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ABSTRACT 

Information about large river channels is required for assessments of ecologically and 

economically important fish assemblages, but field mapping can be an expensive and time-

consuming process.  Classification of fluvial fish habitats using remotely sensed images is a 

potential alternative.  This study examines whether widely available satellite images can be used 

to map habitat on the Lower Congo River in Western Africa using an object-oriented approach.  

One Landsat 7 image and three ASTER images of the river were classified using object-oriented 

techniques and the results were compared to existing topographic maps.  Although insufficient 

ground truth data were available for a numerical accuracy assessment, the habitat maps produced 

from the ASTER images correctly identified all major turbulent areas, islands, and rock 

formations.    This study concludes that an object-oriented approach provides procedural benefits 

over pixel-based approaches, and that the ability to incorporate spatial context is a major 

advantage in habitat classification. 
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CHAPTER 1 – INTRODUCTION 

 

 Large rivers play an important part in both ecosystems and human societies around the 

world.  For humans, rivers provide transportation, food, water, and power, while for flora and 

fauna they provide essential habitat.  Large rivers also exhibit high levels of biodiversity, which 

in turn delivers a number of economic and environmental benefits (Pimentel et al. 1997).  

Riparian corridors, for example, host a large number of diverse species and play a substantial 

role in controlling environmental processes such as flooding and water quality (Naiman et al. 

1993).  Species richness has also been shown to increase with river size, particularly in the 

tropics (Allan and Flecker 1993). 

 Large river ecosystems currently face a number of threats, many of which are caused by 

human activity.  These threats include habitat loss and degradation, construction of levees and 

dams, contaminant introduction, destruction of wetlands, logging, fire suppression, species 

extinctions, species introductions, and overharvesting (Allan and Flecker 1993, Johnson et al. 

1995, Kouamelan et al. 2003).  The effect of many of these threats is the reduction of habitat 

heterogeneity, and a resulting decline in diversity and abundance of fishes. 

 Despite the importance of large rivers and the serious threats they face, we know little 

about them in comparison with small streams and lakes, and as a result, our theoretical 

understanding of large river ecosystems is quite weak (Johnson et al. 1995).  Taxonomic 

information about the species inhabiting large rivers, for example, is far from complete.  This is 
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particularly true in the tropics, where our lack of knowledge constitutes the largest gap in our 

global understanding of aquatic vertebrates (Allan and Flecker 1993).   

 A key step in broadening our understanding of large river ecosystems is the study of the 

features that make up their physical environment.  Current theories assume that the physical 

environment exhibits powerful controls on biological structure (Johnson et al. 1995), and a 

number of studies support this contention (Lammert and Allan 1999, Kouamelan 2003, Walters 

et al. 2003).  The traditional method of characterizing fluvial habitat in streams and rivers is to 

use field mapping teams to measure a number of physical parameters; but this method can be 

costly and time-consuming, while limited accessibility makes some large rivers difficult and 

dangerous to map.  As a result, some researchers have suggested that remote sensing and 

geographic information systems (GIS) may be useful in mapping and understanding fluvial 

habitats (Johnson et al. 1995).    

One example of such an approach comes from ichthyological research conducted by the 

American Museum of Natural History (AMNH) on the Lower Congo River in Western Africa. 

Despite the river’s tremendous size and the diversity of its ichthyofauna, surprisingly little is 

known about the basin's fish assemblages and habitat.  For this reason, AMNH proposed a 

research program in 2004 to study the Lower Congo River’s fish species.  In order to gather 

information about the fish assemblages of the Lower Congo and test a number of hypotheses 

about evolutionary divergence among ichthyofauna in the basin, AMNH proposed to send an 

ichthyology field team to the Democratic Republic of Congo in the Summer of 2005 to collect 

specimens.  A lack of adequate information about the spatial locations and extents of aquatic 

habitats suitable for sustaining fish assemblages within the channel, however, made planning for 

the expedition difficult.  In need of a timely and cost-effective way to increase their 
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understanding of the Congo’s aquatic habitat, AMNH turned to remote sensing.  To this end, 

manual interpretation techniques were used to identify major rapids and pools on satellite image 

data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).  

This initial success, however, raised the question of whether it was possible to obtain more 

detailed information about river channel habitats, both quickly and economically, using 

remotely-sensed images and a new approach to image classification known as object-oriented 

classification, which combines the advantages of traditional spectrally-based image 

classifications with the spatial context provided by a GIS.   

This study will attempt to determine whether an object-oriented approach can be used to 

map channel-scale habitat on a large tropical river like the Lower Congo using widely-available 

satellite data.  The following chapter, Chapter 2, will describe the context of the problem further 

by reviewing literature on remote sensing of fluvial systems, fluvial habitat classification, and 

object-oriented classification.  Chapter 3 lays out the study’s purpose and research objectives, 

and Chapter 4 will provide a brief description of the study area.  Chapter 5 addresses the data 

sets and methods used, while Chapter 6 provides a discussion of the studies results.  Finally, 

Chapter 7 summarizes the conclusions of the study. 
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CHAPTER 2 - LITERATURE REVIEW 

 
2.1  Problem Context 

 Human beings in general (and scientists in particular) seem compelled to classify people, 

places, objects, and even ideas.  For instance, we classify students by grades, cities by size, and 

biological organisms by physical characteristics.  We place these phenomena into groups for a 

variety of reasons.  First and foremost, classification helps us think about complex systems by 

carving them up into smaller parts – “creating order out of chaos” (Goodwin 1999).  Second, 

systems of classification help us to communicate information about objects by creating standard 

units with consistent and logical names. Third, categorization helps us to describe systems in 

numerical terms by facilitating the use of statistical and spatial descriptors and procedures, such 

as mean, range, variance, clusters, and pattern analysis.  The fourth (and perhaps most elegant) 

reason for classification is that occasionally a classification system meshes so well with theory 

that it helps to explain, and not just describe, natural events or processes – as the Periodic Table 

of Elements does in chemistry (Goodwin 1999).   

For these reasons, it is clear that classification plays an important role in our 

understanding of the world around us, and as a result much of the natural world has been 

classified by humans, with rivers being no exception.  Although numerous classification systems 

exist for rivers, these systems can generally be divided into two types: form-based (or 

morphological), and process-based (Goodwin 1999, Legleiter and Goodchild 2005).  As the 

names imply, form-based systems rely on observations and measurements of existing channel 

forms, while process-based systems attempt to classify rivers based on the physical processes 
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that create them, such as sedimentation and erosion.   Both approaches require that various 

aspects of the channel itself be classified and/or quantified in some way.  For example, Rosgen 

(1994) uses measurements of entrenchment, gradient, width/depth ratio, sinuosity, and sediment 

size to classify channels into a number of major and minor categories.  Each classification 

system defines its own set of parameters, though they often overlap.  One of the more traditional 

and widely used methods of classifying channel elements is the visual classification of habitat 

types at the channel scale (Kaufmann 2000).  This method uses visual observations to classify a 

channel into habitat elements such as cascades, falls, rapids, pools, riffles, and runs.  While this 

method of classification is less quantitative and more subjective than many other methods, it is 

also easily understood and easily implemented. 

 The classification systems mentioned above, as well as the data used to drive them, are 

used in a variety of fields.  River classification is used in river navigation, engineering (Basson, 

Rosgen 1994), channel restoration (Legleiter et al. 2004, Rosgen 1994), and water resource 

management (Rosgen 1994).  This information is also used to predict channel change and to 

assess and forecast human impacts on rivers (Basson, Marcus 2002, Legleiter 2003, Legleiter et 

al. 2004, Legleiter and Goodchild 2005).  These systems of measurement and classification are 

particularly useful, however, in environmental sampling (Fitzpatrick 1998, EPA 2000, Mertes 

2002) and fisheries and wildlife management (Gorman and Karr 1978, Richards et al. 1997, 

Rosgen 1994, Legleiter and Goodchild 2005, Legleiter 2003, Legleiter et al. 2004).  For 

example, the Environmental Protection Agency’s (EPA) Environmental Monitoring and 

Assessment Program (EMAP) is charged with monitoring the ecological condition of natural 

resources, including rivers, to provide information to policy-makers and decision-makers.  As a 

result, the EPA has compiled detailed protocols for monitoring the ecological condition of both 
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non-wadeable rivers (EPA 2000) and wadeable streams (Kaufmann 1999), an important part of 

which is characterizing physical habitat.  Differences in channel habitat are in large part 

responsible for differences in aquatic species composition and abundance, and provide a variety 

of conditions for diverse assemblages, while human changes to habitat can adversely affect 

riverine ecosystems (Gorman and Karr 1978, EPA 2000).  For these reasons, habitat mapping is 

an important part of ecological monitoring and resources management. 

 Although information about the physical features of rivers is obviously of use to a variety 

of people and organizations, gathering such data is often a costly and time-consuming affair.  

The process often relies on measurements made by field teams, and habitat classifications in 

particular depend on subjective decisions made in the field (Kaufmann 2000; Marcus et al. 

2003).  Time, cost, and accessibility can make such field measurements prohibitively difficult.  

Much of the Lower Congo, for example, is unnavigable, and would be impossible to map from a 

boat.  In other cases, information about a channel is desired before travel to the field is possible, 

or because field measurements are impossible for logistical reasons.  Habitat classification using 

remotely-sensed data offers a unique solution to these problems.   

For example, information can be extracted from remotely-sensed images in much less 

time and at a fraction of the cost, provided that high-quality image data are available.  

Furthermore, the synoptic perspective provided by remotely-sensed images gives a view that is 

not available to ground-based field teams, and such a perspective can sometimes reveal new 

insights.  In addition, although images may lack the detail seen by field teams, they can be less 

subjective in their record of observations because of their reliance on well-defined physical 

parameters, as opposed to human intuition (Marcus et al. 2003). 
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Remote sensing of rivers is not a new idea by any means.  Aerial photographs have long 

been used to study river channels since after World War II (Legleiter 2003, Paine and Kiser 

2003, Roberts et al. 1997), and the advent of satellite platforms has allowed broader and more 

frequent monitoring of fluvial systems (Legleiter 2003).   As sensors have grown more 

sophisticated in their ability to record both spatial and spectral detail, researchers have become 

increasingly successful at classifying river channel habitats using remotely-sensed data (Legleiter 

2003, Marcus et al. 2003, Legleiter and Goodchild 2005).  However, most research to date has 

been accomplished using traditional pixel-based methods, which attempt to classify the 

individual picture elements of an image, but do not take into account any information about 

adjacent pixels or the spatial relationships between pixels (Lillesand and Kiefer 2003).   

New algorithms and software now make it possible to consider the spatial context of 

pixels during the classification process – an approach known as object-oriented classification.  In 

a process called image segmentation, an object-oriented classifier groups like pixels together 

based on rule sets, and these groups of pixels are in turn identified as objects, such as houses or 

parking lots (Blaschke et al. 2000).  Such an object-based approach could prove useful in 

classifying river channel habitats, since such habitats are often at least partially defined by shape 

and spatial context.  For example, pools often have a shape that differs from the rest of the 

channel, and rapids are often bracketed both upstream and downstream by calmer stretches of 

water.   Object-oriented techniques have already been used to successfully improve land use and 

land cover classifications (Blaschke et al. 2000, Geneletti and Gorte 2003).  These successes 

suggest that such an approach might also be useful in improving automated classifications of 

river channel habitats. 
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2.2 Review of Similar Studies 

 

Remote Sensing of Fluvial Systems 

Passive Remote Sensing of Fluvial Systems 

 A wide range of passive sensors have been used to study fluvial systems in a number of 

ways.  Perhaps one of the broadest of these applications has been in mapping riverine 

landscapes, where the unique synoptic perspective and wide coverage of satellite-based sensors 

has allowed researchers to further their studies of the relationships between channels, catchment 

basins, and floodplains (Mertes 2002).  In addition to this broad-scale mapping of fluvial 

systems, passive sensors have been used to quantify the physical properties of water within river 

channels.   Legleiter et al. (2004), for example, examined the physical basis and feasibility of 

using optical sensors for assessing stream depth, concluding that some hyperspectral sensors can 

be well suited to measuring stream depths of up to three meters depending on water clarity, with 

the potential for mapping pools and riffles.  Such sensors have also been used to assess the water 

quality of rivers, including estimation of algal densities and sediment loads using optical and 

infrared data, and to record and analyze the thermal properties of water (Mertes 2002).  The 

Forward Looking Infrared system, or FLIR, has been shown to be capable of generating detailed 

maps of water temperature, which can be an important habitat discriminator for some species of 

fish (Mertes 2002). 

 Passive sensors have also been widely used in the particular area of channel-scale habitat 

mapping, although the majority of research has focused on small rivers and streams, most likely 

because smaller channels are more prevalent, more accessible, and easier to sample (Johnson et 

al. 1995).  For example, Roberts et al. (1997) proposed using airborne multispectral digital 

 8



imagery and aerial photographs to identify and monitor salmon habitat in British Columbia, 

Canada, and provides a detailed discussion of more than 30 habitat parameters which can be 

measured using aerial photo interpretation and standard photogrammetric techniques.  However, 

the increased information content of high-resolution, hyperspectral imagery may provide an 

advantage over more traditional aerial photographs, and recent research has focused on these 

types of data.  Marcus et al. (2003) studied the feasibility of using 1-meter, 128-band imagery to 

map habitat, depths, and woody debris in mountain streams, obtaining overall classification 

accuracies for habitats between 69% and 86%, depending on the order of the stream.  Legleiter 

(2003) used the same data to compare spectrally-defined habitat classes with those mapped in the 

field, finding that while some field-mapped habitat classes could be linked to spectral classes, 

other parts of the channel could not be easily classified based solely on spectral characteristics.  

This difficulty in characterizing transition areas between habitat units has led to the application 

of fuzzy classification methods to images acquired by passive sensors.  In fuzzy classification, 

pixels are not required to belong to only one class; rather, they are assigned a possibility for 

membership in every class.  Legleiter and Goodchild (2005) successfully applied this approach, 

in conjunction with hydraulic modeling, to both hyperspectral and multispectral data, resulting in 

an alternative, more realistic way of looking at channel-scale habitat classification.  

