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Abstract

Finite mixture models provide a flexible way to model data coming from population

consisting of finite number of homogeneous subpopulations. These models are particularly

useful in determining clusters or subgroups within a data. Model selection is a crucial step

in every statistical data analysis and especially so for data coming from unknown number of

subpopulations. In this thesis, we focus squarely on determining parsimonious finite mixture

models using a model selection criterion based on L2 distance.

In many applications, the scientific information available may not be sufficient to deter-

mine the number of components in finite mixture models; hence, it is important to find

mixtures with fewest number of components, known as the mixture complexity, that pro-

vide satisfactory fit to the data. Estimation of mixture complexity is a fundamental yet

challenging problem that has received an enormous attention in the past few decades. In

this thesis, we treat the estimation of mixture complexity as a model selection problem and

construct an estimator of mixture complexity as a by-product of minimizing a Information

Criterion based on L2 distance for both count and continuous data. The estimator of mixture

complexity, called m̂L2E
n , is shown to be consistent when the form of component densities are

unknown but are postulated to be members of some parametric family. The estimator is also



shown to be robust against model misspecification via simulations. When the model is cor-

rectly specified, Monte Carlo simulations for a wide variety of normal and Poisson mixtures

show that our estimator is very competitive with several others in the literature in correctly

identifying the true mixture complexity. The performance of this method is illustrated for

several simulated data and well-known real datasets. We begin the thesis with a survey

of methods available in the literature. Detailed description of the methods and associated

results can be found in the respective chapters.

Index words: Finite mixtures; L2E estimation; information criterion; algorithm;
threshold; consistency; efficiency; robustness.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Finite mixture models have been used in applications for several decades. The area has seen

renewed popularity during the last decade due to increase in computing power and appli-

cations in Bio-informatics. Applications of mixture model extend beyond Bio-informatics to

include a wide range of areas such as biology, medicine, physics, economics and marketing.

These models are particularly suitable for datasets, where observations originate from dif-

ferent groups but the group affiliations are not known. Furthermore, the exact number of

groups present in a dataset may not be available, making the selection of appropriate finite

mixture model a challenging task.

There is an enormous body of literature concerning the theory, computation and applica-

tion aspects of finite mixture models when the number of components (groups) is known in

advance. Over the last three decades, a variety of estimation approaches have been adopted

for mixture models. These include the method of moments, the maximum likelihood (ML)

method, minimum distance methods and Bayesian methods. If the number of mixture compo-

nents is known and the component densities are assumed to belong to a specified parametric

family, the EM algorithm of Dempster et al. (1977) is a useful way to compute ML estimates.

However, when there is a small perturbation in one of the component densities, ML estimates

become highly unstable (Aitkin and Wilson, 1980).

Robust methods such as M-estimation are not easily adapted for mixtures, and these gen-

erally achieve robustness at the cost of efficiency at the parametric model. For continuous

data modeled by finite mixtures, Cutler and Cordero-Bran̆a (1996) developed a minimum

1
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Hellinger distance (MHD) estimator (Beran, 1977) of unknown parameters and showed that

their estimator is efficient at the parametric model and robust under gross-error contamina-

tions. For count data, Karlis and Xekalaki (1998) developed MHD estimation of parameters

in Poisson mixtures. While the MHD estimation method does lead to efficiency and robust-

ness, as noted in Scott (1999 and 2001) and Markatou (2000 and 2001), the method (in

the continuous case) involves some practical challenges such as selection of an appropriate

nonparametric kernel density estimator and associated bandwidth.

Scott (1998, 1999, 2001 and 2004) introduced an alternative minimum distance estimation

method based on integrated squared error criterion, termed L2E, which avoids the use of

nonparametric kernel density estimators; see section 1.2.3. The L2E approach is a special

case of a general method introduced by Basu et al. (1998), who devised a whole continuum

of divergence estimators that begin with the MLE and interpolate to the L2E estimator and

beyond; see section 1.2.3. Markatou (2000 and 2001), on the other hand, used the weighted

likelihood estimation approach of Markatou, Basu and Lindsay (1998) to address the effects

of misspecification of mixture model on parameter estimates and provided a heuristic way

to identify the number of components in mixture models.

A complication in many applications is that our scientific knowledge may not be sufficient

to determine the number of mixture components, termed mixture complexity. Estimation

of mixture complexity is a fundamental problem because correct identification of mixture

complexity followed by efficient estimation of all parameters would lead to finding a mixture

with the fewest possible components. Developing methods to determine mixture complexity

has been an area of intense research in the recent years; see, for example, Schlattmann and

Böhning (1993), Roeder (1994), Pauler et al. (1996), Dellaportas et al. (1997), Karlis and

Xekalaki (1999), James et al. (2001), Ishwaran et al. (2001) and references therein.

Recently, Woo and Sriram (2006, 2007) introduced a Hellinger Information Criterion

(HIC), which formed the basis for constructing their MHD-based estimator of mixture

complexity. More specifically, by treating the estimation of mixture complexity as a model
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selection problem, they constructed an estimator of mixture complexity as a by-product of

minimizing the HIC. Because the basic construction is rooted in an approach based on

minimum Hellinger distance, their estimator is shown to inherit the property of robustness

against model misspecification while consistently estimating the true mixture complexity for

parametric family of mixtures. Their approach is such that it not only provides a consistent

estimate of the mixture complexity for a given dataset but also provides consistent MHD

estimates of the mixture parameters; see section 1.2.3 for more details.

While the MHD-based estimator of mixture complexity has attractive large sample and

robustness features, there are difficult computational issues associated with the implemen-

tation of the MHD algorithm described in Woo and Sriram (2006, 2007), the first of which

concerns the precise nature of the nonparametric density estimator. When all the mixture

parameters are unknown, Cutler and Cordero-Bran̆a (1996) point out that it is necessary to

use some form of adaptive density estimator in order to avoid severe bias problems with the

scale estimates. Secondly, one needs to carefully choose the bandwidth for the (adaptive)

nonparametric density estimators. Undoubtedly, these selections put an extra burden on the

computation of MHD estimates.

In this thesis, we focus squarely on the estimation of parameters in finite mixture models

when the number of components is not known. More specifically, we propose a comprehensive

estimation procedure for all the parameters involved in a finite mixture model (including the

unknown number of components) based on a familiar L2 distance. Our proposed L2 esti-

mation method, called L2E henceforth, avoids the use of nonparametric density estimator

altogether, but is shown to possess robustness property which is comparable to that of a

procedure based on minimum Hellinger distance. In addition, it has distinct computational

advantage over the MHD. The thesis illustrates the scope and use of L2 estimation method

in applications, thereby providing a competitive alternative to other procedures in the liter-

ature.
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1.1.1 BASIC DEFINITIONS

Consider a parametric family of probability density or mass functions (p.d.f. or p.m.f.)

Fm = {fθm
: θm ∈ Θm ⊆ Rp} such that fθm

can be represented as a finite mixture of the

form

fθm
(x) =

m∑
i=1

πif(x|φi), x ∈ X ⊆ R, (1.1.1)

where m > 0 is a finite integer, f(x|φi) is the component p.d.f. (or p.m.f.), φi ∈ Φ ⊆ Rs, the

mixing proportions πi ≥ 0,
m∑
i=1

πi = 1 for i = 1, . . . ,m and θm = (π1, . . . , πm−1,φ
T
1 , . . . ,φ

T
m)T .

For each m, the functional form of component p.d.f. (or p.m.f.) is known, but θm is unknown.

In the discrete case, X = {0, 1, 2, . . .}. The class Fm ⊆ Fm+1 for all m and we denote

F =
∞⋃
m=1

Fm.

Suppose Xn = (X1, . . . , Xn) is a random sample from an unknown p.d.f. or p.m.f. f0.

Define the index of the economical representation of f0, relative to the family of mixtures

Fm, as

m0 = m(f0) = min{m : f0 ∈ Fm}. (1.1.2)

If indeed f0 is a finite mixture defined in (1.1.1), then m0 is finite and denotes the true

mixture complexity; otherwise m0 = ∞. Note that m0 represents the most parsimonious

mixture model representation for f0. Before describing our research in detail, we give a brief

survey of available literature on estimation approaches for finite mixture models.

1.2 LITERATURE REVIEWS

1.2.1 Estimation in Mixture Models

Over the past years, a variety of methods have been developed for estimating the parameters

in finite mixture models. The following four estimation methods are widely used for mixture

models: Method of moments, Maximum likelihood method, Minimum-distance method, and

Bayesian method.
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THE METHOD OF MOMENTS

The first published investigation relating to estimation of finite mixture models appears to

be that of Pearson (1894), who considered the method of moments (MOM) estimation of

the parameters in a mixture of two univariate normal densities. Years later, Pollard (1934)

obtained MOM estimates for parameters in a mixture of three univariate normal densities,

and Cooper (1967), Day (1969) and John (1970) obtained MOM estimates for mixture of

multivariate normals. Also, see Pearson (1915), Muench (1936), Schilling (1947), Gumbel

(1939), Arley and Buch (1950), Rider (1962), Blischke (1962), Cohen (1963) and Kabir

(1968) for the development of MOM estimates for parameters in finite mixtures of Binomial

and Poisson.

THE METHOD OF MAXIMUM LIKELIHOOD AND THE EM ALGORITHM

With the arrival of increasingly powerful computers and increasingly sophisticated numerical

methods during the 1960’s, the method of maximum likelihood (MLE) became the widely

preferred approach to estimation of parameters in finite mixture models. Despite some initial

success, the problem of obtaining MLE was generally considered to be completely intractable

for computational reasons.

For mixture models, computational difficulties with respect to MLE arise because of

the complex dependence of the likelihood function on the parameters to be estimated. More

specifically, the likelihood equations are almost always nonlinear and beyond hope of solution

by analytic means. Consequently, one must resort to an approximate solution via some

iterative procedure. There are, of course, many general iterative procedures which are suitable

for finding an approximate solution of the likelihood equations such as Newton’s method and

its variants, and conjugate gradient methods.

Incomplete data often result in complicated likelihood functions, where MLE usually has

to be computed iteratively. In such situations, algorithms such as the Newton-type methods

may turn out to be more complicated. The Expectation-Maximization algorithm proposed
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by Dempster et al. (1977) in a seminal paper, popularly known as the EM algorithm, is a

broadly applicable approach to the iterative computation of MLE. EM alternates between

performing an expectation (E) step, which computes an expectation of the likelihood by

including the latent variables as if they were observed, and a maximization (M) step, which

computes the maximum likelihood estimates of the parameters by maximizing the expected

likelihood found in the E step. The parameters found in the M step are then used to begin

another E step, and the process is repeated.

In most instances, EM has the advantage of reliable global convergence, low cost per

iteration, economy of storage and ease of programming, as well as certain heuristic appeal.

Unfortunately, its convergence can be very slow in simple problems which are often encoun-

tered in practice. Also, as mentioned in the introduction, when there is a small perturbation

in one of the component densities, the ML estimates become highly unstable.

