predators and prey;
MeanTroph - mean trophic level.
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Figure 4.4: Model food web mean path length and dominant eigenvalue as a function of
nominal size and connectance. Each boxplot shows the median, 75th and 25th percentiles
for each data set, with whiskers extending up to 1.5 times the interquartile range and any
points falling outside that area being plotted individually. In (a) and (c), mean path length
generally decreases with connectance, while the dominant eigenvalue shows a curvilinear
pattern. In (b) and (d), both mean path length and dominant eigenvalue increase with
web size. Together, these relationships largely account for the patterns in Figure 4.2. Red
numbered dots show where real food webs fall on these graphs. Key: 1. Benguela ecosystem;
2. Bridge Brook Lake; 3. Canton Creek; 4. Coachella Valley; 5. Skipwith Pond; 6. St. Marks
Seagrass; 7. St. Martin Island; 8. Stony Stream
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of model webs. The major exceptions are the St. Marks seagrass web, which has a much

larger mean path length for its size and connectance than any of the other modeled or

empirical webs, and the St. Martin Island web, whose dominant eigenvalue is zero because

the web contains no cycles.

Predictions of the �ow indirectness values of the empirical webs were made by following

the CART tree developed using the simulated webs. (Table 4.2) Freshwater food webs had

consistently lower predicted FI values than terrestrial and marine webs. This is due to the

freshwater webs' lower mean path lengths, which appear to simply be a result of their smaller

sizes. Size-normalized mean path length did not vary systematically with ecosystem type.

4.4 Discussion

Two major frameworks exist for studying networks of trophic interactions and the movement

of energy within ecosystems: those of community and ecosystem ecology. When food webs

are studied from a community ecology perspective, the emphasis is on individual species

and their population dynamics. Such webs are as detailed as possible but often omit parts

of the biota at the study location, especially decomposers and detritivores in terrestrial

systems. (The desert food web of Polis (1991) is a prominent exception.) By contrast, the

ecosystem framework uses comprehensive, usually highly aggregated models that focus on

the movement of energy and nutrients. Researchers working within these two frameworks

have ignored each other's work to a remarkable extent.

Environ analysis (Patten, 1978, Matis and Patten, 1981, Fath and Patten, 1999b) is

a set of conceptual and mathematical tools for analyzing networks of stocks and �ows.

It has traditionally been applied to phenomenological models of real ecosystems. This is

both a strength and a weakness, in that the analysis stays close to reality but is tied to a

relatively small number of models that are usually highly aggregated. In particular, the six-
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Ecosystem Size Connectance
Dominant

eigenvalue

Mean

path

length

Intermediate

fraction

Mean

trophic

level

Predicted

FI

Freshwater

Bridge Brook

Lake (Havens,

1992)

15 0.284 2.00 1.16 0.93 2.35 0.077

Canton Creek

(Townsend et al.,

1998)

19 0.139 1.00 1.20 0.74 2.12 0.039

Skipwith Pond

(Warren, 1989)

25 0.315 3.00 1.20 0.92 2.67 0.077

Stony Stream

(Townsend et al.,

1998)

24 0.12 1.00 1.12 0.75 2.25 0.039

Marine

Benguela Current

(Yodzis, 1998)

28 0.259 3.00 1.47 0.96 3.18 0.16

St. Marks

Seagrass

(Christian and

Luczkovich, 1999)

47 0.115 4.03 3.04 0.87 3.52 0.33

Terrestrial

Coachella Valley

(Polis, 1991)

27 0.344 6.35 1.49 0.96 3.00 0.23

St. Martin Island

(Goldwasser and

Roughgarden,

1993)

35 0.140 0.00 1.44 0.77 2.62 0.16

Table 4.2: Network characteristics and predicted �ow indirectness values for empirical food
webs. Predictions were made by following the CART tree in Figure 4.3.
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compartment intertidal oyster reef model of Dame and Patten (1981) may be the Drosophila

of environ analysis because of the number of techniques and hypotheses that have been

demonstrated and tested using it (e.g. Patten, 1985, Patten et al., 1990, Fath and Patten,

1999a, Whipple, 1999, Shevtsov et al., 2009).

This study is not the �rst to apply environ analysis to a large synthetic model. Fath (2004)

created models of ecosystems by assigning species to one of six functional groups: primary

producers, herbivores, carnivores, omnivores, detrital feeders and detritus. Each functional

group, including detritus, contained the same number of species, ranging from �ve to one

hundred. Biologically plausible intergroup interactions were then randomly assigned. The

model used linear donor-controlled dynamics with randomly selected coe�cients. Thus, this

model possessed some realism with regard to functional groups, very little with regard to

network structure, and almost none (except in the case of �ows to detritus) with regard to

dynamics.

The advantage of theoretical models such as the Yodzis-Innes model is that they de-

scribe causal relationships between species. Compartment models, on the other hand, are

typically phenomenological, �bookkeeping� models. When dynamical assumptions such as

donor control are added to these models, they are typically very simple and lack biological

justi�cation. The relatively detailed causal assumptions and parameter constraints of the

Yodzis-Innes model may be criticized as being overly complex and unrealistic, but they are

probably less wrong than linear models with donor control, which assumes that the amount

of prey eaten by a predator species depends only on the prey's population size. However,

research on such dynamically simple models has produced insights into ecosystem function

and network properties.

Working within the framework of linear steady-state models of conservative energy and

matter �ows and storages, Patten et al. (1990) identi�ed six network characteristics that

directly increase �ow indirectness in compartment models: number of compartments, con-
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nectance, storage, cycling, feedback and magnitude of direct �ows. Most of the model webs

in this study had much lower mean �ow indirectness values than the ecosystem models ex-

amined in previous work (Fath, 2004, Borrett et al., 2010). This is likely due to the fact that

niche model webs, unlike the models studied before, do not include detritus or detritivores.

Therefore, they contain substantially less cycling than ecosystem-oriented models. Since cy-

cling greatly increases the fraction of model currency traversing indirect paths (Patten et al.,

1990), its absence must reduce �ow indirectness. In nature, grazing- and detritus-based food

webs intertwine (Odum, 1969, Wardle et al., 2004, 2005). Thus, the current results very

likely underestimate the true importance of indirect �ows in natural food webs and future

work should attempt to include detritus and detritivores. Extending and modifying the niche

model to incorporate both grazing- and detritus-based webs would represent an important

advance.

Other important topics for future research include investigation of the sensitivity of these

results to parameter values and model assumptions and the examination of energy cycling in

model webs with and without detritus (Patten, 1985, 1986). In particular, the standard niche

model uses niche values that are uniformly distributed between 0 and 1. However, the niche

value is correlated with body size (Williams and Martinez, 2000, Woodward et al., 2005,

Williams et al., 2010). Therefore, the distribution of niche values should be derived from

body size distributions observed in nature. The allometric diet breadth model of Petchey

et al. (2008) approaches this idea but relies on previously speci�ed body size data, although

this could be randomly generated. A simpler approach would retain all the assumptions of

the niche model but use a more realistic distribution of niche values.

It will also be useful to examine the e�ects of other system attributes on the �ow indi-

rectness and �nd out whether this quantity is linked to the vulnerability of food webs to

species loss. Dunne et al. (2002) found that, for sixteen empirical topological food webs,

vulnerability to cascading extinctions in the face of species loss was negatively correlated
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with connectance and uncorrelated with the prevalence of omnivory (in spite of the correla-

tion between omnivory and connectance). However, the webs examined in that study had

connectances ranging from 0.026 to 0.315 � values falling within the range in which �ow

indirectness increases with connectance. (Figure 4.2) It would be instructive to examine

the e�ects of species loss on model webs with higher connectance values, to see whether

the positive relationship between connectance and robustness continues to hold and whether

omnivory becomes a more important determinant of robustness as �ow indirectness declines.