 Experience has shown that spectral resolution of a passive sensor also plays an important 

role in the remote sensing of channel habitats.  A study in 2000 cited by Marcus et al. (2003), 

saw very low overall accuracies (10-53%) using 4-band, 1-meter data on small channels in 

Montana and Wyoming.  Though much of the error was likely caused by difficulties with co-

registration of the images, the authors still noted the need for greater spectral resolution.  In 

contrast, Marcus (2002) was able to achieve an 85% overall classification accuracy using 128-
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band, 1-meter hyperspectral imagery from the Probe1 sensor on the Lamar River in Wyoming, 

and Goovaerts (2002) increased that accuracy to 97% using the statistical technique of indicator 

kriging.  In the same study, Marcus improved overall classification accuracies by almost 18% by 

using 128-band images as opposed to 4-band images.  Another 2002 study, cited in Marcus et al. 

(2003), saw accuracies rise by 7.2% when using 128 bands instead of 8 bands.  Marcus 

postulates that “both the improved spectral and enhanced spatial resolution provided by HSRH 

[High Spatial Resolution Hyperspectral] imagery appear necessary to accurately map in-stream 

habitats” (Marcus et al. 2003:364).  It is important to note, however, that all of the research cited 

here was conducted on streams and small rivers, and it is unclear whether the need for 

hyperspectral data applies to larger rivers as well. 

 In an effort to better understand the physical basis for the remote sensing of channel 

habitat, Legleiter et al. (2004) used a hand-held spectrometer along Soda Butte Creek in 

Yellowstone National Park, to study the interaction between electromagnetic reflectance and 

stream channel elements, such as water depth and substrate.  The results indicated that depth 

measurements in particular, which can be used to map pools and riffles, can be made using a 

ratio-based model, but that this is generally only feasible in shallow waters (about 1-3 meters).  

They concluded that “high radiometric sensitivity, fine spatial resolution, and a large number of 

spectral bands are highly desirable, if not necessary, for stream studies” (507). Once again, 

however, these studies are based on relatively shallow, narrow streams, and the conditions which 

require high spectral resolution in small streams may not be present or important in large rivers.  

For example, although hyperspectral data are preferable for estimating depth in shallow streams, 

the greater depths of large rivers make it impossible to accurately gauge water depth.  Thus, 

hyperspectral data may not be a prerequisite for habitat classification on larger rivers.   
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 This study differs from previous research in its data resolution, classification methods, 

and channel scale, and therefore the conclusions drawn from the existing literature on habitat 

classification using passive sensors have limited relevance.  That habitat units like rapids, runs, 

and pools have been classified in remotely-sensed images of the appropriate scale indicates that 

these features can be identified, but the differences between small and large fluvial systems may 

require changes in how this is accomplished.  Large channels may show increased channel 

depths, stronger turbulence, greater volume of flow, larger bed particle size, increased tributary 

inputs, and reduced effects of overhanging vegetation.  These differences from smaller channels 

will influence both the habitat classification system and the methods of identification. 

 

Active Remote Sensing of Fluvial Systems 

 As noted above, active remote sensing systems produce their own electromagnetic 

radiation.  The most widely recognized of these systems are radar and LIDAR, both of which 

operate in the microwave portion of the electromagnetic spectrum.  Radar has been used 

extensively to map elevations using two different techniques: radargrammetry (altimetry), which 

uses the offsets in separate radar images to compute elevations; and interferometry, which 

analyzes the phases of radar signals to find elevations (Elachi and van Zyl 2006, Henderson and 

Lewis 1998).  The Shuttle Radar Topography Mission (SRTM) flown by NASA in 2000, for 

example, used interferometry to collect elevation data for most of the earth’s surface at a 

horizontal resolution of 90 meters and a vertical resolution of 1 meter.   In terms of fluvial 

environments, radar altimetry and interferometry are commonly used to quantify the elevation of 

water surfaces, in some cases to the centimeter scale (Mertes 2002).  The Laser Radar or Light 

Detection and Ranging system (LIDAR) is being increasingly used for topographic mapping 
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because of its fine vertical resolution, which is generally below one meter, and less than 10 

centimeters in some cases (Mertes 2002), although coverage is generally limited and can be 

costly.  Elevation data can also be useful for mapping of habitat channel because it allows 

comparison of gradient changes.  This can be used, for example, to differentiate between a fall 

and a rapid, which may be indistinguishable with only spectral information.   

 

Fluvial Habitat Classification 

 As noted previously, fluvial classification is normally accomplished through the use of 

field teams.  Two of the most detailed protocols for mapping rivers in the field are provided by 

Fitzpatrick (1998) and Kaufmann (2000), published by USGS and the EPA, respectively.  Each 

of these manuals covers in detail the protocols for obtaining a wide array of physical 

measurements of streams and rivers.  These parameters include, among others, various types of 

channel dimensions, measures of channel gradient, channel substrate size and type, habitat 

complexity and cover, riparian vegetation cover, and drainage basin characteristics.  The 

measurements for wadeable streams are generally made from the bank and from the stream 

channel itself, while those for non-wadeable rivers are made from the bank and from boats.  In 

addition to these quantitative measurements, teams also prepare maps based on visual 

observation of generic channel features such as cascades, falls, rapids, pools, riffles, and runs.  

The EPA refers to these features as habitat units, while USGS uses the name geomorphic channel 

units (GCUs).  This study uses the term habitat unit because of the study’s ties to ichthyologic 

research; but it is important to note that the use of habitat units is not strictly confined to habitat 

description.  The term GCU emphasizes the fact that these features are intimately tied to the 

geomorphology of the river. 
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 Although some of the visual features of these mapping systems, such as rapids and runs, 

can be identified from remotely sensed images, many of the other variables, such as bankfull 

width and bed particle size, are impossible to quantify from a satellite image.  For this reason, it 

is important to consider how physical variables affect fish assemblages in fluvial systems, and 

which of these variables might be measured from widely-available imagery and data sets.  Much 

of the research in the area of abiotic controls on species composition is centered on streams much 

smaller than the Congo, most likely because these streams are much more accessible and easier 

to sample than a large tropical river (Johnson et al. 1995).  Although it is difficult to tell how 

these variables might affect fish assemblages in larger rivers, these studies may still be useful, 

however, in thinking about what physical parameters might affect fish assemblages; and there is 

at least some evidence that geomorphic variables may predict species composition regardless of 

stream size (Walters et al. 2003). 

 Stream slope may be considered the dominant abiotic factor in controlling fish 

assemblages, and slope is intimately related to the physical variables of depth, turbulence, bed 

material size, and water velocity (Walters et al. 2003, D’Angelo et al. 1997). Slope affects fish 

assemblages in two ways: by altering the benthic habitat, and by acting as a barrier to dispersal 

of some species.  While it is unknown whether the former method is of great importance on the 

Congo, the second must surely be given the volume and power of the river, making it an 

important factor in evolutionary studies.  Slope may be calculated from a DEM, but this method 

is a weak correlate to survey measurements (Walters et al. 2003).   

Thalweg variation, or the change in the change in the channel’s centerline depth, is 

related to variations in both depth and turbulence, and has also been found to be an important 

factor in species composition.  Although thalweg measurements cannot be made for a river as 
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deep as the Congo using satellite imagery, this connection to depth and turbulence might be 

exploited.  Walters et al. (2003) found direct, continuous measures of pools and riffles to be poor 

predictors of species composition in comparison to thalweg measurements, but Lammert and 

Allan (1999), in contrast, found a strong correlation between fish abundance and measures of 

channel morphology, including percent pool and percent run.  This suggests that while measures 

of turbulence and depth may not be as accurate as thalweg measurements, they may still be 

useful in characterizing channel habitat.  In some cases, turbulence may be used on its own to 

identify habitat for particular species adapted to life in the rapids (Schelly and Stiassny 2004).  

Additionally, the churning action of rapids increases oxygen content in neighboring pools, which 

may increase the use of fish habitat in these pools. 

Two additional related factors which influence fluvial habitat are bed material and water 

velocity.  Average particle size of bed material has been shown to be a strong predictor of 

species composition (Walters et al. 2003), and although this information cannot be obtained from 

ASTER or Landsat images, it is once again strongly correlated with stream slope and the 

presence of riffles and pools (which are in turn measures of turbulence and depth).  Water 

velocity, too, plays a role in habitat creation and species distribution (Kouamelan et al. 2003), 

with some species of fish being attracted to low velocity areas because they require less energy 

than maintaining a position in faster moving water (Jackson et al. 1999).  Again, velocity cannot 

be directly measured from satellite images, but relative assessments of velocity can be made 

based on spatial relationships to channel obstructions and channel curvature. 

Several other factors identifiable from digital image data may affect channel habitat, 

including bank cover, geology and topography, connectivity, and habitat heterogeneity.  

Lammert and Allan (1999) demonstrated that fish assemblages show a strong relationship to 
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some types of nearby landuse, particularly within 100 meters of the channel, and overhanging 

vegetation can affect the amount of sunlight that areas near the bank receive.  Urban areas in 

particular may have powerful effects on nearby stream habitat (Walters et al. 2003).  In terms of 

geology and topography, some underlying geologic formations may be more conducive to the 

development of pool-riffle structures than others (Jackson et al. 2001), and streams with 

extensive topographic relief close to the channel bed may be limited in the amount of sunlight 

and discharge they receive (D’Angelo et al. 1997).  Turbulence, too, may be associated with 

topography where elevation changes cause rapid drops in the channel.  Connectivity can have 

profound impacts on species composition by preventing or encouraging movement of fishes: 

steep cascades and waterfalls may limit the range of some species, while connections with 

tributaries may encourage the movement of others species and create habitat conditions that 

promote diversity (Walters et al. 2003, Jackson et al. 2001, Rice et al. 2001).  Finally, habitat 

heterogeneity throughout the channel’s length can encourage diversity of species by improving 

conditions for both foraging and escape from predation (Jackson et al. 2001). 

 

Object-Oriented Classification of Fluvial Systems 

 Image interpretation can generally be approached in one of two ways: 1) a purely manual 

approach in which a human interpreter classifies an image based on visual cues and expertise 

knowledge; or 2) using some sort of automated technique, such as a supervised classification, 

which is guided and augmented by the user.  In the case of fluvial habitat classification, 

automated techniques provide three advantages over manual interpretation.  The first advantage 

is reduced time for classification.  Although an investment of time is needed for the construction 

of training areas or rule sets, classification proceeds relatively quickly once such parameters are 
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defined, and the time savings increase as more images are added to the classification process.  

The second advantage is repeatability.  Although a level of subjectivity is involved in the 

definition of training sites and rule sets, automated techniques in general provide more repeatable 

and less subjective results than human interpreters, which is often of importance in legal matters.  

The third advantage is that it is often easier for a computer to sort through and synthesize the 

multiple data sets associated with multi- and hyperspectral data than it is for a human interpreter.  

For these reasons, automated techniques can be an important tool for the interpreter attempting to 

quantify a riverine system. 

 Automated classification techniques have traditionally been pixel-based, meaning they 

classify a pixel as a member of a group based primarily on that pixel’s spectral characteristics 

(see Lillesand and Kiefer 2003).  For example, many of the studies cited in this proposal used a 

maximum likelihood classifier, which uses statistical probability to assign a pixel to a class based 

on the pixel’s spectral characteristics.  Researchers have developed powerful variations of these 

pixel-based algorithms: Goovaerts (2002), for example, used a statistical technique called 

indicator kriging to incorporate some spatial elements in a maximum likelihood classification of 

river channel habitat units.  In general, however, pixel-based techniques have not taken into 

account the sort of spatial information, such as shape or spatial relationship to other pixels, 

which a human interpreter processes almost automatically.  Object-oriented classifiers attempt to 

correct this deficiency by incorporating spatial information into their analyses.  Two of the most 

widely available object-oriented software available today are Visual Learning Systems’ Feature 

Analyst and Definiens Imaging’s eCognition. 

 Feature Analyst is a type of object-oriented software which incorporates an iterative, 

machine learning process to "learn" from the user and refine its classifications (Visual Learning 

 16



Systems 2004).  The classification process is similar to a traditional, pixel-based supervised 

classification, in that the process relies on user-defined examples of each class, called training 

sets. Feature Analyst, however, possesses several advantages over a purely pixel-based 

classification.  First, Feature Analyst is object-based.  It classifies not only individual pixels, but 

can also recognize groups of pixels as distinct objects.  Second, unlike a pixel-based 

classification, the software takes into account shape and spatial context (the position of a pixel or 

object relative to other objects).  Third, the software's iterative learning process allows it to refine 

its classifications based on user feedback.  These advantages make Feature Analyst considerably 

more powerful than traditional methods of feature extraction, while its training-set approach 

makes it easy to use with little operator training. 

Unlike Feature Analyst, which is a plug-in for existing software, eCognition is a stand-

alone software package that performs multiresolution image segmentations and object-oriented 

image classification (Definiens Imaging 2004, Benz et al. 2004).  While eCognition supports 

sample-based classifications in a way similar to Feature Analyst, it also has the ability to accept 

segmentation and classification parameters (known as "membership functions") a priori.  The 

user defines a series of rules that govern the image segmentation and classification, and these 

rules can then be saved and applied to subsequent images.  The program also utilizes a fuzzy 

classification system, such as that employed by Legleiter et al. (2005).  These additional features 

make eCognition a powerful analytical tool, and for this reason, eCognition is employed in this 

study. 

