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ABSTRACT
Over the past few years, the frequency and severity of forest fires throughout Southern
Appalachia have been on the rise. This area, until recently, had experienced a prolonged period of
relatively low wildfire activity. This leads one to scientific questions about what is driving the
increase in activity. The climate of the study region has been fairly stable for several decades, but
there could be a shift occurring, particularly related to precipitation frequency and intensity. This
study is motivated by the notion that there is a relationship between consecutive “dry days” and
fire frequency/magnitude. While drought has been a central focus, recent studies suggest that fuel
load and consecutive “dry days” could be significant identifiers of an impending large-scale fire
event. Using a climate division framework, we identify key co-relationships between precipitation

and large-scale wildfire activity in the region.
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CHAPTER 1

INTRODUCTION

Fire activity is an integral element of the forest ecosystems in the Southern Appalachian
region of the United States. It is a determining factor governing spatial forest structure (Kane et
al. 2014) and also influences soil-nutrient composition (Morris et al. 2015, Schlesinger et al.
2016) and biotic community structure (Johnstone et al. 2016). Fire is not only responsible for
shaping the vegetative composition of the landscape but also influences the structure and
composition of biotic communities, soil quality and composition, watershed quality, and nutrient
availability (Johnstone et al. 2016; Morris et al. 2015; Schlesinger et al. 2016). In addition, small
increases in pollution episodes, including those associated with forest fires, can negatively affect
the outstanding visibility and air quality that characterize Southern Appalachia (Hyslop, 2009,
Liu, 2004). Some forest ecosystems of the Appalachian Mountains are pyrogenic (Lafon et al.
2017), meaning that the composition of these ecosystems is determined by and influenced by
fire. Southern Appalachia has an extensive history as a pyrogenic ecosystem, and still has its
landscape significantly altered by fire activity despite the increase in population and human-
environmental interaction (Van Lear et al. 1989).

In the Appalachian Region of the United States, fire poses a major economic threat to
natural resources and communities, making wildfire occurrence of great importance to managing
agencies (Lynch & Hessl, 2010). This area of the United States is often synonymous with higher

levels of poverty and vulnerability than the rest of the country (Lynch & Hessl, 2010). This



means that the surrounding communities are more susceptible to changes in climate and fire
activity (Lynch & Hessl, 2010). The area is also characterized by similar topography and current
climate characteristic. Southern Appalachia contains the Appalachian Mountains, which has
formed a system of ridges and valleys within the area. Several ridges and valleys indicate
significant topographic variability, creating an additional challenge for dealing with fire activity.
The organic matter of the area provides other significant challenges for dealing with the ignition
and spread of wildfire.

Dry days have a direct impact on detritus that has collected on the forest floor (Chen et al.
2014). This detritus serves as fuel to be ignited by either anthropogenic sources or lightning.
Research shows that consecutive dry days in the Appalachian region are a key factor in wildfire
ignition (Lafon et al. 2017). It has been shown that consecutive dry-days leading up to a fire
event have a statistically significant relationship pertaining to the amount of burned area for each
specific fire (Chen et al. 2014). Current fire-suppression strategies (i.e. controlled-burns)
implemented by management agencies in the Appalachians support the fuel-loading of forest
understories. This allows for the continued build-up of biomass fuels in the Appalachian forest.
This continued build-up could influence fire severity and burned area of current and future
wildfires specifically in areas with prolonged dry periods. Southern Appalachia is characterized
by current changes in precipitation behavior, a large amount of fuel-loading compared to other
forested areas, and a statistical relationship shown between consecutive dry-days and area burned
(Lafon, 2017). There is emerging evidence that research is needed on the relationships between
consecutive dry days and fire behavior in Southern Appalachia, particularly after the catastrophic
fire season of 2016. Research will examine the relationship between the two factors to see the

scale of the impact consecutive dry-days have on Southern Appalachian fire activity.



1.1 Motivation

In late November to early December of 2016, a series of wildfires devastated much of the
Great Smoky Mountains National Park. The largest fire was brought on by anthropogenic
ignition, but prime conditions for a disastrous fire event, including an extended period of low
precipitation and record high daily maximum temperatures throughout Southern Appalachia,
caused the fire to impact the area at such a large scale. Anomalous ridging over the central
United States reduced south-southwesterly moisture transports into the southeastern region of the
country by around 75% (Park Williams et al. 2018). The United States Drought Monitor index
characterized the Southeastern United States as in a state of “severe drought” or worse around
late November (Svoboda et al., 2002). The fire burned nearly 18,000 acres, destroyed over 2,400
buildings, and caused millions of dollars’ worth of damage. The large scale of the fire was the
result of optimal climatic conditions for expansion. The Smoky Mountain fires came on the tail-
end of unseasonably dry weather for the late autumn in Southern Appalachia. This fact,
accompanied by leaf litter accumulation, provided ample fuel for fires to ignite. Finally, a cold
front moving through the area aided the expansion of already ignited fires with sustained winds
of over 40 mph in some areas, with gusts exceeding 70 mph. The event created a demand for
research examining the relationships between the dynamic climate of Southern Appalachia,
specifically precipitation, and recent fire activity.

Similar research has been carried out previously in other areas of the globe such as Dr.
Feng Chen’s paper examining the influence of consecutive dry-days on burned area in the
Yunnan Province of Southwestern China (Chen et al., 2014). The unique organic and

physiological characteristics of Southern Appalachia with the recently observed changes in both



fire behavior and climate, specifically regarding intra-annual precipitation variability, suggest
further research is needed.

Current methods of predicting the potential for large scale fire activity currently exist
using numerous parameters as determinants. One example of a method for predicting the fire
activity is the National Fire Danger Rating System. The system consists of spread and ignition
components, the Keetch-Byrum Drought Index, and a burning index to classify conditions as one
of five severities of risk for fire activity (Bradshaw et al. 1984; Cohen & Deeming, 1985). The
system is weighted towards specific regions at a national scale to indicate optimal conditions for
wild fire activity. However, current analysis of such rating systems shows blanket coverage of
the Southern Appalachian region having the same climatic characteristics as areas of the
Northeast and the Mid-Atlantic (Schlobaum & Brain, 2002). This is not necessarily the case as it
pertains to variables such as precipitation and humidity (Rice et al. 2018). This research is more
interested in looking at the specific relationship between precipitation and fire, rather than
considering numerous, more complex variables.

With the support of the United States Forest Service, an investigation is conducted on the
climatological processes potentially responsible for the increase in fire frequency and magnitude
in Southern Appalachia. The goal is to ultimately aid first responders, policy makers, and
citizens of the region to be better prepared for fire events such as the 2016 season. The
conclusions drawn from investigating the relationship between dry-days and fire magnitude
frequency may yield results that will aid the United States Forest Service in areas outside of
simply Southern Appalachia and may also help the organization gain a greater understanding of

the dynamic climate’s impact on fire behavior.



1.2 Research Objectives

The main research objective is to determine if there is a statistically significant
relationship between dry days, specifically consecutive dry days, leading up to major fire events
and the area burned as a result of the fire. This may determine the role consecutive dry days have
leading up to fire events in the Southern Appalachian region, specifically catastrophic and large-
scale fire events. Historic fire data will be used to observe how fire behavior has progressed
within the region. Historic daily precipitation data will then coincide with the fire data to analyze
the existing relationships and how they impact the scale and severity of Southern Appalachian
fire events. These relationships will be analyzed at the scale of the entire region of study,
individual climate divisions within the southeastern United States, and each fire individually.
Individual threshold values of precipitation will also be compared with fire data to identify
relationships between consecutive dry days and fire severity. This statistical analysis should
identify relationships among consecutive dry days, fire frequency, and severity. The analysis
used to explain the relationships between fire and precipitation will consist of generalized
correlation and regression modeling such as Poisson regression modeling and negative binomial
regression modeling. The aim of the research is to identify relationships in order to aid the
communities of Southern Appalachia in being better prepared to identify, prevent, and respond to

the potential for future large-scale fires and the potential of their occurrence.



CHAPTER 2

LITERATURE REVIEW

2.1 Southern Appalachian Larger-Scale Climate Themes
Fire in regions as humid as Southern Appalachia rely on specific conditions in order for

the organic matter to be flammable enough for ignition. Dry periods must occur in order for the
organic matter, brought on by precipitation events, to burn (Lafon, 2017). Williams et al.’s
assessment of the 2016 Southeastern fire season details climatological and teleconnection
patterns surrounding the anomalous event (Williams et al., 2017). Teleconnections such as the El
Nifio Southern Oscillation (ENSO), Pacific-North American (PNA), Pacific Decadal Oscillation
(PDO), and North Atlantic Oscillation (NAO) have explicit relationships with increased fire
activity in the Southern United States (Dixon et al. 2008). Fire activity in the winter months is
shown to be related to strong ENSO and NAO values during the late summer and autumn (Dixon
et al. 2008). Late winter month fires show some correlation with the PDO and PNA anomalies
just a few months prior to them in the Southeastern United States (Dixon et al. 2008). Late
summer fires can be predicted by ENSO anomalies in the prior six months, and late
summer/early autumn fires can be indicated by PNA variation in July (Dixon et al. 2008).
Teleconnections, however, work as more broad, large scale indicators of an increase in fire
activity during certain months.

Large-scale synoptic patterns can have a profound impact on setting up the necessary

conditions for fire activity in Southern Appalachia. Pacific surface highs characterized by dry



weather and strong winds hinder moisture transport east towards the Appalachian Mountains
(Lafon, 2017). The air masses are also characterized by gusty weather along the edge of dry cold
fronts that provide optimal conditions for fire activity. Perhaps the synoptic indicator with the
greatest impact on the region is the Bermuda High (Diem, 2013; Doublin & Grundstein, 2008).
This subtropical high has a tendency to linger over the region for extended periods of time
(Lafon, 2017). When this particular high extends westward towards Texas, moisture from the
Gulf of Mexico cannot reach Southern Appalachia, which results in extended periods of drought
within the region (Lafon, 2017).

Interannual climatic variability strongly influences the spatio-temporal variability of
burning. For example, the location of high and low-pressure centers has a direct impact on the
precipitation patterns that indicate whether a certain area at a specific time of the year may be
prone to fire activity. This control may extend to fire regimes dominated by anthropogenic
ignitions and those altered by modern fire management strategies (Swetnam & Betancourt, 1990;
Swetnam et al., 1999; Veblen, 2000; Roman-Cuesta et al. 2003; Westerling et al., 2006). While
there has been significant research into linkages between fire and climate in areas such as the
Southwestern United States, China, and on a global scale (Lynch & Hessl, 2010; Crimmins,
2005; Holden et al., 2007; Chen et al. 2014), much less research has investigated the role of
climate in controlling wildfire occurrence and severity in the humid regions of Southern
Appalachia, or the Southeastern United States in general. Modern climate and precipitation
regimes are changing in the Southeastern United States, specifically in areas with significant
topographic variability, such as the Appalachian Mountains (Burt et al., 2017; Wang et al.,
2010). Prior research shows a recent trend of increasing intra-annual variability of summer

precipitation in the Southeastern United States, leading up to the autumn fire season (Wang et al.,



2010). The same research indicated that summer rainfall variability was not addressed by a
difference in the amount of summer rainfall, rather the intensity of the rainfall dropped at one
time (Wang et al., 2010).

