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CHAPTER 1 

 

Introduction and Review of Literature 

 

1.1. Introduction  

 

The relationship between average tree size and tree density has been a topic of discussion 

and research for more than seventy years (Reineke 1933; Yoda et al. 1963; Pretzsch 2002; Bi 

2004; Pretzsch and Biber 2005; Reynolds and Ford 2005; Vanclay and Sands 2009; Comeau et 

al. 2010; VanderSchaaf 2010). Several investigators have claimed that the relationship between 

the number of plants per unit area and their size constitutes the foundation of ecology (Drew and 

Flewelling 1977; Westoby 1981; Zeide 1987; Jack and Long 1996). Size-density relationships 

have been used to investigate stand development and self-thinning relationships (Rio et al. 2001; 

Long et al. 2004), to develop relative density indices (Reineke 1933; Curtis 1970) and stand 

management diagrams (Drew and Flewelling 1977, 1979; Vacchiano et al. 2008), and to serve as 

a predictor of stand growth (Biging and Dobbertin 1995; Pretzsch 2005). An understanding of 

the size-density relationships allows silviculturists to design management prescriptions that alter 

available growing space and influence tree size, growth, and mortality (Lhotka and Loewenstein 

2008). 

 Higher stand densities (e.g. trees per hectare) are associated with smaller average size 

(e.g. diameter at breast height, quadratic mean diameter, crown width, or leaf area per tree) due 
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to increased competition for physical space or available resources such as light, nutrients and 

water (Dean and Long 1992; Jack and Long 1996; Long et al. 2004). Stands growing at high 

densities are subject to density-dependent mortality or self-thinning (Westoby 1984). For a given 

average tree size, there is a limit to the number of trees per unit area that may co-exist in an 

even-aged stand. The relationship linking the average tree size and the maximum number of 

surviving trees per unit area may be described by means of a self-thinning boundary line 

(Reineke 1933). The self-thinning line defines a straight upper boundary on log-log scales for all 

possible combinations of mean individual size and density in plant populations (Figure 1.1).   

 

 

Figure 1.1  Number of plants per unit area in relation to average size. The self-thinning 

trajectory represents a typical development pattern for an individual even-aged stand that 

undergoes density dependent mortality through time (after Jack and Long 1996). 
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The existence of a boundary for combinations of average size and density implies that 

average size increases only to some limit, beyond which there is a reduction in the number of 

individuals (Jack and Long 1996). In the present chapter important issues of the self-thinning 

boundary line that relate to the studies reported in this dissertation will be reviewed. 

 

1.2. Modeling the limiting size-density relationship 

 

Tree size and stand density have been traditionally related in two major ways: Reineke‘s 

equation (Reineke 1933), and the so-called 3/2 power law of self-thinning (Yoda et al. 1963). 

However, several researchers have questioned the validity of these two theoretical relations for 

the purpose of describing the self-thinning process. In the last 30 years numerous attempts to 

model the limiting size-density relationship have been made, involving the use of diverse 

mathematical model forms, the inclusion of different explanatory variables into the mathematical 

models, and the application of diverse fitting methods to estimate the parameters in the model 

(Drew and Flewelling 1977; Hynynen 1993; Zeide 1995; Robinson 1998; Yang and Titus 2002; 

Bi 2004; Zhang et al. 2005; Weiskittel et al. 2009). 

 

1.2.1. Reineke’s size-density boundary line and stand density index 

 

 Based on empirical evidence Reineke (1933) found that the maximum quadratic mean 

diameter at breast height, Dq, for a given number of trees per unit area, N, in even-aged stands of 

full density could be represented on a log-log scale as 

 [1]     )()( DqLnNLn  
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Reineke obtained this relationship by graphing Dq and N for untreated forest inventory plots on a 

double-logarithmic grid. He claimed that the slope was constant among species, while the 

intercept varied over a range of species, but not within species, regardless of site quality and 

stand age. When the intercept is shifted such that all size-density points fall under the curve, the 

curve represents the maximum size-density relationship for the species. Four assumptions are 

associated to Equation [1]: (i) a predictable species-specific relationship exists between 

maximum size and stand density; (ii) the relationship is linear in log-log scale; (iii) the slope of 

the limiting size-density boundary line is universal; and (iv) the intercept is constant for a given 

species and region (Jack and Long 1996). These assumptions are commonly considered as 

reasonable approximations but have been difficult to assess rigorously (Shaw 2006; Weiskittel et 

al. 2009). Reineke (1933) found a slope of -1.605 for 12 out of 14 species examined. Steeper 

slopes were noted for slash pine (Pinus elliottii Englem.) and longleaf pine (Pinus palustris 

Mill.). For loblolly pine (Pinus taeda L.), the slope was estimated to be -1.707 by MacKinney 

and Chaiken (1935), -1.696 by Harms (1981), -1.505 by Williams (1996), and -1.926 by Lhotka 

and Loewenstein (2008). For radiata pine (Pinus radiata D. Don), Bailey (1972) reported a slope 

of -1.58. Drew and Flewelling (1977) gave a slope –1.54 for Douglas-fir (Pseudotsugu menziesii 

[Mirb.]). 

From Equation [1], the maximum number of trees per unit area at a given quadratic mean 

diameter is   

 [2]     DqCN    

where eC . This limiting relationship establishes that a given increase in average diameter, 

Dq

dDq
, eliminates a fixed proportion of trees equal to 

Dq

dDq
 (Zeide and Stephens 2010). 
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Reineke defined the expected maximum number of trees at a reference quadratic mean diameter 

of 25.4 cm as stand density index (SDI) 

[3]     )4.25(CSDI    

For a stand of known N and Dq, SDI can be written as 

 [4]     
Dq

NSDI
4.25

   

implying that all stands with the same proportion of the limiting number of trees per unit area 

have the same SDI regardless of the average stand diameter (Clutter et al. 1983). 

 

1.2.2. Yoda’s –3/2 power law of self-thinning  

 

 In the late 1950s and early 1960s, Japanese scientists investigated the size-density 

relationship experimentally, postulating the so-called ‗-3/2 self-thinning law‘. The law was first 

proposed by Tadaki and Shidei (1959), but is best known from the work of Yoda et al. (1963) 

and its re-evaluation by White & Harper (1970). Using a diversity of agricultural crops and weed 

species, Yoda et al. (1963) analyzed mean plant mass across a range of densities and established 

what they referred to as the –3/2 power law of self-thinning.  The authors plotted mean plant 

mass (b) versus density (N, number of plants per unit area) on the log-log scale, and observed 

that the relationship followed a straight line with universal slope close to - 1.5 for all species in 

their study:  

[5]     )(
2

3
')( NLnbLn    

 Yoda et al. (1963) considered plants as simple Euclidian objects, where all their parts 

scaled isometrically to each other. Yoda‘s coefficient -3/2 is based on the cubic relation between 
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plant diameter and biomass, b Dq
3
, and the quadratic relationship between plant diameter and 

occupied growing area s, s Dq
2
.  Since s is defined as the inverse of number of plants (s=1/N), 

the relationship between s and Dq can be written as N Dq
-2

 or Dq N
-1/2

. It follows  b  (N
-

1/2
)
3

N
-3/2

 (i.e. Equation [5]). 

Using total plant weight per unit area (B) as a response variable, the self-thinning line can 

be written as 

[6]     )(5.0'')( NLnBLn    

where the intercept " is assumed to be species-specific and environment-specific. Since 

NbB , then -1/22/3 NNNB  (i.e. Equation [6]). Drew and Flewelling (1977) applied this 

equation to forest populations and noted the relationship to Reineke‘s maximum size-density 

model. 

Yoda‘s power law of self-thinning defines a straight upper boundary line on log-log 

scales for all possible combinations of mean individual biomass and density in plant populations. 

West et al. (1997) and Enquist et al. (1998) challenged the traditional -3/2 slope of the Yoda‘s 

upper boundary line by −4/3, which was deduced from mechanical theory. They presented a 

model that considered plants as fractal objects and postulated the generality of quarter-power 

scaling: 3

4

Nb  where b is mean biomass per tree and N is number of trees per unit area, for 

unmanaged, fully stocked stands.  
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1.2.3. Reineke’s SDI and –3/2 power law of self-thinning in application 

 

 In the words of Zeide (2005), Renieke‘s density assessment with the stand density index 

―may be the most significant American contribution to forest science‖. Yoda‘s self-thinning line 

and Reineke‘s stand density index are practical and broadly used in empirical plantation growth 

and yield models to predict natural mortality (Monserud et al. 2005; Poage et al. 2007), as well 

as in process-based models (Landsberg and Waring 1997).  Biging and Dobbertin (1995) and 

Pretszch (2005) included stand density indices based on the self-thinning rule as predictors in 

growth models. Limiting size-density relationships have been used as constraints in growth and 

yield models for both the log(Volume)–log(Density) relationship (Smith and Hann 1984, 1986; 

Turnblom and Burk  2000) and the log(Density)–log(Dq) relationship (Hynynen 1993). Models 

that predict diameter at breast height (DBH), height, volume or weight have been used to 

forecast stand development until size-density trajectories reach the boundary line and stands are 

then assumed to self-thin along this constraint (Maguire et al. 1990; Yang and Titus 2002; 

Monserud et al. 2005).  

Reineke‘s rule has achieved substantial importance for the quantification and control of 

stand density and modeling of stand development in pure (Long 1985; Newton 1997; Ducey and 

Larson 1999; Puettmann et al. 1993; Rio et al. 2001; Bi 2004) and mixed (Puettmann et al. 1992; 

Sterba and Monserud 1993; Weiskittel et al. 2009) stands.  

Foresters have also incorporated the maximum size-density relationship into stand 

management diagrams (Drew and Flewelling 1977, 1979; Farnden 1996; Vacchiano et al. 2008), 

which graphically depict density and stand dynamics. They describe the relationship between 

stand density, average tree size, stand yield and dominant height, based on relevant ecological 
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and allometric relationships such as the self-thinning rule, providing silviculturists with a 

suitable tool for assessing stand density and planning interventions (Shaw 2006). 

Reineke‘s stand density index and the –3/2 power law are basically the same in that both 

are used to define a maximum stand density at a given stand average size (Yang and Titus 2002). 

To relate the number of trees/area with an expression of the size of the average tree, Zeide (1987) 

recommends using the square mean diameter (Reineke‘s equation) instead of the average tree 

biomass (Yoda‘s expression), since diameter is more correlated with crown width. Additionally, 

diameter can be measured more accurately and easily than biomass and it is the most practical 

size variable for management (Rio et al. 2001). The difference in the slopes from Reineke and 

Yoda arises from the different allometry between quadratic mean diameter and mean plant 

biomass (i.e. volume or weight). The –3/2 power law exponent relating volume to stem number 

is equivalent to Reineke's - 1.605 exponent relating quadratic mean diameter Dq to stem number 

(N) only when volume is proportional to Dq
2.4075

, and Reineke‘s rule becomes a special case of 

Yoda‘s (Pretzsch 2009).  

 

1.2.4. Biological interpretation of the self-thinning slope line: self-tolerance 

 

The parameters and mathematical form of models that reproduce mechanisms of growth 

can be analyzed in terms of biology, in addition to statistics (Zeide 2005). Reineke‘s slope is a 

measure of intraspecific competitive ability of trees, called self-tolerance by analogy with tree 

tolerance (Zeide 1985). Tolerance indicates the interspecific competitive ability of trees, while 

self-tolerance refers to the capability of trees to compete with or tolerate conspecifics (Zeide 
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2005). Self-tolerance is hence important for determining optimal planting density, thinning 

intensity, and other silvicultural activities in pure stands.  

A measure of self-tolerance is the ratio of trees,
N

dN
, eliminated by a given increase in 

average quadratic diameter, 
Dq

dDq
: 

[7]   

Dq
dDq

N
dN

tolerance-Self  

The smaller the ratio, the fewer trees die with the same increase in quadratic mean diameter, 

and therefore, the more self-tolerant is the species. 

Differentiating Reineke‘s Equation [1] yields the following expression for the slope : 

[8]   

Dq
dDq

N
dN

β  

The identity of Equations [7] and [8] results in , the slope of the self-thinning line, being a 

measure of self-tolerance in pure stands (Zeide 2005). Species that have high self-tolerance, 

by this definition, have larger  than those with less self-tolerance (i.e. for a given reduction 

in density, they are able to make a greater increase in size). 
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1.2.5. Criticism of Reineke’s SDI and the –3/2 power law of self-thinning. Alternative 

mathematical forms to model the size-density relationship. 

 

Reineke's stand density index and the –3/2 power law of self-thinning have received both 

vast approval (White and Harper 1970; Harper 1977; Hutchings and Budd 1981; Long and Smith 

1984; Westoby 1984), and enormous scrutiny. The suitability of these two theoretical relations 

for the purpose of describing the limiting size-density relationship has been called into question 

by various authors in the last 30 years (Drew and Flewelling 1977; Weller 1987, 1991; Zeide 

1987; Bredenkamp and Burkhart 1990; Lonsdale 1990; Hynynen 1993; Schutz and Zingg 2010). 

Long and Smith (1984) referred to the –3/2 power law of self-thinning as ‗‗a true law instead of 

the mere rule‘‘, Robinson (1998) claimed it to be "a rigid manifestation" of the self-thinning 

property, while Lonsdale (1990) stated that it was too simple to be biologically believable. 

Biologists have been traditionally reluctant to accepting theories that some call ‗laws‘, as the 

review articles by Weller (1987), Zeide (1987), and Monserud et al. (2005) illustrate.  

 One of the main criticisms to Reineke‘s and Yoda self-thinning law has been the 

assumption of a universally fixed slope coefficient across species, age, and site quality (Gadow 

1986; Pretzsch and Biber 2005). Instead of being a constant, the slope parameter of the self-

thinning line has been found to be variable for different species (Zeide 1987; Jack and Long 

1996; Bi and Turvey 1997; Weiskittel et al. 2009). Several studies have shown that stands self-

thin at differing levels of maximum SDI, and there is not agreement in the processes driving this 

variation, which has led various investigators to conclude that each stand has its own dynamic 

self-thinning trajectory (Weller 1987, 1991; Pittman and Turnblom 2003; VanderSchaaf 2004 

;Reynolds and Ford 2005; Weiskittel et al. 2009). Weller (1987, 1991) separated the law into two 
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concepts, the ‗‗dynamic self-thinning line‘‘ and the ‗‗species boundary line‘‘ by defining two 

types of limiting size-density relationships: (i) individual stand maximum size-density 

relationship boundaries referred to as dynamic thinning line boundaries, and (ii) species 

maximum size-density relationship boundary line, defined as a static upper limit of maximum 

tree density-average tree size relationship that applies to all stands of a certain species within a 

geographical area. The dynamic thinning line is assumed to be affected by stand conditions, 

genetics, and silvicultural treatments, while the species maximum size-density relationship 

boundary line cannot be impacted by them (Weller 1991; VanderSchaaf and Burkhart 2007).  

The general acceptance that the maximum size-density boundary line is constant for a given 

species and therefore independent of site quality and stand age can be attributed then to the lack 

of rigorous testing of such a relationship rather than to strong evidence in support of it (Jack and 

Long 1996). Identification of the key factors driving the variation of the self-thinning 

relationship continues (Weiskittel et al. 2009). Some studies have illustrated that individual 

stands do not always approach the maximum size-density boundary because of genetics or 

environmental limitations (Weller 1987; Zeide 1987; Hynynen 1993). Studying the effects of 

stand conditions on the self-thinning line, Zeide (1987) suggested that steeper slopes are 

associated with stands of optimal conditions, while flatter slopes are related to those of 

suboptimal conditions. Hence, variations in the self-thinning slope are not necessarily species-

specific, but they may be site-specific.  Site index has been identified as a key factor influencing 

the dynamic and species self-thinning line in Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) 

(Pittman and Turnblom 2003) and radiata pine (Pinus radiata [D. Don])  (Bi 2001), respectively. 

Hann et al. (2003) concluded that fertilization had no influence on the limiting size-density 

trajectory in Douglas-fir. Puettmann et al. (1993) found that planting density had no effect on the 
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size-density relationship in red alder (Alnus rubra [Bong]), while Turnblom and Burk (2000), 

Reynolds and Ford (2005), and VanderSchaaf and Burkhart (2007) found that initial stand 

density is an important factor influencing the species self-thinning line. These differing results 

can be explained by the quality of the available data as well as the variety of statistical methods 

that have been used to examine the species self-thinning limiting line (Weiskittel et al. 2009).  

