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Abstract

Modeling the risk-free interest rate process is very important for the pricing of
fixed income securities and interest rate derivatives. Previous studies have identified
two features of the short-term risk-free interest rate: nonlinear drift and stochastic
volatility. However, little is known about which specification is more fundamental
to characterize the dynamics of short term interest rate. In this study, I compare
different models of the short rates and test whether these characteristics are of equal
importance. Chapter 1 motivates this study by listing several important empirical
questions regarding the interest rate process. Chapter 2 proposes a general model
that nests both nonlinear drift and stochastic volatility. It is shown that the nonlinear
drift is not essential whereas stochastic volatility is indispensable for a parsimonious
model of the short rates. Chapter 3 compares the popular stochastic volatility model
with its regime switching counterpart. I find strong evidence of regime shifts in the
short rate volatilities for four developed countries. Chapter 4 uses a PDE approach
to estimate continuous-time short rate models. The results match those found with
a discrete-time framework. The last chapter summarizes the empirical findings and
gives directions for future research.
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Chapter 1

Introduction

1.1 Motivation

Propelled by a rapidly developing market for fixed income securities, modeling

interest rate dynamics has become one of the most important and actively researched

areas in finance.

Interest rate term structure models often make the simplifying assumption that

changes in the entire yield curve are driven by the changes in the short rate. More

formally, consider a short-rate process r with
∫ T

0 |rt|dt < ∞. Under an equivalent

martingale measure Q, the price at time t of the zero-coupon bond maturing at s is

given by1

Λt,s ≡ EQ
t

[

exp
(∫ s

t
−rudu

)]

,

where Λ is known as the discount function or loosely as the term structure of interest

rates. The continuouly compounding yield yt,τ on a zero-coupon bond maturing at

time t + τ is defined by

yt,τ = − log(Λt,t+τ )
τ

.

The specification we choose for the short rate process has a significant impact on

the pricing of bonds and interest rate derivatives.

Empirically, as documented by Litterman and Scheinkman (1991), approximately

ninety percent of the variation in Treasury yields is associated with changes in the

short term interest rates.
1For a standard reference on this topic, see Duffie (1996).

1
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Given the importance of the short rate, in this research I mainly focus on the

specification of the short rate process.

1.2 Equilibrium versus No-Arbitrage Models

Models of the short rate can be divided into two major categories: equilibrium models

and no-arbitrage models. Equilibrium models treat the short rate as an endoge-

nous variable whose dynamics is determined under a general equilibrium frame-

work. Examples include Vasicek (1977) and Cox, Ingersoll and Ross (1985) (CIR).

Although economically meaningful, equilibrium models typically do not fit the ini-

tial term structure. Taken the initial term structure as an input, no-arbitrage models

are very popular among practitioners since by including time-dependent parameters

they are capable of giving an exact fit of the yield curve. Examples of no-arbitrage

models include Ho and Lee (1986), Hull and White (1990), and Heath, Jarrow, and

Morton (1992).2 However, Dybvig (1997) argues forcefully that essentially any model

can give perfect fit to the current yield curve by simply adding more parameters.

Backus, Foresi, and Zin (1998) show that no-arbitrage models suffer from the time-

inconsistency problem, which could lead to significant biases when applied to the

pricing of interest rate derivatives. The crux of the problem is that without any

guidance from economic theory model misspecification is a big concern.

Perhaps a more fruitful way of modeling the short rate process is to find a parsi-

monious model that can fit the data reasonably well without the use of too many free

parameters. For this reason, in the current study we choose to focus on identifying

a parsimonious model of the short rates.

2The orginal Heath, Jarrow, and Morton model is expressed in terms of the forward
rates. Carverhill (1995) shows that the model can be equivalently restated using discounted
bond prices.
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1.3 Empirical Issues Related to Interest Rate Modeling

In a recent review article Chapman and Pearson (2001) list some of the unresolved

empirical issues with regard to interest rate modeling:

What can be learned from this large and growing literature? What model

features appear to be essential in describing the fundamental properties

of interest rates? First, this new literature does not provide conclusive

evidence, based solely on the data, about whether interest rate levels tend

to return to a constant long-run level and whether or not this tendency

is stronger for extreme levels of interest rates. With respect to interest

rate volatility, it is clear that the “absolute” volatility of the short rate,

defined as the standard deviation of rate changes scaled by the square

root of the time between changes, is increasing in its level.

However, inferences about the relation between the level and volatility

of the short rate are sensitive to the treatment of the years between 1979

and 1982, the so-called “Federal Reserve experiment.” In particular, the

data from this period suggest a very strong relation between volatility

and the level of interest rates, while excluding this period or treating it as

a distinct (lower probability) “regime” suggests a much weaker relation.

Finally, modelling the volatility of interest rates requires more than a

simple “level effect”, i.e. there appears to be some sort of stochastic

volatility. However, the additional volatility component can be described

adequately (in a statistical sense) in a variety of competing ways.

The empirical issues addressed by Chapman and Pearson essentially boils down

to two related questions.

1. Is the drift function of the short rate process linear or nonlinear?
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2. Is modeling regime shifts in the short rate volatility process relevant?

In this study, we provide answers to the above two questions. In chapter 2, we

compare models of the short rate with and without nonlinear drifts. It is shown

that modeling stochastic volatility is more important than modeling the nonlinear

drift. In chapter 3, we show that modeling regime shifts in the short rate volatility

is important for the U.S., the U.K., Canada, and Japan short rate data.

In addition to the empirical findings, we also make several methodological con-

tributions. First, we show how to model correlation in a regime-switching stochastic

volatility model. Second, we generalize the regime-switching stochastic volatility

model by allowing for time-varying transition probabilities. Finally we show how to

use the PDE approach to estimate a general jump diffusion model.



Chapter 2

Estimating Discrete-time Interest Rate Models

2.1 Introduction

Recent empirical evidence (Aı̈t-Sahalia (1996), Stanton (1997)) suggests that

incorporating nonlinearity in the drift term is needed for the modeling of short-term

interest rates. Other researchers (Longstaff and Schwartz (1992), Brenner, Harjes,

and Kroner (1996)) (BHK) find that stochastic volatility is a salient feature that

should not be ignored in short-rate models. An important empirical question is:

which of the two characteristics are more fundamental for a parsimonious model of

the short rate? Or are they both indispensable? This question is of theoretical and

practical significance since different model specifications could lead to very different

results when applied to the pricing of interest rate derivatives. From a modeling

perspective, a short rate model with general nonlinear drift may become analytically

intractable even in the single-factor case.

Another interesting empirical puzzle surrounding the U.S. short rate was first

pointed out in Chan, Karolyi, Longstaff and Sanders (1992) (CKLS). CKLS estimate

a general one-factor model for the U.S. risk-free rate. Surprisingly, they find the

estimated parameters imply a non-stationary short rate process, which is counter-

intuitive.

In this chapter I address the following important empirical questions:

(I) Is the drift term linear or nonlinear for the U.S. short rate?

5
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(II) Is the finding in CKLS robust across different subperiods, data frequencies,

and countries?

(III) Is modeling stochastic volatility in the short rate important?

I compare models with nonlinear drift term and/or stochastic volatility with a

general model that combines both nonlinear drift and stochastic volatility. It nests

various extant interest rate models. I also look at the international evidence on the

issue by modeling the interest rate processes for four other industrialized countries

in addition to the U.S. case.

The major findings are as follows. I find the CKLS puzzle is present only in a

specific dataset for a specific model. I also find that the nonlinear drift specifica-

tion is not an essential feature of the short rate for any of the five countries under

consideration. A linear drift model with stochastic volatility seems to be a good

parsimonious model of the short rate at least for countries where the short rates

exhibit excessive volatility, such as in the cases of the US and the UK.

Section 2.2 reviews the literature related to the empirical performance of var-

ious short term interest rate models. Section 2.3 sets up a general nonlinear drift

stochastic volatility model. Section 2.4 describes the data. Section 2.5 tests the

ARCH/GARCH effects. Section 2.6 estimates the model using the maximum likeli-

hood estimation. Section 2.7 compares the various model specifications, and performs

robustness checks. Section 2.8 discusses the results and concludes this chapter.

2.2 Background and Related Literature

In this section, I give further background regarding the empirical issues involved and

review the related literature.
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2.2.1 Linear Drift Single-Factor Models

The short rate model of CKLS nests most single-factor models with linear drift,

including the Vasicek model and the CIR model. It has the following specification:

dr = (α + βr) + σrγdW, (2.1)

where r is the interest rate level, and W is a Brownian motion. Note that in the

CKLS model, volatility is specified as a function of the interest rate level, capturing

the so-called “level effect”. CKLS use the generalized method of moments (GMM) to

estimate a discrete-time version of the above model. Note that if we rewrite α + βr

as β(r− θ) where θ ≡ −α
β , then β can be interpreted as the speed of mean reversion

and θ the mean value of the interest rate. The parameter γ has the interpretation of

being the elasticity of variance and is usually less than one in theoretical models. For

example, γ = 0.5 in the CIR model and γ = 0 in the Vasicek model. CKLS find that

the unrestricted estimate of γ in their model is approximately 1.5, which contradicts

the specifications of most theoretical models. In fact, CKLS are able to reject all

models whose γ is less than 1. In addition to the fact that this is incompatible with

most theoretical models, a γ greater than 1 has the undesirable implication that the

short term interest rate may become non-stationary at high interest rate levels. To

solve this puzzle, ongoing research has followed two directions. The first approach

is to model the drift term as a nonlinear function such that the mean reversion is

faster at high interest rate levels. The other approach argues that the estimated

high elasticity of volatility may be misleading because the CKLS model ignores the

stochastic nature of the interest rate volatility.

2.2.2 Nonlinear Drift Term

Aı̈t-Sahalia (1996) uses nonparametric techniques to estimate interest rate models.

The idea is to compare the density implied by a parametric model and a nonpara-
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metric estimator that is valid even if the parametric model is misspecified. In the

empirical section of his paper, the drift is parameterized to have the following form:

µ(r, θ) = α0 + α1r + α2r2 + α3/r. It is claimed that the linearity of the drift is

the main source of misspecification of existing models. The paper argues that the

nonlinearity of the drift effectively makes the interest rate process stationary.

Stanton (1997) uses Taylor series expansion to approximate the drift and diffusion

of the stochastic differential equation. These approximations are then estimated

nonparametrically from discretely sampled data. It is found that the drift exhibits

evidence of substantial nonlinearity. The estimated volatility elasticity is close to the

CKLS result.

Conley, Hansen, Luttmar, and Scheinkman (1997) (CHLS) focus on a class of

models in which the local volatility elasticity is constant and the drift has a flex-

ible specification. In their empirical work, they consider the same parameterization

of the drift as in Aı̈t-Sahalia (1996). They find evidence for a volatility elasticity

between one and two. They claim that the mechanism for inducing stationarity is

the increased volatility of the diffusion process. Nonlinearities in the drift are shown

to be important for very high-variance elasticities (greater than four) but not for

low ones.

Ahn and Gao (1999) derive a closed-form solution for bond prices when the drift

term is nonlinear. Specifically, they assume the interest rate process is characterized

by the following stochastic differential equation:

dr(t) = κ(θ − r(t))r(t)dt + σr(t)1.5dw(t).

In their empirical work, they estimate the following model using the GMM.

dr(t) = (α1 + α2r(t) + α3r(t)2)dt +
√

α4 + α5r(t) + α6r(t)3dw(t).
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The specification here is similar to that of Aı̈t-Sahalia (1996) and CHLS. Ahn and

Gao show that α3 is significant and conclude their model outperforms all linear drift

models.

The apparent success of nonlinear drift models, however, is inconclusive. In a

recent paper, Jones (2000) questions the finding of nonlinear drift as reported in

Aı̈t-Sahalia (1996) and CHLS. Using a Bayesian method, he concludes that the large

negative drift for high interest rates reported in the above-cited papers represents

a non-trivial prior belief about the shape of the drift function, and that this prior

belief by itself is strong enough to generate the finding of nonlinearity.

Pritsker (1998) questions the specification test developed in Aı̈t-Sahalia (1996).

The argument is that interest rates are known to be highly correlated whereas the

nonparametric technique used in Aı̈t-Sahalia’s paper is very sensitive to the depen-

dence in the data.

Chapman and Pearson (2000) study the finite-sample properties of the non-

parametric estimators used in the Aı̈t-Sahalia (1996) and Stanton (1997) papers

by applying them to simulated sample paths of a square-root diffusion. Although

the drift is linear, the nonparametric estimators suggest nonlinearities of the type

and magnitude reported in Aı̈t-Sahalia (1996) and Stanton (1997). Chapman and

Pearson conclude that nonlinearity of the short rate drift is not a robust stylized

fact.

2.2.3 Short Rate Volatility and Two-Factor Models

It is well known that interest rate data exhibit volatility clustering or conditional

heteroskedasticity. Some of the conditional heteroskedasticity can be accounted for

by the level effect as in the CKLS model. However, as evidenced by the high estimate

of variance elasticity, some researchers have argued that the level effect may be inade-

quate to explain the conditional heteroskedasticity and the assumption that variance
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elasticity is constant may be too restrictive. A natural way to model the conditional

heteroskedasticity in asset returns is the ARCH/GARCH models of Engle (1982)

and Bollerslev (1986), where the conditional variance is a function of past variance

estimates and lagged squared forecast errors. A potential criticism of the (pure)

GARCH models of the interest rate volatility is that negative interest rates are per-

missible. This weakness can be corrected if we combine the features of the CKLS

model with the GARCH models, which are accordingly named the Level-GARCH

models in the literature.1

An alternative modeling technique is the so-called stochastic volatility (SVOL)

model. The SVOL model treats the volatility as a latent process which evolves

stochastically over time. As an example, Ball and Torous (1999) specify the fol-

lowing discrete-time SVOL model for the short term interest rate:

rt = (a + brt−1) + σt−1r
γ
t−1εt

lnσ2
t − µ = β(lnσ2

t−1 − µ) + ξηt,

where εt and ηt are i.i.d. standard Gaussian disturbances. One advantage of the

SVOL model is that it has a natural interpretation of being a discrete-time analog

to the continuous-time diffusion models. For example, the Ball and Torous model

can be viewed as a discrete-time approximation to a two-factor interest rate model,

such as Longstaff and Schwartz (1992), where the short rate and its volatility are

specified as two factors. The difficulty, however, lies with the estimation of the model.

One relatively simple approach put forward by Harvey et al. (1994) is to rewrite the

model in state-space form and apply the Kalman filter to build up the likelihood

function. We estimate the short rate volatiltiy process with the SVOL model and its

regime-switching counterpart in chapter 3.
1BHK first study the Level-GARCH model. Since we focus on the Level-GARCH spec-

ification, we will use the two terms GARCH and Level-GARCH interchangeably when
there is no ambiguity.
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In comparison with the SVOL model, GARCH models are relatively easy to esti-

mate. In addition, there exist a variety of extensions to the simple linear GARCH

model, which are specialized to capture various stylized empirical facts about finan-

cial assets volatilities, such as volatility asymmetry. Furthermore, as shown by

Nelson (1990), Nelson and Foster (1994), and Duan (1996), GARCH models con-

verge to the diffusion models in the limit. Thus one can view both the SVOL models

and the GARCH models as discrete time approximations to their continuous time

counterparts, although it is known that the SVOL model has a faster convergence

rate.

Longstaff and Schwartz (1992) develop a two-factor theoretical model of the term

structure where the short rate and its volatility are the two factors. A closed-form

solution is obtained for the bond price. They estimate the model using GMM. The

discrete time model is specified as follows:

rt+1 − rt = α0 + α1rt + α2Vt + εt+1,

Vt = β0 + β1rt + β2Vt−1 + β3ε2
t .

