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CHAPTER 1 

INTRODUCTION 
  
  

 Fire activity is an integral element of the forest ecosystems in the Southern Appalachian 

region of the United States. It is a determining factor governing spatial forest structure (Kane et 

al. 2014) and also influences soil-nutrient composition (Morris et al. 2015, Schlesinger et al. 

2016) and biotic community structure (Johnstone et al. 2016). Fire is not only responsible for 

shaping the vegetative composition of the landscape but also influences the structure and 

composition of biotic communities, soil quality and composition, watershed quality, and nutrient 

availability (Johnstone et al. 2016; Morris et al. 2015; Schlesinger et al. 2016). In addition, small 

increases in pollution episodes, including those associated with forest fires, can negatively affect 

the outstanding visibility and air quality that characterize Southern Appalachia (Hyslop, 2009, 

Liu, 2004). Some forest ecosystems of the Appalachian Mountains are pyrogenic (Lafon et al. 

2017), meaning that the composition of these ecosystems is determined by and influenced by 

fire. Southern Appalachia has an extensive history as a pyrogenic ecosystem, and still has its 

landscape significantly altered by fire activity despite the increase in population and human-

environmental interaction (Van Lear et al. 1989). 

 In the Appalachian Region of the United States, fire poses a major economic threat to 

natural resources and communities, making wildfire occurrence of great importance to managing 

agencies (Lynch & Hessl, 2010). This area of the United States is often synonymous with higher 

levels of poverty and vulnerability than the rest of the country (Lynch & Hessl, 2010). This 
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means that the surrounding communities are more susceptible to changes in climate and fire 

activity (Lynch & Hessl, 2010). The area is also characterized by similar topography and current 

climate characteristic. Southern Appalachia contains the Appalachian Mountains, which has 

formed a system of ridges and valleys within the area. Several ridges and valleys indicate 

significant topographic variability, creating an additional challenge for dealing with fire activity. 

The organic matter of the area provides other significant challenges for dealing with the ignition 

and spread of wildfire. 

 Dry days have a direct impact on detritus that has collected on the forest floor (Chen et al. 

2014). This detritus serves as fuel to be ignited by either anthropogenic sources or lightning. 

Research shows that consecutive dry days in the Appalachian region are a key factor in wildfire 

ignition (Lafon et al. 2017). It has been shown that consecutive dry-days leading up to a fire 

event have a statistically significant relationship pertaining to the amount of burned area for each 

specific fire (Chen et al. 2014). Current fire-suppression strategies (i.e. controlled-burns) 

implemented by management agencies in the Appalachians support the fuel-loading of forest 

understories. This allows for the continued build-up of biomass fuels in the Appalachian forest. 

This continued build-up could influence fire severity and burned area of current and future 

wildfires specifically in areas with prolonged dry periods. Southern Appalachia is characterized 

by current changes in precipitation behavior, a large amount of fuel-loading compared to other 

forested areas, and a statistical relationship shown between consecutive dry-days and area burned 

(Lafon, 2017). There is emerging evidence that research is needed on the relationships between 

consecutive dry days and fire behavior in Southern Appalachia, particularly after the catastrophic 

fire season of 2016. Research will examine the relationship between the two factors to see the 

scale of the impact consecutive dry-days have on Southern Appalachian fire activity.    
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1.1 Motivation 

 In late November to early December of 2016, a series of wildfires devastated much of the 

Great Smoky Mountains National Park. The largest fire was brought on by anthropogenic 

ignition, but prime conditions for a disastrous fire event, including an extended period of low 

precipitation and record high daily maximum temperatures throughout Southern Appalachia, 

caused the fire to impact the area at such a large scale. Anomalous ridging over the central 

United States reduced south-southwesterly moisture transports into the southeastern region of the 

country by around 75% (Park Williams et al. 2018). The United States Drought Monitor index 

characterized the Southeastern United States as in a state of “severe drought” or worse around 

late November (Svoboda et al., 2002). The fire burned nearly 18,000 acres, destroyed over 2,400 

buildings, and caused millions of dollars’ worth of damage. The large scale of the fire was the 

result of optimal climatic conditions for expansion. The Smoky Mountain fires came on the tail-

end of unseasonably dry weather for the late autumn in Southern Appalachia. This fact, 

accompanied by leaf litter accumulation, provided ample fuel for fires to ignite. Finally, a cold 

front moving through the area aided the expansion of already ignited fires with sustained winds 

of over 40 mph in some areas, with gusts exceeding 70 mph. The event created a demand for 

research examining the relationships between the dynamic climate of Southern Appalachia, 

specifically precipitation, and recent fire activity.  

 Similar research has been carried out previously in other areas of the globe such as Dr. 

Feng Chen’s paper examining the influence of consecutive dry-days on burned area in the 

Yunnan Province of Southwestern China (Chen et al., 2014). The unique organic and 

physiological characteristics of Southern Appalachia with the recently observed changes in both 
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fire behavior and climate, specifically regarding intra-annual precipitation variability, suggest 

further research is needed.  

 Current methods of predicting the potential for large scale fire activity currently exist 

using numerous parameters as determinants. One example of a method for predicting the fire 

activity is the National Fire Danger Rating System. The system consists of spread and ignition 

components, the Keetch-Byrum Drought Index, and a burning index to classify conditions as one 

of five severities of risk for fire activity (Bradshaw et al. 1984; Cohen & Deeming, 1985). The 

system is weighted towards specific regions at a national scale to indicate optimal conditions for 

wild fire activity. However, current analysis of such rating systems shows blanket coverage of 

the Southern Appalachian region having the same climatic characteristics as areas of the 

Northeast and the Mid-Atlantic (Schlobaum & Brain, 2002). This is not necessarily the case as it 

pertains to variables such as precipitation and humidity (Rice et al. 2018). This research is more 

interested in looking at the specific relationship between precipitation and fire, rather than 

considering numerous, more complex variables. 

 With the support of the United States Forest Service, an investigation is conducted on the 

climatological processes potentially responsible for the increase in fire frequency and magnitude 

in Southern Appalachia. The goal is to ultimately aid first responders, policy makers, and 

citizens of the region to be better prepared for fire events such as the 2016 season. The 

conclusions drawn from investigating the relationship between dry-days and fire magnitude 

frequency may yield results that will aid the United States Forest Service in areas outside of 

simply Southern Appalachia and may also help the organization gain a greater understanding of 

the dynamic climate’s impact on fire behavior.  
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1.2 Research Objectives 

 The main research objective is to determine if there is a statistically significant 

relationship between dry days, specifically consecutive dry days, leading up to major fire events 

and the area burned as a result of the fire. This may determine the role consecutive dry days have 

leading up to fire events in the Southern Appalachian region, specifically catastrophic and large-

scale fire events. Historic fire data will be used to observe how fire behavior has progressed 

within the region. Historic daily precipitation data will then coincide with the fire data to analyze 

the existing relationships and how they impact the scale and severity of Southern Appalachian 

fire events. These relationships will be analyzed at the scale of the entire region of study, 

individual climate divisions within the southeastern United States, and each fire individually. 

Individual threshold values of precipitation will also be compared with fire data to identify 

relationships between consecutive dry days and fire severity. This statistical analysis should 

identify relationships among consecutive dry days, fire frequency, and severity. The analysis 

used to explain the relationships between fire and precipitation will consist of generalized 

correlation and regression modeling such as Poisson regression modeling and negative binomial 

regression modeling. The aim of the research is to identify relationships in order to aid the 

communities of Southern Appalachia in being better prepared to identify, prevent, and respond to 

the potential for future large-scale fires and the potential of their occurrence.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Southern Appalachian Larger-Scale Climate Themes 

 Fire in regions as humid as Southern Appalachia rely on specific conditions in order for 

the organic matter to be flammable enough for ignition. Dry periods must occur in order for the 

organic matter, brought on by precipitation events, to burn (Lafon, 2017). Williams et al.’s 

assessment of the 2016 Southeastern fire season details climatological and teleconnection 

patterns surrounding the anomalous event (Williams et al., 2017). Teleconnections such as the El 

Niño Southern Oscillation (ENSO), Pacific-North American (PNA), Pacific Decadal Oscillation 

(PDO), and North Atlantic Oscillation (NAO) have explicit relationships with increased fire 

activity in the Southern United States (Dixon et al. 2008). Fire activity in the winter months is 

shown to be related to strong ENSO and NAO values during the late summer and autumn (Dixon 

et al. 2008). Late winter month fires show some correlation with the PDO and PNA anomalies 

just a few months prior to them in the Southeastern United States (Dixon et al. 2008). Late 

summer fires can be predicted by ENSO anomalies in the prior six months, and late 

summer/early autumn fires can be indicated by PNA variation in July (Dixon et al. 2008). 

Teleconnections, however, work as more broad, large scale indicators of an increase in fire 

activity during certain months. 