 Several methods have been applied to estimate the parameters of the limiting size-density 

line (Zhang et al. 2005), among others: arbitrarily hand placing a line above an upper boundary 

of points (Reineke 1933; Yoda et al. 1963), fitting an ordinarily least square regression line 

(Mackinney and Chaiken 1935; Rio et al. 2001), estimating coefficients through quantile 

regression (Cade et al. 1999), principal component analysis and reduced major axis regression 

(Bi and Turvey 1997; Wilson et al. 1999; Lhotka and Loewenstein 2008), adopting stochastic 

frontier regression to model the limiting line (Bi 2001 and 2004; Weiskittel et al. 2009), or using 

a linear mixed model approach (Hynynen 1993; VanderSchaaf and Burkhart 2007). Some of 

these methods have multiple limitations such as using subjective techniques (hand fitting), 

making statistical inference very difficult (quartile regression), or ignoring autocorrelations 

between observations from the same plot when determining the boundary line (ordinary least 

squares and stochastic frontier regression), which make testing the influence of stand and site 

factors on the limiting size-density relationship problematic. In addition, ordinary least square 

regression is documented as unsuitable to fit limiting size-density relationships due to the 

unsatisfied assumption of zero error variance in the explanatory variables (Weller 1987). 

Likewise, the assumptions of equal error variances for the response and explanatory variables for 

principal components analysis regression, and error variance proportional to intrinsic variance 

for reduced major axis regression might not be valid.  
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Size-density boundary lines are developed from repeated measurement data, which are 

usually correlated due to multiple measurements made on each experimental plot, and the 

resulting residual variances are often not homogeneous (Gregoire 1987). Repeated measurement 

data present two aspects of the data that are interrelated and require modeling: the mean response 

and the covariance among recurring measurements on the same individuals.  This 

interdependence occurs because the vector of residuals (observed responses minus fitted 

responses) depends upon the specification of the model for the mean.  Failure to take account of 

the covariance among repeated measures will generally result in incorrect estimates of the 

sampling variability (Fitzmaurice et al. 2004).  With incorrect standard errors, tests statistics and 

p-values will also be incorrect and hence can result in misleading inferences. Linear mixed-

effects analysis can use random plot effects to account for correlation among observations from 

the same cluster-plot (Lappi and Bailey 1988; Schabenberger and Pierce 2001; VanderSchaaf 

and Burkhart 2007). 

   To perform the fitting and to interpret the result as a line of maximum size-density, it is 

necessary to be certain that the stands analyzed are fully stocked or at maximum density (Weller 

1987; Bi and Turvey 1997). Improperly including observations from stands of mean density that 

have not yet started to self-thin will flatten the estimated slope of the limiting line, while 

inclusion of observations coming from stands of high density that have not yet started to self-thin 

will steepen the slope of the line (Zhang et al. 2005). A regularly addressed problem in the fitting 

of the size-density limiting relationship is the identification of those observations that are 

occurring in the self-thinning phase of stand development and, more explicitly, what 

observations occur along the thinning line. Numerous selection methods have been postulated, 

varying from choosing data points that lie close to an arbitrarily visualized upper boundary 
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(Westoby 1984; Weller 1987, 1991; Cao et al. 2000; VanderSchaaf and Burkhart 2007) to using 

some statistically based principle. Blackburn et al. (1992), Bi and Turvey (1997), Yang and Titus 

(2002) and Comeau et al. (2010) selected data points to fit the limiting relationship by grouping 

observations into a number of equal size classes and choosing the uppermost points within each 

size class. Rio et al. 2001 selected only data points from plots where the annual mortality rate 

was above 1% and did not suffer mortality due to exceptional causes.  There is still not 

agreement among foresters and biologists about the selection criteria to use when choosing what 

observations occur along the self-thinning line (Smith and Hann 1984; Rio et al. 2001; Zhang et 

al. 2005). 

 To avoid subjectivity on the selection of the observations that are used to fit the upper 

boundary of the tree size and tree density relationship some authors have developed models that 

describe the whole size-density trajectories of individual stands and hence eliminate the need to 

censor data. All data points, whether from fully stocked or under stocked stands, are 

subsequently used in the fitting process. The limiting size-density relationship materializes then 

from overlapping trajectories of individual stands (Smith and Hann 1986; Puettmann et al. 1993; 

Tang et al. 1994; Zeide 1995; Cao et al. 2000). Zeide (1987) described the self-thinning process 

as a nonlinear concave down rather than a straight line (Ln(N)-Ln(Dq)). Three phases can be 

distinguished in the curve: (1) from young stage until crown closure, when the self-thinning is 

less than the mortality at maximum competition, it is concave and positioned under the line of 

maximum density; (2) in the intermediate phase of the stand's development, it follows the 

straight line of maximum density; and (3) in aged stands, when the capability to fill gaps left by 

dead trees has been reduced, the line tends to curve below and diverge from the line projected by 
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Reineke‘s equation (Zeide 1995). Recently, Schutz and Zingg (2010) assessed the curvilinearity 

of the size-density relationship by introducing Dq and its square into the Reineke‘s model. 

Smith and Hann (1986), Puettmann et al. (1993), and Tang et al. (1994) proposed a 

different trajectory for the size-density relationship, in which once the line of limiting density has 

been reached, the curve then follows it as an asymptote. To describe the size-density trajectory, 

Zeide (1995) proposed a variation to Reineke‘s equation considering that the slope would not be 

constant but varying with age, and including total height as an additional covariate in the model. 

Yang and Titus (2002) derived a nonlinear regression model to describe the maximum size-

density relationship and used it for constraining individual tree mortality functions.  Cao and 

Dean (2008) and  VanderSchaaf and Burkhart (2008) applied segmented regression techniques to 

modeling the trajectory of stand density and quadratic mean diameter of individual stands 

through time for slash and loblolly pine stands, respectively.  

Bi (2001) introduced a generalized expression of the self-thinning rule by including site 

index as an explanatory variable in the model. His equation became a two-dimensional self-

thinning surface that defined a density-dependent upper frontier of stand biomass over a gradient 

of site productivity for a given species. Weiskittel at al. (2009) considered the species self-

thinning boundary as a multidimensional surface as site index, stand origin, and stand purity 

showed a significant effect when modeling the limiting size-density relationship in mixed stands 

of Douglas-fir, western hemlock, and red alder in the Pacific Northwest.  
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1.3. Stand basal area as a measure of stand density 

 

 Basal area per hectare is a measure of the cumulative cross-sectional area at breast height 

(1.37 m above ground) for a stand of trees. Stand basal area is an important indicator of stand 

density, which simultaneously takes into account the average tree size and the number of trees 

per unit area. Recently, some authors have introduced the maximum basal area attained during 

self-thinning as a covariate in the limiting size-density relationship (Skovsgaard and Vanclay 

2008; Vanclay and Sands 2009; Tewari 2010). 

Goulding (1972) presented a hyperbolic relationship between quadratic mean diameter 

(Dq), dominant height (H) and stand density (N):  

[9] 
db HcNHa

1
Dq   

 

where a, b, c, and d are parameters to be estimated. Sterba (1987) extended Goulding‘s work and 

showed how to calculate the theoretical maximum basal area along the limiting size-density 

curve. Substituting Equation [9] into the per unit area basal area (BA) gives: 

[10] N
HcNHa

NDA
dbq

2

2 1

44
B  

 

The number of trees per unit area at maximum basal area (NBA max) may be obtained by setting 

the first derivative of Equation [10] with respect to N equal to zero (Sterba 1987): 

[11] 
)(

maxBAN bdH
a

c
 

Replacing N in Equation [9], we get the quadratic mean diameter at maximum basal area (Dq BA 

max): 
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[12] 
dHc2

1
Dq maxBA  

Solving Equation [12] for H and replacing the expression in Equation [11] we obtain the number 

of trees per unit area at maximum basal area (Sterba 1987):  

[13] 
1

maxmaxBA 2N d

b

BADqc
a

c
 

Equation [13] represents a limiting size-density relationship along maximum basal area. 

Maximum basal area carrying capacity can be defined as the maximum amount of basal 

area of a given species that can be sustained on a long-term basis within a stand (Helms 1998). 

VanderSchaaf and Burkhart (2007b) analyzed the connection between the limiting size-density 

relationship and the maximum basal area carrying capacity and concluded that for stands with a 

limiting size-density relationship (LSDR) slope larger than –2, maximum basal area carrying 

capacity will occur after a stand has reached its LSDR stage of stand development (i.e. after 

Reineke‘s SDI has been maximized), while if a LSDR‘s slope is smaller than –2, a stand will 

reach its maximum basal area carrying capacity prior to reaching its LSDR stage of stand 

development. Maximum basal area carrying capacity and the LSDR stage of stand development 

will occur simultaneously in stands that have a LSDR slope equal to –2 (VanderSchaaf and 

Burkhart 2007).  

Many silvicultural and forest management considerations, such as thinning intensity, are 

based on basal area ground measurements. The average annual increment curve of basal area is a 

valuable tool for management of forest stands and contributes to estimate the timing of 

intermediate and final cuts (Sun et al. 2007). In addition, basal area is important for forest 

inventories because it is highly correlated with volume and growth of forest stands. 
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1.4. Stand development and size-density relationship 

 

 Even-aged stands develop from a set of individual, free to grow trees through the start of 

competition, to full site occupancy, self-thinning, and finally the development of multicohort 

stand structures (Long and Smith 1984; Oliver and Larson 1990; Long et al. 2004). The 

relationship between tree size-density in developing stands has an essential place in population 

dynamics and quantitative silviculture (Jack and Long 1996). Different combinations of mean 

size and density can represent the same relative density (i.e. many small trees can have the same 

relative density as fewer, but larger trees). 

 The different forms in which stand-level leaf area might be distributed among individual 

trees can be considered in the context of changes in tree size-density during stand development. 

At lower relative densities individual trees bear large quantities of leaf area compared to trees of 

the same age in denser stands. At those low relative densities, stand-level leaf area is below the 

upper limit, and stand growth, hence, is below potential for the species, site quality and stand age 

(Long et al. 2004). At higher relative densities, individual tree leaf area, and therefore tree 

growth, is much lower than that of open grown trees of the same species and age on the same 

site. Stand-level leaf area approaches its upper limit and stand growth is at its potential (Smith 

and Long 2001). At full site occupancy of stand development, the specific combination of tree 

size and stand density determines how a fixed amount of stand foliage is distributed among trees 

in the stand. As the stand develops, the stronger competitors continue to accumulate more foliage 

at the expense of weaker trees. The process of self-thinning can be considered as the natural 

redistribution of a fixed amount of total leaf area onto gradually fewer and larger trees (Assmann 

1970; Osawa 1995; Long et al. 2004). 
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 Measures of relative density, as the Reineke‘s SDI, are important in the design and 

application of silvicultural treatments. One reason is that site quality does not generally have a 

substantial effect on the nature of the size–density trajectory during stand development (Harms et 

al. 2000). Site quality influences the rate at which a stand moves along its trajectory. On high 

quality sites, individual tree and stand leaf area accumulates faster, resulting in greater potential 

tree and stand growth. Given the same initial density, stands on more productive sites will reach 

the beginning of competition, canopy closure, full site occupancy, and self-thinning more rapidly 

than stands on poorer sites. Hence, while tree size–density relations are basically independent of 

site quality, the rate of stand development is greatly dependent on site quality (Long et al. 2004). 

 Silvicultural practices can have long lasting influences on site quality (i.e. drainage of 

excessively wet sites; fertilization on phosphorus deficient sites). In these situations, stand 

development and the rate at which stands move along the size–density trajectory may be 

permanently altered. In other situations, however, silvicultural treatments result in just temporary 

increases in site growth potential (i.e. a single application of nitrogen generally results in a 

growth response of relatively few years duration), and the effects of the treatments can be 

thought as a temporary boost in the rate of stand development. The result is an acceleration of the 

stand along its size–density trajectory for some years, after which the rate of stand development 

returns to normal. The main result, however, is that the leap ahead is usually permanent. Stand 

dynamics and structure are such that the stand appears older and more mature than its actual age 

(i.e. further along the size–density trajectory) (Jack and Long 1996; Long et al. 2004). While the 

stand may be further ahead in growth and leaf area accumulation, it is also further ahead in self-

thinning. The most important practical result of such temporary accelerations in stand 

development is a shortened rotation (Miller, 1981). 



 

20 

1.5. Silvicultural effects on the size-density relationship 

 

 Responses to silvicultural practices result from their influence on the amount of resources 

potentially available for growth, the ability of trees to acquire those resources, and the 

distribution of resources among population components. An outline of the influence of different 

silvicultural practices on resource availability and growth follows. 

 

1.5.1 Site preparation 

 

 Site preparation practices can be classified into two categories: those that manipulate the 

physical properties of the soil, and those that control competition (Morris and Lowery 1988). 

Practices that manipulate the soil include plowing, harrowing, mounding, bedding, and 

subsoiling and they are applied to increase the volume of soil available for root exploration and 

the pace in which growing space is captured by the trees. Practices to control competition include 

applying herbicides, scalping, root raking, shearing, chopping, harrowing, burning, dragging, and 

mulching and they are aimed to reallocate growing space to the desired species. Practices of 

either group have been found to increase growth and survival when compared to no site 

preparation. (Haywood and Tiarks 1990; Sutton 1993; Varelides and Kritikos 1995; Haywood et 

al. 1997; Long et al. 2004, Wagner et al. 2006).    

  Borders and Bailey (2001) analyzed intensive silviculture treatments for loblolly pine 

plantation management at six sites in Georgia (including locations with high shrub density). 

After intensive mechanical site preparation, continuous vegetation control increased 
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merchantable volume through ages 10–12 years from 37–122%. Adding repeated fertilization 

further improved yields.  

 One of the most comprehensive studies examining growth and yield improvements from 

woody and herbaceous weed control in the southern United States was conducted by Miller et al. 

(1995, 2003). The experimental design was replicated in 13 plantations across seven southern 

states and four physiographic provinces of the region. Loblolly pine plantations were monitored 

for 15 years with near-complete control of woody, herbaceous, and woody plus herbaceous 

components during the first 3-5 yr. A factorial combination of two woody control treatments (no 

woody control vs. complete woody plant control) and two herbaceous control treatments (no 

herbaceous control vs. complete herbaceous plant control) was established. Herbicides were used 

before planting and annually through crown closure (3–5 years after planting) to establish and 

maintain the treatments. Pine yields at year 15 were strongly influenced by herbicide treatments 

applied during the first 3–5 years after planting. Controlling both woody and herbaceous 

vegetation increased merchantable wood volumes 67% above that on plots that were only site 

prepared. Control of only woody vegetation increased merchantable pine volume on 11 sites by 

14–118% and gains on treated plots increased as hardwood and shrub abundance increased on 

the check plots. Gains in volume from early control of only herbaceous vegetation (leaving 

woody vegetation) increased 17–50% on 10 sites.  

 

1.5.2. Thinning  

 

Thinning denotes the treatment of removing selected trees from a stand to enhance the 

growth of residual trees. Average tree size–density relations are an essential part of thinning 
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theory and are the basis of many practical thinning tools (Jack and Long, 1996). This practice 

implies the manipulation of the canopy and its leaf area. Two important components are 

associated with this treatment: an instant reduction in stand-level leaf area, followed ultimately 

by an increment in the leaf area of residual trees. The quantity of reduction in stand level leaf 

area, and the time necessary to recover that leaf area, represent foregone potential stand growth 

(Zeide 2001, Long et al. 2004). Thinning, over time, proceeds to reallocate leaf area onto 

residual trees —similar to but more severe than self-thinning (Long et al. 2004).  Post-thinning 

recuperation of stand-level leaf area results from increments in individual tree leaf area that 

arises faster than it would in dense stands. The increase in individual tree leaf area is associated 

with greater individual tree growth. Therefore, temporary declines in stand-level leaf area result 

in the loss of potential stand growth, but increases in individual tree growth. This is the tradeoff 

associated with allocating leaf area onto fewer and larger trees.  

 

1.5.3. Fertilization 

 

 Fertilization is commonly implemented in forest management to enhance productivity. 