Note that the GARCH framework is adopted to parameterize the volatility factor.

They find empirical evidence supporting the model.

Fong and Vasicek (1991) argue that from the viewpoint of adopting a rollover

strategy on the short rate instrument, the term bond yield will be low when the

volatility of the short rate is high, and high if the volatility is low. Thus the volatility

of the short rate should be treated as a pricing factor for bond. They suggest a two-

factor model using the same factors as in the Longstaff and Schwartz model. The

model is specified as follows:

dr(t) = α(r̄ − r(t))dt +
√

v(t)dW1(t)

dv(t) = γ(v̄ − v(t))dt + ξ
√

v(t)dW2(t)
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where v denotes the volatility of the short rate. Fong and Vasicek provide a closed-

form solution for bond price under this model.

Brenner, Harjes, and Kroner (1996) extend the analysis of CKLS by adding the

GARCH effect to the volatility. More formally, they look at the following model:

rt − rt−1 = α + βrt−1 + εt,

E(εt|It−1) = 0, E(ε2
t |It−1) = σ2

t r
2γ
t−1,

σ2
t = a0 + a1ε2

t−1 + bσ2
t−1.

This model improves the CKLS model in that it allows volatility to depend on both

interest rate levels and information shocks. They find the sensitivity of volatility to

interest rate levels has been overstated in the literature. In particular, the estimated

value of the variance elasticity γ turns out to be less than one in their Level-GARCH

model, suggesting the unreasonably high estimate of γ obtained in the CKLS model

may be a result of model misspecification.

2.3 Model Specifications

Given the various models reviewed in the previous section, one may wonder which

model has more explanatory power. Are nonlinear drift and stochastic volatility

redundant in the sense that either one is sufficient to explain interest rate move-

ments? Or are they complementary in the sense that both are necessary to describe

the stochastic behavior of interest rate?

To address these issues, in this section I introduce a model of the short term

riskless interest rate that incorporates both a nonlinear drift function and stochastic

volatility. This model can be regarded as a generalization of the BHK specification

by including a nonlinear drift. It can also be viewed as an extension to the models

suggested by Aı̈t-Sahalia (1996) and CHLS since I allow the volatility to evolve
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stochastically over time. This general model nests almost all the important models

reviewed in the previous section so that we can easily test the various hypotheses

related to model specifications.

The proposed general model starts from the following continuous time model of

the short rate:

dr = (α0 + α1r + α2r2 + α3r−1)dt + σrγdW, (2.2)

where W is a standard Brownian motion. The drift term used here follows Aı̈t-

Sahalia (1996) and CHLS. In equation (2.2), when α3 equals zero and σ is a constant,

this model is similar to the Ahn and Gao model.

The discretized version of equation (2.2) takes the following form

rt+h − rt = (α0 + α1rt + α2r2
t + α3r−1

t )h + σt+hr
γ
t

√
hεt+h, (2.3)

where h is the length of the time interval and ε is a standard normal variable.

Here the Euler approximation scheme is adopted to discretize equation (2.2).

Although other higher approximation schemes are available, the Euler scheme is the

simplest and most commonly used.

By setting h = 1, we have

rt+1 − rt = (α0 + α1rt + α2r2
t + α3r−1

t ) + σt+1r
γ
t εt+1. (2.4)

To allow for stochastic volatility, I augment the model with the GARCH equation:

σ2
t+1 = ω + φ1σ2

t + φ2u2
t , (2.5)

where ut ≡ σtr
γ
t−1εt. This is the familiar linear GARCH(1,1) model, which has been

identified as a good parametric representation of the conditional heteroskedasticity

prevalent in many financial time series.2

2The GARCH model in equation (2.5) can be related to certain continuous time models.
See, for example, Nelson (1990), Nelson and Foster (1994). One such continuous time limit
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The equations (2.4) and (2.5) are the general unrestricted discrete-time model

that we estimate in this chapter. Note that it captures both the nonlinear drift and

stochastic volatility features reported in the literature. The various nested models

are shown Table 2.1.

Table 2.1: Model Specifications

Model Specification Restrictions
CKLS ∆rt+1 = α0 + α1rt + σt+1r

γ
t εt+1 α2, α3, φ1, φ2 = 0

AG ∆rt+1 = α0 + α1rt + α2r2
t + σt+1r

γ
t εt+1 α3, φ1, φ2 = 0

CHLS ∆rt+1 = α0 + α1rt + α2r2
t + α3r−1

t + σt+1r
γ
t εt+1 φ1, φ2 = 0

BHK ∆rt+1 = α0 + α1rt + σt+1r
γ
t εt+1, α2, α3 = 0

σ2
t+1 = ω + φ1σ2

t + φ2u2
t

Quadratic ∆rt+1 = α0 + α1rt + α2r2
t + σt+1r

γ
t εt+1, α2 = 0

σ2
t+1 = ω + φ1σ2

t + φ2u2
t

NLSV ∆rt+1 = α0 + α1rt + α2r2
t + α3r−1

t + σt+1r
γ
t εt+1,

σ2
t+1 = ω + φ1σ2

t + φ2u2
t

These model specifications include: a quadratic drift stochastic volatility model

where α3 = 0; a linear drift stochastic volatility model where both α2 = α3 = 0 (the

BHK model); a model with nonlinear drift but without stochastic volatility where

both φ1 = φ2 = 0 (the CHLS model); a model with quadratic drift but without

stochastic volatility where α3, φ1, and φ2 = 0 (the Ahn and Gao model); and lastly

the CKLS model where α2, α3, φ1, and φ2 = 0. Note that the Vasicek, CIR models

are nested in the CKLS model.

may be specified as follows:

dσ2 = (ω − θσ2)dt +
√

2ασ2dB,

where B is a standard Brownian Motion independent of W . See Bollerslev et al. (1994)
for further details.
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2.4 Data

The data include 2492 weekly observations of the 3-month Treasury bill rates from

the Federal Reserve site, ranging from January 1954 to October 2001. In order to

compare my results with other studies in the area, in particular the CKLS study, I

also estimate the models with monthly observations of the U.S. T-Bill yields obtained

from CRSP risk free rate file ranging from June 1964 to December 1999, a total of

427 observations.

While the majority of studies on interest rate models focus on US data, it is

interesting to look at the international evidence with regard to these models. Hence,

I also estimate the models using the interest rate data from four other industrial-

ized countries: Canada, Germany, Japan, and the United Kingdom. The data are

obtained from Datastream. The interest rate series include: Canada treasury bill 1

month (CN13883) from January 1980 to December 2000, altogether 1095 observa-

tions; Germany interbank one month offered rate (FIBOR1M) from November 1990

to December 2000, a total number of 530 observations; Japan interbank 1 month

offered rate (JPIBK1M) from December 1985 to December 2000, 782 observations,

and UK interbank 1 month middle rate (LDNIB1M) from January 1975 to December

2000, 1356 observations. Because of the relatively short time horizon covered by these

interest rate data compared with the US data, I use the weekly frequency to ensure

a fairly large number of sample observations.

Figure 2.1 depicts the time series of interest rate levels for the five countries

studied in this chapter. A cursory look indicates that these interest rate series do

exhibit very distinctive patterns. Both very high interest rate levels and extremely

low interest rate levels (less than 1% in the case of Japan) are observed. A common

feature is that the interest rate movements typically exhibit very volatile behavior.

For example, the US interest rate shows some dramatic swings during the federal
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reserve experiment period of 1979 to 1982, which coincides with high interest rate

levels. Whereas if we look at the cases of Canada and Japan, it seems that excessive

volatility can also occur at median to low interest rate levels.

1970 1980 1990 2000
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0.10

0.15
U.S. monthly 

1960 1970 1980 1990 2000
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0.10

0.15
U.S. weekly 

1980 1985 1990 1995 2000
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0.2 Canada weekly  

1995 2000
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0.075

0.100
Germany weekly 

1990 1995 2000

0.025
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Japan weekly 

1975 1980 1985 1990 1995 2000

0.05

0.10

0.15

0.20
U.K. weekly 

Figure 2.1: Short-term Interest Rates

Table 2.2 reports the descriptive statistics for the interest rate series and their first

order differences for the five countries under consideration. The highest interest rate

that we can observe is 21.55% from the Canadian interest rate series while the lowest

is 0.086% from Japan. All interest rate levels are highly autocorrelated. However, the

autocorrelation disappears when we look at their first differences. It is noteworthy

that the first differences of the interest rate data exhibits some excess kurtosis,

suggesting that normality may not be a good assumption. This motivates the use of

t distribution in the empirical analysis of this chapter to check the robustness of the

results.
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Table 2.2: Descriptive statistics

Panel A: Interest Rate Levels
US(weekly) US(monthly) Canada Germany Japan UK

Mean 0.05485 0.06109 0.08441 0.05368 0.03168 0.09900
Std. Dev. 0.02754 0.02486 0.03928 0.02423 0.02522 0.03382
Minimum 0.0058 0.02670 0.02400 0.02557 0.00086 0.04188
Maximum 0.1676 0.16150 0.21550 0.09901 0.08625 0.18188
Skewness 1.15618 1.41903 0.74012 0.69817 0.42339 0.30458
Kurtosis 4.92721 5.25636 3.16729 1.91209 2.02317 2.08825
ρ1 0.996 0.95700 0.99700 0.99800 0.99600 0.99300
ρ2 0.991 0.91400 0.99200 0.99600 0.99200 0.98700
ρ3 0.985 0.87600 0.98800 0.99200 0.98900 0.98100
ρ4 0.980 0.85000 0.98300 0.98900 0.98500 0.97400
ρ5 0.973 0.82800 0.97700 0.98600 0.98200 0.96600
ρ36 0.832 0.24200 0.22800 0.34300 0.28400 0.19900

Panel B: First Order Differences
US(weekly) US(monthly) Canada Germany Japan UK

Mean 0.000004 0.00004 -0.00007 -0.00007 -0.00008 -0.00004
Std Dev 0.0021 0.00716 0.00280 0.00093 0.00148 0.0038
Minimum -0.0182 -0.05813 -0.01620 -0.00558 -0.00750 -0.0606
Maximum 0.0192 0.03285 0.03050 0.00963 0.00747 0.0537
Skewness -0.637 -1.41252 1.60243 1.77560 -0.47619 0.2339
Kurtosis 23.377 16.40222 23.00815 30.04524 8.60639 82.0950
ρ1 0.270 0.00331 0.11200 0.09590 0.01070 -0.0936
ρ2 0.065 -0.07830 0.11600 0.06340 -0.05340 0.0337
ρ3 0.050 -0.12200 0.09830 0.07400 0.04460 0.0442
ρ4 0.087 -0.06450 0.08020 -0.01150 -0.04020 0.0430
ρ5 0.057 -0.01740 0.06690 -0.02090 -0.06490 0.0350
ρ36 0.058 0.04200 0.04320 0.03900 0.01410 -0.0498
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2.5 Diagnostic Tests for the ARCH/GARCH Effect

As a preliminary step, I test for the ARCH/GARCH effect using Engle’s LM test

and the Ljung-Box Q-statistics. Since OLS estimates are consistent even in the

presence of ARCH, I use the squared OLS residuals from the regression equation

drt = a0 + a1rt−1 + a2r2
t−1 + a3/rt−1 + εt to perform the tests. I choose the number

of lags equals to five in the LM test. Similar results are obtained when the number

of lags extends 36. For the Ljung-Box Q-statistics, I report the results for lags vary

from one to five. I also report results for lags equal to 36.

From Table 2.3, it is obvious that both the Engle’s LM test and the Ljung-Box

Q-statistics indicate the existence of conditional heteroskedasticity for four of the

five countries. The only exception is Germany. However, it is premature to conclude

that the stochastic volatility model does not fit the German interest rate since the

tests for ARCH/GARCH effect does not take into account the the level effect as

described in the CKLS model.

2.6 Model Estimation

I use the maximum likelihood to estimate the models. To set up the likelihood func-

tion for the GARCH models, let the xt ≡ (1, rt, r2
t , r

−1
t )′ be the vector of explanatory

variables and β ≡ (α0, α1, α2, α3)′ the vector of coefficients. Define yt ≡ rt − rt−1. In

the case of normal distribution, the sample log likelihood is given by

L(θ) = −(T/2)log(2π)− (1/2)
T

∑

t=1

log(gt)− (1/2)
T

∑

t=1

(yt − x′tβ)2/gt,

where gt ≡ σ2
t r

2γ
t−1 and σ2

t is defined in equation (2.5).
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Table 2.3: Tests for ARCH/GARCH Effects

This table reports the Engle’s LM test as well as the Ljung-Box Q statistics to detect
the ARCH/GARCH effects.

Panel A: LM ARCH test
US(weekly) US(monthly) Canada Germany Japan UK

LM(1) 148.454 34.960 24.979 0.136 3.342 257.180
p-value 0.000 0.000 0.000 0.713 0.068 0.000
LM(2) 254.526 44.499 25.096 0.137 12.579 316.760
p-value 0.000 0.000 0.000 0.934 0.002 0.000
LM(3) 284.143 51.634 25.126 1.272 18.476 333.898
p-value 0.000 0.000 0.000 0.736 0.000 0.000
LM(4) 304.141 54.592 26.058 4.054 24.085 339.195
p-value 0.000 0.000 0.000 0.399 0.000 0.000
LM(5) 338.999 54.593 27.236 4.678 41.457 354.373
p-value 0.000 0.000 0.000 0.456 0.000 0.000
LM(36) 586.458 102.355 54.792 19.065 66.608 339.022
p-value 0.000 0.000 0.023 0.991 0.001 0.000

Panel B: Ljung-Box
Q(1) 185.74 35.397 25.068 0.1366 3.3581 270.51
p-value 0.000 0.000 0.000 0.712 0.067 0.000
Q(2) 197.54 57.576 26.368 0.1375 13.366 270.65
p-value 0.000 0.000 0.000 0.934 0.001 0.000
Q(3) 204.68 79.258 26.594 0.3084 21.248 270.65
p-value 0.000 0.000 0.000 0.958 0.000 0.000
Q(4) 224.96 96.174 27.793 0.7017 29.998 270.65
p-value 0.000 0.000 0.000 0.951 0.000 0.000
Q(5) 233.92 102.29 29.781 0.8603 54.394 270.66
p-value 0.000 0.000 0.000 0.99 0.000 0.000
Q(36) 442.80 296.74 81.693 3.8689 105.96 271.93
p-value 0.000 0.000 0.000 1 0.000 0.000
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I also consider the case when the conditional distribution of yt is the student-t

distribution. The sample log likelihood can be shown to be:

L(θ) = T log
(

Γ[(v + 1)/2]
π1/2Γ(v/2)

(v − 2)−1/2
)

− (1/2)
T

∑

t=1

log(gt)

−[(v + 1)/2]
T

∑

t=1

log
[

1 +
(yt − x′tβ)2

gt(v − 2)

]

,

where Γ(.) is the gamma function, v is the degrees of freedom of the t distribution and

is a parameter to be estimated via maximum likelihood. In our actual estimation,

we first scale the data by multiplying them by 100. The results are robust to various

starting values.

Table 2.4 reports the parameter estimates for the various model specifications

listed in Table 2.1. Quad refers to the quadratic model specification. Standard errors

of the model parameter estimates are shown in parentheses. Panel A reports the

results for the U.S. weekly data, Panel B the results for the U.S. monthly data,

Panel C the results for Canada data, Panel D the results for Germany data, Panel

E the results for Japan data, and Panel F the results for the U.K. data.

As expected, the estimates of α1 in the case of linear drift models are all negative

for the five countries, with or without stochastic volatility. This is consistent with

the interpretation that α1 is the mean reversion coefficient. In addition, estimates of

α0 are less precise than those for α1 for linear drift models.