MINIMUM DISTANCE ESTIMATION

If model assumptions are violated, minimum distance estimators are usually more robust

than the MLE. Minimum distance estimators are obtained by minimizing some specified

distances between the parametric and empirical densities or distributions. A variety of min-

imum distance estimation methods have been considered for mixture models. Choi (1968)

proposed the minimum Wolfowitz distance estimator for mixing proportions with known

component distributions. MacDonald (1971) and Woodward et al. (1984) examined a similar

method of minimizing the Cramer-von Mises distance to estimate the mixing proportions

in mixture of normal distributions. Clarke and Heathcote (1994) developed explicit estima-

tors for mixing proportions in mixture normal distributions by minimizing the L2 distance

between parametric and empirical distribution functions. Woodward et al. (1995) proposed

the MHD for mixing proportion in the mixture of two normals and Karlis and Xekalaki

(1998) examined the case of finite Poisson mixtures. Most of the methods mentioned above
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give estimators for mixing proportions that are not in explicit form. Some of them need

complicated numerical techniques to calculate the estimators.

The MHD is one of the minimum distance estimation approaches, which has received

considerable attention in mixture models. For the mixture of normal distributions and the

Poisson mixtures, Woodward et al. (1995) and Karlis and Xekalaki (1998), respectively,

showed that the MHD is asymptotically normally distributed with full efficiency under

model assumptions, and is more robust to departures from the underlying assumptions

than the MLE. Cutler and Cordero-Bran̆a (1996) developed a minimum Hellinger distance

(MHD) estimator of unknown parameters and showed that their estimator is efficient at the

parametric model and robust under gross-error contaminations.

The integrated squared distance has been used as the goodness-of-fit criterion in non-

parametric density estimation for a long time. Scott (1999) introduced an alternative min-

imum distance estimation method based on integrated squared error criterion, termed L2E,

which avoids the use of nonparametric kernel density estimators. In his paper, Scott showed

that the L2E is especially suited for parameter-rich models such as mixture models. Scott

(1999) showed that the L2E approach, whose genesis may be traced to the pioneering work

of Rudemo (1982) and Bowman (1984), is computationally feasible and it leads to robust

estimators like all other minimum distance methods. Scott (1999) points out that L2E is

a special class of robust estimators like the median-based estimators, which sacrifice some

asymptotic efficiency for substantial computational benefits in difficult estimation problems.

In fact, Scott (2001) showed that L2E estimator performs much better than the MHD

estimator, under data contamination.

The L2E estimator belongs to the family of minimum density power divergence (MDPD)

estimators introduced by Basu et al. (1998) with the tuning parameter α = 1. The tuning

parameter α in an MDPD estimator controls the trade-off between robustness and effi-

ciency. Basu et al. (1998) also show that that the robustness of the L2E estimator is achieved

at a fairly stiff price in asymptotic efficiency. They showed that for the normal, exponen-
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tial and Poisson distributions with small values of α (≤ 0.10), the MDPD has strong

robustness properties and retains high asymptotic relatively efficiency (ARE) with respect

to MLE. Nonetheless, within the family of density-based power divergence measures, the

L2E approach has the distinct advantage that a key integral can be computed in a closed

form, especially for Normal mixtures. Moreover, Scott (1999) also showed that the L2E is

more robust than the MHD against gross-error contamination.

BAYESIAN ESTIMATION

In the framework of the Bayesian approach, one needs to assume that a prior distribution

is available. Using Bayes’ theorem, we can obtain the posterior density . As summarized in

Fruhwirth-Schnatter (2006), there are two main reasons why people may be interested in

using the Bayesian method in finite mixture models. Firstly, including a suitable prior dis-

tribution for the parameter in the framework of the Bayesian approach may avoid spurious

modes when maximizing the log-likelihood function. The idea for the penalized MLE in

Chen et al. (2007) can be seen as putting a proper prior distribution on the variance param-

eters. Secondly, when the posterior distribution for the unknown parameters is available, the

Bayesian method can yield valid inference without relying on the asymptotic normality. As

warned by McLachlan and Peel (2000, p.68), the asymptotic theory of the MLE can apply

only when the sample size n is very large. Hence the second advantage of the Bayesian method

become obvious when the sample size n is small. Unfortunately, for the likelihood function,

it is impossible to find the conjugate prior for, which means whatever prior we choose, the

posterior distribution may not belong to any tractable distribution family. This problem no

longer poses a serious obstacle to the application of Bayesian method after the widespread

use of Markov Chain Monte Carlo (MCMC) methods. The main idea of Bayesian estimation

using the MCMC methods followed Dempster et al. (1977) by realizing a mixture model is

a special case of incomplete data problem with the missing component indicator variables.

The idea of Bayesian estimation was to estimate the augmented parameter by sampling from
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the complete-data posterior distribution In many situations, we can simulate the parameter

by using Gibbs sampling.

1.2.2 Estimation of Mixture Complexity in Finite Mixture Models

Frequentist Approach

A survey of literature shows that in the continuous and discrete cases, developing methods

to determine mixture complexity has been an area of intense research for many years. In the

continuous case, a variety of approaches for determining the mixture complexity have been

discussed in the literature; see, for example, James et al. (2001) and Ishwaran et al. (2001),

and references therein. James et al. (2001), for instance, used the Kullback-Leibler (KL)

distance to construct a consistent estimator of mixture complexity, when the component

densities are normal.

For the count data case, Schlattmann and Böhning (1993) used the resampling approach

of McLachlan (1987) to determine the mixture complexity in their application of Poisson

mixtures to disease mapping. Also, Pauler et al. (1996) used this method to determine the

mixture complexity in their modeling of anticipatory saccade counts from schizophrenic

patients and controls. Karlis and Xekalaki (1999) determined the mixture complexity using

a sequential testing procedure based on likelihood ratio test (LRT) that utilizes a resampling

approach.

Model Selection Approaches

Henna (1985) considered a model selection approach for estimation of mixture complexity in

finite mixtures. Common model selection methods based on a penalized likelihood, including

AIC and BIC have been considered in fitting mixture models by Leroux (1992). He considered

a sequence of nested mixture models with possible number of components k = 1, ..., n, and

proposed an estimator k̂ for the true value of k. The penalized maximum likelihood methods
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usually help reduce overestimation of the model. However, Leroux pointed out that the

estimated number of components is at least as large as the true number.

Chen and Kalbfleisch (1996) proposed a method to estimate the number of mixture

components based on the penalized minimum distance, and showed that their estimator is

consistent. They calculated the distance between the CDF of the fitting distribution, F (x|G),

and the CDF of the empirical distribution, Fn(x), with the penalty term of the summation

of the log weights, then chose the model with the minimum distance.

Recently, Chen and Khalili(2006,2008) proposed a new method, for estimating the

number of mixture components in finite mixture models by combining the strength

of two existing methods. The first is the Modified likely hood proposed by Chen and

Kalbfleisch(1996). The second is the variable selection method called the smoothly clipped

absolute deviation or SCAD, by Fan and Li(2001). For this reason , they called the new

method as MSCAD.

BAYESIAN METHODS

Richardson and Green (1997) described a fully Bayesian treatment for mixture modeling.

They jointly modeled the number of components k, the identity (or label) of the group from

which each observation is drawn (the unobserved indicator) z, and the component param-

eters θ, π. The inference of k is made based on the simulated posterior probabilities. The

difficulty with a full model is that distributions with different k will have different parameter

dimensions, which violates a necessary condition for the convergence of the usual MCMC

method. Richardson and Green used the reversible jump MCMC methods developed by

Green (1995) to sample from mixtures with varying number of components. Their program

moves between models with different k by splitting one mixture component into two or

combining two into one.

Stephens (2000) proposed a new MCMC algorithm for the mixture problem when k is

unknown. He considered the parameters of the model as a point process with each point rep-
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resenting a component density, and constructed a continuous time Markov birth-death pro-

cess. Stephens (2000)’s method is competitive to the reverse jump MCMC both in results and

computation complexity. McGrory and Titterington(2007) shows the variational approach

to model selection in the case of mixtures of Gaussian distributions leads to an automatic

choice of model complexity. They use the Deviance Information Criterion(DIC)of Spiegel-

halter et al. (2002). They have shown that it is a practical and useful alternative to MCMC

for the analysis of mixtures of Gaussian.

Recently, Ishwaran et al. (2001) considered estimation of mixture complexity using a

Bayesian model selection. They assumed that there is a fixed upper bound K for the true

mixture complexity, and decomposed the marginal density for the data into K densities,

each corresponding to the contribution from the prior with k = 1, . . . , K components. The

weighted Bayes factor was then used for selecting the dimension k. They used an i.i.d.

generalized weighted Chinese restaurant (GWCR) Monte Carlo algorithm, and proved that

the posterior distribution is consistent.

1.2.3 ROBUST ESTIMATION OF MIXTURE COMPLEXITY

This thesis concentrates on estimation methods that are less sensitive to model misspecifi-

cation and extreme values, and seeks a semi-parametric density estimator of the form

f̂ ∗n(x) =
m̂n∑
i=1

π̂if(x|φ̂i), (1.2.3)

with the property that m̂n → m0 almost surely (a.s.) as n→∞. Consequently, if f0 ∈ Fm,

then f̂ ∗n → f0. If f0 /∈ Fm for any m, then m̂n →∞ a.s.; nevertheless f̂ ∗n → f0.

As mentioned earlier, in many applications, there is not much a priori information about

the mixture complexity and, hence, has to be inferred from the data. Estimation of mixture

complexity is a fundamental, yet challenging, problem. Correct identification of mixture

complexity followed by efficient estimation of all the mixture parameters would lead to

finding a mixture with the fewest possible components which provides a satisfactory fit.
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MHD APPROACH

Recently, Woo and Sriram (2006, 2007) used the Hellinger distance between p.d.f. (or p.m.f.)

f and g defined by

H2(f, g) = ||f 1/2 − g1/2||22, (1.2.4)

where || · ||2 is the L2 norm, as the basis for constructing an estimator of mixture complexity

m0; see equation (1.1.2). We now briefly review their construction; see Woo and Sriram (2006)

for more details. Suppose f̂n is a kernel density estimator (or an empirical mass function in

the discrete case) of f0. For each integer m > 0, define f̂m = arg minf∈Fm H(f, f̂n) and

fm0 = arg minf∈Fm H(f, f0) . When m > 0 is known, the MHD estimator of θm is denoted

by θ̂
MHD

n,m = arg mintm∈Θm
H(ftm

, f̂n). Note that f̂m = f ˆθ
MHD

n,m

. By treating estimation of m0

as a model selection problem, Woo and Sriram (2006) introduced a Hellinger Information

Criterion

HIC = H2(f̂m, f̂n) + n−1b(n)ν(m), (1.2.5)

where b(n) depends only on n and ν(m) is the number of parameters in the mixture model,

and motivated the following estimator of m0 defined by

m̂MHD
n = min{m : H2(f̂m, f̂n) ≤ H2(f̂m+1, f̂n) + αn,m}. (1.2.6)

Here, {αn,j; j ≥ 1} are positive sequences of threshold values chosen in such a way that they

converge to zero as n→∞.

Treating the continuous case and the discrete case separately, Woo and Sriram (2006,

2007) established the following result under certain regularity conditions: If f0 is a finite

mixture with mixture complexity m0 < ∞, then for any sequence αn,m → 0 the estimator

m̂MHD
n is strongly consistent, i.e., m̂MHD

n → m0 a.s. as n → ∞. If f0 is not a finite mix-

ture, then m̂MHD
n → ∞ a.s. Furthermore, Woo and Sriram (2006) showed via Monte Carlo

simulations for a wide variety of normal mixtures that, when the model is correctly speci-

fied, the performance of their estimator is competitive with several others in the literature in
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correctly identifying the true mixture complexity. Similar studies for a variety of Poisson mix-

tures were carried out in Woo and Sriram (2007). Also, Woo and Sriram (2006) showed that

their basic construction, being firmly rooted in the minimum Hellinger distance approach,

enables their estimator to naturally inherit the property of robustness and correctly deter-

mine the mixture complexity, even when the postulated model is a mixture of normals but

the data are generated from mixtures with moderate to more extreme symmetric departure

from component normality. In the discrete case, Woo and Sriram (2007) showed that similar

robustness results hold, when the postulated model is a Poisson mixture but the data comes

from negative binomial mixtures with moderate to more extreme overdispersion in one of its

components.

