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ABSTRACT

In order for computational chemistry to become a viable alternative to experiment and
become a true predictor for science and industry, high accuracy must be attainable in a time-
frame that does not exceed the time spent on experiment. Current methods are either ham-
pered by a lack of accuracy (e.g., Hartree-Fock theory) or, in the worst case, insurmountable
computational efforts for anything but the simplest problems (i.e. full configuration inter-
action [FCI]). The working equation of quantum chemistry, the Schrédinger equation, relies
on two-body operators only. This simplicity is deceiving in that the boundary conditions
enforced by the nature of electrons, which are fermions, links these two-body operators in
a very complex manner. The exact solution given by FCI results in a computational cost
which is exponential in the size of the computed molecule. Due to the simple nature of the
contracted Hamiltonian (K = nh + (g) i), which is a two-electron operator, the computa-
tional complexity of the Schrodinger equation should be bounded by O(n®). this work shows

that the ground state of a molecule can be expressed very accurately in terms of a geminal g

in the form of Ag(1,2)f(3...), where A is the anti-symmetrizer and f is some n — 2-electron



function. Using this result, the generalized antisymmetric geminal product (GAGP) com-
bines the ideas of geminal functional theory and Hartree-Fock theory to several geminals
(v = HZ":/ 2 9i(2i —1,2i)). GAGP lays the groundwork for the highest accuracy at a cost that
scales with O(n®). The GAGP approach was further tested on sample 4-electron systems,
Li~, Be, B*, as well as LiH, BeH™t, Hey, Hy and their respective dissociated species, with
the moderately large basis set cc-pVDZ. The calculations confirmed the theoretical results

and rendered excellent accuracy.

INDEX WORDS: Geminal Functional Theory; GFT; Quantum Chemistry; Re-

duced Density Matrix.
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CHAPTER 1

INTRODUCTION

When quantum mechanics was introduced in the early 20th century, only the most simple
problems like the hydrogen atom could be tackled. With the emergence of computers of ever-
increasing power in the seventies of the previous century, it became feasible to solve quantum
mechanics problems on a more practical level. Yet the challenge remains to improve results
systematically instead of using the dumb brute force method of waiting for bigger and faster
computers.

Quantum physics is essentially ruled by a single eigenvalue problem, and all current
methods attempt in one way or another to solve this one equation — the Schrédinger equation
as introduced by Austrian physicist Erwin Schrodinger. The active operator in this equation
is the Hamiltonian named after the Irish astronomer Sir William Rowan Hamilton. The
Hamiltonian incorporates all physical interactions of which the inter-electronic contributions
and the fermion nature of the electrons are the culprits of complexity. For not explicitly
interacting or bosonic particles, the equations may be disentangled and a closed solution
derived. Neither of those conditions is true for electrons and hence most efforts are directed

at computing the deviation from non-interacting solutions. Such methods include the average

1,2 4

potential Hartree-Fock ansatz'? configuration interaction,®? coupled cluster theory and,
coming from a different angle, density functional theory. All of these will be introduced in

more detail later. Configuration interaction and coupled cluster theory can be systematically
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improved; but to do so increases computational complexity systematically as well. Despite
these problems, quantum chemistry has contributed in many ways to the general field of
chemistry, like Hiickel theory,> molecular-orbital theory, or the Woodward-Hoffman rules;

sometimes even superseding experiment.%’

1. Aim of Research

The purpose of this research was to develop a conceptually and computationally simple
method of exceptional accuracy. The nature of the Hamiltonian suggests a certain simplicity
of its eigensolutions; yet, it has proven to be quite elusive in explicit terms. Generalized

anti-symmetrized geminal products, as introduced later, incorporate much of this simplicity.



CHAPTER 2

BACKGROUND

1. Foundations of Quantum Chemistry

In the 1920s quantum mechanics was developed, explaining reality in terms of oper-
ators and eigenvalue problems.> Operators are linear mappings from space X into space
Y, often from a space of functions into the same space. Quantum mechanical spaces are
usually Hilbert spaces, i.e., they are endowed with a scalar product and its corresponding
norm and metric, e.g., Lo(X, 1), the space of square integrable functions on the measurable
space (X, u), with scalar product ()|¢) = [¢*¢du(X). The hermitian operators represent

measurable quantities while the functions represent the physical state description.

1.1. The Hamilton Operator

The Hamilton operator, which is named after the Irish astronomer and mathematician Sir
William Rowan Hamilton, is the fundamental operator of quantum mechanics. It describes
all the energetic physics of reality. The associated eigenvalue equation (1) is the Schrédinger

equation named after Austrian physicist Erwin Schrodinger.®
(1) EVv=HV =[T+ V]|V

H is hermitian, i.e., <w‘H¢> = <¢ Hw> , and composed of a kinetic component T and a

(scalar) potential component V. In this description, we have omitted the anti-symmetrization

3
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conditions for fermions, like electrons, as well as the symmetrization conditions for bosons,
like the helium nucleus. Instead, it is assumed that H, which is fully symmetric, is applied to
functions which are anti-symmetric for fermions, i.e., f(z1,22) = — f(x2, z1), and symmetric

for bosons, i.e., f(x3,z4) = f(x4,x3).

259 Here, A is a vector

The general description of T can be found in equation (2)
potential, that incorporates, for instance, magnetic fields; & = h/27 is comprised of the
fundamental Planck’s constant; ¢;, m; are the charge and mass, respectively, of particle 7; ¢
is the speed of light; and {A, B} = AB + BA denotes the anti-commutator.

The scalar potential V usually contains the particle interactions. Due to their mass the
nuclei move very slowly compared to electrons. Therefore, Born and Oppenheimer introduced
the approximation of stationary nuclei with respect to electrons.? The Born-Oppenheimer
approximation simplifies the solution of the Schrodinger equation to a solution for electrons
only. We will restrict ourselves to the Born-Oppenheimer approximation for the remainder
of the dissertation unless explicitly noted otherwise.

qiq; - =
(4) V=Z%, ri; = | — &
tJ

1>]
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In this description, we have neglected the fundamental property of spin, for which there
is no counterpart in classical mechanics. This property was discovered by Stern and Gerlach
in 1922 in an experiment in which they noticed that a stream of electrons is split into two
separate streams when subjected to a magnetic field.%!® The intrinsic property was dubbed
“spin” and electrons were assigned either o or 3 spin depending on to which stream of
electrons they belonged. The interactions between spins and angular momenta are usually
neglected in terms of operators but are retained by employing wave functions of explicit

spins.

1.2. Second Quantization

In the previous section, the Hamiltonian was defined in terms of derivative and multiplica-
tive operators, but sometimes it is more convenient or simpler to discuss the Hamiltonian in
terms of operators on tensor subspaces. Tensor spaces are best introduced via an example
pertinent to our problem of solving the Schrodinger equation.!! Assume two square-Lebesgue
integrable functions f,g € V = L5(X), then f(x)-g(y) =: f ® g is a tensor from the tensor
product T?(V) =V ® V = span{f ® g|f,g € V}. A tensor space is then the direct vector
sum @2, T*(V), where T? is the field k£ of the (Hilbert) vector space T*(V) = V. Multi-
plication and addition in this algebra reflect the properties of the functional space, i.e., if
t=f+gQhandt =i®i—h® f®j,thent+t =f+9gQh+i®i—h® f®j and
Q' =fRIQI—[QhRfRj+9gRhRi®RiI—gRh®h® f®j. It is worth noting that

TP(Ly(X)) is isomorphic to Lo XP).
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The set of symmetric and anti-symmetric tensors are respective subalgebras S(V') and
A(V) of T(V). We can furthermore define a multiplication A on S(V)/A(V) similar to ®
by applying their respective projectors 121/5' to the tensor product ®, i.e., t At = A (tat.
The projectors are constructed from the projections in the generating spaces. Given T?(V)
there is a group I', of permutations on {1...p}. With each permutation ¢ € I'y on the
indices, we identify an operator P, on T?(V) such that P, fy ® -+~ ® f, = fo) ® -+ ® foip)
Then A, = ﬁ S o sgn(o)P, and S, = IFlj S o P,, where sgn is —1 if o has even order

o€l oelp

and 1 if o has odd order. These operators can be extended to 7'(V') by the identity on all
components outside T?(V) and so A = > A, and S = > S,.

With this tensor algebra defined it is easy to define the so-called annihilation and creation
operators of second quantization. If f € V, then we will define the creation operator &} :
A(V) = A(V) such that ¢t € AY(V) — +i+1- f At and the annihilation operator d; :
T(V) — T(V) restricted to A(V) such that t = v @ t' + /i - f*(t;)t', where v € V,
t'eT(V),and f* € V*: f*(x) = (f|z) Vo € V. The space A(V) is also commonly known
as Fock space; the definition for S(V') is analogous. &J} and ay are adjoints to one another,

(S lagl by = *. In the following I will use O for operators on T'(V)/A(V)/S(V)

and O for operators on Ly(X?) or more generally £5°(X) = €D, £2(X?). The annihilation

and creation operators follow commutation relations as shown in equations (5) to (7) on

the following page. Of particular note is that &}&f is a projection operator on the space of

symmetric/anti-symmetric tensors containing f in each product.



(5) atal = (0,0 — Dalal < {af,al} = d,atal =0
(6) d;ra&q = 5pq - dq&; And {&La dq} = 5pq
(7) dp&q = (5pq - 1)&4&;0 Aad {&pv &q} = 6pq&q&p =0

With these relations it is possible to express operators O on T(V) as a sum of products
of creation operators followed by a product of annihilation operators. So it is possible to de-

scribe the (Born-Oppenheimer) Hamiltonian operator in a simple manner as in equation (8).

1 atata
— T ® S )a,a,0r0s

® A= Y Ghoduiy > (seq

p,q€B(V) p,q,m,s€EB(V) 2
qe 2 qeqr
9 h:( ——A)
9) 1 P1 P + Z "
nuclei 1

B(V') denotes an orthonormal basis of V', and ¢, is the charge of an electron. The simplicity
immediately catches the eye as this formulation is the Hamiltonian for a (Born-Oppenheimer)
system independent of electron count. The number of electrons has been instead buried in
the wave function to which the Hamiltonian is applied. Finally, any operator O on £ (X?)
can be identified with an operator O on T(V') and thereby on A(V))/S(V) by the isomorphism
2 from L£(X) to T(V) by O =100 017, T will use these different expressions of essentially
the same operator depending on which property needs highlighting or which is simpler to

describe explicitly.



2. Conventional Computational Methods

Despite the elegance of second quantization, solving the Schrodinger equation remains
analytically impossible for anything but the simplest cases, like the hydrogen atom. There-
fore, limited by the computing power available during each era, many different techniques

have been developed to provide high accuracy at relatively low cost.

2.1. Basis Sets

As mentioned earlier, the solution of the Schrédinger equation resides in the Hilbert
space of Lebesgue-square-integrable functions Lo, which is unfortunate since L, is infinitely
dimensional and, therefore, intractable. Hence, actual computations have to rely on trun-
cations of Ly to finite dimensions and much research has gone into the development and
discovery of good finite basis sets, which span the finite space. As a basis set is expanded,
the quality of the approximation cannot decrease, as the space spanned by the smaller basis
set, is contained within the space spanned by the larger basis set. Therefore, series of basis
sets have been developed for which the solution is systematically improved.

The first basis sets were comprised of Slater-type orbitals'? (STOs, see equation (10)),
named after Bohr’s interpretation of electrons on orbits around the nuclei. These are based
on the solutions to the hydrogen problem, which can be solved analytically (in spherical

coordinates see equation (11)).