This practice accelerates leaf area growth, increases the growth rate of trees, and reduces the 

number of years required to achieve maximum current and mean annual increments (Smith and 

Long 2001). Increments in productivity associated with fertilization result from increases in the 

total quantity of leaf area, the rate of leaf area accumulation, and the growth efficiency of the leaf 

area (Albaugh et al. 1998; Fisher and Binkley 2000). The growth response to increased leaf area 

can be illustrated using average tree size–density relationships (Figure 1.2): the stand follows the 

same size-density trajectory, but with an augmented rate of development (Long et al. 2004). The 
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result of fertilization is a reduction in the time required to attain, or regain, maximum leaf area 

(Mitchell et al. 1996; Will et al. 2002).  

 

 

Figure 1.2 Normal progression of a stand from mean size I to mean size II (control  arrow). 

Accelerated progression of the stand to mean size III (fertilizer arrow). The time taken to 

progress to either II (control) or III (fertilizer) is the same. Stand at mean size III is the same age 

as at mean size II, but is more developed and appears to be older (after Long at al. 2004).  

 

 Fertilizing stands already carrying maximum leaf area (i.e. fully stocked) is not expected 

to have a significant effect on stand growth as the ability of individual trees to add leaf area in 

such situations is limited.  Fertilization in fully stocked stands of Douglas-fir has even been 

reported to accelerate the self-thinning process, since site resources are not capable of supporting 

the increases in stand-level leaf area (Mitchell et al. 1996).  

Hann et al. (2003) found that fertilization had no significant effect on the Douglas-fir or 

western hemlock self-thinning boundary line intercept or slope. Dean and Jokela (1992) found 
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that fertilization did not affect the maximum values of stand density (measured as number of 

trees per unit area) obtained for slash pine plantations, suggesting that accelerated stand 

development does not modify the stand densities associated with the various stages of stand 

development. 

Stand response to fertilization can be long-term or short-term. Long-term effects take 

place when a slowly soluble nutrient (i.e. phosphorus) is added to the soil. Turner at al. (2002) 

reported responses to last over 50 years following phosphorous fertilization in a Pinus radiata 

stand. Short-term responses to fertilization are typical of a single application of nitrogen fertilizer 

and generally last 4 to 8 years.  Whereas the response to phosphorous fertilization is equivalent 

to an increase in site quality, the short-term response typical of nitrogen fertilization is basically 

a temporary increase in stand development, benefiting trees, but not the site (Miller 1981).  Fox 

et al. (2007) reported growth increases in volume that averaged 25% after nitrogen plus 

phosphorous fertilization in loblolly pine stand in the southern United States.  These responses 

have normally continued for at least 6–10 years, depending on soil type, fertilizer rates, and stand 

conditions (Fox et al. 2007). 

 

1.6. Objectives 

 

 Based on the above discussion, it is clear that much has been studied about limiting size-

density relations and their importance in forestry. However, there is still disagreement regarding 

adequate mathematical forms and the associated fitting methods that model the limiting-size 

density relationship in forest stands, and the effects of site quality and silvicultural factors on the 

relationship. Thus, there is the need to develop and validate new models that describe this 
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relationship and that can detect and quantify the effects of site quality and silvicultural treatments 

on the limiting size-density trajectories, providing a better understanding of this important 

component of forest stand dynamics. 

 The broad objectives of research documented in this dissertation were:  

1. To model the species maximum size-density relationship by integrating a selection of 

other stand factors beyond the quadratic mean diameter such as silvicultural intensity, 

planting density, site index, and soil type into the model, 

2. To compare and illustrate the application of alternative mathematical forms that have 

been or can be used to modeling the trajectory of stand density and quadratic mean 

diameter of individual stands through time, and 

3. To compare and illustrate the application of different fitting methods that have been or 

can be used to estimate the parameters of the limiting size-density trajectory. 
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CHAPTER 2 

 

Impact of Silvicultural Treatments and Site Quality on the Limiting Size-Density 

Relationship in Loblolly Pine Stands (Pinus taeda L.): a Mixed-Effect Modeling Approach 

 

2.1. Abstract 

 

The effect of stand factors on the limiting size-density relationship in even-aged loblolly pine 

(Pinus taeda L.) stands was studied. The mixed-effects analysis technique proved to be a 

valuable statistical approach for fitting the limiting size-density line and providing the 

opportunity to test the significance and impact of additional factors. The assumption that the 

intercept and slope of the species limiting size-density relationship are invariant to stand and site 

factors was analyzed using data from a culture/density study in the Lower Coastal Plain region of 

the southern United States. Management intensity, planting density, and site index significantly 

impacted the parameters of the species limiting size-density relationship. CRIFF soil types did 

not significantly affect the slope or intercept of the line.               

 

 

Keywords: Self-thinning, Diameter-density relationship, Stand density index, Loblolly pine, 

Pinus taeda L.,
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2.2. Introduction 

 

 The mortality related to competition among trees within a stand is called self-thinning or 

density–dependent mortality (Yoda et al. 1963; Hynynen 1993; Monserud et al. 2005). The 

process of self-thinning occurs when individuals grow at high population density, resulting in a 

negative relationship between individuals per area (N) and average individual size (Westoby 

1984). For any given average tree size, there is a limit to the number of trees per unit area that 

may co-exist in an even-aged stand. The relationship between the average tree size and the 

number of trees that occupy an area can be described by means of a limiting contour. Weller 

(1987) defined two types of limiting size-density relationships: (i) individual stand maximum 

size-density relationship boundaries referred to as dynamic thinning line boundaries, and (ii) 

species maximum size-density relationship boundary line, defined as a static upper limit of 

average tree size-maximum tree density relationship that applies to all stands of a certain species 

within a geographical area. The dynamic thinning lines can be affected by stand conditions, 

genetics, or silvicultural treatments, while the species maximum size-density relationship 

boundary line cannot be impacted by them (Weller 1991; VanderSchaaf and Burkhart 2007).  

Reineke (1933) postulated a linear relationship (on the log-log scale) between the number 

of trees per unit area (N) and quadratic mean diameter (Dq) in even-aged stands of full density: 

[1]     )()( DqLnNLn    

Reineke (1933) claimed that the slope was universal (-1.605) across species, while the intercept 

varied over a range of species, but not within species, regardless of site quality and stand age. 

From Equation  [1], the maximum number of trees per unit area at a given quadratic mean 

diameter is given by  
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[2]     DqN *
   

where e* . This limiting relationship establishes that a given increase in average diameter, 

Dq

dDq
, eliminates a fixed proportion of trees equal to 

Dq

dDq
 (Zeide and Stephens 2010). 

Reneike defined this expected maximum number of trees at a reference quadratic mean diameter 

of 25.4 cm as stand density index (SDI) 

[3]     )4.25(*SDI    

For a stand of known N and Dq, SDI can be written as 

 [4]     
Dq

NSDI
4.25

   

implying that all stands with the same proportion of the limiting number of trees per unit area 

have the same SDI regardless of the average stand diameter (Clutter et al. 1983).  

 Yoda et al. (1963) analyzed the variation in mean plant mass across a range of densities 

and postulated the so-called ―-3/2 power law of self-thinning‖. This rule establishes that, on the 

log-log scale, the relationship between mean plant biomass and plant density (number/area) for a 

stand undergoing self-thinning is a straight line with a constant slope of –1.5 regardless of 

species, age , and site quality (Jack and Long 1996). 

 Yoda‘s self-thinning line and Reineke‘s stand density index are useful and extensively 

used in plantation growth and yield models to predict natural mortality (Monserud et al. 2005). 

Reineke‘s stand density index and the –3/2 power law are basically the same in that both are 

used to define a maximum stand density at a given stand average size (Yang and Titus 2002). To 

relate the number of trees/area with an expression of the size of the average tree, Zeide (1987) 

recommends using the square mean diameter (Reineke‘s equation) instead of the average tree 

biomass (Yoda‘s expression), since diameter is more correlated with crown width. Additionally, 
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diameter can be measured more accurately and easily than biomass and it is the most practical 

size variable for management (Rio et al. 2001). 

 In the words of Zeide (2005), Renieke‘s density assessment with the stand density index 

―may be the most significant American contribution to forest science‖. However, like Hynynen 

(1993), Pittman and Turnblom (2003), and Pretzsch and Biber (2005), he calls into question the 

validity of a universally fixed slope (Pretzsch, 2009). Analyzing  the effects of stand conditions 

on the slope of the self-thinning line, Zeide (1987) suggested that steeper slopes are associated 

with stands of optimal conditions, while flatter slopes are related to those of sub-optimal 

conditions, indicating that variation in the self-thinning slope is not necessarily species-specific, 

but it may be site-specific (Monserud et al. 2005). Reineke‘s equation assumes that trees die as a 

result of a single factor: competition due to an increase in the size of adjacent trees. It disregards 

other stand conditions such as initial density, nutrition, and site preparation, as well as internal 

physiological and morphological processes that detract from vitality as trees age such as 

diminishing tolerance to shading, and increase in tree size, slowing the growth by redirecting 

resources to supporting structure and respiration (Zeide and Stephens 2010). 

 Several statistical methods have been used to estimate the parameters of the species 

limiting size-density line (Zhang et al. 2005), among others: arbitrarily hand placing a line above 

an upper boundary of points (Yoda et al. 1963), fitting an ordinary least square regression (Rio et 

al. 2001), estimating coefficients through quantile regression (Cade et al. 1999), or adopting 

stochastic frontier regression to model the limiting line (Bi 2001 and 2004; Weiskittel 2009). 

Some of these methods have multiple limitations such as using subjective techniques (hand 

fitting), making statistical inference very difficult (quartile regression), or ignoring 

autocorrelations between observations from the same plot when determining the boundary line 
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(ordinary least squares and stochastic frontier regression), which make testing the influence of 

stand and site factors on the limiting size-density relationship problematic. Theoretically, the 

limiting size–density line should be an upper boundary line of all the data points (Weller 1987). 

Numerous studies have failed to account for the asymptotic nature of the maximum size–density 

line when estimating coefficients. To correct this problem, some authors have shifted the fitted 

limiting size–density line by increasing the estimated intercept while preserving the estimated 

slope value (Solomon and Zhang 2002; Yang and Titus 2002). 

 Few attempts have been made to use mixed-effects procedures to model the species 

limiting size-density line. Hynynen (1993) used a mixed linear model to estimate the boundary 

relationship in stands of Pinus sylvestris, Picea abies, and Betula pendula. VanderSchaaf and 

Burkhart (2007) applied mixed-effects models to estimate the species maximum size-density 

boundary line in stands of loblolly pine, yet the slopes varied broadly in their analysis (from -1.2 

to -2.5) and the factors that contributed to this variation were not addressed. 

 This chapter reports on the way in which varying silvicutural intensity, planting density, 

site quality, and soil types affect the species limiting size-density line.  The objectives of the 

present study were: (i) to illustrate the use of mixed-effects linear models to analyze the species 

limiting size-density relations in loblolly pine stands; (ii) to test the null hypothesis of no effect 

of silvicultural intensity on the species maximum size-density line followed by populations 

grown with two silvicutural levels; and (iii) to examine the stability of the parameter estimates of 

the limiting line across a gradient of planting densities, site qualities, and soils types. Our study 

differs from the two previous studies that have used mixed-effects linear models to fit the species 

limiting size-density line (Hynynen 1993; VanderSchaaf and Burkhart 2007) by integrating a 
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selection of other stand factors beyond quadratic mean diameter such as silvicultural intensity, 

planting density, and site index into the model. 

   

2.3. Materials and Methods 

 

2.3.1. Field Experiment, Design, and Data Collection  

 

 The data for this work were obtained from permanent plots of loblolly pine of the 

Plantation Management Research Cooperative‘s (PMRC) Coastal Plain culture/density study. 

The study was established in 1995/1996 to quantify and contrast the effects of intensive and 

current operational practices on the growth and yield of loblolly pine plantations across a wide 

range of planting densities and to investigate potential interactions between cultural intensity and 

stand density across a range of soil categories. Seventeen installations were established in the 

Lower Coastal Plain of Georgia, Florida, and South Carolina on five CRIFF soil groups A, B1, 

B2, C and D. CRIFF soil groups are defined using soil drainage, texture and depth of the 

subsurface soil layers (Jokela and Long 2000). Characteristics of the CRIFF soil groups used in 

the study are presented in Table 2.1. 

 Site preparation and subsequent silvicultural treatments represent two levels of 

management intensity: operational and intensive culture (Table 2.2). At each installation there 

was a random allocation of the management regimes to main plots. Within each treatment 

regime, six loblolly pine subplots with densities of 741, 1483, 2224, 2965, 3706, and 4448 trees 

per hectare were randomly assigned. To ensure that the initial density was achieved, each 

planting spot was double-planted and reduced to a single surviving seedling after the first 
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growing season. A single first generation improved family, planted as 1-0 stock, was used at all 

installations. Measurement area of subplots ranged from 0.04 to 0.1 ha depending on density 

treatment. The measurement area plus a surrounding buffer area at least 8 m in width received 

the prescribed culture and density treatments. Since the installations can be considered as a 

random sample of all possible locations, they were treated as random. The arrangement of soil 

groups, management intensity treatments and planting densities resulted in a mixed-model split-

split plot design. See Zhao et al. (2011) for a more detailed description of the study. 

  

2.3.2. Data  

 

The dataset under analysis consisted of 1134 measurements collected on 204 permanent 

plots of loblolly pine. Measures of quadratic mean diameter and number of trees per hectare were 

conducted every two years, from age two to twelve. Summary statistics of stand variables for the 

whole dataset are presented in Table 2.3. A summary of stand attributes by silvicultural treatment 

regime is shown in Table 2.4. Base age 25 years site index values were estimated using the 

equation of Borders et al. (2004) for loblolly pine plantations: 

 

[5]  

b
A

b

a

HD
aS

/25
/1

11  

 

where a=117.6 and b=1.336527 using English units, S is site index estimated at the age 

(A) of the oldest measurement,  HD is dominant height defined as the average height of trees 

with diameter at breast height (DBH) larger than the median DBH of the stand.   
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The trajectories of stand density (natural logarithm of trees per ha) and quadratic mean 

diameter (natural logarithm of quadratic mean diameter at breast height in cm) by plot are shown 

in Figure 2.1. 

Due to the repeated measures of the study, separate ANOVAs were performed at each 

measurement age to test the effects of silvicultural treatment, initial planting density, soil groups, 

and their interactions, on the quadratic mean diameter and, Reineke‘s stand density index (SDI) 

(Table 2.5). The separate ANOVAs indicate that planting density and the silvicultural treatments 

affected loblolly pine quadratic mean diameter and SDI at all measured ages.  

    

2.3.3. Model Development 

 

 Limiting size-density boundary lines are developed from repeated measurement data, 

which are usually correlated due to multiple measurements made on each experimental plot, and 

the resulting residual variances are often not homogeneous (Gregoire 1987; Littell et al. 2006). 

Repeated measurement data present two aspects of the data that are interrelated and require 

modeling: the mean response and the covariance among recurring measurements on the same 

individuals.  This interdependence occurs because the vector of residuals (observed responses 

minus fitted responses) depends upon the specification of the model for the mean.  Failure to 

take account of the covariance among repeated measures will generally result in incorrect 

estimates of the sampling variability (Fitzmaurice et al. 2004).  With incorrect standard errors, 

tests statistics and p-values will also be incorrect and hence can result in misleading inferences. 

Linear mixed-effects analysis can use random plot effects to account for correlation among 
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observations from the same cluster-plot (Lappi and Bailey 1988; Schabenberger and Pierce 2001; 

VanderSchaaf and Burkhart 2007). 

 Using vector and matrix notation, the general specification of a linear mixed-effects 

model can be expressed as: 

[6]    

0ε)Cov(u,

R)N(0,~ε

D)N(0,~u

εZuXβY

 

 In Equation [6], Y represents a n 1 vector of continuous responses, X is a n p design 

matrix of covariates, β  is a 1p  vector of unknown fixed effects parameters, u is a q 1 vector 

of random effects, and Z is a n q matrix of covariates, with q  p.  We assume that the q 

random effects in the u vector follow a multivariate normal distribution, with mean vector 0 and 

a variance-covariance matrix denoted by D: u ~ N(0,D).  D= VAR (u) is a q q matrix that is 

symmetric and positive definite. The ε  vector in Equation [6] is a vector of n residuals, and it is 

assumed that they are random variables that follow a multivariate normal distribution with mean 

vector 0 and a positive definite symmetric covariance matrix R: ε ~ N(0,R). Finally, we assume 

that the vector of residuals ε  and random effects u are independent of each other.  