 Object-oriented classification has already been used to conduct and improve 

landuse/landcover classifications (Schiefer 2001, Elbert and Helmschrot 2004).  For example, 

Blaschke et al. (2000) used Landsat TM and SPOT panchromatic images for an area near 
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Salzburg, Austria in conjunction with various GIS data layers to compare per-pixel 

classifications with context-based classifications (performed with eCognition).  Although they 

did not report numerical differences in classification accuracy, the context-based classifications 

resulted in more homogeneous classified areas, with fewer isolated pixels (the “salt and pepper 

effect”).  Similarly, Geneletti and Gorte (2003) used a combination of black-and-white 

orthophotos and Landsat TM images of Northern Italy in a comparison of pixel-based and 

object-oriented classifications.  Their results showed that object-oriented classification provided 

an increase in overall classification accuracy.  Though there seems to be little published research 

to date concerning the use of object-oriented classification to assess channel habitat, the method 

has been shown to be of use in coastal and riparian environments.  Jordan and Manglass (2005) 

used Feature Analyst to successfully automate coastal feature mapping, and Rolim and Lingau 

(2002) obtained favorable results using eCognition to monitor riparian areas.  These successes 

suggest that such an approach might prove feasible for mapping channel habitat in large rivers. 
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CHAPTER 3 – RESEARCH OBJECTIVES 

 

The specific hypothesis to be tested in this study is that channel habitat in large rivers can 

be mapped using medium resolution, multispectral imagery, using object-oriented classification 

techniques.  This study differs from previous research in two major ways: its data set selection 

and its classification approach.  With regard to data set selection, one of the major objectives of 

this study is to test whether inexpensive, widely available image data can be used to map habitat 

on large rivers, a question which is particularly relevant for researchers who have limited 

funding or who are conducting research in remote corners of the world.  As has been shown, 

much of the current research in habitat mapping uses high resolution hyperspectral data for the 

simple reason that they provide the spatial and spectral detail that is essential in mapping small 

streams.  Such data, however, have disadvantages as well, perhaps the greatest being their 

limited availability and cost.  These data are typically collected from airborne sensors, which 

necessarily limits the spatial and temporal coverage of the data and increases the cost of 

collection.   

In contrast, medium-resolution multispectral imagery, such as that provided by Landsat 

and ASTER, is widely available for most of the world over large periods of time.  In many cases, 

Landsat and ASTER data are freely given to researchers, and data can be directly downloaded 

via the internet.  Even when the data are not free, images from the Landsat Enhanced Thematic 

Mapper Plus (ETM+) cost on the order of $600; and ASTER images are only $60 from the 

United States Geological Survey (USGS).  Because ASTER and Landsat are satellite-based 
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sensors, they return to an area over and over on a regular basis, while imagery from airborne 

sensors is generally collected only once.  This repetitive imaging can be particularly useful in the 

tropics, where frequent cloud cover makes clear images difficult. In addition, high resolution 

hyperspectral images have much higher data volumes than medium resolution multispectral 

images.  Although with today’s fast computers and large storage capacities this is less of a 

problem, high data volume can still create challenges for data transfer and analysis.  For these 

reasons, this study uses ASTER and Landsat data.  The necessary trade-off in using this type of 

data is that it can only be used for larger rivers.   

 The second major objective of this study is to test whether an object-oriented 

classification approach can offer procedural advantages that traditional classification techniques 

cannot.  Object-oriented classifiers have already been shown to improve the accuracy of land 

cover classifications; but do they offer any methods of analysis that would be impossible for 

pixel-based approaches?  This procedural aspect of the study is important, particularly because 

adequate ground truth data from the Lower Congo are not available to conduct a traditional 

accuracy assessment.  In this case, the degree that an object-oriented approach will increase the 

accuracy of a habitat classification cannot be tested, but what can be tested instead is whether 

such an approach can offer new ways of approaching the problem.  There is certainly reason to 

believe that object-oriented approaches contribute to habitat suitability analysis of large rivers.  

The ability to use spatial information in addition to spectral information opens up a number of 

possibilities in defining how an image is classified to define aquatic habitats.. 

 This study will attempt to answer the following research questions. 

• Can objects representing habitat units be extracted from medium-resolution multi-

spectral satellite imagery? 
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• Assuming that multiple object scales will be used for analysis, what scales should be 

used for segmentation? 

• Once an image has been segmented, can its objects be classified as habitat units? 

• How reliable is the resulting classification? 

• Can object-oriented methods developed with data at one resolution be applied to 

coarser-resolution data? 

• Does an object-oriented approach provide procedural advantages over traditional 

approaches? 

• What guidelines can be established for future habitat classifications using object-

oriented methods? 
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CHAPTER 4 - STUDY AREA 

 

The study area for this project is located in the Democratic Republic of Congo in western 

Africa, along a section of the Lower Congo River.  This portion of the Congo River flows 

southwest from the town of Kinshasa to the Atlantic Ocean, and accounts for the last 500 

kilometers of the river’s length (see Figure 4.1).  In contrast to the Middle Congo, which 

descends only 300 meters over the 2000 kilometers upstream of Kinshasa and reaches widths of 

15 kilometers in some places, the Lower Congo and its tributaries are narrow, steep, and 

distinguished by a large number of waterfalls and rapids.  In the 350 kilometers from Kinshasa to 

Matadi, for example, the river drops some 270 meters and passes through three distinct sections: 

the Cataractes Nord, 133 kilometers long with 30 rapids; the Bief Centrale Navigable, 129 

kilometers long with alternating sections of rapids and reaches; and the Cataractes Sud, 88 

kilometers long with 23 chutes and rapids and an incredible 100 meters of elevation change 

(Robert 1946).  This turbulence makes much of the Lower Congo unnavigable; but the river’s 

relative isolation, along with its relatively unchanged geology since the Pleistocene, are in large 

part responsible for the incredible diversity of ichthyofauna in the region (Beadle 1981).  It is the 

relationship between the river's natural barriers and the diversity of endemic fish species that is 

the focus of study for the AMNH ichthyology team, and which in turn drove the need for channel 

habitat mapping along the Lower Congo. 

The stretch of river used for analysis in this study runs approximately 340 kilometers 

from the cities of Brazzaville and Kinshasa in the northeast to the town of Matadi in the 
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southwest (see Figure 4.1).  Although the river flows through the Democratic Republic of Congo 

throughout this length, at times it forms the border with the countries of Congo and Angola (see 

Figure 4.2).  Geologically, this portion of the river can be split into three sections: the upper 

third, composed primarily of sandstones, and which roughly corresponds to the Cataractes Nord; 

the middle third, composed mainly of carbonates, which generally follows the Bief Centrale 

Navigable; and the bottom third, composed of a series of metamorphic layers, and which 

approximately coincides with the Cataractes Sud (Dadet 1966, Lepersonne 1974).  The yearly 

mean flow volume past Brazzaville-Kinshasa is generally between 35,000 and 45,000 m3/s.  

Although the flow volume is fairly stable compared to many seasonal rivers, the Lower Congo 

does exhibit seasonal variations in its flow, with low flow occurring around June to August, and 

high flow occurring around November and December.  The low flow volume is generally about 

one half of the high flow volume (Systeme d’Observation du Cycle Hydrologique 2006).   

The climate for the study area is typical for the tropics, with high rainfall, except in the 

dry season, and warm temperatures year-round.  Average annual precipitation at Kinshasa, for 

example, is 1,358 mm, with a low of 3 mm in July and August, and a high of 222 mm in 

November.  The average annual low temperature at Kinshasa is 20.7 degrees Celsius, while the 

average high temperature is 30.4 degrees Celsius (BBC Weather 2006).  Vegetation in the study 

area is primarily medium to high shrubland with short herbaceous vegetation and sparse trees, 

although woodland areas dominate in the areas just south of Kinshasa and Brazzaville (Africover 

2004).  Ground photographs indicate that grasses are also extensive in the area, and large 

numbers of fires in the dry season most likely contribute to the maintenance of these grasses 

(Gardiner 2006). 
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Study Area 

 
Figure 4.1.  Democratic Republic of the Congo and the Lower Congo River. 
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Figure 4.2.  Study area.  The three large images are Landsat ETM+ 4-5-3 images, while the 
smaller images are ASTER images in a 3-2-1 band combination. 
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CHAPTER 5 - DATA AND METHODS 

 

5.1  Data Sources 

 
Digital Data 

 Four ASTER images were used as the primary image data for this study (see Table 5.1).  

Although Landsat ETM+ data were also used, the ASTER images provide higher spatial 

resolution in the visible and near infrared (VNIR) bands (15 meters for the latter as opposed to 

30 meters for the former - see Table 5.1 for a comparison).  A typical ASTER scene is also 

higher in spectral resolution, being composed of a total of 14 bands, as opposed to the 8 bands of 

Landsat ETM+.  In this study, however, only the first three ASTER Bands (green, red, and near 

infrared) were used, as the remaining bands have lower spatial resolutions and offer little 

additional information useful for discriminating between habitat units.  The scenes were obtained 

as L1B products, meaning that they contain radiometrically calibrated and geometrically 

coregistered data for all channels.  The stated geopositional accuracy of ASTER L1B products is 

plus or minus 50 meters.  The images were provided by the American Museum of Natural 

History.  For ease of reference, the images are labeled Tiles A1 through A4, and can be seen in 

Figures 5.1 through 5.4 

 The ASTER images were orthocorrected using the ASTERDTM 2.2 program produced 

by SulSoft.  ASTERDTM is a plug-in for the Environment for Visualizing Images (ENVI) 

software produced by Research Systems, Inc., and the module automatically extracts digital 

elevation values from an ASTER L1A or L1B stereo pair to create a digital terrain model 
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(DTM).  The DTM is then used to orthocorrect the bands in the image, with a final x/y error of 

plus or minus 50 meters.   

 Three images from the ETM+ sensor aboard the Landsat 7 satellite were also available 

for this study (see Table 5.1).  Much of the river channel in two of the Landsat scenes was 

partially obscured by clouds, however, so that only one Landsat scene was used in the 

classification procedures.  True-color images of the cloudy scenes were used to aid in visual 

interpretation of the ASTER images.  In order to use the classification criteria developed for the 

ASTER images with the Landsat data, only three of the eight available ETM+ Bands were used.  

As with ASTER, these were the green, red, and near-infrared bands (NIR), all with a spatial 

resolution of 30 meters.  These scenes were taken from the Landsat GeoCover dataset, which 

provides orthorectified images with a geopositional accuracy of plus or minus 50 meters.  The 

images were provided free of charge by the Global Land Cover Facility (GLCF, website at 

http://www.landcover.org) at the University of Maryland.  These images will be referred to as 

Tiles E1 through E3.  An image subset of the scene used on classification (Tile E3) can be seen 

in Figure 5.5. 

 Also provided by GLCF were three Digital Elevation Models (DEMs) from the SRTM 

dataset.  These DEMs are based on the “unfinished” 3 arc-second DEM of the world produced 

by the United States Geologic Survey (USGS).  In order to create images based on the World 

Reference System 2 (WRS-2), the data were resampled by GLCF using the nearest neighbor 

technique.  The horizontal resolution of the DEM is 90 meters, with a vertical resolution of less 

than 1 meter.   

 The spatial resolution of image data is particularly important in mapping channel scale 

habitat units.  A common rule of thumb in remote sensing is that nine pixels in a three-by-three 
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square are required to identify an object on the ground (Jordan 2005).  Similarly, a general 

guideline for habitat mapping is that each habitat unit must be at least as long as the channel is 

wide (Kaufmann 2000), and that a habitat unit should be at least 50% of the channel width 

(Fitzpatrick et al. 1998).  Based on these requirements, the minimum necessary resolution for 

mapping habitat units in a channel is approximately 1/6 of the channel width (see Figure 5.6).  

Since a large channel with a width of 500 meters would require a resolution of at least 83 meters, 

a river of this size should be easily mapped with a medium-resolution sensor such as Landsat or 

ASTER.  Likewise, small streams with widths of 1-3 meters would require imagery with sub-

meter resolution.  This method of estimating required spatial resolution makes the assumption 

that the channel is not obscured from the sensor’s view by overhanging vegetation – an 

assumption often not met in small streams, but generally valid for large rivers.  At the narrowest 

part of the study area, the Lower Congo River is approximately 500 meters wide, and thus a 

minimum spatial resolution of 83 meters is required.  ASTER and ETM+  both provide greater 

spatial resolutions in the VNIR bands, and should therefore provide sufficient detail for mapping 

habitat units in the study area.  It should be noted that Legleiter et al. (2004) suggest a less 

rigorous guideline that resolution should be at least one-half the mean channel width.  This study 

uses the more rigorous 9-pixel rule mentioned above. 

 

Ancillary Data 

 Additional information for this study was supplied by a number of ancillary data sets, 

including digital photographs, textual descriptions, diagrams, topographic maps, and geologic 

maps.  The ground photographs were taken by the AMNH field team in July of 2005 near 

sampling sites along the river.  Some of the photos are referenced using coordinates from a 
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Geographic Positioning System (GPS).  These photos were an invaluable aid in gaining a sense 

of what the river actually looks like from the ground and in developing the land cover 

classification.  The textual descriptions and river profile diagrams were translated from the 

original French in Robert’s Le Congo Physique (1946), and these sources were also useful in 

interpreting images of the river.  The topographic maps are a set of seven black and white maps 

at 1:100,000 scale, printed by the U.S. Army Map Service in 1942 and based on a set of Belgian 

maps dated 1934.  The maps cover the entire study area, with the exception of a small stretch of 

river approximately 65 kilometers north of Matadi.  The geologic maps (Dadet 1966, Lepersonne 

1974), produced by French and Belgian researchers between 1966 and 1974, are at the much 

broader scales of 1:500,000 and 1:2,000,000.  The maps provide very basic information about the 

geology of the area, and proved useful for placing the river in a geologic context.   

 

5.2 Description of Methods 

 

Physical Habitat Variables 

 While remotely sensed image data provide synoptic information that can be used for 

riverine habitat classification, they cannot provide the detailed measurements, such as thalweg 

depth or bed particle size, that well-trained field observers can.  For this reason, remotely sensed 

classifications generally complement, but do not replace, field observations for physical habitat 

assessments of rivers.  In some areas, however, field observations may be impractical for reasons 

of safety and accessibility.  The Lower Congo, for example, is completely unnavigable for at 

least two-thirds of its length, making collection of data from a boat unsafe along much of the 

channel.  The number of roads in the area is also limited, which can make access to the river 
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difficult.  Of the numerous physical parameters that may affect fluvial fish assemblages (see 

Walters et al. 2003 for a comprehensive list), only a few can be assessed in any useful way using 

satellite data; but these parameters can nevertheless provide useful information about aquatic 

habitats.   

Four variables were selected for classification in this study: presence of whitewater, 

presence of islands and shallows, bank cover, and water depth,.  As discussed previously, 

turbulence, approximated here by the presence or absence of whitewater, is related to several 

factors which predict fish assemblages, including thalweg depth and bed particle size, and 

turbulence also plays in important role in the limitation of dispersal.  Based on visual 

interpretation of the images, areas with whitewater reflect higher in the green and red bands than 

areas without whitewater, and show a higher brightness overall.  The presence of islands and 

shallows is the second factor, which is itself tied to depth.  Bank vegetative cover, including 

island cover, is the third variable that will be classified.  By using the spectral reflectance values 

of the land adjacent to the river channel, we can determine the land cover on the river’s banks.  