(10) f(r,0,6)=r"""-e " Y0, ¢)

(11) fn,l,m(ra 97 ¢) = Rnl(r) : Yim(ea ¢)



(12) Rualr) = (Z—)P (Z—)

aogn aogn

(13) V(0. 6) = ™ L (cos ) -

™

Here, P, are the Laguerre polynomials; and Y;™ represent the angular momentum, and L}"
are the Legendre polynomials.

To the detriment of the quantum community, the integrals using either one of these
functions are extremely complicated and require much computational time. So, quantum
theorists have looked to Gaussian type orbitals'® (GTOs, see equation (14)). The necessary
integrals are so simple that using 4 or 5 GTOs for each STO is no computational disadvan-
tage. Hence, the idea of bundling functions as linear combinations of GTOs with appropriate
coefficients and exponents into contractions emerged. Using a contraction reduces the di-
mension of the generated Hilbert space while retaining the simplicity of Gaussian functions

and an accurate description.
(14) fealoym. e ST

The sum L =1+ m + n is interpreted as angular momentum, so functions with L = 0 can
be called s-functions as in the hydrogen case.

Generally, each atom in a given chemical problem is assigned a set of functions, possibly
contractions. Often the contractions are fitted to experimental data or STOs. The union of
these sets span the finite-dimensional Hilbert space. Not all basis sets perform equally well
for different problems, which has resulted in an abundance of different basis sets and a need

for consistent nomenclature.
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One common nomenclature for basis sets describes them according to the number of
contractions, e.g., DZ (double zeta) for a basis set with 2 GTOs in the contraction. Since
the core electrons, which are close to the nucleus, need fewer functions than the valence
electrons, more functions are assigned to the valence electrons, which is denoted with SV
or V for “split valence.” The prefix of “p” denotes that additional polarization functions
have been added, usually higher-angular-momentum functions. A further prefix of “cc-”
stands for correlation-consistent basis sets. These basis sets incorporate effects of explicitly
correlating electrons instead of mere average effects, as we will discuss later.!*'> Therefore,
the basis set “cc-pVQZ” is a correlation consistent basis set with polarization functions, a

split valence shell, and 4 functions per contraction (quadruple zeta).

2.2. Hartree-Fock Formalism

To this day the Hartree-Fock formalism (HF) is one of the most important quantum
methods; be it in its own right or as a point of departure for higher-level calculations.! At
the heart of HF is the iterative improvement of a guess at the solution of the Schrodinger
equation using a single determinant as introduced by Slater? (see equation (15)). Using this
guess a very simple expression can be derived for the energy of such an N-electron function

(see equation (16) on the following page excluding the internuclear contributions).

(15) \Xl"'XN|=m'
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1
— XX
T12

(16)  Epp={|x1- - x~l[Hlxi--xn) = Z<X1|h1X1>+Z<|XzXJ

1>

(17) h, = —p1 + Z
nuclei A
Here x; represent spin-functions.

Variation of the one-electron functions y; to first order leads to an eigenvalue problem of
the Fock operator f;, which renders a new set of one-electrons functions for the next iteration.
The HF equations (18) are often interpreted to subject an electron to the average field of
electrons N — 1 without explicit correlation. The solutions to equation (18) are ordered
with respect to their eigenvalues from lowest to highest. Then they are reinserted into the
equations to generate a new set of eigenfunctions until convergence of the energy has been
achieved. As can be seen in equation (19), the eigenvalues do not just sum up to give the
HF energy because the inter-electronic contributions are involved in each eigenvalue. Thus

they are counted twice and must be subtracted.

(18)

% i\ X X
fix;(71) = hux;(# +Z/ (& dxzxg Z1) Z/Xz—wdﬂﬁzxz(aﬁl) = ¢;x;(%1)

12

(19) Eyp = Zej 3 / (@ XJ $2)| A, di

2,j:1=>N

The above equations can be subjected to various constraints and frequently are. A very
common restriction is that each spatial function is assigned an - as well as a S-spin-function.

This is called restricted HF (RHF); merely requiring that there be equal numbers of a- and
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B-electrons is restricted open-shell HF (ROHF); no constraints is appropriately referred to

as unrestricted HF (UHF).

2.3. Configuration Interaction

Building on HF theory, configuration interaction (CI) deals in expanding the trial space
of functions from the subset of Slater determinants to linear subspaces.>* 16 CI derives its
name from the fact that it incorporates the interactions between multiple Slater determi-
nants. Using the language of second quantization, it is possible to describe a systematically

increasing series of subspaces.

(20) C() = Cy

(21) él = Z C;-J' . &E&z

aeV,ieV
A ij  atata A
(22) Cy = E Cop * G000,
a>beV;i>jeV
(23) Cm = chmim gl Gl G
m A1,...,Qm ai am Tm
al:"'aame‘/,
i1 yeenim €V

(24) LEDIRE

Here, a,b, and a;, denote functions from the basis from V' which are not occupied (used)
in the HF reference ®(, while 7, j, 7, are occupied in the HF reference. In this form it is
obvious that all configuration operators with m > N, the number of electrons, just map

®y to 0. The order m of the CI operator is called the excitation level, referring to the
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fact that occupied spin-functions are being replaced by unoccupied spin-functions which
have greater HF expectation values and lead to higher energies for the corresponding Slater
determinant. The energy of such a function E¢; = <‘IJ ‘I:I ‘ ‘I!>, with maximum excitation n,
can be minimized with respect to the coefficients. Variation of the coefficients is equivalent
to solving the eigenvalue problem for H restricted to the subspace of TV (V) spanned by
the set {a} ---al @; --a,|®o)|m < n}. The degree of excitation is usually denoted by
appending the excitation levels by their initial, i.e., CIS for single excitations, CISD for single
and double excitations, etc. When n = N, all of TV (V) is spanned and, hence, the method
is called full CI (FCI). Since HF is considered to be an averaged electron-interaction model,
the energy difference between FCI and HF must be due to correlation of the electrons and
is therefore called electron correlation (EC) energy. Compared to HF, the computational
cost rises considerably when adding higher excitation levels. For order m the resultant
dimensionality of the eigenvalue problem is augmented by (dimx_N ) . (an ) In the case of
FCI, the dimensionality is (dhf\}v), which is prohibitive in anything but the simplest cases.

The ultimate goal of all methods is to reproduce the FCI properties without the associated

FCI computational cost.

2.4. Perturbation Theory

Another way to increase accuracy starting from the HF solution, is perturbation theory
(PT). In Rayleigh-Schrodinger PT,'7 we start from an operator Hy for which the solution

is known and slowly vary a potential W which results in the final operator. We will only
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consider the nondegenerate case, as it exemplifies the general method, while degeneracy adds

nothing but complexity.

(25) H=Hy+\W,xe|0,1]
(26) E, =) A"E™

(27) n) =A™ |n(m)

Let |n) be the nth eigensolution of H with corresponding eigenvalue F,. Furthermore,
let [n() is the solution to the unperturbed problem in H,. The unknowns |n) and E, can
be expanded as polynomials of the perturbation variable )\, which continuously turns the
perturbation on or off. Using that <n ‘ﬁ‘ n> = F,, we can arrange a new polynomial in A

as in equation (30).

(28) Hy + AW |n) = E, |n)

(29) & f: Am (ﬁo (™Y 41 |n<m—1>>) = f: Am ST ED |n)
m=1

m=1 t+j=m

(30) ) oam (ﬁo ny + W ntmD) — N~ EY |n(j)>> =0

m=1 i+j=m

The polynomial in A of equation (30) is zero for all A\, which implies that all coefficients
must be zero as well. These conditions allow rearrangement for solutions of ‘n(m)> and
ES™ in an iterative manner by inverting Hy — EY on the space generated by the zero-

order solutions excepting state n. By projecting both sides onto |n(0)> in equation (32), an
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(m)

expression for Ey " is derived which, upon reinsertion, eliminates any components of ‘n(°)>

from (32). It is therefore permissible to invert Hy — EY.

(31) ﬁo ‘n(m)> +W ‘n(m_1)> _ ZE’I(Lm_i) ‘n(i)> ~0
i<m
(32) = (I:IO — E£0)> ‘n(m)> — ZEV(Lm_i) |n(i)> W ‘n(m_1)>
i<m
(33) EMm = <n<0) n<m71)>

(3 ™y = (o~ £9) (z B0 [ m—1>>)

Since Hy — E,(lo) essentially operates on the FCI space, the inversion will take expo-
nential computational time if no simplifications can be introduced. For HF, this is indeed
the case. The unperturbed Hamiltonian H, for this purpose is f1 and W = hy — fl +

1
2 Zp,q,r,seB V) <p ®q

order perturbations.* The zeroth order solutions in this case are sums of eigenvalues of f;

E TR s> aTa qaras, 1o which the HF energies are actually the first
(-, €); as noted earlier, these are different from the actual HF energy. PT on HF with
this partitioning of the Hamiltonian is named after Mgller and Plesset>% 1718 and dubbed
MP(m) for the solution of mth order. W excites states [n(™=1 by no more than two, on the
other hand (ﬁo — E,(lo)> - excites by at least one. Therefore starting from the HF function,
‘n(m)> cannot be comprised of excitations higher than m.

A review of PT reveals the continuous mapping of corresponding eigenvalues, i.e., the

third HF state is mapped to the third eigenstate of the full problem, which makes it safe

3see section 2.2.
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for computing excited states. Furthermore, a single set of equations allows the computation
of any solution for a given value of \. However, PT does not always converge and often

oscillates from order to order.!”

2.5. Coupled-Cluster Theory

In the late 1950s, physicists Coester and Kiimmel developed coupled-cluster theory (CC)
for the treatment of nuclear matter.'%20 Only six years later Cizek extended CC to the
electron correlation problem, and it has enjoyed intensive research ever since.?!"2

CC utilizes a very simple ansatz of an exponential operator. The degree of the cluster
operator T is usually truncated to avoid the complexity of FCI, which in turn truncates the
exponential expansions as terms go to zero. As with CI, appending the degrees of excitation,

as in singles or double with ’S’ or 'D’, respectively, clarifies in which approximation the theory

was applied.

(35) ) = e’ | W)
(36) A=Y
B k!
k=0
(37) T=) Ti=), >, il -ala, -,
k=1 k=1 {i1,....ixg }CB(V)

{1 ik JCB(V)

The great advantage of CC is the fact that with relatively few degrees of freedom a large
number of determinants are reached. So, for instance in CCS, double and triple excitations
are incorporated as Tf and Tf’, respectively. Each order k£ of the cluster operator adds

(dim 14

2 . . )
B ) degrees of freedom. Starting from a single Slater determinant ®, as a reference,
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the problem is simplified by the fact that only occupied orbitals need to be considered for
annihilation, which leaves (dim}:_N ) . (zkv ) degrees of freedom. As with PT, when order N is

reached, CC reduces to FCI. In the following, T will restrict myself to the case of a single

determinant reference.