We notice some interesting phenomena related to the parameter estimates of γ,

the volatility elasticity. Recall that CKLS find their estimate of γ is significantly

higher than one, which is often regarded as an empirical puzzle since it implies the

interest rate process is non-stationary.
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Table 2.4: Parameter Estimates

Panel A: U.S. Weekly Data
α0 α1 α2 α3 γ ω/σ φ1 φ2

NLSV 0.014 -0.003 0.0001 0.004 0.152 0.0003 0.740 0.17
(0.02) (0.007) (0.001) (0.019) (0.028) (0.0001) (0.02) (0.02)

Quad. 0.018 -0.004 0.0001 0.152 0.0003 0.740 0.166
(0.01) (0.004) (0.000) (0.028) (0.0001) (0.021) (0.02)

BHK 0.015 -0.0024 0.151 0.0003 0.74 0.166
(0.01) (0.001) (0.028) (0.0001) (0.021) (0.02)

CHLS -0.027 0.0085 -0.0007 0.0300 0.708 0.003
(0.02) (0.006) (0.000) (0.016) (0.017) (0.0002)

AG 0.012 -0.0016 -0.0001 0.708 0.003
(0.01) (0.003) (0.000) (0.017) (0.0002)

CKLS 0.013 -0.002 0.708 0.003
(0.01) (0.001) (0.017) (0.0002)

Panel B: U.S. Monthly Data
α0 α1 α2 α3 γ ω/σ φ1 φ2

NLSV -0.116 0.041 -0.004 0.30 0.7564 0.006 0.40 0.019
(0.85) (0.15) (0.008) (1.47) (0.12) (0.002) (0.11) (0.01)

Quad. 0.056 0.011 -0.003 0.757 0.005 0.40 0.019
(0.13) (0.047) (0.004) (0.119) (0.002) (0.11) (0.01)

BHK 0.14 -0.02 0.757 0.005 0.413 0.019
(0.06) (0.012) (0.12) (0.002) (0.10) (0.01)

CHLS -0.2 0.06 -0.005 0.44 1.34 0.002
(0.99) (0.18) (0.01) (1.67) (0.08) (0.001)

AG 0.06 0.012 -0.003 1.34 0.002
(0.13) (0.051) (0.004) (0.08) (0.001)

CKLS 0.144 -0.02 1.35 0.002
(0.06) (0.014) (0.08) (0.001)
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Table 2.4: (continued)

Panel C: Canada Data
α0 α1 α2 α3 γ ω/σ φ1 φ2

NLSV -0.37 0.046 -0.002 0.76 -0.034 0.012 0.59 0.47
(0.22) (0.033) (0.002) (0.43) (0.05) (0.002) (0.04) (0.17)

Quad. 0.013 -0.007 0.0004 -0.034 0.011 0.618 0.41
(0.04) (0.01) (0.001) (0.05) (0.002) (0.047) (0.13)

BHK -0.01 0.00 -0.029 0.011 0.619 0.39
(0.02) (0.003) (0.05) (0.002) (0.048) (0.13)

CHLS -0.07 0.006 -0.0003 0.24 0.37 0.016
(0.16) (0.022) (0.001) (0.343) (0.041) (0.003)

AG 0.04 -0.008 0.0003 0.37 0.016
(0.03) (0.009) (0.0005) (0.04) (0.003)

CKLS 0.022 -0.004 0.37 0.016
(0.02) (0.002) (0.041) (0.003)

Panel D: Germany Data
α0 α1 α2 α3 γ ω/σ φ1 φ2

NLSV 0.43 -0.098 0.006 -0.55 0.26 0.0008 0.57 0.053
(0.24) (0.049) (0.003) (0.379) (0.061) (0.0002) (0.05) (0.023)

Quad. 0.073 -0.029 0.0023 0.27 0.0008 0.57 0.05
(0.03) (0.011) (0.001) (0.062) (0.0002) (0.056) (0.02)

BHK 0.005 -0.002 0.275 0.0008 0.576 0.046
(0.01) (0.002) (0.06) (0.0002) (0.056) (0.02)

CHLS 0.23 -0.06 0.004 -0.26 0.63 0.001
(0.25) (0.05) (0.003) (0.390) (0.056) (0.0002)

AG 0.065 -0.026 0.002 0.63 0.001
(0.03) (0.012) (0.001) (0.056) (0.0002)

CKLS 0.012 -0.004 0.64 0.001
(0.01) (0.002) (0.056) (0.0002)
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Table 2.4: (continued)

Panel E: Japan Data
α0 α1 α2 α3 γ ω/σ φ1 φ2

NLSV -0.005 -0.004 0.0003 0.003 0.147 0.003 0.74 0.05
(0.01) (0.008) (0.001) (0.002) (0.02) (0.001) (0.04) (0.01)

Quad. 0.01 -0.011 0.0011 0.147 0.003 0.74 0.05
(0.01) (0.006) (0.001) (0.02) (0.001) (0.05) (0.01)

BHK 0.005 -0.0042 0.1468 0.003 0.74 0.047
(0.01) (0.002) (0.02) (0.001) (0.048) (0.01)

CHLS -0.008 -0.0006 -0.0001 0.003 0.20 0.015
(0.01) (0.008) (0.001) (0.002) (0.017) (0.001)

AG 0.008 -0.009 0.0007 0.2 0.02
(0.01) (0.007) (0.001) (0.017) (0.001)

CKLS 0.005 -0.004 0.198 0.015
(0.01) (0.002) (0.017) (0.001)

Panel F: U.K. Data
α0 α1 α2 α3 γ ω/σ φ1 φ2

NLSV -1.09 0.12 -0.0044 3.04 0.97 0.001 0.064 0.002
(0.61) (0.07) (0.002) (1.72) (0.04) (0.0002) (0.04) (0.001)

Quad. -0.011 0.005 -0.0004 0.96 0.001 0.065 0.002
(0.07) (0.02) (0.001) (0.05) (0.0002) (0.046) (0.00)

BHK 0.023 -0.003 0.96 0.001 0.065 0.002
(0.02) (0.003) (0.045) (0.0002) (0.045) (0.00)

CHLS -2.04 0.23 -0.008 5.6 1.2 0.0005
(0.65) (0.075) (0.003) (1.814) (0.021) (0.00)

AG -0.022 0.01 -0.0007 1.177 0.0006
(0.07) (0.018) (0.001) (0.023) (0.0001)

CKLS 0.03 -0.003 1.18 0.0006
(0.02) (0.003) (0.02) (0.0001)
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Contrary to the results of CKLS, we find that the estimated γ values are sensitive

to the choice of datasets as well as model specifications.

1. We compare the results for the two U.S. interest rate datasets. In the case of

weekly data, γ estimates are much lower than the estimates obtained from the

monthly data for all models considered. For example, the γ estimate for the

unrestricted model (NLSV) is merely 0.152, far below the γ estimate of 0.756

from the monthly data.

2. We find single factor models that ignore the presence of conditional het-

eroscedasticity in the data give much higher γ estimates than their GARCH

counterparts. For the U.S. weekly data, γ estimates from single-factor models

are as high as 0.7. Moreover, they exceed the stationary threshold when esti-

mated with the U.S. monthly data, the same dataset used in the CKLS study.

Hence our finding is in agreement with the BHK result that CKLS overstate

the sensitivity of interest rate volatility to interest rate levels due to model

misspecification.

3. We note that variations in the estimates of γ for models with different drift

specifications are very small. For example, the γ estimates for the GARCH

models using U.S. monthly data are 0.75637, 0.75756, and 0.75672 respecitively.

Therefore, we further verify that the BHK result is robust to different specifi-

cations in the drift.

For the other four countries under consideration, we obtain similar results. We

find that without exception estimates of γ become lower when we include the

GARCH equation. For example, in the case of the Germany data, the estimates

of γ are as high as 0.63 for models without GARCH. However, if we allow for condi-

tional heteroscedasticity, estimates of γ drop to 0.27 which is significantly less than

1. In addition we note that the standard errors of all γ estimates are relatively small.
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In terms of national patterns, I find for single factor models without stochastic

volatility γ exceeds the critical value of 1 only in two countries, the US (monthly

data) and the UK, which have the most volatile interest rates among the five coun-

tries (see Tables 2.2 and 2.3). In addition, in both cases, when we add the GARCH

equation, estimates of γ fall below 1, although in the case of the U.K. estimates of

γ are still very high (around .96). The case of Canada deserves some attention. The

γ estimates turn out to be slightly negative for the three GARCH models. However,

these estimates are statistically insignificant and therefore indistinguishable from

zero. Hence we conclude that for Canadian interest rates the level effect is ignorable

after adjusting for stochastic volatility. This forms a sharp contrast with the UK case

where the presence of the level effect is unambiguous. Therefore we are cautioned

against trying to extrapolate a successful interest rate model to different countries

without first looking for empirical evidence that supports such a model. Otherwise,

modeling risks might be a big concern.

Turning to the estimates for the GARCH equation in the case of stochastic

volatility models, we find the parameter estimates are all positive, which guarantees

that the one-step ahead forecasts of conditional variances are positive. Also note

that the sum of estimated coefficients for φ1 and φ2 is less than one, satisfying the

stationarity constraint. As it is typically the case, the estimates of φ1 are higher than

φ2.

With regard to the shape of the drift functions, we find that estimates of the non-

linear drift parameters α2 and α3 are all insignificant. But the linear drift parameters

are statistically significant, especially for the linear drift models.

Table 2.5 reports the γ estimates as well as the log-likelihood values under the

t distribution for the six models. We elect not to report the estimates for other

parameters since in general they look similar to those obtained under the Gaussian

distribution. We still observe the same phenomenon that γ estimates are sensitive
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to the inclusion of stochastic volatility but basically invariant to the different spec-

ifications of the drift equation. As is the case under normality, the estimates of γ

are lower for GARCH models than for single factor models. For three of the five

countries, single factor models imply γ above or very close to 1, whereas all are suf-

ficiently less than one for models with GARCH volatility. Thus, single-factor models

exaggerate the sensitivity of interest rate volatility to interest rate levels. With the

exception of the U.S. weekly data, we find under the t distribution the estimates for

γ are slightly higher than those obtained under the Gaussian distribution.

Table 2.5: γ Estimates under t Distribution

Panel A: Log-likelihood
US (weekly) US (monthly) Canada Germany Japan UK

NLSV 1759.16 -289.899 243.378 809.198 854.755 208.701
Quadratic 1758.64 -290.343 240.457 808.659 854.247 208.390
BHK 1758.39 -290.401 240.456 806.621 853.884 207.813
CHLS 1411.87 -295.832 205.146 758.611 808.405 126.550
AG 1410.08 -295.893 202.187 756.339 807.091 126.529
CKLS 1410.07 -296.032 202.160 753.896 806.991 126.337

Panel B: γ Estimates
US (weekly) US (monthly) Canada Germany Japan UK

NLSV 0.066628 0.87012 0.17345 0.45071 0.35684 0.15259
s.e. 0.012725 0.18366 0.07009 0.12632 0.05867 0.10652
Quadratic 0.065868 0.84981 0.16645 0.44423 0.36565 0.15392
s.e. 0.011973 0.19703 0.06988 0.12586 0.0646 0.10296
BHK 0.064235 0.85263 0.16651 0.43671 0.36989 0.15956
s.e. 0.011589 0.19635 0.06956 0.12731 0.06792 0.10241
CHLS 0.69843 1.4026 0.54135 1.03590 0.75489 1.0001
s.e. 0.0399 0.11353 0.06770 0.12281 0.03727 0.08822
AG 0.69753 1.4063 0.53410 1.0226 0.74984 0.99973
s.e. 0.03976 0.11296 0.06778 0.12343 0.03713 0.08820
CKLS 0.69781 1.4097 0.53259 1.0603 0.74936 1.00020
s.e. 0.03968 0.11237 0.06746 0.12392 0.03713 0.08825
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2.7 Model Comparision

In this section, I compare the various models using three metrics: AIC, SBC, and

the likelihood ratio test statistics.

2.7.1 LR Tests and Information Criteria

I compare the various model specifications based on two benchmarks. The first one is

the likelihood ratio (LR) test, which is readily available since we have estimated both

the unrestricted and the restricted models. The second benchmark is the information

criteria for model selection. We use both the Akaike Information Criterion (AIC) and

the Schwartz Bayesian Criterion (SBC).3

Tables 2.6 and 2.7 report the LR test statistics where the error terms for various

models are assumed to follow the normal and t distributions respectively. D.f. refers

to the degree of freedom for the test.

Under the normal distribution, one can reject all single-factor models without

stochastic volatility at the 1% significance level. Similar conclusions can be reached

under the t distribution, where only the CKLS model in the case of the US monthly

data shows some marginal significance at the 1% level. At the five percent level all

of the single-factor models are squarely rejected regardless of the specification of the

drift term. On the other hand, under normality the LR tests fail to reject the linear

drift stochastic volatility (BHK) model at both five and ten percent levels for all

countries except Germany , which has a p-value of 1.8%. It is noteworthy that for

the US data, the linear drift GARCH model is almost indistinguishable from the

nonlinear drift GARCH model. Since most studies focus on the U.S. data, it seems

that adding nonlinear drift to the short rate model is not justified by the empirical

evidence presented here. Also for three of the five countries, Canada, Japan, and the

3AIC = −2(L/T ) + 2(k/T ) and SBC = −2(L/T ) + klog(T )/T, where L refers to the
log-likelihood value, T the number of observations, and k the number of parameters.
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U.K., the tests seem to favor the linear drift GARCH model more than its quadratic

counterpart. Under the t distribution, the linear drift GARCH model does better

than the quadratic model in three of the five countries, the U.S., Canada, and Japan.

Once again we find strong evidence that the nonlinear drift specification does not

seem to fit the U.S. data. And at a five percent level the BHK model is not rejected

for all countries.

Table 2.6: Likelihood Ratio Tests under Normal Distribution

US(monthly) US(weekly)
Model LR d.f. p-value LR d.f. p-value
Quadratic 0.042 1 0.8376 0.04 1 0.8415
BHK 0.52 2 0.7711 0.16 2 0.9231
CHLS 32.18 2 0.0000 1291.514 2 0.0000
AG 32.25 3 0.0000 1295.07 3 0.0000
CKLS 32.71 4 0.0000 1295.126 4 0.0000

Germany Canada
Model LR d.f. p-value LR d.f. p-value
Quadratic 2.028 1 0.1544 3.2794 1 0.0702
BHK 7.972 2 0.0186 3.7644 2 0.1523
CHLS 72.508 2 0.0000 166.9172 2 0.0000
AG 72.94 3 0.0000 167.4272 3 0.0000
CKLS 76.478 4 0.0000 167.7252 4 0.0000

UK Japan
Model LR d.f. p-value LR d.f. p-value
Quadratic 3.162 1 0.0754 2.534 1 0.1114
BHK 3.412 2 0.1816 3.962 2 0.1379
CHLS 102.468 2 0.0000 35 2 0.0000
AG 111.754 3 0.0000 37.494 3 0.0000
CKLS 112.312 4 0.0000 38.074 4 0.0000
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Table 2.7: Likelihood Ratio Tests under t Distribution

This table reports the likelihood ratio test for various models under the assumption
of t distribution. LR refers to the likelihood ratio test statistics. D.f. refers to the
degree of freedom for the test.