Large-scale synoptic patterns can have a profound impact on setting up the necessary 

conditions for fire activity in Southern Appalachia. Pacific surface highs characterized by dry 
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weather and strong winds hinder moisture transport east towards the Appalachian Mountains 

(Lafon, 2017). The air masses are also characterized by gusty weather along the edge of dry cold 

fronts that provide optimal conditions for fire activity. Perhaps the synoptic indicator with the 

greatest impact on the region is the Bermuda High (Diem, 2013; Doublin & Grundstein, 2008). 

This subtropical high has a tendency to linger over the region for extended periods of time 

(Lafon, 2017). When this particular high extends westward towards Texas, moisture from the 

Gulf of Mexico cannot reach Southern Appalachia, which results in extended periods of drought 

within the region (Lafon, 2017).   

 Interannual climatic variability strongly influences the spatio-temporal variability of 

burning. For example, the location of high and low-pressure centers has a direct impact on the 

precipitation patterns that indicate whether a certain area at a specific time of the year may be 

prone to fire activity. This control may extend to fire regimes dominated by anthropogenic 

ignitions and those altered by modern fire management strategies (Swetnam & Betancourt, 1990; 

Swetnam et al., 1999; Veblen, 2000; Roman-Cuesta et al. 2003; Westerling et al., 2006). While 

there has been significant research into linkages between fire and climate in areas such as the 

Southwestern United States, China, and on a global scale (Lynch & Hessl, 2010; Crimmins, 

2005; Holden et al., 2007; Chen et al. 2014), much less research has investigated the role of 

climate in controlling wildfire occurrence and severity in the humid regions of Southern 

Appalachia, or the Southeastern United States in general. Modern climate and precipitation 

regimes are changing in the Southeastern United States, specifically in areas with significant 

topographic variability, such as the Appalachian Mountains (Burt et al., 2017; Wang et al., 

2010). Prior research shows a recent trend of increasing intra-annual variability of summer 

precipitation in the Southeastern United States, leading up to the autumn fire season (Wang et al., 
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2010). The same research indicated that summer rainfall variability was not addressed by a 

difference in the amount of summer rainfall, rather the intensity of the rainfall dropped at one 

time (Wang et al., 2010).  

 Similar trends were found in the fall months as well, with research showing an increase in 

the frequency and intensity of rainfall events characterized as heavy events in Appalachia (Burt 

et al. 2017). The same research claims that an increase in the percentage of precipitation derived 

from heavy rainfall events must mean that there is also an increase in the number of “dry days” 

(Burt et al. 2017). This precipitation variability pattern provides ample fuel to stage fire events 

throughout the region (Haines, 1983). Annual precipitation is not shown to have as large of an 

impact on Southeastern wildfire behavior as the differences in intra-annual precipitation 

variability (Lafon & Quiring, 2012).  

  

2.2 Southern Appalachian Smaller-Scale Climate Themes 

 Smaller scale indicators, such as precipitation, can be used to identify prime conditions 

for potential fire activity. The spring and autumn fire seasons of 2016 had similar behaviors to 

previous fire events, but was one of the most, if not the most severe, based on the amount of area 

burned (Williams et al. 2017). There was also an increase in the number of fires considered to be 

large-scale fires (> 500 acres burned) as opposed to previous years (Williams et al. 2017). 

Several sites throughout the Southeastern United States had some of their driest months of 

record, but what was specifically different about 2016 from other events was the number on 

consecutive days without precipitation, otherwise known as dry days (Konrad II & Knox, 2016). 

Dry days are used as a metric for indicating the potential for fire activity (Chen, 2014). They 
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play a major role in drying out organic matter to provide the conditions for ignition to take place 

(Chen, 2014).  

 Other factors that must be considered when observing fire behavior in the Southeastern 

United States include wind, temperature, means of ignition, and topography. Studies point out 

that the increasing trend in intense rainfall events is amplified in areas characterized by major 

topographic variability, specifically at higher elevations (Burt et al. 2017).  The Southeastern 

United States is also characterized by higher temperatures that coincide with previously stated 

precipitation patterns. Higher temperatures create a rapid drying effect following precipitation 

events, which cause organic material to be in the optimal state for ignition (Pyne, 2017). This is 

not ideal considering the organic build-up in Appalachia (Pyne, 2017). Finally, wind can play a 

considerable role in Southern fire activity by unsettling organic matter and allowing more 

oxygen to reach the fires (Park Williams et al., 2017). This aids the spread of fires as observed in 

the 2016 Smoky Mountain fire (Park Williams et al., 2017). These and other climatological-

geographical factors directly impact the Southern Appalachian region in regard to fuel loading 

and burning. 

  

2.3 Fire Activity Themes 

 In an area with limited controlled burning, more intense rainfall events can cause a 

greater fuel loading than previously observed (Lafon & Quiring, 2012). The combination of large 

fuel loading with extended periods of dry weather due to more intense, less frequent precipitation 

events results in an increase in Southeastern fire activity (Lafon & Quiring, 2012). Current 

general circulation models (GCMs) suggest an increase in the seasonal severity ratings of fire 

seasons moving forward, especially in the southeast (Flanning et al. 2000). Worldwide, mean 
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annual precipitation values are expected to increase, while the number of rainfall events are 

projected to decrease (Polade et al. 2014). Considering the known importance of the number of 

dry days to both fire frequency and burned area (Chen et al. 2014) in parts of the world, it is 

necessary to investigate what impact this increase in dry-days may have on fires at a more local 

scale.  

 The means of ignition is also important to consider when observing fire activity in 

Southern Appalachia. According to the United States Forest Service, the two main instigators of 

fire activity are anthropogenic causes, or human involvement, and lighting strikes, specifically in 

the spring (Short 2015). Human caused fires vary from an out of control bonfires to arson 

(Hawbaker et al. 2013). Human-induced fires make up around 85% of annual wildfires in the 

United States (Short 2015). The other 15% consists of other instigators, but the largest of these is 

lightning. Especially in months with active severe weather, such as the spring and summer, 

lighting can be responsible for wildfire ignition when organic matter is dry enough (Barden 

1974). When considering the means of ignition however, it is important to address that human 

and lightning-induced fires are not simply the result of an acting igniter, but the result of certain 

fire conditions as well.  

 It is also important to consider the regeneration of organic matter following previously 

occurring fires (Coppoletta et al. 2016). In areas such as the southeastern United States, this 

occurs more rapidly due to greater humidity and frequent precipitation throughout the year, 

providing ample fuel for fire ignition (Coppoletta et al. 2016). Dry conditions and low humidity 

are necessary in order for the fire produced from the listed actors to ignite and spread (Lafon et 

al. 2017). Recent measures such as an increase in prescribed burns have been implemented in the 

Southeastern United States (Elliot et al. 1999). Prescribed fires in the Southeastern United States 
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require specific conditions in order for them to occur (Fowler & Konopik, 2007). Nearly 70% of 

prescribed burning, by area, takes place in the Southeast (Chiodi et al. 2018).  

 In the Appalachian Region of the United States, fire poses a major economic threat to 

natural resources and communities, making wildfire occurrence of great importance to managing 

agencies (Lynch & Hessl, 2010). Dry days have a direct impact on detritus that has collected on 

the forest floor (Chen et al. 2014). This detritus serves as fuel to be ignited by either 

anthropogenic forces or lightning. Research shows that consecutive dry days in the Appalachian 

region is a key factor in wildfire ignition as shown in Figure 2.1.1 (Lafon et al. 2017). It has been 

shown that consecutive dry days leading up to a fire event have a statistically significant 

relationship pertaining to the amount of burned area for each specific fire as shown in Figure 

2.1.2 (Chen et al. 2014). Current fire-suppression strategies (i.e. controlled-burns) implemented 

by management agencies in the Appalachians aim to prevent the fuel-loading of forest 

understories, but not all areas can be targeted, and ideal conditions are necessary for 

implementation (Chiodi et al. 2018). In fact, the National Prescribed Fire Use Survey Report 

shows that significant prescribed burn activity takes place in Southern Appalachian states such as 

Georgia, South Carolina, and Alabama (Melvin, 2012). However, even with significant steps 

taken to prevent large-scale fire activity, it still occurs.  