. X A

(38) Ecc = <@0‘HGT‘¢O> = <(I)0 H(1+T1+T2+§T12> (I)()>
- 1 ‘1

39 H=e¢THe" —[H,T]» —[H,T),

(39) el Zn zﬂ:n![ T

(40) [ﬁ:T]O - FI: [ﬁa T]n—l—l = [[ﬁaT]naT]

(41) Epo = <<1>0 H <1>0>

There are two equivalent ways of describing the energy of the CC system. The first
as described in equation (38) is justified because if e |®,) is a solution to the Hamilton-
ian, then <(I)0 ‘I:Ief‘ (I>0> =F- <<I>0 ‘eT‘ <I>0> = FE. This avoids the necessity of normalizing
el |®g) and is called intermediate normalization. By a similar argument, the second for-
mulation (equation (41)) utilizes the Hausdorff expansion (equation (39)) to simplify the
infinite sum. Despite the fact that in general e~ #* eT*, it is admissible to apply e~ T

since F <<I>0 ‘e_TeT‘ <I>0> = Eif E-ef |Dg) = HeT |®o). In order to determine the cluster

amplitudes t7 b it suffices to notice the validity of equation (42).

(42)  H|®) = Eco|®) Lal ---al

j=)

L, g, [@o) Vi, -y ik 1 - -0 gk} C B(V)

=L

The unfortunate side effect of intermediate normalization is that CC is no longer varia-

tional, i.e., there is no guarantee that the CC energy is an upper bound to the ground state
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energy. On the other hand CC retains size-consistency as well as size-extensivity found in
FCI. A computational method is size-consistent if for any two non-interacting systems A
and B the energy solution is merely the sum of each contribution (E4p = F4 + Epg). Size-
extensivity describes the fact that the energy of a method scales linearly with the number

of electrons.

2.6. Density Functional Theory

Hohenberg and Kohn took an entirely different approach to solving for the ground state
of a given Hamiltonian.?® Instead of focusing on wave functions, they proved that there
exists a functional which maps an electron density to an energy, for which the ground state
density is the global minimum with the corresponding ground state energy; hence the name
density functional theory. Despite the mathematical simplicity, this functional is not known.
Through the years, many attempts with varying degrees of success have been made to develop
functionals which display the required properties. For conceptual convenience, the energy is

usually divided into different parts.

(43) E=E;+Ey+E;+ Exc

e Fr is the kinetic contribution to the energy.

e Ey is the nucleus-electron contribution to the energy (nuclear Coulomb term).

e F; is the uncorrelated electron-electron Coulomb interaction.

o Exc = Ex + E¢ is the exchange-correlation term which incorporates corrections for

the fermion nature of electrons.
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The terms Ep, Ey, and E; were quickly approximated reasonably well. In equations
(44) to (46) and for the remainder of this chapter, p(7) denotes the electron density and R,

denote the positions of the nuclei.

(4) Er =15 (67)" [ phar+ g [ 020 1Vpa()ar
(45) Br=-Ya [ %d

(46) Ey=1t / / 7/)‘(21)_/)3)(171%2

An example of an exchange functional (EX) was developed by Dirac,?” in which the
electrons are viewed as a gas. A vastly popular exchange functional (E¥) was introduced
by Becke® in 1988, building on Dirac’s success. It incorporates a semi-empirical factor
b = 0.0042 exemplifying how difficult a priori development of density functionals is. An early

simple correlation functional (EY), which is also parameterized, was reported by Wigner®

in 1938.
b 33\ [ 4.
(47) EX = —5 E p3(7‘)d7‘
(Sa)
48 E2 =F% - b/ 4/3 P dr
(48) o P 1+ 6822l sinh ! [Yzal
Po Po
1
(49) EE’V — _40// pa(f‘)pﬂ(f‘) . - df\
p(F)  1+4dps(P)

DFT methods like B3LYP?:30 enjoy considerable popularity among organic chemists

31,32

despite some spectacular failures, e.g., acetylene, and the lack of systematic improvement
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as is highlighted by the unintuitive and complex nature of Becke’s exchange functional. DFT

is also routinely employed in condensed matter physics.

3. Reduced Density Matrices and Wave Functions

In order for geminal functional theory to reduce the complexity of solving the Schrédinger
equation, it is necessary to find a simpler expression of the energy. Although H is comprised
of two-particle operators only, it remains an n-electron operator. Therefore, reducing the
Hamiltonian to a two-particle operator is a key to simplifying the energy expression. Given

a wave function, the energy can be expressed using a two-particle operator as follows:

E:/1/1(1,...,n)H¢(1,...,n)dl---dn

—Z/w Yhip(1,..,m)d1 -+~ dn-+

(50) 1
Z/t/f(l,---,n);w(l,...,n)dy..dn
—n/w n)hyy(1,...,n)dl---dn+
(51)
”_1 /¢ r “(1,...,n)dl---dn

In equations (50) and (51), we have merely transposed the electrons such that electrons
¢ and j are in the positions of electrons 1 and 2. Since both wave functions undergo trans-
position, the sign changes cancel. All one-electron interactions of electron 7 are contained
in h; (see equation (17) on page 11), and all integrals involving h; are the same; as are the

two-electron integrals. This realization leads to equation (51).
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Equation (51) on the preceding page suggests the following definitions and leads to the

simpler, yet equivalent equation (54) for the energy. The goal of geminal functional theory

is to exploit these equations.

(52) D(m):/w(l',...,m',m+1,...n)-w(l,...,m,m—{—l,...n)*-d(m+1)---dn
n(n—1) 1

n
K= —(h;+h —
2( 1+ 2)+ 2 T12

(53)
E = tr (DPK)

(54)
The energy and wave functions are intricately connected to reduced density matrices.

Equation (52) defines the integration kernel for the reduced density matrix of mth order

(m-RDM) for an n-electron wave function. In the following, plain O denotes the integration

kernel of a linear operator O such that

! ! ! !
X, ... xy)dTy ... T,

Of|—>/O(xl...xn,a:'lx;l)f(xl...

As equation (54) highlights, reduced density matrices are the second part in simplifying the

energy expression for geminal functional theory. Depending on the intended emphasis, there

are two normalization conventions:

To avoid confusion, the reduced density matrix will be denoted as p,, for the latter case.

While the full wave function space scales with (z), the reduced density matrix scales

with ( ) — a handsome reduction in complexity. If all matrices corresponded to some wave

k
m
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function of N electrons, finding the ground state and its energy would be trivial indeed;
but, they are not. To compound matters, it is not true that an RDM for N electrons is
also an RDM for some wave function of N’ electrons, where N # N’. If there exists a
wave function such that a given matrix is that function’s RDM, that matrix is called N-
representable and the wave function is one of its N-representations. Direct verification of the
N-representability of a matrix is currently intractable for anything but the simplest cases.
Instead, necessary and sufficient conditions are sought that are easily verifiable. Positive-
semi-definiteness is one such necessary condition. By construction, RDMs are positive,

semi-definite operators, i.e., for any z, <x ‘f)(m)‘ x> > 0. Using second quantization, we find

that DI oy = (i i | D i) = (W ol a0, ©).
2 AT A At A 1 2
(55) Qz(j,)ab = ((‘I" ah]’) ' (“Z“b |\I'>) = 5jaD§,b) - Dz(a,)jb
2 PPN At oA
PR, = (¥ @ay) - (ala}|w))
(56)
= 0jp0iq — 0ip0jq + 5jaD§7lb) - 6zaD_§1b) - 5ij§,la) + 5sz§2 + D,ﬁ)m
(57) D® >0, Q® >0, P? >0

It is immediately evident that we will arrive at another positive, semi-definite matrix via
permuting the creation and annihilation operators such that a;, is only replaced by &}Lmﬂ_k
and vice versa. These operators can be related to the m-RDM using the commutation

relationships of creation and annihilation operators outlined in equations (5) to (7) on page 7.

For the 2-RDM, there are only two distinct variations (equations (55) and (56)).
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The RDMs play a larger role than just defining the energy, since it turns out that a wave

function can also be described by the eigenfunction of its reduced density matrix:33 34

(58) DY 4P = N\d?
(59) DY = \d?
(60) Y=Y cd”(1,...,p)d"(p+1,....,p+0q)

where p+q are the number of electrons and \; = |¢; |2. These functions are called natural p/g-
functions. In particular, natural functions appear in pairs, which for two-electron functions

(i.e. geminals) leads to the simple form:

(61) 9(1,2) = Z§i |doi—1dai]

In general the transposition of a pair of electrons leads to
¥(1,...,n) = Zg,.gi(1,2)d§"—2)(3, )

(62) = Zgigi(3,4)d§"*2)(1,2,5,...,n).

where £2 = );. Therefore, any wave function (n > 1) can be expressed in terms of its natural

geminals. Furthermore, if p is odd and p < ¢, then
(63) /dgp)(p+ 1...2p)dP(p+1...p+q)dp...d(2p) =0

There is no equivalent for even p.3
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4. Anti-Symmetrized Geminal Products (AGP)

In 1953, geminals were first introduced as primary variables in quantum chemistry via
strongly orthogonal anti-symmetric geminal powers (SOAGP).?63% A strongly orthogonal

geminal is such that

(64) / 61(1,2)g2(2,3)d2 = 0.

while the weaker condition of orthogonality requires [ g1(1,2)g2(1,2)d1d2 = 0. Here it is
convenient to expand the tensor definition. We can expand our notion of 77(V) to a space

TP(V) = @i, Vo, V*. A Hilbert space V is isomorphic to its dual space V* (V = V*)
via f € V = f*: f*(x) = (flz)Vz € V. Therefore, any tensor in TP(V) = TP*¢(V)
is also a linear operator generated by f{l’ = Q" a; @ Q_, b} from T9V) to T?(V) by

fyvi = T, 6; i(v) @7_; ai. Then the strong orthonormality condition reduces to a

matrix equation for linear operators on T (V') (see section 1.2).

Equation (65) implies that the image spaces of g; and g; are disjoint, i.e. Im(g;) NIm(g;) = 0.
Thus, they can be described within the same basis such that both have the form given by

equation (61) on the preceding page.’
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4.1. Wave Functions of Strongly Orthogonal Geminals

In general, a wave function might be constructed as the anti-symmetric product of gem-

inals. Adding the restraint of strong orthogonality simplifies the problem of overlap.

(66) \I’SOAGP = .An Hgi(% — 1, Zi)

In order to determine the energy and other properties of an SOAGP function, the second-

order reduced density matrix (equation (67)) is necessary.

(67) D (50a6p;12,1'2') =Y " b(ijkl) - ai(1)o5(2)] - o (1) (2)[*

where o are the natural spin-orbitals of the geminals g; and

e dn:{i,j} ={k 1} ={2n—1,2n} =: 0 = b(oo) = ;)\,

o 0# 73607 £ 0% 7gf = boT) = oL

e o #£Ti€0,jET, T, #0,69: #0,n#m = b(ijij) = cijA A

oc, =1 X A/eeiz = I Do As/e,e = 5] Do As and in all other cases
#6440 Kk 6930 i 64540

b=0.

e where 0 = {21 — 1,2i} = 6 = |an;_1]

This second-order reduced density matrix for SOAGP has a block diagonal form — one dense

block for each geminal and one diagonal block for the mixing between geminals:
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( b(O’lTl) \

(2) —
(68) Dsoacr = b(orm)

b(1115141,)

where i; € 0 : 6g; # 0 and 0;9; # 0. The natural orbitals of this density matrix are the
natural orbitals of the generating geminals.
Optimizing the energy for SOAGP poses the interesting problem of partitioning of the

geminal spaces. There are three variables for optimization:

a) basis functions ¢;,
b) geminal coefficients x; of the basis function ¢;,

c) partitioning of ¢ among the N/2 geminals comprising the SOAGP wave function.