The results reported here help bridge contemporary community ecology and systems

ecology, while providing a new way of looking at ecosystem complexity. It is also possible

to apply dynamic environ approximation to non-trophic stock and �ow networks such as

dispersal networks (McRae and Beier, 2007) and human systems such as roads and economies,

and doing so may provide insights into their function.
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Chapter 5

A Gradient Analysis of Multiple

Interacting Guilds in a Southern

Appalachian Forest Highlights the Role

of Biotic Interactions in Structuring

Communities1

5.1 Introduction

The extent to which ecological communities are coherent entities as opposed to mere inter-

sections of individual species distributions has long been one of the fundamental questions

of ecology (Clements, 1936, Gleason, 1926, Tansley, 1935), to the point where studies ad-

dressing it are sometimes said to be about �the nature of the community� (Krebs, 2001).

Gradient analysis, which goes back to Whittaker (1956), addresses this question by exam-

1Shevtsov, J. and K. Wickings. To be submitted to Oikos.
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ining the degree of similarity of species distributions, particularly their endpoints. (Figure

5.1) However, all such studies have used organisms from a single taxon or guild. This un-

avoidably biases the results of these studies, as it risks missing important connections due to

non-competitive interactions such as mutualism, predation (other than intraguild predation),

parasitism, commensalism and amensalism (Putman, 1994). These types of interactions may

be at least as important as competition in determining community structure and composition

(Bruno et al., 2005, Stachowicz, 2001). Interactions bene�cial to at least one party should

be more likely to occur between members of di�erent guilds. Such organisms are unlikely

to compete for resources; however, they can have complementary niches that promote non-

competitive interactions. Furthermore, resource competition tends to be di�use in the sense

that a species will compete with all other species sharing the same resource (Hubbell, 2001).

By contrast, non-competitive interactions such as plant-pollinator, host-parasite, and some

ectomycorrhizal relationships tend to be more speci�c (Bruno et al., 2005).

This study attempts to overcome the omissions of previous work described above by si-

multaneously examining the abundances of taxa belonging to four di�erent guilds � seed

plants, soil basidiomycetes, collembola and mesostigmatid mites � along an elevational gra-

dient. These guilds were chosen because many basidiomycetes have either mycorrhizal or

parasitic relationships with the plants, the diets of collembola include fungi, and mesostig-

matid mites prey on collembola, along with other soil animals. We asked to what extent

communities are coherent entities and tested the hypothesis that coherence is positively re-

lated to the number of interacting guilds studied. We also investigated whether interguild

interactions are more common than intraguild ones.

To address these questions, we used two di�erent methods of analyzing abundance and

presence-absence data. The �rst, causal discovery, draws on work in computer science that

allows the existence and directionality of some causal interactions to be inferred from cor-

relational data (Pearl, 2009, Shipley, 2002, Spirtes et al., 2001). The second, Elements of
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Figure 5.1: Four possible patterns of vegetation distribution along a gradient: (a) a tightly
integrated community; (b) an individualistic community; (c) a community structured by
resource partitioning; (d) a community of several guilds, each of which is structured by
resource partitioning. From Austin (1985). EMS analysis, summarized in Fig. 5.3, would
classify community a as Clementsian, community b as Gleasonian, community c as evenly
spaced, and community d as either Clementsian or Gleasonian, depending on the amount of
boundary conjunction.
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Metacommunity Structure, looks at community coherence, species turnover and boundary

conjunction in order to classify communities (Leibold and Mikkelson, 2002, Presley et al.,

2010a).

The term �metacommunity� refers to a set of local communities that may be linked

by dispersal (Leibold and Mikkelson, 2002). However, in this study and much prior work

(Whittaker, 1956, 1960, Pielou and Routledge, 1976, Bossenbroek et al., 2005), the local

sites are merely samples of a continuously vegetated landscape. In order to link our work

to previous research on community structure, we will use the term �community� rather than

�metacommunity� throughout this article.

Elements of Metacommunity Structure (EMS) analysis examines community coherence,

turnover and boundary conjunction in order to classify communities by the spatial patterns

of taxon co-occurrence they exhibit. In a highly coherent community, there are relatively

few gaps in taxon distributions, which is likely to occur when the abundances of di�erent

taxa respond to the same environmental gradient or gradients (Presley et al., 2010a). If not

all small ranges are embedded within larger ones following a strict hierarchy, some taxa are

replaced by others over the length of the gradient. The opposite of high replacement is high

nestedness (Leibold and Mikkelson, 2002). (Figure 5.2) Finally, boundary conjunction refers

to the frequency with which the �rst or last occurrences of some taxa along a gradient coincide

with those of others, with high boundary conjunction indicating more discrete communities

(Leibold and Mikkelson, 2002, Presley et al., 2010a). Communities are classi�ed based on the

combination of coherence, turnover and boundary conjunction values they exhibit. (Figure

5.3)
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Figure 5.2: Relationship between nestedness and replacement. In each panel, an environ-
mental gradient runs from left to right and the lines represent species' ranges. In Fig. 5.2a,
nestedness is maximal and replacement is zero; in the other two panels, replacement is maxi-
mal and nestedness is zero. Fig. 5.2c, boundary conjunction is maximal; in the other panels,
it is zero. All ranges portrayed exhibit maximal coherence, which would be reduced by the
introduction of gaps.

5.2 Methods

5.2.1 Site Description

Coweeta Hydrological Laboratory is located in Macon County, North Carolina, USA, in the

Blue Ridge physiographic province (Hunt, 1973). The bedrock is granite and Carolina gneiss

(Boring et al., 1981). Precipitation averages 200 cm per year, increasing with elevation; the

average temperature minimum is -17ºC and the average maximum is 33ºC. The southern

Appalachians were not glaciated during the last ice age; however, soils at high elevation

are immature. The soils at our study sites are various sandy loams (Soil Survey Sta�,

Natural Resources Conservation Service, 2012); data on soil chemistry is in Table 5.1. The

forests are largely second growth, with oak (Quercus spp.), hickory (Carya spp.), tulip

poplar (Liriodendron tulipifera) and rhododendron (Rhododendron spp.) being important.

The land has not been logged since 1923 and grazing was stopped in 1933 (Douglass and

Swank, 1975, Nelson, 1955). Chestnut blight (Cryphonectria parasitica) largely eliminated

the American chestnut (Castanea dentata) from these forests between the 1930s and 1950s

(Nelson, 1955), although some C. dentata sprouts were observed. Today, they typically grow

to sapling height but no more. In addition, the hemlock wooly adelgid (Adelges tsugae) is
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greatly reducing the abundance of eastern hemlock (Tsuga canadensis) (Krap� et al., 2011).

Six sites spaced at roughly equal elevational intervals were set up along an elevation

gradient (685 m to 1520 m). Each site consisted of �ve 20×20 m haphazardly located plots,

typically clustered near a small, unpaved road or trail. Plots with missing data for one or

more guilds were omitted from the analysis, resulting in four plots from each site being used

in the analysis, with the exception of Site B (1280 m), for which all �ve plots were used.

5.2.2 Plant Survey

In each 20×20 m plot, all living trees with diameter at breast height (DBH, 1.3 m) of at

least 5 cm were censused and their DBH was measured. Shrub and herb cover was measured

by surrounding each plant or cluster of plants with a triangle or rectangle and recording the

dimensions of each polygon. Shrub cover was measured in full plots, while for herbs, a 5×5

m subplot was set up near the center of each full plot. Vines were omitted due to a lack of

satisfactory methods for quantifying their abundance.

5.2.3 Soil Chemistry, Fauna and Fungi

Five randomly placed soil samples were collected from each plot from 0-5 cm in depth. This

zone was chosen because it exhibits high biological activity and is commonly used in soil

faunal surveys (Coleman et al., 2004).

5.2.3.1 Soil Chemistry

For chemical analysis, a composite sample was made for each site by combining equal volumes

of soil from each sample in each plot at the site. The composite samples were analyzed for

C, N, P, K, Ca, Na, Mg and pH at the Odum School of Ecology Analytical Laboratory.

