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ABSTRACT
Soybean [Glycine max (L.) Merr.] is the world’s leading oilseed crop and provider of
high quality protein meal. The protein portion of the soybean seed represents an energy-efficient
source of amino acids for use in animal diets. As a sole dietary source of protein for poultry and
swine, soybean is deficient in the sulfur-containing amino acids methionine (Met), cysteine
(Cys), and may also have sub-optimum levels of threonine (Thr), and lysine (Lys). Enhancing
these essential amino acids would improve the nutritive value of soybean meal and provide
additional value to the animal feed industry. In this study, a population of recombinant inbred
lines (RILs) from the cross of ‘Benning’ x ‘Danbaekkong’ was used to investigate the
inheritance of quantitative trait loci (QTL) associated with protein and amino acid concentrations
and the presence and magnitude of genotype x environment interaction for these traits. The RILs
were grown in five field environments. QTL were detected for crude protein (cp), Lys/cp,
Thr/cp, Met/cp, Cys/cp, and Met+Cys/cp using DNA markers. The Danbaekkong allele at a
major protein QTL was found to be associated with reduced levels of each of the amino acids.
Selection for amino acid QTL on other chromosomes may increase protein quality and retain a

high level of overall crude protein. The effect of genotype x environment was relatively minor



for each trait based on an assessment of the variance components. The estimated the number of
environments and replications necessary to detect certain differences between two genotype
means was determined. Results indicated that five replications and two environments could
detect a difference of 2.5% between two RIL means for Lys and Thr. An increased number of
plots (environment/replication combinations) would be necessary to detect a 2.5% difference or
less between two RIL means for crude protein, Met/cp, Cys/cp, and Met+Cys/cp. This
information would be useful in developing the most cost-effective and efficient testing scheme
for these traits in a breeding program for these traits. This research should increase the
understanding of the genetic basis for protein and specific amino acids and provide for effective

and efficient genetic improvements for these traits.
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CHAPTER 1
INTRODUCTION

Soybean [(Glycine max (L.) Merr.] is a legume species native to East Asia in the
Fabaceae family. It is a subtropical plant but is grown as far north as southern Canada in North
America. The genus Glycine has two subgenera, Soja (Moench) and Glycine. The subgenus
Soja (Moench) includes the cultivated soybean (G. max) and the wild soybean G. soja (L.) Sieb
and Zucc). Both are annual plants with identical chromosomal arrangements (2n = 2x = 40) and
are cross-fertile (Hymowitz 1970). Glycine soja is most likely the progenitor of cultivated
soybean and still grows wild in China, Japan, Korea, Taiwan, and Russia. Historical analyses
have shown that domestication likely occurred during the Chou Dynasty, around the 11" century
B.C. in northeast China (Hymowitz, 1970).

The efforts of breeders and geneticists in the early part of the 20" century allowed for
soybean to emerge as one of the most important agricultural crops worldwide. Once grown in
North America primarily as a forage crop, soybean is now the world’s leading source of edible
protein, vegetable oil, phospholipids, dietary antioxidants (such as tocopherols and isoflavones),
nutraceuticals (such as sterols), and other ingredients of foods, feeds, and industrial products
(Bellis, 2003). In the recent past, soybean production has expanded from North America into
South America and China as the demand for soybean and soybean products has increased.
Brazilian soybean production is expected to increase 25-50% by 2012 based on 2003 estimates
(Durham, 2003). This expansion will lead to a very competitive global market and even greater

demand for the continued improvement of soybean through breeding and biotechnological tools.



Soybean prices were at their highest in nearly 20 years during the last few years as more
emphasis is being placed the utilization of plant biproducts as alternative sources of fuel (eg. soy
biodiesel). In addition, soy foods have become more popular in our more health-conscious
society. Studies have shown that the incorporation of soybean into our daily diets may aid in the
prevention of disease, including coronary heart disease, and may serve as a cholesterol reducing
agent (Hasler 2002).

Soybean breeding involves the selection of parental material, the creation of a
segregating population, advancing the population towards homozygosity (either with or without
selection), evaluating relatively homozygous lines, and finally the release of a pure-line cultivar.
Selection can occur in early generations or later among inbred lines. The effectiveness of
selection depends on heritability of the trait and environment(s) where the populations or lines
are grown. Breeding populations are usually developed by hybridization of two or more parents
(cultivars, breeding lines, or other germplasm). Populations are advanced through generations of
inbreeding by self pollination. Nearly homozygous lines are then created from individually
harvested inbred plants. There are several procedures utilized by soybean breeders as they
advance crosses to homozygosity (Orf et al., 2004). These include pedigree selection, single
seed descent, and the bulk method. Pedigree selection is based on the selection among and
within the best appearing families in each generation. Single seed descent involves advancing a
single seed or pod from each plant to the next generation (Brim, 1966). This method is useful in
that it allows for the development of nearly homozygous lines quickly while still preserving most
of the original genetic variation within the population. In the bulk method, populations are
advanced in bulk without artificial selection until later generations, at which time nearly

homozygous lines are selected for seed yield testing. Other procedures used in soybean cultivar



development include early generation testing, in which testing for yield starts in the F, or F3
generation and backcrossing, where a donor parent is continually backcrossed to a recurrent
parent in an effort to introgress a chromosomal segment. Recurrent selections aims to improve
the population over multiple cycles of selection (Bernardo, 2003; Orf et al., 2004; St Martin and
Geraldi, 2002).

The USDA maintains roughly 15,000 accessions of Glycine max and a few other Glycine
species in Urbana, Illinois, and Stoneville, Mississippi (Carter Jr et al., 2004). Brazil, China,
Germany, India, Indonesia, Japan, Russia, and South Korea have germplasm collections as well,
with the total G. max accessions estimated at over 100,000. Germplasm resources are of great
importance in soybean breeding efforts as there is a narrow genetic base in modern soybean
cultivars grown in the USA (Hyten et al., 2006). It has been reported that most of the soybean
cultivars grown in the USA are the ancestors of less than 15 introduced lines (Gizlice et al.,
1993). Studies have also shown that there is significant genetic variation between the northern
and southern soybean gene pool in the USA (Li et al., 2001; Sneller, 1994). Sneller (1994)
looked at 122 northern and southern U.S. lines and found that the southern lines derive 73.2% of
their parentage from only six ancestors, and the lines in the northern USA derive 59.7% of their
parentage from six ancestors. The introgression of alleles from wild germplasm that confer
resistance to diseases or pests has been undertaken with much success by soybean breeders.
Plant introductions (PIs) were evaluated for root-knot nematode resistance and lines were then
used to transfer resistance alleles to elite germplasm (Luzzi et al., 1987; Tamulonis et al., 1997).
Three Japanese Pls, Pl 171451 (‘Kosamame’), Pl 229358 (‘Soden-daizu’), and Pl 227687
(‘Miyako White’), were found to confer resistance to many soybean insect pests (Lambert, 1984;

Luedders, 1977) therefore, they have been utilized as the donors of resistance alleles in numerous



breeding programs where insect damage is costly to growers (Boethel, 1999; Lambert and Tyler,
1999). A wild soybean accession, G. soja, also proved useful in the discovery and utilization of
a major quantitative trait locus (QTL) for high protein (Chung et al., 2003). Harris (2001) also
reported this allele to be present in the South Korean cultivar ‘Danbaekkong’, which has been
utilized in the soybean breeding program at the University of Georgia.

The major breeding objectives for soybean include seed yield, agronomic traits i.e.
lodging and plant height), adaptation traits (i.e. maturity), disease and insect resistance, and seed
compositional and quality traits. The focus of this research concerns protein quality in soybean.
As soybean is extensively used as a high-protein feed in livestock and poultry production, its
amino acid composition is critical to ensuring optimal growth and development of animals. As a
sole source of protein as well as in combination with grain rations, soybean is deficient in the
sulfur-containing amino acids methionine (Met) and cysteine (Cys) as well as threonine (Thr)
and lysine (Lys). Increasing these amino acids through biotechnological tools such as
transformation has been met with limited success (Altenbach et al., 1987; Kortt et al., 1991).
Therefore, plant breeding approaches are being utilized in order to improve concentrations of
these amino acids in soybean.

The objective of our first study was to identify genomic regions associated with crude
protein and amino acid concentrations using the association of these traits with simple sequence
repeat (SSR) and single nucleotide polymorphism (SNP) markers in a population derived from a
cross between a high-protein cultivar ‘Danbaekkong’ and a cultivar with average protein content
‘Benning’. The identification of markers linked to quantitative trait loci (QTL) conditioning
enhanced levels of protein and amino acids would provide breeders with the tools to implement a

marker-assisted selection (MAS) breeding strategy.



The second objective of this research was to evaluate the nature of genotype x
environment interaction for protein and amino acid concentration in a soybean population.
Understanding GXE interactions is an integral part of efforts to breed for soybean with improved
protein quality traits in soybean. The nature of this interaction, or lack thereof, can influence
how breeding efforts proceed. If no significant interactions exist, it would be feasible to test
genotypes at one location during one year. GxE interaction greatly impacts breeders’ ability to
successfully select for traits of interest, as genotypic means are dependent upon the environment
in which they are grown. In addition, the number of growing environments necessary to provide
adequate selection precision greatly impacts the allocation of time and resources for testing

across multiple years.
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CHAPTER 2
LITERATURE REVIEW
Soybean Protein and Amino Acids
As the world population increases, so too will the demand for animal protein. Itis
projected that global meat production and consumption will increase from 233 million tonnesin
2000 to 300 million t by the year 2020 (Annicchiarico, 2002). Soybean [Glycine max (L.) Merr.]
isthe world s leading oilseed crop and provider of high-quality protein meal. Soybean meal, a
by-product of oil extraction, drives the soybean market due mainly to its use as a source of amino
acidsin livestock and poultry rations, an industry which uses roughly 77% of soybean meal
(Kerley and Allee, 2003). With thisin mind itsimportance to the U.S. agriculture industry
cannot be overstated. Soybean meal is a concentrated source of protein and energy and has
lower crude fiber content than most other oilseed meals, allowing nutritionists to formulate
higher energy diets which are more efficient in the conversion of feed to meat (Smith, 1997).
Although soybean protein is the most prominent among the oilseed crops, it is far from a source
of complete protein nutrition and thus bears improvement. Improving the composition of
soybean seed would add economic value along the entire value chain, from grower to end-user.
Protein quality refers to the balance and composition of amino acid constituents which
comprise overal protein. Protein, per se, although important is not as critical asitsquality. The
major function of protein in nutrition is to supply adequate amounts of required amino acids
(Friedman and Brandon, 2001). Asasole dietary source of protein, soybean is deficient in the

amino acids methionine (Met), cysteine (Cys), threonine (Thr), and lysine (Lys). Each of these



amino acids is considered essential, as monogastric animals (ie. swine and poultry) cannot
synthesize them de novo and therefore each must be obtained solely from the diet. Any
deficiency in the amino acid balance must be supplemented in the diet at additional coststo
livestock producers, a process which costs approximately $100 million annually (Imsande,
2001). Clarke and Wiseman (2000) speculated that a 10% increase in Lys, Met, and Thr
concentrations would yield a$4.5t0 9.5, $2.7, and $5.9/T increase in commercial meal value,
respectively. Besides the associated costs Met supplementation may cause additiona problems
such as leaching during soybean meal processing and bacterial degradation leading to the
formation of undesirable volatile sulfides (George and De Lumen, 1991). Therefore, the
development of soybean cultivars with enhanced amino acid balance would increase their
economic value and reduce any negative environmental effects associated with supplementation.
The United Soybean Board (USB) consists of 69 farmer-directors from 29 soybean-producing
states that oversee the investments of the National Soybean Checkoff program. The checkoff
program first collects and then invests the funds to advance soybean marketing, production
technology, and the development of new uses (soybeancheckoff.com). The United Soybean
Board' s Better Bean Initiative (BBI) included as one of its major research goalsin 2002 that
soybean breeders strive towards devel oping soybean cultivars in the USA with improved oil and
meal traits so asto better compete with foreign producers and provide customers with desirable
products (Durham, 2003). One of the primary traits targeted by the BBI isincreased Met+Cys
concentration, while increased levels of Lys and Thr represent secondary goals of the initiative.
The value of increased levels of these amino acids is application driven, as swine and
poultry needs are different. For instance, the improvement of Met+Cys provides value to the

broiler chicken application, yet none for that of swine. Both applications would derive

10



considerable value from increased Lys and Thr levels (Bajjalieh, 2004). Soybean meal isthe
prevailing source of protein supplementsin the poultry industry due to the fact that it is
consistent in nutrition, is available year-round, and has high crude protein content. Broilers and
turkeys consume roughly 44% of al the soybeans used in livestock feed in the USA, with layers
using about 7% (Waldroup and Smith, 2001). It exceeds al other common plant protein
feedstuffsin crude protein and digestible amino acid content (Waldroup and Smith, 2001).
When blended with corn or grain sorghum meal, soybean meal provides growing poultry with a
balanced diet of amino acids except for methionine. For swine nutrition, there are 10 essential
amino acids: arginine (Arg), histidine (His), isoleucine (1so), leucine (Leu), Lys, Met,
phenylalanine (Phe), Thr, tryptophan (Trp), and valine (Val). The amino acids cysteine and
tyrosine are considered semi-essential in swine diets, since both may be synthesized in sufficient
amounts if the amino acids Met and Phe are present, respectively (Allee, 2005).

Legume seed storage proteins are categorized as either albumins or globulins based on
their solubility patterns. Albumins are soluble in water, while globulins are extracted using
dilute saline solutions. It has been found that most protein in soybean are globulins, which can
be divided into the 7S vicilin-type and the 11S leguminin-type (Clarke and Wiseman, 2000).
Glycinin and B-conglycinin represent the 11S and 7S fractions, respectively, based on their
sedimentation properties (Danielsson, 1949). In combination, the glycinin and $-conglycinin
fractions account for roughly 70% of the storage proteins in a soybean seed (Yaklich et a.,
1999). Both have been found to be deficient in the sulfur-containing amino acids Cys and Met,
with the 11S globulins higher in Met and Cys than the 7S type in general (Rgjcan et a., 2005;
Shewry et a., 1995). Methionine and Cys comprise only 3.0 to 4.5% of the 11S glycinin amino

acid residues and less than 1% of the 7S B-conglycinin fractions (Nielsen et al., 1989). The
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glycinins have been characterized extensively due to their nutritional value. Five mgjor glycinin
genes have been cloned (Gyl, Gy2, Gy3, Gy4, and Gy5) and grouped into two families based on
the homology of their amino acid sequence. Group 1 includes Gyl, Gy2, and Gy3, and Group 2
includes Gy4 and Gy5 genes. The -conglycinin fragment is a glycoprotein composed of three
Subunits: a, o', and B-subunit s. It isencoded by a multigene family containing 15 to 20 genes
(Harada et a., 1989). The B-subunit lacks both Met and Cys, thus this subunit is primarily
responsible for the low concentration of sulfur-containing amino acids in the 3-conglycinin
fraction (Sexton et al., 2002). Itislikely that a soybean cultivar with ahigh 11S:7S ratio will
have a higher concentration of the S-containing amino acids.