US(monthly) US(weekly)
Model LR d.f. p-value LR d.f. p-value
Quadratic 0.888 1 0.3460 1.04 1 0.3078
BHK 1.004 2 0.6053 1.54 2 0.4630
CHLS 11.866 2 0.0027 694.58 2 0.0000
AG 11.988 3 0.0074 698.16 3 0.0000
CKLS 12.266 4 0.0155 698.18 4 0.0000

Germany Canada
Model LR d.f. p-value LR d.f. p-value
Quadratic 1.078 1 0.2991 5.842 1.0000 0.01565
BHK 5.154 2 0.0760 5.844 2.0000 0.0538
CHLS 101.174 2 0.0000 76.464 2.0000 0.0000
AG 105.718 3 0.0000 82.382 3.0000 0.0000
CKLS 110.604 4 0.0000 82.436 4.0000 0.0000

UK Japan
Model LR d.f. p-value LR d.f. p-value
Quadratic 0.622 1 0.4303 1.016 1.0000 0.3135
BHK 1.776 2 0.4115 1.742 2.0000 0.4185
CHLS 164.302 2 0.0000 92.7 2.0000 0.0000
AG 164.344 3 0.0000 95.328 3.0000 0.0000
CKLS 164.728 4 0.0000 95.528 4.0000 0.0000

Table 2.8 and Table 2.9 report the AIC and SBC for all the countries and all the

models (including the general unrestricted model) under the normal and t distribu-

tions respectively.

Under the Gaussian distribution, the SBC indicates that the linear drift

stochastic volatility model is the best, and from the AIC one can draw a sim-

ilar conclusion except for the case of Germany, where the NLSV and the Quadratic

models slightly outperform the BHK model. This is natural since the AIC puts
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less penalty on models with more parameters than the SBC does. In all situations,

models without stochastic volatility performs badly.

The situation is a little more complicated when we look at models under the t

distribution. The AIC suggests the BHK model is best for the U.S., the U.K., and

Japan, while in the second and third places for Canada and Germany. Using the

SBC, the BHK model is best for US (weekly), Canada, U.K., and Japan.

To sum up, the evidence appears to be in favor of the linear drift GARCH (BHK)

model, particularly for the U.S., the U.K., and Japan where short term interest rates

are volatile.

Table 2.8: Information Criteria under Normal Distribution

This table reports the information criteria for the various models under normal
distribution. AIC refers to the Akaike information criterion, and SBC refers to the
Schwartz Bayesian criterion. AIC = −2(L/T ) + 2(k/T ) and SBC = −2(L/T ) +
klog(T )/T, where L refers to the log-likelihood value, T the number of observations,
and k the number of parameters.

US(monthly) US(weekly) Canada
Model AIC SBC AIC SBC AIC SBC
NLSV 1.451977 1.527982 -1.30485 -1.30036 0.076415 0.112934
Quadratic 1.447391 1.513896 -1.30563 -1.30171 0.077584 0.109538
BHK 1.443827 1.500831 -1.30639 -1.30303 0.0762 0.103589
CHLS 1.517972 1.574976 -0.78819 -0.78483 0.225198 0.252587
AG 1.513452 1.560955 -0.78756 -0.78476 0.223837 0.246662
CKLS 1.509845 1.547848 -0.78834 -0.7861 0.222283 0.240543

Germany Japan UK
Model AIC SBC AIC SBC AIC SBC
NLSV -2.19447 -2.12997 -1.14057 -1.09287 0.58381 0.614561
Quadratic -2.19442 -2.13798 -1.13988 -1.09815 0.584667 0.611574
BHK -2.18697 -2.1386 -1.14061 -1.10485 0.583376 0.606439
CHLS -2.06521 -2.01684 -1.10092 -1.06515 0.656426 0.67949
AG -2.06817 -2.02786 -1.10029 -1.07048 0.661799 0.681019
CKLS -2.06526 -2.03302 -1.10211 -1.07826 0.660736 0.676111
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Table 2.9: Information Criteria under t Distribution

This table reports the information criteria for the various models under t distribu-
tion. AIC refers to the Akaike information criterion, and SBC refers to the Schwartz
Bayesian criterion. AIC = −2(L/T ) + 2(k/T ) and SBC = −2(L/T ) + klog(T )/T,
where L refers to the log-likelihood value, T the number of observations, and k the
number of parameters.

US(monthly) US(weekly) Canada
Model AIC SBC AIC SBC AIC SBC
NLSV 1.395311 1.471317 -1.40543 -1.40094 -0.42991 -0.3934
Quadratic 1.392707 1.459212 -1.40581 -1.40189 -0.42641 -0.39445
BHK 1.388295 1.445299 -1.40641 -1.40305 -0.42823 -0.40084
CHLS 1.413733 1.470737 -1.12831 -1.12494 -0.36374 -0.33635
AG 1.409335 1.456838 -1.12767 -1.12487 -0.36016 -0.33733
CKLS 1.405302 1.443305 -1.12847 -1.12623 -0.36194 -0.34368

Germany Japan UK
Model AIC SBC AIC SBC AIC SBC
NLSV -3.02339 -2.95889 -2.16561 -2.11792 -0.29602 -0.26527
Quadratic -3.02513 -2.96869 -2.16687 -2.12514 -0.29704 -0.27013
BHK -3.02121 -2.97284 -2.1685 -2.13273 -0.29766 -0.2746
CHLS -2.84004 -2.79167 -2.05219 -2.01642 -0.1778 -0.15474
AG -2.83524 -2.79493 -2.05138 -2.02158 -0.17925 -0.16003
CKLS -2.8298 -2.79755 -2.05369 -2.02984 -0.18044 -0.16506

2.7.2 Regime Shifts and the Fed Experiment

Lamoureux and Lastrapes (1990) point out that one has to be careful when inter-

preting the finding of persistence in variance as in the GARCH model. Their study

on stock-return data suggests that the pronounced phenomenon of variance persis-

tence may be overstated because of the failure to account for structural shifts in

the data. Since in this research I find the GARCH specification is important for

the short rate models, whereas nonlinearity in drift is less significant, it is possible

that the result might be affected due to the structural breaks. In the case of the

US data, the Fed experiment from 1979 to 1982 stands out as a typical example of
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a structural break. In fact, during the Fed experiment we observe very high short

rate volatility coincided with high interest rate levels. Duffee (1993) notes that the

unreasonably high volatility elasticity estimates obtained by CKLS is attributable

to their failure to account for structure breaks. I choose to reexamine the US data

by introducing a dummy variable into the GARCH equation to take into account

the structural break during the Fed experiment. Basically, this allows for changes in

the unconditional variance during the Fed experiment for the short rate models. The

results are obtained under the Gaussian distribution. Table 2.10 and 2.11 report the

results for the U.S. weekly and monthly data respectively.

From Table 2.10, I find that estimates of β, the coefficient of the dummy var-

iale, are not statistically significant. The sum of φ1 and φ2 remains unchanged. On

the other hand, the Federal Reserve experiment dummy does seem to have a bigger

impact on the parameters of interest for the one-factor models than the two-factor

models. For example, in the case of the U.S. weekly data the estimates of γ decrease

slightly from 0.15 to 0.14 for the stochastic volatility models. In contrast, they drop

sharply from 0.7 to 0.43 for those single-factor models. The same conclusion applies

to the case of monthly data. The mean reversion coefficient α1 still has the cor-

rect sign. And the estimated coefficients of the GARCH equation all satisfy the

usual constraints. Interestingly, we still find the familiar result that the inclusion of

stochastic volatility seems to have a greater impact of the estimates of coefficients

of interest than the specification of the drift term does. The LR tests solidly reject

all single factor models regardless of their drift function specification, but fail to

reject the BHK model. In addition both the AIC and the SBC pick the linear drift

stochastic volatility model as the best one. Therefore we conclude that stochastic

volatility is still the most important feature of the short rate after adjusting for the

Fed experiment, whereas nonlinearity in the drift seems relatively unimportant for

a parsimonious model of the short rate at least in the case of the US data.
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Table 2.10: Parameter Estimates Subject to Changes in Unconditional Variance

This table reports the parameter estimates when including a dummy variable for
the Federal Reserve Experiment during 1979 to 1982. β is the coefficient estimate
for the dummy variable of the Federal Reserve experiment. AIC refers to the Akaike
information criterion, and SBC refers to the Schwartz Bayesian criterion.

Panel A: U.S. Monthly Data
Model NLSV Quadratic BHK CHLS AG CKLS
α0 -0.22119 0.050939 0.14324 -0.02211 0.066368 0.17555
s.e. 0.88514 0.13609 0.06149 1.05286 0.15136 0.06574
α1 0.060852 0.013841 -0.02122 0.029677 0.01399 -0.02933
s.e. 0.15871 0.0478 0.01214 0.19288 0.05577 0.0136
α2 -0.00539 -0.00298 -0.00469 -0.00386
s.e. 0.00873 0.00394 0.01088 0.00482
α3 0.47185 0.15022
s.e. 1.51587 1.76921
γ 0.70499 0.70875 0.71286 1.0175 1.0181 1.0239
s.e. 0.12689 0.12618 0.12569 0.11282 0.11255 0.11213
ω 0.006874 0.006777 0.00658 0.006411 0.006396 0.006284
s.e. 0.00289 0.00283 0.00272 0.00244 0.00243 0.00238
φ1 0.3805 0.38167 0.39117
s.e. 0.11063 0.11067 0.10899
φ2 0.022667 0.022297 0.021582
s.e. 0.01326 0.01298 0.01254
β 0.008278 0.007934 0.00735 0.013106 0.013082 0.01271
s.e. 0.01172 0.01141 0.01093 0.00891 0.00888 0.00862
log-likelihood -301.421 -301.47 -301.758 -308.76 -308.764 -309.085
LR 0.098 0.674 14.678 14.686 15.328
p-value 0.754243 0.713909 0.00065 0.002106 0.004067
AIC 1.453963 1.449508 1.446173 1.47897 1.474304 1.471124
SBC 1.539469 1.525514 1.512678 1.545474 1.531308 1.518627
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Table 2.10: (continued)

Panel B: U.S. Weekly Data
NLSV Quadratic BHK CHLS AG CKLS

α0 0.015199 0.018255 0.015071 -0.02168 0.01011 0.012173
s.e. 0.02188 0.00923 0.00484 0.0256 0.00883 0.00568
α1 -0.00302 -0.00383 -0.00231 0.007443 -0.0011 -0.00224
s.e. 0.00654 0.00391 0.00109 0.00756 0.00393 0.00125
α2 9.67E-05 0.000155 -0.00072 -0.00012
s.e. 0.00054 0.00038 0.0006 0.0004
α3 0.002959 0.02619
s.e. 0.0192 0.01979
γ 0.14067 0.14052 0.13995 0.43966 0.4388 0.43914
s.e. 0.02938 0.02937 0.02934 0.02397 0.02394 0.02392
ω 0.000358 0.000359 0.000359 0.004797 0.004812 0.004807
s.e. 0.00005 0.00005 0.00005 0.00037 0.00037 0.00037
φ1 0.74091 0.7408 0.74034
s.e. 0.02137 0.02138 0.02142
φ2 0.16881 0.16896 0.16974
s.e. 0.02219 0.02219 0.02224
β 0.001953 0.001961 0.001956 0.029295 0.029477 0.029446
s.e. 0.0016 0.0016 0.00161 0.00499 0.00501 0.00501
log-likelihood 1635.48 1635.47 1635.39 1189.86 1188.99 1188.94
LR 0.02 0.18 891.24 892.98 893.08
p-value 0.887537 0.913931 2.9E-194 2.9E-193 5.3E-192
AIC -1.30536 -1.30616 -1.30689 -0.94933 -0.94943 -0.95019
SBC -1.28434 -1.28747 -1.29054 -0.93298 -0.93542 -0.93851

2.7.3 Sub-period Analysis

As an additional robustness check, we divide the US weekly data into two sub-

periods: January 1954 to December 1982 and January 1983 to November 2001. The

first sub-period has 1514 observations and the second has 978 observations. Note

that Federal Reserve experiment is included in the first sub-period. In addition, the

second sub-period covers approximately the same period as for the other countries

that we examine, making the results directly comparable to those of other countries.
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The results are reported in Table 2.11. Overall, the results for the two sub-periods

are broadly consistent with those for the whole sample. Once again, we find the

inclusion of GARCH effect lowers the γ estimates, and all the statistical tests are

supportive of the linear drift stochastic volatility model specification. This suggests

that our results are robust to different sample periods.

Table 2.11: Sub-period Analysis

This table reports the parameter estimates when we divide the U.S. weekly data
into two sub-periods. The first sub-period is from 1954 to 1982, and the second
sub-period is from 1983 to 2001.

Panel A: 1954 - 1982
NLSV Quadratic BHK CHLS AG CKLS

α0 -0.0322 0.006722 0.009875 -0.03653 0.010828 0.013557
0.02701 0.0108 0.00634 0.02739 0.00814 0.0059

α1 0.012119 0.001276 -0.00033 0.013112 0.000139 -0.00169
0.00839 0.00477 0.00173 0.00827 0.00413 0.0017

α2 -9.32E-04 -0.00017 -0.001 -0.00019
0.00068 0.00048 0.0006 0.0004

α3 0.034676 0.034918
0.0219 0.01928

γ 0.14721 0.1466 0.14751 0.75578 0.75448 0.75501
0.03152 0.03155 0.03148 0.02036 0.02032 0.02028

ω 0.000224 0.000229 0.000227 0.003423 0.003444 0.003439
0.00003 0.00003 0.00003 0.00024 0.00024 0.00024

φ1 0.76784 0.76726 0.76778
0.01909 0.01969 0.01955

φ2 0.16546 0.16602 0.16513
0.02369 0.02401 0.02375

loglik 807.903 806.675 806.61 456.894 455.258 455.139
LR 2.456 2.586 702.018 705.29 705.528
p-value 0.117077 0.274446 0.0000 0.0000 0.0000
AIC -1.05668 -1.05637 -1.05761 -0.59563 -0.59479 -0.59596
SBC -1.02855 -1.03177 -1.03652 -0.57454 -0.57721 -0.58189
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Table 2.11: (continued)

Panel B: 1983 - 2001
NLSV Quadratic BHK CHLS AG CKLS

α0 0.39313 0.027448 0.004885 0.091058 -0.0236 -0.00451
0.27561 0.02909 0.01101 0.27693 0.03155 0.01147

α1 -0.07799 -0.00947 -0.00097 -0.01437 0.007054 -0.00022
0.05237 0.01033 0.00199 0.05264 0.0114 0.00208

α2 4.69E-03 0.000738 0.000602 -0.00063
0.00309 0.00088 0.00311 0.00097

α3 -0.59585 -0.18769
0.44678 0.45039

γ 0.22455 0.23724 0.24735 0.545 0.54479 0.54413
0.08041 0.07964 0.07859 0.05914 0.05916 0.0592

ω 0.001044 0.001071 0.001078 0.002003 0.002005 0.00201
0.00024 0.00024 0.00024 0.00041 0.00041 0.00041

φ1 0.49606 0.47874 0.46714
0.07337 0.07429 0.0748

φ2 0.16251 0.15731 0.15319
0.05009 0.04831 0.04674

loglik 841.383 840.489 840.143 736.227 736.14 735.93
LR 1.788 2.48 210.312 210.486 210.906
p-value 0.18117 0.289384 0.0000 0.0000 0.0000
AIC -1.70426 -1.70448 -1.70581 -1.49331 -1.49517 -1.49679
SBC -1.6643 -1.66951 -1.67584 -1.46333 -1.4702 -1.47681

2.8 Conclusions

Our findings shed some new light on the empirical evidence with regard to interest

rate modeling.

First, we find evidence that the nonstationarity puzzle found in CKLS may not

be a robust stylized fact of US short-term interest rates. We find the parameter

estimates for γ belong to the nonstationary region only if we use the monthly risk-

free dataset to estimate a one-factor model. Either the extension to a two-factor

model or using an weekly dataset leads to strong rejection of the nonstationarity in
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the U.S. short rate. Hence our result supports BHK’s conclusion that the level effect

is exaggerated in CKLS. We also find that BHK’s conclusion is robust to different

specifications of the drift functions.