For the Monte Carlo simulations and data analysis in the continuous case, Woo and

Sriram (2006) used the threshold value αn,m = 3/n, which they motivated as a choice based

on the Akaike Information Criterion (AIC). For the discrete case, Woo and Sriram (2007)

used two threshold values αn,m = 2/n and ln(n)/n , motivated as choices based on the AIC

and Schwarz Bayesian Criterion (SBC), respectively. Woo and Sriram (2006, 2007) also

illustrated the performance of m̂MHD
n for a hypertension data analyzed in Roeder (1994) and

for three count data sets (two of which with zero-inflation) analyzed in Karlis and Xekalaki

(1998, 1999 and 2001).

While the MHD estimation method does lead to efficiency and robustness, as noted

in Scott (1999 and 2001) and Markatou (2000 and 2001), the method (in continuous case)

requires a nonparametric kernel density estimator with proper choice of bandwidth and

involves numerical integration, which makes the method computationally intensive, especially

in the context of finite mixture models. Scott (1999) showed that the L2E approach is

relatively simple to setup even with some very complex model specifications, computationally

feasible and leads to robust estimators like all other minimum distance methods. In fact, Scott

(2001) showed that L2E estimator performs much better than the MHD estimator, under

data contamination. Motivated by simplicity and computational benefits associated with the
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L2E approach, next we proceed to propose an alternative estimator of mixture complexity

m0 based on L2E, which is an important special case of the family of MDPD measures (

Basu et al. 1998).

MDPD AND L2E APPROACH

One way to avoid the challenges associated withMHD estimation is to use the robust estima-

tion approach introduced by Basu et al. (1998), known as minimum density power divergence

(MDPD) estimation. Basu et al. (1998) defined the following new class of distances known

as density power divergences

dα(g, f) =

∫ [
f 1+α(x)− (1 + 1/α)g(x)fα(x) + (1/α)g1+α(x)

]
dx. (1.2.7)

Let F denote the class of all distributions F with corresponding density f (of X1)

belonging to a class of density functions, say, F0. Define a density power divergence functional

TDPDα,m on F by the requirement that for every F ∈ F

TDPDα,m (F ) = arg min
θm

[∫
f 1+α

θm
(x)dx − (1 + 1/α)

∫
fαθm

(x)dF (x)

]
. (1.2.8)

Let F̂n denote the empirical distribution of {Xi, i = 1, . . . , n}. Then, we define a Minimum

Density Power Divergence (MDPD) estimator θ̂
MDPD

n,m = TDPDα,m (F̂n), where

θ̂
MDPD

α,n,m = arg min
θm

[∫
f 1+α

θm
(x)dx− (1 + 1/α)n−1

n∑
i=1

fαθm
(Xi)

]
. (1.2.9)

In the discrete case,
∫
f 1+α

θm
(x)dx in the definition of θ̂

MDPD

n will be replaced by
∑∞

k=0 f
1+α

θm
(k).

Note that, when α = 1, d1(f, g) = L2(f, g) =
∫

[f(x) − g(x)]2dx. Scott (2001) considered

this case and defined an L2E estimator of θm defined by

θ̂
L2E

n,m = arg min
θm

[∫
f 2

θm
(x)dx− 2n−1

n∑
i=1

fθm
(Xi)

]
. (1.2.10)

Now, for each m, let L(θm) =
[∫

f 2

θm
(x)dx− 2n−1

∑n
i=1 fθm

(Xi)
]
. Then, we propose the

following L2E estimator of mixture complexity m0 defined by

m̂L2E
n = min{m : L(θ̂

L2E

n,m ) ≤ L(θ̂
L2E

n,m+1) + αn,m}. (1.2.11)
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where, the sequence {αn,m} is chosen so that it goes to 0 as n→∞.

Unlike the definition of m̂MHD
n in (1.2.6), our definition of m̂L2E

n avoids specification

of kernel density estimator and associated choice of bandwidths in the continuous case.

This would make m̂L2E
n computationally more feasible, resulting in substantial reduction in

computation time, than its MHD counterpart.

As mentioned earlier, the L2E method of Scott (1999) is a special case of Basu et al.

(1998), who suggest that for values of α ∈ [0, 1/4] the MDPD estimators are more robust

and have modest loss of efficiency. Scott (1999) makes an interesting observation that, while

the MDPD estimators may be more efficient than L2E estimators for α ∈ [0, 1/4], for

mixture models, the key integral
∫
f 1+α

θm
(x)dx in (1.2.8) or (1.2.9) cannot be computed in

a closed form except at α values 0 and 1, and the numerical integration involved for other

values of α are computationally intensive.

In this thesis, we focus only on m̂L2E
n . We treat the continuous case and the discrete case

separately and show that m̂L2E
n is strongly consistent. Furthermore, we carry out several

Monte Carlo studies and data analysis, and compare the performance of m̂L2E
n with other

procedures in the literature. Moreover, we extensively study the robustness properties of

m̂L2E
n under model misspecification, as done in Woo and Sriram (2006, 2007), and compare

the results with those of m̂MHD
n .

1.3 OUTLINE OF THE THESIS

In Chapter 2, we consider mixture complexity estimation for the count data based on the

L2E. Here, we establish the strong consistency of the mixture complexity estimator under

certain regularity conditions and assess their robustness against model misspecification via

extensive Monte Carlo simulations. Also, we illustrate the performance of our estimator for

three real count datasets with overdispersion and/or zero-inflation.

In Chapter 3, we consider mixture complexity estimation for the continuous case and

propose based on the L2E. Here, once again, we establish the strong consistency of the
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mixture complexity estimator under certain regularity conditions and assess their robustness

against model misspecification via extensive Monte Carlo simulations. Once again, analyze

three datasets arising in wide variety of fields.

Each chapter is self-contained in terms of describing and highlighting the performance

of the above mentioned methods, but we give a concluding summary of both methods and

discuss future work in Chapter four.
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ABSTRACT

For count data, robust estimation of the number of mixture components in finite mixtures

is revisited using L2 distance. An information criterion based on L2 distance is shown to

yield an estimator, which is also shown to be strongly consistent. Monte Carlo simulations

show that our estimator is competitive with other procedures in correctly determining the

number of components when the data comes from Poisson mixtures. When the data comes

from a negative binomial mixture but the postulated model is a Poisson mixture, simulations

show that our estimator is highly competitive with the minimum Hellinger distance (MHD)

estimator in terms of robustness against model misspecification. Furthermore, we illustrate

the performance of our estimator for real datasets with overdispersion and/or zero-inflation.

Computational simplicity combined with robustness property makes the L2E approach an

attractive alternative to other procedures in the literature.

Key words and Phrases: Finite mixtures; Mixture complexity; Information criterion;

Threshold; Consistency; Robustness.

2.1 INTRODUCTION

Applied statisticians face an array of practical issues when analyzing data, the most

vexing of which is identification of data points that are outliers. Such data points if not

appropriately down-weighted can dramatically affect parameter estimates, leading to poorly

fitted models and incorrect interpretations. In such instances, robust variations of estimation

are the only feasible alternatives.

It has been known for some time that likelihood methodology can be replaced by min-

imum distance criteria, which yield estimators that are inherently robust. Minimum distance

methods for finite mixtures with fixed number of components are well studied. Cutler and

Cordero-Bran̆a (1996) developed a minimum Hellinger distance (MHD) estimator (Beran,

1977) of unknown component parameters, and Karlis and Xekalaki (1998) developed a MHD
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estimator of parameters in Poisson mixtures. Both showed that MHD estimators achieve effi-

ciency at the true model density and simultaneously possess desirable robustness properties

under gross-error contaminations, thereby reconciling the conflicting concepts of robustness

and efficiency.

A complication in many applications is that there is not much a priori information

about the number of mixture components, termed mixture complexity. Estimation of mixture

complexity is a fundamental problem because correct identification of mixture complexity

followed by efficient estimation of all parameters would lead to finding a mixture with the

fewest possible components. Developing methods to determine mixture complexity has been

an active area of research in recent years; see, for example, Schlattmann and Böhning (1993),

Roeder (1994), Pauler et al. (1996), Dellaportas et al. (1997), Basu et al. (1998), Karlis and

Xekalaki (1999), James et al. (2001), Ishwaran et al. (2001), Shen (2004), Chen and Khalili

(2008) and references therein. Recently, Woo and Sriram (2006, 2007) treated the estimation

of mixture complexity as a model selection problem and constructed an estimator of mixture

complexity as a by-product of minimizing a Hellinger Information Criterion (HIC). They

showed that their estimator of mixture complexity is consistent and also illustrated through

simulations the ability of their estimator to correctly determine the number of components

when the postulated mixture model is correct. In addition, they showed that their estimator

continues to perform well even when the data comes from a model that is somewhat different

from the postulated mixture model; see Woo and Sriram (2006, 2007) for more details.

While the MHD-based estimator of mixture complexity has attractive large sample and

robustness features, the implementation of the MHD algorithm for continuous and count

data require specifications which place severe burden on the computation of MHD estimates.

Scott (1998, 1999, 2001 and 2004) introduced an alternative minimum distance estimation

method based on an integrated squared error criterion, termed L2E, which has many com-

putational advantages over MHD. The L2E approach is a special case of a general method

introduced by Basu et al. (1998), who devised a whole continuum of density-based power
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divergence estimators that begin with the MLE and interpolate to the L2E estimator and

beyond. While the L2E approach has computational advantages, it suffers from moderate

loss of efficiency at the parametric model relative to MHD and maximum likelihood estima-

tors. Nonetheless, within the family of density-based power divergence measures, the L2E

approach has the distinct advantage that a key integral can be computed in closed form,

especially for finite mixtures; see Scott (2001). These findings and others discussed in sec-

tion 2.4 below motivate us to investigate the L2E approach for the estimation of mixture

complexity, when all the component parameters are unknown.

In section 2.2, we introduce the L2E criterion due to Scott and propose an estimator

of mixture complexity based on an L2 model selection criterion. A consistency theorem for

the estimator is stated in section 2.3 but proved in the Appendix. Computational details

and advantages concerning our estimator are given in section 2.4. In section 2.5.1, we carry

out extensive Monte Carlo studies for correctly specified 2-, 3- and 4- component Poisson

mixtures and, in each case, compare the ability of our estimator in correctly determining

the mixture complexity with other procedures in the literature. In section 2.5.2, we examine

the robustness of our estimator, when the postulated mixture model is incorrect. In section

2.6.1, 2.6.2 and 2.6.3 we analyze three different count data sets with overdispersion and zero-

inflation. Overall conclusions are given in section 2.7. We begin with some basic notations

and definitions.

2.2 L2E ESTIMATOR

The integrated squared distance has been used as the goodness-of-fit criterion in nonpara-

metric density estimation for a long time. Scott (1999) introduced an alternative minimum

distance estimation method based on integrated squared error criterion, termed L2E, which

avoids the use of nonparametric kernel density estimators. Scott showed that the L2E is

especially well suited for parameter-rich models such as mixture models.
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The following discussion introduces the basic notations, L2E criterion and an estimator

of mixture complexity. Consider a parametric family of probability mass functions (p.m.f.)