Methionine and Cys are the only two sulfur-containing amino acids and their production
istied directly to sulfur metabolism in the plant. Sulfur (S) is taken up from the soil as sulfate
which is then distributed and mobilized in the plant. During the vegetative growth phase, sulfate
reduction and incorporation of reduced S into amino acids takes place in developing leaves while
these processes occur in devel oping seeds and pods during reproductive growth (Sexton et al.,
2002). Two possible explanations for the deficiency of S-containing amino acids in soybean
seed are is that these amino acids or other S compounds may not be supplied to the developing
seed by the plant in a sufficient manner or by insufficient reduction of sulfate in the pods and
seeds (Naeve and Shibles, 2005). It has been determined that accrual of the B-subunit is
enhanced by excess nitrogen or by sulfur deficiency, thus low levels of S-containing amino acids
in the seed may be due to the lack of reduced S compounds available to the seed (Naeve and
Shibles, 2005; Paek et d., 1997). Paek et a (1997) speculated that the limitations in S-amino
acid content may be due to three reasons: (i) the inability of the soybean plant to up-take sulfate

rapidly,(ii) the inability to assimilate sulfate effectively, (iii) or the inability to mobilize S-amino

12



acids from vegetative tissue after mid-seed filling. In other words, high levels of Met, both in
vitro and in planta, have been shown to inhibit the synthesis of the B-subunit of f-conglycinin,
thereby increasing the relative quantity of Met and Cys in soybean seed storage proteins
(Holowach et al., 1984).

There is great complexity in the biochemical pathways involved in the sequestering of
Met and Cysin soybean seeds (Panthee et a., 2006b). The biosynthesis of Met has been
reviewed previously (Hughes et al., 1999; Ravanel et d., 1998). There are two reactions which
contribute to the regulation of Met biosynthesis. Thefirst pertains to the shortened half-life of
mRNA that encodes cystathionine y-Synthase, the enzyme that catal yzes the condensation of
cysteine and O-phosphohomoserine to produce cystathionine due to elevated levels of Met
(Chibaet a., 1999). In other words, the Met concentration may regulate the biosynthesis of the
enzyme which isthe catalyst in first step of Met biosynthesis. The other reaction involves Cys,
which isareactant in Met biosynthesis and is formed from O-acetylserine (OAS) and sulfide.
The intracellular concentration of OAS may be responsible for the rate of Cys biosynthesis.
Since Cysisareactant in Met biosynthesis, the internal level of Cys may play an integral rolein
Met biosynthesis (Kim et al., 1999).

Plant breeders have been successful in increasing protein concentrations in soybean
(Burton and Wilson, 1998; Weber and Fehr, 1970), though the concentrations of sulfur-
containing amino acids in soybean cultivars have remained constant (Wilcox and Shibles, 2001).
The difficulty in breeding for increased amino acid concentrations seems to stem from alack of
genetic variability for these traits (Krober, 1956). With that being said, breeders have assessed
the amino acid quality of high-protein cultivarsin the past in order to gain more of an

understanding of thisrelationship. The average level of protein in soybean is approximately 400
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gkg®. Improving protein has been successful, as cultivars with protein concentrations of 459
and 484 g kg™ were developed using recurrent selection and backcross breeding, respectively
(Brim and Burton, 1979; Wilcox and Cavins, 1995). ‘Protana (Weber and Fehr, 1970) and
‘Prolina (Burton and Wilson, 1998) are examples of soybean cultivars developed which have
high protein. These cultivars were not readily adopted by growers dueto their low yield
potential. A strong negative correlation has been described between protein content and yield
(Brim and Burton, 1979; Burton et al., 1982; Wilcox and Shibles, 2001). Some high-protein
lines have been shown to improve nutritional value (Edwards 3rd et a., 2000), while others were
unable to detect consistency in increased amino acid concentrations versus controls. Serretti
(1994) found a high protein line with greater Cys concentration and one with lower Met
concentration than the check genotype. Zarkadas (1993) found that increased protein was
associated with reduced Met content while Y aklich (2001) found that both glycinin and f3-
conglycinin fractions were increased in high protein lines, with some lines having a greater
proportion of glycinin polypeptides. This finding suggeststhat it is feasible to improve both the
guantity and quality of soybean protein. It has also been shown that increasing the protein
concentration results in just an increase in the -conglycinin fraction of storage protein, thereby
reducing overall protein quality (Nakasathien et al., 2000; Paek et al., 1997). Increased seed
protein concentrations have been correlated with lower protein quality, particularly in the amino
acid balances of Lys, Thr, and the sulfur-containing amino acids Met and Cys (Paek et a., 1997;
Panthee et al., 2006b; Wilcox and Shibles, 2001; Wilson, 2004).

Currently, the relationship between protein quantity and quality is unclear, as previous
results have shown. Overall, it is apparent that the development of cultivars with high protein

guantity and quality has been elusive. Other breeding methodol ogies have been utilized to
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address this problem as well. Using ethyl methanesulfonate (EMS) to mutate soybean seeds,
Imsande (2001) was able to select severa lines which overproduced Met and Cys at
approximately a 20% higher level than the parental lines. There are also non-storage proteins
within the soybean seed, such as protease inhibitors and seed lectin which may contribute up to
5% of the total seed protein. Protease inhibitorsin soybean, which include the Bowman-Birk
inhibitor (BBI) and the Kunitz trypsin inhibitor, reduce protein digestibility and are thus
considered antinutritional compounds for animals and humans (Wilson, 1987). To deactivate
these antinutritional components, raw soybean seed or soybean meal is heat-treated. This may
actually reduce the nutritional quality of the soybean meal, since these protease inhibitors contain
relatively high levels of essential sulfur-containing amino acids (Wilson, 1987).

Transgenic approaches adopted to increase sulfur-containing amino acids have entailed
the introduction of transgenes from Brazil nut (Bertholettia excelsa) (Altenbach et al., 1987) and
sunflower (Helianthus annus) (Kortt et al., 1991) encoding for proteins with extremely high
levels of Met. Transformations were made in both tobacco (Nicotiana tabacum L.) (Altenbach et
a., 1989) and soybean (Townsend and Thomas, 1994). Researchers have aso expressed
hydrophobic corn (Zea mays L.) proteins (3-zeins) in soybean as a means of increasing Met and
Cys (Kim, 2004). Both of these methods have resulted in little or no commercial improvement
in amino acid expression in new soybean cultivars, as the Brazil nut protein was found to be
allergenic and the 8-zein-transformed soybean line did not produce seed flour with significantly
greater concentrations of sulfur-containing amino acids (Krishnan, 2008). Efforts have also been
made to modify proteins already present within the soybean seed. Nielson (1989) identified a
hypervariable region (HVR) between the Type 1 and Type 2 glycinin amino acid sequences.

After inserting multiple Met residues in the HVR region of the Gy4 gene and expressing the
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modified gene in tobacco, the researchers failed to detected accumulated Met-enriched protein
(Nielsen et a., 1995).

The development of molecular marker technology has a'so made it possible to create
detailed linkage maps of soybean (Hyten et al., 2010; Song et a., 2004) and many other crop
species (reference). This has facilitated the task of identifying chromosomal regions,
guantitative trait loci (QTL), associated with particular traits. Molecular markers have
previously been used to map chromosomal regions associated with protein (Brummer et d.,
1997; Csanadi et al., 2001; Dierset a., 1992; Leeet al., 1996; Orf et al., 1999; Panthee, 2005;
Sebolt et al., 2000) and amino acid concentration (Panthee et a., 2006a; Panthee et a., 2006b).
Dierset a. (1992) used RFLP markers to map protein concentration in a F, population in which
the high protein parent was G. soja accession. QTLswereidentified on LG-I, -E, -F, and -G
which explained between 12% and 42% of the variation and were associated with a 24 g kg™ and
17 g kgincrease in protein concentration, respectively. Sebolt (2000) backcrossed these same
alleles associated with increased protein on LG-1 and LG-E into an elite background. Only the
protein QTL on LG-I was detected in this study. Brummer et al. (1997) evaluated eight different
soybean populations using RFLP markers and identified QTLson LG-A2, -B2, -C1, -D1, -E, -F,
-G, -H, and -1 conditioning protein concentration.

There have been several studies amed at el ucidating the genetic factors underlying amino
acid concentration in soybean. Using 101 Fs-derived recombinant inbred lines (RILS), Panthee
et a. (2006b) identified QTL associated with Cys (chr 1, 13, and 18), Met (chr 13, 18, and 7),
and Met+Cys (chr 13 and 7) concentration. Panthee et al. (20064d) also identified genomic
regions associated with Lys (chr 1, 15, and 18) and Thr (chr 5, 2, 9, and 19). In asimilar study,

Panthee et al.(2004) used the same RILs to map QTL associated with the 7S and 11S fractions of

16



soybean storage proteins. Since the glycinin fraction contains higher levels of S-containing
amino acids than the B-conglycinin fraction, the identification of genomic regions governing
these storage protein constituents would be beneficial in marker assisted selection (MAS)
schemes for improved S-containing amino acids. They found three QTL for glycinin (chr 17, 20,
and 19) and two for 3-conglycinin concentration (chr 17 and 16).

At the present time, not a single commercial cultivar of soybean with the FAO standard
total sulfur containing amino acids has been developed. With continued improvements in
breeding technologies in conjunction with continued elucidation of QTLS, it isforeseeable in the
near future that a soybean cultivar with high yield, protein, and improved levels of essential
sulfur-containing amino acids will be devel oped.

Genotype x Environment I nteraction

With the world population set to reach 10 billion by 2050 it will be necessary to increase
agricultura production to meet such needs. Yield stability has been of mgor concern to plant
breeders as well as national and international programs with aims of maximizing the yield
potential of certain regions, while minimizing crop failures or extremely low yields in poor
growing years (Annicchiarico, 2002). The key to keeping pace with population growth will be
improving the efficiency of agricultural production practices and resource usage (Kang, 1997).
The efforts of plant breeders will be essential in advancing agricultural production and farming
systems in poor growing regions (Sleper et al., 1991). Understanding and exploiting GXE
interactions has become an integral part of these efforts. Genotype x environment interaction
refersto differential genotypic responses in different environments; these interactions affect all
living organisms, not just plants. The differential expression of genotypes across environments

minimizes the association between the genotypic and phenotypic values, resulting in differences
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between genotypes which are not the same across all environments. The GXE interaction can
influence decisions in a breeding program such as the breath of adaptation of a new cultivar,
selection of alocation for early generation testing, the type of environment (ie. stress vs non-
stress) used in testing, and the geographic distribution for testing prior to final release (Kang,
1997). The GxE interaction and stability of quality traitsin soybean are of great interest to
breeders and growers especially in markets where premium pricing is utilized. Lin and Binns
(1994) classified GXE interactions into three groups in terms of areas of research interest. The
goal of some groupsisto find amodel, such as principa component analysis (Zobel et a., 1988),
to explain the structure of GXE interaction or to attempt to predict it. The second type of
research interest is of the quantitative genetic type, where the goal is to estimate the size of the
interaction as a variance for use in the prediction of genetic improvement in selection. Lastly,
the plant breeders utilize GXE interaction in selecting superior stable cultivars and determining
and recommending growing environments.

In the context of GXE, the term genotype refersto a cultivar such asapure line, clone, or
open-pollinated populations. In this context, the term does not necessarily pertain to the
collection of genes which make up an individual, asit isusually defined. Phenotype refersto the
outward appearance or the traits of an individual at a physical, morphological, anatomical, or
biological level, and is the result of both genetic and non-genetic factors. Breeders seek to
improve quantitative traits of crop plants by selecting genotypes based on their phenotypic
performance. Genotypic expression across arange of environments confers arange of
phenotypes and selection only takes advantage of those factors which are genetic in nature
(Comstock and Moll, 1963; Kang, 1997). Environment refers to the total of circumstances

surrounding a genotype, or the set of climatic, soil, biotic (pests and diseases) and management
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conditions in an individual experiment or trial carried out at alocation during one year (annuals)
or severa years (perennias). Since the genetic makeup of an individual does not change from
environment to environment, any phenotypic variation for a specific genotypeis due to the
environment. Allard and Bradshaw (1964) defined the variation in environments as either
predictable or unpredictable. The predictable type refers to permanent conditions that occur
systematically such as general climate, soil type, and day length or those which are fixed under
human control such as planting date, sowing density, and harvest system. The overall crop
performance may be the best indicator of this type of variation and the presence of genotype x
location interactions is indicative of different environments while genotype x treatment
interactions indicate that the treatments provide differing growing conditions (Allard, 1964;
Fehr, 1987). Unpredictable factors refer to those which undergo random fluctuations such as
rainfall, temperature, and relative humidity. Thisinvolves genotype % year and genotype x
location x year interactions phenomenawhich cannot be predicted in advance, thereby making it
very different from breeding for the aforementioned predictable type of environmental variation.

Genotype x environment interactions may be grouped into two broad categories:
crossover and noncrossover interactions. Crossover interaction of genotypes occurs when
cultivars change ranks across environments. In this case, the genotype favored by selection will
differ between environments. These are the most important type of GxE effects targeted by
breeders as they decrease the heritability of atrait and hinder genotypic evaluation (Burton,
1987). Non-crossover interactions represent changes in the magnitude of the difference between
two genotypes and may mean that cultivars are genetically heterogeneous but test environments
are homogeneous, or genotypes are genetically homogeneous but environments are

heterogeneous. With non-crossover interactions, estimates of heritability and predicted
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phenotypic response will decrease but less than for crossover interactions while the genotype
favored by selection will not change (Kang, 1997). Inthissituation, al identical genotypes
grown in constant (ideal) environments would rank similarly.

Stress isthe main causal factor in GXE interactions. Stress represents a physiological
response to the effect of a negative environmental factor and is present when any factor is
present at any other level other than the optimum. These may include nutrients, toxic el ements,
saltsin the soil solution, atmospheric gases, light of differing wavelengths, mechanical stimuli,
gravity, wounding, pests, pathogens, and symbionts (Crispeels, 1994). Biotic factors which
cause GxE interaction may include plant pathogens and pests, nutrient uptake ability,
competition between genotypes, tolerance to herbicides, alelopathy, and water-, nutrient- and
radation-use efficiency (Kang, 1997). Abiotic stresses are aso a culprit in GXE interactions, and
may include atmospheric pollutants, soil stresses, temperature, water, and tillage operations
(Blum, 1988; Clark and Duncan, 1993; Specht and Laing, 1993). Environments with contrasting
levels of one major stress have frequently shown high levels of GXE interaction (Ceccardlli,
1989).

The two primary methods by which breeders assess the prominence and quantitative
nature of GXE are by investigating the components of variance from the analysis of variance
(ANOVA) or by conducting stability evaluations. To detect interactions between genotypes and
the environment, the genotypes are grown over arange of environments composed of multiple
locations and/or years. If GXE interaction is absent, then all genotypes should perform similarly
across environments and therefore the total variation is explained by just the main effects of
environments and genotypes (Chahal and Gosal, 2002). The ANOVA alowsfor the calculation

of variance components for each source of variation in the model, thus allowing breedersto gain
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an understanding of the most prominent sources of variation. Numerous studies have been
undertaken which use variance components to explore GXE interactions (Erickson et al., 1982;
Johnson et al., 1955; Kwon and Torrie, 1964; Zhe et d., 2010). The general consensus among
breedersisthat G x E interaction is associated more with quantitative traits than with those of a
qualitative nature (Hoisington et al., 1982; Langrdige and Griffing, 1959). Quantitative traits
exhibit continuous variation due to polygenic gene action and/or differences among
environments, thus such traits tend to have low heritability.