Similar trends were found in the fall months as well, with research showing an increase in
the frequency and intensity of rainfall events characterized as heavy events in Appalachia (Burt
et al. 2017). The same research claims that an increase in the percentage of precipitation derived
from heavy rainfall events must mean that there is also an increase in the number of “dry days”
(Burt et al. 2017). This precipitation variability pattern provides ample fuel to stage fire events
throughout the region (Haines, 1983). Annual precipitation is not shown to have as large of an
impact on Southeastern wildfire behavior as the differences in intra-annual precipitation

variability (Lafon & Quiring, 2012).

2.2 Southern Appalachian Smaller-Scale Climate Themes

Smaller scale indicators, such as precipitation, can be used to identify prime conditions
for potential fire activity. The spring and autumn fire seasons of 2016 had similar behaviors to
previous fire events, but was one of the most, if not the most severe, based on the amount of area
burned (Williams et al. 2017). There was also an increase in the number of fires considered to be
large-scale fires (> 500 acres burned) as opposed to previous years (Williams et al. 2017).
Several sites throughout the Southeastern United States had some of their driest months of
record, but what was specifically different about 2016 from other events was the number on
consecutive days without precipitation, otherwise known as dry days (Konrad II & Knox, 2016).

Dry days are used as a metric for indicating the potential for fire activity (Chen, 2014). They



play a major role in drying out organic matter to provide the conditions for ignition to take place
(Chen, 2014).

Other factors that must be considered when observing fire behavior in the Southeastern
United States include wind, temperature, means of ignition, and topography. Studies point out
that the increasing trend in intense rainfall events is amplified in areas characterized by major
topographic variability, specifically at higher elevations (Burt et al. 2017). The Southeastern
United States is also characterized by higher temperatures that coincide with previously stated
precipitation patterns. Higher temperatures create a rapid drying effect following precipitation
events, which cause organic material to be in the optimal state for ignition (Pyne, 2017). This is
not ideal considering the organic build-up in Appalachia (Pyne, 2017). Finally, wind can play a
considerable role in Southern fire activity by unsettling organic matter and allowing more
oxygen to reach the fires (Park Williams et al., 2017). This aids the spread of fires as observed in
the 2016 Smoky Mountain fire (Park Williams et al., 2017). These and other climatological-
geographical factors directly impact the Southern Appalachian region in regard to fuel loading

and burning.

2.3 Fire Activity Themes
In an area with limited controlled burning, more intense rainfall events can cause a
greater fuel loading than previously observed (Lafon & Quiring, 2012). The combination of large
fuel loading with extended periods of dry weather due to more intense, less frequent precipitation
events results in an increase in Southeastern fire activity (Lafon & Quiring, 2012). Current
general circulation models (GCMs) suggest an increase in the seasonal severity ratings of fire

seasons moving forward, especially in the southeast (Flanning et al. 2000). Worldwide, mean



annual precipitation values are expected to increase, while the number of rainfall events are
projected to decrease (Polade et al. 2014). Considering the known importance of the number of
dry days to both fire frequency and burned area (Chen et al. 2014) in parts of the world, it is
necessary to investigate what impact this increase in dry-days may have on fires at a more local
scale.

The means of ignition is also important to consider when observing fire activity in
Southern Appalachia. According to the United States Forest Service, the two main instigators of
fire activity are anthropogenic causes, or human involvement, and lighting strikes, specifically in
the spring (Short 2015). Human caused fires vary from an out of control bonfires to arson
(Hawbaker et al. 2013). Human-induced fires make up around 85% of annual wildfires in the
United States (Short 2015). The other 15% consists of other instigators, but the largest of these is
lightning. Especially in months with active severe weather, such as the spring and summer,
lighting can be responsible for wildfire ignition when organic matter is dry enough (Barden
1974). When considering the means of ignition however, it is important to address that human
and lightning-induced fires are not simply the result of an acting igniter, but the result of certain
fire conditions as well.

It is also important to consider the regeneration of organic matter following previously
occurring fires (Coppoletta et al. 2016). In areas such as the southeastern United States, this
occurs more rapidly due to greater humidity and frequent precipitation throughout the year,
providing ample fuel for fire ignition (Coppoletta et al. 2016). Dry conditions and low humidity
are necessary in order for the fire produced from the listed actors to ignite and spread (Lafon et
al. 2017). Recent measures such as an increase in prescribed burns have been implemented in the

Southeastern United States (Elliot et al. 1999). Prescribed fires in the Southeastern United States
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require specific conditions in order for them to occur (Fowler & Konopik, 2007). Nearly 70% of
prescribed burning, by area, takes place in the Southeast (Chiodi et al. 2018).

In the Appalachian Region of the United States, fire poses a major economic threat to
natural resources and communities, making wildfire occurrence of great importance to managing
agencies (Lynch & Hessl, 2010). Dry days have a direct impact on detritus that has collected on
the forest floor (Chen et al. 2014). This detritus serves as fuel to be ignited by either
anthropogenic forces or lightning. Research shows that consecutive dry days in the Appalachian
region is a key factor in wildfire ignition as shown in Figure 2.1.1 (Lafon et al. 2017). It has been
shown that consecutive dry days leading up to a fire event have a statistically significant
relationship pertaining to the amount of burned area for each specific fire as shown in Figure
2.1.2 (Chen et al. 2014). Current fire-suppression strategies (i.e. controlled-burns) implemented
by management agencies in the Appalachians aim to prevent the fuel-loading of forest
understories, but not all areas can be targeted, and ideal conditions are necessary for
implementation (Chiodi et al. 2018). In fact, the National Prescribed Fire Use Survey Report
shows that significant prescribed burn activity takes place in Southern Appalachian states such as
Georgia, South Carolina, and Alabama (Melvin, 2012). However, even with significant steps
taken to prevent large-scale fire activity, it still occurs.

The areas with a significant build-up of biomass influence the fire severity and burned
area of current and future wildfires specifically in areas with prolonged dry periods. Southern
Appalachia is characterized by current changes in precipitation behavior, a large amount of fuel-
loading compared to other forested areas, and a statistical relationship shown between

consecutive dry days and area burned (Lafon, et al. 2017).
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Research has been carried out pertaining to the factors that indicate the potential for fire
activity in the United States such as the Keetch-Byram drought index, which quantifies drought
conditions throughout the country (Keetch & Byram 1968, Janis et al. 2002). Much of the
research focuses on the western United States as opposed to the eastern or southern part of the
country. Research has also studied the relationship between dry days and fire magnitude in other
areas of the world but not in Southern Appalachia (Chen et al. 2014). There is the demand to
conduct research on the relationship pertaining to consecutive dry days and fire behavior in
Southern Appalachia, following the catastrophic fire season of 2016. Research will examine the
correlation between the two factors to see the scale of the impact consecutive dry days have on

Southern Appalachian fire activity.
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Figure 2.1.1: The Relationship between consecutive rain free days (< 0.001mm precipitation) and the
probability of wildfire ignition
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CHAPTER 3

RESEARCH DESIGN AND METHODS

3.1 Study Area

The area chosen to represent Southern Appalachia was based on NOAA’s current United
States climate division dataset (Figure 3.1.1), which subdivides by states and specific
climatological parameters (Vose et al. 2014). The current “nClimDiv” dataset is based on the
past Global Historical Climatological Network (GHCN) dataset with improvements made in the
accuracy of the data collected at regional, state, and divisional scales from the hundreds of land
surface weather stations used (Menne et al., 2012). The climate divisions chosen for this research
consist of parts of Alabama, Georgia, North Carolina, South Carolina, and Tennessee (Table
3.1.1). The zones span an elevation gradient of 91 to 1965 meters above sea level. The divisions
chosen to represent Southern Appalachia were selected based on similarities in topography,
temperature patterns, and precipitation trends. They also contain similar organic composition,
which is important while considering the fuel being provided for the ignition and spread of fire.
Based on data provided, the divisions used should be fairly consistent topographically,

climatologically, and organically.
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Figure 3.1.1: Southern Appalachia Area of Study and Global Historical Climatological Network’s (GHCN)
nClimDiv Climate Divisions
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nClimDiv (State) Elevation min (m) Elevation max (m) Gradient (m) Area (US acres)
Appalachian Mountain (AL) 122 558 436 2896040.59
Eastern Valley (AL) 122 594 472 2286239.03
Northwest (GA) 180 1033 853 2121501.78
North Central (GA) 152 1213 1061 3513832.76
Northeast (GA) 91 1338 1247 1964118.79
Southern Mountains (NC) 233 1965 1732 4141111.94
Northern Mountains (NC) 215 1667 1452 1894434.19
Mountain (SC) 230 1002 772 42265591
Northwest (SC) 94 498 404 2544954.05
Cumberland Plateau (TN) 177 908 731 3925987.54
Eastern (TN) 239 1965 1726 6277979.60

Table 3.1.1: Southern Appalachia Global Historical Climatological Network’s (GHCN) nClimDiv Climate

Divisions with Area in Acres and Elevation
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3.2 Data
3.2.1 Precipitation Data

Precipitation data used for observations and calculations in the area of study were
gathered from Daily Surface Weather and Climatological Summaries (Daymet) data, created by
Oak Ridge National Laboratory’s Distributed Active Archive Center for Biogeochemical
Dynamics (DAAC) (Figure 3.2.1) (Thornton, 2014). Daymet provides daily gridded weather
estimates for North America including daily precipitation occurrences and accumulation,
minimum and maximum temperature, shortwave radiation, humidity, day length, and snow water
equivalent. The spatial resolution of the data is very high at 1 km x 1 km. Daymet is able to
achieve this resolution due to the availability of a large number of weather stations. The dataset
extends from 1980 to the present. Using the THREDDS open-source data server, NetCDF
formatted daily precipitation data will be gathered for the area of study from 1980-2017. It
should also be noted that Daymet data is topographically adjusted, which is necessary for dealing
with areas of significant elevation variance, such as Southern Appalachia. The specific dataset

used for this study has detailed information on latitude, longitude, daily precipitation, and time.
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3.2.2 Fire Data

Fire data used for this study was gathered from the United States Forest Service’s
Monitoring Trends in Burn Severity Fire Occurrence Locations (MTBS) feature layer projects
(Eidenshink et al., 2007; Finco et al., 2012). This project tabulates all large wildland fires in the
continental US, Alaska, Hawaii, and Puerto Rico for the years 1984-2016, with updates currently
being made. Fires reported in the dataset are greater than 1,000 acres burned in the Western
United States and greater than 500 acres burned in the Eastern United States. The MTBS project
by its own acknowledgement is used to study fire frequency, extent, and magnitude based on the
data collected. For this research, point shapefiles locating the centroid of fire occurrences were
used as well as polygon shapefiles displaying acres burned area for fire events, with some
overlap (Figures 3.2.2 & 3.2.3). From table data and spatial representation, several attributes for
fires were considered within the study. Among these were: number of fires, starting month, day,

and duration of each fire, acres burned, year, and perimeter.
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Figure 3.2.2: United States Forest Service (USFS) Monitoring Trends in Burn Severity (MTBS) Fire
Occurrence Feature Layer 1985-2016

Figure 3.2.3: United States Forest Service (USFS) Monitoring Trends in Burn Severity (MTBS) Burned Area
in Acres Feature Layer 1985-2016




3.3 Methodology

Basic linear correlation and regression modeling were conducted in R, Python, and
Statdisk software to identify the relationship between mean annual dry days and acres burned.
The temporal range set for the calculations is currently between 1985 and 2016 with the potential
to cover a longer timespan as updated precipitation and fire datasets become readily available.
This form of modelling allowed the user to easily update datasets as needed for the system to
process and can be used to run similar correlation and regression models on other proxies, which
may become necessary to better understanding the relationships between climatic processes and
fire frequency/magnitude. However, this form of statistical analysis proved rudimentary and was
expanded to provide analysis that better fits the dataset.