 The areas with a significant build-up of biomass influence the fire severity and burned 

area of current and future wildfires specifically in areas with prolonged dry periods. Southern 

Appalachia is characterized by current changes in precipitation behavior, a large amount of fuel-

loading compared to other forested areas, and a statistical relationship shown between 

consecutive dry days and area burned (Lafon, et al. 2017).  
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 Research has been carried out pertaining to the factors that indicate the potential for fire 

activity in the United States such as the Keetch-Byram drought index, which quantifies drought 

conditions throughout the country (Keetch & Byram 1968, Janis et al. 2002). Much of the 

research focuses on the western United States as opposed to the eastern or southern part of the 

country. Research has also studied the relationship between dry days and fire magnitude in other 

areas of the world but not in Southern Appalachia (Chen et al. 2014). There is the demand to 

conduct research on the relationship pertaining to consecutive dry days and fire behavior in 

Southern Appalachia, following the catastrophic fire season of 2016. Research will examine the 

correlation between the two factors to see the scale of the impact consecutive dry days have on 

Southern Appalachian fire activity. 
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Figure 2.1.1: The Relationship between consecutive rain free days (< 0.001mm precipitation) and the 
probability of wildfire ignition 
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Figure 2.1.2: The Relationship between precipitation and area burned on a monthly basis in Yunnan 
Province, China 
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CHAPTER 3 

RESEARCH DESIGN AND METHODS 

 

3.1 Study Area 

 The area chosen to represent Southern Appalachia was based on NOAA’s current United 

States climate division dataset (Figure 3.1.1), which subdivides by states and specific 

climatological parameters (Vose et al. 2014). The current “nClimDiv” dataset is based on the 

past Global Historical Climatological Network (GHCN) dataset with improvements made in the 

accuracy of the data collected at regional, state, and divisional scales from the hundreds of land 

surface weather stations used (Menne et al., 2012). The climate divisions chosen for this research 

consist of parts of Alabama, Georgia, North Carolina, South Carolina, and Tennessee (Table 

3.1.1). The zones span an elevation gradient of 91 to 1965 meters above sea level. The divisions 

chosen to represent Southern Appalachia were selected based on similarities in topography, 

temperature patterns, and precipitation trends. They also contain similar organic composition, 

which is important while considering the fuel being provided for the ignition and spread of fire. 

Based on data provided, the divisions used should be fairly consistent topographically, 

climatologically, and organically.  
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Figure 3.1.1: Southern Appalachia Area of Study and Global Historical Climatological Network’s (GHCN) 
nClimDiv Climate Divisions 
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Table 3.1.1: Southern Appalachia Global Historical Climatological Network’s (GHCN) nClimDiv Climate 
Divisions with Area in Acres and Elevation 

 
 

 

 

 

 

 

 

 

nClimDiv (State) Elevation min (m) Elevation max (m) Gradient (m) Area (US acres)
Appalachian Mountain (AL) 122 558 436 2896040.59

Eastern Valley (AL) 122 594 472 2286239.03
Northwest (GA) 180 1033 853 2121501.78

North Central (GA) 152 1213 1061 3513832.76
Northeast (GA) 91 1338 1247 1964118.79

Southern Mountains (NC) 233 1965 1732 4141111.94
Northern Mountains (NC) 215 1667 1452 1894434.19

Mountain (SC) 230 1002 772 422655.91
Northwest (SC) 94 498 404 2544954.05

Cumberland Plateau (TN) 177 908 731 3925987.54
Eastern (TN) 239 1965 1726 6277979.60
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3.2 Data 

3.2.1 Precipitation Data 

  Precipitation data used for observations and calculations in the area of study were 

gathered from Daily Surface Weather and Climatological Summaries (Daymet) data, created by 

Oak Ridge National Laboratory’s Distributed Active Archive Center for Biogeochemical 

Dynamics (DAAC) (Figure 3.2.1) (Thornton, 2014). Daymet provides daily gridded weather 

estimates for North America including daily precipitation occurrences and accumulation, 

minimum and maximum temperature, shortwave radiation, humidity, day length, and snow water 

equivalent. The spatial resolution of the data is very high at 1 km x 1 km. Daymet is able to 

achieve this resolution due to the availability of a large number of weather stations. The dataset 

extends from 1980 to the present. Using the THREDDS open-source data server, NetCDF 

formatted daily precipitation data will be gathered for the area of study from 1980-2017. It 

should also be noted that Daymet data is topographically adjusted, which is necessary for dealing 

with areas of significant elevation variance, such as Southern Appalachia. The specific dataset 

used for this study has detailed information on latitude, longitude, daily precipitation, and time. 
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Figure 3.2.1: ORNL DAAC Daymet Daily Precipitation Data example  
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3.2.2 Fire Data 

 Fire data used for this study was gathered from the United States Forest Service’s 

Monitoring Trends in Burn Severity Fire Occurrence Locations (MTBS) feature layer projects 

(Eidenshink et al., 2007; Finco et al., 2012). This project tabulates all large wildland fires in the 

continental US, Alaska, Hawaii, and Puerto Rico for the years 1984-2016, with updates currently 

being made. Fires reported in the dataset are greater than 1,000 acres burned in the Western 

United States and greater than 500 acres burned in the Eastern United States. The MTBS project 

by its own acknowledgement is used to study fire frequency, extent, and magnitude based on the 

data collected. For this research, point shapefiles locating the centroid of fire occurrences were 

used as well as polygon shapefiles displaying acres burned area for fire events, with some 

overlap (Figures 3.2.2 & 3.2.3). From table data and spatial representation, several attributes for 

fires were considered within the study. Among these were: number of fires, starting month, day, 

and duration of each fire, acres burned, year, and perimeter. 
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Figure 3.2.2: United States Forest Service (USFS) Monitoring Trends in Burn Severity (MTBS) Fire 
Occurrence Feature Layer 1985-2016 

 
 

 

Figure 3.2.3: United States Forest Service (USFS) Monitoring Trends in Burn Severity (MTBS) Burned Area 
in Acres Feature Layer 1985-2016 
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3.3 Methodology 

 Basic linear correlation and regression modeling were conducted in R, Python, and 

Statdisk software to identify the relationship between mean annual dry days and acres burned. 

The temporal range set for the calculations is currently between 1985 and 2016 with the potential 

to cover a longer timespan as updated precipitation and fire datasets become readily available. 

This form of modelling allowed the user to easily update datasets as needed for the system to 

process and can be used to run similar correlation and regression models on other proxies, which 

may become necessary to better understanding the relationships between climatic processes and 

fire frequency/magnitude. However, this form of statistical analysis proved rudimentary and was 

expanded to provide analysis that better fits the dataset. 

 Daymet daily precipitation data was downloaded from Oak Ridge National Laboratory’s 

Distributed Active Archive Center (ORNL DAAC) (Thornton, 2014). These 1 km x 1 km data 

were obtained in NetCDF format, containing an array of daily precipitation values for each study 

year. MATLAB 2017 was employed to parse the NetCDF data arrays into .csv files containing 

latitude, longitude, and annual dry days (defined as precipitation < 1 mm). The coding sequence 

produced a single .csv containing latitude data for all data points, another .csv containing 

longitude data for all points, and 32 .csv files containing annual number of dry days (one for 

each study year). R x64 3.4.3 coding interface was then used to assign appropriate x, y locations 

to each data point in the dry day data. The coding procedure resulted in 32 .csv files, which each 

contained 454,370 annual dry-day values with geographic reference. 

 Geographically referenced annual dry day data files, representing 1985-2016, were then 

imported into ArcMap 10.6 (Esri). The data were displayed in x, y coordinate space then 

converted to individual point shapefiles. This resulted in 32-point shapefiles, each containing 
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454,370 data points. Using ArcMap 10.5’s Spatial Analyst toolkit, these point shapefiles were 

each converted to raster format. The result was 32 geographically-referenced raster datasets, with 

each grid cell containing a single annual dry day value for that particular location. 

 Grid cells which fell within the study area were then extracted for analysis using 

ArcMap’s “Model Builder.” Mean annual dry day (MADD) values were obtained with 32 raster 

datasets, representing the entirety of the study area. The 32 raster datasets were then separated 

into each of the 11 climate regions using Model Builder. The minimum, maximum, mean, and 

standard deviation of the annual DD values contained within the resulting 360 raster files were 

computed and exported into a spreadsheet for analysis. Initial analysis was conducted to identify 

the relationship between MADD and both the number of fires and area burned using correlation 

and linear regression modelling. Early results showed no linear statistical relationship between 

the two variables, as no linear relationship is evident. More strenuous statistical analysis was 

necessary to identify the relationship between precipitation and fire activity.  

 The same methods used above for the initial analysis on the basis of MADD were used 

and applied to calculate and analyze consecutive dry days leading up to fire events in the region. 

Consecutive dry days might act as a more satisfactory indication of fire frequency and 

magnitude, as previously shown by Chen et al. 2014. The suggestion to use consecutive dry days 

instead of MADD is mentioned in Lafon’s 2017 paper. Initial research into areas of Northern 

Appalachia shows increases in fire probability as the number of consecutive dry days increases 

(Lafon, 2017).  