Banks with trees will have a higher probability of providing overhead cover for some portion of 

the channel (albeit a small one, given the channel’s width). 

The final variable, water depth, is also tied to many of the same factors as turbulence.  

Although some techniques have been proposed for estimating depth in streams and shallow 

rivers (Winterbottom and Gilvear 1997, Legleiter et al 2004), the effectiveness of such 

techniques on different types of rivers using different types of sensors is still being explored 

(Legleiter and Roberts 2005).  Four major factors affect the reflectance of radiation in water: 

bottom depth, substrate type, suspended sediment concentration, and surface turbulence 

(Winterbottom and Gilvear 1997, Legleiter et al 2004).  Deeper water tends to show greater 
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radiation absorption, particularly in the infrared bands, making infrared suitable for identifying 

only very shallow areas.  Substrates with differing albedos also affect radiance, with lighter 

colored substrates (such as limestone) returning higher values than darker colored substrates.  

Suspended sediment concentration tends to cause scattering, although the impact is smallest in 

the infrared.  Surface turbulence also tends to increase reflectance as turbulence increases, 

affecting all wavelengths equally.  Because near-infrared bands appear to be the most sensitive to 

changes in depth, and in order to minimize any effects from sediment, the infrared band will be 

used to assess water depth by identifying the shallowest areas in the channel. 

The variables of slope, geology, topography, connectivity, and water velocity were also 

considered for analysis in this study, but time constraints and methodological problems 

precluded their use.  These issues will be discussed in Chapters 6 and 7. 

 

Object-Oriented Classification 

 The process of object-oriented classification differs from that of traditional pixel-based 

classification in a number of ways.  This section describes some of the key object-oriented 

concepts referred to in this study.  For simplicity and uniformity, these concepts are discussed in 

the context and vocabulary of eCognition, though they may be referred to differently in other 

software packages. 

 

Image Segmentation 

 The first step in the process of object-oriented classification is to create relatively 

homogeneous groups of pixels known as objects.  In eCognition, this process is referred to as 

multi-resolution image segmentation. The procedure uses a bottom-up, region-growing algorithm 
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in conjunction with user-specified parameters to create image objects with minimal 

heterogeneity, which can then be classified based on a variety of object characteristics.   

The most important of the user-specified parameters is the scale factor, which controls 

the size of the resulting image objects.  Small scale factors produce small image objects, while 

large scale factors produce large objects.  The segmentation process is referred to as 

“multiresolution segmentation” because it can be performed any number of times on the same 

image using different scale factors, thus producing different object levels containing objects of 

different scales.  The process is an iterative one which builds from each previous segmentation.  

If an image is segmented with a small scale factor and then with a large scale factor, the second 

segmentation uses the original image objects as a basis for the new, larger objects.  The original 

small objects become subobjects which are wholly contained within the new, larger superobjects.  

Because of this dependency on previous iterations, the direction of segmentation (large to small 

or small to large) can affect the shape of the resulting image objects at each level.   

 An advanced form of image segmentation featured in eCognition is classification-based 

segmentation, which allows information from previous classifications to be used in the 

segmentation process.  This procedure can be used either to fuse objects of the same class to 

create larger superobjects, or to further segment larger objects of a single class into smaller 

subobjects.  For example, an image can be segmented and its objects classified as water and 

land.  Using classification-based segmentation, all adjoining water objects can be fused to create 

larger objects.  The land objects, on the other hand, could be segmented into even smaller objects 

using a smaller scale factor without affecting the water objects.  As will be seen in the 

classification procedures, classification-based segmentation is a powerful tool. 
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Object-Based Classification 

 Before the image objects can be classified, a class hierarchy must be created.  A class 

hierarchy is simply the classification system to be used for the image arranged in a hierarchical 

form.  As with many other computer-based hierarchies, higher elements are known as parents, 

while lower elements are referred to as children.  Parent classes in eCognition must be fully 

defined by their child classes: in other words, if the parent class water is composed of the child 

classes whitewater and not whitewater, all objects classified as water must also be classified as 

either whitewater or not whitewater.  In addition, child classes inherit all of the characteristics of 

their parent classes, so that if water is defined as all objects with a mean value of 49 or less in 

ASTER Band 3, then the child classes of water must meet this requirement as well. 

 Once the image objects and class hierarchy have been created, the objects can then be 

classified based on a wide variety of object characteristics, such as mean pixel value, area, shape, 

neighboring objects, or distance to neighboring objects.  In eCognition, each of these object 

characteristics is known as a feature, and the set of all features that define a class is known as the 

class’s feature space.  For example, if the class water can be differentiated from all other classes 

using only ASTER Band 3, then ASTER Band 3 is the feature space of the class water.  The 

specific values for each feature in an object’s feature space can be defined in one of two ways: 

using either membership functions or nearest neighbor samples.  Membership functions allow 

the user to define the criteria for class membership, as in the example above where water is 

defined as all objects with a mean value of 49 or less in ASTER Band 3.  The nearest neighbor 

method of classification, also known as “click and classify,” allows the user to select sample 

objects for each class and have membership functions automatically generated.  (The name 

nearest neighbor is somewhat confusing, since it is also the name of an image processing 
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resampling procedure.  In this case it refers to a procedure similar to the training set procedure 

used in pixel-based classifications).  An additional benefit of the nearest neighbor method is that 

its feature space can be optimized, meaning that the software can compute the most effective 

feature space for differentiating classes. 

 Some of the most useful and powerful features available in eCognition are part of a group 

called class-related features because they allow the use of spatial context.  As with 

classification-based segmentations, class-related features refer to previous classifications for 

their value.  An example of a class-related feature would be “border to neighboring object,” 

which returns a value based on the length of an objects border with another object of a specified 

class.  We could, for example, specify that the class bank is any object which shares a border of 

at least 1 pixel with any object classified as water.  Obviously, such a feature will require more 

than one classification, as its value cannot be calculated until all of the water objects have been 

identified.  These class-related features make it possible to define classes by their relationships to 

other classes, which would be completely impossible using traditional pixel-based methods.  

Despite their power, however, these features add time to the classification process because of 

their requirement of multiple iterations, so they must be used judiciously. 

 Finally, eCognition also allows the use of fuzzy classification.  Whereas many traditional 

classification systems use a binary membership function (a pixel either does or does not belong 

to a class), eCognition can compute partial percentage membership values for each object.  These 

values give the possibility of that object’s membership to each class in the class hierarchy.  A 

value of 1.0 means the object definitely belongs to that class, while a value of 0.0 means that the 

object definitely does not belong to that class.  Values in between indicate varying degrees of 

possibility of membership.  Unless specified otherwise, an object is assigned to the class for 
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which it has the highest membership value.  The default membership threshold is 0.1, so that 

objects are only assigned to a class if at least one their membership values is greater than this 

threshold.  Objects that do not meet this requirement remain unclassified.  As Legleiter and 

Goodchild (2005) showed, fuzzy classification is particularly useful for classifying features with 

indefinite boundaries and transition areas, such as habitat units. 

 

Scale Factors and Membership Functions 

 The determination of appropriate scale factors, membership functions, and feature space 

is essential to the segmentation process.  This section describes how these values were selected 

for this study. 

 

Determination of Scale Factor 

The choice of scale factor is an important first decision in the segmentation process, as it 

controls the size of the image objects.  Image objects that are too large may hide useful 

information, while image objects that are too small may provide excessive details that require 

significant processing time for segmentation.  Definiens recommends using an image object size 

which is comparable to the phenomena being classified – in other words, if you want to classify 

buildings, use building-sized objects.  When multiple object levels are required, however, the 

user must decide which level should be the base segmentation level. 

In order to test how scale factor and direction of segmentation affect the resulting riverine 

objects, a test image was segmented at three different scale factors in each of three different 

directions, for a total of nine image segmentations.  The smallest scale factor was 10, which 

produced objects small enough to represent small islands and subtle spectral differences in the 
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water surface.  The second scale factor was 35, which produced objects on a scale appropriate to 

the customary minimum mapping unit used in habitat classification.  The third scale factor was 

70, which produced large objects comparable to reaches.  The three directions were top-down 

(70-35-10), bottom-up (10-35-70), and middle-out (35-10-70).  Once the segmentations were 

performed, each image was examined to determine whether and how the resulting image objects 

differed from one another, and which were most appropriate for habitat classification.   

Although the top-down, bottom-up, and middle-out segmentations all produced fairly 

similar objects, there were some differences.  Figure 5.7 illustrates how slightly different image 

objects were produced at the same scale depending on the direction of segmentation.  The advice 

of Definiens would suggest that a scale factor of 35 would be most appropriate, since this creates 

objects which are comparable to the minimum mapping unit.  Close inspection of the border 

between the river channel and bank, however, reveals that this interface is not well delineated at 

this scale.  In order to differentiate between the bank and the river, a small scale factor in the 

vicinity of 5 or 10 is needed.  Therefore, the bottom-up approach is most desirable for this type 

of habitat mapping. 

A variety of scale factors are used throughout the study.  These values were generally 

arrived at through trial and error.  For each segmentation, scale factors were selected which 

produced meaningful image objects for each class.  In several cases, multiple object scales were 

used in the same image.  For example, in the advanced classifications discussed below, the river 

and its banks were segmented at a scale factor of 15, while the landcover was segmented at a 

scale factor of 30 in the same image.  This allowed object sizes to be tailored to specific classes 

and image regions. 

 

 36



Definition of Membership Functions and Feature Space 

 In many of the classifications discussed below, membership functions are used to define 

certain classes.  The most notable of these are the water and river classes.  Both of these classes 

were defined in part by their reflectance in ASTER Band 3, since water typically has a very low 

reflectance in the NIR bands.  Definiens’s documentation suggests using a DN value of less than 

50 to identify water in this spectral region.  This is a very general guideline, however, since a 

variety of factors, such as lighting conditions, water quality, and sensor type can affect the 

reflectance values.  The DN value 49 in ASTER Band 3 was therefore used as a starting point for 

identifying water.  This number was then adjusted up or down based on the ASTER Band 3 

reflectance of the shallowest known water body in each image until a satisfactory classification 

of water was achieved.  A similar relationship was defined for water depth using ASTER Band 3 

reflectance.  DN values closer to the minimum value for water were classified as deep, while 

those closer to the maximum value for water were classified as shallow. 

 The nearest neighbor feature space for most classes was defined using ASTER Bands 1, 

2, and 3, as well as mean object brightness.  The only exceptions to this rule were the classes 

whitewater and not whitewater in the advanced classifications.  These classes were defined using 

only ASTER Bands 1 and 2, and object brightness. 

 

Classification Development 

 This project can be divided into three stages of development, each building off the 

previous one and each progressively more complex.  The first stage involved a simple mask of 

the river channel and a classification of whitewater within the channel.  The second stage was 

expanded to include classification of land cover surrounding the river and on its islands, as well 

 37



as whitewater within the channel.  The third stage involved the most advanced classification 

procedures, including three object levels and numerous class-related features.   

 

Stage 1 - Classifying Whitewater through Masking 

 In the first stage of development, the river channel was masked and classified in terms of 

the degree of whitewater.  This stage of classification focused on the following methodological 

issues: differentiating water from other classes; differentiating the river channel from other 

bodies of water; identifying islands; classifying land cover on islands; identifying shallow areas 

(shoals); and classifying areas of whitewater.  A subset of ASTER Tile A3 was chosen for 

testing to minimize cloud cover and because it contained representative samples of all desired 

objects.  The class hierarchies and workflow for the entire process can be seen in Figures 5.8 and 

5.9. 

Since the results of the image segmentation tests revealed that a bottom-up segmentation 

scheme provided the best results, the image was segmented in eCognition once again using a 

scale factor of 10.  The resulting objects were then classified as either water or not water based 

on their reflectance in ASTER Band 3.  Water objects were defined using a fuzzy membership 

function, where all objects with a mean digital number (DN) value of 48 or lower in ASTER 

Band 3 were given a membership value of 1.0 (total membership), and all objects with a mean 

DN of 49 or higher were assigned a membership value of 0 (no membership).  Mean DN values 

between 48 and 49 were given partial membership values between 0 and 1.  Objects with a 

partial membership of 0.1 or higher were assigned to the class water.  The class not water was 

defined as the inverse of the function for water.  This classification resulted in all objects within 

the river channel being classified as water, but a large number of other small objects throughout 
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the image were also classified as water.  In order to distinguish the main channel from these 

unwanted water objects, all adjacent water objects were combined into larger objects.  This 

resulted in one large water object representing the main channel, and a number of smaller 

unwanted water objects outside the main channel.  The classes water and not water were then 

replaced with two new classes: channel and not channel.  The class channel was defined using 

the same membership function as water, with an additional function which required that all 

members of the class channel have an area of 5000 pixels or more.  No partial membership was 

allowed for this class – all objects were assigned a membership value of either 1 or 0.  The class 

not channel was once again defined as the inverse of channel.  The image was then classified 

again, and as only the main channel had an area greater than 5000 pixels, it became the only 

member of channel.  The remaining water objects, all with areas less than 5000 pixels, were 

assigned to the class not channel. 

 At this point in the classification, the image consisted of a number of objects classified as 

either part of the main river channel or not.  All islands were included in the class not channel.  

To distinguish islands from the other not channel objects, all adjacent not channel objects were 

combined into larger objects.  This consolidated the left and right banks of the river into single 

objects, and each island, no matter what its size, was also transformed into a single object.  The 

classes channel and not channel were then replaced with four new classes arranged in a 

hierarchy: river, not river, islands, and not islands.  River and not river were defined similarly to 

water and not water.  Islands were defined as objects with areas less than 5000 pixels belonging 

to the class not river, while not islands were defined as having areas greater than 5000 pixels.  

The image was classified for a third time, and since the only not river objects with areas greater 

than 5000 pixels were the left and right banks, the banks were classified as not islands and all 
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smaller not river objects were classified as islands. (Note: Although area was chosen as the 

distinguishing feature between islands and not islands, eCognition also allows the use of a 

function called rel border, which measures the fraction of an object’s border which is adjacent to 

another specified class of objects.  This function is closer to the intuitive definition of islands, 

but its class-related nature requires multiple classification iterations.  To avoid this unnecessary 

complication, area was chosen as the distinguishing feature.) 