Daymet daily precipitation data was downloaded from Oak Ridge National Laboratory’s
Distributed Active Archive Center (ORNL DAAC) (Thornton, 2014). These 1 km x 1 km data
were obtained in NetCDF format, containing an array of daily precipitation values for each study
year. MATLAB 2017 was employed to parse the NetCDF data arrays into .csv files containing
latitude, longitude, and annual dry days (defined as precipitation < 1 mm). The coding sequence
produced a single .csv containing latitude data for all data points, another .csv containing
longitude data for all points, and 32 .csv files containing annual number of dry days (one for
each study year). R x64 3.4.3 coding interface was then used to assign appropriate x, y locations
to each data point in the dry day data. The coding procedure resulted in 32 .csv files, which each
contained 454,370 annual dry-day values with geographic reference.

Geographically referenced annual dry day data files, representing 1985-2016, were then
imported into ArcMap 10.6 (Esri). The data were displayed in x, y coordinate space then

converted to individual point shapefiles. This resulted in 32-point shapefiles, each containing
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454,370 data points. Using ArcMap 10.5’s Spatial Analyst toolkit, these point shapefiles were
each converted to raster format. The result was 32 geographically-referenced raster datasets, with
each grid cell containing a single annual dry day value for that particular location.

Grid cells which fell within the study area were then extracted for analysis using
ArcMap’s “Model Builder.” Mean annual dry day (MADD) values were obtained with 32 raster
datasets, representing the entirety of the study area. The 32 raster datasets were then separated
into each of the 11 climate regions using Model Builder. The minimum, maximum, mean, and
standard deviation of the annual DD values contained within the resulting 360 raster files were
computed and exported into a spreadsheet for analysis. Initial analysis was conducted to identify
the relationship between MADD and both the number of fires and area burned using correlation
and linear regression modelling. Early results showed no linear statistical relationship between
the two variables, as no linear relationship is evident. More strenuous statistical analysis was
necessary to identify the relationship between precipitation and fire activity.

The same methods used above for the initial analysis on the basis of MADD were used
and applied to calculate and analyze consecutive dry days leading up to fire events in the region.
Consecutive dry days might act as a more satisfactory indication of fire frequency and
magnitude, as previously shown by Chen et al. 2014. The suggestion to use consecutive dry days
instead of MADD is mentioned in Lafon’s 2017 paper. Initial research into areas of Northern
Appalachia shows increases in fire probability as the number of consecutive dry days increases
(Lafon, 2017).

Dry days were previously defined only as days with precipitation less than Imm of total
accumulation in the preliminary analysis conducted. For further analysis, other precipitation

thresholds were considered to define dry days due to the possibility of instrument error, as well
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as variation caused by Appalachia’s significant topographic variability. Chen et al. 2014 lays out
a means of using different daily precipitation thresholds to define dry days in an analysis in
southwestern China. Chen et al. (2014) defined dry days as <0, 1, 2, 3, 4, 5, 6 mm of daily
precipitation. The author then used these values as the basis for running a Spearman’s rank
correlation test to find the correlation between the number of consecutive dry days (based on the
specified value) and the log-transformed burned area of forest fires for each individual region
(Chen et al., 2014). This statistical analysis was used as a guide for conducting similar statistical
analysis based on the precipitation and fire data collected for the Southern Appalachian region as
a whole, and the individual climate divisions within the region.

However, rather than using the threshold values identified by Chen et al. (2014), the
threshold values of < 1, 5, 10, 25, and 50 mm were used to cover a larger range of consecutive
dry day threshold values. Originally, the same threshold values used in Chen’s study were to be
used to account for instrument error, but early findings prompted new values to cover a greater
range of dry day thresholds. This will be done because little to no instrumentation error was
found and a minimal amount of difference in the number of consecutive dry days per threshold
was discovered. Expanding the range of threshold values provides a greater understanding of
how consecutive dry day thresholds and fire activity are related. This is especially important
considering the climatic trends and topographic variability experienced in Southern Appalachia.
Threshold values will not be the only difference from prior research.

Originally, linear correlation and regression analysis, as well as Spearman’s rank
correlation analysis were proposed to observe relationships between precipitation and fire data.
After careful research and discussion with Dr. Lynne Seymour of the University of Georgia’s

Department of Statistics, it was determined that the relationships between the two attributes
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would most likely be non-linear nature. Non-linear analyses were conducted to provide more
accurate insight into how the data are related. Specifically, Poisson regression and negative
binomial analysis were conducted to provide a more detailed analysis of the fire and precipitation
relationship.

Poisson regression is a generalized linear model (GLM) that is often referred to as a log-
linear model (Gardner et al. 1968, Dixon et al. 2008). It is specifically used to model count data
and contingency tables, such as the fire and precipitation data collected (Figure 3.2.1) (Gardner
et al. 1968, Dixon et al. 2008). A Poisson regression model assumes that the Y variable has a
Poisson distribution and assumes that the logarithm of its expected value can be modeled using a
linear combination of unknown characters (Gardner et al. 1968, Dixon et al. 2008). In the case of
the data being used, the Y variable is acres burned or number of fires and the X value would be
the number of consecutive dry days for each threshold value (Gardner et al. 1968, Dixon et al.
2008). Poisson regression models are considered to be generalized linear models. Within the
models the logarithm is the link function, and the Poisson distribution function is the assumed

probability distribution of the response.

Poisson Distribution
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Figure 3.3.1: Poisson Regression Model used in the analysis of precipitation and fire data from SAS JMP
statistical analysis software
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Negative binomial regression is also used to determine the relationship between the
provided fire and precipitation data. It is a generalization of the previously mentioned Poisson
regression model (Gardner et al. 1968, Dixon et al. 2008). This model is considered a
generalization because it loosens the restrictive assumption that the variance is equal to the mean
made by the Poisson regression model (Gardner et al. 1968, Dixon et al. 2008). It is a popularly
used model due to the fact that it models the Poisson heterogeneity with a gamma distribution,
allowing for less restriction (Gardner et al. 1968, Dixon et al. 2008). In this case, the Y variable
and the X value will be the same as in the Poisson regression model. The forms of regression

analysis used in this case are much more ideal for the data used than those previously proposed.
Negative Binomial Distribution
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Figure 3.3.2: Negative Binomial Regression Model used in the analysis of precipitation and fire data from
SAS JMP statistical analysis software

The Akaike information criterion (AICc), Bayesian information criterion (Blc), and
negative log-likelihood aid in determining which models are the best fit at different threshold
values. Other analyses were also conducted based on the interactions between fire and
precipitation data. A few of the trends observed were based on monthly, annual, and seasonal
behavior, considering all five threshold values and overarching themes. Time series analysis

were graphed and charted to provide a visual representation of the data. Visual aids of both fire
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and precipitation over time were documented, including daily precipitation and fire activity
across the entire designated time period of study. The analysis provides a greater understanding
of the existing relationships between precipitation activity, specifically consecutive dry day

thresholds, and the behavior of large-scale forest fires in Southern Appalachia.
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CHAPTER 4

RESULTS

4.1 Breakdown of Fire Activity
4.1.1 Main Observations

Figures 4.1.1 and 4.1.2 show the spatial variability and magnitude of each individual fire
during the study period. It is important to remember that all fires in the dataset are considered to
be large-scale fires, as they each burned a minimum of 500 acres of land. Table 4.1.1 breaks
down each fire and the amount of area burned based on the climate division location of the point
of ignition. Divisions stretching along the Appalachian Mountains, such as the Eastern Valley of
Alabama, Eastern Tennessee, and the Southern Mountains of North Carolina tend to experience a
greater number of fires and coinciding acres burned than surrounding areas. Figures 4.1.1 and
4.1.2 indicate that areas of high elevation in Southern Appalachia tend to be more prone to fire
activity than lower lying areas. From 1985-2016 the number of fires has significantly increased
as shown in Figure 4.1.3. There are several years during the earlier section of the period of study
without any large-scale fires at all. However, towards the middle and latter part of the period,
large-scale fire occurrences happen more frequently. This confirms the hypothesis regarding
recent fire trends in Southern Appalachia. However, the amount of area burn per fire season only
slightly increased over time. This is largely due to the lack of fire activity at the beginning of the
study period. It is also important to consider that the upward trajectory shown in Figure 4.1.4 is

largely due to the outlying amount of area burned in the year 2016. The year 2016 is an outlier
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both in the number of fires and the area burned. The final tally of fires across the dataset is 409
fires with over 711,000 acres burned. Identifying fire behavior on an annual basis, instead of

simply looking at individual fires, will also provide a greater insight into how fire is dispersed

temporally.
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Figure 4.1.1: Spatially-referenced Map of Individual Fire Occurrences weighted by the number of acres

burned per fire event
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Figure 4.1.2: Spatially-referenced Map of Area Burned polygons weighted by the number of acres burned per

fire event
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DviSON | TOTALFRES ACRES BURNED

Appalachian Mountains AL 19 19594
Cumberland Plateau TN 49 88343
Eastern TN 125 211802
Eastern Valley AL 36 55304
Mountain SC 15 21207
North Central GA 25 53156
Northeast GA 25 58713
Northern Mountains NC 7 6614
Northwest GA 22 22345
Northwest SC 23 26051
Southern Mountains NC 63 148789
TOTAL 409 711918

Table 4.1.1: List of total number of fires and acres burned within each individual Southern Appalachian
climate division
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4.1.2 Annual Observations

Looking at the fire data on an annual basis, a gradual increase from 1985-2016 in the
number of fires per year is apparent. With the mean set at roughly 12.7 fires per year, 7 of the
last 10 years within the dataset have experienced a fire total greater than that of the annual
average as shown in Figure 4.1.3. The number of acres burned has slightly increased throughout
the study. However, this is skewed by the massive amount of area burned in the year 2016,
which also skews the area burned time series in Figure 4.1.4. Figure 4.1.5 is a scatterplot
showing the relationship between the number of fires and acres burned on an annual basis. There
is a slight exponential relationship between the two, but this is due in part to the outlying fire
activity of 2016. Figure 4.1.6 shows the annual distribution of both the number fires and acres
burned per fire. From this graph, it is apparent that a few massive outlying fires can have a
significant impact on skewing the dataset as a whole, such as in the years 1987, 2001, and 2016.
It can also be determined that the years with the greatest number of fires will often produce the
largest-scale fires on average. A major uptick in fire activity, both in the number of fires and the
amount of area burned, has been seen since around 1999 and 2000, however there is no major
evidence to support that fire practices have changed over the period of study, especially as it

relates to prescribed burning (Elliott & Vose, 2005).
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Figure 4.1.3: Annual time series plot of the number of fires per year from 1985-2016 with a line showing the
mean number of fires per year
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Figure 4.1.4: Annual time series plot of the amount of area burned per year in acres from 1985-2016 with a
line showing the mean area burned per year
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Figure 4.1.5: Scatterplot showing the relationship between the number of fires and area burned in acres on
an annual basis
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Figure 4.1.6: Time series scatterplot showing the distribution of both number of fires and area burned in
acres on an annual basis
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4.1.3 Monthly Observations