Genotype x environment interaction has been explored in soybean for a number of
guantitative traits including yield, important agronomic traits, and compositional traits. Johnson
et a. (1962) evaluated yield, height, seed weight, and oil in F3 linesin the F, and Fs generation
and found differing levels of GXE interaction based on variance component analysis. The
researchers indicated the need for testing over multiple environments due to the fact that genetic
variability was reduced by 71% when genotypes were grown in only one location in one year as
opposed to multiple years and locations. Two soybean populations were evaluated for GXE in
the F3, F4, and Fs generations by Kwon and Torrie (1964). Theline x year variance component
estimates were larger than either the line x location or the line % location x year variance
components for yield, seed weight, lodging, days to flowering, and percent oil. The genotype
variance component for protein was greater than the interaction components, but less than the
error variance. Similarly, Erikson (1982) found that the genotype x location x year variance
component for protein was larger than either two-way component, but less than the genotype
variance component.

The concept of stability has many aspects and may be viewed in anumber of ways.

Allard and Bradshaw (1964) emphasized that the stability of a genotype refersto facets of the
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phenotype like yield and quality which are economically important, not just general constancy of
al phenotypes across environments. In other words, stability is concerned only with traits of
interest; other traits may vary among environments and are of no consequence. Cultivars which
can change their genotypic or phenotypic response as environmental conditions vary and give
high and stable returns on an economic level have been termed “well-buffered” or homeostatic
(Allard, 1964; Lewontin, 1957). Allard and Bradshaw (1964) described two general waysin
which a genotype achieves stability. First, a cultivar may be made up of a number of different
genotypes which are adapted to different environments, termed “ population buffering”.
“individual buffering” refersto the adaptedness of individuals themselves to arange of
environments. To thisend, it has been theorized that the genetic structure of plant material may
have an effect on the extent to which G x E interaction is present (Schutz, 1971; Walker, 1978).
Pure-lines and single-cross hybrids, which are highly homogeneous and in the case of the pure-
line and clonal cultivar, homozygous, have been shown to interact more with the environment
than open-pollinated cultivars or mixtures of pure-lines due to the fact that they have fewer
adaptative genes due to their genetic structure and are therefore more susceptible to
environmental variation (Becker and Leon, 1988).

Two types of stability, static and dynamic, have been previously described (Becker and
Leon, 1988). Static stability refersto the situation in which the performance of a genotype for
some trait remains unchanged when grown in multiple environments (ie. its variance among
environmentsis equal to zero). Thistype of stability isuseful for traits like quality traits,
resistance to pathogens and diseases, and those conferring resistance to stresswhereit is
imperative that levels be maintained (Becker and Leon, 1988). Dynamic stability, on the other

hand occurs when a genotype' s performance corresponds to the predicted response of each
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environment. Quantitative traits like yield are usually evaluated for stability in terms of dynamic
stability, as breeders prefer to identify environments which produce high-yielding lines.
Genotypes which deviate significantly from the general reaction of the genotype across locations
are viewed as being unstable in this situation. Becker (1981) coined static stability as agronomic
stability, while referring to dynamic stability as the biological concept of stability.

Stability parameters may be grouped into four different categories (Kang, 1997). The
following describes afew of the more popular stability parameters within each grouping, but is
not all-inclusive. Type 1 stability refersto a cultivar that has a small variance over arange of
environments. Thistype of stability can be assessed by simply determining the variance of a
cultivar across environments or the coefficient of variation of genotypes across environments.
The Finlay and Wilkinson (1963) regression coefficient (b = O is considered stable) isaso aform
of Type 1 stability. Type 2 stability considers genotypes with performance which is parallel to
the mean of all genotypes in the test to be stable. Thistype of stability includes Plaisted’ s (1960)
variance component analysis for GXE interaction, the Eberhart and Russell (1966) stability
parameter (b = 1 is considered stable), Wricke' s (1962) ecovalence, and Shukla's (1972) stability
variance (o;9). The residual mean square of deviation from the regression variance (8;°) is the
second part of the Eberhart and Russell (1966) stability parameter. This defines a cultivar to be
stable when thisvalue is small, also called Type 3 stability. Lastly, a genotypeis considered
stable if the year (or seeding date) mean squares within locations is small (Lin and Binns, 1988).
Thistype of stability can only be detected when the experiment includes genotype x location x
time (year or seeding date) interaction.

Anintegral component in establishment of markets for soybean cultivars with value-

added traits is the determination of how traits respond to changes in environment. The most
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pragmatic and cost-effective situation would be one in which cultivars express wide adaptation
over arange of growing environments. Since multi-location and multi-year testing is a costly
and time-consuming endeavor, it is necessary that breeders determine the optimum combination
of replicates and environments to sufficiently measure the genetic value of a genotype.
Increased replications at each location function to improve the precision of measurements and
the power to detect differences between genotypes within the location. Conversely, the presence
of GxE interaction between the test environment and the breeder’ s base popul ation of
environments negates the effectiveness of more replicates at asingle location. Thus, more
precision would be gained in discriminating between genotypes by adding additional testing
environments as opposed to replications (Bernardo, 2002). The addition of environmentsis
associated with increased resource input including labor, land, and supplies (Kang, 1997). The
best location or combination of locations should provide a measure of the relative potential of
genotypes over the target population of environments and maximize genetic variation, and in
turn, response to selection (Allen and Rasmusson, 1978). With that being said, there appears to
be atrade-off between precision and resource alocation. Schutz and Bernard (1967) estimated
the interaction variance for the Soybean Uniform Tests in Maturity Groups O to IV, VI, and VI
and found that testing yield in more than 20 environments did not reduce Fisher’s Least
Significant Difference (LSD) significantly and that 10 environments would be suitable for
testing.

Due to the importance of GXE interactions, crop genotypes are usually assessed in multi-
environment trials prior to their release as cultivars. Environmental effects within the base
population of environments themselves are generally not of concern to breeders. The genotypic

main effects and genotype x environment interactions, on the other hand, provide relevant
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information. Genotypic main effects are of no consegquence to the breeder when GxE interaction
IS present, except in cases where a significant interaction is considered in determining the
significance of the genotypic effects (random model). Plant breeders must deal with GXE
interaction in some practical manner (Kang, 1997). Three ways of dealing with GXE interaction
have been expressed in the literature (Bernardo, 2002; Eisemann et a., 1990) include ignoring
these interactions, avoiding them, or exploiting them in breeding objectives. The amount of
GXxE interaction greatly impacts how breeding programs all ocate resources as multiple breeding
programs may be needed in an area where thereis prevalent G interaction.

If genotypic ranks change drastically between environments, a breeder either hasto
devel op separate populations for each location, or select genotypes which perform well over al
environments. In thefirst scenario, the breeder will see greater genetic gains, but increased
costs. The second yields less genetic gain but is also less expensive (McKeand et a., 1990). In
order to effectively and efficiently improve a quantitative trait the breeder must quantify the

amount and nature of the GXE interaction.
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Abstract

Soybean [Glycine max (L.) Merr.] is the primary source of quality protein in feed
formulations for the domestic swine, poultry, beef, and dairy industries. As a sole dietary source
of protein, soybean is deficient in the amino acids lysine (Lys), threonine (Thr), methionine
(Met), and cysteine (Cys) for poultry and swine. Increasing these amino acids would benefit the
feed industry. The objective of this study was to identify quantitative trait loci (QTL) associated
with crude protein (cp), Lys/cp, Thr/cp, Met/cp, and Cys/cp and Met+Cys/cp in a population of
140 Fs-derived RILs from a ‘Benning’ x ‘Danbaekkong’ cross. The 140 RILs and check
cultivars were grown in five southern USA environments. A seed sample from each RIL was
analyzed by near-infrared reflectance spectroscopy to determine amino acid concentration as a
fraction of cp and amino acid concentrations. Each RIL was genotyped with 421 polymorphic
markers (98 simple sequence repeat markers and 323 single nucleotide polymorphism markers).
Putative QTL were detected using single factor ANOVA and composite interval mapping (CIM).
A large-effect QTL on chr 20 inherited from Danbaekkong which explained 55% of the
phenotypic variance was detected for crude protein based on CIM. This QTL was also detected
for Lys/cp, Thr/cp, Met/cp, Cys/cp and Met+Cys/cp, but the Danbaekkong allele resulted in
reduced levels of these amino acids. Based on CIM, three other QTL were detected for crude
protein on chr 14, 15, and 17, two for Lys/cp on chr 8 and 20, and three for Thr/cp were detected
onchr9, 17, and 20. Four QTL were found on chr 6, 9, 10, and 20 for Met/cp, and one QTL was
detected for Cys/cp on Chr 10. Transgressive segregation in this population was identified for
crude protein, Met/cp, and Met+Cys/cp. This study provides important information concerning
the relationship between crude protein and levels of essential amino acids and may allow for the

improvement of these traits in soybean using marker-assisted selection (MAS).
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I ntroduction

As the world population increases, so too will the demand for animal protein. Itis
projected that global meat production and consumption will increase from 233 million tonnes in
2000 to 300 million t by the year 2020 (Annicchiarico, 2002). Soybean [Glycine max (L.)
Merr.] is the world’s leading oilseed crop and provider of high-quality protein meal. Soybean
meal, a by-product of the oil extraction, drives the soybean market mainly due to its use as a
source of amino acids in livestock and poultry rations. The animal feed industry uses roughly
77% of soybean meal as a source of protein and amino acids (Kerley and Allee, 2003). With this
in mind its importance to the U.S. agriculture industry cannot be overstated.

Legume seed proteins are categorized as either aloumins or globulins based on their
solubility patterns. It has been found that most protein in soybean are globulins, which can be
divided into the 7S vicilin-type and the 11S leguminin-type (Clarke and Wiseman, 2000).
Glycinin and B-conglycinin represent the 11S and 7S fractions, respectively, based on their
sedimentation properties (Danielsson, 1949). In combination, the glycinin and f-conglycinin
fractions account for roughly 70% of the storage proteins in a soybean seed (Yaklich et al.,
1999). Both have been found to be deficient in the sulfur-containing amino acids cysteine (Cys)
and methionine (Met), with the 11S globulins generally higher than the 7S type (Rajcan et al.,
2005; Shewry et al., 1995). It has been found that Met and Cys comprise 3.0 to 4.5% of the 11S
glycinin amino acid residues and less than 1.0% of the 7S B-conglycinin fractions (Nielsen et al.,
1989). The B-conglycinin fragment is composed of three subunits: a-, a'-, and -subunit. The -
subunit lacks both Met and Cys, thus this subunit is primarily responsible for the low

concentration of sulfur-containing amino acids in the B-conglycinin fraction. It is likely that a
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soybean cultivar with a high 11S:7S ratio will have a higher concentration of the S-containing
amino acids.

Protein, per se, is not of great importance in terms of animal nutrition. Yet the balance
and composition of the amino acid constituents which comprise the protein is likely the most
crucial nutritional aspect of meal rations. The major function of protein in nutrition is to supply
adequate amounts of required amino acids (Friedman and Brandon, 2001). As a sole dietary
source of protein, soybean is deficient in the amino acids Met, Cys, threonine (Thr), and lysine
(Lys). Each of these amino acids is considered essential, as monogastric animals (e.g., swine and
poultry) cannot synthesize these amino acids and therefore each must be obtained solely from the
diet. Any deficiency in the amino acid balance must be supplemented in the diet at additional
costs to the animal producer. To overcome deficiencies, poultry and swine growers supplement
soybean-based rations with synthetically-produced amino acids, a process which costs
approximately $100 million annually (Imsande, 2001). Clarke and Wiseman (2000) speculated
that a 10% increase in Lys, Met, and Thr concentrations would yield a $4.5 to 9.5, $2.7, and
$5.9/T increase in commercial meal value, respectively. Moreover, according to George and de
Lumen (1991), Met supplementation may cause additional problems such as leaching during
soybean meal processing and bacterial degradation leading to the formation of undesirable
volatile sulfides. Therefore, the development of soybean cultivars with enhanced amino acid
balance would increase their economic value along the entire soybean value chain, from grower
to end-user, and reduce any negative environmental effects associated with supplementation.

Due to the aforementioned issues, it is not surprising that the development of soybean
cultivars with increased concentrations of essential amino acids has been an objective in the

soybean breeding community for some time. The negative correlation between protein and yield
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has undermined attempts to release cultivars with higher levels of essential amino acids (Wilson,
2004). Until recently, the cost of wet lab techniques necessary to evaluate amino acid
concentrations made it costly for breeders to thoroughly evaluate protein and amino acid
concentrations in large seed samples.

There is great complexity in the biochemical pathways involved in the sequestering of
Met and Cys in soybean seeds (Panthee et al., 2006b). Increases in seed protein concentration
have also been correlated with lower protein quality, particularly in the amino acid balances of
Lys, Thr, and the sulfur-containing amino acids Met and Cys (Paek et al., 1997; Panthee et al.,
2006b; Wilcox and Shibles, 2001; Wilson, 2004). The United Soybean Board’s Better Bean
Initiative (BBI) included as one of its major research goals in 2002 that soybean breeders
develop soybean cultivars in the USA with increased seed protein and improved seed protein
quality so as to better compete with foreign producers that can devote more agricultural land to
soybean production (Sallstrom, 2002). One of the primary traits targeted by the BBI is increased
Met+Cys concentration, while increased levels of Lys and Thr represent secondary goals of the
initiative. The value of increased levels of these amino acids is application driven, as swine and
poultry needs are different. For instance, the improvement of Met+Cys provides value to the
broiler chicken application, yet none for that of swine. Both applications would derive
considerable value from increased Lys and Thr levels (Bajjalieh, 2004).

Efforts made in the past to address amino acid content have mostly been aimed at
improving the sulfur-containing amino acids. Conventional plant breeding, the introduction of
transgenes, raising the expression of endogenous Met-rich proteins, and amending soil nutrients

are methods by which researchers have sought to address this objective.
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Plant breeders have been successful in increasing protein concentrations in soybean
(Burton and Wilson, 1998; Weber and Fehr, 1970) , though the concentrations of sulfur-
containing amino acids have remained the same (Wilcox and Shibles, 2001). Difficulty in
breeding for increased amino acid concentrations stem from the lack of genetic variability for
these traits (Krober, 1956). Some high-protein lines have been shown to improve nutritional
value (Edwards 3rd et al., 2000), but others were unable to detect consistency in increased amino
acid concentrations versus controls (Serretti et al., 1994). Yaklich (2001) found that high protein
soybean lines had increased glycinin and B-conglycinin fractions, with some lines having a
greater proportion of glycinin polypeptides, suggesting that it is feasible to improve both the
quantity and quality of soybean protein. Using ethyl methanesulfonate (EMS) to mutate
soybean seeds, Imsande (2001) was able to select several lines which overproduced Met and Cys
at approximately a 20% higher level than the parental lines.