Fm = {fθm
: θm ∈ Θm ⊆ Rp} concentrated on X = {0, 1, 2, . . .} such that fθm

can be

represented as a finite mixture of the form

fθm
(x) =

m∑
i=1

πif(x|φi), x ∈ X , (2.2.1)

where m ≥ 1 is a finite integer, f(x|φi) is the component p.m.f., φi ∈ Φ ⊆ Rs, mixing

proportions πi ≥ 0,
m∑
i=1

πi = 1 for i = 1, . . . ,m, θm = (π1, . . . , πm−1,φ
T
1 , . . . ,φ

T
m)T and Rp is

the p-dimensional Euclidean space. For each m, the functional form of component p.m.f. is

known, but θm is unknown. Note that Fm ⊆ Fm+1 for all m.

Let X1, . . . , Xn be independent random variables taking values in X with an unknown

p.m.f. f0 ∈ Γ, where Γ denotes the set of all p.m.f.’s defined on X . Define the index of the

economical representation of f0 relative to Fm as

m0 = m(f0) = min{m : f0 ∈ Fm}. (2.2.2)

If indeed f0 is a finite mixture defined in (2.2.1), then m0 is finite and denotes the true

mixture complexity; otherwise m0 = ∞. Note that m0 represents the most parsimonious

mixture model representation for f0. Our goal is to find a semi-parametric estimator of the

form

f̂ ∗n(x) =
m̂n∑
i=1

π̂if(x|φ̂i), (2.2.3)

with the property that m̂n → m0 almost surely (a.s.) as n → ∞. Consequently, if f0 ∈ Fm

for some m, then f̂ ∗n → f0. If f0 /∈ Fm for any m, then m̂n →∞ a.s.; nevertheless f̂ ∗n → f0.

To this end, define the squared L2 distance between two p.m.f.’s g, f ∈ Γ as

L2(g, f) =
∞∑
x=0

(g(x)− f(x))2

=
∞∑
x=0

g2(x)− 2
∞∑
x=0

g(x)f(x) +
∞∑
x=0

f 2(x). (2.2.4)
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For each fixed m, define a L2E functional TL2E
m on Γ by the requirement that for every f ∈ Γ

TL2E
m (f) = {θm ∈ Θm : L2(fθm

, f) = min
tm∈Θm

L2(ftm
, f)}. (2.2.5)

Since
∑∞

x=0 f
2(x) in (2.2.4) does not involve θm, the functional

TL2E
m (f) = arg min

θm

[
∞∑
x=0

f 2

θm
(x)− 2

∞∑
x=0

fθm
(x)f(x)

]
. (2.2.6)

Let f̂n be the empirical mass function given by

f̂n(x) = n−1

n∑
i=1

I{Xi=x}, x = 0, 1, . . . , (2.2.7)

where IA is the indicator of set A. Then, we can define the L2E estimator of θm as

θ̂
L2E

n,m = TL2E
m (f̂n) = arg min

θm

[
∞∑
x=0

f 2

θm
(x)− 2n−1

n∑
i=1

fθm
(Xi)

]
. (2.2.8)

In order to propose an estimator of m0 in (2.2.2), as in Woo and Sriram (2006 or 2007,

section 2), we introduce a model selection criterion based on L2(f ˆθ
L2E

n,m

, f̂n) defined by

LIC = L2(f ˆθ
L2E

n,m

, f̂n) + n−1 ln g(m),

where g(m) is a penalty function depending on m. The definition of LIC is motivated by

the work of Poland and Shachter (1994; see section 4 and 5). Here, the value of m yielding

the minimum LIC specifies the best model. Since Fm ⊆ Fm+1, we have L2(f ˆθ
L2E

n,m

, f̂n) ≥

L2(f ˆθ
L2E

n,m+1

, f̂n). Therefore, we penalize the first term in LIC with a slowly increasing function

of m. A simple heuristic to search for the best model from a sequence of nested models is

to try successive models, starting with the smallest, and stop with model m when its LIC

value is less than that for model (m+ 1). That is, this heuristic stops when

L2(f ˆθ
L2E

n,m

, f̂n) + n−1 ln g(m) ≤ L2(f ˆθ
L2E

n,m+1

, f̂n) + n−1 ln g(m+ 1)
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or, equivalently,

L2(f ˆθ
L2E

n,m

, f̂n)− L2(f ˆθ
L2E

n,m+1

, f̂n) ≤ n−1 ln[g(m+ 1)/g(m)].

Now, if we let g(m) = amk (Poland and Shachter, 1994; see section 4 and 5) then n−1 ln[g(m+

1)/g(m)] =n−1k ln((m + 1)/m). This heuristic naturally leads to the following estimator of

m0 defined by

m̂L2E
n = min{m : L2(f ˆθ

L2E

n,m

, f̂n) ≤ L2(f ˆθ
L2E

n,m+1

, f̂n) + αn,m}, (2.2.9)

where {αn,m} is a sequence such that it goes to 0 as n → ∞. For simulations and data

analysis, we set k = 0.6 and define αn,m = n−10.6 ln((m + 1)/m), which is referred in the

rest of the article as the L2E(LIC) threshold. In section 2.5.2, we also use a SBC-type

threshold, αn,m = n−10.6 ln(n) ln((m + 1)/m), which is referred in the rest of the article as

the L2E(SBC) threshold. Our empirical studies with different values of k in αn,m showed

that k = 0.6 performs the best in all our simulations and data analysis given in section 2.5.

This is why we set k = 0.6 in our threshold.

2.3 CONSISTENCY THEOREM

The main theoretical result of the article is the consistency of m̂L2E
n , which is stated as

a theorem below. First, we state a Proposition giving regularity conditions for the existence

and uniqueness of TL2E
m (f) in (2.2.5). The proof of the Proposition and the theorem are given

in the Appendix.

Theorem. Suppose the assumptions of the Proposition (see Appendix) hold. If f0 is a

finite mixture with mixture complexity m0 <∞, then for any sequence αn,m → 0

m̂L2E
n → m0 a.s.

as n→∞, where m̂L2E
n and m0 are as defined in (2.2.9) and (2.2.2), respectively. If f0 is not

a finite mixture, then m̂L2E
n →∞ a.s.
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2.4 COMPUTATIONAL DETAILS

Computation of an estimate of mixture complexity using (2.2.9) is clearly an iterative

procedure. To this end, note that we can re-write m̂L2E
n in (2.2.9) as

m̂L2E
n = min{m : L(θ̂

L2E

n,m , f̂n) ≤ L(θ̂
L2E

n,m+1, f̂n) + αn,m}, (2.4.10)

where

L(θm, f̂n) =

[
∞∑
x=0

f 2

θm
(x)− 2n−1

n∑
i=1

fθm
(Xi)

]
. (2.4.11)

Note that our L2E objective function, L(θm, f̂n), depends only on the postulated parametric

mixture model and the data X1, · · · , Xn. This simple structure enables us to use the built-in

nonlinear minimization (nlm) routine in R to minimize the objective function with respect

θm for each m ≥ 1.

The procedure starts by assuming that the data comes from a mixture with single com-

ponent fθ1
. Then, an estimate θ̂

L2E

n,1 which minimizes L(θ1, f̂n) (see (2.4.11)) is computed.

This yields L(θ̂
L2E

n,1 , f̂n). Next, another component is added yielding a mixture with two

components (m = 2) and an estimate θ̂
L2E

n,2 which minimizes L(θ2, f̂n) is computed, yielding

L(θ̂
L2E

n,2 , f̂n). The difference L(θ̂
L2E

n,1 , f̂n) − L(θ̂
L2E

n,2 , f̂n) is then compared with the threshold

value αn,1. The above procedure of adding one more component to the previous mixture is

repeated until the first value m = m∗ for which the difference L(θ̂
L2E

n,m∗ , f̂n)− L(θ̂
L2E

n,m∗+1, f̂n)

falls below the threshold value αn,m∗ . At this point, the procedure terminates and declares

m∗ as an estimate of the mixture complexity. Note that, at this stage, our procedure auto-

matically provides the best parametric fit determined by θ̂
L2E

n,m∗ .

Common problems faced during minimization of objective functions involving finite mix-

tures are possible existence of equal components and empty components. Here, we seldom

observed equal components. Although empty components do exist during minimizations,

the estimate m̂L2E
n does not result in empty components whether or not our procedure cor-

rectly detects the true mixture complexity. Note that this is consistent with our theoretical

definition of mixture complexity in (2.2.2), which does not allow empty components.
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An important step in our iterative method is the choice of initial values. For our L2E

methodology, extensive preliminary simulations indicated that the final estimate of mixture

complexity is not affected by the choice of initial values. More specifically for given m, we

chose initial values for the remaining parameters using three different methods, namely K-

Means, H-cluster and sample(x,n) routines in R, for our preliminary simulations and found

that the estimates of mixture complexity were not sensitive to different initial value choices.

Therefore, we used a K-means method for all our simulations and data analysis given in this

article.

With respect to computing time, on a typical desktop it took on the average about 6 sec-

onds to obtain one value of m̂L2E
n based on a simulated dataset of size n = 500 from a Poisson

mixture model with 4 components, which is the largest number components considered in

Table 2.1 in section 2.11. Since our algorithm automatically provides L2E estimates of the

component parameters, the time reported above also includes the estimation of parameters

and the overhead of generating a dataset. Furthermore, the number of iterations required for

nlm in R to converge was usually no more than 10. The time reported here is based on using

K-Means to choose initial values; this is slightly different for other initial value choices.

The L2E method has distinct advantages over the other methods compared in this article.

First, the objective function of L2E is simpler than those for MHD and MSCAD, two

methods to which L2E is compared in the article. More specifically, the objective function

for MHD, −2
∑∞

x=0 f
1/2

θm
(x)f̂

1/2
n (x), is a relatively more complicated function to minimize. In

fact, Karlis and Xekalaki (1998) developed an EM type algorithm known as HELMIX to com-

pute MHD estimates. Chen and Khalili (2008) developed a new penalized likelihood approach

called MSCAD, which deviates from information-based methods such as AIC, SBC,HIC

and Robust Information Criterion (RIC) due to Basu et al. (1998) [also see Shen, 2004].

The objective function for MSCAD is also relatively more complicated because it involves

a SCAD-type penalty, hence the name MSCAD. The MSCAD method is also based on

a revised EM algorithm, which uses the penalized likelihood instead of the log-likelihood.



32

Secondly, as for the choice of initial values, observations made by Karlis and Xekalaki (1998)

show that the MHD parameter estimates are sensitive to the choice of initial values, which

in turn affects the estimate of mixture complexity. Furthermore, HELMIX algorithm also

shares some of the weaknesses of the EM algorithm in terms of slow convergence. Karlis

and Xekalaki (1999), on the other hand, use a sequential testing procedure based on Likeli-

hood Ratio Test (LRT) along with bootstrapping to determine the number of components.

Since LRT also involves an EM algorithm, it shares the same drawbacks as above. While

not mentioned explicitly in Chen and Khalili (2008), the fact that MSCAD is also an EM

type algorithm, it is also likely to share some of the drawbacks of EM in terms of slow con-

vergence and choice of initial values. Furthermore, the MSCAD procedure also requires a

careful choice of tuning parameters for their SCAD penalty (Fan and Li, 2001). Finally, as

for computing time, the time reported above for L2E is substantially lower than those for

MHD (Woo and Sriram, 2006, Section 7) and MSCAD ( Chen and Khalili, 2008, Section

4). These computational advantages make our L2E approach a more attractive alternative

to MHD, MSCAD and LRT.