Fire activity trends within Southern Appalachia were also observed on a monthly basis.
Figure 4.1.7 shows the monthly progression of fires for the entire study period (1985-2016). The
figure indicates that there are two discrete fire seasons within the region. The spring fire season
consists of fires between March and April mainly, while the fall fire season mainly takes place in
November. Based on the climatic profile of Southern Appalachia, this would indicate that there
are periods of wet weather followed by extremely dry weather leading up to the two individual
fire seasons. Consecutive dry day periods, based on the graph, should be very pronounced prior
to the months of March and November. Figure 4.1.8 shows a similar monthly trend for the
number of acres burned per month. Based on the months above the mean acres burned, February,
October, and December are also capable of having increased fire activity. Table 4.1.2 shows that
fire activity was previously more prevalent in the fall months prior to the 2000s but has recently
become more frequent in the spring months. The year of 2016 is fairly even with major fire
activity both in the spring and fall seasons. This observation reaffirms 2016 as an outlier from
normal southern fire activity. Figure 4.1.9 provides insight into the temporal variability of fire
activity. It shows the number of fire ignitions occurring on a daily basis throughout all climate
divisions used. It also confirms previously stated trends but provides a helpful visual aid for

identifying discreet fire seasons.
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Figure 4.1.7: Time series scatterplot showing the distribution of fires on a monthly basis with a line
representing the mean number of fires per month
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Figure 4.1.8: Time series scatterplot showing the distribution of both number of fires and area burned in
acres on an annual basis with a line representing the mean area burned per month
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Year _________ MODEMonth _____|PredominantSpring __[Fall ____|Outliers |

1985 April Spring 9 0 0
1986 April Spring 2 0 0
1987 December Fall 0 20 0
1988 March Spring 3 0 2
1989 None None 0 0 0
1990 None None 0 0 0
1991 October Fall 0 2 0
1992 None None 0 0 0
1993 None None 1 1 1
1994 None None 2 2 0
1995 August Fall 0 1 0
1996 None None 0 0 0
1997 April Spring 1 0 0
1998 October Fall 0 1 0
1999 November Fall 2 11 0
2000 November Fall 9 22 1
2001 November Fall 2 28 1
2002 None Outliers 0 0 2
2003 August Fall 2 7 2
2004 April Spring 5 0 2
2005 April Spring 3 2 2
2006 March Spring 9 1 0
2007 March Spring 21 1 4
2008 March Spring 12 1 7
2009 March Spring 12 0 0
2010 March Spring 23 2 1
2011 February Spring 7 1 1
2012 November Fall 0 3 1
2013 April Spring 25 1 2
2014 March Spring 33 0 3
2015 March Spring 15 1 8
2016 November None/Fall 31 34 4

Table 4.1.2: Table shows seasonal and monthly trends of fire activity from 1985 (top) to 2016 (bottom)
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Figure 4.1.9: Time series scatterplot showing the distribution of fires on a daily basis with a line representing
the mean number of fires per day
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4.2 Breakdown of Precipitation
4.2.1 Main Observations

Using the Daymet gridded daily precipitation dataset, several precipitation trends can be
identified before comparing it against fire data. Table 4.2.1 shows the distribution of average
threshold values for all five used. It shows how they are distributed by individual climate
division and averaged out for the entire Southern Appalachian region. The average thresholds
can act as initial indicators of the potential for fire activity within the region based on past fire
data. The Imm threshold has an average of less than 6 days prior to fire activity. The Smm
threshold has a threshold of a little more than 8 days before fire activity. The 10mm threshold
also provides a fairly small increment before fire environment indication at an average of 12.5
days. After this threshold however, there is a major jump in the average number of days before
reaching the precipitation threshold of 25mm. On average slightly less than 37 days occur after
the 25mm threshold before fire activity is present. Finally, the 50mm thresholds occurs on
average 218 days before wildfire ignition. This information is useful for knowing how many

days out from a certain precipitation threshold one might expect to see fire ignition.
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[DIVISION | 1mm THRESHOLD | 5mm THRESHOLD | 10mm THRESHOLD | 25mm THRESHOLD | 50mm THRESHOLD

Appalachian Mountains AL 5.32 7.32 12.05 30.42 193.32
Cumberland Plateau TN 7.51 10.92 13.57 40.98 233.71
Eastern TN 6.672 10.30 15.62 54.22 417.10
Eastern Valley AL 5.06 6.56 10.33 26.31 222.03
Mountain SC 3.20 4.47 8.87 28.60 158.40
North Central GA 6.16 6.60 9.76 19.56 180.60
Northeast GA 4.92 6.52 9.48 30.40 86.16
Northern Mountains NC 7.57 15.14 22.57 58.57 174.00
Northwest GA 491 7.50 11.91 38.27 243.86
Northwest SC 3.83 4.57 6.96 31.65 282.13
Southern Mountains NC 8.57 12.08 15.73 44.41 213.30
AVERAGE 5.79 8.36 12.44 36.67 218.60

Table 4.2.1: Table identifies individual average thresholds for all climate divisions and the average threshold
values for Southern Appalachia as a whole
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4.2.2 Annual Observations

Prior research showed the precipitation trends concerning mean annual dry days
throughout Southern Appalachia such as in Figure 4.2.1. The spatial distribution of mean annual
dry days was thought to give insight into how to predict fire behavior, but after careful research it
was determined that observing consecutive dry day trends is a much better indicator of the
potential for fire activity. Annual analysis of the behavior of the different threshold values can
provide insight into how they have progressed over the period of study and how they behave in
regard to active fire years. Figures 4.2.2 through 4.2.6 show the average number of consecutive
dry days since the 5 main precipitation threshold values (1, 5, 10, 25, 50mm) occurred on an
annual basis. When comparing the results with Table 4.1.2 from the fire data, there seems to be
only a slight relationship between the number of fires per year and the consecutive number for
dry days at each threshold value. However, years with a greater amount of fall wildfire activity
seem to also have a greater number of consecutive dry days leading up to an event. This
relationship is more apparent at the lower threshold values than the higher threshold values, but it
is evident nonetheless. It is also more apparent with recent fire activity such as 1999-2001 and
the 2016 fire season. Over time, at all major thresholds, the number of consecutive dry days prior
to fire events has slightly decreased over time. It is also important to consider the sample size of
fires when identifying the relationships between precipitation and wildfire frequency. Annual
precipitation threshold results fluctuate greatly throughout the entire period of study, so these
relationships may be loose at best. However, with the use of proper statistical analysis, it is easy
to identify whether relationships between fire frequency and magnitude and the number of

consecutive dry days does exist.
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of Southern Appalachia
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Figure 4.2.3: Time series scatterplot showing the days since the Smm precipitation threshold was reached on

an annual basis with a line showing the average number of consecutive dry days per year
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Figure 4.2.5: Time series scatterplot showing the days since the 25mm precipitation threshold was reached on
an annual basis with a line showing the average number of consecutive dry days per year
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Figure 4.2.6: Time series scatterplot showing the days since the S0mm precipitation threshold was reached on

an annual basis with a line showing the average number of consecutive dry days per year
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4.2.3 Monthly Observations

Monthly analysis of the patterns of consecutive dry days following individual
precipitation threshold values provides a greater understanding of its relationship with fire
behavior. Similar to the patterns seen when analyzing the thresholds on an annual basis, monthly
analysis identifies a greater number of consecutive dry days leading up to fire activity in the fall
fire season. This is especially prevalent at lower threshold values such as 1, 5, and 10mm of
precipitation. As the thresholds increase, however, the greatest number of consecutive dry days
prior to fire events can be seen at the larger threshold values. Thresholds such as 10, 25, and
50mm have a greater number of consecutive dry days in June as well as the aforementioned fall
months. One explanation as to why this may be the pattern in autumn months and not the spring
is the seasonality of precipitation. Late summer and autumn months are more prone to drought
than the spring in the Southeastern United States. Something else to consider is that the major
proponents of fire ignition are anthropogenic causes and lightning. Lightning could be the cause
of more springtime fire activity as opposed to fall activity depending on its seasonal variability.
Storms containing lightning also bring precipitation events as well, which could be a key reason
for a difference in the threshold values for the two seasons. The topography of Appalachia also
plays a role. Steeper landscape hinders the ability of precipitation to saturate organic life, even

during dry spells.
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Figure 4.2.7: Time series scatterplot showing the average days since the Imm precipitation threshold was
reached on a monthly basis with a line showing the average number of consecutive dry days per month
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Figure 4.2.8: Time series scatterplot showing the average days since the Smm precipitation threshold was
reached on a monthly basis with a line showing the average number of consecutive dry days per month
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Figure 4.2.9: Time series scatterplot showing the average days since the 10mm precipitation threshold was
reached on a monthly basis with a line showing the average number of consecutive dry days per month
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Figure 4.2.10: Time series scatterplot showing the average days since the 25mm precipitation threshold was
reached on a monthly basis with a line showing the average number of consecutive dry days per month
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Figure 4.2.11: Time series scatterplot showing the average days since the SOmm precipitation threshold was
reached on a monthly basis with a line showing the average number of consecutive dry days per month
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4.3 Statistical Analysis
4.3.1 Poisson Regression Analysis

Poisson regression analysis was used to identify the relationship between the number of
consecutive dry days between specific precipitation thresholds being reached and wildfire
ignition. The threshold values of 1, 5, 10, 25, and 50mm were used both individually and
together against all individual fires from the MTBS dataset, to see if there is a statistically
significant relationship between consecutive dry days and fire activity in Southern Appalachia.
P-values and standard error values act as indicators for the existence of a relationship. According
to the values, when the tests are run individually at thresholds 1, 5, 10, 25, 50mm, there is a very
strong log-link relationship between the number of acres burned and days since the given
threshold value as shown in Figures 4.3.1-4.3.5 and Tables 4.3.1-4.3.5. This is indicated by
strong p-values and a small standard error. R-squared values should be ignored when conducting
both Poisson and negative binomial regression analysis. Figure 4.3.2 is an example plot of how
dry days were distributed on the basis of area burned. The plot shows a gradual increase in the
number of consecutive dry days leading up to fire events as the events cause a larger amount of
area burned. Table 4.3.6 shows a strong relationship between dry day threshold values and acres
burned per fire when all thresholds are used. The -log likelihood, AICc, and Bic, show that the
Smm threshold has the best fit of the models, followed by the 1mm and 10mm threshold values.
Poisson regression modeling analysis indicates a very strong log-link relationship between
consecutive dry days, at multiple thresholds, and the amount of area burned per fire for the entire

period and area of study.
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Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure
Number of rows 409
Sum of Frequencies 409
-LogLikelihood 312159.01
Number of Parameters 2
BIC 624330.05
AlCc 624322.05
Generalized RSquare 1
Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.1579837 0.0016831 18087763 <.0001* 7.1546849 7.1612824
1mm Threshold 0.0413472 0.0001393 88107.21 <.0001* 0.0410742 0.0416202
Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
1mm Threshold 1 1 88107.21 <.0001*

Table 4.3.1: Poisson regression model of acres burned vs consecutive dry days since the 1mm threshold value
was reached
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Figure 4.3.1: Poisson regression plot of acres burned vs consecutive dry days since the Imm threshold value
was reached
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Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure
Number of rows 409
Sum of Frequencies 409
-LogLikelihood 307334.37
Number of Parameters 2
BIC 614680.78
AlCc 614672.78
Generalized RSquare 1
Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.1371973 0.0017117 17386692 <.0001* 7.1338425  7.1405521
5mm Threshold 0.0303199 9.7951e-5  95815.232 <.0001*  0.0301279  0.0305119
Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
5mm Threshold 1 1 95815.232 <.0001*