The simultaneous optimization of the latter two points can be done by solving coupled
eigenvalue equations. These equations can be derived from imposing variational conditions

on the energy.?’

(69) €ucuj = 3 i i (1)

(70) Hij(p) = <¢2i—1 A ¢ K

f{‘ Poj—1 A ¢2j> + 045 <¢u2i—1 A Puoi
vEu

)
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where a A b indicates the anti-symmetric tensor product of a and b. Similarly, equations can
be derived for the optimization of the basis functions.

SOAGP has been applied to systems like LiH, BH*® or NH.*! In these calculations, it
was found that the majority of the energy lowering was due to explicit correlation found
in the individual geminals, while the inter-geminal interactions displayed positive as well as
negative character. Due to the strong orthogonality condition, the inter-geminal correlation
is insufficiently described. For n electrons, there are n(n — 2)/4 inter-geminal correlations
while there are only n/2 intra-geminal interactions. As may be expected, the percentage of

correlation energy retrieved decreases with the number of electrons.

4.2. Singlet-Type Strongly Orthogonal Geminals

Recently, an alternative scheme based on singlet-type strongly orthogonal geminals (SSG)
was proposed.3® In this scheme, the wave function is split into geminal subspaces depending
on the number of spin-up or spin-down electrons, while the wave function is “filled up” with

one Slater determinant.

(71) Yssa =An [H 9i(2i = 1,20) | - [ (200 + 1) - - Pk ngna (N + 1p)]
=1
ND$le =5 ¢igi(1,2)g:(1'2) + 9> s |dr(1)du(2)] - (1) 0(2')| +
i=1 k,l
(72) S cisklgiol? 166(1)gi(2)] - 166(1)915(2)]
onzlg;l’v‘#O

2 2 2 2
where An = ng — ng, sp = Hi;ﬁk,i;ﬁl 9il", sk = Hj;ék 9517 s = Hj 9517, ¢ = Hj;éi 1951

3

g =1Ilgi’, and N = (ny + An(An — 1)/2 + 2n,An)sg. Hence, the SSG wave function is
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the anti-symmetrized product of a Slater determinant with an SOAGP wave function. Here
the geminal subspaces are optimized by comparing the energies of a given geminal primitive
|gi2j—10i 2| in geminal ¢ and the same primitive in geminal j.

The SSG approximation has been used to study a group of diatomics from the G2/97

1243 as well as the potential energy surface (PES) of carbon monoxide. Except for

test se
non-covalently bonded, e.g., highly polarized, molecules, SSG is superior to HF in describing
geometry and often comparable to coupled cluster in the singles and doubles approximation
(CCSD). When comparing harmonic frequencies, SSG performs even better, generally being
comparable to CCSD.

The PES of CO for SSG is only slightly better than HF but qualitatively correct in that
it is smooth and describes dissociation towards infinity. Although unrestricted MP2'7 and
CCSD(T) recover much more of the correlation energy than SSG, the associated curves are

not as smooth as for SSG. The equilibrium distance found with SSG is extremely close to

experiment (r55¢ =1.126 A, rePt = 1.1283 A).%8

4.3. Perturbation Theory on SOAGP

Recently, SOAGP has been used as the reference state in PT.*45 Ag discussed in sec-
tion 2.4, the full Hamiltonian is split into two parts of which Hy can be solved for a state
(equations (73) and (74)). The resulting conditions for first order (equations (74) to (77) on
pages 28-29) describe an easily solved linear system of equations.

(73) H=H,+W

(74) (Ho — Eo) [¥©@)y =0
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(75) gl = Zdi\m, (To|W;) = 630
(76) <x11j W‘m<°>>+2di<% (FIO—EO)‘\IIZ-> — 0V
(77) E® — <x110 ‘W‘ xp<1>> EW = <\110 ‘W‘ \110>

In order to define ﬁo such that Wgpoaep is an eigenfunction, ﬁo was split into a sum
of operators Hy. These operators Hy are defined so that Hggx = E%gx (equation (79)).

Then, the zeroth order energy is merely > EY% and W =H — H,.

(78) }Azzflf:ﬁu,,-f-Zﬁg%AGP <1//\0 - ,u/\)\>
Ao
(79) He= ) hfafa i1 Yo (w L) alalaa
177 % Rt 4 2 ’]"12 A [ haiRat 4

v of g uvio of gi

where, given a, a is of gk, if gxgia # 0, and aj,, a, represent creation and annihilation
operators of «, respectively, in the second quantization formalism.

PESs for fluorine, HF and water using this ansatz showed promise.*> In all cases the per-
turbative approach improved the accuracy considerably at a small increase of computational

cost. Especially interesting is the possibility of linear scaling.

4.4. Anti-Symmetrized Geminal Product*®

Since only the eigenfunctions of a second order reduced density matrix are necessary, it
is natural to construct a wave function from just such functions. Given only one geminal g

a simple function for a geminal functional theory can be derived.

N/2

(80) Yacr =g~ = Ay [ [ 9(2i — 1,2i)

=1
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Since the generating geminals of an SOAGP wave function can be described in the same
basis, it is tempting to assume that summing the geminals leads to an AGP generating

geminal for the SOAGP wave function; that is not the case.

(81) Usoagr X Yagr(g) &9 = Zgi

The AGP function for the summation includes contributions from g and other mixed higher
order products, which are not present in the SOAGP function.

Given such a function, the second order density matrix has the following form:3?

(82) p2(Yagp; 12,1'2") = Zb(ijkl) i (1) (2)] - o (1) (2) "
where «; are the natural spin-orbitals of g and
e In:{i,j} ={k, 1} ={2n—1,2n} =: 0 = b(o0) = 2c\,am, 1(7)
e 0 # 7T =0b(o7) =2c,E a,-1(57)
e 0 £T,i €0, €T = b(iji]) = 2cAs A\ rm_2(0T)
o TI(1+Xot) = X tmt™; am-1(5) = 222 4 5(67) = 7ot c = 1/an,
This matrix has a very simple block diagonal structure of only two blocks — one of which

is diagonal.
/ b(oT)

(83) ,02(¢AGP) = b(1313)

\ o)

Seeing this simple form raises the question whether the natural geminals of the wave function

are the same as the determinants in equation (61) on page 23. This is definitely not the
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case since |d;ds| does not appear in the definition of the generating geminal, but is a natural
geminal of the AGP wave function. On the other hand, the natural orbitals of the geminal

and the AGP wave function do indeed coincide.

0>T i€o
JET

(84)  (n—1)pW Z\ il X1 (5) + D Y (18) (] + [5) (1) eAo Aram—2(57)
zEa

O#T i€a
JET

—Z\ i Aotm-1(7) + > Y 1i) (i| Ao Arm—a(57)

(85) = i) (il Ao (2m — 1)am-1(5)
€0
Equation (85) implies that the first order reduced density matrix is degenerate for every
eigenvalue. The final trace normalizes to n(n —1) as expected. Any Slater determinant, e.g.,
the HF solution, can be described by a very simple geminal.

n/2

(86) 1+ n] < Wagp(g) =g = [thai 1¢bni]
i=1

Since all natural orbitals are degenerate, any collection of pairs of spin-orbitals will produce
a geminal which gives rise to the Slater determinant, so there is no unique geminal which
represents the Slater determinant.

As equation (82) on the page before demonstrates, the exact wave function is no longer
explicitly needed nor is an approximate wave function used. Instead, the generating geminal
determines the wave function as well as the reduced density matrices and thereby the energy

of an AGP wave function.
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5. Geminal Functional Theory (GFT)

It has been shown that any evenly degenerate D) can be generated by an AGP func-

tion.?»4” So in the spirit of density functional theory a functional can be defined by*®

(87) EDY] = inf tr(D@K)

"~ DOLDM
where all N-representable D® which reduce to D™ are considered. Also, a Hamiltonian
of even number of electrons which is invariant under time-reversal (i.e. most chemically
interesting Hamiltonians) has been shown®® to have a ground state with evenly degenerate
DM, Tt is therefore possible to restrict the search based on a geminal. Disregarding the
N-representability leads to a lower bound on the FCI energy while restricting the searched
second order reduced density matrices beyond N-representability gives a true upper bound
on the energy. A functional is thus reduced to the choice of subset of all D). One such
functional would be the restriction to AGP second order reduced densities only, as are those
of SOAGP and SSG. Alternatively, the 2-RDMs derived from AGP may be used as points of
departure for energy minimizations which do not enforce full N-representability, but instead
merely enforce the necessary positive, semi-definiteness conditions (see section 3, equations
(55) to (57) on page 22). This method has been employed with disappointing errors on small

systems.’%23



CHAPTER 3
FROM QUANTUM CHEMISTRY TO COMPUTATIONAL

CHEMISTRY

1. The PSI 3.0 Program Package

The PSI3 program package is an extensive quantum chemistry package. It offers various
implementations of HF, CC, CI, and more. It is primarily being developed by Drs. T. Daniel
Crawford at Virginia Polyechnical Institute and State University, C. David Sherrill and Ed-
ward F. Valeev at Georgia Institute of Technology, and Rollin A. King at Bethel University.
The source code and documentation is available online under http://www.psicode.org/.
For the purpose of implementing generalized anti-symmetrized geminal products (GAGP)
it was only necessary to utilize the overlap-, nuclear attraction-, and electron-repulsion-

integrals. The following functions are employed in the GAGP implementation:

e psi_start(): Start the PSI session initializing the input- and output-files and various
other small tasks.

e psi_stop(): Reverses the processes of psi_start().

e ip_cwk_add(): Add a structural name to the working keyword tree.

e psio_init(): Initialize the Input/Output data structures.

e psio_done(): Free all I/O data structures.

e chkpt_init(): Initialize the checkpoint files.
33
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e chkpt_rd_enuc(): Read the nuclear repulsion from the checkpoint file.

e chkpt_rd_nso(): Read the number of symmetry-adapted orbitals from the check-
point file.

e chkpt_close(): Close the checkpoint file(s).

e tstart(): Start the timing.

e tstop(): Stop timing.

e iwl_rdone(): Read the one-electron integrals with labels.

e iwl_rdtwo(): Read the two-electron integrals with labels.

The integrals were computed using cints included in PSI3. Unlike previous chapters in
which merely algebraic properties were discussed, it is helpful to understand how the integrals
are computed. As mentioned in chapter 2, section 2.1, all integrals are between Gaussian

functions.

(88) ‘V|p2 = 33 - :El) e —Gi(z—a1)? (3; _ x2)ne*42(55*$2)2d$

_ INSEIRYED) 2 €162 )2
(x —21)™(x — 22)"e (CH—C?)(CU C1+é2 ) eTrrG (1) g

fr
/ , mn

[STS 2
(89) = et+e (@1772) Z a; / z)zie <@’ 4y

(90) P = (o —mi)lem6mm

As equation (89) indicates all integrals can be derived from simple Gaussian integrals

over a potential v. As seen earlier there are only three potentials to be considered:
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The first case is easily solved using partial differentiation; [ 2?"e ¢*dz =[], 2221 [e ¢ ds =

H?zl 2221 7/, odd polynomials integrate to zero.

2. Minimization Techniques

In the previous discussions optimizations of one kind or another were at the heart of
the problem. Finding the ground state, in particular, is a minimization problem. There
are several general optimization schemes depending on the amount of available information.
They all have in common that they may not yield a (correct) result unless the starting point
is sufficiently close to the desired solution. Of course, without knowing the solution it is

usually not possible to know whether the guess is suitably close.