2.5 SIMULATION STUDIES

In this section, we carry out two different simulation studies in order to assess the

ability of our estimator m̂L2E
n to correctly determine the number of components. In both

the studies, the postulated model is a Poisson mixture. The first study assumes that the

model is correctly specified, that is, data are generated from a Poisson mixture model. The

second study examines the robustness of our estimator under model misspecification, that is,

data are generated from a negative binomial mixture model, where one of the components is

subject to low to severe overdispersion. These are described in the following two subsections,

respectively.
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2.5.1 POISSON MIXTURES

In order to assess the performance of m̂L2E
n , we generated data from 2-, 3- and 4-component

Poisson mixtures and compared the performance of our estimator with MHD, MSCAD and

LRT procedures mentioned in section 2.4. More specifically, we consider a total of 6 cases

consisting of 2-, 3- and 4-component Poisson mixtures with respective parameter vectors:

θ2 = (0.5, 1, 9); (0.8, 1, 9); (0.95, 1, 10)

θ3 = (0.33, 0.33, 1, 5, 10); (0.45, 0.45, 1, 5, 10)

θ4 = (0.25, 0.25, 0.25, 1, 5, 10, 15).

For each of the target mixtures, we implemented our computational algorithm described

in section 2.4 for sample sizes n = 100, 500 using only the L2E(LIC) threshold (but not

the L2E(SBC) threshold) defined in section 2.2. The reason for using only the L2E(LIC)

threshold is that when the model is correctly specified, it performs better than the L2E(SBC)

threshold. However, in section 2.5.2 we use both the thresholds; see section 2.7 for more

discussion on the use of the two thresholds. For each sample size, we performed 500 Monte

Carlo replications of our algorithm, each yielding an estimate of mixture complexity. Table

2.1 of section 2.11 gives the relative frequencies (out of 500 replications) of the number

of components determined by our method for each parameter vector and sample size. For

comparative purposes, Table 2.1 also lists the relative frequencies based on MHD(AIC) (see

Tables 1-2 in section 5.1 of Woo and Sriram, 2007), MSCAD (see Tables 2 and 6-8 of Chen

and Khalili, 2008) and LRT from Karlis and Xekalaki (1999). In Table 2.1 of section 2.11,

50% or above correct identifications are given in bold with an asterisk beside it.

Note from Table 2.1 that for the 2-component cases, our L2E(LIC) and the other pro-

cedures perform well, except in the case when n = 100 and one of the mixing proportions is

small, the MSCAD and LRT perform better than L2E(LIC) and MHD(AIC). As for the 3-

component cases, the performance of L2E(LIC) is slightly better than that of MHD(AIC)

but similar to MSCAD and LRT. However, once again, when n = 100 and one of the
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mixing proportions is small, the MSCAD and LRT perform better than L2E(LIC) and

MHD(AIC). Finally, for the 4-component case considered here, only the L2E(AIC) and

MSCAD perform well for n = 500, but all the procedures fail to perform well when n = 100.

As noted in Woo and Sriram (2007), the failure of L2E(LIC) to detect the correct number

of components when n and/or one of the mixing proportions is small may be attributable

to the inherent robustness property of L2E to ignore the presence of a component with

small mixing proportion, especially for small samples. Overall, our L2E procedure provides

a competitive yet computationally simpler alternative to the MHD, MSCAD and LRT

methods.

2.5.2 ROBUSTNESS

Here, we assess the robustness of m̂L2E
n in terms of its ability to correctly identify the true

mixture complexity when the postulated Poisson mixture model is incorrect. As in Woo and

Sriram (2007), we assess the robustness of m̂L2E
n when the postulated model is a 2-component

Poisson mixture fθ2
(x) with λ1 and λ2 as its component means, but the data are generated

from a 2-component negative binomial mixture given by

f(x) = πf1(x) + (1− π)f2(x), (2.5.12)

where, for i = 1, 2, fi(x) =

 r + x− 1

x

 pri (1−pi)x, x = 0, 1, .... Let f1 and f2 be the p.m.f.s

associated with random variables, say, X1 and X2, respectively. Then, E(Xi) = r(1− pi)/pi,

V ar(Xi) = r(1 − pi)/p2
i , for i = 1, 2. Furthermore, if for each i = 1, 2, r → ∞ and pi → 1

such that r(1− pi)→ λi, then E(Xi)→ λi and V ar(Xi)→ λi. This shows that the negative

binomial family of distributions includes the Poisson distribution as a limiting case.

In our simulation studies, we consider two scenarios. In both the scenarios, we set the

component mean of the sampling model to be the same as that of the postulated model,

that is, r(1 − pi)/pi = λi, for i = 1, 2. In the first scenario, we set r = 10 and λ1 = 1

(this sets E(X1) = 1 and V ar(X1) = 1.1), but vary the values of E(X2) = λ2 = 2, 5, 7
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with corresponding values of V ar(X2) = 2.4, 7.5, 11.9. Notice that the values of V ar(X2)

are progressively much larger compared to the corresponding values of λ2, creating a low to

severe overdispersion in the second negative binomial component.

In the second scenario, we set λ1 = 1 and λ2 = 10 (this sets E(X1) = 1 and

E(X2) = 10), but vary the values of r = 10, 20 and 40, which yield corresponding values

of (V ar(X1), V ar(X2)) = (1.1, 20), (1.05, 15), (1.025, 12.5). Note that, as the value of r

decreases, the values of V ar(X1) stay close to E(X1) = 1 but the values of V ar(X2) become

much larger compared to E(X2) = 10, once again creating a low to severe overdispersion in

the second (negative binomial) component. Finally, in each of these two scenarios, we set

the mixing proportion π = 0.25 and 0.5.

For each of the above set of parameter values in each scenario, count data are generated

from the negative binomial mixture in (2.5.12), but the computational algorithm described

in section 2.4 is implemented under the assumption that the class Fm defined in section 2.2

is a family of Poisson mixtures. Here, we perform simulation studies for three sample sizes

n = 100, 500, 1000 using both the L2E(LIC) and L2E(SBC) thresholds defined in section

2.2. As before, we performed 500 Monte Carlo replications of our algorithm, each yielding

an estimate of mixture complexity. Table 2.2 of section 2.11, gives the relative frequencies

(out of 500 replications) of the number of components determined by our method for the

first scenario and Table 2.3 of section 2.11 gives similar results for the second scenario. Once

again, the percentage (50% or above) of correct identification is given in bold with an asterisk

beside it.

The two scenarios considered in Tables 2.2 and 2.3, respectively, can be broadly classified

into three types of overdispersion: Low (λ2 = 2 or r = 40), Moderate (λ2 = 5 or r = 20)

and Severe (λ2 = 7 or r = 10). The low overdispersion cases from Table 2.2 (λ2 = 2)

show that when n = 100, all the procedures fail, but when n = 500, both L2E(LIC) and

MHD(AIC) perform better than their respective SBC versions. However, when n = 1000,

all the procedures perform well. The low overdispersion cases from Table 2.3 (r = 40) show
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that all the procedures perform well at all sample sizes, except in the case when n = 1000

and π1 = 0.25, both L2E(SBC) and MHD(SBC) perform better than L2E(LIC) and

MHD(AIC).

The moderate overdispersion cases from Table 2.2 (λ2 = 5) show that when n ≤ 500,

all the procedures perform well. However, when n = 1000 and π1 = 0.25, both L2E(SBC)

and MHD(SBC) perform better than L2E(LIC) and MHD(AIC). When n = 1000 and

π1 = 0.5, all the procedures considered here perform well, except the MHD(AIC). The

moderate overdispersion cases from Table 2.3 (r = 20) show that when n = 100, all the

procedures perform well. However, when n = 500 and π1 = 0.25, both L2E(SBC) and

MHD(SBC) perform better than L2E(LIC) andMHD(AIC). When n = 500 and π1 = 0.5,

all the procedures perform well, except the MHD(AIC). When n = 1000 and π1 = 0.5, both

L2E(SBC) and MHD(SBC) perform better than L2E(LIC) and MHD(AIC). However,

when n = 1000 and π1 = 0.25, only the L2E(SBC) procedure performs well.

The severe overdispersion cases from Table 2.2 (λ2 = 7) show that when n = 100, all

the procedures perform well. However, when n = 500, both L2E(SBC) and MHD(SBC)

perform better than L2E(LIC) and MHD(AIC). When n = 1000 only the L2E(SBC)

procedure performs well. The severe overdispersion cases from Table 2.3 (r = 10) show that

when n = 100, all the procedures perform well. However, when n = 500, only the L2E(SBC)

procedure performs well. When n = 1000 and π1 = 0.25, all the procedures fail, but when

π1 = 0.5, only the L2E(SBC) procedure performs well.

These findings show that when there is low overdispersion, the overall performance of

L2E(LIC) is comparable to MHD(AIC) but better than the SBC versions of L2E and

MHD. This is not surprising because the low overdispersion case is almost similar to

the“correctly specified model” case in section 2.5.1, and as we noted there, in such cases

the L2E(LIC) performs better than the SBC versions. However, when there is moderate

or severe overdispersion, the performance of L2E(SBC) is significantly better than the rest.

Therefore, in cases where the experimenter suspects the presence of severe overdispersion
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in one (or more) of the components and the sample size is large, we recommend use of

L2E(SBC) to obtain a parsimonious fit. These results serve as a testament that our L2E-

based estimate of mixture complexity is highly robust under model misspecification and

its performance is better than that of MHD, especially when there is moderate to severe

overdispersion.

A referee pointed out that when there is large overdispersion in one of the components,

usually one may need perhaps more than one Poisson component to describe it. However, in

this case, our L2E procedure is able to detect the true number of components despite model

misspecification, as shown in Tables 2.2 and 2.3 of section 2.11. Note that the model mis-

specification is used only to illustrate the robustness of m̂L2E
n . For a real life count data that

is highly overdispersed, we recommend determining an L2E estimate of mixture complexity

using, say, mixture of negative binomials, and then fitting a negative binomial mixture to

the data. In fact, for a cross-section count data on the demand for medical care with high

overdispersion, Deb and Trivedi (1997) fit a two-component negative binomial mixture using

maximum likelihood estimation.

2.6 DATA ANALYSIS

Here, we consider overdispersed count datasets which have been modeled using Poisson

mixtures.

2.6.1 Spanish Bank Data

Here, we consider a count data that gives the number of defaulted installments in a

financial institution in Spain (see Table 2.5 of section 2.11). The sample size for this data is

n = 4691. This data was originally considered by Dionne, Artis and Guillen (1996). Karlis

and Xekalaki (2001) concluded that a Poisson mixture would be plausible for modeling this

data. Based on plots of Hellinger gradient function for different values of mixture complexity,

Karlis and Xekalaki (2001) concluded that a semiparametric MHD estimate of the mixing
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distribution supports a 6-component Poisson mixture model for the data. Woo and Sriram

(2007) used their MHD estimate of mixture complexity and determined that a 3- or 4-

component Poisson mixture would fit the data well. Noting that there is significant zero-

inflation, they also determined aMHD estimate of mixture complexity based on zero-inflated

Poisson (ZIP ) mixtures. They showed that a 4-component ZIP mixture would provide a

good fit of the data. Recently, Chen and Khalili (2008) analyzed this data and determined a 4-

component Poisson mixture and a 5-component ZIP mixture using their MSCAD method.