 At this point, the image was composed of large-scale objects: the river channel, the 

banks, and islands.  In order to create smaller objects for habitat classification, each of the 

objects belonging to the classes river and islands was segmented further using a small scale 

factor.  This created a new level of smaller image objects within the river channel and its islands, 

resulting in an image with two object levels – Level 1, with small river and islands subobjects, 

and Level 2, with the river and islands superobjects.  The old class hierarchy was removed, and a 

new one was created.  This new class hierarchy subdivided river into whitewater and not 

whitewater, both defined by fuzzy membership functions based on overall object brightness.  

The class islands was subdivided into three classes based on three possible island land covers: 

vegetation, exposed sand, and shoals (shallow water over sand or rock).  Because of the 

complexity of distinguishing these classes, they were defined using sample objects and 

eCognition’s automated standard nearest neighbor classifier.  Level 1 was then classified using 

the new class hierarchy.  All adjacent objects of the same class on Level 1 were combined, and 

the level was classified once more with the new objects.  This produced a final habitat 

classification with each object receiving a fuzzy membership value for each class.   
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Stage 2 - Classifying Whitewater and Land Cover 

 In the second stage of development, the class hierarchy was expanded to include land 

cover classes for the entire image.  Islands were not differentiated from other land masses, nor 

was the river channel distinguished from other bodies of water.  For procedural reasons, shallows 

(shoals) were again considered to be part of the class not water.  This stage of classification 

focused on distinguishing differing land and bank cover types.  The full Tile A3 was used for 

testing this time, not merely a subset. 

 The land cover classes were created based on analysis of the image data in conjunction 

with the DEM, the Landsat true-color images, and with ground photographs of the area taken by 

the AMNH ichthyology team in July 2005.  In general, trees are confined to low areas such as 

draws, and grasses and shrubs predominate elsewhere.  Although landcover data is available for 

this area through the Africover program, it is not well correlated with the imagery, and therefore 

it was not used. 

 The full class hierarchy for Stage 2 can be seen in Figure 5.10.  The classes whitewater 

and not whitewater were again defined using a membership function based on brightness, while 

the remaining classes were defined using the nearest neighbor classifier.  The feature space of the 

nearest neighbor classifier contained the mean values of all three ASTER Bands, as well as the 

mean brightness value for each object.  Only two or three sample objects were selected for each 

class.  (While a pixel-based classifier generally requires upwards of 20 sample pixels, object-

based classification uses fewer samples because each object is composed of a number of pixels 

already.)  In order to help distinguish between certain spectrally similar classes, a number of 

class-related features were introduced.  Because shoals and grasslands were spectrally similar, 

any object classified as shoals was required to share a border of at least one pixel with an object 
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classified as water.  Similarly, because sand and clouds are almost identical spectrally, sand 

carried the additional requirement that it share a border of at least one pixel with water or shoals.   

 Two object levels were created during the segmentation process, although only one was 

used for the final classification.  In the previous stage, several objects near the river-land 

interface were noticed to include portions of both the bank and the river.  To prevent this from 

happening again, the image was segmented with a scale factor of 5, thus creating smaller objects 

and providing a better boundary between water and land.  These objects were too small for land 

cover and habitat classification, however.  The objects were therefore classified as water and not 

water, and a classification-based segmentation was then performed to create a new object level 

with a scale factor of 15.  This created superobjects based on the previously classified 

subobjects, ensuring that the borders of the larger objects more closely followed the water-land 

divide.  Once this was accomplished, the image was classified in three iterations with class-

related features.  The workflow for the entire stage can be seen in Figure 5.11. 

 

Stage 3 - Advanced Classifications 

 The third level of methodological development combines the lessons learned in the first 

two stages and focuses on classifying objects using contextual features.  For example, land cover 

classes were classified differently depending on whether they occurred on an island, in the river, 

or on the river bank.  The entire process is composed of four successive class hierarchies and 21 

separate processing steps.  As in the previous stage, the entire Tile A3, not merely a subset, was 

used for testing. 

 Although four separate class hierarchies are required for classification, all are variants of 

the final class hierarchy shown in Figure 5.7.  The hierarchy is composed of three levels, one for 
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each of the object levels used during classification.  On level two of this newest classification 

system, a distinction is made between islands (objects surrounded by river), banks (objects 

adjacent to river), and land (objects not adjacent to river).  This information is used in level one, 

where it is used to further classify land cover as being on an island, a bank, or the land.  Level 

one also makes a distinction between river and water that was not made in earlier classifications.  

Depth and presence of whitewater are separated, so that whitewater is measured using ASTER 

Bands 1 and 2, while relative depth is approximated using ASTER Band 3.   

 The segmentation and classification process is complicated, requiring 21 steps.  A 

number of different scale factors are used during the process to create appropriately-sized objects 

for the different classes.  Several classes are defined by class-related features linking subobjects 

to superobjects, so that all three object levels are necessary for the final classification.  The 

image is first classified at a small scale factor in order to fully differentiate between the river 

channel and its banks, and the resulting objects are classified as water or not water.  The objects 

are then segmented again using a classification-based segmentation to create larger objects in 

order to decrease the processing time for an object fusion.  The objects are again classified as 

water or not water, and objects of the same class are fused.   This object level is then classified 

using the Level 3 hierarchy as shown in Figure 5.7.  The objects classified as not islands are then 

segmented with a moderate scale factor, and this new object level is then classified using the 

Level 2 hierarchy.  Finally, the objects classified as river and banks are segmented with a scale 

factor smaller than that used in Level 2, and this newest object level is classified using the Level 

1 hierarchy.  The full workflow for this classification can be seen in Figure 5.8. 
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Automating Tasks 

 One of the primary advantages of classifying images using an automated procedure is 

that the process can be repeated on multiple images.  The eCognition software makes it possible 

to record procedural steps and apply them to new images using protocols.  Once Tile A3 was 

classified using the advanced classification procedure, the steps were recorded in a protocol, and 

the procedure was applied to Tiles A1, A2, and A4. 

 

Classifying Habitat in Landsat Images 

 Despite the fact that ASTER provides higher resolution than Landsat ETM+ in some 

bands, Landsat data has a number of advantages.  First, Landsat images are widely available free 

of charge for researchers.  Second, Landsat scenes cover a broad area, so that only three separate 

scenes are needed to cover the entire Lower Congo (see Figure 4.2).  This is particularly useful 

in the Lower Congo study area, because frequent cloud cover renders many of the available 

ASTER images unusable.  Third, because of the long duration of the Landsat mission, Landsat 

provides superb temporal availability and continuity, with image data dating back to 1972 for the 

Landsat Multispectral Scanner (MSS) and 1984 for the Landsat Thematic Mapper TM.  ASTER, 

in contrast, first began imaging in February of 2000.  Fourth, Landsat ETM+ provides collects 

data in the blue band, which ASTER does not.  For these reasons, the final protocols developed 

for the ASTER images were tested on a subset of a Landsat image, Tile E3.  A subset, rather than 

the entire image, was used because the large size of the image and the small scale factor required 

to delineate the channel and bank required too much processing power and time.  Therefore, a 

subset of the image was chosen which roughly corresponded to Tile A3.   
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5.3  Statistical Analysis 

 Two sets of statistical measures were used to assess the classification accuracy: best 

classification statistics and classification stability statistics.  The "best classification” for any 

object is defined as the highest membership value for that object.  The best classification 

statistics in eCognition are computed based on the highest membership value for each object, and 

the central tendency, variance, and range for each class are reported.  The classification stability 

statistics are concerned with the difference between the best and second-best class membership 

values for each class.  Once again, these statistics provide measures, by class, of central 

tendency, variance, and range for these differences.   It is important to note that these statistics do 

not assess accuracy with respect to ground truth – instead, they describe how closely image 

objects correspond to the proposed classification criteria, and how separable these objects are 

based on these criteria.  Because no ground truth data are available for the study area at this time, 

a traditional accuracy assessment and error matrix were not prepared.  Instead, the classified 

image was visually compared to the original image data, as well as to existing topographic maps, 

photos, and textual descriptions of the river, to provide a qualitative assessment of the 

classification accuracy. 

 45



Table 5.1.  Image and elevation data sets used in this study.  Sources of data are the American 
Museum of Natural History (AMNH) and the Global Land Cover Facility at the University of 
Maryland (GLCF, http://glcf.umiacs.umd.edu/index.shtml).  Scenes are given tile numbers as a 
way to quickly refer to images used in the study. 
  

Sensor Date Resolution ID # WRS2 
Path/Row 

Tile # Source 

ASTER 2003/7/18 15m VNIR 
30m SWIR 
90m TIR 

AST_L1B.003:2017611718  182/63 A1 AMNH 

ASTER 2000/9/18 15m VNIR 
30m SWIR 
90m TIR 

AST_L1B.003:2016603537  182/63 A2 AMNH 

ASTER 2000/09/18 15m VNIR 
30m SWIR 
90m TIR 

AST_L1B.003:2016603609  182/63 A3 AMNH 

ASTER 2005/3/24 15m VNIR 
30m SWIR 
90m TIR 

AST_L1B.003:2028310803  183/64 A4 AMNH 

ETM+ 2001/02/25 15m Pan 
30m Vis, NIR 
60m TIR 

7182063000105650 182/63 E1 GLCF 

ETM+ 2000/03/26 15m Pan 
30m Vis, NIR 
60m TIR 

7182064000008650 182/64 E2 GLCF 

ETM+ 2002/04/24 15m Pan 
30m Vis, NIR 
60m TIR 

7183064000209850 183/64 E3 GLCF 

SRTM 2000 1m Vertical 
90m Horiz 

065-556 182/63 S1 GLCF 

SRTM 2000 1m Vertical 
90m Horiz 

065-557 182/64 S2 GLCF 

SRTM 2000/02 1m Vertical 
90m Horiz 

065-615 183/64 S3 GLCF 

 
Abbreviations: VNIR = Very Near InfraRed; SWIR = Short Wave InfraRed; TIR = Thermal InfraRed; Pan = 
Panchromatic; NIR = Near InfraRed; Horiz = Horizontal
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Table 5.2.  Physical habitat variables classified in this study, along with the ASTER Bands used 
in the classification. 
 

Variables 
 

ASTER Bands 

Water depth 
 

Infrared band (Band 3) 

Presence of whitewater 
 

Green and red bands  (Bands 1 and 2) 
 

Islands and shallows  
 

Green, red, and infrared bands (Bands 1, 2, and 3) 
 

Bank cover 
 

Green, red, and infrared bands (Bands 1, 2, and 3) 
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Figure 5.1.  ASTER Tile A1, 3-2-1 Band combination.  Although this images was originally 
intended for classification, it was not classified because of its differing land cover and 
geomorphology. 
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Figure 5.2.  ASTER Tile A2, 3-2-1 Band combination.  Sandstone is the dominant bedrock in 
this area. 
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Figure 5.3.  ASTER Tile A3, 3-2-1 Band combination.  Sandstone is the dominant bedrock in 
this area. 
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Figure 5.4.  ASTER Tile A4, 3-2-1 Band combination.  The bedrock in this area is dominated by 
a series of metamorphic rocks. 
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Figure 5.5.  Subset of Landsat ETM+ Tile E3, 4-3-2 Band combination. 
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      Figure 5.6.    Minimum necessary resolution for mapping channel habitat.
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Scale Factor 35 

Figure 5.7.  Examples of image objects created by differing segmentation directions.  Note the 
variations in object shape within the river channel. 
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Figure 5.8.  Class hierarchies and membership functions for Stage 1 of object 
classification. 

Class Hierarchies and Membership Functions 
 
1st Classification 
•WATER = mean DN value of Aster Band 3 < 49 
•NOT WATER = inverse of WATER 
 
2nd Classification 
•CHANNEL = mean DN value of Aster Band 3 < 49 AND area > 5000 px  
•NOT CHANNEL = inverse of CHANNEL 
 
3rd Classification 
•RIVER = mean DN value of Aster Band 3 < 49  
•NOT RIVER = inverse of RIVER 

•ISLANDS = area < 5000 pixels 
•NOT ISLANDS = inverse of ISLANDS 

 
4th Classification 
•LEVEL 1 = object level 1 

•RIVER (1) = mean DN value of Aster Band 3 < 49 
•WHITEWATER = mean brightness > 68-55 
•NOT WHITEWATER = inverse of  WHITEWATER 

•NOT RIVER (1) = inverse of RIVER 
•ISLANDS (1) = area < 5000 pixels 

•EXPOSED SAND = Standard Nearest Neighbor classifier 
•SHOALS = Standard Nearest Neighbor classifier 
•VEGETATION = Standard Nearest Neighbor classifier 

•NOT ISLANDS (1) = inverse of ISLANDS 
 

•LEVEL 2 = object level 2 
•RIVER (2) = mean DN value of Aster Band 3 < 49 
•NOT RIVER (2) = inverse of RIVER 

•ISLANDS (2) = area < 5000 pixels 
•NOT ISLANDS (2) = inverse of ISLANDS 
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Figure 5.9.  Workflow for Stage 1 of object classification. 
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Figure 5.10.  Class hierarchies and membership functions for Stage 2 of object 
classification. 

Class Hierarchies and Membership Functions 
 
•WATER = mean DN value of Aster Band 3 < 49 

•WHITEWATER = mean brightness > 68-55 
•NOT WHITEWATER = inverse of  WHITEWATER 

 
•NOT WATER = inverse of WATER 

•CLOUDS = nearest neighbor 
•GRASS = nearest neighbor 
•SAND = nearest neighbor AND ((borders WATER) OR (borders SHOALS)) 
•SHOALS = nearest neighbor AND border to WATER 
•SHRUBS = nearest neighbor 
•TREES = nearest neighbor 
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Figure 5.11.  Workflow for Stage 2 of object classification.. 
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Figure 5.12.  Class hierarchies and membership functions for Stage 3 of object 
classification. 