 Fitting mixed models implies that an appropriate mean structure as well as a covariance 

structure needs to be specified. A key part of fitting mixed models is to determine which 

parameters should be modeled as fixed and which should be modeled as mixed (fixed plus a 

random component).  The process of building a linear mixed model for a given dataset of 

repeated measurements is an iterative one that requires a series of model-fitting steps and 

explorations, and selection of suitable mean and covariance structures for the observed data. 

Following the steps suggested by Verbeke and Molenberghs (2000) and West et al. (2007) for 
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building a linear mixed model, a full model with random effects associated with all the 

parameters in the equation was fitted first by assuming a diagonal variance-covariance matrix 

structure for random effects and an independent structure for within plot error. The next step 

involved the selection of a random effects structure.  Several reduced (nested) models were fitted 

by dropping the random effect terms associated with the parameters in the full model. The need 

for including the selected random effects is tested by performing restricted ML (REML)-based 

likelihood ratio tests for the associated covariance parameters. Sixteen different mean and 

random effects structures were fitted in this analysis. Next, we selected a covariance structure for 

the residuals in the model. Once the fixed and random effects were added to the model, the 

remaining variation in the observed responses is due to the residual error, and an appropriate 

covariance structure for the residuals was examined.  Different variance-covariance structures 

such as a first-order autoregressive model (AR(1)), variance components model (VC), 

unstructured covariance model (UN), exponential, and Gaussian serial correlation functions were 

used with the data to account for dependence across repeated measurements within each plot. 

The best of these models is selected by comparing the fitted equations using Akaike‘s 

information criterion (AIC, Akaike, 1973) and Shwarz‘s Bayesian information criterion (BIC, 

Schwarz, 1978). Among plausible models, the model that minimizes AIC, and BIC is preferred. 

When AIC, or BIC, is close, the simpler equation is generally considered preferable in the 

interest of using a parsimonious model. The last step in the model building process involved 

model reduction by using Type-III F- tests to determine if the fixed effects parameters were 

significant. Model diagnostics were carried out in the final model to check whether the 

distributional assumptions for the residuals were satisfied.   
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 To perform this fitting and to interpret the result as a line of maximum size-density, it is 

necessary to be certain that the plots analyzed are fully stocked or at maximum density (Weller 

1987; Bi and Turvey 1997). A visual inspection of graphs of Ln(N) vs. Ln(Dq) was conducted 

for each experimental plot to determine when trajectories have reached the boundary line. After 

data examination, we disregarded data where the annual mortality rate of the plot was under 1%, 

as well as data from the first measurement of each plot, since we do not know if there was 

previous density-dependent mortality (Rio et al. 2001; Hynynen 1993).  Applying these 

principles, the data from the 204 plots were reduced to 142 plots for the study of the limiting 

size-density line fitted using linear mixed-effects models (Table 2.6). Various authors consider 

that the limiting relationship between the quadratic mean diameter and the planting density is 

curvilinear instead of linear on a log-log scale over the whole range of self-thinning (Zeide 1987; 

Cao et al. 2000; VanderSchaaf and Burkart 2007). In this study we deal only with the linear 

section of the trajectory. 

 In Equation [7] below, we fit a linear regression model for each plot, which describes 

their natural logarithm of trees/hectare (Ln(N)) as a function of the natural logarithm  of their 

quadratic mean diameter in cm (Ln(Dq)). This initial model includes the fixed effects of Ln(Dq), 

silvicultural management group, and their interaction. We also include two random effects 

associated with each plot: a random intercept, and a random slope effects. This allows each plot 

to have a unique linear trajectory, with coefficients that vary randomly around the fixed effects 

defining the mean limiting size-density line for each silvicultural management group. We use 

restricted maximum likelihood (REML) to estimate the variances and covariance of the two 

random effects. Equation [7] also includes residuals associated with the Ln(N) observations, 

which conditionally on a given plot are assumed to be independent and identically distributed. 
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The model specification for an individual plot response, Ln Nti, on plot i at the t-th age is given 

by: 

 

[7]     titiiManagementiManagementti DqLnuIuINLn )()( 1121102001  

One dummy variable (IManagement) is introduced to identify the two levels of silvicultural 

treatment:  

 
regimeralsilvicultulOperationaif

regimeralsilvicultuIntensiveif
I Management

,0

,1    

The parameters 01  and 11represent the fixed effect associated with the intercept and slope, 

respectively, for a plot under the operational silvicultural regime treatment (reference group).  

The fixed effects 02  and 12 represent the difference in the intercept and slope for the intensive 

vs. the operational regimes. The terms u0i, u1i are cluster-specific random effects to be predicted 

and assumed to be N(0, 2

0 ), and N(0,
2

1 ), respectively. A cluster is defined as an individual plot 

(indexed by i). The distribution of the vector of the two random effects associated with the plot i 

is assumed to be multivariate normal:  

),(~
1

0
D0u N

u

u

i

i
 

Each of the two random effects has a mean of 0, and a positive-definite variance-covariance 

matrix D. The term ti in Equation [7] represents the residual associated with the observation at 

time t on plot i. The distribution of the residuals can be written as:  

),(~ R0Nti  

We assume that the residuals are independent of the random effects. 
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 To specify the appropriate mean structure of the model, all 15 nested sub models of 

Equation [7] (full model) were fitted by sequentially dropping fixed and random effect terms 

associated with the parameters.  Allowing both the slope and intercept to differ for the two levels 

of silvicultural management regime, and with random effects associated only with the slope 

results in Equation [8]: 

[8] titiiManagementManagementti DqLnuIINLn )()( 112112001    ; 

letting both parameters differ across silvicultural regimes, and removing the random effects from 

the slope yields Equation [9]: 

[9]  titiManagementManagementti DqLnIINLn )()( 12112001    ; 

letting only the intercept to differ across silvicultural groups, and including random effects 

associated only with the slope results in Equation [10]: 

[10] titiiManagementti DqLnuINLn )()( 1112001    ; 

allowing only the slope to differ across silvicultural groups, and including random effects 

associated with this parameter yields Equation [11]: 

[11] titiiManagementti DqLnuINLn )( 1121101      ; 

permitting only the intercept to differ across silvicultural groups, and including random effects 

only on it results in Equation  [12]: 

[12]     titiiManagementti DqLnuINLn 1102001 )(       ; 

allowing only the intercept to differ across silvicultural groups, and with random effects 

associated with all the parameters in the model yields Equation [13]: 

[13] titiiiManagementti DqLnuuINLn )()( 11102001    ; 
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letting only the slope to differ across silvicultural regimes, and with random effects associated 

with all parameters yields Equation [14]: 

[14] titiiManagementiti DqLnuIuNLn )()( 12111001    ; 

letting only the slope to differ across silvicultural regimes, and with random effects associated 

only with the intercept results in Equation [15]:   

[15] titiManagementiti DqLnIuNLn )()(
2111001    ; 

allowing a unique intercept and slope, and with random effects associated with all parameters 

yields Equation [16]:     

[16] titiiiti DqLnuuNLn )()( 111001  

allowing unique intercept and slope, and with random effects associated only with the intercept 

results in Equation [17]:     

[17] titiiti DqLnuNLn 11001 )(     ; 

allowing unique intercept and slope, and with random effects associated only with the slope 

results in Equation [18]:   

[18] titiiti DqLnuNLn )( 11101  ; 

letting the intercept and slope to differ across silvicultural regimes, and considering random 

effects associated with the intercept results in Equation [19]: 

[19]     titiManagementiManagementti DqLnIuINLn )()( 121102001     ; 

letting only the slope to differ across silvicultural regimes, and considering all parameters as 

fixed results in Equation [20]: 

[20] titiManagementti DqLnINLn )( 121101     ; 
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letting only the intercept to differ across silvicultural regimes, and considering all parameters as 

fixed results in Equation [21]: 

[21] titiManagementti DqLnINLn 112001 )(     ;  

finally, allowing a unique intercept and slope, and considering all parameters as fixed yields 

Equation [22]:  

 [22] tititi DqLnNLn 1101  .   

 To analyze the invariance of the slope and intercept of the species limiting size-density 

line for the two management regimes across different stand conditions, the final model was 

refitted using subsets of data that reflected different planting densities, soil types, and site 

qualities. The data set was split into three subsets according to the initial planting densities: one 

for low densities (741 and 1483 trees/ha), one for medium densities (2224 and 2965 trees/ha), 

and one for high densities (3706 and 4448 trees/ha).  Regarding soil type, the dataset was divided 

into four subsets corresponding to the CRIFF soil groups A, B1, B2 and C. The CRIFF soil 

group D was not considered in this analysis due to lack of enough data to carry out the fitting 

procedures. Finally, the data set was split into two subsets according to the estimated site index 

values: lower site qualities (where site index is less than or equal to the median value for the 

whole dataset), and higher site qualities (where site index is strictly greater than the median 

value). The final species limiting size-density model was fitted to each of the subsets. Parameter 

estimates of the final model were obtained from each subset, and stability of the slope and 

intercept for the two management intensities was analyzed across each of the subsets. A 

graphical comparison of the differences among these curves was done by plotting them on top of 

each other.  The Kolmogorov- Smirnov test (Conover 1999) was carried out to identify any 

significant difference between each of the resulting curves fitted with the subsets and the overall 
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curve for all the densities, soils and site qualities. The principle of the test is to rank all the 

observations from two populations, say X1 and X2; establish the empirical cumulative 

distribution functions F1(X1) and F2(X2); and compute the maximum vertical distance between 

the two empirical distribution functions: T = max | F1(X1) - F2(X2) | . The maximum difference is 

then compared with a critical value from a Kolmogorov-Smirnov table at a given level of 

significance α and sample sizes of both populations. If the Kolmogorov-Smirnov statistic T is 

smaller than the critical value, then the null hypothesis is accepted, indicating that no significant 

difference between the two populations exists (Conover 1999). Each of the fitted lines for the 

different initial planting densities, soil groups, and site index classes were used to predict the 

natural log of stand densities in trees/ha (Ln(TPH)) for varying natural log of quadratic mean 

diameters and silvicultural management regimes. The results were then compared with the 

overall model to detect any significant difference using the Kolmogorov Smirnov test. 

     The combined effect of silvicultural regimes, site index, planting density, and CRIFF soil 

groups on the species limiting size-density line intercept and slope was examined. The general 

model form used in this analysis was: 

 [23] ii SoilManagementPTPHLnSILnDqLnNLn 543210 )()()()(    

where N represents stand density (trees/ha), Dq is quadratic mean diameter (cm), SI is site index 

(m), PTPH is the initial planting stand density (trees/ha), Management is an indicator variable for 

silvicultural management (1 if intensive, 0 if operational) , and Soili is a set of three indicator 

variables that represents the four CRIFF soil groups included in the analysis. Additionally, all 

interactions, as well as random effects associated with all parameters, were tested. The final 

equation was developed by stepwise procedure where a series of likelihood ratio tests were 

conducted between the full model and the reduced model by dropping the non-significant 
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parameters from the full model. Information criterion (AIC, BIC) was used for selecting the best 

variance-covariance structure. The final mixed-effects linear model was built using the SAS 

procedure PROC MIXED implemented with a SAS macro application.  

 

2.4. Results 

  

 We begin by fitting Equation [7], the full mean model structure with different intercept 

and slope for the two management groups, and that allows the intercept and the slope to vary 

randomly from one plot to another. Several reduced models were fitted by dropping the random 

effect terms associated with the parameters as well as fixed effects. Goodness of fit statistics for 

all competing linear mean mixed-effects model structures are presented in Table 2.7. 

 We encountered estimation problems with the variances and covariance parameters for 

the random effects when we fitted Equation [7]. We noted that the estimate for the variance of 

the random intercepts (
2

0 ) was set to zero, indicating that the maximum of the REML log-

likelihood function was really on the boundary of the parameter space. We refitted the model 

without any restriction on the parameter space (i.e. by removing the restriction that the variance 

components have to be positive), resulting in a negative estimate for the variance of the random 

intercepts. We formally tested the need for random plot-specific intercepts by using a REML-

based likelihood ratio test (LRT). To perform this test, we fitted a nested model (Equation [8]) 

that omitted the random intercept effects. The resulting LRT statistics was not significant (p-

value= 0.0952), so we removed the random effects associated with the plot-specific intercepts in 

Equation [7] and in all subsequent models. We decided that Equation [8], with random effects 

only associated with the slopes, was preferred at this stage of the analysis.  
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 To select the final structure for the random effects we tested whether the random effects 

associated with the slopes can be omitted from the model. We fitted Equation [9] by removing 

the random plot-specific slopes from Equation [8], while retaining the same fixed effects. A 

likelihood ratio test statistic was then calculated by subtracting the -2 REML log-likelihood 

value for Equation [8] (the reference model) from the value for Equation [9] (the nested model). 

The asymptotic distribution of the likelihood ratio test statistics is a
2

1 distribution.  The resulting 

test statistic (118.3) was significant (p-value <.0001), therefore we retained the random effects 

associated with the slope in Equation [8].   

 We tried to reduce the model by removing nonsignificant fixed effects. First we tested 

whether the fixed effect associated with the Management*Ln(Dq) interaction ( 12 ) could be 

omitted from Equation [8] to form the nested Equation [10]. This is equivalent to testing if there 

is a significant difference in the slopes of the limiting size-density line across the two 

management regimes. This was tested using Type III F-tests since likelihood ratio tests give 

incorrect p-values for fixed effects (Pinheiro and Bates 2000). Based on the significant results of 

this test (F = 6.05, p-value=0.0148), we concluded that the fixed effect associated with the 

management*Ln(Dq) interaction was significant and should be retained in the model. The data 

support the hypothesis that the slope of the species limiting size-density line does differ for 

different levels of silvicultural management group, and we kept the Management*Ln(Dq) 

interaction term in Equation [8]. Next we tested whether the fixed effect associated with the 

silvicultural management regimes term ( 02 ) can be omitted from the model (Equation [8] vs. 

[11]). This is equivalent to testing if there is a significant difference in the intercepts of the 

species limiting size-density line across the silvicultural management regimes. The 

corresponding Type III F-test was significant (F = 7.23, p-value = 0.0078) so we concluded that 



 

60 

the intercept of the species limiting size-density line does differ for different levels of 

silvicultural management group, and we kept the management term in Equation [8]. For 

comparison purposes, the performance of all possible sub models of the full mean equation 

structure is shown in Table 2.7. Observe that those models that omitted the silvicultural 

management effect on the species limiting size-density line showed poorer fitting performance 

(higher AICs and BICs values). 

  Subsequently we tested if the variance of the residuals was the same (homogenous) for 

the two silvicultural management regimes. We refitted Equation [8] allowing the residuals 

variances for observations at different levels of silvicultural management to differ, and 

performed a REML-based likelihood ratio. The test statistic has a 
2
distribution with 1 degree 

of freedom because of the additional residual variance component. The test result was not 

significant (p-value = 0.5271), therefore we decide that Equation [8] with homogeneous residual 

variance for the intensive and operational silvicultural treatment regimes is our preferred model 

at this phase of the analysis. 

 The last step in our model building was to select a residual covariance structure for 

Equation [8] through information criteria. The first-order autoregressive structure, (AR-1, with 

autoregressive parameter estimate 8417.0ˆ ) provided the best fit (lowest AIC and BIC) and 

was chosen as the best representation for the covariance structure of the residuals. 

 Summarizing the model building process, Equation [8] with intercept and slope that vary 

across silvicultural management regimes and that allows random effects associated only with the 

slope was chosen as the best mixed effect model form to describe the mean species limiting size-

density line in our study (AIC=-216.1, BIC= -210.2). A first-order autoregressive (AR-1) 

covariance matrix for the residuals provided the best fit (AIC= -221.6, BIC = -212.7). The 
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parameter estimates from the final fitted model and the goodness of fit statistics are presented in 

Table 2.8.  

 All the parameters in the final model were significant at the 0.05 level. The self-thinning 

lines followed by populations from the two silvicultural regimes levels differed from each other 

(Figure 2.2). Silvicultural management level affected the slope of the thinning line significantly, 

with more mortality per unit increment of quadratic mean diameter at the intensive silvicultural 

level (steeper slope). The intensive silvicultural management regime yielded a larger intercept 

(12.70 vs. 11.69), the difference being significant at 0.01 level (p-value = 0.0078), and a steeper 

slope (-1.8754 vs. -1.5265), the difference being significant at 5% level (p-value = 0.0148), than 

the operational silvicultural regime. The slope obtained for the intensive regime (-1.8754) is 

significantly different from the one given by Reineke (-1.605) at the 95% confidence level, while 

the slope estimated for the operational regime (-1.5265) was not significantly different from the 

stated slope of the self-thinning rule at 95% confidence level.  