Transgenic approaches to increase sulfur-containing amino acids have entailed the
introduction of transgenes from Brazil nut (Bertholettia excelsa) (Altenbach et al., 1987) and
sunflower (Helianthus annus) (Kortt et al., 1991)encoding for proteins with extremely high
levels of Met. Transformations were made in both tobacco (Nicotiana tabacum L.) (Altenbach et
al., 1989) and soybean (Townsend and Thomas, 1994) . Researchers have also expressed
hydrophobic corn (Zea mays L.) proteins (5-zeins) in soybean as a means of increasing Met and
Cys (Kim, 2004). Both of these methods have resulted in little or no improvement in amino acid
expression in newly released soybean cultivars, as the Brazil nut protein was found to be
allergenic and the 8-zein-transformed soybeans did not produce seed flour with significantly
greater concentrations of sulfur-containing amino acids (Krishnan, 2008). Falco (1995) was able

to stably produce soybean lines with increased lysine through transformation, but lines with
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greater than 15% lysine produced seed with wrinkled seed coats and poor germination. Efforts
have also been made to modify proteins already present within the soybean seed. Nielson
(Nielsen, 1990) identified a hypervariable region (HVR) between the Type 1 and Type 2 glycinin
amino acid sequences. After inserting multiple Met residues in the HVR region of the Gy4 gene
and expressing the modified gene in tobacco, the researchers failed to detected accumulated Met-
enriched protein (Nielsen et al., 1995).

The nutrient amendment approach to improve sulfur-containing amino acids included
regulating nitrogen and sulfur in the soil (Imsande and Schmidt, 1998; Sexton et al., 1998). In
these studies, the researchers assessed seed quality of soybean with respect to two major seed
storage proteins, the -conglycinin (7S) and glycinin (11S) fractions, following differential levels
of nitrogen and sulfur soil supplementation. Their respective goals were to increase the glycinin
fraction of seed storage proteins due to the fact that 11S contains higher Met concentrations than
7S. In comparison to the breeding and biotechnological methods aimed at improving this amino
acid quality, this approach appears to be unsustainable (Panthee et al., 2006b).

There have been few studies aimed at elucidating the genetic factors underlying amino
acid concentration in soybean. Using 101 Fg-derived recombinant inbred lines (RILs), Panthee
et al. (Panthee et al., 2006b) identified QTL associated with Cys (chr 1, 13, and 18), Met (chr 13,
18, and 7), and Met+Cys (chr 13 and 7) concentration. Panthee et al. (2006a) also identified
genomic regions associated with Lys (chr 1, 15, and 18) and Thr (chr 2, 5, 9, and 19). Ina
similar study, Panthee et al. (2004) used the same RILs to map QTL associated with the 7S and
11S fractions of soybean storage proteins. Since the glycinin fraction contains higher levels of
S-containing amino acids than the B-conglycinin fraction, the identification of genomic regions

governing these storage protein constituents would be beneficial in marker assisted selection
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(MAS) regimes for improved S-containing amino acids. They found three QTL for glycinin (chr
17, 19, and 20) and two for B-conglycinin concentration (chr 16 and 17).

In order to efficiently develop soybean cultivars with improved amino acid profiles, the
genetic basis of amino acid content should be explored thereby allowing for the selection of
individual components conditioning improved protein quality. The objectives of this study were
to identify QTL associated with crude protein, Lys/cp, Thr/cp, Met/cp, Cys/cp, and Met+Cys/cp
in a RIL population created from a cross of ‘Benning’ and ‘Danbaekkong’.

Materials and Methods
Plant Material

A population of 140 Fs-derived recombinant-inbred lines (RILs) was developed from a
cross of Benning (P1595645) (Boerma,1997) x Danbaekkong (P1619083) (Kim, 1996). The
parents were chosen based on their disparate protein levels, with Benning averaging
approximately 42% and Danbaekkong at 51% on a dry-weight basis. Benning is a high-yielding
maturity group VII cultivar adapted to the southeastern USA and Danbaekkong is a South
Korean maturity group IV tofu cultivar.

From the original cross, seeds from individual F; plants were grown in the greenhouse
and seed from individual plants were bulked. The F;, plants were grown at the Univ. of Georgia
Plant Sciences Farm near Watkinsville, GA. Seeds from individual F, plants were advanced to
the Fs generation in Athens, GA and Puerto Rico using a modified single seed descent (Brim,
1966). The F3 and F4 generations were grown in Puerto Rico and the Fs generation was grown at
the Univ. of Georgia Plant Sciences Farm. At maturity individual Fs plants were single-plant
threshed to create Fs-derived recombinant inbred lines (RILs). Approximately 200 RILs were

grown in 2003 and 150 RILs were selected for uniform maturity.

43



In 2005 and 2006, 150 RILs were planted at the Univ. of Georgia Plant Sciences Farm
near Athens, GA and also planted in Bay, AR, Stuttgart, AR, and Kinston, NC in 2006. The 150
RILs were sub-divided into three sets of 50 RILs based on their relative maturity. Danbaekkong
and three check cultivars, ‘“NCRoy’, ‘AG6202’, and ‘Boggs-RR’ were included in each set. For
each set the experimental design was a randomized complete block with two replications. Each
set was also randomized within a single replication.

The experiment was planted in Athens in an Appling loamy coarse sand soil type on 19
May 2005 and on a Cecil coarse sandy loam (fine, kaolinitic, thermic Typic Kanhapludults) soil
type on 22 May 2006 and were irrigated. The experimental unit in Athens was a 2-row plot that
was 7-m long with 76-cm between rows and was seeded with approximately 27 seeds *m row.
At maturity, all plots were end-trimmed to a final row length of 3.66 m and the plots were
harvested by plot combine. The experiments were planted in a mixture of Mhoon (Fine-silty,
mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts) and Dundee (Fine-silty, mixed,
active, thermic Typic Endoaqualf) fine sandy loam soil type in Bay, AR on 13 June 2006 and
were irrigated. The experimental unit was a 2-row plot with 76-cm between rows. In Stuttgart,
AR, the experiments were planted in a Stuttgart silt loam (Fine, smectitic, thermic Albaquultic
Hapludalfsoil) soil type on 26 May 2006 and were irrigated. The experimental unit was a 2-row
plot with 76-cm between rows. The Kinston, NC experiments were planted on 19 June 2006 in a
Portsmouth soil type (loam with ~4% organic matter) (Fine-loamy over sandy or sandy-skeletal,
mixed, semiactive, thermic Typic Umbraquults) and were not irrigated. The experimental unit
was a 1-row plot harvested from within 3 planted rows spaced 96-cm apart. The plots were end-

trimmed to 4.26 m prior harvesting the middle row of each plot.
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Phenotypic Data

Soybean samples were scanned by near infrared (NIR) spectrometry at the Univ. of
Minnesota's Soybean Breeding Laboratory. The samples were analyzed in the laboratory of Dr.
Jim Orf (University of Minnesota, St. Paul, MN), in collaboration with Dr. Nick Bajjalieh
(Integrative Nutrition Inc., Decatur, IL), and were reported in g kg™ on a moisture-free basis.
The crude protein and amino acid analyses were conducted on 25-g whole seed samples with
near-infrared reflectance (NIR). Whole soybean samples were first ground using a Perten LM
3600 grinder and then scanned on a FOSS 6500 NIR Instrument. NIR spectra from the FOSS
6500 were predicted using ISIPredict Software version 1.10.2.4842. Each amino acid sample
was corrected as a percentage of overall crude protein content (also in g kg™)
Genotyping

Each RIL was genotyped with 421 polymorphic markers, including 98 simple sequence
repeats (SSR) and 323 single nucleotide polymorphisms (SNP). For the SSR marker analysis,
DNA from 140 greenhouse-grown RILs (10 leave samples) was extracted from unexpanded
trifoliolate leaves using a modified CTAB (Hexadecyltrimethylammonium acid) procedure
previously described by Keim et al. (2006). For PCR amplification (32 cycles, 94°C for 1 min,
94°C for 30 sec, 46°C for 30 sec, 68°C for 30 sec, and held at 10°C after final cycle), reaction
mixtures contained 20 ng of genomic DNA, 0.5 uM of forward and reverse primers (Grant et al.,
2002), 2 mM of each dNTP, 2.5 mM Mg**, 1X PCR buffer (Promega Corp., Madison, W1), and
0.5 units Tag polymerase (Promega Corp., Madison, W1) in a total volume of 10 pul. The
separation of PCR amplicons was conducted using 4.8% polyacrylamide gels run on either an
ABI PRISM 377 DNA Sequencer (PE ABI, Foster City, CA) or using capillary gel

electrophoresis using an ABI 3730 DNA analyzer (Applied Biosystems, Foster City, CA).
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For PCR product fragment length analysis on the ABI PRISM 377, samples were
prepared for electrophoresis by combining 3 pl of PCR product, 2 pl formamide, 0.75 pl loading
buffer, and 0.30 ul GENESCAN-500 ROX DNA size standard (PE Applied Biosystems, Foster
City, CA). For ABI 3730 genotyping, 8 pl of a master mix of ROX size standard, water, and
formamide was added to 2 pl of DNA. Each sample was denatured for 5 min at 95°C, and then
loaded into the gel or capillary system. Gels were scored visually based on marker size data
from each parent to determine the SSR marker genotype of each line.

The RILs were also genotyped with single nucleotide polymorphism (SNP) markers
using the Illumina GoldenGate Assay (Hyten et al., 2008a). DNA was extracted from a 10 leaf
sample and processed to contain 50 pl of DNA at a 200 ng/ul concentration. The samples were
then sent to the USDA Beltsville Agricultural Research Center (USDA-ARS) in Beltsville, MD,
where a total of 1,536 SNP markers were assayed on each RIL genotype using the Universal
Soybean Linkage Panel 1.0 (USLP 1.0) (Hyten et al., 2010b), using the GoldenGate® assay and
analyzed on the lllumina BeadStation 500G (lllumina, San Diego, CA) (Hyten et al., 2008b). Of
the 150 RILs genotyped, only 140 were used in the QTL analysis due to aberrant segregation
ratios most likely due to a seed mixture.

Data Analyses

For linkage map construction, a total of 421 markers, 323 SNP and 98 SSR markers were
analyzed using MapDisto v 1.7 (Lorieux, 2007) mapping software. A more stringent LOD
threshold of 3.0 was used to identify initial linkage groups, followed by a more conservative
LOD score of 1.5 to group each LG individually. The recombination fraction setting used was

classical, based on Martin (2006) selected. The Kosambi (1944) mapping function was used in
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order to address interference. Based on recombination frequencies, 28 linkage groups (LG) were
created, which are a representation of the 20 haploid chromosomes in the soybean genome.
Single-factor analysis of variance (SF-ANOVA) was used to detect associations between
markers and traits using (QTL) Cartographer V2.5 06 (P <0.001) (Wang et al., 2007). Each
marker is considered a factor with two levels (homozygous Benning or homozygous
Danbaekkong) and the phenotype (protein or specific amino acid) as the dependent variable.
Composite interval mapping method (CIM) was employed to detect QTLs and estimate the
magnitude of their effects (Jansen and Stam, 1994) using Model 6 of the Zmapqtl program
module. A series of 1000 permutations was run to determine the experiment-wise significant
level at P = 0.05 of LOD for each trait (Churchill and Doerge, 1994). The genome was scanned
at 2-cM intervals and the window size was set at 10 cM. Cofactors were chosen using the
forward-backward method of stepwise regression. Putative QTL were further analyzed using
multiple regression until only significant markers were retained in the model (P <0.01) using the
STEPWISE selection criteria (SAS, 2003). All possible two-way interactions between
significant markers (P = 0.01) were evaluated for significance (P = 0.01) by ANOVA using
PROC GLM (SAS, 2003) to evaluate the presence of epistasis for each trait.
Variance-component heritability estimates were calculated on an entry-mean basis

(Nyquist and Baker, 1991) using the following equation:
csg2
ng + (ng/e) + (6°Ire)
where H? represents broad-sense heritability, o is genotypic variance, nge IS genotype x

H? =

environment variance, ¢° is error variance, r is the number of replications, and e is the number of

environments. Restricted maximum likelihood (REML) was used to generate components of
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variance and covariance for calculating heritabilities and genetic correlations. Genetic

correlations were based on the formula ((Falconer and Mackay, 1996):
Covyy
e =
¢ \/ ze Gyz

where rg is the genetic correlation, Covyy is the covariance of trait x and trait y, x symbolizes trait

X, y symbolizes trait y, and o is the genetic variance.
Results

The male parent, Danbaekkong, and three elite cultivars, NC Roy (Burton et al., 2005) ,
AG6202, and Boggs-RR (Boerma et al., 2000) were used as a checks in all environments. The
maternal parent, the maturity group VII ‘Benning’, was not suitable as a check due to its late
maturity (Relative Maturity of 7.8) when compared to the RILs evaluated in this study.
Danbaekkong is a late maturity group IV cultivar and the RILs averaged 47 days in maturity
after 31 August compared to 50, 44, 48, and 50 for AG6202, Boggs-RR, and NC Roy
respectively (data not shown).

Across the five environments, Danbaekkong averaged 510 g kg™ seed protein content
while the three elite checks averaged 433 g kg™ (Table 2.1). The 140 RILs ranged from 425 to
507 g kg™ seed protein content and averaged 468 g kg™. Based on the comparison of the mean
protein content of Danbaekong and the RIL with the highest protein level, there was no
transgressive segregation for this trait. The variance component heritability for protein on a five-
environment mean basis was 0.93.

In this manuscript the amino acid data are presented as the amount of a specific amino
acid per kg of crude protein (cp). The mean Lys value for Danbaekkong was 61.2 g kg™ cp
compared to 64.8 g kg™ cp for the mean of the three elite checks (Table 2.1). The mean Lys/cp

content for the RILs was 63.3 g kg™* and they ranged from 61.2 to 65.0 g kg™. The distribution
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of the Lys/cp contents of the140 RILs seemed to approximate a normal distribution (Fig.2.1).
None of the RILs contained lower Lys content than Danbaekkong or a higher value than the
mean of the three elite check cultivars. The variance component heritability for Lys/cp based on
the selection of Lys means across five environments (0.69) was somewhat lower than the
heritability for crude protein content.

The Danbaekkong parent had a value Thr value of 34.4 g kg™ cp while the elite checks
averaged 37.9 g kg™ The RILs averaged 36.1 g kg™ for this trait and ranged from 33.8 g kg™ to
38.0g kg™ (Table 2.1). There was no significant (P = 0.05) transgressive segregation (Fig. 2;
Table 1). Variance component heritability for this trait was 0.86 based on the afformentioned
selection criteria.

For Met/cp, both Danbaekkong and the checks were very similar, as Danbaekkong was
14.2 g kg™ and the elite checks were 14.4 g kg™ (Table 2.1). The mean of the RILs was 14.2 g
kg, equal to the Danbaekkong parent. Transgressive segregation was evident, as the lines
varied from 13.8 to 14.7 g kg™ (Fig 2.3). Heritability for Met/cp, 0.45, was much lower than
crude protein or Thr/cp.