Class Hierarchies and Membership Functions 
 
LEVEL 1 = object level 1 
•NOT RIVER (1) = inverse of RIVER 1 

•URBAN = manually classified 
•GRASSES = nearest neighbor 

•BANK GRASSES = superobject is BANK (2) 
•ISLAND GRASSES = superobject is ISLAND (2) 
•LAND GRASSES = superobject is LAND (2) 

•SAND/CLOUDS = nearest neighbor 
•BANK SAND = superobject is BANK (2) 
•ISLAND SAND = superobject is ISLAND (2) 
•LAND CLOUDS = superobject is LAND (2) 

•SHRUBS = nearest neighbor 
•BANK SHRUBS = superobject is BANK (2) 
•ISLAND SHRUBS = superobject is ISLAND (2) 
•LAND SHRUBS = superobject is LAND (2) 

•SUBMERGED ROCKS OR SAND = nearest neighbor AND (superobject is BANK (2) OR 
ISLANDS (2) ) 

•BANK SUBMERGED ROCKS OR SAND = superobject is BANK (2) 
•ISLAND SUBMERGED ROCKS OR SAND = superobject is ISLANDS (2) 

•TREES = nearest neighbor 
•BANK TREES = superobject is BANK (2) 
•ISLAND TREES = superobject is ISLAND (2) 
•LAND TREES = superobject is LAND (2) 

•WATER = nearest neighbor 
•DEEP WATER = inverse of SHALLOW WATER 
•SHALLOW WATER = 0<ASTER 3<20 

•RIVER (1) = superobject is RIVER 2 
•WHITEWATER = nearest neighbor ASTER 1 and 2 

•DEEP WHITEWATER = inverse of SHALLOW WHITEWATER 
•SHALLOW WHITEWATER =  nearest neighbor ASTER 3 

•NOT WHITEWATER = nearest neighbor ASTER 1 and 2 
•DEEP NOT WHITEWATER = inverse of SHALLOW NOT WHITEWATER 
•SHALLOW NOT WHITEWATER = nearest neighbor ASTER 3 

 
LEVEL 2 = object level 2 
•RIVER (2) = superobject is RIVER (3) 

•ISLANDS (2) =  relative border to RIVER (2) = 1 
•BANK (2) = borders RIVER (2) 
•LAND (2) = inverse of BANK (2) 

•NOT ISLANDS (2) = inverse of ISLANDS (2) 
•NOT RIVER (2) = inverse of RIVER (2) 
 
LEVEL 3 = object level 3 
•RIVER (3) = mean DN value of Aster Band 3 < 49 AND area > 1.5 million square meters 

•ISLANDS (3) =  relative border to RIVER (3) = 1 
•NOT ISLANDS (3) = inverse of ISLANDS (3) 

•NOT RIVER (3) = inverse of RIVER 
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Figure 5.13.  Workflow for Stage 3 of object classification.. 
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CHAPTER 6 – RESULTS AND DISCUSSION 

 The final classified images for each stage in the object-oriented classification can be seen 

in Figures 6.1 though 6.15.  Classification statistics can be found in Tables 6.1 through 6.6.  The 

following sections provide discussions of these results. 

 

6.1 Discussion of Classification Results 

 

Stage 1 - Classifying Whitewater through Masking 

 Although the classification of whitewater is fairly simple compared to later, more 

advanced classifications which include water depth and land cover, several important problems 

related to habitat classification were solved during this stage.  These problems included 1) how 

to distinguish the main river channel from other water bodies; 2) how to distinguish islands 

within the channel from other land bodies; 3) how to differentiate between sand, shoals, and 

vegetation on islands; and most importantly, 4) whether whitewater can be identified using the 

first three bands of ASTER.  A visual comparison of the classified image to the original image 

suggests that the solutions arrived at in this stage produced excellent results.  The classification 

of the main river channel follows the actual channel very closely.  In a very few places, such as 

one possible backwater pool and some shallow areas near the bank (indicated in Figure 6.4), 

small portions of the channel were classified as part of the bank.  In other places, however, the 

software identified small spectral differences that might have escaped a human observer’s notice.  
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This verified that the spectral and contextual criteria employed in classifying the river channel 

were accurate. 

 The other problems were solved equally successfully.  Islands were correctly separated 

from the mainland using contextual features, and each island was classified further using a crude 

system of classification (sand, shoals, and vegetation) and object samples.  Similarly, areas with 

more whitewater turned out to be separable from areas with less whitewater by using object 

brightness, which in eCognition is defined as the “mean value of the spectral mean values of an 

image object” (eCognition User Guide 2004:110).  This makes intuitive sense, as whitewater 

areas generally appear brighter to the naked eye than areas without whitewater.  The majority of 

the whitewater and not whitewater objects seem to be appropriately classified, and appear to 

follow the continuous nature of whitewater itself – some areas are definitely whitewater, some 

are definitely not whitewater, and others are somewhere in between.  In summary, most image 

objects appear to be appropriately classified based on a visual comparison to the original image. 

 The resulting whitewater and not whitewater areas (which can be thought of as analogous 

to rapids and glides-pools, respectively) compare well to the traditional minimum mapping unit 

(MMU) for channel habitat.  In many cases, these units run the entire width of the river and are 

at least as long as the river is wide, although in some cases they are only a fraction of the river’s 

width and length (see Figures 6.2 and 6.3).  Far from being a problem, however, this could 

actually mean that the automated classification produces a more detailed map than a human 

observer would produce using traditional mapping guidelines.  These MMU guidelines were 

developed for field mapping teams, and they were most likely created to prevent teams from 

creating time-consuming, overly-detailed products.  Since automated mapping proceeds much 

more quickly than field mapping, field MMU guidelines should perhaps specify the coarse limit 
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for automated mapping accuracy, while the fine limit will be controlled by spatial resolution of 

the image data.  In the case of ASTER and the Congo River, habitat units several times smaller 

than the traditional MMU can be classified.  This level of detail can be especially useful on the 

Lower Congo because its large size and extensive whitewater make sampling difficult, while 

relatively small backwater and scour pools offer highly accessible sampling locations. 

The stability of classification statistics were fairly strong overall.  The best classification 

statistics, based on the highest membership value for each object, are given in Table 6.1.  Most 

objects had fairly high membership values, with the turbulence and sand classes having mean 

values of 0.8 or higher, and vegetation and shoals having slightly lower values in the 0.5 to 0.7 

range.  The classification stability statistics, based on the difference between the highest and 

second-highest membership values, are given in Table 6.2.  The classification stability is good 

overall, with mean values of at least 0.55 for all classes.  A number of objects could almost 

equally well be classified as whitewater or not whitewater.  This does not mean that these objects 

were poorly classified.  Rather, the low membership values tell us that these objects are 

somewhere between whitewater and not whitewater – not as agitated as the strongest rapid or 

cascade, but not as calm as a pool or glide.  Because the degree of whitewater present exists 

along a continuum, and the ends of the continuum were marked using exemplars, the fuzzy 

membership values may give us an idea of how close each object is to each of the two extremes.  

Objects with high membership values are close to the extremes, while lower membership values 

identify objects in the transition area between extremes.  An alternative explanation for low 

membership values is that the objects in question contain several mixed pixels, with 

combinations of whitewater and not whitewater areas.  In order to confine our classification to 

only objects with high membership values, we could raise the default membership value for the 

 63



classification, or alternatively, we could export our classification with its fuzzy membership 

values into a GIS and reclassify our objects based on their membership values.  This ability to 

rank objects along a continuum using fuzzy membership values is therefore a potentially 

powerful tool. 

 

Stage 2 - Classifying Whitewater and Land Cover 

 The second stage of procedural development was less methodologically complex than the 

first, but it too was essential in order to answer particular questions associated with automatically 

classifying habitat and land cover.  These questions included 1) whether major land cover types 

could be classified; 2) whether whitewater and land cover could be quickly classified on the 

same object level, without the need for a time-consuming classification-based segmentation; and 

3) whether class-related features could be used to improve the classification accuracy of some 

spectrally similar habitat and landcover types. 

 Again, the answers were primarily positive.  The procedures for Stage 2 were less 

complex and time-consuming than the first stage, but provided more information in some 

respects.  Comparison of the classified image to the original ASTER image shows that the 

classification represents the original image quite well overall, although some problems do exist 

(see Figure 6.5).  For instance, opaque clouds are well-classified, but partially-translucent clouds 

result in the underlying landcover generally being classified as grassland.  This confusion may be 

handled by classifying these areas manually when the number of misclassified objects is small, 

or by masking out those portions of the image dominated by clouds before classification.  In 

addition, a number of objects outside the main channel were classified as water, but it is difficult 

to verify from the imagery whether these areas are indeed covered with water.  Several cloud 

 64



shadows were also classified as water.  Once again, where the number of misclassified cloud 

shadows is small, they can be quickly reclassified manually.  Large cloud banks should be 

masked out of the image prior to classification. 

Many of the initial erroneous classifications were resolved by judiciously selecting class 

related features to distinguish spectrally similar objects.  For example, sand and clouds are 

almost indistinguishable in some places, since both have a high reflectance in all bands.  In this 

area, however, exposed sand is most likely to be associated with the river channel, so all sand 

objects were required to be adjacent to either water or shoals.  This immediately corrected most 

of the confusion between clouds and sand.  Similarly, grasslands and shoals are spectrally 

similar, but since shoals occur only in water, the class shoals was required to be adjacent to 

water, which corrected most erroneous classifications of shoals.  In a very few places, however, 

grassland adjacent to a misclassified cloud shadow is labeled as a shoal.  Again, the infrequency 

of this allows for the problem to be easily corrected by hand. 

 A comparison of the Stage 2 whitewater classification to the Stage 1 classification shows 

a close, but not perfect, correlation (compare Figures 6.1 and 6.5, Figures 6.2 and 6.6, and 

Figures 6.3 and 6.7).  At a coarse scale, the whitewater and not whitewater objects occupy the 

same parts of the channel, although there are some differences, particularly near the large island.  

These differences are most likely due to the use of different scale factors and different 

segmentation procedures in each stage, and represent an improvement in the segmentation 

methodology. 

 The Stage 2 classification provides more information than the Stage 1 classification in 

some ways, but in other ways it loses information.  The Stage 2 classification provides much 

more information about land cover, which can have an impact on channel habitat, particularly 
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close to the channel itself.  The Stage 2 classification also captures and classifies much of a 

tributary to the Lower Congo in the southeast portion of the image, which is useful in itself.  

What is lost, however, is the ability to distinguish habitat units in the river from water bodies 

outside the main channel (such as the tributary), and the distinction between the mainland and 

the islands.  In the advanced classifications to follow, these deficiencies are rectified by 

combining the procedures of the two earlier developmental stages. 

The classification statistics for this stage were predictably more varied than the previous 

stage because of the greater number of classes.  The best classification statistics are given in 

Table 6.3.  A number of individual objects have low membership values, but this is 

understandable given the continuous nature of vegetation – some objects are most likely not pure 

examples of a single class, but possibly combinations of more than one class.  The highest 

membership values (over 0.8) belong to the whitewater and forest classes, while shoals, 

shrublands, and sand share values between 0.7 and 0.8.  The lowest values belong to clouds and 

grasslands.  This is perhaps because the samples used for the class clouds are quite bright, and 

not all clouds are as bright as the samples.  Note that the wispy, translucent clouds have fairly 

high membership values in some cases, but are incorrectly classified as grasslands.  Once again, 

clouds distort the spectral information and there is little that can be done to correct the problem.  

The classification stability statistics are given in Table 6.4.  Again, whitewater classes have the 

highest stability values.  The others are fair, with values around 0.5, except for sand and shoals, 

which have values of approximately 0.12 and 0.25 respectively.  Shoals and grasslands are 

spectrally very similar, as are clouds and sand, which may account for the low values.  In both 

the best classification and stability statistics, the whitewater classes (those most connected to 

channel habitat) have the highest values. 
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Stage 3 - Advanced Classification 

 As noted previously, this third stage of procedural development combined the advantages 

of each of the prior approaches.  Contextual information was used on multiple object levels to 

determine whether objects were inside or outside the main channel and whether they were 

located on a bank, on an island, or on the mainland.  Land cover was also classified, including 

water bodies.  Depth and whitewater within the channel were also classified separately.  This 

resulted in the most complex procedures and classification hierarchy yet. 

 A visual comparison shows that the classification conforms fairly well to the original 

ASTER image (Figures 5.3 and 6.8).  Land cover classifications generally appear to be accurate, 

and a large percentage of the tributaries in the northwestern and southeastern portions of the 

image are correctly classified as water (despite the fact that they are only two pixels wide in 

some places).  Objects within the channel appear to be correctly classified in terms of 

whitewater, as with the previous classifications.   

 Some issues remain with the classification, however.  As before, areas beneath 

translucent clouds are erroneously classified as grasslands, and cloud shadows are classified as 

water.  A few objects remain unclassified.  Additionally, although the major tributaries in the 

image are correctly classified, they are only classified as deep or shallow water, and not 

according to the presence or absence of whitewater.  The majority of both whitewater and not 

whitewater objects were classified as deep, which makes sense given the depth and velocity of 

the river.  Far fewer objects were classified as shallow.  In several cases, shallow whitewater 

objects were classified in the middle of deep not whitewater areas.  Many of the shallow areas 

were located near banks and islands, which is to be expected, but the proximity of the shallow 

areas to bank vegetation suggests that the high values in the infrared band might also be caused 
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by vegetative matter in the water or on the bank.  Areas of submerged rocks or sand appear to be 

properly classified, however, as they can be clearly seen in the imagery.  These shallow, 

submerged areas predictably exhibit a high reflectance in all bands, unlike the shallow areas 

identified by the infrared band alone. 

 The third stage classification of whitewater compares well to both Stage 1 and 2 

classifications.  Overall, whitewater and not whitewater areas are similarly classified between the 

different stages.  Some small differences do exist, most likely because of changes in membership 

criteria and segmentation procedures between the stages.   

The best classification statistics are given in Table 6.5.  The highest value is associated 

with the class deep not whitewater at 0.91, and the lowest with land clouds at 0.61.  Most values 

have values in the range of 0.7 to 0.9.  Whitewater classes have relatively high values, varying 

between 0.78 and 0.91.  The classification stability statistics are given in Table 6.6.  Island sand 

has the highest value at 0.76, and shallow water has the lowest at 0.15.  Within the whitewater 

categories, the values run from 0.42 for deep not whitewater to 0.34 for shallow whitewater.   