Table 4.3.2: Poisson regression model of acres burned vs consecutive dry days since the Smm threshold value
was reached
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Figure 4.3.2: Poisson regression plot of acres burned vs consecutive dry days since the Smm threshold value
was reached
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' Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure
Number of rows 409
Sum of Frequencies 409
-LogLikelihood 320394.4
Number of Parameters 2
BIC 640800.82
AlCc 640792.83
Generalized RSquare 1
' Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.1608979 0.0018087 15674698 <.0001* 7.1573529 7.1644429
10mm Threshold 0.0201525 8.0929e-5 62008.24 <.0001* 0.0199939 0.0203112
' Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
10mm Threshold 1 1 62008.24 <.0001*

Table 4.3.3: Poisson regression model of acres burned vs consecutive dry days since the 10mm threshold
value was reached
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Figure 4.3.3: Poisson regression plot of acres burned vs consecutive dry days since the 10mm threshold value
was reached
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Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure
Number of rows 409
Sum of Frequencies 409
-LogLikelihood 341625.82
Number of Parameters 2
BIC 683263.68
AlCc 683255.68
Generalized RSquare 1
Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Intercept 7.3213367 0.0017293 17925190 <.0001* 7.3179474 7.324726
25mm Threshold 0.0032201 2.7038e-5 14183.143 <.0001* 0.0031671 0.0032731
Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
25mm Threshold 1 1 14183.143 <.0001*

Table 4.3.4: Poisson regression model of acres burned vs consecutive dry days since the 2Smm threshold
value was reached
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Figure 4.3.4: Poisson regression plot of acres burned vs consecutive dry days since the 25mm threshold value
was reached
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" Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure

Number of rows 409
Sum of Frequencies 409
-LogLikelihood 348130.46
Number of Parameters 2
BIC 696272.95
AlCc 696264.95

Generalized RSquare  0.4320558
' Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.4468902 0.0015492 23107248 <.0001* 7.4438539 7.4499266
50mm Threshold 5.5189e-5 3.6045e-6 234.4332 <.0001* 4.8124e-5 6.2253e-5
' Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
50mm Threshold 1 1 234.4332 <.0001*

Table 4.3.5: Poisson regression model of acres burned vs consecutive dry days since the 50mm threshold
value was reached
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Figure 4.3.5: Poisson regression plot of acres burned vs consecutive dry days since the S0mm threshold value
was reached
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" Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure

Number of rows 409

Sum of Frequencies 409

-LogLikelihood 305552.76

Number of Parameters 6

BIC 611141.61

AlCc 611117.74

Generalized RSquare 1
' Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.1527782 0.0021363 11210568 <.0001* 7.1485912 7.1569653
< 1mm Threshold 0.0007093 0.0002297 9.5376338 0.0020* 0.0002592 0.0011595
<5mm Threshold 0.0193568 0.0002086 8608.9166 <.0001* 0.0189479 0.0197657
< 10mm Threshold 0.0129825 0.0001498 7511.6159 <.0001* 0.0126889 0.0132761
< 25mm Threshold -0.001694 3.6387e-5 2168.1214 <.0001* -0.001766 -0.001623
< 50mm Threshold -9.267e-5 4.1042e-6 509.7624 <.0001* -0.000101 -8.462e-5
" Effect Tests
Wald Prob >

Source Nparm DF ChiSquare ChiSquare

< 5mm Threshold 1 1 8608.9166 <.0001*

< 10mm Threshold 1 1 7511.6159 <.0001*

< 25mm Threshold 1 1 2168.1214 <.0001*

< 50mm Threshold 1 1 509.7624 <.0001*

< 1mm Threshold 1 1 9.5376338 0.0020*

Table 4.3.6: Poisson regression model of acres burned vs consecutive dry days at all threshold values reached
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4.3.2 Negative Binomial Regression Analysis

Negative binomial regression analysis was used in a similar way to Poisson regression
analysis. It was used to determine the relationship between consecutive dry days from different
precipitation thresholds and the amount of area burned. Much like Poisson regression, the
relationship between the two variables within the negative binomial regression model can be
observed by looking at the p-value and the standard error. Based on the results of each threshold
value, Tables 4.3.7-4.3.11 and Figures 4.3.6-4.3.10 show a strong relationship between
consecutive dry days and area burned at all 5 major precipitation thresholds except for the 50mm
threshold value. Very low p-values and standard error indicate a strong log-link relationship
between the two variables at all threshold values. Figure 4.3.7 is an example plot of how dry
days were distributed on the basis of area burned. The plot shows a gradual increase in the
number of consecutive dry days leading up to fire events as the events cause a larger amount of
area burned. Table 4.3.12 shows the results for the relationship between area burned and
consecutive dry days at all 5 precipitation threshold values. Assessing this table p-values indicate
that strong relationships between the consecutive dry day threshold values and area burned exist
at the Smm and 10mm threshold values. However, according to negative binomial regression
analysis the same relationships do not exist at the 1, 25, and 50mm threshold values. Based on
the AICc, Bic, and — log likelihood values for the individual tests, the Smm threshold value has
the best fit followed by the 10 then 1mm threshold value. The fits for the 25 and 50mm threshold

values are not near as good as the other 3 values.
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Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 409
Sum of Frequencies 409
-LogLikelihood 3416.8605
Number of Parameters 3
BIC 6851.7621
AlCc 6839.7802

Generalized RSquare  0.1136501
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.1900281 0.0520374  19091.073 <.0001* 7.0880368 7.2920195
1mm Threshold 0.0368735 0.0055784  43.692599 <.0001* 0.02594 0.0478069
Negative Binomial Wald Prob >
Distribution Parameters  Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.5927515 0.010975 2916.9878 <.0001* 0.5712408 0.6142621

Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
1mm Threshold 1 1  43.692599 <.0001*

Table 4.3.7: Negative binomial regression model of acres burned vs consecutive dry days since the 1mm
threshold value was reached
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Figure 4.3.6: Negative binomial regression plot of acres burned vs consecutive dry days since the 1mm
threshold value was reached
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Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 409
Sum of Frequencies 409
-LogLikelihood 3405.8531
Number of Parameters 3
BIC 6829.7474
AlCc 6817.7655

Generalized RSquare  0.1600973
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.1060774 0.0530052 17973.127 <.0001* 7.0021892 7.2099656
5mm Threshold 0.0331865 0.0041357  64.391707 <.0001* 0.0250808 0.0412923
Negative Binomial Wald Prob >
Distribution Parameters  Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.5663625 0.0103112 3016.9874 <.0001* 0.546153 0.586572
Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
5mm Threshold 1 1  64.391707 <.0001*

Table 4.3.8: Negative binomial regression model of acres burned vs consecutive dry days since the Smm
threshold value was reached
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Figure 4.3.7: Negative binomial regression model of acres burned vs consecutive dry days since the Smm
threshold value was reached
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Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 409
Sum of Frequencies 409
-LogLikelihood 3413.3648
Number of Parameters 3
BIC 6844.7707
AlCc 6832.7888

Generalized RSquare  0.1286725
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.0969433 0.0579449  15000.711 <.0001* 6.9833734 7.2105133
10mm Threshold 0.0243978 0.0033221  53.934421 <.0001* 0.0178866 0.0309091
Negative Binomial Wald Prob >
Distribution Parameters  Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.584271 0.0107606 2948.2191 <.0001* 0.5631808 0.6053613
Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
10mm Threshold 1 1 53.934421 <.0001*

Table 4.3.9: Negative binomial regression model of acres burned vs consecutive dry days since the 10mm
threshold value was reached
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Figure 4.3.8: Negative binomial regression model of acres burned vs consecutive dry days since the 10m
threshold value was reached
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"' Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 409
Sum of Frequencies 409
-LogLikelihood 3434.4749
Number of Parameters 3
BIC 6886.9909
AlCc 6875.009

Generalized RSquare  0.0339209
' Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.2811967 0.0609138  14288.105 <.0001* 7.1618079 7.4005855
25mm Threshold 0.0041384 0.0011313  13.381492 0.0003* 0.0019211 0.0063556
Negative Binomial Wald Prob >
Distribution Parameters  Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.6372212 0.012116 2766.0644 <.0001* 0.6134743 0.6609681
' Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
25mm Threshold 1 1 13.381492 0.0003*

Table 4.3.10: Negative binomial regression model of acres burned vs consecutive dry days since the 25mm
threshold value was reached
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Figure 4.3.9: Poisson regression model of acres burned vs consecutive dry days since the 25Smm threshold
value was reached
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Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 517
Sum of Frequencies 409
-LogLikelihood 3441.4954
Number of Parameters 3
BIC 6901.0319
AICc 6889.0501

Generalized RSquare  0.0001793
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.4724441 0.0556312  18042.141 <.0001* 7.3634089 7.5814793
50mm Threshold -3.876e-5 0.0001425 0.0739815 0.7856 -0.000318 0.0002405
Negative Binomial Wald Prob >
Distribution Parameters  Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.6557094 0.0125982 2708.9683 <.0001* 0.6310174 0.6804015
Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
50mm Threshold 1 1 0.0739815 0.7856

Table 4.3.11: Negative binomial regression model of acres burned vs consecutive dry days since the S0mm
threshold value was reached
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Figure 4.3.10: Negative binomial regression model of acres burned vs consecutive dry days since the SOmm
threshold value was reached
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Model Summary

Response
Distribution
Estimation Method
Validation Method
Mean Model Link

Acres Burned
Negative Binomial
Maximum Likelihood
None

Log

Dispersion Model Link Identity

Measure

Number of rows 409
Sum of Frequencies 409
-LogLikelihood 3402.7335
Number of Parameters 7
BIC 6847.563
AlCc 6819.7463
Generalized RSquare  0.1728126

Parameter Estimates for Original Predictors

Term

Intercept

< 1mm Threshold
< 5mm Threshold
< 10mm Threshold
< 25mm Threshold
< 50mm Threshold

Negative Binomial
Distribution Parameters

Dispersion

Effect Tests

Source

< 5mm Threshold
< 10mm Threshold
< 25mm Threshold
< 1mm Threshold
< 50mm Threshold

Estimate
7.1007989
-0.009026
0.0244331
0.0162383
-0.001703
-2.431e-5

Std Error
0.0663581
0.008474
0.007797
0.0052677
0.0012655
0.000132

Nparm

— ot —h
N G I G 'y

Wald

ChiSquare
11450.545
1.1343984
9.8198737
9.5024253
1.8104066
0.0339387

Prob >
ChiSquare Lower 95%
<.0001* 6.9707394
0.2868 -0.025634
0.0017* 0.0091513
0.0021* 0.0059138
0.1785 -0.004183
0.8538 -0.000283
Wald Prob >

Wald

DF ChiSquare

9.8198737
9.5024253
1.8104066
1.1343984
0.0339387

<.0001*

Prob >
ChiSquare
0.0017*
0.0021*
0.1785
0.2868
0.8538

0.5392184

Upper 95%
7.2308585
0.0075833
0.0397149
0.0265629
0.0007776
0.0002344

Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
0.559072 0.0101296 3046.1686

0.5789256

Table 4.3.12: Negative binomial regression model of acres burned vs consecutive dry days at all threshold

values
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4.4 Case Study of Eastern Tennessee
4.4.1 Fire Trends