For all analyses except pH, the soil was oven-dried for 24 hours at 80ºC and ground to 250
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µm or �ner using a ball mill. C and N were assayed by Micro-Dumas combustion (Kirsten,

1983), and total P was measured using an acid persulfate digest (Nelson, 1987). For K,

Ca, Na and Mg, a double acid extraction was performed and concentrations were measured

by atomic absorption spectrophotometry. pH was measured using the method described in

(Peech, 1965).

5.2.3.2 Fungi

Basidiomycete operational taxonomic units (OTUs) were de�ned and their relative abun-

dance quanti�ed using terminal restriction fragment length polymorphism analysis (T-RFLP)

(Dickie and FitzJohn, 2007). For molecular analysis, DNA was extracted from each sample

using a MoBio UltraClean Soil DNA Isolation Kit according to the manufacturer's instruc-

tions. PCR was performed using the ITS-1F (speci�c to fungi) and ITS-4B (speci�c to

basidiomycetes) primers (Gardes and Bruns, 1993). The PCR mix consisted of 2 µL of

template DNA and 48 µL of a mixture consisting of 1× PCR Bu�er (ABI), 2mM MgCl2,

0.2 mM each deoxynucleoside triphosphate, 1µM forward primer (ITS1-F), 1µM 5'-FAM-

labeled reverse primer (ITS4-B), 0.4 µg/µL bovine serum albumin, and 0.025 U/µL DNA

polymerase. An MJ Research PTC 200 thermocycler was used for ampli�cation with the

following thermocycling pattern: an initial denaturation step consisting of 5 min at 94ºC;

35 cycles consisting of 0.5 min at 94ºC, 0.5 min at 52ºC and 1 min at 72ºC; and a �nal

elongation step of 5 min at 72ºC (Edwards et al., 2004, Landeweert et al., 2005).

The PCR products were digested at 37ºC for 20 minutes with EcoRV and HaeIII restric-

tion enzymes. Cleanup was immediately performed using the QiaQuick Nucleotide Removal

Kit (Qiagen). Then, T-RFLP was performed using an ABI 3130 Genetic Analyzer with

14.25\mu L of HiDi Formamide, 0.75µL of ILS600 as an internal lane standard, and 5µL of

puri�ed digest (Dickie and FitzJohn, 2007).
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5.2.3.3 Soil Fauna

In order to identify and count collembolans and mesostigmatid mites, soil samples were

placed in a Berlese funnel for three days, with collected fauna being preserved in 70% ethanol.

The collected animals were sorted and identi�ed using a stereo microscope connected to a

television screen. Collembolans were identi�ed to family under a stereo microscope following

Triplehorn and Johnson (2005). Identi�cation of mesostigmatid mites was conducted on

slide mounted specimens using a compound microscope and keys provided by the Ohio State

Soil Acarology Summer Program along with an interactive computer key to Mesostigmata

(Lucid Player Standard v2.2).

Data Analysis

Elements of Metacommunity Structure

Elements of Metacommunity Structure (EMS) analysis examines community coherence,

species replacement and boundary conjunction. First, an ordination is performed on the

presence-absence matrix and the sites and species (rows and columns of the presence-absence

matrix) are sorted by their scores on the �rst axis given by the ordination, giving what is

called the ordinated matrix. Most EMS studies use correspondence analysis, an ordination

method that minimizes the distance between similar sites and similar species in a postu-

lated environmental space (Heino, 2005, 2009, Leibold and Mikkelson, 2002, Presley et al.,

2009, 2010b). However, in order to speci�cally examine responses to changes in elevation,

canonical correspondence analysis with elevation as the constraint (Quinn and Keough, 2002,

Heino, 2005) was performed on the presence-absence matrix. In canonical correspondence

analysis, the axes of the environmental space must be as correlated as possible with linear

combinations of speci�ed environmental variables (Quinn and Keough, 2002).

Having obtained the ordinated matrix, the number of embedded absences in the range of
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each taxon was used as a measure of coherence, with many absences signifying low coherence

(Leibold and Mikkelson, 2002). In order to obtain a measure of statistical signi�cance, these

results were compared to those from a null model in which taxa were randomly assigned to

the same number of plots they were found in in real life, independently of each other and

elevation. Thus, commonness and rarity were preserved, but the number of taxa in each plot

was free to vary. This null model was chosen because all survey plots were of the same size and

plots at a given elevation were similar enough that there did not appear to be strong reasons

why some should have a higher taxonomic richness than others. Taxonomic replacement was

quanti�ed as the number of times the ranges of two taxa, A and B, overlapped in such a way

that A's range started and ended before B's. (Figure 5.2b) When this happens, we say that

A is replaced by B over the length of the gradient. The number of such replacements was

compared to those from the null model just described (Hoagland and Collins, 1997, Leibold

and Mikkelson, 2002). Range boundary conjunction was measured using Morisita's Index:

I = Q

Q∑
i=1

ni(ni − 1)

N(N − 1)

in which Q is the total number of plots in the transect, ni is the number of taxon range

boundaries (�rst or last occurrences of a taxon) in the i'th plot, and N is the total number

of boundaries. If Morisita's Index is equal to one, range boundaries are distributed indepen-

dently of each other, if it is greater than one, they are clumped, and if it is less than one,

they are hyperdispersed or evenly spaced. A chi-square test was used to determine statistical

signi�cance (Hoagland and Collins, 1997, Leibold and Mikkelson, 2002). In order to ensure

comparability with prior work, a signi�cance level of 0.05 was used.

Communities were classi�ed according to the system laid out in Figure 5.3 and described

in detail in Presley et al. (2010a). In this system, both Clementsian and Gleasonian com-

munities have high range coherence and replacement, as taxon abundances are driven by
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Figure 5.3: A �ow chart illustrating the classi�cation of communities by coherence, turnover
(replacement) and conjunction, modi�ed from Presley et al. (2010a). �+� and �-� symbols
indicate statistically signi�cant increases or decreases in the quantity in question compared
to a null model. �NS� indicates lack of statistical signi�cance; ovals show directionality of
non-signi�cant results. Note that Clementsian and Gleasonian metacommunities are distin-
guished only by the presence or absence of statistically signi�cant boundary conjunction.

environmental gradients in both cases. The presence of signi�cant amounts of boundary con-

junction in Clementsian communities corresponds to Clements' tightly integrated community

concept, while the absence of signi�cant boundary conjunction in communities classi�ed as

Gleasonian comes from Gleason's conception of species abundances as independent of each

other (Leibold and Mikkelson, 2002). Quasi-structures are distinguished from regular ones

by the absence of statistically signi�cant increases or reductions in taxonomic replacement.

For example, a quasi-Clementsian community has signi�cantly elevated coherence, high but

not signi�cantly elevated replacement, and signi�cantly elevated boundary conjunction.
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Causal Discovery

Causal discovery algorithms were developed by computer scientists and allow some causal

relationships to be inferred from observational data. The following discussion draws heavily

on Shipley (2002) and Pearl (2009).

Causal discovery methods rest on the notion of conditional independence. Two variables,

X and Y , are conditionally independent given a set of variables Z (not including X and Y

themselves) if knowing the values of X (or Y ) and Z gives us no more information about Y

(or X) than knowing Z alone. Many causal structures can be distinguished from one another

by the conditional independencies they entail.

Consider three variables, A, B, and C, whose causal relationships are shown in Figure

5.4a. Measuring their values would reveal a correlation between A and C; this correlation

arises because A is an indirect cause of C. However, we can account for the in�uence of

B (a process known as conditioning on B) by, say, performing a regression with B as the

independent variable and C as the dependent one. If we condition on B before testing for

correlation, the association between A and C vanishes, as the causal in�uence of A on C is

entirely mediated by B. Thus, A and C are conditionally independent given B.