Although fuzzy classification values in Stages 1 and 2 could be used to provide 

qualitative information about an object’s similarity to an exemplar, this is not necessarily the 

case in this stage.  In the earlier stages, membership functions were relatively uncomplicated, 

and constructed in such a way that fuzzy membership values provide information about an 

object’s position along a continuum.  Because of the addition of depth to the classification 

hierarchy, the fuzzy membership value now takes into account uncertainty over membership to 

both depth and whitewater categories.  This problem could potentially be solved, however, by 

separating depth and whitewater into different object levels, or by removing depth as a class 

altogether. 
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Automated Classifications 

 The protocols developed for Tile A3 were next applied to Tiles A1, A2, and A4.  Because 

each image is slightly different in terms of land cover, channel morphology, cloud cover, and 

lighting conditions, the protocols could not be applied directly without modifications.  For 

example, different atmospheric and lighting conditions required that new samples be selected for 

each class which relies on nearest neighbor samples (such as trees, shrubs, grasses, etc).  As 

noted in the discussion on membership functions and feature space, the water bodies in each 

image were generally identified using a DN of 49 or less in ASTER Band 3.  This value 

produced results of differing quality for each image, and so this number was adjusted for each 

scene until a reasonably accurate result was achieved – meaning that the entire river channel was 

properly classified, while the number of isolated objects classified as water outside the channel 

was minimized.  In Tile A4, the class urban was introduced using a nearest neighbor sample.  

Results were disappointing, however, since the spectral characteristics of the urban class bore 

similarities to several other classes.  The class was therefore inactivated, and the urban area must 

be manually classified.  Tile A4 also contains some land cover types which seem to differ from 

the other images, and it is difficult to determine whether the classification system adequately 

describes the land cover here.  Tile A1 is quite different from all other images, with different 

land cover types (including large urban and rural areas and cropland) and channel characteristics.  

The channel here is much wider and more slow moving, and the whitewater categories 

developed in Tile A3 are not applicable.  Although some tests were conducted in an attempt to 

refine the classification of Tile A1, time constraints prevented a satisfactory classification for this 

image. 
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 The class that most influences habitat, whitewater, seems to be well represented in Tiles 

A2, A3, and A4.  Even the relatively complex section of river in the northern portion of A4 

seems to be fairly accurately classified.  Problems still exist where clouds shadows or semi-

transparent clouds obscure the river, but overall the results appear to be quite good. 

 The problems that occurred in the Stages 1 through 3 classifications predictably persisted 

in this stage.  These problems included misclassification of translucent clouds; classification of 

cloud shadows as water; poor classification of shallow areas (other than submerged rocks or 

sand); and confusion of sand and clouds near the river channel.  Higher amounts of cloud cover 

in images A2 and A4 made some of these problems more pronounced. 

The total processing time required to execute the classification protocol was 

approximately 15 minutes per image.  This time was increased, however, by the time needed to 

redefine membership functions and select new object samples.  Including this requirement, the 

overall time needed to classify each image was about one hour once a full procedure and 

classification hierarchy was developed. 

 

Landsat Classifications 

 Many of the situations encountered when executing the classification protocol on 

different ASTER images were similarly experienced when the procedure was applied to the 

Landsat image subset.  As with the ASTER images, membership functions and samples had to be 

modified prior to classification.  The lower resolution of the Landsat data also made image 

interpretation more difficult.  Comparing the Landsat classification (Figure 17) to the ASTER A3 

classification, one can see differences between the classifications in both the land cover and the 

river channel, although they correspond fairly well at a coarse level.  In addition to having 
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different resolutions, the two images were taken at different dates, which further complicates 

comparison.  Overall, the Landsat classification is less detailed than the ASTER classification, 

probably because of the spatial resolution difference, but still produces an acceptable result from 

the perspective of the minimum mapping unit guidelines. 

 

Accuracy Assessment 

 Although a formal accuracy assessment could not be conducted because of a lack of 

ground truth data, the final habitat classifications were compared to the textual descriptions from 

Robert (1946) and to the 1:100,000 topographic maps.  The descriptions from Robert are very 

broad, but in general they support the classifications, noting that the portions of the river 

comprised by Tiles A2, A3, and A4 are extremely turbulent, with over 50 rapids between them, 

making them completely unnavigable.  This is reflected in the classifications in that large 

sections of the river in these areas were classified as whitewater.  Comparisons to the 

topographic maps were overall quite favorable, with most chutes, rapids, islands, and rock 

formations being correctly identified. Table 6.7 describes the results of the comparison to the 

maps on an image-by-image basis.  In a few cases, islands were identified, but were incorrectly 

classified as bank.  This occurred when islands were bordered by submerged rocks or sand, 

which are not part of the membership function for islands.  This should be easily remedied by 

altering the membership criteria for islands.   

 

6.2  Guidelines for Object-Oriented Classification of Habitat 

 The results of this study suggest a number of lessons which can serve as guidelines for 

future object-oriented classifications of channel habitat.  These guidelines can be divided into 
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three categories based on that portion of the classification process to which they apply: data set 

selection, image segmentation, and object classification. 

 

Data Set Selection 

 This study supports the guidelines given in Chapter 2 which suggest that ASTER and 

Landsat ETM+ provide the necessary spatial resolution to map habitat in large rivers.  

Depending on the initial assumptions, ASTER can be used to map rivers as small as 30 to 90 

meters in width, and Landsat ETM+ for rivers as narrow as 60 to 180 meters.  Although the 

lower limits of the spatial resolution were not tested in this study, successful classification of 

several tributaries supports these conclusions.  In the case of elevation data, however, SRTM and 

ASTER DEMs are not sufficient for mapping the river’s surface because their accuracies tend to 

break down over water, and in most cases, the elevation data for the channel itself are spurious.  

On the other hand, ancillary data, such as photographs of the area, textual descriptions, existing 

topographic maps, and GIS layers proved to be quite useful in this study. 

 

Image Segmentation 

 Object scale is an important factor in the image segmentation process, and object scale is 

governed by the MMU.  In Chapter 2, general guidelines for MMUs were given based on 

literature for field measurements.  These guidelines, which were most likely written to prevent 

field teams from spending excessive time mapping small changes in the channel, are probably 

unnecessarily restrictive for mapping using remotely sensed images.  Satellite images with the 

proper spatial resolution relative to channel width, when used in conjunction with an automated 

classifier, can map at a much finer scale than that specified by these guidelines.  This supports 

 72



the contention of Marcus et al. (2003) that automated classifications of remotely sensed images 

can produce habitat maps that are actually more accurate than field teams.  With this in mind, it 

is probably best to consider the guidelines for MMU in Chapter 2 as guidelines for a minimum 

acceptable mapping unit. 

 Another important lesson related to image segmentation is that multiple object scales will 

often be required.  For example, habitat units in the river may require objects of a different size 

than land cover objects on the channel banks or on islands.  In general, the bank-water interface 

requires the smallest object scale, and for this reason, it is best to segment the image at the 

smallest scale first, and then combine image objects of similar classes to achieve the desired 

scale for each part of the image. 

 

Object Classification 

 In the area of object classification, lessons learned apply primarily to the selection of 

feature space and the construction of classification hierarchies.  For example, in terms of spectral 

features, whitewater seems to be best identified using the mean values of the green and red bands 

(ASTER Bands 1 and 2) and the mean object brightness.  Water bodies are best identified using 

the mean value of the near infrared band (ASTER Band 3). Water depth does not appear to be 

well-represented using the infrared band, but shallow areas of submerged rocks and sand appear 

to be classifiable using the green, red, and infrared bands..  For other classes, such as land cover, 

a combination of the three bands provides the greatest spectral separability.  Since the validity of 

these measures has not been tested using ground truth data, however, we cannot say definitively 

that these measures accurately reflect the features we are attempting to identify.  Nevertheless, 

there are logical reasons why they should be used as a starting point. 
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 A number of spatial features are also helpful in classifying habitat, particularly in 

separating spectrally similar classes.  This is the case with sand and clouds, where sand is 

partially defined by its adjacency to water, and with shallows and grasslands, where shallows are 

similarly defined.  In other cases, spatial features are critical to a class’s definition, as when area 

is used to differentiate between the main river channel and smaller bodies of water in the image.  

Other examples include the use of the relative border function to identify islands, and adjacency 

to water to distinguish between banks and mainland.  It is important to note, however, that these 

spatial features require multiple classification iterations because of their dependency on other 

classes for their definitions, and in some cases this can prolong the processing time.  Distance 

between objects is a particularly troublesome feature, as the distance between each object in the 

image must be computed.  A judicious use of spatial features is therefore advised, but a little 

forethought can prevent most problems. 

 Finally, properly structured class hierarchies are a critical part of the classification 

process.  Although this is usually a straightforward process, it does require some thought about 

the nature of the objects to be classified.  When using spatial features, it is important to note that 

multiple object levels may be required, and this multi-level aspect must be built into the class 

hierarchy (as in the advanced classifications). 

 

6.3 Methodological Issues 

 The most obvious methodological issues in this study, the lack of adequate ground truth 

data, was recognized during the research proposal stage.  The major drawback of this problem is 

that it is impossible to verify whether the final map of channel habitat is accurate.  This issue has 

been mitigated in a two ways.  First, ancillary data sets were used to offset the lack of ground 

 74



control data.  Ground photos were used to guide the land cover classification, and topographic 

maps and textual descriptions were used to check the results of the habitat classification in the 

channel.  Second, the methodology of this study focuses on how an object-oriented approach can 

improve the process of habitat classification, rather than how it can improve the results.  Even if 

the feature spaces for the habitat classes is shown to be wrong, the process could still be used 

with other, more appropriate data sets. 

 Another methodological issue is that of estimating water depth with the infrared band.  

The Lower Congo is deep and turbulent, and both qualities tend to make depth estimation 

difficult.  The apparent misclassification of shallow whitewater areas in deep not whitewater 

areas, along with the close proximity of most shallows to vegetated areas, indicates that the 

infrared band alone is most likely a poor choice for depth assessment on large rivers. 

 In addition to the four physical variables mapped in this study, several other variables 

were initially considered, but were not mapped for different reasons.  These variables included 

geography, topography, and water velocity.  Geologic features, such as bedrock material, and 

topographic features, represented by the SRTM DEM, were visually examined to determine 

whether there was any correlation between these features and whitewater in the channel.  This 

visual analysis did not reveal any relationship between the spatial data sets and the physical 

variables of geology, topography, and whitewater, and therefore these factors were not 

incorporated into the object-oriented classification.  There does seem to be some correlation, 

however, between valid elevation data values in the DEM and whitewater in the channel.  As 

noted previously, much of the elevation data in the channel is spurious because of the inability of 

radar interferometry to produce elevation values over water.  Where there is significant 

whitewater in the river, however, the DEM returns a valid elevation value, which may be due to 
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the altered surface characteristics caused by whitewater.  If there is indeed such a relationship, 

the DEM might be used in future image segmentations and classifications to identify turbulent 

areas.  

 Water velocity was also considered as a potential variable for mapping.  Although water 

velocity cannot be measured outright in a satellite image, some comparative statements about 

velocity can made where the river curves, since the inside of a bend is generally slower than the 

outside.  Automation of the classification of curves proved to be a difficult topological problem, 

and manual classification of the curves as input for classification was not successful.  For these 

reasons, water velocity was not used as a habitat mapping criteria.  

 Another methodological problem was the difficulty in accurately classifying urban areas.  

Because of time constraints and the fact that land cover classification was secondary to 

classification of channel features, this problem was not adequately solved.  However, much of 

the current work with object-oriented classification is in the land cover area, and further research 

in the literature may provide a solution.   

 The final methodological problem was the inability to generate a habitat map of the entire 

Lower Congo River because of excessive cloud cover in the Landsat images.  Numerous Landsat 

7 images of this region exist, however, and though many are covered with clouds, an 

examination of the USGS image catalog suggests that it may be possible to classify the river by 

using portions of different images.  Because these images are not free, this avenue cannot be 

pursued unless funding becomes available. 
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Table 6.1.  Best classification statistics for Stage 1 (based on the highest membership value for 
each object). 
 
Class Objects Mean StdDev Minimum Maximum 
not islands (1) 3 0.70 0.42 0.10 1.00 
whitewater 168 0.84 0.15 0.50 1.00 
not whitewater 182 0.84 0.15 0.50 1.00 
vegetation 5 0.62 0.32 0.20 1.00 
exposed sand 1 1.00 0.00 1.00 1.00 
shoals 17 0.55 0.29 0.10 1.00 

 
 
Table 6.2.  Classification stability statistics for Stage 1 (based on the difference between the 
highest membership value and the second highest membership value for each object). 
 
Class Objects Mean StdDev Minimum Maximum 
not islands (1) 3 0.67 0.47 0.00 1.00 
whitewater 168 0.69 0.31 0.00 1.00 
not whitewater 182 0.71 0.31 0.00 1.00 
vegetation 5 0.62 0.32 0.20 1.00 
exposed sand 1 1.00 0.00 1.00 1.00 
shoals 17 0.55 0.29 0.10 1.00 

 
 
Table 6.3.  Best classification statistics for Stage 2. 
 
Class Objects Mean StdDev Minimum Maximum 
whitewater 762 0.88 0.15 0.28 1.00 
not whitewater 1827 0.88 0.15 0.11 1.00 
shoals 720 0.72 0.15 0.29 1.00 
forest 68108 0.86 0.13 0.11 1.00 
grasslands 34675 0.68 0.21 0.10 1.00 
shrublands 101647 0.80 0.18 0.10 1.00 
sand 103 0.72 0.27 0.13 1.00 
clouds 4897 0.60 0.30 0.10 1.00 

 
 
Table 6.4.  Classification stability statistics for Stage 2. 
 
Class Objects Mean StdDev Minimum Maximum 
whitewater 762 0.77 0.30 0.00 1.00 
not whitewater 1827 0.80 0.27 0.00 1.00 
shoals 720 0.25 0.17 0.00 0.59 
forest 68108 0.50 0.29 0.00 1.00 
grasslands 34675 0.54 0.29 0.00 1.00 
shrublands 101647 0.44 0.22 0.00 0.86 
sand 103 0.12 0.08 0.00 0.24 
clouds 4897 0.59 0.32 0.00 1.00 
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Table 6.5.  Best classification statistics for Stage 3. 
 