Second, our international evidence seems to supports the view that in order

to avoid model risks it is of great importance for financial institutions to carefully

study the related empirical evidence on short rates in different countries when pricing

interest rate derivatives or hedging interest rate related risks. As an example we show

that the level effect is evident in the U.S. and U.K. data but not in the Canadian

data. Thus, the success of a specific model in a particular country does not necessarily

guarantee its success in another.

Third, we provide new evidence with regard to the shape of the drift function.

Aı̈t-Sahalia, CHLS, and Stanton argue that the drift function of the US short rate

is nonlinear. Chapman and Pearson (2000), Jones (2000), and Pritsker (1998) ques-

tion the econometric techniques used in finding the nonlinear drift. We show that

the empirical evidence in support of nonlinear drift function is very weak. We find

that after taking into account the stochastic volatility in the data, the linear drift

stochast volatility model seems to fit the data best. In fact, our model selction criteria

indicate that even among the single-factor models, the nonlinear drift models do not

outperform their linear drift counterparts. Figure 2.2 plots the drift functions for the

six models estimated with U.S. weekly data. Interestingly, we find the only model

that exhibit significant nonlinear drift is the CHLS model. The other five models,

including models with nonlinear drift and stochastic volatility, have linear or very

close to linear drift terms. However, if we plot the drift function for the CHLS model

along with its confidence band (one standard deviation). The very wide confidence

band suggests that the support for nonlinear drift is indeed very weak even in the

case of the CHLS model.
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Figure 2.2: Drift Functions for US Weekly Data

Figures 2.3 to 2.6 plot the drift functions for the other four countries. Interest-

ingly, we find sometimes imposing the nonlinear drift model on the data may imply a

nonstationary interest rate process. For instance, for the German data, the nonlinear

drift models imply negative drift functions when interest rates are low and positive

drift functions when rates are higher. Similar situation is also found in the case of

Japan for high interest rate levels.
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Figure 2.3: Drift Functions for Canadian Weekly Data
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Figure 2.4: Drift Functions for German Weekly Data
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Figure 2.5: Drift Functions for Japanese Weekly Data

-1

0

1

2

3

4

5

6

7

8

9

10

2 4 6 8 10 12 14

D
rif

t

Interest Rate Levels (%)

NLSV
Quadratic

BHK
CHLS

AG
CKLS

Figure 2.6: Drift Functions for UK Weekly Data



Chapter 3

Regime Shifts in Interest Rate Volatility

3.1 Introduction

It has been a well-established empirical fact that the volatility of the U.S. short term

interest rate is itself volatile (e.g. Brenner, Harjes, and Kroner (1996) , Andersen

and Lund (1997)). Moreover, Ball and Torous (1999) provide evidence that stochastic

volatility is also a salient feature characterizing the short rate dynamics of some other

developed countries, such as the U.K., Japan, and so on. In the previous chapter,

we model the stochastic volatility in short rates with a GARCH model. A more

attractive alternative probably is the stochastic volatility (SVOL) model of Taylor

(1986). In this chapter we take a look at the SVOL model and compare it with its

regime-switching counterpart.

As a competitor of the ARCH/GARCH models, the SVOL model has a natural

interpretation of being a discrete-time analog of continuous-time stochastic volatility

diffusion models, which are widely used in derivative pricing. In the SVOL approach,

the underlying volatility is modeled as an unobserved state variable. Ball and Torous

(1999) adopt this approach to model the volatility process of the short term interest

rates. A potential problem, however, is that the persistence in volatility may be over-

stated due to structural breaks in the volatility process. Lamoureux and Lastrapes

(1990) first point out this misspecification problem in the context of the GARCH

models. But the same criticism may also be applied to the SVOL model.

41
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One way to account for structural breaks is to use the regime-switching model

of Hamilton (1989). Several authors have attempted to model the conditional het-

erescedasticity in financial assets in the regime-switching framework. Gray (1996)

argues that structural breaks, such as the Federal Reserve experiment of 1979 to

1982, justify the use of a regime-switching model to model the short rate volatility.

Duffee (1993) also presents similar evidence on this issue. He indicates that the unrea-

sonably high volatility elasticity estimates obtained by Chan, Karolyi, Longstaff and

Sanders (1992) may be attributable to their failure to account for structure breaks.

Regime shifts in the ARCH model has been studied in Hamilton and Susmel (1994)

as well as in Cai (1994). Cai applies the regime-switching ARCH model to the

monthly returns of the three-month U.S. Treasury bills, and identifies two periods

of shifting regimes, associated with the oil crisis and the Federal Reserve monetary

policy experiment from 1979 to 1982 respectively. Gray (1996) develops a general-

ized regime-switching model where regime shifts are incorporated into the GARCH

model. He concludes that the regime-switching GARCH model outperform the its

single-regime counterparts for the U.S. short rates.

Modeling regime shifts in the SVOL model has been considered in So, Lam, and

Li (1998). However, their approach is based on Bayesian methods and, therefore,

computationally intensive. More importantly, compared with the method used in

this chapter, their approach is restrictive in the sense that their model do not allow

for non-zero correlation between the disturbance terms. Nor do they consider the

case of time-varying transition probabilities.

In this chapter, we compare the SVOL approach with the regime-switching

stochastic volatility (RSSV) approach in modeling short rate volatilities. Our con-

tributions to the literature are as follows:
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First, we find strong evidence that there exist regime shifts in short rate volatil-

ities for the four countries under consideration. These volatility regimes are sharply

defined and seem to last for a long period of time.

Second, by comparing the results from the SVOL and RSSV models, we find

strong evidence that using the SVOL model may lead to spuriously high volatility

persistence if regime shifts in the volatility process are unaccounted for. In fact, for

three out of the four countries, the apparent volatility persistence drop significantly

after we allow for regime shifts.

Third, we extend the RSSV model by relaxing the independence assumption

commonly used in the SVOL/RSSV models. We find evidence that modeling the

correlation is important at least for the U.S short rate volatilities.

Fourth, apart from a constant transition probability RSSV model, we also put

forward a time-varying transition probability RSSV model where the transition prob-

abilities are allowed to vary with other exogenous variables. We find evidence that a

constant transition probability RSSV model is the most parsimonious specification.

This chapter is organized as follows. Section 3.2 gives further background and

sets up the models. Section 3.3 compares SVOL model with the RSSV model using

the short rate data for the U.S., the U.K., Canada, and Japan. Section 3.4 extends

the RSSV model by allowing for non-zero correlations. Section 3.5 estimates two

alternative specifications of the basic RSSV model. Section 3.6 summarizes this

chapter. Section 3.7 describes some of the technical details.

3.2 Background and Model Specifications

This section gives further background regarding the stochastic volatility model and

its regime-switching counterpart.
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3.2.1 The Stochastic Volatility Model

We are interested in modeling the volatility of a financial time series. The simplest

framework is to start with a (Gaussian) white noise process

yt = σtεt, (3.1)

where εt is usually assumed to be a unit variance (Gaussian) white noise. σt is

known as the volatility. In the ARCH/GARCH class of models, σ2
t is modeled as a

deterministic function of lagged squared errors as well as the lagged values of σ2
t .

In the SVOL model, however, σt is treated as an unobserved stochastic process.

This feature of the SVOL model makes it fit naturally to the theoretical work in

finance, especially those stochastic volatility models in option pricing theory, such

as the Hull and White (1987) model. To make sure that σ2
t is always positive, we

define ht ≡ ln(σ2). The SVOL model can be specified as follows:

yt = eht/2εt, (3.2)

ht+1 = µ + φht + ηt, (3.3)

where εt and ηt are typically assumed to be uncorrelated Gaussian innovations.

Harvey and Shephard (1996) shows how to allow for non-zero correlations between

εt and ηt, which is important, for example, to model the pronounced asymmetric

volatility phenomenon for stock returns.

3.2.2 Quasi-maximum Likelihood Estimation of the SVOL Model

To estimate the SVOL model specified in equations (3.2) and (3.3) , we first linearize

equation (3.2) by squaring and taking the natural logarithm of yt. We obtain

ln(y2
t ) = ω + ht + ξt, (3.4)

where ω ≡ E(ln(ε2
t )) and ξt ≡ ln(ε2

t )− E(ln(ε2
t )).
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If εt ∼ NID(0, 1), ln(ε2
t ) is known to have a log χ2 distribution with mean -1.2704

and variance π2/2.1 Estimation of the system of equations (3.4) and (3.3) is not an

easy task because of the fact that ht is an unobservable latent process.

One estimation strategy is based on the Kalman filter by noticing that equations

(3.4) and (3.3) conform to a linear state-space form. By assuming ξt ∼ NID(0, π2/2),

estimation of the SVOL model can be carried out by quasi-maximum likelihood

(QML). The Kalman filter is used to obtain the prediction error decomposition of

the Gaussian likelihood function, which is then numerically maximized.2 The QML

approach to the estimation of the SVOL model has been discussed in Ruiz (1994)

and extended to the multivariate case by Harvey, Ruiz, and Shephard (1994). We

discuss technical details in the section 3.7.

To apply the SVOL model to the short rate volatility, we start with the Chan,

Karolyi, Longstaff and Sanders (1992) (CKLS) model of the short rate:

dr = (α + βr) + σrγdW.

A more detailed discussion of this model can be found in the previous chapter. Here

we only mention that CKLS find the unrestricted estimate of γ, the elasticity of

volatility, is approximately 1.5, which implies nonstationarity in short rate process.

In the previous chapter we have shown that this result is probably due to CKLS’s

failure to account for the presence of stochastic volatility in short rate process. As in

Ball and Torous (1999), we augment the discrete-time CKLS model by incorporating

the stochastic volatility into the short rate process:

∆rt = a + brt−1 + σt−1r
γ
t−1εt (3.5)

1See Abramovitz and Stegun (1970).
2See Hamilton (1994). Kitagawa (1987) discusses the non-Gaussian state-space

approach. An application of Kitagawa’s method to the SVOL model can be found in
Fridman and Harris (1998). Typically this method is computationally more intensive than
the QML method discussed here.
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ht = µ + φht−1 + σηηt, (3.6)

where ∆rt ≡ rt−rt−1, ht ≡ ln(σ2
t ), εt and ηt are i.i.d. standard Gaussian innovations.

We will relax the independence assumption later. This SVOL model can be viewed

as a discrete-time approximation to a two-factor interest rate model, such as the

Longstaff and Schwartz (1992) model, where the short rate and its volatility are

specified as two factors.

To estimate the model given by equations (3.5) and (3.6), we first estimate the

drift parameters a and b by OLS. Let yt ≡ ∆rt − (a + brt−1), and xt ≡ ln(y2
t ). We

obtain the following state-space model:

xt = ht−1 + 2γln(rt−1) + ln(ε2
t ) (3.7)

ht = µ + φht−1 + σηηt. (3.8)

Rewrite equation (3.7) as follow:

xt = ht−1 + 2γln(rt−1)− 1.2704 + ξt, (3.9)

where ξt = ln(ε2
t )+1.2704. We note the similarity between equations (3.9) and (3.4).

Hence we can estimate the SVOL model for short rates with QML.

3.2.3 The Regime-Switching Stochastic Volatility Model

Although the ARCH/GARCH and the SVOL models provide a nice way to account

for volatility persistence that is commonly observed in financial data, there is a

concern that the apparent volatility persistence may be overestimated because of

the failure to account for structural shifts in volatility. Lamoureux and Lastrapes

(1990) investigate this possibility in the case of the GARCH models subject to

deterministic structural breaks. But obviously the same problem may also plague

the SVOL model with random structural breaks.
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In the absence of a perfect knowledge when such structural shifts might

occur, the regime-switching model of Hamilton (1989) may be a useful tool to

account for random structural shifts. Attempts to incorporate regime shifts into

the ARCH/GARCH models have been made by Hamilton and Susmel (1994), Cai

(1994) Gray (1996), among others.

So, Lam, and Li (1998) generalize the SVOL model by adding the regime-

switching properties, which we refer to as the regime-switching stochastic volatility

(RSSV) model. The switching dynamics is governed by a first-order Markov process.

They estimate the RSSV model with a Bayesian approach (Markov-chain Monte

Carlo), which is computationally intensive.

A more convenient way to estimate the RSSV model is to use Kim’s filter. Kim

(1994) extends Hamilton’s regime-switching model to a general state-space form.

Since the SVOL model is typically written in the linear state-space form, we can

apply Kim’s filter to the estimation of the RSSV model. Technical details are dis-

cussed later.

In our model specification, we focus on the case where the parameter µ in equa-

tion (3.8) is allowed to be regime-dependent. Later we also estimate an alternative

specification where both µ and φ are regime dependent. Let s be an unobserved

regime variable, where s = 0 and s = 1 denote two distinct volatility regimes. We

rewrite equation (3.8) as follows:

ht = µs + φht−1 + σηηt, (3.10)

where µs and hence the unconditional log variance ( µs
1−φ) is regime-dependent.

Equations (3.9) and (3.10) form the RSSV model for short rates that will be

estimated in this chapter.
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In the following discussion, we concentrate on a simple two-state RSSV model,

i.e. the regime variable s is assumed to follow a two-state, first-order Markov process.

The transition probability matrix X of the Markov process can be written as follows:

X =





p 1− p

1− q q



 (3.11)

where p = Pr(st = 0|st−1 = 0, It−1), q = Pr(st = 1|st−1 = 1, It−1), and It−1 is the

information set.

In So, Lam, and Li (1998), the transition probabilities are assumed to be con-

stants. Later we show how to relax this assumption by allowing for time-varying

transition probabilities.

3.3 A Comparison of the Stochastic Volatility and the Regime-

Switching Stochastic Volatility Models

In this section, we compare the SVOL model with its regime-switching counterpart

the RSSV model using short term risk-free interest rate data from four developed

countries, the United States, Canada, Japan, and the United Kingdom.

3.3.1 Data

The interest rate data used in this chapter is basically the same as those used

in the previous chapter.3 The U.S. dataset includes 2492 weekly observations of

the 3-month Treasury bill rates obtained from the Federal Reserve site, ranging

from January 1954 to October 2001. I also exam the interest rate data from three

other industrialized countries: Canada, Japan, and the United Kingdom. The data

are obtained from Datastream. The interest rate series include: Canada Treasury

3We exclude the dataset for Germany due to the convergence problem when estimating
the RSSV model, probably because of the relatively small sample size.
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bill 1 month (CN13883) from January 1980 to December 2000, altogether 1095

observations; Japan Interbank 1 month offered rate (JPIBK1M) from December

1985 to December 2000, 782 observations, and UK interbank 1 month middle rate

(LDNIB1M) from January 1975 to December 2000, 1356 observations. All data are

weekly observations.

The plots of these interest rate data as well as their first order difference have

been shown in the previous chapter. A cursory look indicates that these interest rate

series do exhibit very distinctive patterns. Both very high interest rate levels and

extremely low interest rate levels (less than 1% in the case of Japan) are observed.

A common feature is that the interest rate movements typically exhibit very volatile

behavior, especially in the case of the U.S. and the U.K.. For example, the U.S. short

rates show some dramatic swings during the Federal Reserve experiment period of

1979 to 1982. However, starting from the 90s the US short rates look relatively

tamed. This suggests that the RSSV model might be a useful tool to characterize

the interest rate volatilities.

In the previous chapter,4 we have reported the summary statistics for these

interest rate series and their first order differences. So we choose not to repeat here.