On the other hand, in Figure 5.4b, termed a collider, A and B are uncorrelated (ignoring

the possibility of an accidental correlation) but become correlated when C is taken into

account. To understand this phenomenon, called Berkson's paradox, an example o�ered

by Pearl (2009) is useful. Consider a college that requires either a high SAT score (A)

or athletic ability (B) for admission (C). Since strong athletic ability can compensate for

a low SAT score and vice versa, the two quantities will be negatively correlated among

students who have been admitted to the college, even if they are independent in the larger

population. Therefore, we can distinguish the two causal structures in Figure 5.4 by the

patterns of conditional independence relationships they entail � the causal chain in Figure

5.4a produces a situation where A and C are correlated but become uncorrelated given B,
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Figure 5.4: Examples of causal structures. (a) causal chain; (b) collider

while the collider in Figure 5.4b makes A and B, which are independent if measured on their

own, correlated given C.

The goal of causal discovery is to produce a directed graph (typically acyclic) representing

direct causal relationships between the members of a set of variables. (In practice, it is rarely

possible to pick out a single graph and we instead �nd a family of causal graphs, termed

observationally equivalent causal graphs, with the same undirected skeleton and set of forks

and colliders.) In order to do this, it is necessary to make some assumptions about the

causal structure we are looking for. The �rst assumption, called stability or faithfulness,

simply states that observed patterns of conditional independence are due to the structure of

the causal network rather than speci�c parameter values. Consider a photograph of a tree.

It could be showing one tree, or there could be a second tree directly behind the �rst. One

of the reasons we prefer the �rst explanation is stability, as only a very speci�c camera angle

will make two trees look like one (Pearl, 2009).

The second assumption is a version of Occam's razor, in which a simpler model is preferred

to a more complex one. In order to understand this assumption, we must recognize that we

are very rarely able to measure all relevant causes of a set of variables. The unmeasured

variables, termed latent variables, may be included in a proposed causal structure. This

allows an in�nity of possible causal structures to be created, so we must select the simplest
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ones (Spirtes et al., 1995, Pearl, 2009). However, here simplicity is de�ned not in terms

of the number of links in a causal structure but in the ability of one structure to mimic

the patterns of conditional independencies entailed by another. If two causal structures are

consistent with the same data, we prefer the one that is compatible with a narrower range

of observed values of the variables (Pearl, 2009). Assuming that the causal structure being

searched for is minimal and stable allows the use of causal discovery algorithms. Most such

algorithms, including the one used in this paper, also assume that the causal structure is

acyclic. Algorithms that can recover cyclic structures exist, but the data must be discrete

or meet certain distributional assumptions, or the functional relationships between variables

must be linear.

We used the Fast Causal Inference (FCI) algorithm (Spirtes et al., 1995) to search for

causal relationships between the abundances of taxa. This algorithm was chosen because

it allows for latent variables, can handle continuous data and does not require the data to

follow any particular distribution.

FCI �rst creates a skeleton of undirected links and then orients as many of them as

possible from cause to e�ect. It starts by building a complete undirected graph of variables

(in this case, taxa) and then picks pairs of variables and searches for conditioning variables

that make the members of the pair conditionally independent. If it is possible to make a pair

of variables conditionally independent, the link is removed. The remaining links are then

oriented according to the rules described in Spirtes et al. (1995).

The abundance values for each taxon were normalized by the taxon's mean abundance.

A Gaussian distribution, chosen as a model of a humped response because of the poor per-

formance of beta distributions in modeling species response curves (Oksanen and Minchin,

2002), was �tted to each taxon's normalized abundance values to control for elevation; the

residuals were used in further analysis. Standard minor axis regression, which is appropriate

when the predictor variables are uncontrolled and may even be a�ected by the dependent
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variables (Quinn and Keough, 2002, McArdle, 1988, 2003), was then applied to the resid-

uals to control for soil carbon, nitrogen, phosphorus, calcium, magnesium and potassium

concentrations. (Sodium and pH were omitted due to their collinearity with other predictor

variables.)

The Fast Causal Inference algorithm was then applied to the data using the R package

pcalg (Kalisch et al., 2011), with conservative skeleton construction. The absolute value of

the Spearman correlation coe�cient for two variables, with a threshold of 0.5, chosen to be

moderately high, was used as the test of independence; Spearman partial correlation was used

for conditional independence. We chose to use the absolute value of the correlation rather

than a p-value to test independence because correlation is more scienti�cally meaningful as a

measure of association strength than p-values, which are strongly in�uenced by sample size

(Ziliak and McCloskey, 2008).

In order to determine whether inter- or intra-guild interactions were more common, all

unidirectional and partially oriented links found by FCI were classi�ed according to the

guild memberships of the taxa involved and the frequency of each type of interaction was

compared to the values expected if all interaction types were equally probable. Since the

sample sizes in such a comparison are necessarily small (n=6 and n=4), it was not possible

to use statistical tests based on the Gaussian distribution on our data, as it is impossible

to establish that 4 or 6 points have a Gaussian distribution. Therefore, a non-parametric,

bootstrap two-group ranked comparison of medians with 10,000 bootstrap replicates (Good,

2005) was used to test for statistical signi�cance.
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Site Elevation (m) C (%) N (%) Total P (%) Ca (%) Mg (%) Na(%) K(%) pH

A 1520 16.76 0.97 0.1130 0.0012 0.0010 0.0017 0.0241 5.00

B 1280 8.703 0.49 0.0663 0.0023 0.0009 0.0021 0.0240 5.61

C 1173 21.55 0.807 0.0265 0.0031 0.0008 0.0069 0.0379 4.99

D 968 9.0 0.56 0.0524 0.1300 0.0007 0.0026 0.0404 6.31

E 845 9.21 0.393 0.0446 0.0015 0.0010 0.0022 0.0253 5.73

F 687 3.72 0.22 0.0389 0.0037 0.0009 0.0028 0.0221 5.56

Table 5.1: Site elevation and soil chemistry. C and N values are means of three replicate
measurements. All other chemistry values are for composite samples from n=4 plots for all
sites except B, where n=5 plots. The soil at Sites B, C and F is a �ne sandy loam, that at
Sites D and E is a cobbly sandy clay loam, and that at Site A is a sandy loam (Soil Survey
Sta�, Natural Resources Conservation Service, 2012).

5.3 Results

5.3.1 Soil Chemistry

The soil chemistry results are shown in Table 5.1. Site D had signi�cantly higher soil pH

and calcium concentration than the other sites, while Site A is distinguished by its low pH

and high soil carbon and phosphorus. Site C also has relatively acidic, carbon-rich soil, but

its phosphorus level is the lowest of all the sites.

5.3.2 Elements of Metacommunity Structure

The results of EMS analysis are shown in Table 5.2. The overall subcommunity was classi�ed

as Clementsian, plants and mesostigmatid mites are quasi-Clementsian, basidiomycete fungi

are Clementsian, and collembolans are random.

As indicated by the highly signi�cant coherence values in Table 5.2, the overall subcom-

munity showed strong coherence along the elevational gradient, as did every guild except

collembolans. Also, in all cases, Morisita's index (MI) was substantially greater than one,
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indicating that species range boundaries tended to coincide. Replacement values were higher

than the simulated null for the full community and all taxa except collembola, for which they

were much lower than the null. (Table 5.2) Removing Site C, which was very di�erent from

all the other sites in terms of both vegetation and soil chemistry (Table 5.1), from the anal-

ysis only changed the classi�cation of the basidiomycetes, which went from Clementsian to

Gleasonian. (Since Morisita's index for the basidiomycetes is the least signi�cant of any

guild, the change in their classi�cation with the removal of Site C is likely to be partly due

to the change in sample size.) This implies that our results are largely robust with respect

to the presence of an unusual site.