2.1. Newton-Raphson Optimizations

The preferred optimization technique of non-linear problems is the Newton-Raphson
optimization. When it does converge, it is guaranteed to converge quadratically, i.e., |ep 1| <
C |en|? for some positive constant C' and successive errors e;. This means that if two digits

are correct at one iteration roughly 4 will be correct the next and 8 the iteration thereafter.

91) 0~ VF(Z)+VVf(T) (T — D) = T =5 — (VV) 7 F (@) VF(F)

The disadvantage of a Newton-Raphson algorithm is that the first and second derivatives

are needed (equation (91)). Many problems do not allow for an easy or efficient (analytical)
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evaluation of the second derivative. To alleviate this problem quasi-Newton-Raphson meth-
ods have been developed, of which the BFGS algorithm, named after Broyden,>* Fletcher,®
Goldfarb,*® and Shanno,?” is the most popular. In this algorithm the second derivatives are

approximated using previous iterate values.

1 1

(92) AMy,y = mAkaAfEH + MkAkaAfZﬂMk
+

ATy MyATyp
(93) Afirr = VI (Zri1) = VI (T)

(94) ATy = =MV f(Tx) = To1 — T

(95) My1 = My — AMj 4y
(96) My, ~ VV* f (%)
(97) Tr = T — M, 'V ()

From equation (92) it is immediately evident, that for poorly conditioned systems the
correction to the Hessian blows up, when AZ;A fx11 ~ 0 or A:E'};MkAfk ~ 0. In particular,
if the function f is invariant under scaling, i.e., f(sZ) = f(Z), then Vf (Zx) L ZxVk. Hence,
VV*f(Z)Zx = 0 and neither method is applicable without modification. Usually this is
known a priori, so that the Hessian can be unitarily rotated and the coordinate along 7y
eliminated. In such a case another danger is the increase of 7, as the step size is always per-
pendicular to Z and, thence, |Zp1|” = |AZp11|>+|Z%|”. The increasing norm of Z introduces
numerical errors, and trying to curtail those errors by renormalization renders the approx-

imate Hessian useless (see appendix A on page 73 for an implementation in gagp_nr.cc).
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Ficure 1. Newton Raphson of A\, for AGP with the generating geminal g =
> Ao |agy_1009,| for Be.
Research for improved convergence of quasi-Newton-Raphson methods is ongoing despite
the durability of the BFGS formula over 30 years.”®
2.1.1. An Ezample for Newton-Raphson Optimizations. AGP is highly non-linearly de-
pendent on the eigenvalues of the 1-RDM of the generating geminal. As figure 1 shows the

convergence is almost instantaneous.

2.2. Lagrange-Multiplier Methods

Lagrange multipliers were introduced expressly to deal with difficult boundary conditions.
Again the use of tensors allows for an elegant discussion of Lagrange multipliers. Let X =

{f : R* — R} denote the ring of functionals on n variables. Inadvertently, the functional F’
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to be considered for optimization is in X. Then, let X,, be the n-dimensional vector space
with coefficients in X. The beauty of tensors now allows us to define a new multiplication

on T(X,) via the equivalence of TP(X,) and TP*¢(X,). The multiplication is generated

by t -t = x(x)) (R zi) ® (RL,a}) € TP+2(X,) for t = @, a; € TP(X,) and
t' = @}, z} € TY(X,). Essentially, this extends the multiplication of vectors with matrices

and vectors to three-dimensional and higher matrices. Furthermore, define on T(X,) a

differentiation operator 9 such that 5( ft)y= (Z?:l g—ééi) ® t where e;, €; are corresponding

orthonormal basis vectors of R” and X, respectively, f € X, and t = Q}_, ¢, € T9(X,,).
Now, given a set of boundary conditions, a functional may be considered an implicit
coordinate definition. The m boundary conditions are collected in an m-dimensional vector

on T'(X,), with usually each B; € T°(X,,) . A new functional £ € X is defined reusing the

original F' and burying the boundary conditions B; in the new functional explicitly.

(98) L=F+) mBi=F+Bi
=1

(99) 0L =0F + Y  1;0B; = OF + 0B
=1

The m Lagrange multipliers y; are to be determined during optimization and may as
such be considered composite functions. They are chosen such that the derivative oL along
a direction d; € X,, is zero by solving the linear system in equation (100) on the following
page. These directions are collected in a vector D = (dy---dy)", which is, upon closer
inspection, equivalent to an m x n matrix. As equation (101) on the next page suggests,
choosing directions seems superfluous, if D as a matrix is invertible; but D as a matrix can

only be invertible if m equals the dimension n of OF. This is generally not the case and
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also highly uninteresting since all coordinates are fixed by the boundary conditions. A good
choice of directions is dB; since it eliminates optimizing along the constraint direction and
results in a hermitian, positive semi-definite By. If B is not invertible then the boundary
conditions are not linearly independent. If this is the case, boundary conditions may be

eliminated for the current iteration.

di - 0B, dy - OB, dy - OF
(100) Bji = i= = DOF
dpm - OB, dp - OB, dp - OF
(101) (DdB*)ji = DOF
OB, - OB, OBy, - 0B,
(102) By = = OBOB*
OB, -0B,, --- 0B,,-0B,,

When the Lagrangian system is solved, any number of optimization techniques may be
employed to find solutions to the reduced functional. Yet, care must be taken, when second
order effects are considered. Assuming the multipliers to be constant in second derivatives
may not lead to satisfactory results as the second derivatives do not reflect constraining the
functional to the boundary conditions via the Lagrange multipliers. Slow convergence or even
non-convergence may be the results; on the other hand, equation (106) on the following page
demonstrates how unwieldy second derivatives are even if the first derivative with respect

to ji is ignored in the first instance. For an implementation in gagp_nr.cc see appendix A
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on page 73. Luckily, in most cases only a single constraint need be considered, usually a

normality condition, which greatly simplifies matters.

(103) C=F+ 5. (Bo—léééF) =F + B
(104) be = OF + 6B (BgléééF)

(105) &L =0°F+0B* @0+ 0°B*- i
(106) dfi = By'0BO*F + OBy '0BIF + By '0* BOF

2.3. The Steepest Descent Method

A simple and intuitive method, which works very well with Lagrange multipliers, is the
idea of following the gradient to a valley of the functional. As a minimum is approached the
gradient diminishes and round-off errors may overwhelm the gradient. Steepest descent also
approaches the minimum at best linearly and convergence is especially slow in the direct
vicinity of the minimum. A variation that does marginally better is a steepest descent
method scaled by A, such that particularly flat surfaces can be traversed faster, while very
steep surfaces may be traversed slower to avoid repeatedly missing the minimum or failing

to converge entirely.
(107) Tr1 = By — MOF (Ty)

2.4. Generating Set Searches

In many cases derivatives are too difficult or even impossible to compute. The goal of

direct search methods is to persevere in the face of insufficient information, like the lack
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of derivatives or extremely complex surfaces. Generating set search methods encompass a
large set of conventional methods, like finite-difference algorithms, which approximate the
derivative.

For a very general generating set search (GSS),% nine constant parameters define the

starting conditions and control the algorithm:

e A functional f:R" — R.

e A starting point zy € R.

o A step-length convergence tolerance Ay > 0.

e An initial step-length control value Ay > A,,.

e An upper-bound contraction parameter 6,,,;.

e A continuous convergence-control function p : [0,00) — R such that p(t) decreases
with increasing ¢ and lim p(t)/t = 0.

e Upper and lower bounds Be: > Bmin > 0 on the lengths of the vectors in any
generating set.

e A lower bound K,;, on the cosine measure of any two vectors in a generating set.

With these parameters in place, a simple algorithm may be defined. First, a set of directions
D, = G U Hy, is defined, which is comprised of a generating set G, which positively spans

R,ie, Vv e R"Wg € GxIN, > 0:v =) A¢g, and a supplemental set Hj, the importance

9€ Gy,
of which will become clear in the example introduced later. The generating set is subject
to the constraints B, < ||d|| < BmaeVd € Gy and, for any two directions di, ds € Dy, they

span an angle of at least K, cos(dy, dy) = % > Kmin- T'he supplemental set Hy only

needs to comply with the simple requirement that S, < ||d||Vd € H.
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FIGURE 2. a) Compass search directions; b) Simplex search directions.

Next, the actual search step is chosen. If there exists a direction dp € D, such that
flzg + Agdr) < f(z) — p(Ag), then set zx1 = z + Agdy and expand the step-length
via Agy1 = ¢pAyg, where ¢ > 1. Otherwise, if for all directions d € Dy f(xx + Axd) >
f(zx) — p(Ag), then the iterate remains unchanged, zy.1 = xzy, while the step-length is
contracted, Ag 1 = 0 Ay, where 0 < 0y < 0,4, If the step-length falls beneath the tolerance
threshold, Ay 1 < Ay, then the algorithm is terminated.

An obvious problem is to choose a direction, if several directions lead to a decrease of
f- The convergence control function p alleviates this problem by rejecting search directions
with insufficient decrease of f; but care must be taken that p does not decrease too slowly
leading to slow convergence. Even so, there may be more directions than one which satisfy

the sufficient decrease condition. There are two viable approaches to this problem:

a) Compute f(zr+Axd) for all d € Dy and choose the direction with the largest decrease.
b) In order to save computation time, take the first direction which satisfies the sufficient-

decrease condition.

In the second case, the order of computation is no longer irrelevant which brings us to
choosing G and H.
The two simplest cases for choosing a generating set are the “compass” directions and

the n-dimensional simplex (see Fig. 2). For compass search, the generating set consists
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of positive and negative unit vectors =+e;, resulting in 2n directions. Walking along the
compass directions leads to a rectangular grid or lattice. The n-dimensional simplex is more
complicated to explain, but conceptually simple and, more importantly, computationally
cheaper. A simplex is a set of n + 1 vectors {Z;} in R™ for which all pairs of vectors have

the same angle and 3" &; = 0. These vectors may be generated iteratively as the space is

(1) (1) ._

expanded from R — R". Starting from 77’ := €} and &3’ := —é7, and proceeding from the
set {Z™ 3 t0 m41, we set £ = 7‘W 7m €41 and 22 .= &1, Then,
#m -f;m) = -1 if i # j, and 1 otherwise.

2.5. An Example for GSS

As for Newton-Raphson, AGP optimization will serve as an example. Since the deriva-
tives consume so much computational time, a good direct search method is desirable. For
the generating set, we start with the n 4+ 1-dimensional simplex and proceed through the

GSS algorithm with the following parameters:

e Start from
a) the UHF generating geminal.
b) a random HF geminal.

o Ay =10716.

o Ay =10"%

® Omaz = V2.

o p=0.

L ﬁmaw = ﬁmm =1L



44
® Kmin = n—_1|_1

At the end of each iteration, the entire simplex is rotated in the plane between the first vector
and the step-direction vector such that in the new set the first vector is the step-direction
vector. The set of directions is augmented by one additional direction if at least one vector
failed to yield a decrease. In that case, an approximate of the derivative is computed from
the computed values. This additional direction makes up the set H,, which serves just this
purpose. A step in the direction of the approximate gradient is computed and compared
to the last successful step. If it is superior, the last computation is chosen. If no direction
results in a decrease, the simplex is rotated to represent the approximated derivative in
addition to decreasing the step-length with 6, = 1/4/2. Consecutive rotations incorporate

some higher-order information as the simplex is not generally invariant under rotations.

Energy Hartree

200 400 600 800 >t €S
-0.00001!
- 0. 00002!