3.3.2 Model Estimation

We first estimate the drift function with OLS. As we have shown in the previous

chapter, non-linear drift does not seem to be a robust fact for the interest rate data

under consideration. Hence we focus on the linear drift specification. We then sub-

tract the estimated drift terms to obtain the residuals. Figure 3.1 plots the residuals

from the OLS model.

4See table 2.1.
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Figure 3.1: Residuals from OLS

Eyeball statistics seem to suggest that constant volatility is not a good assump-

tion. For all the four nations, volatility seems to evolve stochastically over time. In

addition we can also visually identify periods of higher volatility versus periods of

lower volatility.

The OLS estimates for a and b are reported in panel A of table 3.1. We notice

that the estimates for b are negative in all four countries, which is consistent with

the interpretation that b is the mean reversion parameter for linear drift models.
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Table 3.1: Parameter Estimates of the SVOL Model

This table reports the parameter estimates of the stochastic volatility (SVOL) model
for short term interest rates from four countries. Panel A reports the drift parameter
estimate for the following model with OLS:

∆rt = a + brt−1 + εt.

Panel B reports the parameter estimate using the following SVOL model:

xt = ht−1 + 2γln(rt−1)− 1.2704 + ξt,

ht = µ + φht−1 + σηηt,

where xt is the log of squared OLS residuals, and ht denotes the log variance.
Standard errors are in parentheses.

Panel A: OLS drift parameter estimates
Parameter US Canada Japan UK
a 0.0174 0.0179 0.0007 0.0558

(0.0094) (0.0201) (0.0085) (0.0324)
b -0.0031 -0.0030 -0.0027 -0.0060

(0.0015) (0.0022) (0.0021) (0.0031)

Panel B: SVOL model parameter estimates
Parameter US Canada Japan UK
φ 0.9662 0.9803 0.9905 0.9580

(0.0386) (0.0201) (0.0065) (0.0709)
µ -0.2272 -0.1165 -0.0649 -0.3237

(0.2597) (0.1267) (0.0445) (0.5474)
ση 0.3458 0.2231 0.2787 0.3916

(0.1949) (0.1219) (0.0961) (0.3247)
γ 0.7093 0.5486 0.7542 0.9211

(0.0483) (0.0780) (0.0417) (0.1000)
Log-likelihood -5907.69 -2548.67 -1966.10 -3219.08
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Panel B of Table 3.1 reports the parameter estimates for the SVOL model con-

sisting of equations (3.8) and (3.9). We find that, compared with the result from

the GARCH model reported in the previous chapter, the γ estimates reported here

seems to be higher except in the case of the U.K. data. However, all the estimates

are less than one, which is consistent with the results from the previous chapter and

implies stationary short rate process.

We also notice that the estimates for φ are very high for all countries. The

highest number is 0.9905 for Japan and the lowest is 0.9580 for the U.K. data with

the estimates for the U.S. and Canada in the middle. Such high estimates of φ

imply very persistent volatility processes. Moreover, the standard errors for these φ

estimates are relatively small.

As pointed out by Lamoureux and Lastrapes (1990), the apparent highly per-

sistent volatilities found here could be misleading if we do not account for possible

structural breaks in the volatility process. Therefore we proceed by estimating the

RSSV model to account for possible regime shifts in short rate volatilities.

Table 3.2 reports the parameter estimates of the RSSV model (equations (3.9)

and (3.10)) using the interest rate data from the four countries under considera-

tion. We find strong evidence of regime shifts in short rate volatilities. We notice

that the estimated transition probabilities are very close to 1. In fact for all four

countries their transition probabilities p and q are above 0.99, which implies very

distinct volatility regimes. In addition, the standard errors for these transition prob-

ability estimates are very small, suggesting the transition probabilities are precisely

estimated. High transition probabilities imply the regimes are indeed persistent.
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Table 3.2: Parameter Estimates of the RSSV Model

This table reports the parameter estimates of the following regime-switching
stochastic volatility (RSSV) model for short term interest rates from four countries:

xt = ht−1 + 2γln(rt−1)− 1.2704 + ξt,

ht = µs + φht−1 + σηηt,

where we allow the intercept of the volatility equation to be regime dependent. The
lower case s is an unobserved regime variable that follows a first-order, two-state
Markov process, where we assume constant transition probabilities. ht denotes the
log variance. xt is the log of squared residuals from the following OLS regression

∆rt = a + brt−1 + εt.

Standard errors are in parentheses.

US Canada Japan UK
p 0.9985 0.9951 0.9975 0.9947

(0.0012) (0.0051) (0.0029) (0.0034)
q 0.9975 0.9960 0.9957 0.9916

(0.0020) (0.0036) (0.0039) (0.0060)
φ 0.9592 0.7585 0.6071 0.6205

(0.0185) (0.0850) (0.0606) (0.1260)
µ0 -0.2156 -1.4719 -2.3735 -2.2464

(0.1069) (0.5578) (0.3767) (0.8053)
µ1 -0.2902 -1.7468 -3.0907 -2.9305

(0.1395) (0.6718) (0.4953) (1.0365)
ση 0.2758 0.6462 1.4675 0.8235

(0.0631) (0.1425) (0.1266) (0.1568)
γ 0.4851 0.7533 0.8447 0.6682

(0.1449) (0.2176) (0.0684) (0.1539)
Log-likelihood -5682.71 -2516.74 -1907.53 -3153.45
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In fact, we can calculate the expected durations of these different regimes using

the transition probability estimates. The expected duration of a particular regime

is given by 1
1−pr where pr is the estimated transition probability for that regime.

We found the expected duration in our datasets last for years instead of months,

which implies that these regimes might be related to some fundamental state vari-

ables with long-lasting effects rather than short term transient market movements.

Formal hypothesis testing regarding the number of regime states requires the use

of numerical methods that are very costly to compute. See Hansen (1992) and the

related erratum (1996). Here we simply note that the psudo-likelihood ratio test

statistics are all extremely significant, with the highest p-value being 8.8E-14 in the

case of Canada and lowest p-value 3.3E-97 in the case of the U.S. data.

To further convince ourselves that regime-shifts are indeed a robust fact. We plot

the high-volatility regime probabilities along with the filtered conditional volatilities

for the four countries in Figures 3.2 to 3.5. First, we notice that the probability

plots are consistent with the conditional volatility plots. We find periods of high

conditional volatilities matching with high regime probabilities. Second, the evidence

from the regime probability plot for the U.S. data seems to suggest a correlation

between high volatility regimes and macroeconomic shocks. For example, the first

high volatility regime period (from approximately 1954 to 1961) coincides with two

NBER dated recessions during this period. The second high volatility regime period

(from about 1970 to 1976) corresponds to two recessions as well as the oil crisis.

The third period (from 1979 to the mid 80’s) seems related to the Federal Reserve

experiment and two economic recessions. The low volatility regime dominates the

90s when we have a sustained economic expansion.
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Figure 3.2: Regime Probabilities and Conditional Volatility for U.S. Short Rates

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/80 6/81 12/82 5/84 11/85 4/87 9/88 3/90 8/91 2/93 7/94 1/96 6/97 12/98 5/00

Date (month/year)

R
eg

im
e 

P
ro

b
ab

ili
ti

es

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

C
o

n
d

it
io

n
al

 V
o

la
ti

lit
y

Figure 3.3: Regime Probabilities and Conditional Volatility for Canada Short Rates
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Figure 3.4: Regime Probabilities and Conditional Volatility for Japan Short Rates
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Figure 3.5: Regime Probabilities and Conditional Volatility for U.K. Short Rates
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Another interesting phenomenon is related to the parameter estimates for φ. If

we compare the φ estimates obtained from the SVOL model versus those from the

RSSV model, we find the parameter estimates drop dramatically for three out of the

four countries. For the Canada short rate volatilty, φ decreases from 0.98 to 0.76, for

Japan down from 0.99 to 0.61, and for the United Kingdom from 0.96 to 0.62. These

represent decreases of 22% to 38%. In addition the size of the standard errors are

relatively small compared with the magnitude of the decrease. The same parameter

estimates decrease slightly in the U.S. case, and are not statistically different from

each other. This seems to confirm the our concern that the SVOL model could lead

to overstated volatility persistence due to its failure to account for regime shifts in

the volatilities.

The γ estimates are broadly similar for the two models under consideration.

We note that all the estimates of γ are less than one. In other words, they all

imply stationary interest rate processes. This reaffirms the results from the previous

chapter. Namely, the CKLS puzzle is possibly due to their failure to adjust for

stochastic volatilities in the interest rates.

3.4 Modeling Correlation in the Regime-Switching Stochastic

Volatility Model

The SVOL model chooses to model the log variance instead of volatility itself to

ensure positive variances. However, by squaring the data, we may lose useful infor-

mation unless the true correlation between εt and ηt is zero. Most SVOL models

impose the zero-correlation assumption. Nevertheless, a priori, we have no reason to

believe that this assumption is valid. As a matter of fact, empirical evidence from

stock returns indicates that this zero-correlation assumption may be false because
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of the well documented phenomenon of asymmetric volatilities for stock returns.

Namely stock market volatilities increase (decrease) as stock prices drop (go up).5

In the case of interest rate data, it is unclear whether or not the correlation

between εt and ηt is zero. For example, Ball and Torous (1999) assume zero correla-

tion when estimating the SVOL model. They argue that in their sample the correla-

tions are low. However, their reported correlations (standard errors in parentheses)

for the Euro-mark and the Euro-yen series are 0.163 (0.082) and 0.224 (0.091). It

looks like at least for these two interest rate series, zero-correlation is not a very good

assumption. Ball and Torous do not report the correlation for U.S. T-bill yields due

to convergency problem.

Harvey and Shephard (1996) propose a method to handle the correlation between

the two disturbances for the SVOL model. They show that the loss of information

due to squaring may be recovered if we carry out inference conditional on the signs

of the observations.

Consider the SVOL model as expressed in equations (3.3) and (3.4). Harvey

and Shephard show that if we condition on the sign of the residuals to recover the

information about correlation, then we only need to modify the SVOL model as

follows:

ln(y2
t ) = ω + ht + ξt, (3.12)

ht = φht−1 + gtu∗ + η∗t , (3.13)




ξt

η∗t















gt ∼ ID









0

0



 ,





σ2
ξ γ∗gt

γ∗gt σ2
η − u∗2







 , (3.14)

where gt is a variable that takes 1 (-1) if yt is positive (negative). u∗ = E+(ηt) and

γ∗ = cov+(ηt, ξt). E+ and cov+ denote the expectation and covariance conditional

on εt being positive. Note that in our model σ2
ξ equals π2

2 and is not a parameter to

be estimated.
5See, for example, Black (1976) and Schwert (1989).
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When εt and ηt are bivariate normal with corr(εt, ηt) = ρ, Harvey and Shephard

show that

u∗ = 0.7979ρση, (3.15)

γ∗ = 1.1061ρση. (3.16)

Because of the fact that equations (3.12) and (3.13) still form a state-space form,

QML estimation of the SVOL model with correlation can be carried out as usual,

using the results in equations (3.15) and (3.16).

Extending Harvey and Shephard’s approach to the case of the RSSV model is

fairly straightforward. We rewrite equation (3.10) as follows:

ht = µs + φht−1 + gtu∗ + σηη∗t . (3.17)

Obviously the above equation and equation (3.9) remain a linear state-space model.

Therefore we can still apply Kim’s filter to estimate the RSSV model with correla-

tion.

The results for this new model are reported in Table 3.3. We notice that the

parameter estimates looks very similar to those reported in Table 3.2. If we take a

look at the estimated correlation coefficients, only the correlation for the U.S. short

rate data is statistically different from zero. For the other three countries, zero-

correlation does not seem to be a bad assumption. In fact the regime probability

plots for this model also look similar to those plots shown in Figures 3.2 to 3.5. Hence

we do not plot the regime probability graphs for this model. Overall, in our sample,

we find no evidence of strong correlation in the data. However, in other cases, such

as stock returns, modeling correlation might be important, and the approach taken

in this section could prove to be useful under those circumstances.
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Table 3.3: Parameter Estimates of the RSSV Model with Correlation

This table reports the parameter estimates of the following regime-switching
stochastic volatility (RSSV) model with correlation for short term interest rates
from four countries:

xt = ht−1 + 2γln(rt−1)− 1.2704 + ξt,

ht = µs + φht−1 + gtu∗ + σηη∗t ,

where we allow the intercept of the volatility equation to be regime dependent. The
lower case s is an unobserved regime variable that follows a first-order, two-state
Markov process, where we assume constant transition probabilities. ht denotes the
log variance. xt is the log of squared residuals. gt is a variable that takes 1 (-1) if yt is
positive (negative). u∗ = E+(ηt), and E+ denotes the expectation conditional on εt
being positive. η∗t is defined in equation (3.14). Standard errors are in parentheses.

US Canada Japan UK
p 0.9985 0.9953 0.9974 0.9947

(0.0012) (0.0048) (0.0031) (0.0035)
q 0.9977 0.9960 0.9958 0.9917

(0.0019) (0.0035) (0.0038) (0.0061)
φ 0.9524 0.7595 0.6426 0.6333

(0.0158) (0.0847) (0.0630) (0.1254)
µ0 -0.2725 -1.4584 -2.1519 -2.1388

(0.0945) (0.5536) (0.3929) (0.8164)
µ1 -0.36145 -1.7304 -2.8024 -2.7975

(0.1222) (0.6642) (0.5124) (1.0467)
ση 0.2944 0.6466 1.4290 0.8079

(0.0541) (0.1425) (0.1302) (0.1588)
γ 0.6287 0.7432 0.8397 0.6508

(0.1312) (0.2118) (0.0721) (0.1608)
ρ -0.1683 0.0172 0.1171 0.0452

(0.0750) (0.0916) (0.0776) (0.0791)
Log-likelihood -5680.28 -2516.72 -1906.36 -3153.28
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3.5 Alternative Model Specifications

As robustness checks of the results reported in this chapter, we consider two alter-

native model specifications to the RSSV model in this section. The first is a time-

varying transition probability model. The second is a model where the autoregressive

parameter of the volatility equation is also allowed to be regime dependent.

3.5.1 Time-varying RSSV model

In equation (3.11) the transition probabilities p and q of the RSSV model are con-

stants, which is not very flexible. It is possible to let these transition probabilities be

time-varying. Following Diebold et al. (1994), we specify the time-varying transition

probabilities as follows:

p(st = j|st−1 = j; It−1) =
eaj+bjrt−1

1 + eaj+bjrt−1
, j = 0, 1. (3.18)

Thus, the transition probabilities in this model specification are allowed to vary with

the lagged interest rate levels. In fact we can let the transition probabilities be a

function of any other exogenous variables as well. Hence this model specification is

flexible and encompasses a constant transition probability model.

When we estimate this time-varying transition probability model, it turns out

that the results are very similar to the constant transition probability model. For

example, in the case of the U.S. short rate data, the parameter estimates for a0,

a1, b0, and b1 are 6.09, 5.74, 0.07 and 0.05 respectively. For aj’s close to 6, the

implied transition probability is about 0.9975, which is very close to what we get

from the constant transition probability model. In fact a likelihood ratio test can

not reject the null of a constant transition probability model and the p-value is as

high as 0.96. In addition the regime probabilities are almost identical to those in

the constant transition probability model. Hence modeling time-varying probability

does not seem to have an additional advantage at least for our sample.



62

This time-varying transition probability model may be a useful framework to

investigate the relation between the volatility regimes and the fundamental economic

state variables. We have shown that in the U.S. case the volatility regimes seem to

be related to large shocks to the macroeconomy. If this conjecture contains some

truth, we could allow the transition probabilities to vary with those underlying

state variables of interest. Hence this time-varying model might be useful towards

identifying the determinants of volatility regimes.