In order to make sure that the Clementsian and quasi-Clementsian results were not likely

to be artifacts of low sampling resolution, Morisita's index was computed for the same null

model used to evaluate coherence and replacement. Out of 1000 runs, only �ve had MI

values as large as the one observed for the full subcommunity, indicating that our sampling

resolution does not create spurious boundary conjunction when species are distributed in-

dependently. As another check, we examined Whittaker's Smoky Mountains tree data for

mesic sites (Whittaker, 1956), which was one of the examples in Leibold and Mikkelson

(2002). That study used correspondence analysis and failed to obtain an MI value that

would indicate statistically signi�cant boundary conjunction. We used canonical correspon-

dence analysis with elevation as the constraint to ordinate the data matrix and obtained

the same result. To test the e�ect of sampling resolution, �ve of Whittaker's eleven sites

were then discarded, leaving six sites at 800 ft intervals instead of eleven sites at 400 ft

intervals. This actually made Morisita's index smaller, going from 1.1684 to 0.8222. These

two analyses together indicate that the results presented here are unlikely to be an artifact

of low sampling resolution.

In order to examine the e�ect of interguild interactions on taxon distributions, we per-

formed EMS analysis on pairs and triplets of guilds, as well as the full subcommunity (Table
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Level Guilds Observed MI Baseline MI

Double

Plants + fungi 2.6341 2.4868
Plants + collembola 2.8455 3.8489

Plants + mesostigmatids 2.6481 3.5612
Fungi + collembola 1.5737 1.5499

Fungi + mesostigmatids 0.8990 1.5402
Collembola + mesostigmatids 1.6000 1.4659

Triple

Plants + fungi + collembola 2.5668 2.4570
Plants + fungi + mesostigmatids 1.9723 2.4050

Plants + collembola + mesostigmatids 2.8339 3.4305
Fungi + collembola + mesostigmatids 0.5636 1.5387

Full Plants + fungi + collembola + mesostigmatids 2.4947 2.3797

Table 5.3: Comparison of actual and baseline Morisita's index (MI) values for sets of multiple
guilds. The baseline MI value for a set of guilds is the weighted mean of the MI values of the
individual guilds. Only sets of directly interacting guilds (six out of eleven sets in total) have
higher-than-baseline boundary conjunction values, and such boundary conjunction values are
found in all sets of directly interacting guilds except the fungi, collembola and mesostigmatids
triplet.

5.2). All pairs except fungi and mesostigmatids had a Clementsian or quasi-Clementsian

structure, as did all triplets except fungi, collembola and mesostigmatids, and the full sub-

community. The values of Morisita's Index for these sets of guilds were then compared to

baseline values (Table 5.3). The baseline value for a pair or triplet was computed as the

weighted mean of the MI values of the guilds composing it. The observed MI value was

greater than the baseline one (and, in one case, greater than both values for the pair's com-

ponent guilds) for the plants-fungi, fungi-collembola and collembola-mesostigmatid pairs.

In the case of triplets, only plants-fungi-collembola had a greater than baseline MI, as did

the full subcommunity. This creates a striking pattern in which only sets of directly in-

teracting guilds have higher-than-baseline boundary conjunction values, and such boundary

conjunction values are found in all but one set of directly interacting guilds (Table 5.3).
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Figure 5.5: Output of Fast Causal Inference algorithm. Each node represents a taxon. Table
5.4 gives a key to plant, collembolan, and mesostigmatid taxa; fungal OTUs are T-RFLP
alleles. Bidirected links indicate an unmeasured common cause of two variables, while partly
directed links (those with a circle on one end, A#�B) indicate that the algorithm could not
completely orient the link, but did �nd that A and B are connected and B is not a cause of
A Spirtes et al. (1995). Drawn with Tetrad IV (http://www.phil.cmu.edu/~tetrad).

5.3.3 Causal Discovery

The output of the Fast Causal Inference algorithm is shown in Fig. 5.5. In this graph, 1.88%

of possible directed connections actually exist.

Figure 5.6 shows the results of the comparison of the frequencies of inter- and intra-guild

interactions to the values expected if all interaction types were equally probable. There

is substantial overlap between the distributions and the di�erence between the medians is

0.258 (bootstrap 95% CI: -1.0472 to 1.0472). A bootstrap two-group ranked comparison
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Figure 5.6: Di�erences between observed frequencies of inter- and intra-guild causal links
and expected frequencies if all types of links were equally likely.

of the medians gave a p-value of 0.2917. While it is misleading to declare a �nding of �no

signi�cant di�erence� based on a nonsigni�cant p-value in a low-power comparison such as

this one (Freiman et al., 1992, Altman and Bland, 1995), in this case, there is no question of

declaring a substantial di�erence to be statistically insigni�cant, as the di�erence between

the groups is small and Figure 5.6 shows substantial overlap between the deviations from

observed frequencies of inter- and intra-guild interactions. We therefore conclude that inter-

guild interactions are approximately as common as intraguild ones, although their relative

strengths remain unknown.
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5.4 Discussion

5.4.1 Causal Analysis

The fact that data on abundances of various taxa along an elevation gradient produced a

causal graph in which interguild interactions are approximately as common as intraguild ones

links research on species distributions to that on food webs, pollination networks, and other

interaction networks currently under intense study. It also supports the idea that groups

of similar organisms (guilds or taxa) are not the optimal units for research in community

ecology (Allen and Hoekstra, 1992, Putman, 1994). While de�ning the community as the

biotic part of the ecosystem may be helpful, we freely admit to not having a ready answer

to the question of how to best choose units for study, although some potential guidelines are

discussed below. Still, we believe the question itself to be an important one for ecologists to

consider.

As indicated by the frequency of bidirected and partially directed links in Figure 5.5,

we found many cases in which unmeasured variables may be a�ecting the abundances of

various taxa. While this is unsurprising given the complexity of ecological systems, it serves

to identify speci�c topics for future research and data integration. For example, in causal

analysis, the directness or indirectness of a relationship can only be discussed relative to

a particular set of variables. If A a�ects B and B a�ects C but we only measure A and

C, any relationship revealed would be interpreted as direct. However, it becomes indirect

once B is measured and shown to be intermediate in the causal chain. This means that a

comprehensive causal graph of a community can start with one or a few taxonomic groups.

As more taxa and other variables are studied, their abundances can be included in the

dataset subjected to causal analysis, providing mechanisms and helping to orient links. This

progressive approach will gradually clarify direct and indirect relationships and can create a

framework for data synthesis and Institutionalized Model-Making (Sage et al., 2003).
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In future work, it will also be important to measure the e�ects of these interactions and

examine the distribution of strong versus weak and positive versus negative causal links.

The use of discrete measures of abundance will allow causal discovery algorithms that do

not assume an acyclic causal structure to be applied more easily(Shipley, 2002, Pearl, 2009).

Studies comparing levels of integration of di�erent community types will also be of interest,

as will the application of social network and other structural measures to causal graphs.

5.4.2 Elements of Metacommunity Structure

Most taxonomic groups, including plants, exhibited a Clementsian or quasi-Clementsian

community structure, with substantial boundary conjunction. For all single guilds except

fungi analyzed without Site C, Morisita's Index showed a higher degree of boundary conjunc-

tion than that expected if taxa were distributed independently of each other. In addition,

the only guild pairs that exhibited higher than expected boundary conjunction were plants-

fungi, fungi-collembola, and collembola-mesostigmatids. These pairs are adjacent in the food

chain consisting of the four guilds studied and are thus expected to directly interact. These

�ndings, particularly the fact that all and only pairs of directly interacting guilds had higher-

than-expected amounts of boundary conjunction, support the idea that biotic interactions

drive the distributions of many taxa at our site, although soil chemistry was not taken into

account in the analysis.