Once again, we reanalyzed this data by determining an L2E estimate of mixture complexity,

providing a fitted Poisson mixture and a fitted ZIP mixture. The details are given below.

As for the data on the number of defaulted installments in a financial institution in Spain,

our L2E estimate of mixture complexity is m̂L2E
n = 4 for both the L2E(SBC) and L2E(LIC)

thresholds. As for ZIP mixtures, our L2E estimate of mixture complexity is m̂L2E
n = 5 for

both the thresholds. As done in Chen and Khalili (2008), we also computed the chi-square

(χ2) goodness-of-fit for our fitted Poisson mixture (with degrees of freedom 10) and ZIP

mixture (with degrees of freedom 9) using L2E estimates and compared it with those for the

MSCAD and MHD methods. All these are given in Table 2.4 of section 2.11, along with

the parameter estimates corresponding to each of these methods. Based on the estimates

and the goodness-of-fit values, we conclude that the L2E method is as good as the MSCAD

(perhaps slightly better) under both model assumptions, but superior to the MHD method.

Table 2.5 of section 2.11, gives the observed and the expected frequencies based on the L2E

and MSCAD methods. While the expected frequencies of the two methods are similar for

x ≤ 15, the expected frequency of L2E for x ≥ 16 is much closer to the observed frequency

than that of the MSCAD.

2.6.2 Death Notice Data

The Death notice data, taken from Schilling(1947), consists of the number of death notices

for women aged 80 years and over, which appeared in the London “Times” newspaper on
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each day for the 3-year period from 1910 to 1912 (Titterington et al., 1985, p.89). Hassel-

blad (1969) indicated that this data could possibly be thought of as an example where the

death rate during winter months is higher than in summer months, thereby fitting a mix-

ture of two Poisson distributions. Shen (2004) also fitted a mixture of two Poisson for this

data by estimating the component parameters using L2E and compared her estimates with

those obtained using MLE and MHD methods. We reanalyze this data by first estimating

the number of Poisson mixture components and then determining a fitted Poisson mixture

using L2E. We compare our results with the MSCAD method of Chen and Khalili (2006)

mentioned earlier, who also determine the mixture complexity and obtain a fitted Poisson

mixture. The details are given below.

For the Death notice data, our estimate m̂L2E
n (see 2.2.9) of mixture complexity based on

the L2E(SBC) and the L2E(LIC) thresholds are 1 and 2, respectively; the MSCAD method

detects a two-component Poisson mixture. Table 2.6 of section 2.11 gives the L2E estimates

of parameters in the two-component Poisson mixture along with estimates obtained using

the MSCAD method of Chen and Khalili (2006), and the MLE and MHD estimates from

Shen (2004). Table 2.6 of section 2.11 also gives the chi-square goodness-of-fit statistic value

(with degrees of freedom 7) for each method. It is evident from the parameter estimates and

the associated chi-square values that all the methods listed in the table provide a good fit of

the data. Table 2.7 of section 2.11 gives the observed and the expected frequencies based on

the L2E, MLE, MHD and MSCAD methods. The table shows that our method not only

detects two components (as expected), but also provides estimates that are competitive with

other methods.

Shen (2004) also illustrated the robustness of L2E for the Death notice data (n=1096)

by adding one large value ranging from 10 to 20 (the maximum number of observed death

notices is 9). They noted that addition of single value to the data changes their MLE estimate

dramatically when the value is far away from the original data. They showed that their MHD

estimates also change considerably if the contaminating value is moderately far away from
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the original data, but are not affected if the value is very far away. Compared to MLE

and MHD estimates, Shen observed that the L2E is more robust to the existence of a

contaminating value. Since our focus is on the estimation of the number of components, we

added 50 values located at 10 (about 4.36% contamination at 10) and numerically studied

the effect of inclusion of a spurious component on m̂L2E
n . Once again, we obtained m̂L2E

n = 2

using the LIC criterion, and this continued to be the case even when we increased the

contamination percentage to about 8%. However, when the contamination percentage was

larger than 6%, L2E estimates of proportion and component parameters were somewhat

affected. This shows that our m̂L2E
n is not influenced by a small spurious component.

Also, as per a referee’s suggestion, we examined robustness against outliers by inflating

the data by adding new observations generated from a Poisson component. Recall that a

2-component Poisson based on L2E, MHD, MSCAD or MLE fits the data well with

component means λ1 ≈ 1.3 and λ2 ≈ 2.6. We carried out a robustness study adding 50

new observations (to the original sample size n = 1096) from a Poisson component with

mean λ3 = 5, 6, 7, 8 or 9. When 5 ≤ λ3 ≤ 8, our m̂L2E
n = 2 with the new threshold, but

when λ3 = 9, our m̂L2E
n = 3. This shows that the procedure m̂L2E

n is not influenced by small

spurious Poisson component located at λ3 = 5, 6, 7 or 8.

2.6.3 Accident Data

This example concerns the number of accidents incurred by 414 machinists over a period

of three months. This count data (see Table 2.9 below) is taken from the classical paper

of Greenwood and Yule (1920) and has been analyzed by several authors including Karlis

and Xekalaki (1999). Greenwood and Yule noted that the fit provided by single Poisson

distribution to this data is very poor. Using a sequential testing procedure based on likelihood

ratio test (LRT) that utilizes a resampling approach, Karlis and Xekalaki (1999) determined

that a 3-component Poisson mixture provides a better fit to the data. Observe from Table 2.9

of section 2.11 that this data contains excessive number of zeros, indicating that a (Poisson)
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mixture model that simultaneously addresses the excess zeros and overdispersion, referred

here as a zero-inflated Poisson (ZIP ) mixture model (see definition below), may also be

appropriate for this data. Woo and Sriram (2007) used their MHD estimate of mixture

complexity and determined that a 2-component Poisson mixture would fit the data well.

Noting that there is significant zero-inflation, they also determined a MHD estimate of

mixture complexity based on zero-inflated Poisson (ZIP ) mixtures. They showed that a

3-component ZIP mixture would provide a good fit of the data. Once again, we reanalyzed

this data by determining an L2E estimate of mixture complexity, providing a fitted Poisson

mixture and a fitted ZIP mixture. The details are given below.

As for the accident data, our L2E estimate of mixture complexity is m̂L2E
n = 3 for the

L2E(LIC) and L2E(SBC) thresholds. As for ZIP mixtures, our L2E estimate of mixture

complexity is m̂L2E
n = 3 for both the thresholds. We also computed the chi-square (χ2)

goodness-of-fit for our fitted Poisson mixture (with degrees of freedom 1) and ZIP mix-

ture(with degrees of freedom 2) using L2E estimates and compared it with those for the

MHD methods. All these are given in Table 2.8 of section 2.11 along with the parameter

estimates corresponding to each of these methods. We conclude that our 3-component ZIP

mixture fit and the 3-component Poisson mixture fit based on L2E estimates provide the

best fit to the data. However, from the point of view of slight parsimony (because λ1 is

set to 0 in the 3-component ZIP mixture), we would prefer the 3-component ZIP mixture

fit (based on L2E estimates) for the data. We also computed expected frequencies based

on a 3-component ZIP mixture using these estimates. Table 2.9 of section 2.11 gives the

observed and the expected frequencies based on these methods. Based on the estimates and

the goodness-of-fit values (with degrees of freedom 1), undoubtedly both L2E and L2E(ZIP )

methods provide the best fit.
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2.7 CONCLUSION

For the count data, we have introduced an estimator of the unknown number of compo-

nents in finite mixtures. This estimator is derived as a by-product of minimizing an informa-

tion criterion based on L2 distance, where the penalty is a logarithmic function of number

of components. The estimator, called L2E, is shown to be strongly consistent under certain

regularity conditions. Two distinctive features of the L2E estimator are that it is easy to

compute and its performance is on par with two recently proposed estimators known as

MHD and MSCAD. Furthermore, the performance of L2E is on par or better than that of

MHD in terms of robustness against model misspecification.

Computation of L2E is iterative and its eventual value is determined using a threshold,

which is a slowly decreasing function of m. For computations and data analysis, we have

suggested two different thresholds referred to as L2E(LIC) and L2E(SBC). These thresholds

are different from the ones suggested for MHD, but more appropriate for the L2 distance

under consideration. In most applications, we recommend using the L2E(LIC) threshold

for all sample sizes. However, in situations where an experimenter suspects the presence of

severe overdispersion in count data and the sample size is large, we recommend the use of

L2E(SBC) to obtain a parsimonious fit.

With respect to computation, the L2E procedure has many distinct advantages over

MHD and MSCAD. For example, the L2E objective function has a simple structure which

enables us to use the built-in nlm routine in R for minimization. Furthermore, the L2E

estimates are not affected by the choice of initial values and it requires less computing time.

Thus, transparency, ease of use and efficiency in achieving computational speed combined

with competitive performance makes the L2E estimator an attractive alternative to other

existing methods in the literature.

A similar L2E approach can be developed for the estimation of mixture complexity in

the continuous case. We do not present the details of the continuous case here because the

definition of the L2E functional, proof of consistency of mixture complexity estimator, and
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assessment of robustness are different from the ones given here. These details will be reported

in a subsequent article.
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2.8 SUPPLEMENTAL MATERIALS

Here we give a list of computer codes used in the simulation and data analysis. We used

R2.8 for all simulations and data analysis in this article.

########################################################################

# This function is to randomly generate from a Poisson Mixture

########################################################################

rpoismix<- function(n,probs,lambda) {

out<- rep(0,n)

for (i in 1:n) {

u<- runif(1)

k<-length(probs)

indg<- 1:k

cp = cumsum(probs)

j = min(indg[u <= cp])

out[i] <-rpois(1,lambda[j])

}

return(out)

}

########################################################################

# This function is to calculate

# mixture density function for the Poisson Mixture

########################################################################

dpoismix <- function(x2,probs,lambda)

{

density <- rep(0,length(x2))

for (i in 1: length(probs))

density <- density + probs[i]* dpois(x2,lambda[i])

return(density)

}

########################################################################

# This function is to calculate

# mixture density function for the ZIP-Poisson Mixture
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########################################################################

dzpoismix <- function(x2,probs,lambda)

{

density <- rep(0,length(x2))

for (i in 2: length(probs))

{density <- density + probs[i]* dpois(x2,lambda[i-1])}

density= density + probs[1]*(x2==0)

return(density)

}

########################################################################

#

#This the main function: For an input data x

#and a given number of components k, this function computes the L2E

#function value for a Poisson mixture and outputs the

#estimates of the parameters and corresponding minimum

#value of the function.