 Dry days were previously defined only as days with precipitation less than 1mm of total 

accumulation in the preliminary analysis conducted. For further analysis, other precipitation 

thresholds were considered to define dry days due to the possibility of instrument error, as well 
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as variation caused by Appalachia’s significant topographic variability. Chen et al. 2014 lays out 

a means of using different daily precipitation thresholds to define dry days in an analysis in 

southwestern China.  Chen et al. (2014) defined dry days as £ 0, 1, 2, 3, 4, 5, 6 mm of daily 

precipitation. The author then used these values as the basis for running a Spearman’s rank 

correlation test to find the correlation between the number of consecutive dry days (based on the 

specified value) and the log-transformed burned area of forest fires for each individual region 

(Chen et al., 2014). This statistical analysis was used as a guide for conducting similar statistical 

analysis based on the precipitation and fire data collected for the Southern Appalachian region as 

a whole, and the individual climate divisions within the region.  

 However, rather than using the threshold values identified by Chen et al. (2014), the 

threshold values of £ 1, 5, 10, 25, and 50 mm were used to cover a larger range of consecutive 

dry day threshold values. Originally, the same threshold values used in Chen’s study were to be 

used to account for instrument error, but early findings prompted new values to cover a greater 

range of dry day thresholds. This will be done because little to no instrumentation error was 

found and a minimal amount of difference in the number of consecutive dry days per threshold 

was discovered. Expanding the range of threshold values provides a greater understanding of 

how consecutive dry day thresholds and fire activity are related. This is especially important 

considering the climatic trends and topographic variability experienced in Southern Appalachia. 

Threshold values will not be the only difference from prior research.  

 Originally, linear correlation and regression analysis, as well as Spearman’s rank 

correlation analysis were proposed to observe relationships between precipitation and fire data. 

After careful research and discussion with Dr. Lynne Seymour of the University of Georgia’s 

Department of Statistics, it was determined that the relationships between the two attributes 
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would most likely be non-linear nature. Non-linear analyses were conducted to provide more 

accurate insight into how the data are related. Specifically, Poisson regression and negative 

binomial analysis were conducted to provide a more detailed analysis of the fire and precipitation 

relationship.  

 Poisson regression is a generalized linear model (GLM) that is often referred to as a log-

linear model (Gardner et al. 1968, Dixon et al. 2008). It is specifically used to model count data 

and contingency tables, such as the fire and precipitation data collected (Figure 3.2.1) (Gardner 

et al. 1968, Dixon et al. 2008). A Poisson regression model assumes that the Y variable has a 

Poisson distribution and assumes that the logarithm of its expected value can be modeled using a 

linear combination of unknown characters (Gardner et al. 1968, Dixon et al. 2008). In the case of 

the data being used, the Y variable is acres burned or number of fires and the X value would be 

the number of consecutive dry days for each threshold value (Gardner et al. 1968, Dixon et al. 

2008). Poisson regression models are considered to be generalized linear models. Within the 

models the logarithm is the link function, and the Poisson distribution function is the assumed 

probability distribution of the response. 

 

Figure 3.3.1: Poisson Regression Model used in the analysis of precipitation and fire data from SAS JMP 
statistical analysis software 
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 Negative binomial regression is also used to determine the relationship between the 

provided fire and precipitation data. It is a generalization of the previously mentioned Poisson 

regression model (Gardner et al. 1968, Dixon et al. 2008). This model is considered a 

generalization because it loosens the restrictive assumption that the variance is equal to the mean 

made by the Poisson regression model (Gardner et al. 1968, Dixon et al. 2008). It is a popularly 

used model due to the fact that it models the Poisson heterogeneity with a gamma distribution, 

allowing for less restriction (Gardner et al. 1968, Dixon et al. 2008).  In this case, the Y variable 

and the X value will be the same as in the Poisson regression model. The forms of regression 

analysis used in this case are much more ideal for the data used than those previously proposed.  

 

Figure 3.3.2: Negative Binomial Regression Model used in the analysis of precipitation and fire data from 
SAS JMP statistical analysis software 

 

 The Akaike information criterion (AICc), Bayesian information criterion (BIc), and 

negative log-likelihood aid in determining which models are the best fit at different threshold 

values. Other analyses were also conducted based on the interactions between fire and 

precipitation data. A few of the trends observed were based on monthly, annual, and seasonal 

behavior, considering all five threshold values and overarching themes. Time series analysis 

were graphed and charted to provide a visual representation of the data. Visual aids of both fire 



 27 

and precipitation over time were documented, including daily precipitation and fire activity 

across the entire designated time period of study. The analysis provides a greater understanding 

of the existing relationships between precipitation activity, specifically consecutive dry day 

thresholds, and the behavior of large-scale forest fires in Southern Appalachia.  
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CHAPTER 4  

RESULTS 

 

4.1 Breakdown of Fire Activity  

4.1.1 Main Observations 

 Figures 4.1.1 and 4.1.2 show the spatial variability and magnitude of each individual fire 

during the study period. It is important to remember that all fires in the dataset are considered to 

be large-scale fires, as they each burned a minimum of 500 acres of land. Table 4.1.1 breaks 

down each fire and the amount of area burned based on the climate division location of the point 

of ignition. Divisions stretching along the Appalachian Mountains, such as the Eastern Valley of 

Alabama, Eastern Tennessee, and the Southern Mountains of North Carolina tend to experience a 

greater number of fires and coinciding acres burned than surrounding areas. Figures 4.1.1 and 

4.1.2 indicate that areas of high elevation in Southern Appalachia tend to be more prone to fire 

activity than lower lying areas. From 1985-2016 the number of fires has significantly increased 

as shown in Figure 4.1.3. There are several years during the earlier section of the period of study 

without any large-scale fires at all. However, towards the middle and latter part of the period, 

large-scale fire occurrences happen more frequently. This confirms the hypothesis regarding 

recent fire trends in Southern Appalachia. However, the amount of area burn per fire season only 

slightly increased over time. This is largely due to the lack of fire activity at the beginning of the 

study period. It is also important to consider that the upward trajectory shown in Figure 4.1.4 is 

largely due to the outlying amount of area burned in the year 2016. The year 2016 is an outlier 
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both in the number of fires and the area burned. The final tally of fires across the dataset is 409 

fires with over 711,000 acres burned. Identifying fire behavior on an annual basis, instead of 

simply looking at individual fires, will also provide a greater insight into how fire is dispersed 

temporally.   
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Figure 4.1.1: Spatially-referenced Map of Individual Fire Occurrences weighted by the number of acres 
burned per fire event 

 

 
 

Figure 4.1.2: Spatially-referenced Map of Area Burned polygons weighted by the number of acres burned per 
fire event 
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Table 4.1.1: List of total number of fires and acres burned within each individual Southern Appalachian 
climate division 
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4.1.2 Annual Observations 

 Looking at the fire data on an annual basis, a gradual increase from 1985-2016 in the 

number of fires per year is apparent. With the mean set at roughly 12.7 fires per year, 7 of the 

last 10 years within the dataset have experienced a fire total greater than that of the annual 

average as shown in Figure 4.1.3. The number of acres burned has slightly increased throughout 

the study. However, this is skewed by the massive amount of area burned in the year 2016, 

which also skews the area burned time series in Figure 4.1.4. Figure 4.1.5 is a scatterplot 

showing the relationship between the number of fires and acres burned on an annual basis. There 

is a slight exponential relationship between the two, but this is due in part to the outlying fire 

activity of 2016. Figure 4.1.6 shows the annual distribution of both the number fires and acres 

burned per fire. From this graph, it is apparent that a few massive outlying fires can have a 

significant impact on skewing the dataset as a whole, such as in the years 1987, 2001, and 2016. 

It can also be determined that the years with the greatest number of fires will often produce the 

largest-scale fires on average. A major uptick in fire activity, both in the number of fires and the 

amount of area burned, has been seen since around 1999 and 2000, however there is no major 

evidence to support that fire practices have changed over the period of study, especially as it 

relates to prescribed burning (Elliott & Vose, 2005). 
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Figure 4.1.3: Annual time series plot of the number of fires per year from 1985-2016 with a line showing the 
mean number of fires per year 

 

 

Figure 4.1.4: Annual time series plot of the amount of area burned per year in acres from 1985-2016 with a 
line showing the mean area burned per year 
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Figure 4.1.5: Scatterplot showing the relationship between the number of fires and area burned in acres on 
an annual basis 

 

 

 

 

 

 

 



 35 

 

 

 

 

 

 

 

Figure 4.1.6: Time series scatterplot showing the distribution of both number of fires and area burned in 
acres on an annual basis 
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4.1.3 Monthly Observations 

 Fire activity trends within Southern Appalachia were also observed on a monthly basis. 