While all triplets except fungi, collembola and mesostigmatids were Clementsian, only

the plants, collembola and fungi triplet had an MI value that was higher than the weighted

average of its component guilds' MI values. This is consistent with our �nding of higher-

than-expected MI values in trophically interacting pairs and is expected given the importance

of microbes in pre-processing low-quality plant food for other consumers. On the other

hand, the much lower-than-expected MI value for fungi, collembola and mesostigmatids is

an exception to this trend. It may be partly related to the weak coherence exhibited by
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collembola (Table 5.2); the interactions among these organisms and their implications for

taxon distributions should be studied more in the future. The full subcommunity consisting

of all four guilds was Clementsian and had a higher-than-expected MI value, in conformity

with the overall pattern.

Higher-resolution sampling may show less boundary conjunction, as Morisita's index only

measures boundary conjunction and does not take into account how close non-coinciding

boundaries are to each other. For high-resolution studies, it may be bene�cial to use a

conjunction index that takes this distance into account. Also, the size of study units must

be related to the scale at which the organisms being studied live. This study did not use

highly mobile organisms such as birds or �ying insects because these organisms may be found

in a plot without interacting with anything there. If a study is to have a chance of detecting

the in�uence of biotic interactions on the distribution of such organisms, the sampling units

must be large enough to encompass a substantial part of a typical individual's home range.

The prevalence of Clementsian and quasi-Clementsian community structure in this study

is consistent with prior work using EMS analysis (Leibold and Mikkelson, 2002, Presley et al.,

2009, 2010b, Presley and Willig, 2010). Indeed, Leibold and Mikkelson (2002) found that

eight out of 19 datasets from Whittaker's gradient studies, including ones from the Great

Smoky Mountains, support a Clementsian rather than a Gleasonian organization, having

statistically signi�cant boundary conjunction.

Since our study site is geographically close to Whittaker's (Whittaker, 1956), it is inter-

esting that our results show predominantly Clementsian and quasi-Clementsian organization,

while many of his are Gleasonian. This could be a result of di�erences between sites; however,

other possibilities exist. Whittaker's data tables lump all sites from each elevation, which

may a�ect the outcome of EMS analysis. Also, Whittaker's studies took place shortly after

American chestnut was functionally eliminated from southern Appalachian forests, resulting

in substantial changes in the abundances of other tree species (Nelson, 1955). It is possible
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that forest response to this fairly recent loss of a dominant species a�ected the patterns of

co-occurrence found in his study.

Currently, individualistic community conceptions are dominant among ecologists (Put-

man, 1994, Lortie et al., 2004, Ricklefs, 2008). Yet studies since at least Pielou and Routledge

(1976) have found evidence of boundary conjunction along environmental gradients. Others

have documented both facilitation and competitive interactions (Lortie et al., 2004). As

mentioned previously, studies using the Elements of Metacommunity Structure framework

have frequently found Clementsian patterns with coherent species ranges and statistically

signi�cant boundary conjunction (Leibold and Mikkelson, 2002, Presley et al., 2009, 2010b,

Presley and Willig, 2010).

5.5 Conclusion

We found that interguild interactions are approximately as common as intraguild ones, al-

though their relative strengths remain unknown. Furthermore, Clementsian communities are

common and sets of trophically interacting guilds have a strong tendency to show elevated

levels of boundary conjunction, unlike sets of guilds that are not expected to directly interact.

Together, these �ndings argue for the importance of biotic interactions in structuring eco-

logical communities. Trophic interactions and plant-fungus symbioses (mutualistic and/or

pathogen-host) appear particularly important but cannot be detected by research that fo-

cuses on single taxa or guilds. Future research should therefore be integrative, including

several guilds.

Table 5.4. Key to Taxa in Figure 5.5

Number Guild Taxon

1 Plants Clintonia umbellulata

2 Plants Hexastylis sp.
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3 Plants Ilex montana

4 Plants Lindera benzoin

5 Plants Rubus allegheneiensis

6 Plants Rubus sp.

7 Plants Castanea dentata

8 Plants Carpinus caroliniana

9 Plants Tilia americana

10 Plants Betula lenta

11 Plants Prunus serotina

12 Plants Nyssa sylvatica

13 Plants Robinia pseudoacacia

14 Plants Quercus prinus

15 Plants Magnolia acuminata

16 Plants Cornus �orida

17 Plants Fraxinus pennsylvanica

18 Plants Tsuga canadensis

19 Plants Kalmia latifolia

20 Plants Quercus rubra

21 Plants Carya glabra

22 Plants Carya ovalis

23 Plants Acer rubrum

24 Plants Rhododendron maximum

25 Plants Amelanchier arborea

26 Plants Oxydendrum arboreum
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27 Plants Acer pensylvanicum

28 Plants Acer saccharinum

29 Plants Liriodendron tulipifera

30 Plants Quercus alba

31 Plants Pinus strobus

32 Plants Betula alleghaniensis

33 Collembola Entomobryidae

34 Collembola Isotomidae

35 Collembola Onychiuridae

36 Collembola Hypogastruridae

37 Mesostigmatids Pachylaelapidae

38 Mesostigmatids Veigaiidae

39 Mesostigmatids Laelapidae

40 Mesostigmatids Ologamasidae

41 Mesostigmatids Zerconidae

42 Mesostigmatids Dermanyssiae

43 Mesostigmatids Parholaspididae

44 Mesostigmatids Rhodacaridae

45 Mesostigmatids Parasitidae

46 Mesostigmatids Ascidae
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Chapter 6

Conclusions

�The thing the ecologically illiterate don't realize about an ecosystem is that it's
a system. A system! A system maintains a certain �uid stability that can be
destroyed by a misstep in just one niche. A system has order, a �owing from
point to point. If something dams the �ow, order collapses. The untrained miss
the collapse until too late. That's why the highest function of ecology is the
understanding of consequences.� �Frank Herbert, Dune, 1965

�The thing the ecologically illiterate don't realize about an ecosystem is that it's
a system. A system! A system maintains a certain �uid stability that is hard to
destroy by a misstep in any one part. A system has order, a �owing from state
to state. If something dams the �ow and the environment changes, the system
can't adapt and order collapses. The untrained miss the collapse until too late.
That's why the highest function of ecology is the understanding of processes.�
�Jane Shevtsov, 2006

6.1 Importance of networks and systems thinking

Any set of entities connected by links can be thought of as a network. In ecology, the links

represent binary relationships between taxa or ecosystem compartments. The relationships

thus represented include predation, pollination, seed dispersal, chemical transformation, or

any of a number of other things. The research described in this dissertation has all been

based, explicitly or implicitly, on the network concept and highlights the importance of
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whole-system approaches in ecology. The potential importance of indirect energy �ows in

model food webs and the fact that functional diversity increases the coherence of forest soil

communities both lead us to conclude that ecosystems must be considered as wholes.

Such views have been expressed for as long as ecology has been a science. Forbes (1887)

referred to �the impossibility of studying completely any form [taxon] out of relation to the

other forms�. Over a hundred years later, Yodzis (1998) demonstrated the impossibility of

predicting whether a seal cull would have a positive or negative e�ect on a particular prey

species without taking the whole food web into account.

The network approach, implicit in Forbes and explicit in Yodzis, allows us to use local

information about interactions to build up a structure from which global interactions can be

inferred. The network thus constructed can be studied as a whole, as in Chapter 4. There

are intriguing hints, particularly from the social sciences (e.g. Granovetter, 1973, Rothenberg

et al., 1998), that network structure can give us powerful explanations of natural phenomena,

a possibility that should be pursued by empirical and theoretical ecologists.

6.2 Limitations of network approaches

While conceptualizing ecosystems as networks is an important part of systems ecology, we

should not forget other tools. Odum (1983) gives a list of 33 �systems languages�, ranging

from di�erential equations to art. Some of the languages in his list, which is far from

exhaustive, can be represented well by networks, but others cannot. In particular, while

ordinary di�erential equation (ODE) models are often used together with networks, ODEs

are far more general.