The three checks averaged 15.3 g kg™ cp Cys compared to 15.7 g kg™* for Danbaekkong
(Table 2.1). The mean of RILs was equal to the check means, and the highest value for any RIL
was 0.5 g kg™ greater than the Danbaekkong parent (Fig. 2.4). The 140 RILs ranged from 14.7
to 16.2 g kg™, The variance component heritability for Cys/cp (0.59) was slightly higher than
that of Met/cp.

Danbaekkong had a value of 29.9 g kg™ for Met+Cys/cp and the elite checks averaged

29.7 g kg™ (Table 2.1). The RILs averaged 29.6 g kg™ and revealed transgressive segregation, as
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values for this trait ranged from 28.5 to 30.8 g kg™ (Fig. 2.5). Heritability for this trait (0.53)
was intermediate between both of its constituents, Met/cp and Cys/cp, alone.

Based on the RIL means across the five environments crude protein content was
negatively correlated with Lys/cp (r — 0.63** ), Thr/cp (r = -0.85**), Met/cp (r = -0.19%), and
Cys/cp (r =-0.16). Genotypic correlations, which indicate the direction and magnitude of
correlated responses to selection (Falconer and Mackay, 1996) were also calculated. Genotypic
correlations for crude protein versus Lys/cp and Thr/cp were -0.83 and -0.91, respectively. The
genotypic correlation coefficients for crude protein versus Met/cp were -0.36 and -0.06 for crude
protein versus Cys/cp.

Phenotypic correlations based on the five environment means for the 140 RILs between
the various amino acids were positive, ranging from 0.41 (Thr/cp vs. Cys/cp) to 0.78 (Lys/cp vs.
Thr/cp) (Table 2.2). Met/cp was found to be highly correlated with both Lys/cp (r = 0.70**) and
Cys/cp (r = 0.57**). Genetic correlations ranged from 0.17 (Lys/cp vs. Cys/cp) to 0.92 (Lys/cp
vs Thr/cp).

Figure 2.6 shows markers on linkage groups created from the Benning x Danbaekkong
population aligned with markers from the consensus map 4.0 (Hyten et al., 2010a). The 421
polymorphic markers (98 SSRs and 323 SNPs) mapped in the RIL population provided broad
coverage of most of the 20 soybean linkage groups with only a few exceptions. An exception
was chr 7, which contained only six linked markers (Fig 2.6). On the average the Benning x
Danbaekkong linkage map contained a marker approximately every 5 to 6 cM, although gaps
greater than 40 cM (based on the consensus map positions) occurred in chr2 (Lg-D1b), chr4 (Lg-
C1), chr6 (Lg-C2), chrl4 (Lg-B2). Chromosome 18 (Lg-G) had the most markers (5 SSR and 70

SNP markers). Some chromosomes had sparse marker coverage in certain regions which caused
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the mapping software to split single LGs into two subgroups (e.g. Chr2, 4, 7, 11, 14, 16, 19, and
20). The marker order on the LGs and the subgroups is in general agreement with that of the
integrated genetic linkage map (Consensus Map 4.0) (Hyten et al., 2010a). The 28 chromosomes
covered roughly 1124 cM of the genome. Although a fairly large number of markers were used
in this study, many SNP markers were clustered in regions of the genome, therefore reducing
genome coverage.

Given the amino acids were expressed as a percent of crude protein, it was critical to
identify the protein QTLs in this population. Based on SF-ANOVA at P <0.01, protein QTL on
seven chromosomes were found (Table 2.3). These QTL explained from 4 to 53% of the
variation in crude protein content. The QTL located on chr 20 (Lg-1) accounted for over 8 times
the variation of the next largest protein QTL (chr 6, chr 7). The allele for increased protein at the
QTL on chr 20 was inherited from Danbaekkong and when homozygous resulted in over 28 g kg
! greater protein than the Benning allele. Other protein QTLs were found on chr 10, chr 13, chr
14, and chr 15. The alleles for increased protein were inherited from Danbaekkong at all QTL
with the exception of the QTL on chr 13. Composite interval mapping (CIM) identified QTL on
chr 14, chr 15, chr 17, and chr 20 (Table 2.3; Fig. 2.6f,g,h,i). The analysis indicated these QTL
accounted for 5 to 55% of the variation in protein content. As found by SF-ANOVA, the QTL
on chr 20 near BARC-061899 accounted for more variation in crude protein content than the
other three QTL combined. The significant markers identified in Tables 2.3 and 2.4 were
analyzed using the STEPWISE selection criteria of PROC REG (SAS, 2003). For crude protein,
BARC-061899 (R? = 60%), BARC-042781 (R? = 4%), and BARC-018353 (R? = 3%) remained
in the multiple regression model and explained 67% of the variation for crude protein combined.

Based on the heritability value of crude protein (0.93), the markers were able to explain 72% of
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the genotypic variation for this trait. No significant epistasis was detected between significant
markers for crude protein.

The SF-ANOVA identified three chromosomes associated with Lys/cp concentration (P <
0.01) on chr 5, chr 15, and chr 20 (Table 2.4). The locus on chr 20 accounted for the majority of
the variation for this trait (R? = 47%) while the other two were minor in their effects. At each
QTL for this trait the allele for increased Lys/cp was inherited from Benning. The effect of
Benning alleles in the homozygous state at the BARC-061899 QTL resulted in an increase in
Lys/cp of 1.2 g kg™* while the other QTL increased Lys/cp from 0.31 to 0.49 g kg™ in the same
allelic state. The CIM analysis for Lys/cp identified two intervals, one on chr 8 and a second on
chr 20 (Fig 2.6 c, i). The alleles on chr 20 explained roughly the same amount of variation for
this trait as was detected using SF-ANOVA (R? = 48%). The locus on chr 8 accounted for only
6% of the variation and was also identified at a less stringent significance level in the SF-
ANOVA (P <0.05). BARC-016899 (R? = 49%), Satt231 (R* = 4%), and BARC-055265 (R’ =
2%) were retained in the STEPWISE multiple regression analysis, explaining 55% of variation
for Lys/cp. These markers explained 80% of the genotypic variation for Lys/cp based on the
heritability estimate for this trait (0.69). No significant epistasis was detected between
significant markers for Lys/cp.

Five QTL were discovered for Thr/cp using SF-ANOVA at P <0.01. Similar to crude
protein and Lys/cp, the QTL with the greatest impact was on chr 20 at the BARC-061899 locus,
and accounted for 51% of the variation (Table 2.5). The remaining four QTL accounted for 6%
or less of the variation for this trait (chr 4, chr 7, chr 9, and chr 10). The Benning parent was the
donor of positive alleles for Thr/cp at all loci and when homozygous at the BARC-061899 locus

increased it by 1.3 g kg™. The next greatest effect at a homozygous Benning locus was 0.4 g kg™
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for Satt478 on chr 10. The CIM identified four QTL (Chr. 1, 9, 17, and 20), two of which were
not identified in the SF-ANOVA at the P < 0.01 significance level (BARC-035219 on chr. 1(P =
0.05) and Satt256 on chr. 17) (Fig. 2.6 a,d,h,i). BARC-061899 on chr 20 accounted for roughly
9 times more phenotypic variation in Thr/cp than the other QTL discovered with CIM (Chr 1, 9,
and 17). BARC-016899 (R? = 54%), BARC-035219 (R* = 4%), BARC-048619 (R* = 3%), and
Satt256 (R? = 3%) were retained in the STEPWISE multiple regression analysis, explaining 63%
of variation for Thr/cp. Based on the heritability estimate of 0.86 for Thr/cp the markers retained
in the model explained 73% of the genotypic variation for this trait. No significant epistasis was
detected between significant markers for this trait.

For Met/cp SF-ANOVA detected a QTL on chr. 20 (R? = 12%), but it was 9 cM distal to
the BARC-061899 for Thr/cp and Lys/cp at the BARC-020713 locus (Table 2.4). Two other
QTL were detected on chr 9 and chr10 at BARC-042449 (R? = 8%) and Satt592 (R*= 11%),
respectively. Positive alleles were inherited from Benning in each case, accounting for increases
in Met/cp between 0.11 and 0.16 g kg™>. QTL on chr 6, chr 9, chr 10, and chr 20 were significant
for CIM, with BARC-020713 explaining the most variation of the four (R? = 20%) (Table 2.4;
Fig 2.6 b,d,e,i). The remaining three loci explained 8, 9, and 14% of the variation for the QTL
on chr 6, 9, and 10, respectively. The QTL on chr 6 was detected in the SF-ANOVA at a less
stringent probability (P < 0.05). Four markers, BARC-020713 (R? = 14%), Satt592 (R* = 9%),
BARC-042449 (R? = 5%), and BARC-055889 (R? = 4%) explained approximately 32% of the
variation for Met/cp based on the multiple regression analysis. These four markers explain 71%
of the genotypic variation based on the heritability estimate of 0.45 for this trait. These markers

did not interact significantly.
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For Cys/cp, SF-ANOVA detected QTL at four loci (Table 2.4). Satt592 on chr 10
explained the most variation (R? = 13%), while the remaining three each explained 6% or less of
the variation. Two QTL inherited their positive alleles from Benning, Satt592 and BARC-
020713, resulting in increased Cys concentration by 0.20 and 0.14 g kg™, respectively, when in
the homozygous state, respectively. The positive alleles were inherited from Danbaekkong at the
chr 6 and chr 14 QTL and each provided an 0.11 g kg™ increase in Cys/cp. The only QTL
identified by CIM was Satt592 on chr 10, which explained 10% of the variation for Cys/cp (Fig
2.6 e). The multiple regression analysis for Cys/cp identified three markers explaining the
variation for this trait. BARC-020713 (R* = 49%), Satt592 (R = 4%), and BARC-048543 (R* =
2%) were retained in the model and explained 55% of the phenotypic variation for this trait and
93% of the genotypic variation based on the heritability estimate for Cys/cp of 0.59. No
epistaticinteraction was detected between significant markers for Cys/cp.

Similar to Met/cp and Cys/cp, the two loci with the largest effects for Met+Cys/cp were
Satt592 on chr 10 and BARC-020713 on chr 20, which explained 15% and 10% of the
phenotypic variation, respectively. At these two loci, the positive alleles were inherited from
Danbaekkong. Three QTL with positive alleles inherited from Benning were detected on chr 6,
chr 14, and chr 18 and explained between 4 and 5% of the variation in Met+Cys/cp. Increases in
Met+Cys/cp of 0.34 and 0.30 would be expected when the Benning alleles are homozygous at
the QTL identified on chr 10 and chr 20. The three minor QTL for Met+Cys/cp which inherited
their positive alleles from Danbaekkong would result in 0.16 to 0.22 g kg™* improvement in
Met+Cys/cp concentration. The two loci on chr 10 and chr20 were significant in the interval
mapping analysis, explaining roughly the same amount of phenotypic variation (R = 11-12%)

(Fig 2.6 e,i). The BARC-020713 locus (R* = 8%) was the only marker retained in the
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STEPWISE selection procedure in the multiple regression analysis for Met+Cys/cp. Based on
the heritability for this trait (0.53%), this QTL only explained 15% of the genotypic variation for
this trait. This may be due the fact that the effects of each QTL for each individual amino acid,
Met or Cys, may be confounded in this analysis when the values were combined. No significant
epistasis was detected between markers for Met+Cys/cp.

Discussion

Soybean recombinant inbred lines were recovered with crude protein greater than 500 g
kg™ which is near the maximum detected historically for soybean accessions in the germplasm
collection (Yaklich, 2001). This finding was not surprising as the Danbaekkong parent averages
510 g kg'of protein. As has been the major impediment in the efforts to develop high yielding,
high protein cultivars, we detected a strong negative correlation (r = -0.50) between protein and
seed yield (Warrington, 2011). The amino acid values as a percent of total crude protein
detected in this study are similar to those set forth by the National Research Council (1994;
1998) for poultry and swine nutrition, though far from the trait end points proposed by the
United Soybean Board’s Better Bean Initiative (Bajjalieh, 2004; Sallstrom, 2002).

The large effect QTL conditioning crude protein found on chr 20 (Lg-1) at BARC-061899
has been identified previously in other populations. QTL conditioning protein were also detected
by Brummer et al. (1997), Diers et al. (1992), Sebolt et al. (2000),Chung et al. (2003), and
Mansur et al. (1993) on chr 20. Nichols (2006) fine-mapped the seed protein QTL on chr 20
using two sets of backcross lines to the region between SSR marker Satt239 and AFLP marker
ACG9b. In our study, we detected a SNP marker (BARC_016899) within this interval which is

highly significant for crude protein, Lys/cp, Thr/cp, Met/cp, and Met+Cys/cp. This interval
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corresponds to the major protein QTL cgPRO-003 which was previously identified and
confirmed (Nichols et al., 2006).

Few studies have undertaken the task of elucidating the genomic regions associated with
amino acid concentration in soybean. Panthee et al.(2006a; 2006b) used SSR markers to map
amino acid concentration (dry weight basis) in a soybean population of 101 Fg-derived
recombinant inbred lines (RILs). They identified QTL associated with Cys (chr 1, 13, and 18),
Met (chr 13, 18, and 7), and Met+Cys (chr 13 and 7) concentration (Panthee et al., 2006b).
Panthee et al. (2006b) also identified genomic regions associated with Lys (chr 1, 15, and 18)
and Thr (chr 2, 5, 9, and 19). For the sulfur-containing amino acids, no QTL detected in these
studies were found on the same chromosomes as our mapping population. A QTL for Lys was
detected roughly 20 cM upstream from a QTL we detected on chr 15. In addition, Panthee
(20064a) reported a QTL on chr 9 for Thr. We report one on this chromosome as well, but around
40 cM downstream. Panthee et al. (2004) used the same RILs to map QTL associated with the
7S and 118 fractions of soybean storage proteins. Since the glycinin fraction contains higher
levels of S-containing amino acids than the 3-conglycinin fraction, the identification of genomic
regions governing these storage protein constituents would be beneficial in MAS regimes for
improved S-containing amino acids. They reported three QTL for glycinin (chr 17, 19, and 20)
and two for 3-conglycinin concentration (chr 16 and 17). The QTL detected for glycinin on chr
20 was 45 cM downstream from the QTL we detected for crude protein on the same
chromosome. We found QTL on chr 17 for crude protein and Thr/cp. The crude protein QTL
and the Thr QTL are approximately 8 cM and 43 c¢cM from the $-conglycinin QTL detected in

their study, respectively.
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Soybase (Grant et al., 2002) (www.soybase.org, verified 15 March 2011) reports a

number of protein and protein-related QTLwithin 10cM upstream or downstream of those
detected in our study. As previously mentioned, a number of protein QTL have been previously
detected in the same region of chr 20 as found in our study. Nine QTL associated with protein
are reported in Soybase near our QTL. These include Prot 1-1, Prot 1-2, Prot 1-3, Prot 1-4, Prot
3-12, Prot 11-1, Prot 15-1, Prot 17-1, and the previously mentioned cqPro-003 QTL. Two QTL
(Prot 4-5 and Prot 4-6) were detected on chr 15 approximately 6 cM from our QTL for crude
protein. Interestingly, three QTL relevant to protein quality (Glycinin 1-1, Acidic fraction 1-1,
and Conglycinin 1-1) are reported in Soybase roughly 8 cM from the QTL detected in this region
for crude protein and Thr/cp in the current study. A protein quality QTL (Acidic fraction 1-3)
and a protein QTL (Prot 13-4) was reported 2 and 4 cM from the QTL we detected for Thr/cp
and Met/cp, respectively. A QTL for protein in Soybase (Prot 24-1) was mapped to an identical
region of chr 6 in our study.