Figure 4.1.7 shows the monthly progression of fires for the entire study period (1985-2016). The 

figure indicates that there are two discrete fire seasons within the region. The spring fire season 

consists of fires between March and April mainly, while the fall fire season mainly takes place in 

November. Based on the climatic profile of Southern Appalachia, this would indicate that there 

are periods of wet weather followed by extremely dry weather leading up to the two individual 

fire seasons. Consecutive dry day periods, based on the graph, should be very pronounced prior 

to the months of March and November. Figure 4.1.8 shows a similar monthly trend for the 

number of acres burned per month. Based on the months above the mean acres burned, February, 

October, and December are also capable of having increased fire activity. Table 4.1.2 shows that 

fire activity was previously more prevalent in the fall months prior to the 2000s but has recently 

become more frequent in the spring months. The year of 2016 is fairly even with major fire 

activity both in the spring and fall seasons. This observation reaffirms 2016 as an outlier from 

normal southern fire activity. Figure 4.1.9 provides insight into the temporal variability of fire 

activity. It shows the number of fire ignitions occurring on a daily basis throughout all climate 

divisions used. It also confirms previously stated trends but provides a helpful visual aid for 

identifying discreet fire seasons.  
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Figure 4.1.7: Time series scatterplot showing the distribution of fires on a monthly basis with a line 
representing the mean number of fires per month 

 

 

Figure 4.1.8: Time series scatterplot showing the distribution of both number of fires and area burned in 
acres on an annual basis with a line representing the mean area burned per month 
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Table 4.1.2: Table shows seasonal and monthly trends of fire activity from 1985 (top) to 2016 (bottom) 
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Figure 4.1.9: Time series scatterplot showing the distribution of fires on a daily basis with a line representing 
the mean number of fires per day  
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4.2 Breakdown of Precipitation  

4.2.1 Main Observations 

  Using the Daymet gridded daily precipitation dataset, several precipitation trends can be 

identified before comparing it against fire data. Table 4.2.1 shows the distribution of average 

threshold values for all five used. It shows how they are distributed by individual climate 

division and averaged out for the entire Southern Appalachian region. The average thresholds 

can act as initial indicators of the potential for fire activity within the region based on past fire 

data. The 1mm threshold has an average of less than 6 days prior to fire activity. The 5mm 

threshold has a threshold of a little more than 8 days before fire activity. The 10mm threshold 

also provides a fairly small increment before fire environment indication at an average of 12.5 

days. After this threshold however, there is a major jump in the average number of days before 

reaching the precipitation threshold of 25mm. On average slightly less than 37 days occur after 

the 25mm threshold before fire activity is present. Finally, the 50mm thresholds occurs on 

average 218 days before wildfire ignition. This information is useful for knowing how many 

days out from a certain precipitation threshold one might expect to see fire ignition.  
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Table 4.2.1: Table identifies individual average thresholds for all climate divisions and the average threshold 
values for Southern Appalachia as a whole 
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4.2.2 Annual Observations 

 Prior research showed the precipitation trends concerning mean annual dry days 

throughout Southern Appalachia such as in Figure 4.2.1. The spatial distribution of mean annual 

dry days was thought to give insight into how to predict fire behavior, but after careful research it 

was determined that observing consecutive dry day trends is a much better indicator of the 

potential for fire activity. Annual analysis of the behavior of the different threshold values can 

provide insight into how they have progressed over the period of study and how they behave in 

regard to active fire years. Figures 4.2.2 through 4.2.6 show the average number of consecutive 

dry days since the 5 main precipitation threshold values (1, 5, 10, 25, 50mm) occurred on an 

annual basis. When comparing the results with Table 4.1.2 from the fire data, there seems to be 

only a slight relationship between the number of fires per year and the consecutive number for 

dry days at each threshold value. However, years with a greater amount of fall wildfire activity 

seem to also have a greater number of consecutive dry days leading up to an event. This 

relationship is more apparent at the lower threshold values than the higher threshold values, but it 

is evident nonetheless. It is also more apparent with recent fire activity such as 1999-2001 and 

the 2016 fire season. Over time, at all major thresholds, the number of consecutive dry days prior 

to fire events has slightly decreased over time. It is also important to consider the sample size of 

fires when identifying the relationships between precipitation and wildfire frequency. Annual 

precipitation threshold results fluctuate greatly throughout the entire period of study, so these 

relationships may be loose at best. However, with the use of proper statistical analysis, it is easy 

to identify whether relationships between fire frequency and magnitude and the number of 

consecutive dry days does exist.  
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Figure 4.2.1: Raster data showing the average number of rain free (< 1mm precipitation) days per year for all 
of Southern Appalachia 
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Figure 4.2.2: Time series scatterplot showing the days since the 1mm precipitation threshold was reached on 
an annual basis with a line showing the average number of consecutive dry days per year 

 

 

 

 

Figure 4.2.3: Time series scatterplot showing the days since the 5mm precipitation threshold was reached on 
an annual basis with a line showing the average number of consecutive dry days per year 
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Figure 4.2.4: Time series scatterplot showing the days since the 10mm precipitation threshold was reached on 
an annual basis with a line showing the average number of consecutive dry days per year 

 
 
 
 
 
 

 

Figure 4.2.5: Time series scatterplot showing the days since the 25mm precipitation threshold was reached on 
an annual basis with a line showing the average number of consecutive dry days per year 
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Figure 4.2.6: Time series scatterplot showing the days since the 50mm precipitation threshold was reached on 
an annual basis with a line showing the average number of consecutive dry days per year 
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4.2.3 Monthly Observations 

 Monthly analysis of the patterns of consecutive dry days following individual 

precipitation threshold values provides a greater understanding of its relationship with fire 

behavior. Similar to the patterns seen when analyzing the thresholds on an annual basis, monthly 

analysis identifies a greater number of consecutive dry days leading up to fire activity in the fall 

fire season. This is especially prevalent at lower threshold values such as 1, 5, and 10mm of 

precipitation. As the thresholds increase, however, the greatest number of consecutive dry days 

prior to fire events can be seen at the larger threshold values. Thresholds such as 10, 25, and 

50mm have a greater number of consecutive dry days in June as well as the aforementioned fall 

months. One explanation as to why this may be the pattern in autumn months and not the spring 

is the seasonality of precipitation. Late summer and autumn months are more prone to drought 

than the spring in the Southeastern United States. Something else to consider is that the major 

proponents of fire ignition are anthropogenic causes and lightning. Lightning could be the cause 

of more springtime fire activity as opposed to fall activity depending on its seasonal variability. 

Storms containing lightning also bring precipitation events as well, which could be a key reason 

for a difference in the threshold values for the two seasons. The topography of Appalachia also 

plays a role. Steeper landscape hinders the ability of precipitation to saturate organic life, even 

during dry spells.   
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Figure 4.2.7: Time series scatterplot showing the average days since the 1mm precipitation threshold was 
reached on a monthly basis with a line showing the average number of consecutive dry days per month 

 

 

 

 

Figure 4.2.8: Time series scatterplot showing the average days since the 5mm precipitation threshold was 
reached on a monthly basis with a line showing the average number of consecutive dry days per month 
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Figure 4.2.9: Time series scatterplot showing the average days since the 10mm precipitation threshold was 
reached on a monthly basis with a line showing the average number of consecutive dry days per month 

 

 

 

Figure 4.2.10: Time series scatterplot showing the average days since the 25mm precipitation threshold was 
reached on a monthly basis with a line showing the average number of consecutive dry days per month 
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Figure 4.2.11: Time series scatterplot showing the average days since the 50mm precipitation threshold was 
reached on a monthly basis with a line showing the average number of consecutive dry days per month 
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4.3 Statistical Analysis 

4.3.1 Poisson Regression Analysis 

 Poisson regression analysis was used to identify the relationship between the number of 

consecutive dry days between specific precipitation thresholds being reached and wildfire 

ignition. The threshold values of 1, 5, 10, 25, and 50mm were used both individually and 

together against all individual fires from the MTBS dataset, to see if there is a statistically 

significant relationship between consecutive dry days and fire activity in Southern Appalachia. 

P-values and standard error values act as indicators for the existence of a relationship. According 

to the values, when the tests are run individually at thresholds 1, 5, 10, 25, 50mm, there is a very 

strong log-link relationship between the number of acres burned and days since the given 

threshold value as shown in Figures 4.3.1-4.3.5 and Tables 4.3.1-4.3.5. This is indicated by 

strong p-values and a small standard error. R-squared values should be ignored when conducting 

both Poisson and negative binomial regression analysis. Figure 4.3.2 is an example plot of how 

dry days were distributed on the basis of area burned. The plot shows a gradual increase in the 

number of consecutive dry days leading up to fire events as the events cause a larger amount of 

area burned. Table 4.3.6 shows a strong relationship between dry day threshold values and acres 

burned per fire when all thresholds are used. The -log likelihood, AICc, and Bic, show that the 

5mm threshold has the best fit of the models, followed by the 1mm and 10mm threshold values. 