Unlike networks, di�erential equations can represent interactions involving more than

two species. Such interactions, termed higher-order interactions (Wootton, 1994), are quite

common. A simple example would be a situation in which a predator's success rate while
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hunting depends on the amount of vegetation cover available to the prey. Since such inter-

actions are not binary, they cannot be represented as networks. However, ODEs can include

higher-order interactions by incorporating all relevant species in the functions representing

reproduction, growth, predation and metabolism (Ké� et al., 2012). The e�ects of ecosystem

engineers, organisms that extensively modify their environment in ways that change its suit-

ability for other organisms (Jones et al., 1994), are also di�cult to incorporate into networks,

particularly those representing transfers of a conserved currency. Similarly, the fact that real

ecosystems cover a spatial area or volume is lost in network and ODE representations but

can be modeled with partial di�erential equations and related discrete approaches.

6.3 Community concepts and system states

Currently, individualistic community conceptions are dominant among ecologists (Putman,

1994, Lortie et al., 2004, Ricklefs, 2008). Yet studies since at least Pielou and Routledge

(1976) have found evidence of boundary conjunction along environmental gradients. Others

have documented both facilitation and competitive interactions (Lortie et al., 2004). As

mentioned previously, studies using the Elements of Metacommunity Structure framework

have frequently found Clementsian patterns with coherent species ranges and statistically

signi�cant boundary conjunction (Leibold and Mikkelson, 2002, Presley et al., 2009, 2010b,

Presley and Willig, 2010). What, then, accounts for the prevalence of individualistic com-

munity concepts?

6.3.1 Metaphors for ecological communities

The Clements-Gleason debate is three quarters of a century old. Ecologists' conceptions of

community organization have changed (Allen and Hoekstra, 1992, Leibold and Mikkelson,

2002, Lortie et al., 2004), yet the old debate's terms still structure our discussions of the topic.
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This may be partly due to the vividness of these terms � the community as superorganism

(an analogy that Clements may have used because the term �complex self-organizing system�

did not exist during his time (Hagen, 1992)) versus �every species of plant is a law unto itself�

(Gleason, 1926).

Metaphors and analogies can be critical to scienti�c understanding (Lightman, 1989).

While the superorganism metaphor is the best-known one in community ecology, others

have been put forth. An endnote in Allen and Hoekstra (1992) cites the early ecologist John

Curtis as saying that ecological communities function as if the species are �connected by

elastic bands� whose tension is �constantly shifting because, as one member of the community

changes, its relationship to immediate others changes and the tension passes through the

web of rubber bands�. Indeed, such a conception of communities is employed when they are

modeled as systems of coupled oscillators (McCann et al., 1998, Huxel and McCann, 1998,

Vandermeer, 2006, Hastings, 2010).

A better metaphor for communities may be that suggested by the word �community�

itself and by the cognateness of the words �ecology� and �economy�. Consider an urban

neighborhood whose residents interact in certain economic and social contexts. Like most

neighborhoods, it has fuzzy spatial boundaries and interactions with the larger city are very

common. It is constantly changing but retains an integrity through most � but not all �

possible changes. Many people living in the neighborhood don't directly interact with each

other, but the interactions that do take place may be critical. Still, residents are changed to

some extent by living there and their interactions are modi�ed by the social context.

The analogy presented here is far from perfect. (In particular, since the physical structure

of terrestrial communities is made up largely of living plants, the analogy would work better if

the neighborhood's buildings could not be reoccupied upon the death of the owner.) However,

it may still prove fruitful as a source of ideas and pedagogical tool, as well as a way to connect

ecological communities with other complex systems.
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6.3.2 What is the system state?

Ricklefs (2008) wrote one of the sharpest critiques in recent years of non-individualistic com-

munity concepts, explicitly describing the ecological community as �an epiphenomenon that

has little explanatory power�. The research described in Chapter 5, as well as that of many

others (e.g. Pielou and Routledge, 1976, Leibold and Mikkelson, 2002), provides evidence for

interactive communities. However, as long as ecologists de�ne the state of a community or

ecosystem as the vector of abundances of its component species or compartments, we will

be vulnerable to the charge that the system we are studying is merely an epiphenomenon of

population distributions. We need to �nd properties of ecological systems that will allow us

to de�ne macrostates of entire communities and ecosystems that are more than lists of the

states of their parts.

If such properties are chosen well, whole systems can be studied without detailed knowl-

edge of their parts. Indeed, such knowledge may be a distraction. The mathematician René

Thom wrote, �A knowledge of the �ne structure, molecules for a �uid, cells for an animal,

is practically irrelevant for understanding the global structure... of the total system. For

instance, the �nal structure of a theory like Fluid Mechanics does not depend on whether

one takes as the basic concept molecules or a continuous �uid.� (René Thom, �Structuralism

and Biology�, quoted in Gar�nkel (1981)) This would not be possible if the state of the �uid

was taken to be the set of positions and velocities of all its molecules.

Ecologists have started looking for these kinds of properties in research on indicators of

ecosystem health. For example, Ulanowicz (1997) has proposed that ascendency be used

to determine if an ecosystem is under stress. However, ascendency is a network property

and fairly detailed knowledge of ecosystem structure and function is required to compute it.

Jørgensen and Nielsen (2007) promote the use of eco-exergy, a combination of the thermo-

dynamic distance of ecosystem components from chemical equilibrium and the information

stored in the DNA of the organisms in the ecosystem. This measure, being a sum over
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components, shares the inadequacies of a vector of states and, unlike ascendency, does not

incorporate information about ecosystem organization. Schneider and Kay (1994) argue that

a terrestrial ecosystem's temperature should be used as an index of its development, but this

is almost completely determined by plant evapotranspiration, so it is hard to see it as an

adequate ecosystem descriptor. However, the idea of focusing on ecosystem outputs may

well be a productive one.

As the term �ecosystem health� implies, research in this area has a strongly applied �avor,

despite the large amounts of theory it uses. Holistically-oriented community and ecosystem

ecologists with more basic interests could do worse than to spend some time �guring out

what exactly they want to know about their study systems and how system macrostates

might be described.

The network approach to communities and ecosystems provides ecologists with a powerful

set of tools and ideas. Together with other languages and a focus on whole systems, it may

enable us to develop a better understanding of natural processes and consequences.
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Appendix A

Matlab Code for Dynamic Environ

Approximation

1 function indirect_mov (TimeCourseIn , Mat_input ,Mat_type , WindowSize ,

Dt)

2 % This func t i on e s t ima t e s an i n d i r e c t f l ow f r a c t i o n f o r almost any

3 % e c o l o g i c a l network .

4 % Before running the func t ion , use an ODE so l v e r to c r ea t e the x

5 % matrix con ta in ing time s e r i e s f o r each v a r i a b l e . Enter the name

6 % of t h i s matrix f o r "TimeCourseIn " .

7 % I f the s tock−normal ized f l ow va l u e s do not remain cons tant

8 % ( i . e . , the under l y ing model i s non−s t a t i ona r y or non−l i n e a r ) ,

9 % crea t e an array o f t h e s e va l u e s and enter i t s name a f t e r the

10 % name of your time s e r i e s . ( I f the system i s l i n e a r and

11 % sta t i onary , C i s a s imple matrix . ) A l t e r na t i v e l y , you may crea t e

12 % an array o f F matr ices . Enter the name o f the C or F array f o r

13 % "Mat_input" and 0 ( f o r C) or 1 ( f o r F) f o r Mat_type .
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14 % Choose a l en g t h ("WindowSize ") f o r your product s e r i e s . The

15 % leng t h r e f e r s to the number o f va l u e s in your time s e r i e s t h a t

16 % shou ld be used in the product s e r i e s . F ina l l y , s p e c i f y the s t ep

17 % s i z e ("Dt") you used when running the s imu la t i on in your ODE

18 % so l v e r . (For EcoNet s imu la t ions , Dt=1.)

19 % This func t i on i s on ly compat ib l e wi th MATLAB 7.1 or h i gher .