#

########################################################################

########################################################################

#

# Inputs:

# x -input data

# K - number of components desired (K=1 default)

# prms1- initial input for parameters

#

# Output:

# list containing estimated parameters and the minimum

# (lambda=lambda w=w value=lmin)

########################################################################

mixpois.l2e<- function(x1,prms1,k)

{

# L2E function to minimize

p.crit<-function(k,prms1)

{

mu<-prms1[1:k]

w<-prms1[(k+1):(2*k)]

xmax <-max(200,5*max(x1))
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f1x<-dpoismix(0:xmax,w,mu)

f2x<-dpoismix(x1,w,mu)

p.crit= (sum(f1x^2) - 2*mean(f2x))

}

#nonlinear minimization routine using -nlm

#ans<-nlm(p.crit,prms1,fscale=length(x),print.level=0)

#pr<-ans$est

#lamda<-pr[1:k]

# w<-pr[(k+1):(2*k)]

#w<- w/sum(w)

#ans<-nlm(p.crit,pr,fscale=length(x),print.level=0)

#pr<-ans$est

#lmin<-ans$min

#Can use the following non-linear minimization routine as well

lower=0; upper= max(x)+5

ans<-nlminb(prms1,p.crit,lower=0,upper=upper)

pr<-ans$par

ans<-nlminb(pr,p.crit,lower=0,upper=upper)

pr<-ans$par

lmin<- ans$obj

lamda<-pr[1:k]

w<-pr[(k+1):(2*k)]

w<- w/sum(w)

list(l=lamda,w=w,value=lmin)

}

########################################################################

# This function is used to

# calculate the L2E value for the Poisson mixtures

########################################################################

#Input x-data, m=mean, w=mixing proportions

#output theL2E function value

########################################################################
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l2ecal<-function (x,m,w) {

l2e.mixval<- function(x2,prms2,k)

{

mu<-prms2[1:k]

w<-prms2[(k+1):(2*k)]

xmax <-max(200,5*max(x2))

f1x<-dpoismix(0:xmax,w,mu)

f2x<-dpoismix(x2,w,mu)

l2eval= (sum(f1x^2) - 2*mean(f2x))

return(l2eval)

}

########################################################################

#This function can be used to input initial guesses for parameters. Initial

#guesses can be either "‘K-means"’ or "‘Random sample"’or "Hierarchical-Clustering"

########################################################################

init<-function(type="km",x,k){

if(type=="km"){

#K-Means

mm<-kmeans(x,k)

g<-mm$cluster

mu<-mm$center

s1<-mm$size

w<- s1/ss

init=c(mu,w)

}

if(type=="rs"){

#Random sample

g <-sample(0:k,ss,T)

memb=g

n=length(x)

nk <- rep(0,k)

mu<-rep(0,k)

for(i in 1:k) {
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ii <- seq(n)[memb==i]; nk[i] <- length(ii)

mu[i] <- mean(x[ii,drop=F])

w <- nk/n

}

init=c(mu,w)

}

if(type=="hc"){

library(amap)

#Hierarchical-Clustering

hc<-hcluster(x, method = "euclidean", diag = FALSE, upper = FALSE,

link = "complete", members = NULL, nbproc = 2,

doubleprecision = TRUE)

memb <- cutree(hc, k = k)

g=memb

n=length(x)

nk <- rep(0,k)

mu<-rep(0,k)

for(i in 1:k) {

ii <- seq(n)[memb==i]; nk[i] <- length(ii)

sig[i]<- var(x[ii,drop=F])

mu[i] <- mean(x[ii,drop=F])

w <- nk/n

}

init=c(mu,w)

}

list(init)

}

########################################################################

#This function is used to test the mixture complexity value.

# We need to have other functions such as mix.pois.l2e.r,

# init.r, dpoismix.r,.....

########################################################################

start=proc.time()# to see the computation time

cc=500 #No of MC tests
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ss=1000 #Sample size

count <- rep(0,cc) #results(K) holder

for (ct in 1:cc) {

k=1

k=1

n=ss

#Input data-

#simulate from Poisson mixture or negative binomial mixture or real data

x=rpoismix(n,probs,lam)

m=mean(x)

w=1

#Here we can use the initial value function

#for the initial input for the parameters

prms<-c(mu,w)

xx<-mixpois.l2e(x,prms,k)

l<-xx$l

w<-xx$w

l2e <-rep(0,10)

#l2e[k]<- xx$value # directly use the function value

l2e[k]<-l2e.mixval(x,pr,k) # we calculate the minimum value

cat("l2e=",l2e[k])

cat(" ")

repeat {

k=k+1

n=ss

#Initial input using function init

iVal = init("km",xd,k) # using the kmeans to get the initial value

prms<-iVal$init

xx<-mixpois.l2e(x,prms,k)

l<-xx$l
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w<-xx$w

#l2e[k]<-xx$value # directly use the function value

l2e[k]<-l2e.mixval(x,pr,k) # calculate the minimum value

cat("l2e=",l2e[k]) # printing the l2e values

diff<- l2e[k-1]-l2e[k] # calculating the difference in l2e

cat("diff",diff) # printing the difference

cat(" ")

if ( diff <= th) break # compare it with the threshold value here

# used the LIC or BIC

}

k= k-1

cat("k=",k)

count[ct]=k

}

last=proc.time() - start # time taken to run 500 Montecarlo

last

count

table(count)/cc

########################################################################

#The real data used in this chapter are:

######################

#The Spanish Bank Data

########################################################################

x=c(rep(0,3002),rep(1,502),rep(2,187),rep(3,138),rep(4,233),

rep(5,160),rep(6,107),rep(7,80),rep(8,59),rep(9,53),rep(10,41),

rep(11,28),rep(12,34),rep(13,10),rep(14,13),rep(15,11),rep(16,4),

rep(17,5),rep(18,8),rep(19,6),rep(20,3),rep(21,0),rep(22,1),rep(23,0),

rep(24,1),rep(25,0),rep(26,0),rep(27,0),rep(28,1),rep(29,1),rep(30,1),

rep(31,1),rep(32,0),rep(33,0),rep(34,1))
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########################################################################

#The Accident Data

########################################################################

x=c(rep(0,296),rep(1,74),rep(2,26),rep(3,8),rep(4,4),

rep(5.4),rep(6,1),rep(7,0),rep(8,1))

########################################################################

#The Death Notice Data

########################################################################

x=c(rep(0,162),rep(1,267),rep(2,271),rep(3,185),rep(4,111),rep(5,61),

rep(6,27),rep(7,8),rep(8,3),rep(9,1))

########################################################################
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2.9 APPENDIX

PROOFS

Proposition. Let Γ̃ ⊂ Γ denote the sub-class of p.m.f.’s defined on X for which the following

condition holds: For each m, there is a compact set Cm ⊆ Θm such that for every f ∈ Γ̃,

inf
tm∈Θm−Cm

L2(ftm
, f) > L2(fθ∗

m
, f),

for some θ∗m ∈ Cm. If, for each m, Θm is compact then Cm = Θm. For each m, we will assume

that fθm
(x) is continuous in θm for each x ∈ X , and the class Fm is identifiable. Then the

following hold for the functional TL2E
m defined in (2.2.5) and f ∈ Γ̃:

(i) TL2E
m (f) exists satisfying (2.2.5).

(ii) If TL2E
m (f) is unique, then the functional TL2E

m is continuous at f in L2 topology.

(iii) TL2E
m (fθm

) = θm uniquely for every θm ∈ Θm .

Proof. For f ∈ Γ̃, let h(tm) = ||ftm
− f ||2 for tm ∈ Θm. Suppose {tn,m} ∈ Θm is any

sequence such that tn,m → tm as n→∞. Then, by the Minkowski’s inequality

|h(tn,m)− h(tm)|2 =
∣∣∣||ftn,m

− f ||2 − ||ftm
− f ||2

∣∣∣2
≤ ||(ftn,m

− ftm
)||22.

Since ftm
(x) and ftn,m

(x) are p.m.f.s and ftm
(x) is assumed to be continuous in tm for each

x, we have that

||(ftn,m
− ftm

)||22 ≤ 2
∞∑
x=0

|(ftn,m
(x)− ftm

(x))|

→ 0

by the Glick’s theorem (Devroye and Györfi, 1985, p.10). Hence h(tm) is continuous in tm.

This, together with the assumptions made above, implies that TL2E
m (f) exists.
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Proof of parts (ii) and (iii) are similar to those in Theorem 1 of Beran (1977). Hence, we

omit the details. �

Proof of the Theorem. Recall from (2.2.9) that

m̂L2E
n = min{m : L2(f ˆθ

L2E

n,m

, f̂n) ≤ L2(f ˆθ
L2E

n,m+1

, f̂n) + αn,m}.

Now, since f̂n(x)→ f0(x) a.s. for each x, another application of the Glick’s theorem (Devroye

and Györfi, 1985, p.10) yields

||f̂n − f0||22 ≤ 2
∞∑
x=0

|f̂n(x)− f0(x)|

→ 0 a.s. (2.9.13)

Henceforth, we will suppress “a.s.”, as it will be clear from the context. Define hn(t) =

||ft − f̂n||2 and h(t) = ||ft − f0||2. Once again, applying the Minkowski’s inequality we get

|hn(t)− h(t)| ≤ ||f̂n − f0||2. Hence,

sup
t
|hn(t)− h(t)| ≤ ||f̂n − f0||2 → 0,

by (2.9.13). Let θ0,m = TL2E
m (f0) and θ̂

L2E

n,m = TL2E
m (f̂n). Then, it is possible to show that

| min
t∈Θm

hn(t)− min
t∈Θm

h(t)| → 0. (2.9.14)

That is, ||f̂n − f ˆθ
L2E

n,m

||2 → ||f0 − fθ0,m
||2. Therefore, from the definitions above

L2(f ˆθ
L2E

n,m

, f̂n)− L2(f ˆθ
L2E

n,m+1

, f̂n)→ L2(fθ0,m
, f0)− L2(fθ0,m+1

, f0) = dm. (2.9.15)

Note from (2.2.2) and (2.9.15) that

m0 = min{m : L2(fθ0,m
, f0)− L2(fθ0,m+1

, f0) = dm ≤ 0}.

If f0 is not a finite mixture, then m0 =∞. This implies that dm > 0 for all m > 0. Therefore,

by (2.2.9) and (2.9.15) it follows that m̂n →∞ almost surely. If f0 is a finite mixture, that

is f0 = fθm0
, then we will show that dm > 0 for m < m0 and dm = 0 for m ≥ m0.
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Let m ≥ m0 , since f0 ∈ Fm0 ⊆ Fj, j ≥ m0

L2(f ˆθ
L2E

n,j

, f̂n) ≤ L2(fθm0
, f̂n)→ 0, (2.9.16)

by (2.9.13). Therefore, by (2.9.15) we have that dm = 0 for m ≥ m0.

Let m < m0 then by the definition of m0, we have f0 ∈ Fm0 but f0 /∈ Fm for m < m0.

Suppose, on the contrary, dm = 0 for some m < m0, that is, L2(fθ0,m
, f0) = L2(fθ0,m+1

, f0).

Then, for all tm+1 ∈ Θm+1

L2(fθ0,m
, f0) ≤ L2(ftm+1

, f0). (2.9.17)

For an arbitrary ε ∈ (0, 1) and φ ∈ Φ, let ftm+1(x) = (1 − ε)fθ0,m
(x) + εf(x|φ). Then,

ftm+1
∈ Fm+1 and from (2.9.17)

∞∑
x=0

|fθ0,m
(x)− f0(x)|2 −

∞∑
x=0

|(1− ε)fθ0,m
(x) + εf(x|φ)− f0(x)|2 ≤ 0.