- 0. 00003}

- 0. 00004+

Ficure 3. Convergence for Be starting from a UHF guess. The baseline is

the HF energy.



45

Energy Hartree

© 0 o0 o0 o o
PN WA O o N

‘ N
200 400 600 800 1000 1200° €PS

FiGurE 4. Convergence for Be starting from a dumb guess. The red is for
restarted calculation every 400 steps. The blue line is a continuous run. The

baseline is the HF energy.

Figures 3 and 4 report the convergence results. It is interesting to note that restarting the
algorithm is actually preferable. This may be attributed to the complexity of the surface,

which forces tight turns and small steps, or an insufficiently aggressive expansion strategy

D

3. Linear Algebra in C++

As is apparent from the foregoing chapters, linear algebra plays a major role in quantum
chemistry. The object-oriented programming language C++ has the flexibility to describe
the mathematical objects while retaining the optimization opportunities of procedural lan-

guages, like its parent C. In plain C, programming linear algebra (LA) is hampered by the
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repetitive programming and renaming of algorithms whenever a new object type is intro-
duced. C++ reduces the renaming complexity and a lot of reimplementation via overloading
objects. Overloading allows the redefinition of an object with different parameters, such
that for instance multiply(x,y) can be used independently of whether x and y are of type
double, or int, or a mix thereof. Another advantage over C is the easy introduction of oper-

ators like “*”

for multiplication. Adding these together allows the development of a library
such that the user can essentially write programs in terms of mathematical operations.
Hiding the specifics of type-dependent implementations is only the first layer of at least
three that may be introduced. If nothing else, the commonly available and standardized
BLAS routines may be wrapped by this layer; but much more can be done. There are two
important aspects to optimization: storage management and abstract properties. For in-
stance, a block of memory allocated for a matrix may be interpreted as a vector of column
vectors or a vector of row vectors. Choosing to have a single block of memory versus allocat-
ing each vector individually is a storage management decision that is hidden from the first
layer of complexity. On the other hand, row versus column matrices is an abstraction deci-
sion which is also hidden from the first layer of complexity. In the previous sections, we have
seen more examples of abstract properties of matrices, e.g., symmetry. Such properties allow
new storage types which take advantage of them, roughly half the memory need be stored for
a symmetric matrix without loss of information. Therefore the second layer of complexity
encompasses choice of storage types and abstractions for the input. This allows for dynamic

decisions by the implementer to choose the fastest or most memory-conserving algorithm.

As an example, multiplying two column matrices is fastest if the resulting matrix is also a
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column matrix, for two row matrices a resultant row matrix is fastest, but for multiplying
a row matrix with a column matrix neither storage-type has an advantage over the other.
Hence, in the third layer this constraint is relaxed as the overall flow of the program may
be fastest if certain types are maintained, e.g., adding a row matrix to the product of a row
matrix with a column matrix. In the final layers, control of intermediates is left to the user,
since many may be reused and allocating and freeing memory uses valuable computational
time. Each layer need not be reimplemented but instead makes use of calling the next higher
level.

The layered system affords maximum user-friendliness while maintaining high flexibility
and optimizability. Good programming practice calls for well maintained and documented
code and debugability. The latter is achieved by requiring functions to have integrity checks
which can be turned on or off with the appropriate compilation switch and are linked to
informative error messages and call trace. The integrity checks also serve the purpose of
secure programming. Memory management is accomplished using reference counted objects,
which destroy themselves automatically in the C++ language when they are no longer used.
Given this framework, it is therefore easy to extend the library with new functionality (see

appendix A on page 73 for implementations).



CHAPTER 4

THE GROUND STATE

For the vast majority of problems in quantum chemistry, the ground state of the Hamil-
tonian needs to be found; for transition state searches or potential energy surfaces in general,
the ground state of each geometry chiefly contributes to the dynamical physics; for excita-
tions in spectroscopy, the excitation energy as a relative energy demands the ground state
energy. As the general explicit solution to the ground state still eludes the quantum commu-
nity, it is necessary to investigate which properties are deducible without having the exact
solution. Given these properties we can improve the approximations to the ground state by
requiring them.

To this end, we will return to tensor products and I will rehash some of their properties.
Every tensor ¢ in G ® F' can be expressed as Y ¢g; ® f;. Furthermore, the assignment is
unique if the g; are linearly independent (or vice versa). Since 7™(V') is a tensor product,
for instance T?(V) @ T™ %(V'), every tensor of A™(V'), which is a subspace of T™(V'), may
be described in such a way. In chapter 2, section 3, we were introduced to this notion for the
eigenvectors of RDMs. In that case, the set of vectors g; was set to the set of eigenvectors
of an RDM and the vectors f; were eigenvectors of the complementary RDM.

Given a set of orthonormal vectors g; € A?(V), corresponding homomorphisms Gi (equa-
tion (108) on the next page) may be defined from A™(V) to A™ (V). If V has dimension
dimV = n, then A™(V) has dimension dim A™(V) = (), while A™~2(V) has dimension

48
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dim A™2(V) = (,",) = dimA™(V) - (n_mﬁ%;l_)m —7y- Therefore, the kernel or null-space

A

N(G;) has a dimension of at least (nfﬁjggzb;f:n”ll) -dim A™ (V). Thus, the hermitian operator

GG has a kernel of the same dimension. Furthermore, 3 G*G; is the identity on A™ (V).

Hence, the intersection of all kernels must contain only the null-vector.

A

(108) G AMV) 5 A™ 0= ;@ fi s f;

Equipped with these operators, the Hamiltonian may be described in yet another way.
The Hamiltonian can be directly related to the eigenvalues of K, if we choose the set of
eigenvectors k; of K as g;. In the following, we will assume the eigenvalues ordered from

lowest to highest.

(109) T) =) k) @ K [T) = 1= |k;) ® K;
(110) E=(v ‘K‘ v) =Y e(v ‘KK v)
(111) = H=) ¢K/Ki=) «lk)®K,
(112) Kk; = eik;

In this form, the properties of K} K; and |k;) ® K; dictate the energy. For an eigenstate of

H it is thus necessary to fulfill equation (114).

(113) ff\l’zzfi ki) ® K; | 0) :EZV%)@KJ‘I’)
(114) S E <\1: ‘KK \11> = Vi

Taking a basis e; for A™(V), the energy can further be described by equation (116) on

the following page. Since the energy is invariant under unitary transformations, let the set
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{e;} consist of the eigenvectors of K7 K.

(115) = Z%‘% Z vil* =1
€j>

diI;l V) < (di;nzV

(116) E=Y v <ei KK,

The energy is over-defined by the coefficients v;, if ( ) Then, it is possible to
vary the energy while constraining contributions. For instance, it is possible to maximize

the contribution of ¢y while retaining all other contributions.
(117) SE =¢y0 <xp ‘f(gko‘ ‘1;>

(118) :ﬁoz |l <€i

KK,

y

Therefore, the ey-contribution must be maximal for the ground state with respect to con-

straining the other contributions. The same is true for all other contributions as well.

Since e; are eigenvectors of KJKj, we arrive at equation (118). As mentioned earlier,

(n+1)(n—2m)
n—m+2)(n—m+1

at least ( ) - dim A™(V) of these summands must be 0. For convenience, let
the eigenvalues of f(;*f(i be in descending order. Obviously, the contribution is largest if
the largest eigenvalue of K7K; is the only contributor, i.e., |12 = 3 |¢]> and therefore
0F = ¢ <eo ‘KSKO‘ eo> 8|wbg|?. Tt is therefore reasonable to start the search for the ground
state from the eigenvectors of K*Kj.

In the general case where g; is a geminal, the eigenvectors of G’;‘G‘i are products of the

form g; A f where f € A™2(V). This can be deduced from the definition of G;. Let

egz) be a unit eigenvector of G;G; with eigenvalue A3; and let f;z) = Giey) / ||Gie§-z)||, then

. . 2 A A
(0 5 = (e

ei> = )\3Z Again, let the eigenvalues be in descending order.
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Starting at j = 0, we arrive at equations (119) to (123).

(119) %, = (o0 191

(120) =[(n 52|

(121) < ||e¥) " gi AP ’

(122) = (9:® 519 7 167

(123) < <9i A |GGl gi A féi)>/ gi N 1 :
Since, )\g,i is the largest eigenvalue,

(124) (g n 5| GiGil gi A ISV Y 1 |95 1 £ oz,

Hence, e(()i) =g A féi) / , and g; and féi) are natural states of e((f).

9i N f éi)‘
We can proceed in the same manner for all other eigenvectors by noting that <e,(:) |e§i)> =
<gi ® fki)\ej> /llgi A sz')” = 0 whenever k < j. Therefore, \3; is maximal with respect to the

(1)

space perpendicular to all f,gi), which allows the extension of the argument for egi) to all e;”.
So, we see that all eigenvectors of G;“G‘z with non-zero eigenvalues are of the form g; A f]@
for a given orthonormal set {g;}.

Having asserted the structure of éi, it is only natural to consider the relationship between
different G;. To this end, first consider a permutation of an anti-symmetric eigenfunction
gAf=An(g® f) of G. For a permutation o of m indices with operation P, on T™(V),
the product AP, = sgno - flm, where sgn is —1 if ¢ has even order and 1 if ¢ has odd

order. Therefore, A,,P,(9® f) =sgnoA,,(¢g ® f). Furthermore, any linear combination of

permutations of ¢ ® f are mapped to a mere multiple of gA f. Now let gA f =D ¢;9:Q fi =
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C> , sgno-P,(g® f), where C is a constant and g = go, f = fo and g;/f; are natural states
of g A f. Then for any non-zero ¢;g; ® fi = >, psP,(9 ® f) for some set of constants p,.
Thus, for any non-zero ¢; ® f;, g; A fi = C;g A\ f with constant prefactor C;. Therefore, any
two pairs of natural states anti-symmetrize to the same normalized wave function.
Returning to the ground state, let g; be the natural geminals of the ground state.
Then the ground state is defined by the corresponding G; and their eigenvectors (see equa-

tion (125)).
(125) H= Z <9z‘ gi> éféz + Z <gi

(126) =% (g

Since the natural states are perpendicular, the ground state has no cross-contributions.

~

K

Therefore, the ground state is an eigenvector of H' in equation (126).

A

(127) HWy) =Y (4 |K

gi> Czé;kéz 9 N fi) = E'[Wy)

(128) v = Zcigifi

An obvious solution to H' is a solution that is an eigenvector to all G;“G] Then, the ground
state would have to be proportional to some g A f. Conversely, the Hamiltonian may be

described in terms of F : A™(V)) — A%(V).
(129) H=> F'KF

Again, the simplest solution to this operator is a simultaneous solution to all Fz*f( E}, such

that ¥, = f A g for some geminal g and correpsonding m — 2-electron function.
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The preceding discussion shows that the ground state is more dependent on the underly-
ing properties of N-representability than it is dependent on the values of K. The search for
the ground state reduces to the search for a set of geminals such that their associated CA?: G or
Fi*f( F; have simultaneous eigenvectors. Good candidates are the natural geminals of simple
products gA f. If g A f can be confirmed as the ground state, a powerful necessary condition

has been found greatly reducing the complexity of solving the Schrédinger equation.