20 % Written by Jane Shev t sov and Caner Kazanci .

21

22 % Get array dimensions .

23 Length=s ize ( TimeCourseIn , 1) ;

24 Width=s ize (Mat_input , 1) ;

25 I t e r=ce i l ( Length*Dt)−WindowSize ;

26 % I f C or F i s a 2−D matrix , conver t i t to a 3−D array .

27 i f ( s ize (Mat_input , 3 ) == 1)

28 Matlarge (Width , Width , Length ) = 0 ;

29 for i = 1 : Length

30 Matlarge ( : , : , i ) = Mat_input ;

31 end

32 else

33 Matlarge=Mat_input ;

34 end

35

36 % Dele te in t e rmed ia t e time po in t s .

37 Steps=1/Dt ;

38 Pick =[1 : Steps : Length ] ' ;

39 LengthRed=ce i l ( Length*Dt) ;
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40

41 TimeCourse=zeros ( LengthRed ,Width ) ;

42 Mat=zeros (Width ,Width , LengthRed ) ;

43 for i =1:LengthRed

44 Mat ( : , : , i )=Matlarge ( : , : , Pick ( i , 1 ) ) ;

45 TimeCourse ( i , : )=TimeCourseIn ( Pick ( i , 1 ) , : ) ;

46 end

47

48 % Create the G array .

49 i f Mat_type==0 %For C matrix / array .

50 Fbar=zeros (Width , Width , LengthRed ) ;

51 for k=1:LengthRed

52 Fbar ( : , : , k )=Mat ( : , : , k ) *diag ( TimeCourse (k , : ) ) ;

53 T(k , : ) =−1*diag ( Fbar ( : , : , k ) ) ;

54 F ( : , : , k )=Fbar ( : , : , k )+diag (T(k , : ) ) ;

55 G( : , : , k )=F ( : , : , k ) /diag (T(k , : ) ) ;

56 end

57 else %For F array .

58 for k=1:Length

59 T(k , : ) =−1*diag (Mat ( : , : , k ) ) ;

60 G( : , : , k )=Mat ( : , : , k ) /diag (T(k , : ) ) + eye (Width ) ;

61 end

62 end

63

64 % I n i t i a l i z e produc t s and sums o f G.

65 global N
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66 Gprod=zeros (Width , Width , I t e r +1) ;

67 N=zeros (Width , Width , I t e r +1) ;

68

69 % Compute Gprod and N.

70 for j = 1 : ( I t e r +1)

71 Gprod ( : , : , j ) = eye (Width ) ;

72 for i = 1 :WindowSize

73 %Mul t i p l y and add to ob ta in sum of matrix produc ts .

74 Gprod ( : , : , j ) = Gprod ( : , : , j ) * G( : , : , i+j−1) ;

75 N( : , : , j ) = N( : , : , j ) + Gprod ( : , : , j ) ;

76 end

77 N( : , : , j )=N( : , : , j )+eye (Width ) ;

78 end

79

80 % Compute i n d i r e c t f l ow s .

81 Ind=zeros (Width ,Width , I t e r ) ;

82 for i =1: I t e r

83 Ind ( : , : , i )=N( : , : , i )−G( : , : , i )−eye (Width ) ;

84 end

85

86 % Compute i n d i r e c t to t o t a l f l ow r a t i o s .

87 CountZeros=zeros (1 , I t e r ) ;

88 CountOnes=zeros (1 , I t e r ) ;

89 Ratio=zeros (Width ,Width , I t e r ) ;

90 % Nested l oops a l l ow c a l c u l a t i o n to be done 1 entry at a time ,

91 % to avoid d i v i s i o n by 0 .
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92 for k = 1 : I t e r

93 for j = 1 :Width

94 for i = 1 :Width

95 i f N( i , j , k )==0 %Avoiding d i v i s i o n by zero .

96 Ratio ( i , j , k )=0;

97 CountZeros (1 , k )=CountZeros (1 , k )+1;

98 else %Ca l cu l a t i n g i n d i r e c t / t o t a l r a t i o .

99 Ratio ( i , j , k )=Ind ( i , j , k ) /N( i , j , k ) ;

100 i f Ratio ( i , j , k )==1

101 CountOnes (1 , k )=CountOnes (1 , k )+1;

102 end

103 end

104 end

105 end

106 end

107

108 % Create movie o f I /T r a t i o s .

109 M=moviein ( I t e r ) ;

110 for i =1: I t e r

111 Rat ioF l ip ( : , : , i )=Ratio (Width : −1 : 1 , : , i ) ;

112 end

113 global RatioD

114 RatioD=zeros (Width+1,Width+1, I t e r ) ;

115 for i =1: I t e r

116 RatioD ( : , : , i )=[Rat ioF l ip ( : , : , i ) Rat ioF l ip ( : ,Width , i ) ; . . .

117 Rat ioF l ip (Width , : , i ) Rat ioF l ip (Width ,Width , i ) ] ;

98



118 pcolor (RatioD ( : , : , i ) ) ;

119 colormap gray

120 set (gca , ' x t i c k ' , 1 : 1 :Width )

121 set (gca , ' y t i c k ' , 1 : 1 :Width )

122 set (gca , 'YDir ' , ' r e v e r s e ' )

123 xlabel donor

124 ylabel r e c i p i e n t

125 colorbar

126 M( : , i )=getframe ;

127 end

128 movie(M, 3 )

129

130 % Generate summary s t a t i s t i c s f o r i n d i r e c t f l ow f r a c t i o n s .

131 Mid=zeros (1 , I t e r ) ;

132 Maximum=zeros (1 , I t e r ) ;

133 Minn=zeros (1 , I t e r ) ;

134 Mean=zeros (1 , I t e r ) ;

135 for i =1: I t e r

136 Mid (1 , i ) = median(median( Ratio ( : , : , i ) ) ) ;

137 Maximum(1 , i ) = max(max( Ratio ( : , : , i ) ) ) ;

138 Minn (1 , i ) = min(min( Ratio ( : , : , i ) ) ) ;

139 Mean(1 , i ) = mean(mean( Ratio ( : , : , i ) ) ) ;

140 end

141

142 % Plot summary s t a t i s t i c s .

143 Time=1: I t e r ;
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144 f igure

145 plot (Time , Minn , ' kx ' , Time , Mid , ' k−+' , . . .

146 Time , Mean , ' k−. ' , Time , Maximum, ' ks ' )

147 legend ( 'minimum ' , 'median ' , 'mean ' , 'maximum ' )

148 xlabel ( ' time ' )

149 ylabel ( ' I n d i r e c t  f low  f r a c t i o n ' )

150

151 % Disp lay numbers o f un l inked pa i r s and pa i r s l i n k e d only

152 % by i n d i r e c t f l ow s .

153 Ion ly=CountOnes (1 , I t e r −1) ; Uncon=CountZeros (1 , I t e r −1) ;

154 [num2str( Ion ly ) , '  pa i r s  o f  compartments are  l i nked  only  by 

i n d i r e c t  paths . ' ]

155 [num2str(Uncon ) , '  pa i r s  o f  compartments are  unconnected . ' ]
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Appendix B

Variables Used in CART Analysis

27 variables were used as potential predictors in the CART analysis. They included nominal

and actual size and connectance, mean path length, graph diameter (the largest minimum

distance between two nodes), and clustering coe�cient (the probability that two nodes that

share a neighbor are themselves connected). Structural cycling was quanti�ed as either dom-

inant or maximum eigenvalue. Several properties of the degree distribution of the adjacency

matrix were also used as potential predictors. These were the mean, median, maximum,

minimum, variance and mean absolute deviation from the median (MADAM). The same

measures were applied to trophic levels. Finally, several explicitly ecological quantities were

used. These were the mean generality (the number of prey a species has), mean vulnerability

(number of predators), and the fraction of species at top, bottom and intermediate trophic

levels.
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