Fire activity in the Eastern Tennessee climate division was chosen as a case study
because this individual division contained the greatest number of fires as well as the greatest
number of acres burned throughout the entire period of study. It made up roughly 25% of all
Southern Appalachian fire activity. Preliminary research indicated weak correlation and linear
regression relationships between mean annual dry days under Imm of precipitation and both fire
frequency and area burned in the division, which is worth following up on. This area also has the
highest elevation point in the fire dataset and the greatest amount of topographic variability.
With a landscape defined by ridges and valleys and climatic characteristics that mimic those of
Southern Appalachia as a whole, Eastern Tennessee stood out as an ideal case study for which to
observe the relationships between consecutive dry days and fire at a more localized scale. By
looking at the annual fire activity in Eastern Tennessee in Table 4.4.1, one can observe that there
are years with a large number of fires and area burned, but the normal behavior is less than 10
fires or none at all. The data for the division seems to be fairly sporadic. Figures 4.4.1 and 4.4.2
show spikes in the years 1987, 2000, 2001, 2007, and 2016. This is important to consider when
the precipitation data is studied during the years mentioned specifically. Monthly patterns of fire
data provide an understanding of the seasonality of fire behavior within Eastern Tennessee.
Table 4.4.2 shows the distribution of the number of fires and acres burned on a monthly basis
throughout the entire period of study. Figures 4.4.3 and 4.4.4 plot the distribution and identify
two major peak fire seasons. March and April are the peak of the spring fire season. November is
the peak of the fall fire season with an increase in the number of fires and acres burned in

December. Figures 4.4.5 and 4.4.6 show the daily distribution of the number of fires and acres
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burned for entire study period. The figures show that large portions of the acres burned are due to
individual extremely large-scale fire episodes. A few individual fires from the years 1987, 2000,
and 2016 are responsible for a significant portion of the area burned for the whole dataset.
Precipitation trends can be an indication of the environment’s susceptibility for producing events

such as the extreme fires within the dataset.
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Year ___|Number of Fires ___[Area Burned |
1985 0 0
1986 1 530
1987 13 38822
1988 4 3604
1989 0 0
1990 0 0
1991 2 1848
1992 0 0
1993 0 0
1994 2 1776
1995 0 0
1996 0 0
1997 0 0
1998 0 0
1999 3 1704
2000 19 35002
2001 12 13577
2002 0 0
2003 4 4102
2004 1 729
2005 3 4650
2006 4 3514
2007 1 13908
2008 5 4182
2009 1 501
2010 6 9319
2011 0 0
2012 1 1856
2013 8 13158
2014 7 10060
2015 0 0
2016 18 48960

Table 4.4.1: Time series table showing the total number of fires and area burned in acres on an annual basis
for the Eastern Tennessee climate division from 1985-2016
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Figure 4.4.1: Time series plot showing the total number of fires on an annual basis for the Eastern Tennessee
climate division from 1985-2016 with a line showing the average number of fires per year
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Figure 4.4.2: Time series plot showing the total area burned in acres on an annual basis for the Eastern
Tennessee climate division from 1985-2016 with a line showing the average area burned per year
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January 0 0
February 0 0
March 45 83790
April 25 27743
May 8 10511
June 2 2279
July 0 0
August 3 1887
September 1 1738
October 4 5586
November 31 59018
December 6 19250

Table 4.4.2: Time series table showing the total number of fires and area burned in acres on a monthly basis
for the Eastern Tennessee climate division

69



Number of Fires

50

40

30

20

Mean
Std

N

Zero Mean ADF
Single Mean ADF
Trend ADF

10 \.
\\ e

Jan Feb Mar Apr May June Jul
Month

Aug

\

Sep

/

Oct

Nov

Dec

10.416667
14.256334

12
-1.941926
-2.697455
-2.609587

Figure 4.4.3: Time series plot showing the total number of fires on a monthly basis for the Eastern Tennessee
climate division with a line showing the average number of fires per month
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Figure 4.4.4: Time series plot showing the total area burned in acres on a monthly basis for the Eastern
Tennessee climate division with a line showing the average area burned per month
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Figure 4.4.5: Time series plot showing the total number of fires on a daily basis for the Eastern Tennessee
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Figure 4.4.6: Time series plot showing the total area burned in acres on a daily basis for the Eastern
Tennessee climate division from 1/1/1985-12/31/2016 with a line showing the mean area burned per day
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4.4.2 Precipitation Trends

Precipitation trends within the Eastern Tennessee climate division are similar to those in
the Southern Appalachia area of study as a whole. However, a major difference is the sample
size of fires from which to run analysis on. This is especially true when looking at fire activity on
an annual basis. Prior to analyzing precipitation trends by the consecutive number of dry days
since a precipitation threshold has been reached, preliminary research observed the mean annual
dry days with precipitation under 1mm in Figure 4.4.7. This provided limited insight into how
dry days impact fire frequency and magnitude. Table 4.4.3 provides a greater understanding of
dry day trends within the Eastern Tennessee climate division by displaying the average number
of dry days since each of the major 5 precipitation thresholds was reached on an annual basis.
Figures 4.4.8-4.4.12 plot the data showing how it is distributed in a time series format. The time
series threshold analysis for Eastern Tennessee shows how during the years with the greatest
number of fires and the largest area burned the number of consecutive dry days, for the most
part, is greater for all 5 thresholds than when there is limited fire activity. It is important to
consider, however, that the understanding of the time series annual distribution of the data is
limited due to several years not containing fires greater than 500 acres burned. Table 4.4.4 looks
at the same threshold values on a monthly basis rather than annually for the entire period of
study. Figures 4.4.13-4.4.17 plot the monthly results to identify any existing patterns for each
threshold value. Understanding is limited due to some months lacking any fires at all such as
January, February, and July. The months that do contain fires, however, identify a greater
number of dry days for the months with the most fire activity at lower threshold values such as 1,
5, and 10mm. At the larger threshold values such as 25 and 50mm, there seems to be no distinct

pattern between the months, especially when comparing them to the monthly fire data. Figure
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4.4.18 is a plot of daily precipitation from the National Weather Service station in Morristown,
Tennessee within the Eastern Tennessee climate division. The plot shows that thresholds such as
1, 5, and 10mm are reached on a fairly regular basis throughout the period of study. However,
the 25mm threshold is not reached near as frequently, and the 50mm threshold is rarely reached

since the beginning of the time series in January 1, 1985.

73



1985 1986 1987 1988 1989 1990

v
1991 1992 1993 1994 1995 1996
b d ’ g of v « ,
v - 7
1997 1998 1999 2000 2001 2002
an - -
w - - -
“«
2003 2004 2005 2006 2007 2008
- vadllr 4 w
w - o«
LR 7
2009 2010 2011 2012 o 2013 2014
7. = - 7 o
4 y -4 . v
i o | 4
Time series of 2015 N g High:319
the spatial distribution ;", A — Low : 17
of annual dry-days in £ ow : 175
the Eastern Tennesee - FrrrrrrT]
climate zone 0 75150 300 mi

North America Lambert Conformal Conic
data from Daymet NASA ORNL DAAC

Figure 4.4.7: Time series rasters showing the mean annual dry days without 1mm of precipitation for the
Eastern Tennessee climate division from 1985-2015
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0.00 0.00 0.00 0.00 0.00
1986 15.00 15.00 15.00 21.00 426.00
1987 7.00 1117 31.50 61.83 1040.83
1988 3.33 6.00 8.67 80.67 1369.33
1989 0.00 0.00 0.00 0.00 0.00
1990 0.00 0.00 0.00 0.00 0.00
1991 12.50 13.00 36.50 126.00 330.00
1992 0.00 0.00 0.00 0.00 0.00
1993 0.00 0.00 0.00 0.00 0.00
1994 9.00 9.00 28.00 95.00 237.00
1995 0.00 0.00 0.00 0.00 0.00
1996 0.00 0.00 0.00 0.00 0.00
1997 0.00 0.00 0.00 0.00 0.00
1998 0.00 0.00 0.00 0.00 0.00
1999 15.67 15.67 17.33 28.33 148.33
2000 9.67 20.78 28.00 89.33 340.44
2001 10.78 11.00 15.67 47.44 303.11
2002 0.00 0.00 0.00 0.00 0.00
2003 4.00 4.00 4.50 26.00 802.00
2004 6.00 6.00 7.00 7.00 64.00
2005 5.67 6.00 22.00 60.67 303.00
2006 4.50 7.25 7.75 62.75 396.00
2007 513 5.50 9.25 42.50 591.38
2008 4.40 6.80 10.60 40.20 1038.80
2009 6.00 6.00 8.00 8.00 100.00
2010 4.67 5.17 9.83 39.83 382.17
2011 0.00 0.00 0.00 0.00 0.00
2012 2.00 2.00 17.00 58.00 58.00
2013 3.00 6.86 7.57 31.86 105.71
2014 2.86 4.57 471 13.71 47.43
2015 0.00 0.00 0.00 0.00 0.00
2016 6.69 15.31 23.19 89.69 325.44

Table 4.4.3: Time series table showing the average number of dry days prior to fire activity for all major
thresholds on an annual basis for the Eastern Tennessee climate division from 1985-2016
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Figure 4.4.8: Time series plot showing the average number of dry days prior to fire activity for the Imm
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line
showing the mean consecutive dry days per year
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Figure 4.4.9: Time series plot showing the average number of dry days prior to fire activity for the Smm
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line
showing the mean consecutive dry days per year
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Figure 4.4.10: Time series plot showing the average number of dry days prior to fire activity for the 10mm
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line
showing the mean consecutive dry days per year
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Figure 4.4.11: Time series plot showing the average number of dry days prior to fire activity for the 2Smm
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line
showing the mean consecutive dry days per year
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Figure 4.4.12: Time series plot showing the average number of dry days prior to fire activity for the S0mm
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line
showing the mean consecutive dry days per year
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January 0.00 0.00 0.00
February 0.00 0.00 0.00 0.00 0.00
March 9.23 14.46 24.69 7231 611.58
April 7.65 8.30 13.00 54.95 395.05
May 4.60 5.00 8.60 16.40 405.20
June 4.50 4.50 14.50 43.50 1107.50
July 0.00 0.00 0.00 0.00 0.00
August 6.00 10.00 13.67 38.67 847.33
September 1.00 1.00 1.00 66.00 1414.00
October 5.00 5.25 10.75 28.25 59.50
November 3.83 7.93 11.38 43.69 228.90
December 10.60 22.60 33.60 135.80 370.80

Table 4.4.4: Time series table showing the average number of dry days prior to fire activity for all major
thresholds on a monthly basis for the Eastern Tennessee climate division from 1985-2016
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Figure 4.4.13: Time series plot showing the average number of dry days prior to fire activity for the 1mm
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line
showing the mean consecutive dry days per month
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Figure 4.4.14: Time series plot showing the average number of dry days prior to fire activity for the Smm

threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line

showing the mean consecutive dry days per month
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Figure 4.4.15: Time series plot showing the average number of dry days prior to fire activity for the 10mm
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line
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Figure 4.4.16: Time series plot showing the average number of dry days prior to fire activity for the 2Smm
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line

showing the mean consecutive dry days per month
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Figure 4.4.17: Time series plot showing the average number of dry days prior to fire activity for the S0mm
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line
showing the mean consecutive dry days per month

82



Precipitation (mm)

Mean 2.8959216
Std 6.9401814
8 N 11688
Zero Mean ADF ~ -83.58065
Single Mean ADF  -95.67003
75 Trend ADF -95.6817

T T T T
01/01/1984 01/01/1988 01/01/1992 01/01/1996 01/01/2000 01/01/2004
Date

Figure 4.4.18: Time series plot showing the daily total precipitation gathered from the National Weather
Service station in Morristown, TN for the Eastern Tennessee climate division from 1/1/1985-12/31/2016
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4.4.3 Poisson Regression Analysis