3.5.2 Regime-Switching φ

Next we consider the following specification of the RSSV model where the both the

µ and the φ parameters are allowed to be regime dependent:

ht = µs + φsht−1 + σηηt. (3.19)

Replacing equation (3.10) with the above equation, we can proceed as usual. The

results for this model are reported in Table 3.4. There seems to exist little evidence

that this model actually outperforms the more parsimonious specification that we

estimate earlier. For all four countries under consideration, the two φ estimates are

not statistically different from each other. In addition all the other parameter esti-

mates look very much the same as in the old specification. The regime probabilities

(not reported) are almost identical to the old model. Hence we conclude that the

results reported for the basic RSSV model are robust to this new specification.
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Table 3.4: Parameter Estimates of the RSSV Model: Robustness Check

This table reports the parameter estimates of the following regime-switching
stochastic volatility (RSSV) model for short term interest rates from four countries:

xt = ht−1 + 2γln(rt−1)− 1.2704 + ξt,

ht = µs + φsht−1 + σηηt,

where we allow both the intercept and the autoregressive parameter in the volatility
equation to be regime dependent. The lower case s is an unoberved regime variable
that follows a first-order, two-state Markov process, where we assume constant tran-
sition probabilities. ht denotes the log variance. xt is the log of squared residuals
from the following OLS regression

∆rt = a + brt−1 + εt.

Standard errors are in parentheses.

US Canada Japan UK
p 0.9985 0.9953 0.9976 0.9940

(0.0012) (0.0048) (0.0028) (0.0037)
q 0.9975 0.9960 0.9959 0.9897

(0.0021) (0.0035) (0.0036) (0.0076)
φ0 0.9581 0.74302 0.5797 0.6253

(0.0204) (0.0969) (0.0815) (0.1143)
φ1 0.9601 0.7752 0.6313 0.5092

(0.0195) (0.0928) (0.0719) (0.2764)
µ0 -0.2106 -1.3866 -2.5369 -2.2157

(0.1119) (0.5867) (0.4970) (0.7204)
µ1 -0.2980 -1.882 -2.8945 -3.8143

(0.1534) (0.7952) (0.5805) (2.1577)
ση 0.2752 0.64559 1.4680 0.8426

(0.0633) (0.1424) (0.1266) (0.1491)
γ 0.4833 0.77493 0.8412 0.6646

(0.1475) (0.2419) (0.0661) (0.1577)
Log-likelihood -5682.70 -2516.67 -1907.38 -3153.31
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3.6 Concluding Remarks

In this chapter we investigate the possibility of regime shifts in short rate volatility. In

particular, we are interested in the empirical question whether or not the apparent

volatility persistence in interest rate volatility, as often suggested by the various

GARCH and SVOL models, are due to the failure to control for regime shifts in the

volatility processes. We look at the empirical evidence using interest rate data from

four countries. Parameter estimates from the SVOL model imply highly persistent

short rate volatilities for all the four countries under consideration. By contrast,

we estimate the RSSV model using the same dataset and find the previously found

persistence in volatilities falls dramatically for the U.K., Canada and Japan data.

In the case of the U.S. short rate volatility, the volatility is still highly persistent.

The evidence presented here highlights the importance of accounting for possible

structural breaks in the volatility process.

We also contribute to the literature by showing how to account for correlation

in the RSSV model. This may be important for modeling stock market volatilities,

where there is well documented evidence of asymmetric volatility. In our dataset,

we find the evidence of negative correlation for the U.S. short rate volatility, but

essentially zero correlation for other countries.

The volatility regimes identified in this chapter are very distinct and seem to last

for a fairly long period of time. We show that, in the case of the United States, these

regimes may be influenced by some persistent fundamental economic state variables.

Intuitively the volatility regimes may be influenced by the central bank’s mone-

tary policy, variations in inflation rates, and various macroeconomic shocks. Future

research may be directed towards identifying the relation between these volatility

regimes and the underlying state variables.
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3.7 Estimation Procedures

In this section, I provide the technical details regarding the estimation of the various

models.

3.7.1 State-Space Representations and the Kalman Filter

State-space models are useful tool to deal with dynamic time series models with

unobserved variables. Hamilton (1994) gives a detailed discussion on this topic as

well as its applications in economics and finance. The Kalman filter is a recursive

procedure that can handle the state-space models.

Let’s consider the following simple state-space model

yt = βht + αzt + εt, (3.20)

ht = µ + φht−1 + ηt, (3.21)

where yt is the observed variable (data), ht is the unobserved state variable, zt is

an exogenous variable. Equation (3.20) is the observation equation that describes

the relation between the observable and unobservable variables. Equation (3.21) is

the state equation that describes the dynamics of the state variables. For the SVOL

model considered in this chapter, equation (3.9) is the observation equation and

equation (3.8) is the state equation.

It is often assumed that

εt ∼ i.i.d.N(0, R),

ηt ∼ i.i.d.N(0, Q),

E(εt, ηt) = 0.

The Kalman filter consists of two basic steps: prediction and updating.



66

1. Prediction: In this step we form an optimal predictor6 of yt based on informa-

tion up to time t− 1.

ht|t−1 = µ + φht−1|t−1, (3.22)

Pt|t−1 = φPt|t−1φ′ + Q, (3.23)

et|t−1 = yt − yt|t−1 = yt − βht|t−1 − αzt, (3.24)

ft|t−1 = βPt|t−1β′ + R, (3.25)

where ht|t−1 is the conditional expectation of ht based on information up to

t − 1, Pt|t−1 is the conditional covariance of ht, et|t−1 is the prediction error,

and ft|t−1 is the conditional variance of the prediction error.

2. Updating: After observing yt, we make a more accurate inference of ht.

ht|t = ht|t−1 + Ktet|t−1, (3.26)

Pt|t = Pt|t−1 −KtβPt|t−1, (3.27)

where Kt = Pt|t−1β′f−1
t|t−1 is the Kalman gain that determines the weight

assigned to the new information.

As a by-product of the Kalman filter, we can set up the following log-likelihood

function

lnL = −1
2

T
∑

t−1

ln(2πft|t−1)−
1
2

T
∑

t−1

e′t|t−1f
−1
t|t−1et|t−1,

which is then maximized using some hill-climbing numerical procedures. Although

for the SVOL model one of the disturbance is non-Gaussian, the procedure discussed

here are still valid and can be used to generate consistent and asymptotically normal

estimates.7

6The Kalman filter is based on linear projection, which is optimal under normality.
7This is known as the quasi-maximum likelihood (QML) estimates.
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3.7.2 RSSV Model and Kim’s Filter

Kim (1994) extends the regime-switching model of Hamilton (1989) to the general

case of a state-space model. See also Kim and Nelson (1999).

The RSSV model consists of equations (3.9) and (3.10). Compared with the

SVOL model, the only difference is that we now have an unobserved regime variable

st that is assumed to follow a Markov process as specified in equation (3.11). In the

following discussion, we assume only µ is regime dependent. However, the framework

can be easily extended to more general specifications. For a state-space model with

regime-switching, the goal is to forecast ht conditional both on the information

set at t − 1 and on the value taken by the regime variable st−1. Let h(i,j)
t|t−1 denote

E[ht|It−1, st = j, st−1 = i], and similarly for P (i,j)
t|t−1, and so on. The Kalman filter now

looks as follows:

h(i,j)
t|t−1 = µj + φhi

t−1|t−1, (3.28)

P (i,j)
t|t−1 = φP i

t|t−1φ
′ + Q, (3.29)

e(i,j)
t|t−1 = yt − βh(i,j)

t|t−1 − αzt, (3.30)

f (i,j)
t|t−1 = βP (i,j)

t|t−1β
′ + R, (3.31)

h(i,j)
t|t = h(i,j)

t|t−1 + K(i,j)
t e(i,j)

t|t−1, (3.32)

P (i,j)
t|t = P (i,j)

t|t−1 −K(i,j)
t βP (i,j)

t|t−1, (3.33)

The path-dependent nature of the above procedure makes the filtering problem

numerically difficult to handle. Kim (1994) suggests that we first approximate h(i,j)
t|t

in equation (3.32) with E[ht|It, st = j, st−1 = i], and then integrate out st−1 = i to

get hj
t|t. Similarly we can replace P (i,j)

t|t in equation (3.33) with E[(ht − h(i,j)
t|t )(ht −

h(i,j)
t|t )′|It, st = j, st−1 = i], and integrate out st−1 = i to get P j

t|t.

The above approximation is then combined with Hamilton’s filter for the regime-

switching model to estimate the RSSV model.



Chapter 4

Estimating Continuous-time Interest Rate Models

4.1 Introduction

Theoretical models in finance often model the movements in financial asset prices as a

continuous time diffusion process. The celebrated Black-Scholes model, for example,

characterizes the stock price movements with the following stochastic differential

equation (SDE):

dS = µSdt + σSdW, (4.1)

where W is the standard Brownian motion. Albeit its success, a potential weakness

of this modeling approach is that discontinuities in the underlying asset price move-

ments is not captured. Merton (1978) first puts forward a model that allows for

jumps. A general jump diffusion model may be expressed as the following stochastic

integral equation:

X(t) = X(t0)+
∫ t

t0
µ(X, τ ; θ)dτ +

∫ t

t0
σ(X, τ ; θ)dW (τ)+

∫ t

t0
J(X, τ ; θ)dNλ(τ), (4.2)

where W (t) is a Wiener process and Nλ(t) a Poisson counter. µ, σ, and J are known

functions of X and t. θ is a parameter vector to be estimated.

The above equation can be written in the more familiar form of a SDE:

dX(t) = µ(X, t; θ)dt + σ(X, t; θ)dW (t) + J(X, t; θ)dNλ(t). (4.3)

Continuous-time models such as equations (1) and (3) are convenient tools for

developing theoretical models and deriving closed-form solutions when the purpose

68
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is to price derivative securities. However, from an econometrician’s point of view,

continuous-time models turn out to be extremely difficult to estimate using dis-

cretely observed data since the likelihood functions for the continuous-time models

in most cases are not explicitly computable. To see this, recall that the maximum

likelihood estimation of the true parameter vector θ is based on the likelihood func-

tion logL =
∑T

t=1 logf(yt+1|yt, θ), where f(Xt+1|Xt, θ) are the Markovian transition

density functions. If analytical solutions of the SDE’s are available, then f(Yt+1|Yt, θ)

can be solved in closed-forms. However, the challenge is that analytical solutions of

the general SDEs are rarely available.

One popular estimation technique is to discretize the SDE’s, typically using the

Euler scheme. However, as shown in Lo (1988), this method only works if the time

interval converges to zero. In practice, the time interval is usually kept fixed. Hence

the Euler as well as other discretization methods may lead to inconsistent parameter

estimates. The extant estimation techniques are all numerically intensive. To reduce

the computational costs, we will focus on estimating the one-factor continuous-time

interest rate models in this chapter.

The approach adopted in this chapter is based on a theoretical result given by Lo

(1988), who shows that we can construct likelihood functions of the jump-diffusion

models by solving the Kolmogrov forward equations corresponding to the conditional

densities. Henceforth we refer to this method as the partial differential equation

(PDE) approach. Lo does not further pursue the idea, only suggesting that the

forward equations may be solved using standard methods such as Fourier Transform.

To my knowledge, so far there are only two attempts to numerically implement Lo’s

method in the special case of a pure diffusion model. Mella-Barral and Perraudin

(1994) suggest that we solve the Kolmogrov equations using explicit finite difference

schemes. Poulsen (1999) refines the PDE approach by using the numerically more
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stable Crank-Nicolson method. Both articles estimate the continuous-time version

of the Chan, Karolyi, Longstaff and Sanders (1992) (CKLS) interest rate model.

In this chapter we make two contributions to the literature. First, we show how

to extend the PDE approach to the general case of a jump diffusion model. Second,

we compare the results obtained by the Euler-discretization method versus the more

numerically intensive PDE approach for various specifications of the single-factor

interest rate models. Interestingly, We find the results are not strikingly different.

This chapter is organized as follows. Section 4.2 briefly reviews several methods

in the existing literature to estimate SDE’s. Section 4.3 shows how to implement Lo’s

method to estimate jump-diffusion models. Section 4.4 applies the PDE approach to

estimate various interest rate models and compares the result with the widely used

discretization-based method. Section 4.5 concludes the chapter.

4.2 Existing Methods

In this section, I briefly summarize the various econometric methods used in the

literature to estimate SDE’s.

4.2.1 Maximum Likelihood Estimation with Discretization

The Euler-Maruyama discretization scheme is probably the most popular method to

estimate SDE’s, among practitioners as well as academic researchers. For example, if

J(X, τ ; θ) = 0 in equation (4.2), i.e. a pure diffusion SDE, the Euler approximation

of the SDE is:

Xt−1 = Xt + µ(X, τ ; θ)∆t + σ(X, τ ; θ)(Wt+1 −Wt),
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where ∆t is the time increment. Since Wt+1 − Wt follows the normal distribution,

the maximum likelihood approach can be applied to estimate the model. The Euler-

Maruyama discretization scheme weakly converges to the corresponding continuous-

time process with order 1.1 Although higher-order approximation schemes may be

considered, in practice these methods are rarely adopted.

Lo (1988) demonstrates that, if what is of interest is the true continuous-time

model parameters, then for discretely sampled data, maximum likelihood estimation

based on fixed time interval discretization could lead to inconsistent estimates of the

true parameters.

4.2.2 Generalized Method of Moment

Chan, Karolyi, Longstaff and Sanders (1992) provide an application of the General-

ized Method of Moment (GMM) of Hansen (1982) to the estimation of the following

continous-time model of the interest rate:

dr = (α + βr)dt + σrγdW, (4.4)

where r is the risk-free interest rate, and W is a Brownian motion. CKLS discretize

equation (4.3) using the Euler approximation scheme. Then they use the conditional

moment restriction E(ft(θ)|Ωt) = 0, where ft(θ) = [εt+1, εt+1rt, ε2
t+1−σ2r2γ

t , (ε2
t+1−

σ2r2γ
t )rt]′, to set up the GMM estimation.

Conditional moments based on discretization are crude unless the discretization

error disappears. Hence the same criticism also applies here. To address this problem,

Conley et al. (1997) suggest using the infinitesimal generator for a candidate Markov

process to build moment conditions.

1A standard reference on this topic is Kloeden and Platen (1992).
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4.2.3 Nonparametric Methods

Aı̈t-Sahalia (1996) uses nonparametric techniques to estimate one-factor interest rate

diffusion models. The idea is to compare the density implied by a parametric model

and a nonparametric estimator valid even if the parametric model is misspecified.2

Hence the test statistic has a minimum distance flavor.

Pritsker (1998) questions the specification test developed in Aı̈t-Sahalia (1996).

The argument is that interest rates are known to be highly correlated whereas the

nonparametric technique used in Aı̈t-Sahalia’s paper is very sensitive to the depen-

dence in the data. Chapman and Pearson (2000) conduct a Monte Carlo study. Their

result cast further doubts on the robustness of Aı̈t-Sahalia’s approach.

4.2.4 Efficient Method of Moments

The efficient method of moments (EMM) of Gallant and Tauchen (1996)) is another

popular way of estimating SDE’s. EMM uses the expectation of the score vector

from the auxiliary model as the moment conditions for the GMM estimator. As long

as the auxiliary model closely approximates the actual distribution of the data, even

if it does not nest the structural model, the EMM estimator is nearly fully efficient.

See Gallant and Long (1997). If the auxiliary model does encompass the structural

model, then the EMM estimator is as efficient as the maximum likelihood method.