CHAPTER 5

REDUCED DENSITY MATRICES RECONSIDERED

As the discussion in section 3 of chapter 2 highlights, the structure of the m-RDMs and the
2-RDM, in particular, are of utmost importance. The fact that 1- and (n— 1)-states are very
well defined with respect to each other raises the question what further relationships exist
between the natural m-states. The relationships between the natural orbitals (1-states) and
natural geminals (2-states) especially warrant exploration since they determine the energy.
Restrictions on the natural geminals reduce the set of 2-RDMs which are N-representable
and therefore the computational cost.

Let {c;} be the set of natural orbitals of an N-electron wave function. Then we can write

the 2-RDM in terms of the natural orbitals (equation (130)).

(130) DP(12512) = ) " diju |osay] (12) |anau| (1'2)
1>45,k>1
(131) D®(12;1'2) = D + DY
(132) DY = dijis lwas | (12) oeas| (1'2)
1#£k,j

D?) is positive semi-definite and reduces to D) and its natural geminals share their natural
orbitals with D%Z). If DgZ) is to be small compared to D§2), as semi-definiteness implies,
ie., D@ D§2), then this condition implies that the natural geminals must all share their

natural orbitals with the generating wave function. This circumstance cuts down greatly
54
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on the number of N-representable 2-RDMs. Furthermore, the 2-RDM is parameterized by
the 1-RDM, i.e., it is possible to choose a 1-RDM, all of which are N-representable, and
restrict calculations to positive semi-definite 2-RDMs of the form of D Conversely, given
a geminal with a set of natural orbitals, it is possible to construct 2-RDMs which reduce to
1-RDMs with the same set of natural orbitals. Hence, geminals parameterize a set of 1- and
2-RDMs. How do the P- and Q-conditions affect the 2-RDM in this representation? The
P-matrix is essentially a correction to the diagonal of the 2-RDM. Equation (133) shows
that the P-condition lowers the values on the diagonal with respect to D®. This implies
that the diagonal of D®® must exceed the minimum necessary for positive semi-definiteness
given the offdiagonal values of the 2-RDM. The P-condition gives a lower bound on D®).

The Q-condition, on the other hand, imposes an upper bound on D®.

(133) P®(12;1'2') = —I(12;1'2') + D®(12;1'2') +Z( &l ) o |(12) ;] (172')

1>7

(134) QP (12;12) Zd (1 i(2)(2") — D@ (1'2; 12"

In order to characterize the 2-RDM more in terms of its 1-states, let 8; be the respective
natural n—1-states relative to the natural orbitals o, then 3;(2...n) = >, &;0;(2)8;;(3 .. . n)

and we get

= =P = Py Zé}ai(l)ﬁi@ ...n)

=P, Z§i§ijai(1)04j(2)5ij(3 ...n)
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=D &iai(2)a5(1)85 (3. )

=D —&&yai(1)e5(2)85(3. . )

Therefore, 1 = >, &l (12)B;(3. .. n), where & = £&;v2. It follows then, that

i>7 7]

D™ 2 =% E1PBi5(3. .. n)Bi(3 ... n')* due to |auay| L |agay| for {i,5} # {k,1}. If {} is
a set of orthonormal n — 2-electron functions, 3;; = Y vijkVk, and {n; = ij ExVikil oo}
are geminals, then f =, 7;(12)7(3...n) and D® =37, 7;(12)n;(1'2")*. The definition of
Bi; implies that for a given i, that {f;;}; is an orthonormal set, which may be chosen as
{7};- We see that the 1-RDM can thus be reconstructed from a positive definite matrix of
geminals which share the 1-states of the full system as 1-states for each 2-state. Therefore,
given a 1-RDM, an estimate of the ground state energy may be found by varying over all

positive semi-definite matrices which are produced by n; which share their 1-states with the

1-RDM and reproduce the 1-RDM. This set includes all AGP and SOAGP 2-RDMs.



CHAPTER 6

AUFBAU-ANSATZ FOR GENERALIZED GFT

Encouraged by the previous chapter, applying the aufbau principle of Hartree-Fock theory

generalizes the AGP ansatz.

n/2

(135) \I]Aufbau =A, H gZ(QZ - 1: 27’)

=1

where g; are geminals. Some work has been done on functions for which the g; are strongly
orthogonal.?® Such functions are inexpensively computed and have been shown to describe
bonding well.3® When coupled with perturbation theory, an accuracy en par with CCSD can
be attained.’® In general, SOAGP is expected to produce very good results, when electron
pairs interact very weakly. While Hartree-Fock functions are AGP functions as well as anti-
symmetrized products of strongly orthogonal geminals (SOAGP), this is generally not the
case for SOAGP nor for the generalized AGP (GAGP) ansatz.

An interpretation of the meaning of the geminals may be derived from ordering them

- (2
KDA(ARLfbau

with respect to < 9i gi>. In keeping with Hartree-Fock theory, the lowest energy
geminals can be determined to describe the core electrons while increasing energy terms
describe increased mixing with the valence electrons and therefore explain, for instance,
bonding.

The most general case does not allow for a direct description of the 2-RDM but it is

possible to build the 2-RDM iteratively as follows: Let 1), be anti-symmetric and let DS‘“)
57
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be its m-RDM with integration kernel D{™.

(136) Upio = Apsag (1,2 (3, ... p+2)

(137) Ep—I—Q = 9(11 2)¢p(31 N N 2)

Since (p+2)(p + 1)Api2 = (1= X207 Py;) <1 — Zp+2 PZJ) A where P;; is the per-

(k)

mutator of particles 2 and j and A, is the anti-symmetrizer of [ particles starting at k£ + 1,

. p+2 p+2
(p + 2) (p + 1)141)4—27/’]a+2 = (1 - Z Pli) (1 - ZPZ]) p+2
=2

(138)

p+2
= (2 - 22 [P1i + Py + Z P11P2J> p+2-

=3 1F£j>2

where we have used the fact that g and 1), are antisymmetric with respect to elementary
permutation of their particles. Hence, there are six contributions to the 2-RDM (Eqn. (139)-

(145) on the following page).

(139) DO, =F + (B + F) + (Fy + Fy) + Fy+ (Fs + FY) + Fy
(140) F; =g(12)g(1'2)[|¢p 12
(141) Fy=—p / 9(12)g*(1'3) DSV (3; 2") — g(12)g*(2'3) D{V(3; 1')d3

(142) Fy :(’2’) / 9(12)g*(34)D{?) (34;1'2")d3d4
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) / 9(13)g*(2'4) D) (24;1'3) — g(23)g*(2'4) D{? (14; 1'3)d3d4+
p * ! ! * ! !
2(2) /g(13)g (1'4) D) (24;2'3) — ¢(23)g"(1'4) DS (14; 2'3)d3d4+
(143)
p (DY (1, 1DV (2:2) + D§P(2,2)D{V (1 1)) —

p (D!(Jl) (2, 1I)D;l(>1)(1; 2/) + D!(Jl)(l, 2/)D1(11)(2; 1,))

(144) —6

F=( )P az g+
(145) 2(p — 2) (12’) / DV (4;5) D (125; 1'2'4)d3d4d5+

(p ) 2) (g) / 9(34)g*(56) DY) (1256; 1'2'34) d3d4d5d6
Equation (140) on the page before contains the geminal’s direct contribution to the 2-RDM.
The cofactor is large for a single geminal on the diagonal. The computation is of the order
O(k*), in the size of the basis set (k), for setting up the product of two geminals represented
as vectors in the vector space acted on by D®). In equation (141) on the preceding page the
connections between those parts of D,(,l) which are not strongly orthogonal to g are projected
out. On the other hand, equation (142) on the page before reinserts the gg* components
already in D]S,Q) and weighs them accordingly. If gg* is already a non-zero component in

DI(,2), it will not be diminished. The computation reduces to simple matrix-matrix and

matrix-vector multiplications, so the order of computation is O(k*) for the setup of the
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matrix elements. Equations (143) on the preceding page and (144) on the page before add
crossproducts missed by equations (141) and (142) on page 58. Unlike before, all the entries
of the density matrix need to be considered and the order of computation is O(k°). D1(,2)
is retained and weighed accordingly in equation (145) on the page before. This guarantees
that large contributions of previous iterations will remain large in the next iteration.

Equations (144) on the preceding page and (145) on the page before introduce problematic

higher-order contributions. Since g(34) = ). &ai(3)8:(4),

[ a9(51d3 = 3 l6750)5:(5).

Also,
D?(12;34) =) / D®)(125; 346)3:(5) 5;(6) d5d6.
Due to Y, &[> =1 and [&|* < 1/2, we can conclude

1 1oy N x 141 15151 ! !
§D§,2)(12; 1'2') > /9(34) 9(3'4") DS (123;1'2'3")d3d3'd4
(146)
= /g(34’)*g(3'4’)1/)p(1234 D)y (1'2'3'4 ... p)*d3'd4'd3 . . . dp.

By a similar argument:

(147)
%D}f)(m; 12') > / 9(34)*g(3'4") DSV (1234;1'2'3'4")d3d4d3'd4’
= / 9(34)*g(3'4"), (12345 .. . p)u,(1'2'3'4'5 . .. p)*d3d4d3'd4'd5 . . . dp.
If gry1 L giVi < k, then the overlap is proportional to [ ¢;(1,2)g;(3,4)gk+1(2,3)d2d3 for i <

J < k+1 because the g; are pairwise orthogonal and v, = Agx Hle Gi = Y. Tx || 9i(M2i_172),

where 7 is a permutation of 2k particles and z is a prefactor. Since [ ¢;(1,2)g;(2,1)d1d2 = 0,
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[ 9i(1,2)g;(2,3)d2 is composed of small contributions of variable sign, which can be added
as corrections for equations (146) on the preceding page and (147) on the page before, e.g.,
by fitting to D1(,2). In zeroth order approximation, they may also be ignored since cancella-
tion is very likely. In general the necessary positive semi-definiteness of D@, P and Q®
may be enforced to correct for omissions, for instance, by enforcing the structure of D§2) of
equation (131) on page 54 in chapter 2, section 3. There is also a necessary condition on the

trace of the final 2-RDM.

/ |¢p+2|2d1 - dp + 2 =tr DI(J?Q

A

(148) =2lg|"[15|I* = 2p tx (DD DY) +

(
P

P
(2) / 9(1,2)DSP(3,4;1,2)g(3, 4)d1d2d3d4

Since there are n/2 steps of iteration and equation (143) on page 59 is the computational
bottleneck, the overall order of computational complexity is O(2k®), where k is the number
of basis functions and n is the number of electrons.

We may cast the same problem using the langugage of second quantization to derive
more insight into the higher-order contributions. We recall that the matrix elements of the
alatapa

2-RDM are <\I! \II> Identifying each generating geminal with an operator such that

1>.

Using the commutation relations for creation and annihilation operators, the operators may

g1+ Gnpodlatarieg) - 4f

g:) =g} 1) = Zg,(:l)*&,t&;' |1), these matrix elements are <1
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be passed through the geminal operators (see equation (152)).

(149) a9l = gla, + o
50 B LI WL
Jj<v i>v

(151) a, [[af=119la+> o []4]
J#i
a,a, | [ of =] lavan+

(152) i | Il |

j#i ji

D TT At ()1 A ()t ~t

Zgﬁ’ﬁ H%‘Zgi g H 9
i kg {i,5}

Applying equation (152) to the vacuum |1) eliminates the annihilation operators leaving only

creation operators (see equation (153))

(153)

=Y o ety = > IT ok

JFi ke¢{i,5}

The expansion of the matrix elements in second quantization shows that no more than
two geminals are directly involved in the 2-RDM. The first and last terms of equation (154)

on the next page are derived from positive, semi-definite operators, while the second and
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third term are derived from a negative, semi-definite operator.