Class Objects Mean StdDev Minimum Maximum 
island grass 11 0.83 0.16 0.49 0.98 
bank grass 295 0.74 0.24 0.15 0.99 
land grass 8188 0.77 0.25 0.10 1.00 
bank sand 127 0.67 0.29 0.14 1.00 
island sand 7 0.76 0.30 0.26 1.00 
land clouds 2319 0.61 0.31 0.10 1.00 
bank shrubs 1014 0.82 0.16 0.28 1.00 
island shrubs 22 0.81 0.12 0.50 0.99 
land shrubs 28617 0.85 0.13 0.13 1.00 
bank trees 600 0.74 0.19 0.11 1.00 
island trees 8 0.78 0.19 0.47 0.99 
land trees 19212 0.83 0.15 0.11 1.00 
deep water 1157 0.84 0.17 0.11 1.00 
deep not whitewater 541 0.90 0.10 0.45 1.00 
shallow not whitewater 82 0.82 0.12 0.52 1.00 
shallow whitewater 149 0.73 0.19 0.18 0.99 
deep whitewater 581 0.84 0.18 0.10 1.00 
shallow water 1334 0.71 0.11 0.13 0.85 
bank submerged rocks or 
sand 196 0.79 0.21 0.16 0.99 
island submerged rocks or 
sand 40 0.88 0.14 0.45 1.00 
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Table 6.6.  Classification stability statistics for Stage 3. 
 
Class Objects Mean StdDev Minimum Maximum 
island grass 11 0.16 0.09 0.02 0.28 
bank grass 295 0.17 0.10 0.00 0.37 
land grass 8188 0.33 0.20 0.00 0.75 
bank sand 127 0.66 0.31 0.00 1.00 
island sand 7 0.76 0.30 0.26 1.00 
land clouds 2319 0.61 0.32 0.00 1.00 
bank shrubs 1014 0.41 0.22 0.00 0.76 
island shrubs 22 0.46 0.15 0.22 0.74 
land shrubs 28617 0.45 0.24 0.00 0.96 
bank trees 600 0.55 0.31 0.00 1.00 
island trees 8 0.61 0.32 0.02 0.99 
land trees 19212 0.70 0.29 0.00 1.00 
deep water 1157 0.59 0.30 0.00 1.00 
deep not whitewater 541 0.42 0.23 0.00 0.79 
shallow not whitewater 82 0.36 0.23 0.00 0.75 
shallow whitewater 149 0.34 0.24 0.00 0.75 
deep whitewater 581 0.41 0.26 0.00 0.79 
shallow water 1334 0.15 0.12 0.00 0.68 
bank submerged rocks or 
sand 196 0.22 0.14 0.01 0.49 
island submerged rocks or 
sand 40 0.25 0.12 0.01 0.44 
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Table 6.7.  Comparison of classifications to topographic maps.  
 

Tile Results of comparison 
 

A2 All islands are identified, although in a few cases they are classified as banks because of 
an error in the membership function.  No rapids or chutes are marked on the topographic 
map in this section. 
 

A3 All chutes and islands are correctly identified. 
 

A4 All major islands or rock formations are identified either as an island or as submerged 
rocks or sand.  As with Tile A2, some are incorrectly classified as bank because of an 
error in the membership function.  All chutes and rapids are properly classified as 
whitewater. 
 

E3 Not all of the major islands and rocks are identified, although most are contained within 
a whitewater or submerged material classification.  
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Figure 6.2

Figure 6.3

Figure 6.1.  Classification results for Stage 1.

81



Figure 6.2.  Detail of classification results for Stage 1.
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Figure 6.3.  Detail of classification results for Stage 1.
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0 1 20.5 Kilometers¯
Figure 6.4.  Examples of misclassified objects.  Note the backwater pool and shallows that 
were incorrectly segmented and classified as part of the bank.
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Figure 6.5.  Classification results for Stage 2.
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Figure 6.6.  Detail of classification results for Stage 2.
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Figure 6.7.  Detail of classification results for Stage 2.
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Figure 6.8.  Classification results for stage 3.
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Figure 6.9.  Detail of classification results for Stage 3.
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Figure 6.10.  Detail of classification results for Stage 3.
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Figure 6.12

Urban areas 
misclassified 
as grasses

Figure 6.11.  Classification results for Tile A2.
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Figure 6.12.  Detail of classification results for Tile A2.  Note the small shallow areas in pink.
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Figure 6.14

Figure 6.13.  Classification results for Tile A4.
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Figure 6.14.  Detail of classification results for Tile A4.
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Figure 6.15.  Classification results for subset of Tile E3 (Landsat).
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CHAPTER 7 – CONCLUSIONS 

 

 This investigation addressed the central research question of whether an object-oriented 

approach can be used with medium-resolution multispectral satellite images to map habitat units 

related to fish assemblages on a large river.  At the completion of this study, a number of 

conclusions can be made regarding the strengths and limitations of an object-oriented 

classification technique to map depth, whitewater, and land cover on the Lower Congo River.  

These conclusions are enumerated below, and a summary of the answers to the specific research 

questions posed in Chapter 3 can be seen in Table 7.1. 

 First, we can say that spatial context in an object-oriented classification allows us to 

differentiate objects which cannot be distinguished by spectral information alone.  In the context 

of this study, this allowed us to differentiate between classes which are similar or even identical 

spectrally by using spatial information as a discriminator.  This can be seen at several points in 

the class hierarchies.  For example, while all water bodies share the same spectral criteria, the 

river channel was defined using the class-related feature of area.  Banks, islands, and mainland 

are all spectrally similar, and were differentiated from each other using class-related features. 

Banks and islands could be separated from the mainland by their adjacency to the river channel, 

while islands were identified by their relative border to water and the mainland was identified by 

its large area.  Because of their high reflectance in all bands, sand and clouds are virtually 

identical spectrally in some cases, but the association of sand with water in the study area makes 

it possible to distinguish the two with much greater accuracy.  A similar situation exists for 
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shallows and grasslands - both share similar spectral characteristics, but shallows occur only in 

water.  Thus, an object-oriented approach allows us to make distinctions that would be 

impossible to make using a conventional pixel-based approach that cannot utilize spatial context.  

This can be especially useful when the spectral resolution of the imagery is low, as the ability to 

use spatial context may in some ways make up for the inability to separate classes spectrally. 

 The second conclusion is that habitat units are well-represented by objects and objects 

provide a more intuitive approach to habitat classification than pixels.  Whereas pixel-based 

analysis allows the use of only one scale - the scale of the pixel - object-based classification 

allows us to identify meaningful objects in the river at multiple scales, such as small shallows or 

very large rapids.  This use of polygons to represent objects at multiple scales in the image is 

similar to the way a human interpreter would classify an image, and it produces objects more 

intuitive to an observer than the "salt-and-pepper" results of pixel-based classifiers. 

 Third, fuzzy classification allows us to not only express a degree of certainty about an 

object's membership to a class, but it can also be used to qualitatively assess a habitat unit's 

position on a scale relative to two exemplars.  In the case of whitewater, for example, a rapid is 

at one end of the scale while a pool is at the other.  The closer an object's fuzzy membership 

value to 1 in whitewater or not whitewater, the closer it resembles a rapid or pool respectively.  

Values closer to 0.5 indicate a degree of whitewater somewhere in between.   

 Fourth, we can say that, based on both theory and practice, ASTER and Landsat ETM+ 

satellite imagery provide sufficient spatial resolution to map habitat units based on whitewater 

and bank cover in large rivers like the Congo, and possibly on rivers as small as 30 meters wide, 

in some cases.  It does not seem likely, however, that large, turbulent rivers are easily classified 
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in terms of depth using only the infrared bands on Landsat and ASTER, though shallow areas of 

submerged rocks and sand appear to be identifiable using the green, red, and infrared bands.   

 Finally, the procedures established here can be automated so that multiple images can be 

classified using the same procedure.  Although some adjustment of the membership functions is 

required, the overall procedure is applicable as long as the general character of the river and land 

cover do not change significantly from image to image.  While only 15 minutes of processing 

time was required for each image, the full procedure generally required an hour per image 

because of the need to adjust membership functions to accommodate differing light and 

atmospheric conditions.  This time might be substantially reduced if atmospherically corrected 

images were used, or if all images were acquired at the same time. 

 This study was conceived as a bridge between the worlds of object-oriented landcover 

classification and more traditional pixel-based methods of fluvial habitat classification.  Its 

results support current findings in both areas.  The ability to utilize spatial context is thought to 

be one of the primary advantages of an object-oriented approach in landcover classification, and 

this study supports that assertion with respect to fluvial habitat.  This study also reinforces the 

findings of Legleiter and Goodchild (2005), who found that fuzzy classifications may provide a 

more realistic way of mapping habitat than traditional binary methods.  In addition, the results of 

this study suggest that fuzzy values may also be used as a qualitative measure of a characteristic 

such as degree of whitewater.   

 These conclusions translate into a number of advantages for the field researcher looking 

to use an object-oriented approach to classify fluvial habitat.  While the first choice of many 

researchers might be existing topographic maps, object-oriented classification of satellite images 

may provide a better alternative.  One reason is that such a classification provides a more 
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detailed map of habitat within the river than most maps provide.  Using the topographic maps 

referred to in this study as an example, these maps merely provide elevation data and some 

general information about the locations of chutes, rapids, and falls.  The classifications created in 

this study, in contrast, convey a detailed map of whitewater, submerged rocks and sand, and 

bank cover, all from a more recent source.  This map of habitat variables may then be used be 

researchers attempting to identify specific habitats – for example, an area without whitewater 

near a bank with overhanging vegetation.  In addition, the procedure can be run on images from 

different sensors and dates, so that changes in habitat with seasonal changes in flow or vegetation 

can be taken into account. 

 Others might argue that similar results may be achieved using a pixel-based classifier and 

a GIS in combination.  This is really an unsatisfactory solution, however, as anyone who has 

tried to work with multiple image processing packages knows.  The number of times a user 

would be required to move between the image processing and GIS packages would be numerous, 

and each transfer of information is time-consuming and problematic.  An object-oriented 

classifier provides the best of both approaches in one interface. 

 The list below summarizes the major contributions of this study to the classification of 

channel habitat using remotely-sensed images. 

• Demonstrated that medium-resolution multispectral imagery can be used to map habitat 

units on large rivers using an object-oriented classification procedure. 

• Developed a classification system for channel habitat appropriate for medium-resolution 

multispectral satellite images. 

• Developed an object-oriented methodology for classifying channel habitat that effectively 

utilizes spatial context. 
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• Developed guidelines for future habitat classifications using an object-oriented approach. 

• Produced a detailed map of habitat units along portions of the Lower Congo River. 

 

Although a number of interesting conclusions can be made from this study about the 

potential of object-oriented classification for habitat mapping, the final habitat map could be 

verified using ground observations.  This study would benefit greatly by conducting ground truth 

data collection and accuracy assessment.  Because of the logistical problems associated with an 

accuracy assessment on the Congo River, this research would most likely be conducted on a 

smaller, more accessible river using higher-resolution imagery.  Particularly important are the 

verification of the degree of whitewater and the presence of submerged rocks or sand. 

 A number of other areas for future research are suggested by this study’s results.  First, 

two important habitat units associated with connectivity, falls and cascades, were not mapped 

because of insufficient elevation data.  Other techniques for mapping these features might be 

explored.  Second, habitat units might be mapped over time, to understand how channel habitat 

changes with seasonal and annual variations in flow.  This area might be particularly fruitful, as 

changes in flow are the major form of environmental variability in fluvial ecosystems (Jackson et 

al. 2001).  Third, the limits of the imagery’s spatial resolution might be pushed further by 

attempting to classify habitat in some of the Lower Congo’s tributaries.  The main channel itself 

easily meets the guidelines for spatial resolution, but several of the tributaries are at the lower 

end.  This might be especially useful for sampling teams, as the tributaries may provide more 

accessible sampling locations and different fish assemblages.  Fourth, the methodology should be 

applied to atmospherically-corrected image data to determine whether this reduces the required 

classification time for each image.  Since the image data from ASTER and Landsat are acquired 
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at approximately the same time each day, atmospheric correction may remove some of the 

differences between the images.  Fifth, an attempt can be made to distinguish between different 

types of whitewater.  For example, whitewater in a rapids or cascade indicates a different 

channel condition than whitewater in a plunge pool.  Spatial context might be further exploited to 

discriminate between these two types of whitewater.  Finally, this approach should be applied to 

higher resolution data.  Since much of the need for habitat mapping in the United States is on 

rivers and streams far smaller than the Congo, these methods might be successfully applied to 

scanned aerial photos or images from aircraft-mounted digital sensors. 

 As noted in Chapter 2, automated classifications are a supplement, not a replacement, for 

field observations.  Nevertheless, the techniques described here can provide a number of 

advantages to researchers who need information about habitat on large rivers when field 

sampling is not feasible. 
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Table 7.1.  Answers to research questions posed in Section 3.2. 
 

Research Question 
 

Conclusion 

Can objects representing habitat units be extracted 
from medium-resolution multi-spectral imagery? 
 
 

Yes.  In order to meet minimum mapping 
requirements, the spatial resolution of the image 
data should be between 1/2 and 1/6 of the channel 
width. 
 

Assuming that multiple object scales will be used 
for analysis, what scales should be used for 
segmentation? 
 

A very small scale should be used initially to 
delineate between the river channel and bank.  Once 
this is accomplished, object scales should be 
selected to match the features being extracted. 
 

Once an image has been segmented, can its objects 
be classified as habitat units? 
 

Yes, although the definition of “habitat unit” must 
be modified to accommodate the data.   

How reliable is the resulting classification? 
 

Good overall.  Comparisons to existing topographic 
maps show that the classification is at least as 
accurate, if not more so, than the maps. 
 

Can object-oriented methods developed with data 
at one resolution be applied to coarser-resolution 
data? 
 

Yes.  Predictably, however, the resulting 
classification is not as detailed. 

Does an object-oriented approach provide 
procedural advantages over traditional 
approaches? 
 

Yes.  An object-oriented approach is particularly 
useful for distinguishing objects based on spatial 
relationships.  See Section 7.1 for discussion. 
 

What guidelines can be established for future 
habitat classifications using object-oriented 
methods? 
 

See Discussion in Section 6.2. 
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