In the context of estimating the SDE’s, the structural model is the continuous

time models of interest, and the auxiliary model is usually the semi-nonparametric

(SNP) model of Gallant and Tauchen (1992). However, Duffee and Stanton (2000)

find out that using the Kalman Filter as the auxiliary model may be a better choice

than the SNP for interest rate data.
2See also the articles by Stanton (1997) and Ahn and Gao (1999)
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4.2.5 Closed-Form Density Approximation

Aı̈t-Sahalia (2002) proposes to construct a sequence of Hermite approximation to the

true transition function for continous-time diffusions. The difficulty with regard to

applying this method is that two transformations of the original SDE’s are required,

and the resulting likelihood function looks complicated even for low order polynomial

approximation and relatively simple models. In addition, it is unclear how to apply

the method to jump-diffusion models.

4.3 The PDE Approach to Estimation of Continuous-time Models

This section describes the PDE approach to estimating the SDE’s.

4.3.1 Kolmogrov Forward Equation

Given n + 1 discrete observations of the process X(t) sampled at time t0, t1, . . . ,

tn and the stochastic specification of X(t) in equation (4.2), the joint density p is

the likelihood function of X when viewed as a function of θ. Since X(t) is a Markov

process, we can write p as a product of conditional densities:

p(X) = p0(X0)
n

∏

k=1

pk(Xk, tk|Xk−1, tk−1). (4.5)

Hence all likelihood approaches to estimating SDE essentially boil down to how to

approximate the conditional densities.

It is known in the literature that under some regularity conditions, the conditional

density pk can be characterized by the corresponding Kolmogrov (or Fokker-Planck)

forward equation:

∂
∂t

(pk) = − ∂
∂X

(µpk) +
1
2

∂2

∂X2 (σ2pk)− λpk + λp̃k

∣

∣

∣

∣

∂
∂X

( ˜J−1)
∣

∣

∣

∣

(4.6)

subject to

pk(X, tk−1) = δ(X −Xk−1), (4.7)
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and any other relevant boundary coditions. J̃ is defined as X + J , p̃k ≡ pk(J̃−1, t),

and J̃−1 is the inverse function of J satisfying X = ˜J−1(J̃). δ(X − Xk−1) is the

Dirac-δ generalized function centered at Xk−1. A formal proof of this result can be

found in Lo (1988).

Lo argues that one can solve the forward equation via standard methods such

as Fourier transform. In the special case of a pure diffusion model (when J = 0 in

equation (4.2)), both Mella-Barral and Perraudin (1994) and Poulsen (1999) suggest

that we numerically solve the PDE. Poulsen’s method is better since he uses the

Crank-Nicolson method in stead of the explicit finite difference method, which is

numerically less stable. Later we show how to extend the framework to the general

case of jump diffusions.

4.3.2 Estimating Jump Diffusion Models with the PDE Approach

In what follows, we discuss the steps involved in constructing the likelihood functions.

Using subscripts to stand for partial derivatives, we can rewrite the foward equation

(4.6) as follows:

pt(t, y) = a(y)p + b(y)py + c(y)pyy + d(y)p̃ (4.8)

where

a(y) =
1
2
(σ2)yy − µy − λ,

b(y) = (σ2)y − µ,

c(y) =
1
2
σ2,

d(y) = λ|J̃−1
y |.

Note that if we take away λ and d(y), the above equation reduces to the case of a

pure diffusion model. Since our purpose is to numerically solve the forward equation,

the next step is to use difference operators to replace differential operators.
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Finite difference methods are probably the most popular approch to numerically

solve the partial differential equations that frequently arise in Finance. Following

Poulsen (1999) we choose the Crank-Nicolson method, which is superior to the alter-

native explicit and implicit schemes. It can be shown that Crank-Nicolson is both

numerically stable and converges faster than the explicit and implicit methods.3

Let’s consider a grid in time and space dimensions with time step k and space

step h. We can rewrite the differential equation as a difference equation:

un+1
m − un

m

k
= a∆0(h) + b∆1(h) + c∆2(h) + d∆0(h + j) (4.9)

where un
m ≈ p(nk, X0 +mh) is the grid point that approximates the true conditional

density value at time step n and space step m, and a, b, c, and d are given by in

equation (4.8).

For the Crank-Nicolson method, ∆i, the ith order difference operators are defined

as follows:

∆0(h) =
1
2
un+1

m +
1
2
un

m, (4.10)

∆1(h) =
1
2

un+1
m+1 − un+1

m−1

2h
+

1
2

un
m+1 − un

m−1

2h
, (4.11)

∆2(h) =
1
2

un+1
m+1 − 2un+1

m + un+1
m−1

h2 +
1
2

un
m+1 − 2un

m + un
m−1

h2 , (4.12)

∆0(h + j) =
1
2
un+1

m+j +
1
2
un

m+j. (4.13)

Plugging these terms into equation (4.9) and rearrange, we have

α1un+1
m−1 + α2un+1

m + α3un+1
m+1 + α4un+1

m+j = −α1un
m−1 + (2− α2)un

m−α3un
m+1− α4un

m+j.

(4.14)

The coefficients in equation (4.14) are defined as follows:

α1 ≡
bhq
4
− cq

2
,

3For a standard reference on numerical solutions for partial differential equations, see
Ames (1977).
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α2 ≡ 1− ak
2

+ cq,

α3 ≡ −bhq
4
− cq

2
,

α4 ≡ −1
2
dk,

where q = k/h2.

We should pay some attention to the presence of the grid points un+1
m+j and un

m+j

in equation (4.14). When there are no jumps, solving this difference equation with

the Crank-Nicolson method involves only six neighboring grid points. However, when

jumps are allowed, we need to evaluate two additional grid points. Depending on

the size of the jump, the two additional grid points may not be adjacent to original

six points.

To evaluate the grid points, we note that it can be written as a system of linear

equations:

Auk+1 = Buk, (4.15)

where uk is the vector of conditional density values at time step k. The coefficient

matrices A and B have some interesting properties. In the pure diffusion case, A

and B are two tridiagnal matrices:

A =

























α2 α1 0 . . . 0

α3 α2 α1
...

0 . . . . . . . . . 0
... . . . . . . α1

0 0 α3 α2
























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B =

























2− α2 −α1 0 . . . 0

−α3 2− α2 −α1
...

0 . . . . . . . . . 0
... . . . . . . −α1

0 0 −α3 2− α2

























Inverse of the tridiagnal matrix A can be found efficiently using various numerical

techniques.4

When there are jumps, however, the matrices are no longer tridiagnal, not even

symmetric.

A =













































α2 α1 0 . . . α4 0 . . . 0

α3 α2 α1
. . . 0 . . . ...

0 . . . . . . . . . . . . ...

0 . . . . . . . . . α4

... . . . . . . . . . 0

... . . . . . . . . . ...

... . . . . . . α1

0 . . . α3 α2













































B =













































2− α2 −α1 0 . . . −α4 0 . . . 0

−α3 2− α2 −α1
. . . 0 . . . ...

0 . . . . . . . . . . . . ...
... . . . . . . . . . −α4

... . . . . . . . . . 0

... . . . . . . . . . ...

... . . . . . . −α1

0 . . . −α3 2− α2













































4See, for example, the numerical routines in Press et al. (1992).
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When solving for the difference equation, we assume the boundaries are inacces-

sible, i.e. the conditional densities at both the upper bound and the lower bound are

set to zero. For the initial condition we use the following:

u1
m = N(X0 + µk, σ2k), (4.16)

where N(.) refers to the Normal density function with mean x + µk and variance

σ2k. Note that this converges to the Dirac-δ function when k approaches zero, which

is the true initial condition.

Thus given two observations Xk and Xk+1, we numerically solve the forward

equation with the above-mentioned procedure to get an approximation of the true

conditional density at time k+1. If we take a log transformation of the density values

and add them up for all observations except the first one, we obtain the desired log

likelihood function, which is then numerically maximized. Hence maximum likeli-

hood estimates of the true model parameters can be found as usual. Poulsen (1999)

shows that the parameter estimates obtained with this method retains all the desir-

able properties of the maximum likelihood estimates. Namely we have consistency,

asymptotically normality, and efficiency (if the approximation error is ignorably

small). More importantly, with this method the econometrician can control the pre-

cision parameters such as k and h (at the cost of CPU time).

4.3.3 Approximating the Conditional Density of the Vasicek Model

The sucess of the PDE method depends on how big the approximation errors are

when we use the difference operators to replace the differential operators. In order to

evaluate the precision at which we can practically approximate the true conditional

densities. We do the following numerical experiment.

Although the exact solution to a general SDE is unknown, there exist several

special cases in which we do know the exact solution. One of these exceptions is
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the Ornstein-Uhlenbeck process. In term structure modeling, this is known as the

Vasicek (1977) model

dr = κ(θ − r)dt + σdW,

where θ is the mean of interest rate levels, σ is the interest rate volatility, and θ

is the so-called mean-reversion speed parameter. The associated conditional density

for the Vasicek model is given by the following normal density5

p(τ, x, y) = N(y; e−κτx + θ(1− e−κτ ),
σ2(1− e−2κτ )

2κ
).

In Figure 4.1, we plot both the exact conditional density and the approximated

condition density for the Vasicek model using the following parameters: κ = 0.15,

θ = 0.08, σ = 0.03, and x = 0.08. We choose τ = 1/12, which corresponds to the

monthly data frequency. The conditional densities are approximated with h = 1/200

and k = 1/50. On a 733 MHZ PC, the computation takes 2.14 seconds. The density

plot suggests that the approximated density matches the true density pretty well.

In terms of log density the difference is even smaller.

To stress-test our method, we also look at the case where x = 0.0267, which is

the minimum interest rate level for the U.S. monthly risk-free rate data described

in chapter 2. We use the same model parameter and the density is plotted in Figure

4.2. It looks like the approximation gives slight higher density value for interest

rate levels below the mean than for those levels above the mean. This is probably

due to fact that we only model positive interest rates and hence force conditional

probabilities below the lower bound (0.0001 in this case) to zero, whereas in the

Vasicek model negative interest rates may still have positive conditional probabilities.

Overall the numerical experiments shown here indicate that the PDE approach does

give reasonably good estimates of the conditional densities.

5For example, see Karlin and Taylor (1981).
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Figure 4.1: Approximated and Exact Conditional Densities for the Vasicek Model
when x = 0.08
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Figure 4.2: Approximated and Exact Conditional Densities for the Vasicek Model
when x = 0.0267
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4.4 Estimating Continuous-time One-Factor Interest Rate Models

In this section we use the PDE approach developed in previous sections to estimate

a general one-factor interest rate model.

dr = (α0 + α1r + α2r2 + α3/r)dt + σrγdW. (4.17)

This is the CKLS model plus a nonlinear drift function. In chapter 2 we have

estimated the same model using discretized maximum likelihood method. This gen-

eral model also includes several sub-models. When α2 = α3 = γ = 0, it becomes the

Vasicek model. When α2 = α3 = 0 and γ = 0.5, it is the CIR model. CKLS model

is the case when α2 = α3 = 0.

We use the weekly U.S. observations to estimate the four models. The summary

statistics and the plot of the data are in chapter 2. The results are reported in Table

4.1. Interestingly, we find the parameter estimates using the more computationally

intensive PDE approach look very similar to the old results (Table 2.3). The like-

lihood ratio tests strongly reject the Vasicek and the CIR models. However, the

nonlinear drift CKLS model does not seem to outperform the linear drift CKLS

model.
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Table 4.1: Parameter Estimates of One-Factor Interest Rate Models

This table reports the parameter estimates of the one-factor continuous time interest
rate models using the PDE approach. The nonlinear-CKLS model is specified as
follows:

dr = (α0 + α1r + α2r2 + α3/r)dt + σrγdW.

When α2 = α3 = γ = 0, it becomes the Vasicek model. When α2 = α3 = 0 and
γ = 0.5, it is the CIR model. CKLS model is the case when α2 = α3 = 0. LRT refers
to the likelihood ratio test. Standard errors are in parentheses.

Vasicek CIR CKLS Nonlinear-CKLS
α0 0.0182 0.0174 0.0147 -0.0317

(0.0095) (0.0082) (0.0051) (0.0254)
α1 -0.0028 -0.0023 -0.0017 0.0089

(0.0012) (0.0009) (0.0008) (0.0071)
α2 -0.0007

(0.0006)
α3 0.0419

(0.0192)
γ 0 0.5 0.7506 0.7491

(0.0216) (0.0211)
σ 0.0021 0.0013 0.0024 0.0025

(0.0001) (0.0001) (0.0002) (0.0002)
LRT (p-value) 0.000 0.000 0.719
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4.5 Conclusion

In this chapter, we propose to estimate the continuous-time interest rate model using

the PDE approach.

Although the PDE approach has been considered in the literature before, all

previous research focuses on the special case of pure diffusions. We show how to

extend the framework to incorporate jumps.

Our empirical results confirm our early finding that modeling nonlinear drift

function for interest rate are relatively unimportant. Surprisingly, the parameter

estimates using the discretized method and the PDE approach generate very similar

results.

There are two possible explanations. First, continuous-time models are theoret-

ical abstraction of the real world situation. They have proven to be useful tools

for theoretical construction, but awkward to implement empirically. We could argue

that the true data generating process (DGP) may in fact be a discrete-time one.

Alternatively, the true DGP might be a continuous-time process, but if we use high-

frequency data, the discretization errors may be too small to have any real impact

on the results.

Overall the results obtained here suggest that at least for real world applications,

where estimation time is important, using discretization-based methods may be the

appropriate choice.



Chapter 5

Concluding Remarks

The results obtained in this study are interesting and may have important impli-

cations for future academic research as well as real world applications. I briefly

summarize the major empirical findings as follows.

First, we compare various model specifications for the short-term riskless interest

rates. It is found that modeling stochastic volatility is far more important than

modeling nonlinear drift. In fact we can reject all models with constant volatility

regardless of their drift specification. For models within the same class (with or

without stochastic volatility) linear drift models perform as well as non-linear drift

models.

Second, the empirical evidence found here suggests that the CKLS puzzle not

be considered a robust empirical fact. In fact, the CKLS puzzle is sensitive to the

choices of both model specifications and datasets.

Third, we show that interest rate processes exhibit very distinct national pat-

terns. As an example we find the level effect is evident in the U.S. data but not in the

Canadian data. Hence the success of a specific model in a particular country does

not necessarily guarantee its success in another. To minimize modeling risk, financial

institutions need to use different models to characterize the unique features of the

short rate processes for different countries.

Fourth, we find strong evidence of regime shifts in short rate volatility for four

countries under consideration. The volatility regimes are very persistent and do not

seem to be related to the levels of short rate.

84
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Last, but not least, the empirical results obtained from the discrete-time models

look very similar to those from the continuous-time diffusion models. This finding

is consistent with the results obtained by Engle and Lee (1996), Duffee and Stanton

(2001), among others. For example, Engle and Lee (1996) conclude that estimates of

discrete-time stochastic volatility models and continuous time diffusions are typically

not very different. In our view, while discretization based estimation methods are

unsatisfactory from a theoretical perspective, the discretization errors may be small

for the data frequency commonly used in financial studies. In contrast, the existing

estimation methods for continuous-time model parameters are undesirable both

because they are numerically very demanding and because the small sample proper-

ties of these estimators may be quite poor. As an example, Duffee and Stanton note

that the approximate Kalman filter method outperforms the EMM approach despite

the latter’s good asymptotitic properties. From a practical viewpoint, for market par-

ticipants who need model parameter estimates in a timely fashion, discretization-

based model combined with some high frequency data may be the best choice.

A partial list of things-to-do is as follows:

1. Generalize and implement of the PDE approach to estimate jump diffusion

models using equity and exchange rate data.

2. Identify the underlying state variables that influence the volatility regimes.

3. Study how regime shifts in volatility affect the pricing of interest rate deriva-

tives.

4. Apply the regime-switching stochastic volatility model with correlation to

equity and exchange rate data.
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