Poisson regression modeling analysis indicates a very strong log-link relationship between 

consecutive dry days, at multiple thresholds, and the amount of area burned per fire for the entire 

period and area of study. 
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Table 4.3.1: Poisson regression model of acres burned vs consecutive dry days since the 1mm threshold value  
was reached 

 

 

Figure 4.3.1: Poisson regression plot of acres burned vs consecutive dry days since the 1mm threshold value  
was reached 
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Table 4.3.2: Poisson regression model of acres burned vs consecutive dry days since the 5mm threshold value  
was reached 

 

 

Figure 4.3.2: Poisson regression plot of acres burned vs consecutive dry days since the 5mm threshold value  
was reached 
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Table 4.3.3: Poisson regression model of acres burned vs consecutive dry days since the 10mm threshold 
value was reached 

 

 

Figure 4.3.3: Poisson regression plot of acres burned vs consecutive dry days since the 10mm threshold value  
was reached 
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Table 4.3.4: Poisson regression model of acres burned vs consecutive dry days since the 25mm threshold 
value was reached 

 

 

Figure 4.3.4: Poisson regression plot of acres burned vs consecutive dry days since the 25mm threshold value  
was reached 
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Table 4.3.5: Poisson regression model of acres burned vs consecutive dry days since the 50mm threshold 
value was reached 

 

 

Figure 4.3.5: Poisson regression plot of acres burned vs consecutive dry days since the 50mm threshold value 
was reached 
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Table 4.3.6: Poisson regression model of acres burned vs consecutive dry days at all threshold values reached 
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4.3.2 Negative Binomial Regression Analysis 

 Negative binomial regression analysis was used in a similar way to Poisson regression 

analysis. It was used to determine the relationship between consecutive dry days from different 

precipitation thresholds and the amount of area burned. Much like Poisson regression, the 

relationship between the two variables within the negative binomial regression model can be 

observed by looking at the p-value and the standard error. Based on the results of each threshold 

value, Tables 4.3.7-4.3.11 and Figures 4.3.6-4.3.10 show a strong relationship between 

consecutive dry days and area burned at all 5 major precipitation thresholds except for the 50mm 

threshold value. Very low p-values and standard error indicate a strong log-link relationship 

between the two variables at all threshold values. Figure 4.3.7 is an example plot of how dry 

days were distributed on the basis of area burned. The plot shows a gradual increase in the 

number of consecutive dry days leading up to fire events as the events cause a larger amount of 

area burned. Table 4.3.12 shows the results for the relationship between area burned and 

consecutive dry days at all 5 precipitation threshold values. Assessing this table p-values indicate 

that strong relationships between the consecutive dry day threshold values and area burned exist 

at the 5mm and 10mm threshold values. However, according to negative binomial regression 

analysis the same relationships do not exist at the 1, 25, and 50mm threshold values. Based on 

the AICc, Bic, and – log likelihood values for the individual tests, the 5mm threshold value has 

the best fit followed by the 10 then 1mm threshold value. The fits for the 25 and 50mm threshold 

values are not near as good as the other 3 values.  
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Table 4.3.7: Negative binomial regression model of acres burned vs consecutive dry days since the 1mm 
threshold value was reached 

 

 

Figure 4.3.6: Negative binomial regression plot of acres burned vs consecutive dry days since the 1mm 
threshold value was reached 
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Table 4.3.8: Negative binomial regression model of acres burned vs consecutive dry days since the 5mm 
threshold value was reached 

 

 

Figure 4.3.7: Negative binomial regression model of acres burned vs consecutive dry days since the 5mm 
threshold value was reached 
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Table 4.3.9: Negative binomial regression model of acres burned vs consecutive dry days since the 10mm 
threshold value was reached 

 

 

Figure 4.3.8: Negative binomial regression model of acres burned vs consecutive dry days since the 10m 
threshold value was reached 

 
 



 62 

 

Table 4.3.10: Negative binomial regression model of acres burned vs consecutive dry days since the 25mm 
threshold value was reached 

 

 

Figure 4.3.9: Poisson regression model of acres burned vs consecutive dry days since the 25mm threshold 
value was reached 
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Table 4.3.11: Negative binomial regression model of acres burned vs consecutive dry days since the 50mm 
threshold value was reached 

 

 

Figure 4.3.10: Negative binomial regression model of acres burned vs consecutive dry days since the 50mm 
threshold value was reached 
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Table 4.3.12: Negative binomial regression model of acres burned vs consecutive dry days at all threshold 
values  
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4.4 Case Study of Eastern Tennessee 

4.4.1 Fire Trends 

 Fire activity in the Eastern Tennessee climate division was chosen as a case study 

because this individual division contained the greatest number of fires as well as the greatest 

number of acres burned throughout the entire period of study. It made up roughly 25% of all 

Southern Appalachian fire activity. Preliminary research indicated weak correlation and linear 

regression relationships between mean annual dry days under 1mm of precipitation and both fire 

frequency and area burned in the division, which is worth following up on. This area also has the 

highest elevation point in the fire dataset and the greatest amount of topographic variability. 

With a landscape defined by ridges and valleys and climatic characteristics that mimic those of 

Southern Appalachia as a whole, Eastern Tennessee stood out as an ideal case study for which to 

observe the relationships between consecutive dry days and fire at a more localized scale. By 

looking at the annual fire activity in Eastern Tennessee in Table 4.4.1, one can observe that there 

are years with a large number of fires and area burned, but the normal behavior is less than 10 

fires or none at all. The data for the division seems to be fairly sporadic. Figures 4.4.1 and 4.4.2 

show spikes in the years 1987, 2000, 2001, 2007, and 2016. This is important to consider when 

the precipitation data is studied during the years mentioned specifically. Monthly patterns of fire 

data provide an understanding of the seasonality of fire behavior within Eastern Tennessee. 

Table 4.4.2 shows the distribution of the number of fires and acres burned on a monthly basis 

throughout the entire period of study. Figures 4.4.3 and 4.4.4 plot the distribution and identify 

two major peak fire seasons. March and April are the peak of the spring fire season. November is 

the peak of the fall fire season with an increase in the number of fires and acres burned in 

December. Figures 4.4.5 and 4.4.6 show the daily distribution of the number of fires and acres 
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burned for entire study period. The figures show that large portions of the acres burned are due to 

individual extremely large-scale fire episodes. A few individual fires from the years 1987, 2000, 

and 2016 are responsible for a significant portion of the area burned for the whole dataset. 

Precipitation trends can be an indication of the environment’s susceptibility for producing events 

such as the extreme fires within the dataset.  
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Table 4.4.1: Time series table showing the total number of fires and area burned in acres on an annual basis 
for the Eastern Tennessee climate division from 1985-2016 
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Figure 4.4.1: Time series plot showing the total number of fires on an annual basis for the Eastern Tennessee 
climate division from 1985-2016 with a line showing the average number of fires per year 

 

 

 

Figure 4.4.2: Time series plot showing the total area burned in acres on an annual basis for the Eastern 
Tennessee climate division from 1985-2016 with a line showing the average area burned per year 
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Table 4.4.2: Time series table showing the total number of fires and area burned in acres on a monthly basis 
for the Eastern Tennessee climate division 
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Figure 4.4.3: Time series plot showing the total number of fires on a monthly basis for the Eastern Tennessee 
climate division with a line showing the average number of fires per month 

 
 
 
 
 

 
 

Figure 4.4.4: Time series plot showing the total area burned in acres on a monthly basis for the Eastern 
Tennessee climate division with a line showing the average area burned per month 
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Figure 4.4.5: Time series plot showing the total number of fires on a daily basis for the Eastern Tennessee 
climate division from 1/1/1985-12/31/2016 with a line showing the mean number of fires per day 

 
 

 

 

Figure 4.4.6: Time series plot showing the total area burned in acres on a daily basis for the Eastern 
Tennessee climate division from 1/1/1985-12/31/2016 with a line showing the mean area burned per day 
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4.4.2 Precipitation Trends 

 Precipitation trends within the Eastern Tennessee climate division are similar to those in 

the Southern Appalachia area of study as a whole. However, a major difference is the sample 

size of fires from which to run analysis on. This is especially true when looking at fire activity on 

an annual basis. Prior to analyzing precipitation trends by the consecutive number of dry days 

since a precipitation threshold has been reached, preliminary research observed the mean annual 

dry days with precipitation under 1mm in Figure 4.4.7. This provided limited insight into how 

dry days impact fire frequency and magnitude. Table 4.4.3 provides a greater understanding of 

dry day trends within the Eastern Tennessee climate division by displaying the average number 

of dry days since each of the major 5 precipitation thresholds was reached on an annual basis. 