Since the parental genotypes should be fixed at nearly all allelic loci, the transgressive
segregation present for some of the traits is likely due to the complementary action of additive
alleles that are dispersed between the parental lines, a byproduct of recombination (Rieseberg et
al., 1999). Transgressive segregation is proof that there are effects from QTL alleles inherited
from both parental genotypes. Otherwise, if all the positive alleles came from just one of the
parents, the highest value for the progeny would be equal to that of the highest parent. This is
the case for Lys/cp and Thr/cp, where there was no significant transgressive segregation. In this
study, the amount of transgressive segregants can only be interpreted in regard to the
Danbaekkong parent since Benning was not grown in the experiment. Our findings show that

Danbaekkong possesses nearly all of the positive alleles for crude protein (Table 2.3), while only
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Benning alleles lead to increased levels of Lys/cp, Thr/cp, and Met/cp (Table 2.4). On the other
hand, alleles from both parents can lead to improved phenotypes for Cys/cp and Met+Cys/cp
(Table 2.4).

QTL conditioning crude protein, Lys/cp, Thr/cp, Met/cp, Cys/cp, and Met+Cys/cp were
detected using single factor analysis of variance (SF-ANOVA) and composite interval mapping
(CIM). 1t is evident from our results that the QTL on chr 20 (Lg-I) has a great impact on both
protein quantity and quality. The variation explained (R*= 55%) by the crude protein QTL
identified at the SNP marker BARC-061899 is the highest reported in the literature to date. The
genotyping of 421 polymorphic SNP markers in this population provided increased precision
compared to the SSR-based maps utilized previously to map these traits. When the allele at
BARC-061899 is inherited from Danbaekkong, this QTL also reduces Lys/cp, Thr/cp, Met/cp,
Cys/cp, and Met+Cys/cp. The fact that positive alleles for protein quality are not inherited along
with the Danbaekkong allele for higher protein quantity is crucial to our understanding of how to
best develop genotypes with improved amino acid profiles. The aim is to introgress alleles
which improve protein quality without sacrificing protein quantity. In nearly all cases, the
positive alleles for amino acid concentrations were inherited from the Benning parent. When the
Danbaekkong allele on chr 20 at BARC-061899 is homozygous, crude protein is increased by
approximately 28.2 g kg''in this population of RILs. RILs homozygous for the same allele will
average 1.2 and 1.3 g kg*less in Lys/cp and Thr/cp, respectively. BARC-020713 on chr 20,
which is significant for Met/cp, Cys/cp, and Met+Cys/cp is 9.1 cM upstream from BARC-
061899. Based on both SF-ANOVA and CIM, this is the same QTL as BARC-061899. The
result of inheriting the Danbaekkong allele at this QTL(s) is a reduction in Met/cp by 0.16 g kg™,

Cys/cp by 0.14 g kg, and Met+Cys/cp by 0.30 g kg™.
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Yates et al. (2006) found that backcross-derived lines containing this same high-protein
allele within a different genetic background produced seeds with lower levels of Thr and Lys, but
no change in the levels of Met or Cys. This generally fits the expectation given the large effect
on both Lys and Thr shown in our results. Based on the aforementioned allelic arrays and their
affects on crude protein and the amino acid profile, it is not feasible to select only for the major
crude protein QTL on chr 20 and improve protein quality. By selecting for the Danbaekkong
allele on chr 20 and for either Danbaekkong or Benning alleles at QTL on other chromosomes
which affect protein quality, breeders may be able to improve protein and maintain protein
quality concurrently. The QTL detected for Lys/cp and Thr/cp on other chromosomes do not
increase values for these two traits even half as much as the QTL at BARC-061899 on chr 20.
On the other hand, concentrations of the sulfur-containing amino acids may be improved by
introgressing Danbaekkong alleles at Satt592 on chr 10 and Benning alleles at QTL on chr 6, 14,
and 18 while still increasing the level of protein with the Danbaekkong allele at the chr 20 QTL.
The increase in Met+Cys provided by this locus is actually greater (2a = 0.34) than that on chr 20
(2a=0.30) (Table 2.8). Another approach would be to maintain crude protein, while increasing
sulfur-containing amino acids. This could be accomplished by selecting for the Benning allele at
the chr 6, 14, 18, and 20 QTL and the Danbaekkong allele at the QTL for Met+Cys/cp on chr 10.

Developing a clear understanding the relationship between protein concentration and
quality has been difficult. It is evident that the crude protein QTL detected in our study on chr
20 also plays some role in the sequestration of the other amino acids within the seed. It is clear
from both phenotypic and genotypic correlations that an increase in crude protein results in
decreased values of these amino acids (Table 2.2). The negative correlation between crude

protein and Thr is especially strong. In terms of the sulfur-containing amino acids, it is known
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that the synthesis of storage protein within the developing soybean seed is sensitive to Met
concentration, in that the presence of Met during this process prevents the synthesis of low
quality proteins; in other words if the plants are grown in sulfur deficient soils then poor quality
seed storage proteins will be synthesized (Sexton et al., 2002).

In plants, Met, Lys, and Thr are part of the aspartate family of amino acids, thus
synthesized from the same precursor, aspartate. Aspartate is the carboxylate ion, or ester, of the
non-essential amino acid aspartic acid and is vital in the biosynthesis of these amino acids (Shen
et al., 2002). Therefore, it is not surprising that these three amino acids were correlated. It is of
interest to look at aspartate kinase and aspartate semialdehyde dehydrogenase, as they are first
two enzymes which function in the pathway and could therefore be responsible for increased or
reduced levels of each of these amino acids.

Wilcox and Shibles (2001) found that Met and Cys levels remained constant even when
protein was increased. Cycles of recurrent selection which increased protein from 438 to 474 g
kg™ over six cycles did not significantly change Met concentration (Burton et al., 1982). On the
other hand, it has also been shown that increasing the protein concentration results in an increase
in the B-conglycinin fraction of storage protein, thereby reducing overall protein quality
(Nakasathien et al., 2000; Paek et al., 1997). Serretti (1994) found a high protein line with
greater Cys concentration and one with lower Met concentration than the check genotype.
Findings by Paek et al. (1997) suggested that soybean seed incorporates as much sulfur amino
acids as is available and then produces the poorer B-subunit based on the availability of nitrogen.
This same group speculated that the limitations in S-amino acid content may be due to three
reasons: (i) the inability of the soybean plant to up-take sulfate rapidly, (ii) to assimilate sulfate

effectively, or (iii) the inability to mobilize S-amino acids from vegetative tissue after mid-seed
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filling (Paek et al., 1997). Grabau (1986) was able to produce seed with 23 and 31% increases in
Met and Cys concentrations, respectively, by providing soybean plants with a reduced form of
sulfur (Met) during seed filling. From these findings, it is apparent that when sulfur is present
seeds will accumulate 118 proteins and no B-subunits of the 7S fraction (Paek et al., 2000;
Sexton et al., 1998).

This study reinforces the fact that breeding efforts for soybean quality need not focus
completely on increasing protein concentration. Simply increasing crude protein may not
increase essential amino acid concentrations. Mapping both crude protein and amino acids
concurrently within the same population allows for a more precise understanding of the
interaction between alleles conditioning protein and amino acids and how to best proceed with
marker-assisted selection (MAS). At the present time, not a single commercial cultivar of
soybean with the FAO standard total sulfur containing amino acids has been developed due to
the primarily due to the pitfalls described in this paper. With continued improvements in
breeding technologies in conjunction with continued elucidation of quantitative traits, it is
foreseeable in the future that a soybean cultivar with high yield, protein, and levels of essential

sulfur-containing amino acids will be developed.
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Table 2.1. Protein and amino acid means for Danbaekkong, three check cultivars, and the means
and ranges for 140 Benning x Danbaekkong RILs in five environments.

Parent means

Fs-derived RILs

Trait Danf  Checks® Mean  Min Max LSD (0.05)
Protein (g kg™) 510 433 468 425 507 13
Lys/cp (g kg ) 61.2 64.8 63.3 61.2 65.0 1.1
Thrlep (g kg™) 34.4 37.9 36.1 33.8 38.0 0.7
Met/cp (g kg™) 14.2 14.4 14.2 13.8 14.7 0.4
Cyslcp (g kg™) 15.7 15.3 15.3 14.7 16.2 0.4
Met+Cys/cp (g kg™)  29.9 29.7 29.6 28.5 30.8 0.7

tDanbaekkong

FMean of three checks (NCRoy, AG6202, BoggsRR)
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Table 2.2. Phenotypic (in bold font) and genetic correlation coefficients among crude protein and
amino acids for the Benning x Danbaekkong RIL population.

Crude Protein Lys/cp Thr/cp  Met/lcp Cyslcp Met+Cys/cp

Crude Protein -0.63** -0.85** -0.19* -0.16 -0.20**
Lys/cp -0.82 0.78**  0.70** 0.41* 0.63**
Thricp -0.91 0.92 0.44**  0.41** 0.47**
Met/cp -0.36 0.47 0.57 0.57** 0.88**
Cysl/cp -0.06 0.17 0.36 0.76 0.89**
Met+Cys/cp -0.21 0.32 0.48 0.92 0.95

*, ** significant at the P < 0.01 and P <0.001 level of significance
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Table 2.3. DNA markers associated with crude protein (g kg™) using single factor analysis of
variance (SF-ANOVA,; P = 0.01) and composite interval mapping (CIM) for the mean of 140
RILs grown in five environments.

SF-ANOVA CIM
Chromosome Marker 2at R LOD R?
(LG)
g kg™ % score %

6 (C2) BARC-042781 8.8 6

7 (M) Satt336 9.0 6

10 (O) Satt478 75 4

13 (F) Satt114 77 4

14 (B2) BARC-018353 8.3 5 38 5
15 (E) BARC-027786 8.3 5 44 10
17 (D2) BARC-019505 5.6 2 51 9
20 (1) BARC-061899 28.2 53 293 55

T 2a, the difference in crude protein content at a marker locus homozygous for Danbaekkong vs.
homozygous for Benning. A positive value indicates the allele for increased protein is inherited
from Danbaekkong.

1 significant at P = 0.05
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Table 2.4. DNA markers associated with Lys (Lys) as % crude protein (g kg™) using single
factor analysis of variance (SF-ANOVA; P = 0.01) and composite interval mapping (CIM) for
the mean of 140 RILs grown in five environments.

SF-ANOVA CIM
Trait Chromosome (LG)  Marker 2af R? LOD  R?
g kg™ % score %

Lys/cp 5 (C1) BARC-024445 -0.49 7

8 (A2) BARC-055265 -0.31 4 3.4 6

15 (E) Satt231 -0.35 4

20 (1) BARC-061899 -1.20 47 23.2 48
Thr/cp 1 (D1a) BARC-035219 -0.27 3* 3.3 6

4 (C1) BARC-024445 -0.39 4

7 (M) Satt336 -0.34 5

9 (K) BARC-048619 -0.28 3 3.9 5

10 (0) Satt478 -0.40 6

17 (D2) Satt256 -0.10 ns 3.7 6

20 (1) BARC-061899 -1.30 51 26.1 53
Met/cp 6 (C2) BARC-055889 -0.06 3t 3.6 8

9 (K) BARC-042449 -0.11 8 4.1 9

10 (0) Satt592 -0.14 11 5.9 14

20 (1) BARC-020713 -0.16 12 7.7 20
Cyslcp 6 (C2) BARC-048543 0.11 5

10 (0) Satt592 -0.20 13 35 10

14 (B2) BARC-016831 0.11 5

20 (1) BARC-020713 -0.14 6
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Table 2.4 continued.

SF-ANOVA CIM
Trait Chromosome (LG) Marker 2at R? LOD R?
Met+Cys/cp 6 (C2) BARC-047715 0.17 4
10 (0) Satt592 -0.34 15 43 11
14 (B2) BARC-016831 0.16 4
18 (G) BARC-039397 0.22 5
20 (1) BARC-020713 -0.30 10 43 12

T 2a, the difference in crude protein content at a marker locus homozygous for Danbaekkong vs.
homozygous for Benning. A positive value indicates the allele for the increased trait value is
inherited from Danbaekkong.

1 significant at P = 0.05
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Figure 2.1. Distribution of Lys/cp (g kg™ crude protein) in the Benning x Danbaekkong RIL
population.
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Figure 2.2. Distribution of Thr/cp (g kg™ crude protein) in the Benning x Danbaekkong RIL

population.
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Figure 2.6 Comparison between Benning x Danbaekkong population linkage map (shown on
right) and the integrated genetic linkage map (Consensus Map 4.0 (Hyten et al, 2010a) (shown
on left). Bars shown are connecting identical marker loci.
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Figure 2.6 continued.
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Figure 2.6.

continued.
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Figure 2.6. continued.
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Figure 2.7. QTL likelihood plots from composite interval mapping (CIM) for crude protein and
amino acid QTL using 140 recombinant inbred lines (RILs) from the Benning x Danbaekkong
population. For each chromosome (Chr), the permutation-derived (n = 1000 per trait) LOD score
significance criteria are indicated by a vertical dotted line at the threshold level of 3.1 for each
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Figure 2.7. continued.
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Figure 2.7.continued.
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CHAPTER 4
RESOURCE ALLOCATION FOR SEED PROTEIN AND SEVERAL AMINO ACIDSIN

SOYBEAN!?

YWarrington, C.V., JH. Orf, A.S. Killam, N. Bajjalieh, and H.R. Boerma. To be submitted to Crop Science
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Abstract

Soybean [Glycine max (L.) Merr.] isthe world' s leading provider of oil and high-quality
protein meal. An understanding of genotype x environment (GXE) interactions associated with
crude protein (cp), lysine (Lys), threonine (Thr), methionine (Met), and cysteine (Cys) would aid
breedersin their selection efforts. The objectives of this study were to determine the importance
of GXE interactions for protein and amino acid content, to assess the optimum number of
replications and environments necessary to provide agiven level of discrimination among
genotypes for crude protein and amino acids, and to evaluate the association of seed yield,
maturity, and other agronomic traits with amino acid content. To meet these objectives, 140 Fs-
derived recombinant inbred lines (RILS) were developed from a cross of ‘Benning’ x
‘Danbaekkong’ and were grown in five field environments across the southern USA. The effects
of genotype and genotype x environment interaction were significant for crude protein, Lys/cp,
Thr/cp, Met/cp, Cys/cp, and Met+Cys/cp (P<0.001). The genotypic variance component for
crude protein was roughly seven times larger than the GXE variance component for this trait.
These two components of variance were found to be of similar magnitude for Lys/cp and Cys/cp.
The GXE component of variance was dlightly higher than the genotypic component for Thr/cp,
Met/cp and Met+Cys/cp. It was determined that the combination of five replications and two
environments used in our study could detect a difference of 2.5% between two RIL means for
Lys/cp and Thr/cp. Anincreased number of plots (environment/replication combinations) would
be necessary to detect a 2.5% difference or less between two RIL means for crude protein,
Met/cp, Cys/cp, and Met+Cys/cp. Significant correlations were detected between yield and
crude protein (r = -0.50), Lys/cp (r = 0.49), and Thr/cp (r = 0.49). Crude protein and amino acid

associations with maturity, seed weight, plant height, and lodging were negligible.
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Introduction

Soybean [Glycine max L. (Merr.)] isthe world' s leading provider of oil and high-quality
protein meal. The amino acid constituents of the protein are the maor determinate in how
efficient the meal isin providing growing poultry, swine, and other livestock with the necessary
nutrition for maximum health and growth. The United Soybean Board’ s Better Bean Initiative
(BBI) included as one of its major research goals in 2002 that soybean breeders strive towards
devel oping soybean cultivarsin the USA with improved amino acid quality. One of the primary
traits targeted by the BBI is increased methionine and cysteine while increased levels of lysine
and threonine represent secondary goals of theinitiative. It isimperative for breeders that
develop soybean cultivars with modified amino acid profiles as well as growers that produce the
improved soybeans seeds are aware of genotype x environment (GxE) interaction asit relates to
the amino acid profile of soybean and their overall agronomic performance.