Figure 2.2 shows the reduced data from the plots assumed to be at maximum density and 

that have been used to fit the models, and the resulting species maximum size-density lines for 

the two silvicultural groups obtained with Equation [8]. Since about half of the points were 

above the resulting line, and the remaining were below the line, it was required to shift the line 

up vertically in order to be placed above all points to represent the limiting boundary line 

(Solomon and Zhang 2002; Yang and Titus 2002). This was obtained by increasing the 

parameter estimates corresponding to the intercept ( 01  and 02 ) while keeping the parameter 

estimates for the slopes ( 11 and 12 ).   The mean structure of the final model after shifting the 

line vertically is 
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[25]  
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The implied maximum SDI values (predicted trees/ha when Dq= 25.4 cm) for the 

intensive and operational silvicultural regimes were 1192, and 1397 respectively. 

 Residual diagnostics were performed for the final model [8]. To check the assumption of 

normality for the residuals, normal Q-Q plots were obtained for the intensive and operational 

silvicultural regimes (Figure 2.3). The plots show that the distribution of the conditional 

residuals does not depart substantially from a normal distribution. The Shapiro-Wilk test of 

normality revealed that the assumption of normality for the conditional residuals is met in both 

the operational regime (Shapiro-Wilk W = 0.987, p-value= 0.1544) and the intensive group (W= 

0.979, p-value = 0.0947).  

Plots of the standardized residuals vs. predicted values for each level of silvicultural 

management (Figure 2.4) show that the residuals were randomly distributed and had no 

systematic trend. We do not see strong evidence of nonconstant variance for the groups, and the 

variance of the residuals appears to be fairly constant across the fitted values. Scatterplots of the 

observed Ln(N) vs. the predicted values show agreement between the observed and predicted 

values for each silvicultural group (R
2
=0.9982 for the intensive, and 0.9934 for the operational 

regime) (Figure 2.5). The distribution of slopes are presented in Figure 2.6 for the intensive and 

operational silvicultural treatments based on Equation [8]. The random effects associated with 

the slope seem to be normally distributed for both regimes, and the corresponding values appear 
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to be centered on their means.  Lag-residual plots for Equation [8] do not show evidence of 

correlation among residuals for any of the silvicultural management groups (Figure 2.7). 

 The coefficients of the three species limiting size-density lines (based on Equation [8]) 

fitted separately for the low (741 and 1,483 trees/ha), medium (2,224 and 2,965 trees/ha), and 

high (3,766 and 4,448 tress/ha) subsets of planting density classes are presented in Table 2.9. For 

all planting density classes, the intensive silvicultural regime consistently yielded steeper slopes 

and larger intercepts than the operational regime, the differences being significant for all but the 

lower planting density class. The slopes varied from -1.3633 to –1.8754 for the intensive regime, 

and from –1.0764 to –1.5265 for the operational one.  For the intensive regime, the slopes tended 

to increase as planting density increased. Considering the stability of the intercepts, the 

intensively managed plots yielded parameter estimates that ranged from 10.9590 to 12.7010, 

while the operational managed plots resulted in intercept estimates that ranged from 9.6834 to 

11.6879 when including different planting densities. An overlaid graph of these lines showed 

that the curves deviated from each other (Figure 2.8). This was corroborated by the Kolmogorov-

Smirnov test (p-values < .0001 across all planting densities). Both graphical comparison and the 

Kolmogorov-Smirnov test indicate that planting density affects the species limiting size-density 

relationship.  

 Parameter estimates based on Equation [8] fitted separately for the CRIFF soils groups 

are shown in Table 2.10. For all soil groups, the intensive silvicultural regime consistently 

yielded steeper slopes and larger intercepts than the operational regime, but the differences were 

not significant at 5% level. Differences between regimes in the slopes and intercepts, 

respectively, were significant only for the whole dataset. The slopes varied from -1.2662 to –

3.0348 for the intensive regime, and from –1.0603 to –2.6035 for the operational treatment. The 
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intensively managed plots yielded intercepts parameter estimates that ranged from 11.0414 to 

15.4001, while the operational managed plots resulted in intercept estimates that ranged from 

10.5156 to 14.6828 for the different soil groups. The Kolmogorov-Smirnov test showed that for 

the two regimes the lines did not significantly deviate from each other (the corresponding p-

values for CRIFF soil groups A, B1, B2, and C were respectively 0.6728, 0.4015, 0.5811, and 

0.7159) (Figure 2.9). The test indicates that the species limiting size-density relationship for a 

given silvicultural treatment was not affected by the CRIFF soil groups.  

 The parameter estimates of the species limiting size-density line based on Equation [8] 

fitted separately for the two site index classes are provided in Table 2.11. The low site index 

class included values that were smaller than or equal to the median site index for all plots (26.6 

m), while the high class included values that were greater than the median. An overlaid graph 

between these limiting size-density relationships did not show large deviations (Figure 2.10). 

This was corroborated by the Kolmogorov-Smirnov test (the corresponding p-values for the low 

and high site index classes were respectively 0.7329 and 0.6927). A visual comparison of the 

plots in Figure 2.10 and the Kolmogorov-Smirnov test indicate that site quality did not affect the 

species limiting size-density line when considering these two site index classes and controlling 

for silvicultural management. Only the high site index class showed significant differences in the 

slope and intercept between silvicultural regimes (Table 2.11). The slopes varied from -1.9713 to 

–2.1363 for the intensive regime, and from –1.7429 to –1.7166 for the operational one.  

Considering the stability of the intercepts, the intensively managed plots yielded parameter 

estimates that ranged from 12.9119 to 13.5011, while the operational managed plots resulted in 

intercept estimates that ranged from 12.1541 to 12.2966 by site index classes. The influence of 
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site index in the limiting size-density relationship was considered later by incorporating it as a 

covariate in the species limiting size-density model. 

 Likelihood ratio tests and substantial  reductions in the information criterion (AIC, BIC) 

indicated that other stand-level variables significantly influenced the slope and intercept of the 

species limiting line. Equation [26] below was developed by a stepwise procedure where a series 

of likelihood ratios tests were conducted between the full model and the reduced model by 

dropping the non-significant parameters from the full model. Random effects associated only 

with the Ln(Dq) term, and an autoregressive structure for the residual errors provided the best fit.  

All the parameters in the final model were significant at the 0.01 level. The parameter estimates 

from the final fitted model and the information criterion are presented below (standard errors are 

shown in parenthesis): 

  

 

[26] 

  

 

  

The slope of the species limiting size-density relationship was significantly influenced by 

planting density and silvicultural management regime (interaction terms in Equation [26]). The 

slope gets steeper as planting density increases, and is significantly flatter in plots under the 

operational management regime. The slope was not significantly influenced by site index.  The 

intercept of the species limiting size-density relationship was significantly influenced by site 

index, increasing its value as site index increased (Figure 2.11). The CRIFF soil group factor did 
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not have a significant influence on the slope or intercept of the species limiting size-density 

relationship. Equation [26] shows a substantial reduction in the information criterion statistics, 

indicating that including site index, silvicultural management and planting density in the model 

improves the fitting of the species limiting size-density relationship. Comparing Equations [8] 

and [26], AIC was reduced from -221.6 to -422.4 and BIC from -212.7 to -416.5. 

 

2.5. Discussion 

 

 Earlier studies on the species limiting size-density line regarded it to be a one-

dimensional, or at most a two-dimensional surface (Zeide 1995; Bi 2001 and 2004). More 

recently Weiskittel et al. (2009) introduced the effects of site index, stand origin, and stand purity 

on the boundary line of mixed species stands. In the study reported here results from a mixed-

effect model approach indicate that the limiting boundary line is a multidimensional surface as 

planting density, management intensity, and site index significantly influenced the parameters of 

the species limiting size-density relationship in even-aged stands of loblolly pine (Equation 

[26]). These results support the findings of Reynolds and Ford (2005), and Turnblom and Burk 

(2000) who concluded that differences in initial stands conditions, such as site quality and 

planting density, affect the self-thinning trajectories. 

 The hypothesis of no effect of silvicultural management level on the slope of self-

thinning lines was not supported in this study. The parameter estimates of the species limiting 

size-density line were significantly different among management regimes, which suggest that 

their values are not constant and can vary among silvicultural treatments. Different thinning lines 

for each silvicultural level were observed, with a steeper slope and a larger intercept at the more 
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intensive silvicultural level. Self-thinning is the final expression of competition in dense stands 

of plants (Yoda et al. 1963) and as a result, the stand density versus size line that populations 

under self-thinning traverse is the result of competitive effects operating in the stand (Morris 

2002). The different line patterns can be explained by competition developing differently in 

stands grown at each silvicultural level. The intensive management regime, which included 

complete vegetation control as well as heavy and repeated refertilization, caused trees to grow 

larger (Harrison and Kane 2008) resulting in more severe competition with each other for limited 

growing space and resources such as light, water, and nutrients. This might explain the higher 

mortality per unit increment of quadratic mean diameter (steeper slope) observed in the intensive 

silvicultural level. Silvicultural practices like site preparation, competition control, and 

fertilization can have major influence on the rate at which individual trees accumulate leaf area 

and how fast stands reach canopy closure, full site occupancy and self-thinning (Long et al. 

2004). Considering the same planting density, stands on better sites may achieve canopy closure 

and self thinning faster than on poorer sites. Our results above suggest that the intensive 

silvicultural treatment accelerated the rate of stand development, stands appear more mature than 

indicated by their age alone, that is, further ahead in their size-density trajectories and in self-

thinning. This can explain the fact that the majority of the data used to fit the models, and hence 

assumed to be in the self-thinning phase, came from plots that were in the intensive silvicultural 

regime (Table 2.6). 

 Our study shows that the intercept of the self-thinning limiting-size density line did not 

remain constant across management intensities, and in fact it increased with silvicultural level. 

The results of this work support the argument of Jack and Long (1996) and Bi (2001, 2004) for 

careful and more rigorous testing of claims in the literature that the species limiting size-density 



 

68 

line is site-independent (Yoda et al. 1963; White and Harper 1970; Drew and Flewelling 1979; 

Begin et al. 2001).  It is suggested that the observed or assumed site-independence of the self-

thinning line in the literature could be due to the lack of rigorous statistical testing rather than 

evidence proving site-independence. This claim is supported by several studies (Morris and 

Myerscough 1991; Hynynen 1993; Bi 2001, 2004; Morris 2002). 

 The implied species maximum SDI values across silvicultural regimes based on the final 

model [8] were higher than the maximum SDI reported by Reineke (1933) for loblolly pine 

(1,140 trees/ha). The difference may be attributed to differing statistical techniques to estimate 

the parameters of the self-thinning line (Weiskittel et al. 2009), and the relatively young age of 

the stands in our study (Zeide and Stephens 2010). This finding is consistent with results of 

Zeide and Stephens (2010), who found that the predicted maximum stand density index for 

stands of loblolly pine of 9 and 10 years old was higher than Reineke‘s (1,140 trees/ha). 

Diminishing tolerance to shading, senescence, and obstacles related with increasing tree size 

(diversion of resources to support structures and respiration) as trees get older contribute to tree 

mortality. These arguments suggest that the younger the stand, the higher the maximum stand 

density index (Zeide and Stephens 2010). Regarding silvicultural intensity, the operationally 

managed stands yielded a higher maximum SDI (1,397 trees/ha) than the intensively managed 

ones (1,192 trees/ha), hence allowing more trees/ha for a given value of quadratic mean 

diameter. The same degree of site occupancy was therefore reached by a smaller number of 

larger trees (intensively managed stands) or a larger number of smaller trees (operationally 

managed stands). This suggests that by increasing fertilization and entirely removing competing 

vegetation, stands can change the allometric relationship between the size of the tree (e.g. stem 

diameter) and the area occupied by the tree (e.g. crown size), or particularly, between stem 



 

69 

diameter and the area needed to satisfy photosynthetic and respiratory demands, resulting in 

changes in competition and in the self-thinning trajectories of the stands.  

 Our findings support the idea that the species limiting size-density line can vary 

significantly with site index (Zeide 1987; Bi 2001; Pittman and Turnblom 2003; Weiskittel et al. 

2009). The results of this study suggest that, similar to silvicultural management, site index can 

modify the allometric relationship between the size of the tree and the area occupied by the tree, 

resulting in changes in competition and in the self-thinning trajectories of the stands. Superior 

quality sites would be able to support a larger number of trees and be likely to evolve through 

stand development at faster rates than poor sites. This conclusion differs from those of others 

who have claimed that species limiting relationship is invariant with site index (Yang and Titus 

2002, Tang et al. 2005; Schutz and Zingg 2010).  

The self-thinning relationship was not affected by the CRIFF soil factor when controlling 

by site index, management regime, and planting density. The soil factor was left out of multiple 

regression Equation [26] since it was not significant at 5% level. This is consistent with results of 

Smith and Hann (1984) and Weskittel et al. (2009) who found that soil type did not affect either 

the intercept or slope parameters of Douglas fir, western hemlock, and red alder.  

 Our findings disagree from those of others who have concluded that the species limiting 

size-density boundary line was invariant to planting density (Puettmann et al., 1993; Tang et al., 

1995). For loblolly pine in this study, the magnitude of variation in the estimated slope over the 

gradient of planting densities ranged in value from -1.0764 to -1.8754. These values are 

consistent with those reported in other studies. Yang and Titus (2002) reported slopes varying 

from – 0.5926 to -1.6869 in mixed stands dominated by trembling aspen (Populus tremuloides 

Michx.), white spruce (Picea glauca (Moench) Voss), and lodgepole pine (Pinus contortia var. 
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latifoliada Engelm). Pretzsch and Biber (2005) estimated slopes changing from -1.204 to -2.027 

in mixed stands of common beech (Fagus sylvatica L.),  Norway spruce (Picea abies [L.] 

Karst.), Scots pine (Pinus sylvestris L.) and common oak (Quercus petraea [Mattuschka] Liebl.). 

For loblolly pine, different studies estimated the slope to be -1.707 (MacKinney and Chaiken 

1935), -1.696 (Harms 1981), and -1.505 (Williams 1996). VanderSchaaf and Burkhart (2008) 

reported slopes varying across planting densities from - 0.9850 to -2.5987 in loblolly pine 

plantations in the southeastern US.  The magnitude of variation in the estimated intercept over 

the gradient of planting densities ranged in value in our study from 9.6834 to 12.7010, also 

consistent with values reported in the literature (Yang and Titus 2002; Reynolds and Ford 2005; 

VanderSchaaf and Burkhart 2008; Weiskittel et al. 2009; VanderSchaaf 2010). The parameters 

of the self-thinning line in the present study appeared to be a function of planting density as there 

was a direct relationship between stand density and values of the slope and intercept in the 

intensively managed plots. As stand density increased, so did the slopes and intercepts of the 

self-thinning line, indicating higher mortality per unit increment of Dq (on a log-log scale).  At 

low planting densities individual tree size would be at its maximum as determined by species, 

age and site quality, but site occupancy is below its upper limit resulting in light mortality due to 

competition. As planting densities increase, site occupancy would be near or at its upper limit, 

resulting in an increase in competition related mortality. 

 It is important to mention the impact that the structure of our data can have on the 

parameter estimates of the self-thinning line.  Differing findings can partly be attributed to the 

quality and size of the available data as well as the variety of statistical methods used to examine 

the limiting size-density relationship.  The data used in this study was from young stands, ages 2-

12, which were probably in the first phase of self-thinning. The development pattern associated 
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with age may have a confounding effect with the factors that were analyzed: site quality, initial 

density, soil type, and silvicultural management regimes. Refitting our models with new 

measurements from the same permanent plots might show the effect of stand age on the self-

thinning line.  Extreme values of initial stand density can also have a confounding effect on the 

boundary line. Erroneously including data points from stands of mean density (v.g. trees/ha) that 

have not yet begun to thin will flatten the estimated slope of the limiting line, while inclusion of 

data points coming from stands of high density that have not yet begun to thin will steepen the 

slope (Westoby 1984, Zhang et al. 2005).  