Figures 4.4.8-4.4.12 plot the data showing how it is distributed in a time series format. The time 

series threshold analysis for Eastern Tennessee shows how during the years with the greatest 

number of fires and the largest area burned the number of consecutive dry days, for the most 

part, is greater for all 5 thresholds than when there is limited fire activity. It is important to 

consider, however, that the understanding of the time series annual distribution of the data is 

limited due to several years not containing fires greater than 500 acres burned. Table 4.4.4 looks 

at the same threshold values on a monthly basis rather than annually for the entire period of 

study. Figures 4.4.13-4.4.17 plot the monthly results to identify any existing patterns for each 

threshold value. Understanding is limited due to some months lacking any fires at all such as 

January, February, and July. The months that do contain fires, however, identify a greater 

number of dry days for the months with the most fire activity at lower threshold values such as 1, 

5, and 10mm. At the larger threshold values such as 25 and 50mm, there seems to be no distinct 

pattern between the months, especially when comparing them to the monthly fire data. Figure 
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4.4.18 is a plot of daily precipitation from the National Weather Service station in Morristown, 

Tennessee within the Eastern Tennessee climate division. The plot shows that thresholds such as 

1, 5, and 10mm are reached on a fairly regular basis throughout the period of study. However, 

the 25mm threshold is not reached near as frequently, and the 50mm threshold is rarely reached 

since the beginning of the time series in January 1, 1985.  
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Figure 4.4.7: Time series rasters showing the mean annual dry days without 1mm of precipitation for the 
Eastern Tennessee climate division from 1985-2015 
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Table 4.4.3: Time series table showing the average number of dry days prior to fire activity for all major 
thresholds on an annual basis for the Eastern Tennessee climate division from 1985-2016 
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Figure 4.4.8: Time series plot showing the average number of dry days prior to fire activity for the 1mm 
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per year 
 
 

 

 

Figure 4.4.9: Time series plot showing the average number of dry days prior to fire activity for the 5mm 
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per year 
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Figure 4.4.10: Time series plot showing the average number of dry days prior to fire activity for the 10mm 
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per year 
 

 

 

 

Figure 4.4.11: Time series plot showing the average number of dry days prior to fire activity for the 25mm 
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per year 
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Figure 4.4.12: Time series plot showing the average number of dry days prior to fire activity for the 50mm 
threshold value on an annual basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per year 
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Table 4.4.4: Time series table showing the average number of dry days prior to fire activity for all major 
thresholds on a monthly basis for the Eastern Tennessee climate division from 1985-2016 
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Figure 4.4.13: Time series plot showing the average number of dry days prior to fire activity for the 1mm 
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per month 
 

 

 

 

Figure 4.4.14: Time series plot showing the average number of dry days prior to fire activity for the 5mm 
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per month 
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Figure 4.4.15: Time series plot showing the average number of dry days prior to fire activity for the 10mm 
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per month 
 

 

 

 

Figure 4.4.16: Time series plot showing the average number of dry days prior to fire activity for the 25mm 
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per month 
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Figure 4.4.17: Time series plot showing the average number of dry days prior to fire activity for the 50mm 
threshold value on a monthly basis for the Eastern Tennessee climate division from 1985-2016 with a line 

showing the mean consecutive dry days per month 
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Figure 4.4.18: Time series plot showing the daily total precipitation gathered from the National Weather 
Service station in Morristown, TN for the Eastern Tennessee climate division from 1/1/1985-12/31/2016 
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4.4.3 Poisson Regression Analysis 

 Similar to the statistical analysis used on Southern Appalachia as a whole, Poisson 

regression modeling analysis was conducted on the Eastern Tennessee climate division. Tables 

4.4.5-4.4.9 show the results of the model and can be used to identify whether a relationship exists 

between consecutive dry days since each precipitation threshold was reached and the area 

burned. Results show that a strong statistical relationship exists between the two variables at all 5 

major precipitation thresholds. The conclusion can be made based off of the p-values and 

standard error for each Poisson regression model. Figures 4.4.19-4.4.23 plot the results and 

identify the log-link relationship existing between both variables. Table 4.4.10 also shows that 

when the same Poisson regression model is run using all 5 major precipitation thresholds, the 

results are very similar. Extremely low p-values and standard present the conclusion that a 

statistically significant relationship exists between all threshold values and the number of acres 

burned per fire. AICc, Bic, and negative log likelihood show that the 10mm threshold has the 

best fit followed by the 5 and 1mm threshold values. Of the Poisson regression models, the 

25mm threshold had the worst fit. 
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Table 4.4.5: Poisson regression model of acres burned vs consecutive dry days since the 1mm threshold value 
was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.19: Poisson regression plot of acres burned vs consecutive dry days since the 1mm threshold value 
was reached for the Eastern Tennessee climate division 
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Table 4.4.6: Poisson regression model of acres burned vs consecutive dry days since the 5mm threshold value 
was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.20: Poisson regression plot of acres burned vs consecutive dry days since the 5mm threshold value 
was reached for the Eastern Tennessee climate division 
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Table 4.4.7: Poisson regression model of acres burned vs consecutive dry days since the 10mm threshold 
value was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.21: Poisson regression plot of acres burned vs consecutive dry days since the 10mm threshold value 
was reached for the Eastern Tennessee climate division 
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Table 4.4.8: Poisson regression model of acres burned vs consecutive dry days since the 25mm threshold 
value was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.22: Poisson regression plot of acres burned vs consecutive dry days since the 25mm threshold value 
was reached for the Eastern Tennessee climate division 
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Table 4.4.9: Poisson regression model of acres burned vs consecutive dry days since the 50mm threshold 
value was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.23: Poisson regression plot of acres burned vs consecutive dry days since the 50mm threshold value 
was reached for the Eastern Tennessee climate division 
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Table 4.4.10: Poisson regression model of acres burned vs consecutive dry days for all threshold values were 
reached for the Eastern Tennessee climate division 
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4.4.4 Negative Binomial Regression Analysis 

 Negative binomial regression modeling was used to analyze the Eastern Tennessee 

climate division in the same way that Poisson regression was used. Tables 4.4.11-4.4.15 show 

how the models were used to identify relationships between all 5 individual consecutive dry day 

threshold values and the area burned for all fires within the Eastern Tennessee climate division. 

Results show statistically significant relationships based on the p-value and standard error values 

within the 10 and 50mm threshold negative binomial regression models. The 10mm and 50mm 

threshold values also had the best fit according to the AICc, BIC, and negative log likelihood, 

with 10mm having the best fit. A loose relationship is seen in the 5mm threshold model. No 

statistically significant relationship is observed at the 1 or 25mm model when comparing each 

threshold individually against the acres burned per fire. Figures 4.4.24-4.4.28 show plots for all 

of the negative binomial regression models, including those without statistically significant 

relationships. For the ones that are significant, a log-link relationship can be seen within the 

plot’s data points. Table 4.4.16 shows the model run with all 5 consecutive dry day precipitation 

thresholds run against the number of acres burned for each fire. The results of the model show a 

statistically significant relationship between all major threshold values and the area burned 

except for the 25mm threshold value, which has no statistical significance. Based on the results 

of the negative binomial regression modeling, it can be determined that at certain thresholds 

there is significance between the two variables. However, it is always important to consider the 

sample size when running forms of analysis such as the negative binomial.  
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Table 4.4.11: Negative binomial regression model of acres burned vs consecutive dry days since the 1mm 
threshold value was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.24: Negative binomial regression plot of acres burned vs consecutive dry days since the 1mm 
threshold value was reached for the Eastern Tennessee climate division 
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Table 4.4.12: Negative binomial regression model of acres burned vs consecutive dry days since the 5mm 
threshold value was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.25: Negative binomial regression plot of acres burned vs consecutive dry days since the 5mm 
threshold value was reached for the Eastern Tennessee climate division 
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Table 4.4.13: Negative binomial regression model of acres burned vs consecutive dry days since the 10mm 
threshold value was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.26: Negative binomial regression model of acres burned vs consecutive dry days since the 10mm 
threshold value was reached for the Eastern Tennessee climate division 
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Table 4.4.14: Negative binomial regression model of acres burned vs consecutive dry days since the 25mm 
threshold value was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.27: Negative binomial regression plot of acres burned vs consecutive dry days since the 25mm 
threshold value was reached for the Eastern Tennessee climate division 
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Table 4.4.15: Negative binomial regression model of acres burned vs consecutive dry days since the 50mm 
threshold value was reached for the Eastern Tennessee climate division 

 

 

Figure 4.4.28: Negative binomial regression plot of acres burned vs consecutive dry days since the 50mm 
threshold value was reached for the Eastern Tennessee climate division 
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Table 4.4.16: Negative binomial regression model of acres burned vs consecutive dry days for all threshold 
values were reached for the Eastern Tennessee climate division 
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CHAPTER 5 

CONCLUSIONS 

  

 The main goal of this research was to use statistical analysis to identify the relationship 

between consecutive dry days and fire frequency and magnitude within the Southeastern United 

States so that policy makers, first responders, residents, and scientists will be better equipped to 

prepare for future events similar to those in the fall of 2016. The relationship between 

consecutive dry days and both fire frequency and magnitude for large-scale fires in Southern 

Appalachia was determined using time-scale, Poisson regression, and negative binomial 

regression modeling. By identifying statistically significant relationships between consecutive 

dry days and area burned at specific threshold values, precipitation can be used as a standalone 

variable to identify the potential for large-scale fire activity. By having a single variable 

indicator, such as the 5 or 10mm threshold value for consecutive dry days, scientists may be able 

to identify the potential for catastrophic fires earlier than in more complex models. The 10mm 

model, based on analysis would be the best indication for this potential as it fit all Poisson and 

negative binomial regression models for Southern Appalachia as a whole and the individual 

climate division case study.  