As quantitative traits, protein and amino acid concentrations are controlled by a number
of genes and are affected by the environment to a degree (East, 1916). Genotype x environment
(GXE) interaction refers to differential genotypic responsesin different environments, which
reduces the association between genotype and phenotype. Factors such as temperature, soil
moisture, soil type, and fertility level which fluctuate among environments, either location or
year, potentially contribute to inconsistent genotypic responses. When GxE interaction is
present, the effects of genotypes and environments are statistically nonadditive, implying that the
differences between genotypes are dependent upon the specific environment in which they are
grown (HUhn, 1996; Yue et a., 1997). The knowledge of GxE interactions and stability of
genotypes across environments is vital for the development of an efficient and effective breeding

strategy to modify the amino acid profile in soybean. For plant breeders, dealing with GXE
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interaction may be viewed in anumber of ways. Breeders may deal with large GxE interactions
by devel oping breeding programs and sel ecting genotypes within more homogeneous sub-
regions of alarger area. This method of dealing with GxE interaction is costly and does not
overcome the influence of year x genotype interactions over the entire target environment area
(Scapim et al., 2000). The presence of GXE interaction requires that breeders test genotypesin
the appropriate environmental conditions likely to be encountered in the target environments
where the genotypes are to be grown. Thus, breeders aim to devel op stable cultivars with good
performance over a range of environmental conditions (Weber et al., 1996). It isimportant to
elucidate the degree to which GxE interactions influence the expression of a prospective ‘value-
added’ change in seed composition (Wilson, 2004). Thereis limited information concerning the
G x E interactions associated with amino acid content in soybean, though protein and other
value-added traits have been investigated previously. Breeding programs have been fairly
successful in increasing protein (Brim and Burton, 1979; Burton and Wilson, 1998; Miller, 1979;
Weber and Fehr, 1970; Wilcox, 1998; Wilcox and Cavins, 1995), but environmental variation
can make selection for thistrait difficult, even when heritability is high (Brummer et a., 1997).
Fehr (2003) determined GxE interactions were not significant in regard to the protein
components -conglycinin and glycinin, an indication that breeders should have success in
breeding for soybean lines with varied levels of protein components. Temperature during the
growing season has been shown to have an affect on protein concentrations in soybean (Wolf et
al., 1982), although it is evident that there is much variability in plant response to increasing or
decreasing temperatures (Dornbos and Mullen, 1992; Gibson and Mullen, 1996; Sato and Ikeda,
1979). The causa basisfor the seed constituent response is unknown, however it may be that the

effectiveness of the metabolic machinery is affected by temperature, thus resulting in GXE
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interactions (Wilson, 2004). Studies of the effects of different environments on soybean fatty
acids showed that increased temperature was a determinant in reducing linolenic and increasing
oleic acid concentrations in soybean seed (Cherry et a., 1985). A study by Primomo (2002)
found that the genotype x year interaction was significant for al fatty acids tested, but that only
oleic, linoleic, and linolenic acids had significant genotype x location and genotype x year x
location effects.

Anintegral component in establishment of markets for soybean cultivars with value-
added traits is the determination of how traits respond to changes in environment. The most
pragmatic and cost-effective situation would be one in which cultivars express wide adaptation
over arange of growing environments. Since yield testing is a costly and time-consuming
endeavor, it is necessary that breeders determine the optimum combination of replicates and
environments to sufficiently measure the genetic value of a genotype. Increased replications at
each location function to improve the precision of measurements and the power to detect
differences between genotypes within the location. Conversely, the presence of GXE interaction
between the test environment and the breeder’ s base population of environments negates the
effectiveness of more replicates at asingle location. Thus, more precision would be gained in
discriminating between genotypes by adding additional testing environments as opposed to
replications (Bernardo, 2002). The addition of environments is associated with increased
resource input including labor, land, and supplies (Kang, 1997). The best location or
combination of locations should provide a measure of the relative potential of genotypes over the
target population of environments and maximize genetic variation, and in turn, response to
selection (Allen and Rasmusson, 1978). This response to selection is highly associated with trait

heritability. Theimpact of heritability estimates for plant breedersistwo-fold. First, heritability
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estimates provide a measure of the relative ease with which traits can be selected. Second, the
relative change in population mean due to selection is afunction of heritability, thus heritability
estimates are important in predicting popul ation improvement (Hanson, 1963). With that being
said, there appears to be a trade-off between precision and resource allocation.

It is extremely important for breeders to be cognizant of the influence of GXE interaction
on seed composition and seed quality traits in soybean and its role in how breeding programs
proceed. Although there have been afew studies concerned with GXE interaction in regard to
protein, none have been published which have investigated this phenomena for soybean amino
acids. The objectives of this study were to: (i) determine the importance of GXE interactions for
protein and amino acid content, and (ii) to assess the effect of GXE interaction on selection of
genotypes as determined by the optimum number of replications and environments necessary to
provide a given level of discrimination among genotypes for crude protein and amino acids, and
(iii) evaluate the association of seed yield, maturity, and other agronomic traits with amino acid
content.

Materials and Methods
Plant Material

A population of 150 Fs-derived recombinant-inbred lines (RILS) was devel oped from a
cross of Benning (P1595645) (Boerma et al., 1997) x Danbaekkong (P1619083) (Kim, 1996).
The parents were chosen based on their disparate protein levels, with Benning averaging
approximately 42% and Danbaekkong at 51% on a dry-weight basis. Benning is ahigh-yielding
maturity group VI cultivar adapted to the southeastern USA and Danbaekkong is a South

Korean maturity group IV tofu cultivar.
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Seeds from the original cross were grown in the greenhouse and seed from individual F;
plants were bulked. The F, plants were grown at the Univ. of Georgia Plant Sciences Farm near
Watkinsville, GA. Individua F; plants were advanced to the Fs generation in Athens, GA and at
the USDA winter nursery near Isabela, Puerto Rico using a modified single seed descent (Brim,
1966). The F; and F4 generations were grown in Puerto Rico and the Fs generation was grown at
the Univ. of Georgia Plant Sciences Farm. At maturity individua Fs plants were single-plant
threshed to create Fs-derived RILs. Approximately 200 RILs were grown in 2003 and 150 RILS
were selected for uniform maturity.

In 2005 and 2006, 150 RILs were planted at the Univ. of Georgia Plant Sciences Farm
near Athens, GA and aso planted in Bay, AR, Stuttgart, AR, and Kinston, NC in 2006. The 150
RILs were sub-divided into three sets of 50 RILs based on their relative maturity. Danbaekkong
and three check cultivars, ‘NCRoy’, ‘AG6202’, and ‘Boggs-RR’ were included in each set. For
each set the experimental design was a randomized complete block with two replications. Each
set was also randomized within a single replication.

The experiment was planted in Athens in an Appling loamy coarse sand soil type on 19
May 2005 and on a Cecil coarse sandy loam (fine, kaolinitic, thermic Typic Kanhapludults) soil
type on 22 May 2006 and were irrigated. The experimental unit in Athens was a 2-row plot that
was 7-m long with 76-cm between rows and was seeded with approximately 27 seeds m row.
At maturity, all plots were end-trimmed to afinal row length of 3.66 m and the plots were
harvested by plot combine. The experiments were planted in a sandy loam soil typein Bay, AR
on 13 June 2006 and were irrigated. The experimental unit was a 2-row plot with 76-cm
between rows. In Stuttgart, AR, the experiments were planted in a silt loam soil type on 26 May

2006 and were irrigated. The experimental unit was a 2-row plot with 76-cm between rows. The
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Kinston, NC experiments were planted on 19 June 2006 in a Portsmouth soil type (loam with
~4% organic matter) (Fine-loamy over sandy or sandy-skeletal, mixed, semiactive, thermic
Typic Umbragquults) and were not irrigated. The experimental unit was a 1-row plot harvested
from within 3 planted rows spaced 96-cm apart. The plots were end-trimmed to 4.26 m prior
harvesting the middle row of each plot.

Dataon aplot basis for seed yield, maturity, seed weight, plant height, and lodging were
collected. Seed yield was recorded on 130 g kg™* moisture basisin kg ha. Maturity was based
on the date in which at least 95% of pods were mature, or the R8 stage of development (Fehr et
a., 1977). Plant height was measured as the average of three plants from the ground to the
terminal node. Lodging scores were based on arating between 1 and 5, with 1 being erect plants
and 5 being prostrate within an entire plot. Seed weight was measured from a 100-seed sample
from each plot and reported as mg seed™.

Protein and Amino Acids

Soybean samples were scanned by near infrared (NIR) spectrometry for crude protein
(cp), lysine (Lys), threonine (Thr), methionine (Met), and cysteine (Cys) at the Univ.of
Minnesota Soybean Breeding Project laboratory. Whole soybean samples were first ground
using aPerten LM 3600 grinder and then scanned on a FOSS 6500 NIR Instrument and were
reported in g kg™ on amoisture-free basis. The crude protein and amino acid analyses were
conducted on 25-g whole seed samples with near-infrared reflectance (NIR). NIR spectrafrom
the FOSS 6500 were predicted using | SIPredict Software version 1.10.2.4842. Each amino acid

sample was reported as a proportion of overall crude protein content (g kg™cp).
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Satistical Analyses

A combined analysis of variance was conducted for the protein and amino acid data over
the five environments using PROC GLM (SAS, 2003). All effects (environments, replication,
sets, and RIL) were considered random in the statistical model. Variance-component heritability
estimates were calculated on an entry-mean basis (Nyquist and Baker, 1991) using the following

eguation:
ng

H? =
ng + (ng/e) + (6%re)

where H? represents broad-sense heritability, cszg is genotypic variance, cszge is GXE variance, 6°
iserror variance, r is the number of replications, and e is the number of environments. Restricted
maximum likelihood (REML) was used to generate variance components for calculating trait
heritabilities.

To determine the number of environments (E) required to detect specific differences
between treatments with different levels of GXE interaction the following formula which was
modified from Mendenhall and Schaeffer (1973) was used:

E > [2(tys + tp)* (6°/r +o°ce) I
wheret, isthe t-value associated with the significance level of the t-test (o= 0.05 for our
calculations), 6@ is the error variance, and d is the difference between trait meansingkg™. The
t-values are dependent on the degrees of freedom (df) associated with the sample variance. In
our calculations, 15 df was specified arbitrarily due to the fact that there are usually 15 or more
df in the error terms of most analyses (the df for t-values do not seriously affect results). Inthis
equation, r represents the number of replications/environment and o’ce isthe GXE variance

component. The justification for determining the minimum number of replications or

environments to detect a specific difference between genotypic meansinstead of overall
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treatment effects has been discussed previously by Boerma et a. (1985), Carter Jr et a. (1983),
and Reese et al. (1988).
Results and Discussion

The effect and contribution of each source of variation to crude protein and amino acid
concentrations were evaluated through a combined analysis of variance (ANOVA) over five
environments (Table 3.1). The GxE interaction effects were significant (P< 0.001) in the RIL
population for crude protein, Lys/cp, Thr/cp, Met/cp, Cys/cp, and Met+Cys/cp. Genotypes were
significant (P < 0.0001) for all traits using the G x E mean squares as the error term for the test
of significance. Thisindicates there were genotypic differences among RILs for crude protein,
Lys, Thr, Met, Cys, and Met+Cys even in the presence of significant GXE interaction detected in
our study (P =0.001).

The significance of the F-testsis of lessimportance than the size of the interaction
components relative to the size of the genotypic variance, if selection isto be effective for
genotypes (Schutz, 1967). Environment was the most important source of variation for al the
amino acids while genotype was the most prominent for crude protein. For crude protein and
Thr/cp, the genotypic variance component was greater than the GXE component, with the
genotypic component roughly seven times greater than that of the GXE component for crude
protein. These results are in accordance with those previously reported for protein (Vollmann et
a., 2000) and protein components (Fehr et al., 2003). The magnitudes of the GXE interaction
variances were between 15 and 37% of the error variances for al the traits measured. Earlier
research by Kwon and Torrie (1964) evaluated two soybean populationsin the F3, F4, and Fs
generations for GXE interaction . Theline or genotype % year variance component estimates

were larger than either the line x location or the line x location x year variance components for
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yield, seed weight, lodging, days to flowering, and percent oil. The genotypic variance
component for protein was greater than the interaction components, but less than the error
variance. Similarly, Erikson (1982) found that the genotype x location x year variance
component was larger than either two-way component (genotype x location and genotype x
year), but less than the genotypic variance component.

Dueto its prevalence for crude protein and amino acids, the GXE interaction should not
be ignored and warrants the testing of genotypes in multiple environmentsin order to detect and
select lines with the desired level of these traits. The optimal allocation of resources based on
the ability to detect differences among genotypes for protein and amino acids were assessed
based on our computed variance components and given Type I (o = 0.05) and Type II (B = 0.5)
error probabilities. Each scenario presented in terms of resource alocation is dependent upon
the researcher’ s desired level of difference in detection among genotypes (ie. 1.25, 2.5, 5.0, or
10.0% of the overall population mean) (Table 3.2). The cost of increasing replications and
environmentsis of great importance in terms of the allocation of resources in a breeding
program. In our case, the optimum allocation of resources would be the fewest number of
environments and replications that can be used to detect the desired level of difference among
genotypes.

Based on our results, increasing the number of environments and replications increases
the precision or reduces the value required to detect a difference between two genotypic means.
In the testing configuration of five environments and two replications used in the current study,
genotypic differences for crude protein could be detected at alevel of 5% or greater of the
population mean (46.8 g kg™?). Based on the magnitude of difference for crude protein at the

2.5% level, breeders would be required to test between 12 (4 reps x 3 environments) and 16 (2
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reps x 8 environments) plotsto detect a11.7 gkg™ difference (Table 3.3). The effect of resource
allocation on potential genetic gain can also be interpreted in regard to how heritability is atered.
The number of environments and replications plays an important role in the heritability equation,
as an increase in either reduces the value of the denominator, thus increasing the heritability
valuefor atrait. Additionally, the amount of genetic variance (numerator) also greatly impacts
the heritability value. For crude protein, the heritabilities calculated in our population were
reduced from 0.93 to 0.80 as the combination of reps and environments changed from five
environments and two reps one environment with two reps. These heritability values are slightly
higher than other estimates (Byth et a., 1969; Fehr, 1968; Kwon and Torrie, 1964; Shannon et
a., 1972; Smith and Weber, 1968) and reflect alarge amount of genotypic variance for crude
protein in this population (Table 3.1). The heritability estimate for protein using four
environments with three replications (0.93) or even three environments with four replications
(0.92) would be similar to the five environment/two replication combination used in our study
(Table 3.4).