 

2.6 Conclusions 

 

 Mixed effects analysis techniques proved to be an effective method for modeling and 

recognizing the source of variation in the species limiting size-density line of stands of loblolly 

pine. The intercept and slope of the boundary line were significantly affected by silvicultural 

management, planting density, and site index. Different thinning lines for each silvicultural level 

were observed, with a steeper slope and a larger intercept at the more intensive silvicultural 

level. The slope corresponding to the intensive regime was significantly larger than the value 

proposed by Reineke (1933), while the slope of the operational regime was not.  This is 

important as estimates of the slope are required to use Reineke‘s model as a stand density index 

(SDI).  The estimated values of the maximum SDI for both silvicultural levels were larger than 

the previously published value of 1,140 trees/ha for loblolly pine. When site index, initial 

density, and silvicultural level were simultaneously included as input in the species size-density 

boundary relationship it was found that the intercept significantly increased with site index. The 
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slope was also significantly affected by planting density and silvicultural regime, becoming 

steeper as the initial density increased, and as the management changed from operational to 

intensive level. These results show that the boundary self-thinning line is driven by several stand 

factors that affect the relationship between tree density and average tree size.  
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Table 2.1.  CRIFF soil groups used in the Coastal Plain culture/density study. 

 

CRIFF    

Soil    

Group  

Drainage  Features 

A 
Very poor to 

somewhat poor 

 

Sand to loamy sand surface layer, with a finer textured argillic 

soil horizon < 20‖ below. 

  

B1 
Very poor to 

somewhat poor 

 

 Sand to loamy sand surface layer, with a finer textured 

argillic soil horizon 20 – 40‖ below. 

 

 

B2 

 

Very to somewhat 

poor 

 

Sand to loamy sand surface layer, with a finer textured argillic 

soil horizon > 40‖ below or absent. 

 

     

      

    C 

 

 

 

 

Poor to somewhat 

poor 

Spodic with argollic horizons below the surface layer. 

     D 

 

Poor to moderately 

well 

Spodic without argollic horizon below the surface layer. 
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Table 2.2. Summary of the silvicultural treatments used in the study
a
. 

Operational Treatment  Intensive Treatment   

Bedding 

 

Bedding 

 

Fall banded chemical site preparation 

 

Fall broadcast chemical site preparation 

 

 
Tip moth control 

 

Herbaceous weed control: 

first year banded 

 

Repeated herbicide application to achieve 

complete and sutained vegetation control 

through year 12 

 

Fertilization:  

at planting, 561 kg/ ha of 10–10–10; before 

8
th

 and 12
th

 growth seasons, 224 kg/ha  N+  

28 kg/ ha P 

Fertilization:  

at planting, 561 kg/ha of 10–10–10 ; 

Spring 3rd grow season, 673 kg/ ha  

10–10–10   +  micronutrients  +  

131 kg/ha NH4NO3; 

Spring 4
th

 grow season 131 kg/ha 

NH4NO3; 

Spring 6th grow season 336 kg/ha 

NH4NO3; 

Spring 8
th

, 10
th

, and 12
th

 grow season 224 

kg/ha N+ 28 kg/ha P 
a
Adapted from Zhao et al. 2010. 
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Table 2.3.  Plot-level description of data (n=1,134 observations)
a
.  

 

Variable Mean 

 

S.D. Min Max 

Trees/ ha 

          Dq (cm) 

          H (m) 

          SI (m) 

2,310 

10.67 

9.4 

26.6 

1,154 

5.41 

4.8 

1.5 

484 

1.16 

1.5 

22.4 

4,448 

27.77 

18.7 

31.3 

a
 S.D.: standard deviation , Dq: quadratic mean diameter (cm), H: average total height (m), SI: 

site index base age 25 years (m) 
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Table 2.4.  Plot-level description of data by silvicultural regime
a
.  

 

 Operational Management  Intensive Management 

Variable n Mean S.D.  Min Max n Mean S.D. Min Max 

Trees/ ha 

   Dq (cm) 

   H (m) 

570 

570 

570 

2,340 

9.58 

8.6 

1,159 

5.08 

4.5 

598 

1.16 

1.5 

4,448 

23.31 

18.6 

564 

564 

564 

2,281 

11.76 

10.1 

1,146 

5.51 

4.9 

484 

1.32 

1.9 

4,448 

27.77 

18.7 

a 
n: number of observations, Dq: quadratic mean diameter (cm),  H: average total height (m) 
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Table 2.5.  ANOVA p-values for treatments effects (soil group, silvicultural management, initial 

planting density) and their interactions on quadratic mean diameter and Reineke‘s stand density 

index
a
.  

 

Source of Variation Age 2 Age 4 Age 6 Age 8 Age 10 Age 12 

                             Variable:  Quadratic mean diameter  

Soil 0.081 0.563 0.353 0.050 0.048 0.038 

Management <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Soil x Management 0.014 0.248 0.118 0.0146 0.048 0.058 

Initial Density 0.012 <.0001 <.0001 <.0001 <.0001 <.0001 

Soil x Initial Density 0.139 0.072 0.084 0.131 0.448 0.168 

Management x Initial Density 0.0004 <.0001 <.0001 <.0001 <.0001 <.0001 

                                         Variable:  Stand Density Index 

Soil 0.039 0.517 0.476 0.233 0.493 0.274 

Management <.0001 <.0001 <.0001 <.0001 <.0001 0.0005 

Soil x Management 0.005 0.224 0.349 0.149 0.028 0.012 

Initial Density <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Soil x Initial Density <.0001 0.311 0.171 0.318 0.059 0.522 

Management x Initial Density <.0001 <.0001 0.0012 0.008 0.065 0.200 

 

a 
Significant effects at 5% level are noted in bold. 
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Table 2.6. Data reduction results by silvicultural management.  

 

Management 

Regime 

Total Number 

Plots 

Total 

Number 

Data Points 

Reduced 

Number 

Plots 

Reduced  

Number Data 

Points 

 

All reduced data 

 

204 

 

1134 

 

142 

 

248 

Intensive 

Operational 

 

102 

102 

564 

570 

85 

57 

152 

96 
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Table 2.7. Comparisons of linear mixed-effects model performance (REML estimation method 

with independent diagonal covariance structure for the residuals). 

 

MODEL   -2Log-likelihood AIC* BIC* 

3 -220.1 -216.1 -210.2 

4 -220.1 -216.1 -210.2 

5 -101.8 -99.8 -96.3 

6 -216.6 -212.6 -206.7 

7 -207.6 -203.6 -197.7 

8 -216.6 -212.6 -206.7 

9 -213.5 -209.5 -203.6 

10 -213.5 -209.5 -203.6 

11 -204.6 -200.6 -194.7 

12 -215.8 -211.8 -205.9 

13 -207.8 -203.8 -197.9 

14 -215.8 -211.8 -205.9 

15 -211.9 -207.9 -202 

16 -101.1 -99.1 -95.6 

17 -103.7 -101.7 -98.2 

18 -81.1 -79.1 -75.6 

 

Note: AIC, Akaike information criterion (smaller is better); BIC, Bayesian information criterion (smaller is better).   
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Table 2.8. Linear mixed-effects model parameter estimates for the species maximum size-

density relationship in loblolly pine (Model [8]) 

Effect Parameter Estimate Std Error t-value p-value 

Fixed-Effect 

Parameter  

     

Intercept 

(Operational 

Management) 

01  11.6879 0.2906 40.22 <.0001 

Intercept 

(Intensive vs. 

Operational) 

20  1.0130 0.3767 2.69 0.0078 

Slope 

(Operational)  
11  -1.5265 0.1116 -13.67 <.0001 

Slope  

(Intensive vs 

Operational)  

12  -0.3489 0.1419 -2.46 0.0148 

      

Covariance 

Parameter 

     

Variance of 

Random Slopes  

2

1  0.007439    

Residual 

Variance 

2  0.003495    

Autoregressive 

parameter  

AR(1) 

 0.8417    

Observations  248    

AIC  -221.6    

BIC  -212.7    
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Table 2.9. Parameter estimates of the species limiting size-density line based on Equation [8] 

using mixed-effect methods for the full data set and for subsets of the data consisting of varying 

planting densities.   

 

 

  Intercept 

(Std.Error) 

Slope  

(Std.Error) 

Planting Density 

(trees/ha) 

 

n Intensive Operational Intensive Operational 

Low  

( < 2,224) 

57 10.9590
a
 

(0.6397) 

10.1967
a
 

(1.3447) 

-1.3633
a
 

(0.2124) 

-1.1872
a
 

(0.4635) 

Medium  

(2,224 - 2,965) 

93 11.7399
a
 

(0.3514) 

9.6834
b
 

(0.3579) 

-1.5058
a
 

(0.1293) 

-1.0764
b 

(0.1369) 

High  

 (> 2,965) 

98 12.4384
a 

(0.3031) 

10.8232
b 

(0.3106) 

-1.7322
a 

(0.1179) 

-1.0990
b 

(0.1247) 

All densities 248 12.7010
a 

(0.2398) 

11.6879
b 

(0.2906) 

-1.8754
a 

(0.08754) 

-1.5265
b 

(0.1116) 

 

Notes: for a given planting density class, different letters indicate significant differences at 5% level between the 

silvicultural management regimes in terms of the slopes and intercepts, respectively. 

n = number of observations using in the parameter estimation, Std.Error = standard error of the estimate. 
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Table 2.10. Parameter estimates of the species limiting size-density line based on Equation [8] 

using mixed-effect methods for the full data set and for subsets of the data consisting of varying 

CRIFF soil groups. 

 

  Intercept 

(Std.Error) 

Slope 

(Std.Error) 

CRIFF  

Soil 

n Intensive Operational  Intensive Operational  

A 61 11.0414
a 

(0.4037) 

10.5156
a 

(0.4271) 

-1.2662
a 

(0.1449) 

-1.0603
a 

(0.1617) 

B1 41 14.1005
a 

(0.3348) 

13.8004
a 

(0.3849) 

-2.3979
a 

(0.1207) 

-2.3064
a 

(0.1444) 

B2 45 15.4001
a 

(0.6451) 

14.6828
a 

(0.5342) 

-3.0348
a 

(0.2560) 

-2.6035
a 

(0.1954) 

C 88 13.1961
a 

(0.3911) 

12.9510
a 

(0.5143) 

-2.0618
a 

(0.1438) 

-2.0058
a 

(0.1983) 

All soils 248 12.7010
a 

(0.2398) 

11.6879
b 

(0.2906) 

-1.8754
a 

(0.08754) 

-1.5265
b 

(0.1116) 

 

Notes: for a given planting density class, different letters indicate significant differences at 5% level between the 

silvicultural management regimes in terms of the slopes and intercepts, respectively. 

n = number of observations using in the parameter estimation, Std.Error = standard error of the estimate. 
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Table 2.11. Parameter estimates of the species limiting size-density line based on Equation [8] 

using mixed-effect methods for the full data set and for subsets of the data consisting of varying 

site index values.   

 

  Intercept 

(Std.Error) 

Slope 

(Std.Error) 

Site Index 

class 

n Intensive Operational  Intensive Operational  

Low 

 

133 12.9119
 a
 

(0.3284) 

12.1541
a
 

(0.1210) 

-1.9713
a
 

(0.4051) 

-1.7429
a
 0.1549 

High 

 

115 13.5011
a
 

(0.3155) 

12.2966
 b
 

(0.4075) 

-2.1363
 a
 

(0.1133) 

-1.7166
b
 

(0.1569) 

All Site 

indexes 

248 12.7010
a 

(0.2398) 

11.6879
b 

(0.2906) 

-1.8754
a 

(0.08754) 

-1.5265
b 

(0.1116) 

 

Notes: for a given planting density class, different letters indicate significant differences at 5% level between the 

silvicultural management regimes in terms of the slopes and intercepts, respectively. 

n = number if observations using in the parameter estimation, Std.Error = standard error of the estimate. 
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Figure 2.1 Observed density-size trajectories from 204 permanent plots in loblolly pine stands. 

 

 
  



 

94 

 

 

Figure 2.2 Species limiting size-density line for the intensive and operational treatment groups, 

based on Equation [8]. The boundary lines were vertically shifted above all points. 
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Figure 2.3 Normal Q-Q plots for the conditional residuals in the intensive and operational 

silvicultural treatment groups, based on the fit of Equation [8]. 
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Figure 2.4 Scatterplots of conditional residuals vs. predicted values in the intensive and 

operational silvicultural treatment groups, based on Equation [8].  
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Figure 2.5  Agreement of observed Ln(N) with predicted Ln(N) for each level of silvicultural 

treatment, based on Equation [8].  
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Figure 2.6  Distribution of slopes for each level of the silvicultural treatment based on Equation 

[8].  
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Figure 2.7 Lag-residual plots in the intensive and operational silvicultural treatment groups 

based on Equation [8]. 
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Figure 2.8 Species limiting size-density lines by silvicultural regime (based on Equation [8]) by 

planting densities classes. The boundary lines were vertically shifted above all points. 
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Figure 2.9 Species limiting size-density lines by silvicultural regime (based on Equation [8]) by 

CRIFF soil groups. The boundary lines were vertically shifted above all points. 
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Figure 2.10 Species limiting size-density lines by silvicultural regime (based on Equation [8]) by 

site index class. The boundary lines were vertically shifted above all points. 
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Figure 2.11 Species limiting size-density surface (based on Equation [26]) of stand density 

(Ln(TPH)) over quadratic mean diameter (Ln(Dq), in cm) and site index (m) by silvicultural 

regime for a given planting density (2,224 trees/ha). 
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CHAPTER 3 

 

Semiparametric Regression Analysis of the Size-Density Relationship in Loblolly Pine 

(Pinus taeda L.) Stands   

 

3.1. Abstract 

 

This chapter investigated the application of semiparametric regression analysis to modeling the 

trajectory of tree density and quadratic mean diameter through time for individual stands.  A 

semiparametric interaction mixed model was able to completely describe the density-size 

trajectory of even-aged loblolly pine stands in the southeastern U.S. The model addressed the 

non-linear trend in Ln(trees/ha) with Ln(quadratic mean diameter), and the effect of initial 

density on the trajectory.  An independent upper boundary line fitted using stochastic frontier 

regression was introduced to study how the semiparametric model approaches the limiting size-

density relationship. The semiparametric regression approach is attractive for modeling complex 

functional forms such as the size-density relationship presented in this chapter.  

 

 

Keywords: Self-thinning, Diameter-density relationship, Semiparametric regression, Stochastic 

frontier regression, Loblolly pine, Pinus taeda L. 
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3.2. Introduction 

 

When even-aged monocultures of plants are subject to severe intraspecific competition, 

death of suppressed plants occurs in the process known as self-thinning or density-dependent 

mortality (Yoda et al. 1963, Westoby 1984). The most common density indexes for the analysis 

of the impact of stand density on self-thinning combine an expression of the size of the average 

tree (diameter at breast height, biomass or volume) with the number of trees per unit area (Curtis 

1970, Long 1985, Long et al. 2004).  Reineke's equation (Reineke, 1933) and the ―-3/2 power 

law‖ of self-thinning (Yoda et al. 1963) are the most commonly used. The rules state that, in log-

log scales, the relationship between average plant size and stand density is a straight line (self-

thinning line or maximum size–density relationship) for a stand undergoing density-related 

mortality. Reineke‘s equation is written as 

[1]     )()( DqLnTPHLn    

where TPH is trees per hectare, and Dq is quadratic mean diameter.  

  There is a large, and at times controversial, body of literature concerning the self-thinning 

law covering the past 40 years (Westoby 1984; Weller 1987, 1991; Lonsdale 1990; Pretzsch 

2002; Pretzsch and Biber 2005). The controversy has primarily focused on whether the slope of 

the maximum size-density relationship line is constant (Zeide 1987, Lonsdale 1990, Hynynen, 

1993).  

Some authors considered that the self-thinning relationships for given data sets were 

curvilinear instead of linear on a log–log scale (Zeide 1987, Cao et al. 2000, Bi 2001, Yang and 

Titus 2002, Weiskittel et al. 2009). Zeide (1987) claimed the self-thinning trajectory as a 

concave down curve rather than a straight line (Ln(TPH)-Ln(Dq)). The curve has been described 
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as having three phases: (I) from young stage until crown closure, when the self-thinning is less 

than the mortality at maximum competition, it is concave and lies under the straight line of 

maximum density; (II) in the intermediate phase of the stand's development, it follows the 

straight line of maximum density; and (III) in older-aged stands, when the capability to fill gaps 

left by dead trees has been lost, the line inclines to curve below the straight line. Smith and Hann 

(1984), Puettmann et al. (1993), and Tang et al. (1994) have proposed a different kind of 

trajectory for the related number of trees per unit area-quadratic mean diameter, in which once 

the line of maximum density has been reached, the curve follows it as an asymptote. 