0|5 () o) (32 T2) 1) -
Gz (i )%) Sl 11t |1)-
05 (o) (s 1))

<1 S I o) aPa” ) (2oaa T1 ok 1>

i2j \re{ij} i£] k&{i,j}

(154)

(Ao lafalanad Nai) = (1

i

i#]

&)

The first term incorporates only components of 2-RDMs of smaller products of the g;. The
last term collects second through sixth order RDMs of smaller products of g;. The middle
terms hold corrections to second, third, and fourth order of the 2-RDM. Since the second-
order corrections are already taken care of in the iterative scheme, the majority of the
third- and fourth-order corrections are expected to be related to retaining the D-, P- and

QQ-positivity conditions.

1. Choice of g;

There are several constraints that can be loosened progressively going from an AGP wave

function to a generalized AGP function:

a) Release of &; only, i.e.,

= Z fi(j) |a2i—1042i
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b) Releasing the ordering of the natural orbitals.

9i = Z f,('i)
(87, - {1}

¢) Increasing the number of used geminals to [ geminals.

85155

!
U= AnH‘I’X'giD[gi] (M; +1... M;1q)
i=1 |

Z m; = M;, Zmi:n

1<j<i i=1
In the first case, the 2-RDM retains the form for an AGP function as well as its natural
orbitals expanding the set of N-representable 2-RDMs for geminal functional theory.*® This
approach also encompasses all SOAGP functions via the constraint f,(,i)*f,(,j ) = 5,-j|§,(,i)|2.

The second case potentially encompasses more off-diagonal entries but does not neces-
sarily retain the natural orbitals. This should lead to simpler expressions for the 2-RDM
with respect to the troubles encountered in equations (144) and (145) on page 59. Since
Y= H?:/ ? g(me;_179;) where 7 is a permutation of n particles, the results of chapter
5 on page 54 (D@ ~ D) justify this approach due to ¢;(12) Y, [1, 4 9i(mh;_1m5;) being a
summand of v, with 7’ a permutation in n — 2 particles.

In the third case a wide variety of density matrices are included covering the former
two cases. One choice of geminals are the eigengeminals of K with the lowest eigenvalues.
Equation (140) on page 58 suggests a large coefficient for these geminals and hence a low
energy. Another consideration may be geminals with extended orthogonality conditions, for

instance §;§;grx = 0 whenever the three geminals have different labels. This last condition
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considerably cuts down on the contributions for consideration in third and fourth order

RDMs.



CHAPTER 7

4-ELECTRON SYSTEMS WITH GAGP

In order to verify the applicability of GAGP, several 4-electron systems were investigated.
Four-electron systems do not suffer from approximations to higher-order density matrices,
i.e., setting the higher-order contributions to zero in equations (144) to (145) on page 59 is
not an approximation. Thus, we can examine two conjectures: for one, we can distinguish
between GAGP and AGP; secondly, we will see whether it is fair to say that the ground
state is a GAGP function.

The FCI and HF energies were converged to 10~8 Hartree using the PSI3 program suite.%!
The energy of g; A g, is a bilinear functional in each geminal of FE : A%(V) x A%2(V) — R
according to (z,y) — <x Ag ‘f[‘ Yy A g>, where g is either g; or go, because A is linear. The
same is true of the overlap <:c Ag ‘OA‘ Yy A g> = (x A gly A g). It follows that the eigenstates of
the corresponding homomorphism H’ of A%(V) are exact solutions subject to the stationarity

of g and unit overlap. Therefore, in the case of GAGP, the energy was optimized as follows:

a) Start the calculation from the HF guess via ¢g; = |¢12| and go = |¢3¢4|.

b) Compute I:I{ and the overlap matrix O;, with ¢ = ¢; in above definitions of the
operators.

c) Solve the eigenvalue problem for O; and transform H! by O} :

A

d) Solve the eigenvalue problem for O; 2H!O;

D)=

and set go to the lowest eigenvalue-

solution. That eigenvalue is the energy of g; A gs.

66
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e) Repeat b through d for g = g¢s.
f) Repeat b through e until convergence, i.e., the change of energy from one iteration

to the next is below 1078.

This approach neglects the dynamic interactions between the geminals but guarantees de-
creasing energies and, while convergence for each geminal is cubic, the overall convergence
falls short of such an optimistic estimate. Rather, it is linear at best.

As table 1 shows, the GAGP functions recover the electron correlation almost exactly.
As we progress from Li~ to B* we see a decrease of overlap of the two generating geminals
demonstrating the departure from a pure AGP function and we see the first conjecture
confirmed. This may be attributed to the core electrons being bound stronger to the nucleus
resulting in a separation of core and valence electrons.

For the dissociated species of LiH, the percentage of retrieved correlation is comparatively
low. This is due to numerical inaccuracies of the convergence method. The absolute error of
electron correlation using GAGP is on the order of 10~* for bound LiH, while it is 1075 for
dissociated LiH. In bound LiH, the electron residing on the hydrogen atom correlates strongly
with the lithium electrons, which leads to a large overall correlation energy of 3.109065-10~2
Hartree. In dissociated LiH, we see very little correlation, a mere 2.1699 - 10~* Hartree, in
the first place, probably due to the disruption of relocating just one electron from lithium
to hydrogen. For all other hydrogen abstractions, there is considerable electron correlation
which makes LiH and BeH™ rather unique in this series.

Contrary to the trend in atoms, with increased charge the AGP character increases for

LiH and BeH™. Protonating Li~ and Be results in more postive charge, which attracts the



TABLE 1. FCI, GAGP, HF energies and the percentage of electron correlation

(EC) recovered by GAGP of various 4-electron atoms and molecules using the

cc-pVDZ basis set. The energies were converged to 10~8 Hartree.

Species Ercr Egacp Eyr % EC GAGP  (g1/g2)
Li~ -7.44785514  -7.44779627 -7.41681880 99.81 0.983
Be -14.61740950 -14.61732472 -14.57233761 99.81 0.964
Bt -24.20384952 -24.29376828 -24.23456235 99.86 0.689
LiH? -8.01477504  -8.01467655 -7.98368439 99.68 0.901

Li---HP -7.93191592  -7.93190893  -7.93169893 96.77 0.687
BeHt? -14.88484983 -14.88453406 -14.84960071 99.10 0.999

(Be---H)*® | -14.77529442 -14.77527156 -14.77472034 96.02 0.867
He, at eq.? -5.77519593  -5.77519072 -5.71032168 99.99 3.14-1076

He, at oo -5.77518966  -5.77518966  -5.71032095 100 3.83-10713

HeH™? -3.35750027  -3.35749691  -3.30402998 99.99 9.56-10~6
(He---H)™® -3.35745161  -3.35745161  -3.30398420 100 3.38-10713
linear Hz® -1.64393530  -1.63425811  -1.57545074 85.87 0.056

lin. (Hy---H)™® n/a -1.59624834  -1.53310194 n/a 7.5-10715

& CCSD geometry

b Distance was 10° Bohr.

electrons more through Coulombic interaction, but unlike in the atoms, the charge is less
localized, which apparently reduces the separation of electron pairs. So, going from LiH to

BeH™, at either distance, results in a marked increase of AGP character.
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As expected, the helium dimer is very weakly bound and shows, both at “infinite” dis-
tance as well as at equilibrium distance, decidedly non-AGP character. It is not surprising
that GAGP does well for the helium dimers, since each helium atom can be described by a
geminal exactly. The very small interactions between the two at long distances essentially
turn the problem into an SOAGP problem. Although the absolute energies show very little
variation, the large nuclear repulsions are offset by strong electronic interactions, which does
not a priori imply the validity of an SOAGP approach. Yet again, the divergence from AGP
is solidified. While ambiguity of the generating geminals may be blamed for the departure
from AGP in the case of the atoms, i.e., there might be a g such that g A g = g; A g2, there is
no room for such an argument in the case of the non-interacting helium atoms. The helium
is decidedly not a mere AGP function, but a SOAGP function.

No FCI energy could be found for “infinitely” separated H,, but the sheer amount of
electron correlation predicted by GAGP and the minute overlap found suggest 100% recovery.
The sub-par performance for bound Hy may be attributed to insufficient convergence since
the calculation took more than 300 steps while other calculations finished in under 100 steps.

With the exception of linear H;, the GAGP function recovers the electron-correlation
energy quantitatively. This datum is strong evidence for the second conjecture, that the
ground state is a GAGP function for 4-electron systems. Extending to 2"-electron systems is
natural as each follow the same mathematics. Given a 2m electron Hamiltonian, an operator
K,, analogous to K =: K, may be constructed, and thus a product of m-electron functions

should result in the correct answer. Then again those functions can be broken down into
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further products, if m is divisible by two. Thence, we arrive at the important result that

GAGP describes 2™-electron systems exactly.



CHAPTER 8

CONCLUSIONS

Generalized AGP uncovers a new side to quantum chemistry. Extending the idea of
antisymmetric geminal products, the aufbau ansatz allows for a flexible construction of N-
representable 2-RDMs, which allow for high-quality calculations of energies and related prop-
erties. As the complete wave function is not explicitly used, the computational effort remains
polynomial (roughly O(n7)), if the basis set size is linearly dependent on the number of elec-
trons. The numerical examples of chapter 7 have confirmed the conjectures of chapter 4.
For 4-electron systems, the electron-correlation energy is quantitatively recovered. Hence it

is reasonable to assume that the ground state is of the form in equation (155).

(155) U =g(1,2) Ap(3,...,n)

Although GAGP suffers from approximations if there are more than 4 electrons, they may
be introduced to compute the 2-RDM nonetheless. The P-, Q- and D-positivity conditions
must be enforced for any approximation to be successful. In general GAGP does not collapse
to AGP justifying the additional computational effort. Similar to traditional Hartree-Fock
theory, the generating geminals may be interpreted like molecular orbitals yielding additional
insight, e.g., into the nature of bonds. As the separated-helium-dimer example demonstrates,
each geminal represents the non-interacting helium atoms, nicely illustrating the fact that

GAGP, as well as AGP, are inherently multi-determinantal. Therefore, problems associated
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with symmetry breaking and size-extensivity are naturally avoided. The investigation of
GAGP and 2-RDMs has revealed further methods with possible restrictions that allow the
computation of systems beyond four electrons. A matter that has not been investigated is the
use of domain decomposition techniques like finite or spectral elements. In such approaches
only D§2’ or even the diagonal of the 2-RDM and continuity conditions on the 1-RDM are
needed, which simplifies the N-representability problem as well as the computation of these
entities for GAGP virtually eliminating the need for higher-order RDMs. Thus, domain

decomposition methods are worthwile for future research on the subject of GAGP.



APPENDIX A

CD Contents

On the CD there is a copy of the C++ template library for linear algebra with sparse
implementations. Also there is a library for RHF, UHF, AGP functions, GAGP functions
and their respective density matrices. All code is replete with documentation found in
the directory 2dft.iso/html/index.html. After copying the code, it can be compiled by
executing make in its root directory. The file Makefile contains the PSI variable, which
needs to be set to the location of PSI 3.0. Furthermore, various options may be set in
Makefile for specific optimizations, etc. Since no integrals are computed by the programs
a PSI 3.0 installation has to be present. The input.dat file must contain all necessary
molecular specifications as well as the basis set. Running input and cints from the PSI

suite of programs prepares the job for executing any of the commands on the CD.
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