Similar to the statistical analysis used on Southern Appalachia as a whole, Poisson
regression modeling analysis was conducted on the Eastern Tennessee climate division. Tables
4.4.5-4.4.9 show the results of the model and can be used to identify whether a relationship exists
between consecutive dry days since each precipitation threshold was reached and the area
burned. Results show that a strong statistical relationship exists between the two variables at all 5
major precipitation thresholds. The conclusion can be made based off of the p-values and
standard error for each Poisson regression model. Figures 4.4.19-4.4.23 plot the results and
identify the log-link relationship existing between both variables. Table 4.4.10 also shows that
when the same Poisson regression model is run using all 5 major precipitation thresholds, the
results are very similar. Extremely low p-values and standard present the conclusion that a
statistically significant relationship exists between all threshold values and the number of acres
burned per fire. AICc, Bic, and negative log likelihood show that the 10mm threshold has the
best fit followed by the 5 and Imm threshold values. Of the Poisson regression models, the

25mm threshold had the worst fit.
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" Model Summary

Response
Distribution

Acres Burned
Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link
Measure

Log

Number of rows 125
Sum of Frequencies 125
-LogLikelihood 85434.315
Number of Parameters 2
BIC 170878.29
AlCc 170872.73
Generalized RSquare  0.9983297
' Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.4990287 0.0031158  5792408.1 <.0001* 7.4929218 7.5051357
< 1mm Threshold -0.009875 0.0003554  771.99268 <.0001* -0.010572 -0.009179
' Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 1mm Threshold 1 1 771.99268 <.0001*

Table 4.4.5: Poisson regression model of acres burned vs consecutive dry days since the 1mm threshold value
was reached for the Eastern Tennessee climate division
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Figure 4.4.19: Poisson regression plot of acres burned vs consecutive dry days since the 1mm threshold value
was reached for the Eastern Tennessee climate division
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Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure
Number of rows 125
Sum of Frequencies 125
-LogLikelihood 83955.294
Number of Parameters 2
BIC 167920.24
AlCc 167914.69
Generalized RSquare 1
Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.3002113 0.0031447 5389210.9 <.0001* 7.2940479 7.3063747
< 5mm Threshold 0.0122833 0.0001942  3999.0082 <.0001* 0.0119026 0.012664
Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 5mm Threshold 1 1 3999.0082 <.0001*

Table 4.4.6: Poisson regression model of acres burned vs consecutive dry days since the Smm threshold value
was reached for the Eastern Tennessee climate division
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Figure 4.4.20: Poisson regression plot of acres burned vs consecutive dry days since the Smm threshold value
was reached for the Eastern Tennessee climate division
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Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure
Number of rows 125
Sum of Frequencies 125
-LogLikelihood 83232.744
Number of Parameters 2
BIC 166475.14
AlCc 166469.59
Generalized RSquare 1
Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Intercept 7.2512131 0.0034384  4447493.8 <.0001* 7.244474 7.2579522
< 10mm Threshold 0.0110166 0.0001497 5418.8674 <.0001* 0.0107233 0.0113099
Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 10mm Threshold 1 1 5418.8674 <.0001*

Table 4.4.7: Poisson regression model of acres burned vs consecutive dry days since the 10mm threshold
value was reached for the Eastern Tennessee climate division
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Figure 4.4.21: Poisson regression plot of acres burned vs consecutive dry days since the 10mm threshold value
was reached for the Eastern Tennessee climate division
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Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure

Number of rows 125
Sum of Frequencies 125
-LogLikelihood 85168.797
Number of Parameters 2
BIC 170347.25
AlCc 170341.69

Generalized RSquare  0.9999761
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.3421014 0.0033901 4690442 <.0001* 7.3354569 7.3487459
< 25mm Threshold 0.0016588 0.0000449  1364.7747 <.0001* 0.0015708 0.0017468
Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 25mm Threshold 1 1 1364.7747 <.0001*

Table 4.4.8: Poisson regression model of acres burned vs consecutive dry days since the 2Smm threshold
value was reached for the Eastern Tennessee climate division
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Figure 4.4.22: Poisson regression plot of acres burned vs consecutive dry days since the 25Smm threshold value
was reached for the Eastern Tennessee climate division
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''Model Summary

Response Acres Burned
Distribution Poisson

Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Measure
Number of rows 125
Sum of Frequencies 125
-LogLikelihood 84124.711
Number of Parameters 2
BIC 168259.08
AlCc 168253.52
Generalized RSquare 1
' Parameter Estimates for Original Predictors
Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.5621479 0.0030251 6248918.4 <.0001* 7.5562188 7.5680771
< 50mm Threshold -0.000325 5.753%e-6 3195.7978 <.0001* -0.000337 -0.000314
' Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 50mm Threshold 1 1 3195.7978 <.0001*

Table 4.4.9: Poisson regression model of acres burned vs consecutive dry days since the 50mm threshold
value was reached for the Eastern Tennessee climate division
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Figure 4.4.23: Poisson regression plot of acres burned vs consecutive dry days since the S0mm threshold value
was reached for the Eastern Tennessee climate division
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Model Summary

Response
Distribution

Acres Burned

Poisson

Estimation Method Maximum Likelihood
Validation Method None
Mean Model Link Log

Measure
Number of rows 125
Sum of Frequencies 125
-LogLikelihood 75203.59
Number of Parameters 6
BIC 150436.15
AlCc 150419.89
Generalized RSquare 1
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.4889897 0.0042172 3153585.4 <.0001* 7.4807242 7.4972552
1mm Threshold  -0.050961 0.0004768 11424.172 <.0001* -0.051896 -0.050027
5mm Threshold 0.0150406 0.0003173 2246.5357 <.0001* 0.0144186 0.0156625
10mm Threshold 0.0158418 0.0002511  3980.8673 <.0001* 0.0153497 0.016334
25mm Threshold 0.0002133 5.7886e-5 13.578095 0.0002* 9.9846e-5 0.0003268
50mm Threshold -0.000421 6.2076e-6 4598.1271 <.0001* -0.000433 -0.000409

Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
1mm Threshold 1 1 11424.172 <.0001*
5mm Threshold 1 1 2246.5357 <.0001*
10mm Threshold 1 1 3980.8673 <.0001*
50mm Threshold 1 1 4598.1271 <.0001*
25mm Threshold 1 1 13.578095 0.0002*

Table 4.4.10: Poisson regression model of acres burned vs consecutive dry days for all threshold values were
reached for the Eastern Tennessee climate division
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4.4.4 Negative Binomial Regression Analysis

Negative binomial regression modeling was used to analyze the Eastern Tennessee
climate division in the same way that Poisson regression was used. Tables 4.4.11-4.4.15 show
how the models were used to identify relationships between all 5 individual consecutive dry day
threshold values and the area burned for all fires within the Eastern Tennessee climate division.
Results show statistically significant relationships based on the p-value and standard error values
within the 10 and 50mm threshold negative binomial regression models. The 10mm and 50mm
threshold values also had the best fit according to the AICc, BIC, and negative log likelihood,
with 10mm having the best fit. A loose relationship is seen in the Smm threshold model. No
statistically significant relationship is observed at the 1 or 25mm model when comparing each
threshold individually against the acres burned per fire. Figures 4.4.24-4.4.28 show plots for all
of the negative binomial regression models, including those without statistically significant
relationships. For the ones that are significant, a log-link relationship can be seen within the
plot’s data points. Table 4.4.16 shows the model run with all 5 consecutive dry day precipitation
thresholds run against the number of acres burned for each fire. The results of the model show a
statistically significant relationship between all major threshold values and the area burned
except for the 25mm threshold value, which has no statistical significance. Based on the results
of the negative binomial regression modeling, it can be determined that at certain thresholds
there is significance between the two variables. However, it is always important to consider the

sample size when running forms of analysis such as the negative binomial.
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‘' Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 125
Sum of Frequencies 125
-LogLikelihood 1045.2314
Number of Parameters 3
BIC 2104.9478
AlCc 2096.6612

Generalized RSquare  0.0061346
' Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.4947986 0.097376 5924.008 <.0001* 7.303945 7.6856521
< 1mm Threshold -0.009222 0.0103411 0.795199 0.3725 -0.02949 0.0110466
Negative Binomial Wald Prob >
Distribution Parameters Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.5896967 0.019015 961.75709 <.0001* 0.552428 0.6269654
' Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 1mm Threshold 1 1 0.795199 0.3725

Table 4.4.11: Negative binomial regression model of acres burned vs consecutive dry days since the Imm
threshold value was reached for the Eastern Tennessee climate division
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Figure 4.4.24: Negative binomial regression plot of acres burned vs consecutive dry days since the Imm
threshold value was reached for the Eastern Tennessee climate division
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‘'Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 125
Sum of Frequencies 125
-LogLikelihood 1044.1308
Number of Parameters 3
BIC 2102.7465
AlCc 2094.4599

Generalized RSquare  0.0234834
' Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.3218693 0.0931511  6178.2883 <.0001* 7.1392965 7.5044421
<5mm Threshold 0.010311 0.006156  2.8054427 0.0939 -0.001755 0.0223766
Negative Binomial Wald Prob >
Distribution Parameters Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.5809808 0.0186305 972.47113 <.0001* 0.5444658 0.6174958
' Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 5mm Threshold 1 1 2.8054427 0.0939

Table 4.4.12: Negative binomial regression model of acres burned vs consecutive dry days since the Smm
threshold value was reached for the Eastern Tennessee climate division
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Figure 4.4.25: Negative binomial regression plot of acres burned vs consecutive dry days since the Smm
threshold value was reached for the Eastern Tennessee climate division
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Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 125
Sum of Frequencies 125
-LogLikelihood 1043.0683
Number of Parameters 3
BIC 2100.6216
AlCc 2092.335

Generalized RSquare  0.0399429
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Intercept 7.2495311 0.1032507 4929.8498 <.0001* 7.0471634 7.4518988
< 10mm Threshold 0.0111159 0.0049878 4.9668187 0.0258* 0.0013401 0.0208918
Negative Binomial Wald Prob >
Distribution Parameters  Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.5726762 0.0182659  982.9629 <.0001* 0.5368758 0.6084767
Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 10mm Threshold 1 1 4.9668187 0.0258*

Table 4.4.13: Negative binomial regression model of acres burned vs consecutive dry days since the 10mm
threshold value was reached for the Eastern Tennessee climate division
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Figure 4.4.26: Negative binomial regression model of acres burned vs consecutive dry days since the 10mm
threshold value was reached for the Eastern Tennessee climate division
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Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 125
Sum of Frequencies 125
-LogLikelihood 1044.9149
Number of Parameters 3
BIC 2104.3148
AlCc 2096.0282

Generalized RSquare  0.0111547
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.3344631 0.1077165  4636.3078 <.0001* 7.1233427 7.5455836
< 25mm Threshold 0.001795 0.0015321  1.3726285 0.2414 -0.001208 0.0047979
Negative Binomial Wald Prob >
Distribution Parameters Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.5871799 0.0189037 964.82062 <.0001* 0.5501293 0.6242306
Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 25mm Threshold 1 1 1.3726285 0.2414

Table 4.4.14: Negative binomial regression model of acres burned vs consecutive dry days since the 25mm
threshold value was reached for the Eastern Tennessee climate division
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Figure 4.4.27: Negative binomial regression plot of acres burned vs consecutive dry days since the 25mm
threshold value was reached for the Eastern Tennessee climate division
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‘' Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 125
Sum of Frequencies 125
-LogLikelihood 1043.4561
Number of Parameters 3
BIC 2101.3972
AlCc 2093.1106