Another important concern centers on the most suitable methods for data selection and 

parameter estimation in the self-thinning equations (Bi and Turvey 1997, Bi et al. 2000, Zhang et 

al. 2005). To perform the fitting and to interpret the result as a line of maximum size-density it is 

essential that the stands analyzed are fully-stocked or at maximum density (Weller 1987, Rio 

2001). Data used to model the maximum size–density relationship should be carefully selected 

from those stands that are in the self-thinning stage of stand development. Numerous selection 

methods have been proposed, from visually selecting observations (Harms 1981, Weller 1987, 

VanderSchaaf and Burkhart 2007) to more statistically based criteria (Smith and Hann 1984, 

Bredenkamp and Burkhart 1990, del Rio et al. 2001, Zhang et al. 2005, Poage et al. 2007). There 

is still no agreement on the selection criteria to apply when determining what observations occur 

along the self-thinning lines (Zhang et al. 2005, VanderSchaaf and Burkhart 2008). 

Zhang et al. (2005) compared several statistical techniques for estimating the limiting 

size-density relationship and concluded that stochastic frontier regression (SFR) had advantages 

over other techniques such as quantile regression, ordinary least squares (OLS), and principal 

components analysis (PCA). Stochastic frontier regression models seek to explain boundary, 
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frontier or optimal behavior rather than average behavior as in ordinary regression models 

(Aigner et al. 1977). Stochastic frontier regression is an econometric method that has been 

adopted to estimate the self-thinning boundary line as a density-dependent stochastic frontier (Bi 

et al. 2000, Zhang et al. 2005, Weiskittel at al. 2009). This method uses all the data points to fit 

the limiting line. Since no subjective data selection is involved and no information contained in 

the data is lost, the boundary line can be estimated without subjectivity and more efficiently than 

the common methods of subjective data selection. Consequently, statistical inferences about the 

estimated self-thinning boundary line can be made objectively and more precisely.  

 Modeling the complete size–density trajectories of individual stands removes the need to 

censor data to study the properties of the upper boundary of the tree size and tree density 

relationship. The boundary develops from overlapping trajectories of individual stands (Smith 

and Hann 1986, Cao and Dean 2008). Individual trajectories can also be used as constraints in 

stand growth and yield models (Hynynen 1993, Tang et al. 1994, Monserud et al. 2005, Poage et 

al. 2007). Growth and yield systems can combine mortality functions with height, diameter, 

volume, or weight equations to estimate an approach to a limiting size-density constraint. To 

incorporate this technique the models need to appropriately describe the full developmental 

trajectories of the stand. Modelers generally assume a monotonic increase in mortality with 

increasing proximity to the size–density boundary after canopy closure (Cao and Dean 2008). 

Long and Smith (1984) suggested a developmental stage between canopy closure and self-

thinning called full-site occupancy characterized by accelerated size differentiation among trees 

in the stand and skewness in size distribution. Pre- and post-canopy closure mortality rates 

indicate that a complete description of a stand‘s developmental trajectory requires numerous 

curve segments.  This chapter reports on the application of semiparametric regression, a 
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technique that allows the flexible incorporation of nonlinear functional relationships in 

regression models without having parametric restrictions, to describe the complete size-density 

relationship of loblolly pine stands.  

The objectives of this study were to (1) apply semiparametric regression analysis to 

modeling the trajectory of stand density and quadratic mean diameter of individual stands 

through time; and (2) analyze the approach of the semiparamteric model to a boundary size-

density relationship fitted using stochastic frontier regression methods.  

 

3.3. Data  

 

 The data for this work were obtained from permanent plots of loblolly pine from a 

spacing study established on six sites in southeastern Georgia (Chatham, Long, Tattnall, and 

Effingham counties) (Figure 3.1).  Three replicates of a randomized complete block design were 

established at each location in 1985, 1986, 1989 or 1991. Ten initial planting configurations were 

established, ranging from 749 to 2990 trees per hectare (749, 897, 1078, 1122, 1347, 1495, 1683, 

1794, 2244, and 2990 trees/ha). A total of 180 experimental units (plots) were established when 

all six sites were combined (6 sites × 3 replications × 10 planting configurations). Plot size 

ranged from 0.024 to 0.085 ha. Each plot was measured from three to four times, at 3-5 year 

intervals, resulting in a total of 648 observations.  

Site index was calculated using the site index equations developed by Borders et al. 

(2004) for second rotation loblolly pine plantations: 

[2]  

b
A

b

a

HD
aS

/25
/1

11  
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where a=117.6 and b=1.336527 using English units, S is site index estimated at the age (A) of 

the oldest measurement,  HD is dominant height defined as the average height of trees with 

diameter at breast height (DBH) larger than the median DBH of the stand. Summary statistics of 

plot-level characteristics for the whole dataset are presented in Table 3.1. The trajectories of 

stand density (trees per hectare) and quadratic mean diameter (cm) in log-log scale for these 

measurements are shown in Figure 3.2.   

Preliminary Analysis of Variance (ANOVA) was performed to test the effect of location 

on the quadratic mean diameter, Reineke‘s stand density index (SDI), stand basal area/ha, and 

trees/ha. All analyses showed that there were no significant differences among locations for the 

above variables. Since location was not shown to affect the variables related with the size-

density trajectories, data were pooled across all planting configurations, replications and 

locations to fit the semiparametric regression model.   

 

3.4. Methods  

 

3.4.1. Model development: semiparametric interactive mixed model  

  

Semiparametric regression is a combination between traditional parametric regression 

analysis and nonparametric regression methods. Nonparametric regression (i.e. scatterplot 

smoothing) refers to a set of statistical techniques used to summarize bivariate relationships in 

scatterplots. Through more commonly used ―parametrical‖ statistical techniques, the relationship 

between two variables is summarized with a parameter. With nonparametric regression, there is 

no single parameter and the relationship between the variables is summarized with a line drawing 
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(Keele 2008). Semiparametric analysis combines research across several branches of statistics: 

parametric and nonparametric regression, longitudinal and spatial data analysis, mixed and 

hierarchical Bayesian models, Expectation-Maximization (EM) and Markov Chain Monte Carlo 

(MCMC) algorithms (Rupert et al. 2003, 2009). Semiparametric regression is concerned with the 

flexible incorporation of nonlinear functional relationships in regression models without having 

parametric restrictions. Engle et al. (1986) were among the first to develop semiparametric 

regression models to analyze the relationship between temperature and electricity usage. Since 

then, many disciplines have embraced semiparametric models. Examples include economics 

(Linton and Hardle 1996), political science (Beck and Jackman 1998), ecology (Roland et al. 

2000), and wood quality (Jordan et al. 2008, Finto 2010).  

Semiparametric regression models based on penalized splines can be embedded in the 

mixed model framework, allowing for mixed model estimation and for inferential and 

computational tools to be used (Ngo and Wand 2004). The mixed model representation of 

penalized splines allows for a fusion between parametric mixed models and smoothing, which is 

called semiparametric mixed models (Rupert et al. 2003).  

In our study, semiparametric techniques were applied to model trajectories of stand 

density and quadratic mean diameter through time. When describing the complete size-density 

trajectory of individual stands (Figure 3.2), the linearity assumption underlying Reineke‘s model 

(Equation  [1]) is no longer reasonable. The non-linear trend for the complete trajectories of 

stand density (N, trees/ha) and quadratic mean diameter (Dq, cm) in log-log scale can be 

described by a mixed model representation. The model specification for an individual plot 

response is given by 
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[3]   
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where yij= LnNij represents the number of trees per hectare (Ln) on the i-th plot at the j-th 

measurement, Ui indicates the set of random effects in the mixed model associated with the plots, 

f  is some smooth function (i.e. differentiable over its complete domain) to be defined that 

describes the trajectory of stand density (LnN) and size (LnDq) for individual plots, and 

xij=LnDqij represents the quadratic mean diameter (Ln) on the i-th plot at j-th measurement. For 

our study, m= 180 plots, and ni  {3, 4}, indicating that each plot was measured either 3 or 4 

times.    

Penalized smoothing splines, i.e. curves formed by splicing low-order polynomials at 

known knot locations, were used to define the smooth function.  Using a quadratic spline basis 

for the smooth function f (xij) we see that Equation [3] can be written as follows  

[4]        
2

2

i 0 1 2

1

 U + + 
K

ij ij ij k ij ijy x x u x  

      ),0(...~,),0(...~,),0(...~U,1,1 222 NdiiNdiiuNdiiminj ijukUii  

 

In this equation, K,,, 21   represent K knot locations within the range of the xij.‘s,  and 

)( kijx  is the positive function where ―+‖ sets it to zero for those values of  xij such that 

kijx is negative ( kijx i.e. ), i.e.   
       else  , 0

 if ,
)(

kijkij

kij

xx
x  

Note that Equation  

[4] is a special case of the Gaussian linear mixed model. If we define 
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then we can simultaneously estimate variance components for the random intercept and the 

amount of smoothing for f  by using the mixed model: 
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[5]   Y  X  + Z  + β u  ,    

I

I

I
u

Cov
2

2

2 00

u

U

  

 

Here 2

U
 measures the between-plot variation, 2 measures within-plot variation, and 2

u

controls the amount of smoothing done to estimate f  through the parameter 
2

2 = 
u  

 . The 

maximum likelihood estimate for ˆ
 (MLE), and an empirical best linear unbiased predictor for 

û  (BLUP) were obtained using PROC MIXED in SAS (SAS Institute Inc. 2008). 

This study is concerned with the effects of planting density on self-thinning trajectories. 

As described in section 3.3, the data can be categorized according to ten planting densities: 749, 

897, 1078, 1122, 1347, 1495, 1683, 1794, 2244, and 2990 trees/ha. To address this question of 

interest, we define indicator variables Zit for nine of ten planting densities and consider the 

model 

 

[6]      

2
2

i 0 1 2 3 749 4 897

1

5 1078 6 1122 7 1347 8 1495 9 1683 10 1794 11 2244

 U + + I + I

            + I + I I + I I + I I + 
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ij ij ij k ij
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With this formulation, the planting density of 2290 trees/ha comprises the reference 

group and   represent mean differences in LnN between the 

other planting density groups.  
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 Equation [6] corresponds to an additive model, i.e. the joint effect of all predictor 

variables upon the response is expressed as a sum of individual effects. These individual effects 

show how the expected response varies as any single predictor varies with the others held fixed 

at arbitrary values.  However, there are no guarantees that an additive model will provide a 

satisfactory fit in any given situation. Non-additive or interaction models are those such that as 

one predictor is varied, the effect on the expected response depends on the fixed values of the 

other predictors.  

Let zi {1, 2, 3, …, L=10} represent the planting density coded factor corresponding to 

the ten initial densities,  and let k1, k2, …, kK be a set of knots inside the range of the xi .    Define   

 
       otherwise    0

z if     1 t
z

i

it , for t =1,2, …, L=10. 
 

The inclusion of interaction terms yields a semiparametric interactive mixed model (in 

Equation [7]). 
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In model [7],   
2

1

K
t

ijx   represents deviations from the overall smooth term  

2

1

K

k iju x  . The vector  denotes the initial density of 2290 trees/ha 

(t=1, reference group) and additional terms represent mean differences in LnN between the other 

planting density groups.  

 

3.4.2. Testing for additivity 

 

 A test for additivity can be conducted by comparing the additive model [6] to the 

interaction model [7] and checking whether the interaction model offers a significant 

improvement in fit (Hastie and Tibshirani 1990).  In particular, we can compare the log-

likelihoods for the additive and interaction model through the likelihood ratio test statistic.  In 

terms of the parameters in [7], the null hypothesis of additivity is 

 

 After accounting for the constraints imposed on the fixed effects to ensure identifiability, the 

null hypothesis restricts (L-1)*3 fixed effects parameters and one variance component.  

 

3.4.3. Semiparametric first order derivative estimation 

 

 The derivatives of the regression function f can be of importance as well as f itself. 

Derivative estimation plays an important role in the exploration of structures in curves, inference 

of significant features in data, trend analysis, comparison of regression scatterplots, and analysis 

of growth data (Park and Kang 2008). All the previous analysis techniques are based on the 
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inference about slopes (and hence the derivative) of the regression estimates. Therefore, the 

study of estimating derivatives (first and higher orders) semiparametrically is as equally 

important as regression estimation.  

The derivative of the semiparametric interactive mixed model [7] can be used to explore 

the rate of change of density (LnN) with respect to size (LnDq). Differentiating Equation [7] 

with respect to xij we have 

[8]      
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Operationally, a derivative estimate at x can be obtained from the quadratic fit coefficients 

       and          by setting  

             and      . 

It follows 

                      

 

3.4.4. Knot specification 

 

 The set K,,, 21   represent K knot locations to be determined within the range of the 

xij.. The goal is to choose enough knots to resolve the structure of the underlying regression 

function. A practical default is to choose the knots to guarantee that there are a fixed number of 
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unique observations (4-5) between each knot (Ruppert et al. 2003). For large data sets this can 

lead to an unnecessary number of knots, so a maximum number of acceptable knots is 

recommended, usually 20-40 (Ruppert et al. 2003). Wand (2003) proposed the following rule for 

knot location: 

   
1

2
k

k

K
  th sample quantile of the unique xij ,    1  ≤  k  ≤ K 

with k = min( 4/n  , 35).    

As an alternative, the user may choose K based on visual inspection of the scatterplot to 

determine the complexity of the function f relative to the structure of the data (Wand 2003) 

French et al. (2001), Ruppert (2002), and Wand (2003) claimed that knot specification 

has a minor impact on the fitting of semiparametric regression models.  Rupert et al. (2003), 

Jordan et al. (2008), and Finto (2010) used evenly spaced knots in fitting the semiparametric 

regression.   

For our study, we compared the fitting result of using evenly spaced knots between the 

minimum and maximum of LnDq from the available data, and that resulting from choosing the 

knots based on visual inspection of scatterplots and first derivative plots.  

 

3.4.5. Using stochastic frontier regression to model the boundary size-density relationship 

  

 Stochastic frontier models of production systems were originally proposed by Aigner et 

al. (1977), and by Meeusen and Van den Broeck (1977).  The model can be written in the form,   

   yi =  f (Xi, β) + vi - ui                  

  [9]                                 =  β0 + β1 xi + εi                                        

       =  β0 + β1 xi + vi - ui                         
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where  is a known parameter vector to be estimated, εi = vi – ui is a compound error term with 

ui ≥ 0 and vi unrestricted. The terms iv  correspond to a two-sided random variable assumed to be 

iid 2(0, )vN , and iu is one-sided random variable which can be assumed to have any distribution 

restricted to only positive or negative values, such as half normal or truncated-normal. The terms 

iu  and iv  are assumed to be independent. When iu takes on only negative values, then iy  would 

be less than the frontier [f (Xi, β) + vi], describing a stochastic maximum relationship. A number 

of specifications have been considered for the ui terms: a half-normal distribution ui ~N(0,σu
2
)  

(Aigner et al. 1977),  an exponential distribution, and  a truncated normal (Stevenson 1980). 

Preliminary analysis showed no significant different log-likelihood values between specifications 

of the ui terms, and hence a half-normal model was applied. The vector parameter  was 

estimated together with the variance components: σ
2
 and γ, where σ

2
 = σu

2
 + σv

2
 ,  γ = σu 

2
/ σ

2
. 

The parameters σ
2
 and γ are diagnostic statistics that indicate the relevance of the use of the 

stochastic frontier function and the accuracy of the assumptions made on the distribution form of 

the error term. The parameters in the model were estimated by maximum likelihood methods 

with FRONTIER v4.1 (Coelli 1996).  