  The aim of the research was to quantify the relationship in order to better predict future 

large-scale fire events within a region of the country with a recent increase in fire activity, that is 

often neglected where wildfire research is concerned.  By conducting this analysis, warning signs 

of potential fire activity will hopefully become more identifiable, allowing for the communities 
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most affected by such disasters to be better equipped to prevent loss of life, property, well-being. 

If this research can improve the quality of life for the people of Southern Appalachia, then it has 

accomplished its core goals set-out. With the findings of the relationship between consecutive 

dry day impact on large-scale frequency and magnitude and further research into other climatic 

variables, the scientific community edges closer to painting a fire indication profile of Southern 

Appalachia allowing for greater understanding of past events and better preparation for future 

events. 

 

Fire Analysis 5.1 

 Fire activity was analyzed on the basis of spatial distribution, temporal variability at an 

annual, monthly, and daily scale, and based on frequency and magnitude. The spatial distribution 

shows that areas of higher elevation and greater topographic variability were more susceptible to 

fire than lower elevations or consistent topography. The Eastern Tennessee and Southern 

Mountains (NC) and Cumberland Plateau (TN) were the climate divisions with both the greatest 

acres burned for the entire period of study and the greatest number of fires. A statistically 

significant exponential relationship between fire frequency and magnitude was discovered 

throughout the dataset both spatial and temporally. Annual analysis showed that years with the 

greatest number of fires were synonymous with years with the largest amount of area burned. 

The years that stuck out the most in this respect were 1987, 2000, 2001, and 2016. Much of this 

was due to one or two individual fires from each year that burned a significantly larger area than 

the rest of the fires for the given year. It could be determined from this finding that years with a 

greater number of fires increases the likelihood of a catastrophic fire as opposed to years with 

less large-scale fire activity. Monthly analysis indicates two distinct fire seasons in which the 
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vast majority of fire activity occurs in Southern Appalachia. There is a spring season which takes 

place in March and April and a fall fire season which mainly takes place in the month of 

November. This is important to consider when observing the behavior of precipitation and 

organic matter preceding each season. The case study for Eastern Tennessee concerned the 

finding for the area of study as a whole, showing that it is a microcosm of the behaviors seen in 

all of Southern Appalachia, with the greatest sample size for both fire frequency and magnitude 

for the region.  

  

Precipitation Analysis 5.2 

  Precipitation was initially observed on the basis of mean annual dry days (MADD) with 

a dry day considered to be days with total precipitation under 1mm, but early findings altered the 

definition of what was considered to be a dry day. To obtain a greater understanding of how 

precipitation impacts fire frequency and magnitude, dry days were observed based on how many 

consecutive dry days had occurred since a specific precipitation threshold was reached prior to a 

fire event. The thresholds used to locate the consecutive dry day values were 1, 5, 10, 25, and 

50mm of precipitation per day. Spatially, there is a slight relationship between consecutive dry 

days and fire activity. Climate divisions with a greater number of fires and acres burned had a 

slightly higher amount of consecutive dry days leading up to fire events than regions with less 

fire frequency and magnitude. This was especially true at lower threshold values such as 1, 5, 

and 10mm. Annual analysis showed that at lower threshold values such as 1, 5, and 10mm there 

was a greater number of consecutive dry days preluding fire events in years with a greater 

number of fires and more area burned. Monthly analysis confirms the findings of the annual time 

series observations. Years with more fire activity in the fall were shown to have a greater number 
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of consecutive dry days leading up to fires than years with a more pronounced spring fire season. 

This is especially apparent at lower threshold values such as 1, 5, and 10mm. Based on the 

findings, seasonality of the fire events plays a major role in the expectations for how many 

consecutive dry days will lead up to a major fire event. The same results experienced in the 

entire area of study were experienced in Eastern Tennessee for the annual time series analysis. 

However, monthly analysis showed a less apparent relationship between consecutive dry days 

and fire activity in the spring season vs the fall. Part of this may be due to the fact that the sample 

size is smaller, but slight variation can be observed that matches with that of all of Southern 

Appalachia.  

 

Poisson Regression Analysis 5.3 

 Poisson regression modeling was used to identify relationships between consecutive dry 

days since reaching the threshold value, for all 5 major precipitation thresholds, and the area 

burned per fire. Using the p-value and standard error as major indicators of whether a 

relationship exists, it was determined that there is a strong statistical relationship between all 

major precipitation thresholds individually and the area burned per fire. The models run in JMP 

software also provided scatterplots showing the distribution of the data. From the scatterplots, a 

log-link relationship is indicated for the entire area of study throughout the period of study with a 

few outlying fires. The same analysis was run using all threshold values in the same Poisson 

regression model instead of each one individually. The results were the same with all p-values 

and standard error values indicating a strong relationship between the variables. The same tests 

were run for each threshold individually and all at the same time for the Eastern Tennessee case 

study. The results were very similar to those of the whole Southern Appalachia area of study. All 
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individual dry day threshold values showed strong relationships with the area burned for their 

respective fires. Results were the same when running the Poisson regression model with all 

threshold values. P-values and standard error indicated strong relationships between the 

variables. AICc, BIc, and the negative log likelihood also indicated the 5mm threshold value 

provided the best fit for the data, with 10 and 1mm values providing good fits as well. Based on 

results, it can be determined that using Poisson regression modelling, analysis concludes the 

existence of a strong log-link relationship between the number of consecutive dry days, at all 

thresholds, and the amount of area burned per fire. Based on the model results, the 5mm and 

10mm threshold values act as the best indication for predicting the potential for large-scale fire 

activity, using Poisson regression analysis.  

 

Negative Binomial Regression Analysis 5.4 

 Negative binomial regression modelling was used similarly to Poisson regression 

modelling to determine if relationships between consecutive dry days prior to precipitation 

threshold values and area burned in acres exists. Running the model at each individual threshold 

suggests that there is a strong log-link relationship between the two variables, as each contained 

very small p-values and standard error. However, running all threshold values in the model at the 

same time only provided strong statistically significant relationships and model fits at the 5mm 

and 10mm threshold. The 1, 25, and 50mm thresholds did not have a strong relationship with the 

amount of area burned when the negative binomial model was run containing all threshold values 

simultaneously. The same models were run for the Eastern Tennessee case study. The negative 

binomial model comparing the number of consecutive dry days for each individual threshold 

value against the number of acres burned provided results different than the ones from the entire 
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area of study. The 1mm and 25mm threshold values showed no statistically significant 

relationship with the area burned per fire. The 5mm threshold value showed a loose relationship 

with a p-value of roughly .09, which may be considered significant depending on the 

significance limit (.05 vs .1). The consecutive dry days since the 10mm and 50mm thresholds 

were reached showed a statistically significant relationship with the amount of area burned 

during the entire period of study. The negative binomial regression model was then run 

containing all 5 major thresholds vs the number of acres burned vs fire for Eastern Tennessee, 

similar to the model run for all of Southern Appalachia. Results showed strong statistically 

significant relationships between all major thresholds except the 25mm threshold. The 

relationships are displayed in the form of a log-link relationship between the two variables. 

Based on the model results, the 5mm and 10mm threshold values act as the best indication for 

predicting the potential for large-scale fire activity, using negative binomial regression analysis. 

 

Future Analysis 5.5 

 The results of the research conducted analyzing the relationship between consecutive dry 

days and both fire frequency and magnitude in Southern Appalachia provides detailed insight 

into the behavior of fire and precipitation in the Southeastern United States as a whole. 

Consecutive dry days; and precipitation analysis are just a fraction of the numerous 

climatological processes affecting fire activity in the Southern and Eastern United States. Several 

other atmospheric characteristics within the region are capable of providing greater 

understanding of what climatological factors impact fire activity in this area of the country the 

most. Elements such as relative humidity, soil moisture, organic fuel, wind, insolation angle, 

anthropogenic forcing, and evapotranspiration rates, to name a few also contribute to the 
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multiple processes impact fire ignition, frequency, and magnitude in Southern Appalachia. Based 

on the results collected from this research, it is believed that the number of consecutive dry days 

prior to fire activity, since reaching precipitation threshold values at multiple levels, have a 

strong relationship with the chance for fire ignition, fire frequency, and more specifically, fire 

magnitude. The hope is that this research will be seen as a major contribution to greater 

understanding how the climatic characteristics, specifically precipitation, helps provide a greater 

understanding and critical indication of fire ignition, frequency, and magnitude in Southern 

Appalachia and the Southeastern United States as a whole.  
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