Generalized RSquare  0.0339679
' Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.582816 0.0992641 5835.4817 <.0001* 7.3882619 7.77737
< 50mm Threshold -0.000378 0.0001736  4.7495528 0.0293* -0.000719 -0.000038
Negative Binomial Wald Prob >
Distribution Parameters Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.575701 0.0183984 979.11029 <.0001* 0.5396407 0.6117613
' Effect Tests
Wald Prob >
Source Nparm DF ChiSquare ChiSquare
< 50mm Threshold 1 1 4.7495528 0.0293*

Table 4.4.15: Negative binomial regression model of acres burned vs consecutive dry days since the S0mm
threshold value was reached for the Eastern Tennessee climate division
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Figure 4.4.28: Negative binomial regression plot of acres burned vs consecutive dry days since the SOmm
threshold value was reached for the Eastern Tennessee climate division
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Model Summary

Response Acres Burned
Distribution Negative Binomial
Estimation Method Maximum Likelihood
Validation Method None

Mean Model Link Log

Dispersion Model Link Identity

Measure

Number of rows 125
Sum of Frequencies 125
-LogLikelihood 1032.997
Number of Parameters 7
BIC 2099.7923
AlCc 2080.9514

Generalized RSquare  0.1828259
Parameter Estimates for Original Predictors

Wald Prob >
Term Estimate Std Error ChiSquare ChiSquare Lower95% Upper 95%
Intercept 7.4700853 0.1237019 3646.6877 <.0001* 7.2276341 7.7125365
1mm Threshold -0.063058 0.0150032 17.665116 <.0001* -0.092464 -0.033653
5mm Threshold 0.024274 0.0111666 4.7254586 0.0297* 0.0023879 0.04616
10mm Threshold 0.0171411 0.0076745  4.9885813 0.0255* 0.0020993 0.0321828
25mm Threshold -0.000683 0.0019349 0.1245819 0.7241 -0.004475 0.0031094
50mm Threshold -0.00036 0.0001606 5.03007 0.0249* -0.000675 -4.542e-5
Negative Binomial Wald Prob >
Distribution Parameters Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Dispersion 0.4989025 0.015109 1090.3284 <.0001* 0.4692893 0.5285157

Effect Tests

Wald Prob >
Source Nparm DF ChiSquare ChiSquare
1mm Threshold 1 1 17.665116 <.0001*
50mm Threshold 1 1 5.03007 0.0249*
10mm Threshold 1 1 4.9885813 0.0255*
5mm Threshold 1 1 4.7254586 0.0297*
25mm Threshold 1 1 0.1245819 0.7241

Table 4.4.16: Negative binomial regression model of acres burned vs consecutive dry days for all threshold

values were reached for the Eastern Tennessee climate division
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CHAPTER 5

CONCLUSIONS

The main goal of this research was to use statistical analysis to identify the relationship
between consecutive dry days and fire frequency and magnitude within the Southeastern United
States so that policy makers, first responders, residents, and scientists will be better equipped to
prepare for future events similar to those in the fall of 2016. The relationship between
consecutive dry days and both fire frequency and magnitude for large-scale fires in Southern
Appalachia was determined using time-scale, Poisson regression, and negative binomial
regression modeling. By identifying statistically significant relationships between consecutive
dry days and area burned at specific threshold values, precipitation can be used as a standalone
variable to identify the potential for large-scale fire activity. By having a single variable
indicator, such as the 5 or 10mm threshold value for consecutive dry days, scientists may be able
to identify the potential for catastrophic fires earlier than in more complex models. The 10mm
model, based on analysis would be the best indication for this potential as it fit all Poisson and
negative binomial regression models for Southern Appalachia as a whole and the individual
climate division case study.

The aim of the research was to quantify the relationship in order to better predict future
large-scale fire events within a region of the country with a recent increase in fire activity, that is
often neglected where wildfire research is concerned. By conducting this analysis, warning signs

of potential fire activity will hopefully become more identifiable, allowing for the communities
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most affected by such disasters to be better equipped to prevent loss of life, property, well-being.
If this research can improve the quality of life for the people of Southern Appalachia, then it has
accomplished its core goals set-out. With the findings of the relationship between consecutive
dry day impact on large-scale frequency and magnitude and further research into other climatic
variables, the scientific community edges closer to painting a fire indication profile of Southern
Appalachia allowing for greater understanding of past events and better preparation for future

events.

Fire Analysis 5.1

Fire activity was analyzed on the basis of spatial distribution, temporal variability at an
annual, monthly, and daily scale, and based on frequency and magnitude. The spatial distribution
shows that areas of higher elevation and greater topographic variability were more susceptible to
fire than lower elevations or consistent topography. The Eastern Tennessee and Southern
Mountains (NC) and Cumberland Plateau (TN) were the climate divisions with both the greatest
acres burned for the entire period of study and the greatest number of fires. A statistically
significant exponential relationship between fire frequency and magnitude was discovered
throughout the dataset both spatial and temporally. Annual analysis showed that years with the
greatest number of fires were synonymous with years with the largest amount of area burned.
The years that stuck out the most in this respect were 1987, 2000, 2001, and 2016. Much of this
was due to one or two individual fires from each year that burned a significantly larger area than
the rest of the fires for the given year. It could be determined from this finding that years with a
greater number of fires increases the likelihood of a catastrophic fire as opposed to years with

less large-scale fire activity. Monthly analysis indicates two distinct fire seasons in which the
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vast majority of fire activity occurs in Southern Appalachia. There is a spring season which takes
place in March and April and a fall fire season which mainly takes place in the month of
November. This is important to consider when observing the behavior of precipitation and
organic matter preceding each season. The case study for Eastern Tennessee concerned the
finding for the area of study as a whole, showing that it is a microcosm of the behaviors seen in
all of Southern Appalachia, with the greatest sample size for both fire frequency and magnitude

for the region.

Precipitation Analysis 5.2

Precipitation was initially observed on the basis of mean annual dry days (MADD) with
a dry day considered to be days with total precipitation under Imm, but early findings altered the
definition of what was considered to be a dry day. To obtain a greater understanding of how
precipitation impacts fire frequency and magnitude, dry days were observed based on how many
consecutive dry days had occurred since a specific precipitation threshold was reached prior to a
fire event. The thresholds used to locate the consecutive dry day values were 1, 5, 10, 25, and
50mm of precipitation per day. Spatially, there is a slight relationship between consecutive dry
days and fire activity. Climate divisions with a greater number of fires and acres burned had a
slightly higher amount of consecutive dry days leading up to fire events than regions with less
fire frequency and magnitude. This was especially true at lower threshold values such as 1, 5,
and 10mm. Annual analysis showed that at lower threshold values such as 1, 5, and 10mm there
was a greater number of consecutive dry days preluding fire events in years with a greater
number of fires and more area burned. Monthly analysis confirms the findings of the annual time

series observations. Years with more fire activity in the fall were shown to have a greater number
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of consecutive dry days leading up to fires than years with a more pronounced spring fire season.
This is especially apparent at lower threshold values such as 1, 5, and 10mm. Based on the
findings, seasonality of the fire events plays a major role in the expectations for how many
consecutive dry days will lead up to a major fire event. The same results experienced in the
entire area of study were experienced in Eastern Tennessee for the annual time series analysis.
However, monthly analysis showed a less apparent relationship between consecutive dry days
and fire activity in the spring season vs the fall. Part of this may be due to the fact that the sample
size is smaller, but slight variation can be observed that matches with that of all of Southern

Appalachia.

Poisson Regression Analysis 5.3

Poisson regression modeling was used to identify relationships between consecutive dry
days since reaching the threshold value, for all 5 major precipitation thresholds, and the area
burned per fire. Using the p-value and standard error as major indicators of whether a
relationship exists, it was determined that there is a strong statistical relationship between all
major precipitation thresholds individually and the area burned per fire. The models run in JMP
software also provided scatterplots showing the distribution of the data. From the scatterplots, a
log-link relationship is indicated for the entire area of study throughout the period of study with a
few outlying fires. The same analysis was run using all threshold values in the same Poisson
regression model instead of each one individually. The results were the same with all p-values
and standard error values indicating a strong relationship between the variables. The same tests
were run for each threshold individually and all at the same time for the Eastern Tennessee case

study. The results were very similar to those of the whole Southern Appalachia area of study. All
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individual dry day threshold values showed strong relationships with the area burned for their
respective fires. Results were the same when running the Poisson regression model with all
threshold values. P-values and standard error indicated strong relationships between the
variables. AICc, Blc, and the negative log likelihood also indicated the Smm threshold value
provided the best fit for the data, with 10 and 1mm values providing good fits as well. Based on
results, it can be determined that using Poisson regression modelling, analysis concludes the
existence of a strong log-link relationship between the number of consecutive dry days, at all
thresholds, and the amount of area burned per fire. Based on the model results, the Smm and
10mm threshold values act as the best indication for predicting the potential for large-scale fire

activity, using Poisson regression analysis.

Negative Binomial Regression Analysis 5.4

Negative binomial regression modelling was used similarly to Poisson regression
modelling to determine if relationships between consecutive dry days prior to precipitation
threshold values and area burned in acres exists. Running the model at each individual threshold
suggests that there is a strong log-link relationship between the two variables, as each contained
very small p-values and standard error. However, running all threshold values in the model at the
same time only provided strong statistically significant relationships and model fits at the Smm
and 10mm threshold. The 1, 25, and 50mm thresholds did not have a strong relationship with the
amount of area burned when the negative binomial model was run containing all threshold values
simultaneously. The same models were run for the Eastern Tennessee case study. The negative
binomial model comparing the number of consecutive dry days for each individual threshold

value against the number of acres burned provided results different than the ones from the entire
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area of study. The Imm and 25mm threshold values showed no statistically significant
relationship with the area burned per fire. The Smm threshold value showed a loose relationship
with a p-value of roughly .09, which may be considered significant depending on the
significance limit (.05 vs .1). The consecutive dry days since the 10mm and 50mm thresholds
were reached showed a statistically significant relationship with the amount of area burned
during the entire period of study. The negative binomial regression model was then run
containing all 5 major thresholds vs the number of acres burned vs fire for Eastern Tennessee,
similar to the model run for all of Southern Appalachia. Results showed strong statistically
significant relationships between all major thresholds except the 25mm threshold. The
relationships are displayed in the form of a log-link relationship between the two variables.
Based on the model results, the 5Smm and 10mm threshold values act as the best indication for

predicting the potential for large-scale fire activity, using negative binomial regression analysis.

Future Analysis 5.5

The results of the research conducted analyzing the relationship between consecutive dry
days and both fire frequency and magnitude in Southern Appalachia provides detailed insight
into the behavior of fire and precipitation in the Southeastern United States as a whole.
Consecutive dry days; and precipitation analysis are just a fraction of the numerous
climatological processes affecting fire activity in the Southern and Eastern United States. Several
other atmospheric characteristics within the region are capable of providing greater
understanding of what climatological factors impact fire activity in this area of the country the
most. Elements such as relative humidity, soil moisture, organic fuel, wind, insolation angle,

anthropogenic forcing, and evapotranspiration rates, to name a few also contribute to the
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multiple processes impact fire ignition, frequency, and magnitude in Southern Appalachia. Based
on the results collected from this research, it is believed that the number of consecutive dry days
prior to fire activity, since reaching precipitation threshold values at multiple levels, have a
strong relationship with the chance for fire ignition, fire frequency, and more specifically, fire
magnitude. The hope is that this research will be seen as a major contribution to greater
understanding how the climatic characteristics, specifically precipitation, helps provide a greater
understanding and critical indication of fire ignition, frequency, and magnitude in Southern

Appalachia and the Southeastern United States as a whole.
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