For lysine and threonine, the combination of five environments and two replications per
environment used in our study was sufficient to detect a 2.5% difference in the overall RIL mean
(1.6 gkg™ cp for Lysand 0.9 g kg™ cp for Thr) for these traits (Table 3.2), but not a 1.25%
difference. For Lys, the same magnitude of difference could be detected by using only four
testing environments and two replications. In addition, detection at the 2.5% level can be
attained for Lys and Thr by reducing the number of environments to three and adding two
replications (total of four replications/environment). Thiswould be of interest to breedersin a
situation where adding additional environmentsis not cost-effective within the breeding

program. Again, the reduction in environments and replications reduces the heritabilities of
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thesetraits greatly. A reduction from 10 plots to two plots results in areduction in heritability
from 0.69 to 0.30 and from 0.86 to 0.55 for Lys and Thr, respectively (Table 3.4). For both of
these traits, similar heritability values to those obtained for the five environments/two
replications could be attained by growing tests in only four environments and adding an
additional replication.

To detect 2.5% of the difference between genotypes for Met, Cys, and Met+Cys, our
current alocation of replications and environments would not be suitable, though the addition of
two replications in each environment (total of five environments and four
replications/environment) would allow this level of detection for all three of these traits. With
five environments and four replications/environment, we could detect differences of 0.4, 0.4.and
0.7 gkg™ cp for Met, Cys, and Met+Cys, respectively (Table 3.2, Table 3.3). Differencesin
these traits at the 2.5% level would go undetected in our current layout, but the use of two
replications within seven environments would achieve thislevel of precision (Table 3.3). The
detection of Met or Cys, at the 1.25% level would require up to 16 environments even with four
replications per environment. On the other hand, a difference of 1.25% could be detected for
Met+cys using eight environments and four replications. Estimates of heritability for these traits
were reduced to extremely low levels (0.21 to 0.31) in asingle environment with four
replications (Table 3.4). Selection in three environments and four replications would result in
heritabilities of 0.44, 0.57, and 0.51 for Met, Cys, and Met+Cys, respectively. The proper
utilization of resources will vary depending on the specific sulfur-containing amino acid based
on these heritability estimates.

Correlation between traits is extremely important in regard to selection by breedersin

terms of the effect of salection on correlated traits. It isof interest to determine the effect of
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selection for protein and various amino acids on important agronomic traits. Phenotypic
correlations, based on means for each trait over al environments for the 140 RILs are presented
in Table 3.5. Crude protein (r = -0.50) was negatively associated with seed yield while Lys/cp (r
=0.49), and Thr/cp (r = 0.49) were positively related to yield in our population. Met was
positively (r = 0.19) associated with yield, while Cys/cp and Met+Cys/cp were not. None of
these traits were correlated at alevel which would cause a serious concern in selection. The
negative correlation detected in our popul ation between crude protein and yield has been
detected previoudly (Brim, 1973; Kwon and Torrie, 1964; Shorter et a., 1977; Wilcox and
Guodong, 1997). This may be associated with the challenge of maintaining protein levels as
seed yields have continued to increase over the past several decadesin the USA (Wilson, 2004).

The association between protein or amino acids and maturity were negligible (r =-0.24 to
0.22) from a breeding and selection standpoint, though they were significant (P = 0.05). The
negative correlation between crude protein and maturity was somewhat surprising as later
maturing genotypes have been associated with higher protein in other populations (Simpson and
Wilcox, 1983). Correlations between seed weight and crude protein, Lys/cp, Thr/cp, and Met/cp
were significant (P < 0.01), but the relationships with seed yield would only be explained
between 13 to 15% of the variation in amino acid concentrations. Crude protein and seed weight
were negatively associated in our population (r =-0.36). Previoudly, seed weight has been
associated with increased protein in other populations (Fehr and Weber, 1968; Kwon and Torrie,
1964). No associations were detected between protein or amino acids and plant height or
lodging.

Significant GXE interaction was detected in our Benning x Danbaekkong population for

crude protein, Lys, Thr, Met, Cys, and Met+Cys when it was grown in five environments. Even

100



with this GXE interaction, genotypic differences were found for protein and each of the amino
acids evaluated in our study. Overal, the impact of GXE detected in this population appears to
be minimal based on the relative components of variance for these quality traits, whichisin
accordance with past studies. The optimum allocation of resources is described for crude
protein, Lys, Thr, Met, Cys, and Met+Cys and provides a framework for breedersin terms of the
most cost-effective manner by which to select for these traits. Moreover, the expected response

to selection for these traits can be determined from our data for various selection units.
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Table 3.1. Combined analysis of variance and estimates of variance components for crude
protein and various amino acids for 140 RILs evaluated in five environments.

Crude Protein Lysine (Lys)
Mean Variance Percent Mean Variance  Percent

Source df square component of total F-value square component of total F-value

no. (gkg*cp) (gkg'cp) (%) (gkg'cp) (gkg'cp) (%)
Env 4 32187 100 16 <.0001 483.4 2 48 <.0001
Rep(env) 5 3300 20 3 13.1 .08 2
Sets 2 14536 20 3 <.0001 14.4 0 0 <.0001
EnvxSets 8 2286 16 3 <.0001 17.7 0.1 2 <.0001
Rep
x Sets(Env) 10 741 13 2 33 .05 1
Geno(Sets) 137 2959 280 44 <.0001 5.7 0.4 10 <.0001
Env x
Geno(Sets) 548 220 39 6 <.0001 1.8 0.4 10 <.0001
Pooled
error 669 145 145 23 1.0 1.06 26

Threonine (Thr) Methionine (Met)
Env 4 396.7 1.0 33 <.0001 9.2 0.03 10 <.0001
Rep(env) 5 8.4 .05 2 0.3 0.001 0.3
Sets 2 215 0.2 7 <.0001 0.7 0 0 0.0226
Env x Sets 8 7.6 05 17 <.0001 2.0 0.02 7 <.0001
Rep
X Sets(Env) 10 2.6 .04 1 0.14 0 0
Geno(Sets) 137 53 05 17 <.0001 0.40 0.02 7 <.0001
Env x
Geno(Sets) 548 0.78 0.2 7 <.0001 0.23 0.03 10 0.0007
Pooled
error 669 0.5 05 17 0.18 0.18 66
Cysteine (Cys) Met+Cys

Env 4 414 0.14 34 <0001 53.8 0.17 18 <.0001
Rep(env) 5 0.4 0 0 05 0 0
Sets 2 10.5 0.02 5 <.0001 16.2 0.02 2 <.0001
EnvxSets 8 3.2 0.03 7 <.0001 6.2 0.06 6 <.0001
Rep
X Sets(Env) 10 0.79 0.01 2 1.2 0.009 0.1
Geno(Sets) 137 0.50 0.03 7 <.0001 15 0.08 8 <.0001
Env x
Geno(Sets) 548 0.22 0.03 7 <.0001 0.7 0.11 12 <.0001
Pooled
error 669 0.16 0.15 37 0.5 0.5 53
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Table 3.2. Mean vauesfor protein and various amino acids, coefficients of variation, and values
of traitsfor a1.25, 2.5, 5.0, and 10.0% difference between the RIL means.

Magnitude of genotype difference
expressed as percent of RIL X

Coefficient of
Trait Mean variation 125% 25% 5% 10%
(9kg™) % — gkg-
Crude protein 468.3 2.6 5.9 11.7 234 468
Lys/cp 63.3 16 0.8 16 32 63
Thr/cp 36.1 1.9 0.5 0.9 18 36
Met/cp 14.2 3.0 0.2 04 0.7 14
Cys/cp 153 2.6 0.2 04 0.8 15
Met+Cys/cp 29.6 24 0.4 0.7 15 29
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Table 3.3. Number of replications and environments to detect 1.25, 2.5, 5.0 and 10% of the

difference between two genotype means.

Replications
Magnitude
Trait of difference 2 3 4
Protein 1.25% of X 29 23 10
2.5% of X 8 6 3
5.0% of X 2 2 1
10% of X 1 1 1
Lysine 1.25% of X 13 11 10
2.5% of X 4 3 3
5.0% of X 1 1 1
10% of X 1 1 1
Threonine 1.25% of X 14 12 10
2.5% of X 5 4 3
5.0% of X 1 1 1
10% of X 1 1 1
Methionine 1.25% of X 28 21 17
2.5% of X 7 6 5
5.0% of X 3 2 2
10% of X 1 1 1
Cysteine 1.25% of X 25 19 16
2.5% of X 7 5 4
5.0% of X 2 2 1
10% of X 1 1 1
Met+Cys 1.25% of X 21 16 8
2.5% of X 7 6 3
5.0% of X 2 2 1
10% of X 1 1 1
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Table 3.4. Variance component heritability estimates for various combinations of environments
and replications for crude protein and various amino acids.

Env/Rep Crude Protein Lyslcp Thr/cp Met/cp Cyscp Met+cys/cp

Two replications

1 environment (2 plots) 0.80 0.30 0.55 0.14 0.22 0.18
2 environments (4 plots) 0.83 0.46 0.70 0.31 0.36 0.30
3 environments (6 plots) 0.88 0.56 0.78 0.33 0.46 0.40
4 environments (8 plots) 0.90 0.63 0.82 0.40 0.54 0.47
5 environments (10 plots)  0.93 0.69 0.86 0.45 0.59 0.53

Three replications

1 environment (3 plots) 0.75 0.35 0.64 0.8 0.27 0.22

2 environments (6 plots) 0.86 0.52 0.75 031 043 0.36
3 environments (9 plots) 0.90 0.62 0.82 040 054 0.47
4 environments (12 plots)  0.93 0.68 0.85 047 0.60 0.53
5 environments (15 plots)  0.94 0.74 0.89 052 0.65 0.59

Four replications

1 environment (4 plots) 0.78 0.38 063 021 0.31 0.25

2 environments (8 plots) 0.88 0.56 0.78 0.35 0.47 0.40
3 environments (12 plots)  0.92 0.65 084 044 0.57 0.51
4 environments (16 plots)  0.94 0.71 0.88 0.53 0.64 0.57
5 environments (20 plots)  0.95 0.76 090 0.57 0.70 0.61
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Table 3.5. Phenotypic correlation coefficients between amino acid concentrations and agronomic
traits of 140 RILsin the Benning x Danbaekkong popul ation across five environments.

Trait' Crude Protein ~ Lys/cp Thricp  Met/cp Cydcp Met+Cys/cp
Seed yield -0.50** 0.49** 0.49** 0.19* -0.01 0.08
Maturity -0.24* 0.21* 0.22* 0.07 -0.22* -0.10
Seed weight -0.36** 0.39** 0.35** 0.37** 0.13 0.25
Plant height -0.11 0.07 0.09 -0.01 -0.07 0.01
Lodging -0.13 0.06 0.08 0.13 -0.07 0.01

* ** ggnificant at the P<0.05 and P <0.01 level of significance

"Seed yield is based on four environments and two replications/environment, maturity on three
environments and two replications/environment, seed weight on on two environments and two
replications/environment, and plant height and lodging on three environments and two
replications/environment.
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CHAPTER 5
CONCLUSIONS

Due to the importance of soybean as a provider of high-quality protein in livestock
production, soybean breeders are interested in gaining a better understanding of the genetic basis
and environmental influences on the amino acids which compose this protein. In this study, we
conducted one of the first QTL mapping studies for several important amino acids in soybean
and also quantified the optimum allocation of resources in breeding for crude protein, Lys/cp,
Thr/cp, Met/cp, Cys/cp, and Met+Cys/cp based on significant genotype x environment (GXE)
interaction detected across five field environments.

Near-infrared reflectance spectroscopy (NIR) was used to phenotype 140 recombinant
inbred lines for crude protein and amino acid content. A number of QTL were detected in our
study for crude protein and selected amino acids. A mgjor protein QTL on chr 20 (Lg-1) was
found to explain alarge proportion of the phenotypic variance for crude protein, Lys/cp, Thr/cp,
Met/cp, and Met+Cys/cp based on composite interval mapping (CIM). The alele from the
‘Danbaekkong’ parent at this QTL resulted in increased crude protein content but reduced levels
of each amino acid. CIM also identified several minor QTL for each amino acid on various
chromosomes. By gaining an understanding of the location and effects of QTL, breeders can
introgress specific aleles in combination to improve traits of interest by sel ecting genotypes
based on DNA markerstightly linked to QTL. It will be of interest in future research to
determine if the QTL detected on chr 20 is composed of a single gene controlling each of these

traits (pleiotropic effect) or anumber of tightly linked genes uniquely controlling concentrations
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of each amino acid. This QTL has previously been fine-mapped and efforts to clone this gene
are underway. Theimprovements in phenotyping and genotyping precision and efficiency can
also be observed from our study. The use of near-infrared reflectance spectroscopy (NIR) for
phenotyping and the [llumina GoldenGate Assay for genotyping the RILs with 1,536 SNP
markers in the soybean genome shows that technogica advances are rapidly advancing and
aiding breeding efforts greatly.

The second goal of this research was to determine the magnitude of GXE interaction for
crude protein, Lys/cp, Thr/cp, Met/cp, Cys/cp, and Met+Cys/cp and its effect on how resources
should be alocated in a program breeding for these traits. A population of RILs from the
Benning x Danbaekkong cross was grown in five environments and traits were assessed. It
appears that GXE interactions in this population would be of minor concern to breeders aiming to
improve these traits based on the relative magnitudes of the genotypic and GXE variance
components. The optimum level of discrimination among genotypes for these traits was a'so
determined. The data show that more plots (environments/replications) are necessary to
discriminate between small differences in genotypic means (1.25%) for crude protein, Met/cp,
Cys/cp, and Met/cp relative to Lys/cp and Thr/cp. Therequired level of precision would be left
to the discretion of individual breeders. The nature and magnitude of GxE interaction interferes
with the breeders’ ability to select for traits of interest when the goal isto breed for broad trait
adaptation. The goal of this study was to provide the breeding community an idea of how these
traits are affected by the environment and how breeding efforts may proceed in the presence of
GXxE interactions.

Our results suggest that a high-protein cultivar with enhanced amino acid characteristics

could be developed. At thistime, it may be of greater interest to develop a cultivar with
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moderate protein levels and increased levels of critical amino acids, and to avoid sacrificing
yield. Marker-assisted selection (MAS) could aid this endeavor greatly. It isnot surprising to
see o little variability for the sulfur-containing amino acids Met and Cys between Danbaekkong
and the elite checks. This has been noted in the past as the limitation in terms of increasing these
two amino acids in soybean cultivars. Our findings concerning GXE interaction for these traits
are promising in that all of the time and effort necessary to create improved cultivars for these

traits should not be greatly undermined by environmental effects.
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