 

3.4.6. Relating the stochastic frontier boundary model with the semiparametric regression  

trajectories 

 

 The stochastic frontier regression method has the potential to estimate an upper limiting 

boundary line above all plots for the maximum size-density relationship. The slope of the 

stochastic frontier model can be integrated into the semiparametric regression trajectories as 

follows. Let G(x) be a nonlinear segmented model that has the following form: 
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[10]                             G(x) = Y1(x)      if  x  <  K 

                                     G(x) = Y2(x)      if  x  ≥  K 

where  Y1(x) is the semiparametric interactive mixed model presented in Equation  [7], Y2(x) is 

the stochastic frontier regression model showed in Equation [9], and  x represents the quadratic 

mean diameter expressed as Ln(Dq).  That is, for values of x less than K, the equation relating y 

(Ln(trees/ha)) and x  (Ln(Dq)) is the semiparametric model,  and, for values of x greater than K, 

the equation is a line with the slope given by the stochastic regression model. PROC NLMIXED 

in SAS can fit such a segmented model even when the joint point, K, is unknown. To impose 

continuity (the two sections meet at x=K), and smoothness (the first derivatives with respect to x 

are the same at K) we have: 
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                         =   β0i
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 xij + vi - ui   ,  

at  xi = K , where  β1_SFR  is the slope of the stochastic frontier model, and β0i
*
 correspond to a set 

of intercepts varying by planting density. Solving Equation [11] for β0i
* 

, we obtain a parameter 

that allows continuity between the two sections. Considering the smoothness of the new equation 

we require: 
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          =   )        =                

         =     

      Following Cao and Dean (2008), the joint point x=K is estimated for each stand density 

by fitting first a two segment quadratic linear-regression model with an unknown join point.  The 

validity of this joint point can be assessed by a visual inspection of the scatterplot and first 

derivative plots.  

The final model will then have the form: 

 

[12]           G(x)
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 3.5.   Results and discussion 

 

3.5.1. Semiparametric regression model  

 

   Models [6] (semiparametric additive mixed model) and  [7] (semiparametric interaction 

mixed model) were fitted using PROC MIXED, a SAS mixed model procedure (SAS Institute 
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Inc. 2008),  applying the method of restricted maximum likelihood (REML) and a Toeplitz 

covariance structure of the errors to account for the longitudinal aspect of the data.  

Based on visual inspection of the scatterplot (Figure 3.2), six evenly spaced knots located 

in the last phase of the size-density trajectories (2.5 ≤ LnDq ≤ 3.5) were chosen to capture the 

nonlinear trend and the monotonic decreasing trend of the curves. Using evenly spaced knots 

through the whole range of LnDq resulted in illogic results (i.e. increasing number of trees/ha as 

the quadratic mean diameter increases; trees/ha was predicted to be greater than the planting 

densities) and hence poor fit of the semiparametric curve. 

The semiparametric interaction mixed model was able to completely describe the density-

size trajectories of our data, addressing both the non-linear trend in Ln(trees/ha) with 

Ln(quadratic mean diameter), and the effect of initial planting density on the trajectories. A test 

for additivity was conducted by using a likelihood ratio statistics by fitting the full model with 

interaction (Equation [7]) and the nested reduced model (Equation [6]). The test statistics, 2*log-

Likelihood = -1159.9-(-1307.8)=147.9 has an asymptotic  distribution with 28 (9*3+1) 

degrees of freedom. Based on the significant result of this test (p-value < 0.0001) we concluded 

that the effects associated with initial-density*LnDq interaction were significant and should be 

retained in the model.  Model [7] therefore provided a better fit to our data.  

A plot of the predicted trajectories from the full model [7] for four planting densities 

(2990, 2244, 1794, and 1683 trees/ha) is presented in Figure 3.3. The plot shows that four of the 

predicted trajectories intersect at an approximate value of LnDq= 3.0, or Dq= 20 cm. Crossing 

trajectories violates the assumption that individual stands asymptote to a common upper size-

density frontier. Our results, however, support the findings of Drew and Flewelling (1979), 

Hibbs (1987), Dean and Baldwin (1993), and Cao and Dean (2008) that individual trajectories 



 

122 

can cross each other. Although that assumption essentially simplifies curve fitting, curves fit to 

individual stands should reproduce their individual patterns, permitting crossovers if they exist in 

the data set (Cao and Dean 2008). 

Close examination of the curves in Figure 3.3 reveals that the size-density trajectories can 

be divided into at least two zones, in agreement with the stages of stand development that have 

been described by Drew and Fleweling (1979), Williams (1994), and VanderSchaaf and Burkhart 

(2008): (I) an initial stage where the impact of competition is minor in which mortality is 

independent of stand density (density independent mortality stage), and (II) a stage with 

competition-induced mortality, also called the self-thinning stage. Within the density induced 

mortality, three phases of stand development can be found: the first phase is described by a 

nonlinear zone of the trajectory, followed by the second phase, a linear portion of the trajectory, 

and the third phase is characterized by a divergence of the size-density trajectory from the linear 

portion.  We observe that the trajectories seemed to follow stage I (independent mortality stage), 

and the first two phases of stage II (nonlinear trend followed by a linear portion) (Figure 3.3). 

Plots of predicted Ln(trees/ha) with 95% individual prediction bands are presented in 

Figure 3.4 to Figure 3.7 for initial densities 1683, 1794, 2244, and 2990 trees/ha, respectively. 

The estimated 95% confidence bands indicate that the predictions are fairly precise, i.e. the 

variability around the predictions was quite narrow. 

Plots of the first derivative for the semiparametric interaction mixed model [7] for 

selected initial stand densities are presented in Figure 3.8. Derivative plots allow for a richer 

interpretation of the semiparametric regression model.  Based on the plot, we can observe up to 

three segments in the trajectories, corresponding to three phases of stand development. In the 

first phase Ln(trees/ha) remains mostly constant until approximately Lndq= 2.0 (7.39 cm). This 
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first segment represents the density-independent mortality stage. After that, as tree size increases 

(LnDq), stand density (Ln(trees/ha)) decreases with a certain mortality rate until approximately 

LnDq=2.5 (12.2 cm). This suggests the start of the density-induced mortality phase. Then, there 

is an increase in mortality rate, Ln(trees/ha) decreases at an increasing rate over the range of 

LnDq. With increases in tree size and the death of trees, the size-density trajectory is assumed to 

become linear.  

 

3.5.2. Stochastic frontier regression model 

 

Preliminary analysis showed no significant different log-likelihood values between 

specifications of the ui terms, and hence a half-normal model was applied. Parameter estimates 

for the half-normal stochastic frontier are given in Table 3.2. The 2
 and  coefficients are the 

diagnostic statistics that indicate the appropriateness of the use of the stochastic frontier function 

and the accuracy of the assumptions made on the distribution form of the error term. The value 

of 2 2 2/( )u u v
was highly significant (  =0.9828, S.E.=0.0029), indicating that SFR is 

appropriate to estimate the boundary. The parameter estimate 
2

v was close to zero (
2

v

=0.002174), indicating that the stochastic frontier model can yield a true upper limiting boundary 

line (Zhang et al. 2005, Weiskittel et al. 2009). The estimated limiting size-density relationship 

as a stochastic frontier for loblolly pine is (Figure 3.9): 

[13]            Ln(trees/ha) =   12.443    -1.820 Ln(Dq) 

The standard errors for the estimates of βo and β1 were 0.1964 and 0.0673 respectively. 

The estimated slope (-1.820) is significantly different from the one given by Reineke (-1.605) , at 
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the  95% confidence level). For loblolly pine, the slope was estimated to be -1.707 by 

MacKinney and Chaiken (1935), -1.696 by Harms (1981), -1.505 by Williams (1996), and 

-1.926 by Lhotka and Loewenstein (2008). 

 

3.5.3 Relating the stochastic frontier boundary model with the semiparametric regression   

trajectories 

 

 The complete predicted size-density trajectories obtained by semiparametric regression 

(Equation [7]) and the upper limiting size-density relationship obtained by stochastic frontier 

regression (Equation [9]) for loblolly pine corresponding to four planting densities (1683, 1794, 

2244, and 2990 trees/ha) are shown in Figure 3.10 to Figure 3.13. Stands with higher values of 

initial density show trajectories that are approaching, or traveling along, the upper boundary 

described by the stochastic frontier model. For comparative purposes, the trajectories of the four 

initial densities are shown in Figure 3.14. The curves suggest that the stands under study are in 

the second stage of self-thinning, i.e. the trajectories approach and trail the straight line of 

maximum density, without departing from the linear trend.  In aged stands (the data used for this 

study correspond to relatively young stands, ranging from 5 to 20 years old) it is expected that 

the trajectories incline below the boundary as a consequence of losing the capability to fill the 

gaps left by dead trees (Bredenkamp and Burkhart 1990, Cao et al. 2000, Vanderschaaf and 

Burkhart 2008). 

 To incorporate the slope of the stochastic frontier regression into the size-density 

trajectories a two-segment model was fitted to the data (Equation [12]). The first segment 

corresponds to the semiparametric model, while the last part corresponds to a linear model with 
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the slope given by the stochastic frontier regression function (β1_SFR
 
=  -1.820), and intercepts 

varying by planting density. 

For each planting density, a join point was estimated by fitting a two-segment polynomial 

regression model to the data (Cao and Dean 2008). The estimated point was corroborated for 

accuracy by a visual inspection of scatterplots and first derivative curves (Figure 3.8). Most join 

points were in the range of Ln(Dq)= 2.7-3.1. As an example, the parameters corresponding to the 

initial stand density of 2244 tress/ha were  β0i
*
= 12.667, and 

 
K=2.7. Larger initial stand densities 

yielded smaller join point values, indicating that self-thinning started earlier in crowded stands.  

Figure 3.15 shows the trajectories of the 2-segment semiparametric-stochastic regression model. 

 

3.6. Conclusions 

 

The main purpose of this study was to demonstrate the process of using semiparametric 

regression to modeling the trajectory of tree density and quadratic mean diameter through time 

for individual stands. The full equation, a semiparametric interaction mixed model, was able to 

completely describe the density-size trajectory of loblolly pine stands. It addressed the non-linear 

trend in Ln(trees/ha) with Ln(quadratic mean diameter), and the effect of initial density on the 

trajectory.  Including the slope of the stochastic frontier regression into the trajectories appears to 

be appropriate for this dataset. Data used in this study came from relatively young stands (age 

ranged from 5-20 years), where most of the trajectories were already in, or approaching, the 

linear phase of self-thinning. To our knowledge, this has been the first time that semiparametric 

regression is used to model self-thinning trajectories. 
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The semiparametric regression approach is attractive for modeling complex functional 

forms as the size-density relationship presented in this chapter.  
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Table 3.1. Plot-level description of data (n=648)
a 

 

Variable Mean 

 

S.D. Min Max 

          Trees/ ha 

          Dq (cm) 

         BA (m
2
/ha)           

          H (m)  

          SI(m) 

          Age (years)                   

1393 

15.7 

          26.7 

12.6 

25.2 

          11                   

571.9 

   5.2 

          13.0 

   5.2 

   1.2 

   3.9 

585 

3.9 

          1.2 

3.2 

23.6 

           5 

2990 

29.9 

         55.0 

25.4 

27.8 

         20 

a
 S.D.: standard deviation , Dq: quadratic mean diameter, BA: basal area,  H: average total height, SI: site index base 

age 25 years 
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Table 3.2. Stochastic frontier regression model parameter estimates of the limiting size-density 

relationship in loblolly pine (Equation [9]) 

 

Parameter  Estimate 

 

S.E 

               βo 

               β1 

              2  

               γ 

           Log-likelihood                                                                                                         

       12.443 

        -1.820 

        0.1264 

        0.9828   

        258.7             

0.1964 

0.0673 

0.0167 

0.0029 

 

 

    Note: 2 2 2

u v
     ,    2 2/u
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Figure 3.1: Location of the loblolly pine research installations used in this 

analysis ( ). 
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Figure 3.2 Density-size trajectories observed from 180 plots from the loblolly pine 

spacing study. There are between three to four measurements per plot, 648 in total. The 

repeated measures for each experimental plot are connected in the graph. 
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Figure 3.3   Predicted Ln(trees/ha) by four planting densities from the semiparametric 

interaction mixed model [7]. 

  



 

141 

 

Figure 3.4 Predicted Ln(trees/ha) with 95% individual confidence band from semiparametric 

interaction mixed model [7] at an initial density of 1683 trees/ha.  
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Figure 3.5. Predicted Ln(trees/ha) with 95% individual confidence band from semiparametric 

interaction mixed model [7] at an initial density of 1794 trees/ha.  
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Figure 3.6 Predicted Ln(trees/ha) with 95% individual confidence band from semiparametric 

interaction mixed model [7] at an initial density of 2244 trees/ha.  

 

 

 

 



 

144 

 

Figure 3.7 Predicted Ln(trees/ha) with 95% individual confidence band from semiparametric 

interaction mixed model [7] at an initial density of 2990 trees/ha.  
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Figure 3.8 First derivative plot from semiparametric interaction mixed model [8] by four 

planting densities  
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Figure 3.9 The limiting size-density relationship for loblolly pine obtained by stochastic frontier 

regression (Equation [13]) 
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Figure 3.10 Predicted size-density trajectory obtained by semiparametric regression (Equation 

[7]) and the upper limiting size-density relationship obtained by stochastic frontier regression 

(Equation [13]) for loblolly pine corresponding to a planting density of 1683 trees/ha. 
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Figure 3.11 Predicted size-density trajectory obtained by semiparametric regression (Equation 

[7]) and the upper limiting size-density relationship obtained by stochastic frontier regression 

(Equation [13]) for loblolly pine corresponding to a planting density of 1794 trees/ha. 
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Figure 3.12 Predicted size-density trajectory obtained by semiparametric regression (Equation 

[7]) and the upper limiting size-density relationship obtained by stochastic frontier regression 

(Equation [13]) for loblolly pine corresponding to a planting density of 2244 trees/ha. 
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Figure 3.13 Predicted size-density trajectory obtained by semiparametric regression (Equation 

[7]) and the upper limiting size-density relationship obtained by stochastic frontier regression 

(Equation [13]) for loblolly pine corresponding to a planting density of 2990 trees/ha. 
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Figure 3.14 Predicted size-density trajectory obtained by semiparametric regression (Equation 

[7]) and the upper limiting size-density relationship obtained by stochastic frontier regression 

(Equation [13]) for loblolly pine corresponding to the higher four planting densities  (1683, 1794, 

2244, 2990 trees/ha). 
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Figure 3.15 Predicted size-density trajectories obtained by the 2-segment model (semiparametric 

regression + stochastic frontier regression slope) (Equation [12]) by four planting densities 

(1683, 1794, 2244, and 2990 trees/ha). 
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Chapter 4 

Summary and Conclusions 

 

Self-thinning is a critical process during stand development. As single trees in a stand 

grow in size, they begin to compete for limited resources such as light, water, mineral nutrients, 

and space. Competition arises when the density of a stand surpasses the level at which each 

individual can obtain its maximum growing space. Natural mortality results when the minimum 

growing space requirements of all trees exceed the resources of the site. The dynamic 

equilibrium between tree growth and death induced by competition has been historically 

governed by the Reineke‘s equation and the so-called -3/2 power law of self-thinning. The law 

states that in log-log scale the relationship between average tree size and stand density is a 

straight line (called the self-thinning or limiting size-density line). Size-density relationships 

have been used to investigate stand development and self-thinning relationships, to develop 

relative density indices and stand management diagrams, and to serve as a predictor of stand 

growth. An understanding of the size-density relationships allows silviculturists to design 

management prescriptions that alter available growing space and influence tree size, growth, and 

mortality. This dissertation was an effort to model the maximum size-density relationship by 

integrating a selection of other stand factors such as silvicultural intensity, planting density, site 

index, and soil type into the model, and to compare and illustrate the application of alternative 
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mathematical forms and fitting methods that have been or can be used to modeling the trajectory 

of stand density and size of individual stands through time. 

The effect of stand factors on the limiting size-density relationship in even-aged loblolly 

pine (Pinus taeda L.) stands in the U.S. Southeast was studied. The mixed-effects analysis 

technique proved to be a valuable statistical approach for fitting the limiting size-density line and 

providing the opportunity to test the significance and impact of additional factors. The 

assumption that the intercept and slope of the species limiting size-density relationship are 

invariant to stand and site factors was analyzed using data from a culture/density study in the 

Lower Coastal Plain region of the southern United States. Management intensity, planting 

density, and site index significantly impacted the parameters of the species limiting size-density 

relationship. CRIFF soil types did not significantly affect the slope or intercept of the line.          

 The application of semiparametric regression analysis to modeling the trajectory of tree 

density and quadratic mean diameter through time for individual stands was investigated.  A 

semiparametric interaction mixed model was able to completely describe the density-size 

trajectory of even-aged loblolly pine stands in the southeastern U.S. The model addressed the 

non-linear trend in Ln(trees/ha) with Ln(quadratic mean diameter), and the effect of initial 

density on the trajectory. To account for the linear phase of self-thinning, and to achieve a better 

representation of this important factor in stand dynamics, the slope of the stochastic frontier 

regression was incorporated into the semiparametric model.  To our knowledge, this is the first 

time that semiparametric regression has been used to model size-density trajectories. 