Now, using the identity x2 − y2 = (x− y)(x+ y) and algebraic calculations we get

ε
∞∑
x=0

[fθ0,m
(x)− f(x|φ)]

{
2[fθ0,m

(x)− f0(x)] + ε[f(x|φ)− fθ0,m
(x)]

}
≤ 0,

which implies

2ε
∞∑
x=0

[fθ0,m
(x)− f(x|φ)][fθ0,m

(x)− f0(x)] ≤ ε2
∞∑
x=0

[fθ0,m
(x)− f(x|φ)]2. (2.9.18)

Dividing both sides of (2.9.18) by ε and letting ε→ 0 we get
∞∑
x=0

[fθ0,m
(x)− f(x|φ)][fθ0,m

(x)− f0(x)] ≤ 0,

which implies
∞∑
x=0

fθ0,m
(x)[fθ0,m

(x)− f0(x)] ≤
∞∑
x=0

f(x|φ)[fθ0,m
(x)− f0(x)]. (2.9.19)

Since f0 ∈ Fm0 , we can write f0(x) =
∑m0

i=1 π
0
i f(x|φ0

i ) and (2.9.19) holds for each φ = φ0
i ,

i = 1, . . . ,m0. Since
m0∑
i=1

π0
i = 1, from (2.9.19)

∞∑
x=0

fθ0,m
(x)[fθ0,m

(x)− f0(x)] ≤
∞∑
x=0

f0(x)[fθ0,m
(x)− f0(x)],

which implies that
∑∞

x=0 [fθ0,m
(x)− f0(x)]2 = 0. This contradicts the fact that f0 /∈ Fm for

m < m0. Therefore, dm = 0 for m < m0. Hence the Theorem. �
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2.11 Tables and Figures

Table 2.1: Relative frequencies of estimated number of components based on 500 replications.

2-components
θ2 = (0.5, 1, 9)

Sample Size n = 100 n = 500

αn 1 2 3 1 2 3
L2E(LIC) 0.004 *.958 0 *.984 .016
MHD(AIC) 0 *.998 .002 0 *1.00
MSCAD 0 *.988 .012 0 *1.00 0

LRT 0 *.95 .05 0 *.96 .04
θ2 = (0.8, 1, 9)

Sample Size n = 100 n = 500

αn 1 2 3 1 2 3
L2E(LIC) .004 *.928 .068 0 *.944 .056
MHD(AIC) 0 *.998 .002 0 *1.00
MSCAD .002 *.986 .012 *.990 .008

LRT 0 *.95 .05 0 *.96 .04
θ2 = (0.95, 1, 10)

Sample Size n = 100 n = 500

αn 1 2 3 1 2 3
L2E(LIC) .568 .402 .03 .096 *.832 .072
MHD(AIC) .616 .384 0 *1.00
MSCAD .052 *.868 .080 *.994 .004

LRT 0 *.93 .07 0 *.95 .05
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Table 2.1 (continued)
3-components

θ3 = (0.33, 0.33, 1, 5, 10)

Sample Size n = 100 n = 500

αn 1 2 3 1 2 3
L2E(LIC) 0 .48 *.52 0.1 .038 *.952
MHD(AIC) 0 .84 .16 0 .018 *.982
MSCAD 0 .2 *.780 0 .016 *.964

LRT 0 .30 *.66 0 0 *.94
θ3 = (0.45, 0.45, 1, 5, 10)

Sample Size n = 100 n = 500

αn 1 2 3 1 2 3
L2E(LIC) .004 .83 .166 0 .374 *.626
MHD(AIC) 0 .966 .034 0 .162 *.838
MSCAD 0 .280 *.692 0 .082 *.896

LRT 0 .39 *.58 0 0 *.94
4-components

θ4 = (0.25, 0.25, 0.25, 1, 5, 10, 15)

Sample Size n = 100 n = 500

αn ≤ 3 4 5 ≤ 3 4 5
L2E(LIC) .956 .044 .46 *.54
MHD(AIC) .994 .004 .924 .076
MSCAD .512 .460 .028 .110 *.812 .078

LRT .88 .12 .59 .4 .01
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Table 2.2: Samples drawn from 2-component Negative Binomial mixture in (2.5.12) with θ2 =
(π1, λ1, λ2) and r = 10.

θ2 = (.25, 1, 2)

Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 1 2 3 1 2 3
L2E(LIC) .554 .446 .07 *.924 .006 .02 *.954 .044
L2E(SBC) .968 .028 .812 .188 .482 *.518
MHD(AIC) .908 .092 .218 *.782 .008 *.992
MHD(SBC) .998 .002 .888 .112 .474 *.526

θ2 = (.25, 1, 5)

Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 1 2 3 1 2 3
L2E(LIC) .002 *.84 .158 0 *.584 .416 .002 .187 .811
L2E(SBC) .218 *.782 0 *.998 .002 0 *.976 .024
MHD(AIC) .006 *.978 .016 0 *.724 .276 0 .252 .748
MHD(SBC) .078 *.922 0 *.996 .004 0 *.948 .052

θ2 = (.25, 1, 7)

Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 1 2 ≥ 3 1 2 ≥ 3
L2E(LIC) 0 *.69 .31 0 0.11 .89 0 0.03 .97
L2E(SBC) .066 *.932 .002 0 *.928 0 *.646 .354
MHD(AIC) 0 *.916 .084 0 .068 .932 0 0 1.00
MHD(SBC) .002 *.992 .006 0 *.718 .284 0 .112 .888

θ2 = (.5, 1, 2)

Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 1 2 3 1 2 3
L2E(LIC) .528 .472 .068 *.924 .008 0 *.964 .036
L2E(SBC) .95 .05 .766 .234 .356 *.644
MHD(AIC) .882 .118 .14 *.86 .002 *.998
MHD(SBC) .994 .006 .802 .198 .276 *.724

θ2 = (.5, 1, 5)

Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 1 2 3 1 2 3
L2E(LIC) .04 *.96 0 *.87 .13 0.004 *.736 .26
L2E(SBC) .044 *.956 0 *.984 .016 0 *.976 .024
MHD(AIC) 0 *.992 .008 0 *.808 .192 0 .40 .60
MHD(SBC) .006 *.992 .002 0 *1.00 0 *.984 .016

θ2 = (.5, 1, 7)

Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 1 2 3 1 2 3
L2E(LIC) 0.028 *.794 .178 0 .274 .726 0 .156 .844
L2E(SBC) 0 *.992 .008 0 *.962 .038 0 *.87 .13
MHD(AIC) 0 *.946 .054 0 .234 .766 0 .006 .994
MHD(SBC) 0 *.998 .002 0 *.914 .086 0 .474 .526
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Table 2.3: Samples drawn from 2-component Negative Binomial mixture in (2.5.12) with θ2 =
(π1, λ1, λ2).

θ2 = (.25, 1, 10); n = 100

r r = 10 r = 20 r = 40

αn 1 2 3 1 2 3 1 2 3
L2E(LIC) 0 *.56 .44 0.008 *.728 .264 .004 *.894 .102
L2E(SBC) .084 *.9 .016 .142 *.852 .006 .186 *.814
MHD(AIC) .002 *.594 .404 0 *.92 .08 0 *.99 .01
MHD(SBC) .002 *.942 .056 0 *.996 .004 0 *1.00

θ2 = (.25, 1, 10); n = 500

r r = 10 r = 20 r = 40

αn 1 2 ≥3 1 2 ≥3 1 2 ≥3
L2E(LIC) 0 0 1.00 0 .13 .87 0 *.6 .4
L2E(SBC) 0 *.54 .46 0 .984 .016 0 *1.00
MHD(AIC) 0 0 1.00 0 .124 .876 0 *.766 .234
MHD(SBC) 0 .022 .978 0 *.782 .218 0 *.998 .002

θ2 = (.25, 1, 10); n = 1000

r r = 10 r = 20 r = 40

αn 1 2 ≥3 1 2 ≥3 1 2 ≥3
L2E(LIC) 0 .0 1.00 0 .02 .98 .01 .286 .714
L2E(SBC) 0 .12 .88 0 *.84 .16 0 *.998 .002
MHD(AIC) 0 0 1.00 0 .004 .996 0 .282 .718
MHD(SBC) 0 0 1.00 0 .192 .808 0 *.966 .034

θ2 = (.5, 1, 10); n = 100

r r = 10 r = 20 r = 40

αn 1 2 ≥3 1 2 ≥3 1 2 ≥3
L2E(LIC) 0.022 *.678 .3 0 *.82 .18 0 *.89 .11
L2E(SBC) 0 *.996 .004 0 *.998 .002 0 *1.00
MHD(AIC) 0 *.76 .240 0 *.94 .06 0 *.99 .01
MHD(SBC) 0 *.984 .016 0 *.998 .002 0 *1.00

θ2 = (.5, 1, 10); n = 500

r r = 10 r = 20 r = 40

αn 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3
L2E(LIC) 0 .2 .8 0 .68 .32 0 *.74 .26
L2E(SBC) 0 *.87 .13 0 *.994 .006 0 *1.00 0
MHD(AIC) 0 .006 .994 0 .386 .614 0 *.896 .104
MHD(SBC) 0 .252 .748 0 *.942 .058 0 *1.00

θ2 = (.5, 1, 10); n = 1000

r r = 10 r = 20 r = 40

αn 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3
L2E(LIC) 0 0 1.00 0 0.058 .942 0 *.638 .332
L2E(SBC) 0 *.568 .432 0 *.982 .018 0 *.996 .004
MHD(AIC) 0 0 1.00 0 .04 .96 0 *.608 .392
MHD(SBC) 0 0 1.00 0 *.622 .378 0 *.994 .006
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Table 2.4: Parameter estimates for Poisson mixture models: Spanish bank data.

Method(m̂) (π̂1, λ̂1) (π̂2, λ̂2) (π̂3, λ̂3) (π̂4, λ̂4) (π̂5, λ̂5) χ2

L2E(4) (.736,.147) (.204,4.05) (.055,10.05) (.005,24.09) - 34.61
MSCAD(4) (.733,.147) (.200,3.98) (.060,9.52) (.007,19.72) - 34.81
MHD(4) (.742,.15) (.204,4.15) (.053,10.43) (.001,23.18) - 43.57

L2E − ZIP (5) (.342,0) (.401,3.16) (.198,4.23) (.054,10.08) (.005,20.38) 33.99
MSCAD − ZIP (5) (.328,0) (.417,.302) (.193,4.19) (.055,9.78) (.007,20.01) 34.68
MHD − ZIP (4) (.373,0) (.385,.36) (.199,4.52) (.043,11.26) - 45.44

Table 2.5: Comparison of observed frequencies and expected frequencies: Spanish bank data.

x Observed Expected Frequencies

m = 4 m = 4 m = 5 m = 5
L2E MSCAD L2E − ZIP MSCAD-ZIP

0 3002 2996.2 2986.0 2990.4 2998.6
1 502 506.3 506.3 491.3 494.4
2 187 169.4 171.9 190.1 187.0
3 138 187.9 188.7 185.4 177.0
4 233 191.6 190.4 179.6 182.2
5 160 160.9 159.4 161.7 158.5
6 107 118.3 118.1 122.9 120.8
7 80 82.3 84.1 87.1 86.5
8 59 59.1 62.0 62.3 62.6
9 53 46.1 48.8 47.4 48.1
10 41 38.2 39.8 38.4 38.7
11 28 32.0 32.3 31.7 31.4
12 34 25.8 25.1 25.5 24.7
13 10 19.7 18.7 19.6 18.7
14 13 14.2 13.3 14.4 13.6
15 11 9.7 9.4 10.2 9.7
≥16 33 32.9 36.7 32.9 38.3
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Table 2.6: Parameter estimates for Poisson mixture models: Death notice data.

Method π1 π2 λ1 λ2 χ2

L2E .4213 .5787 1.36119 2.7418 1.2204
MSCAD .34 .66 1.23 2.64 1.29
MLE .3599 .6401 1.2561 2.6634 1.180
MHD .3375 .6625 1.2196 2.6302 1.234

Table 2.7: Comparison of observed frequencies and expected frequencies: Death notice data.

X 0 1 2 3 4 5 6 7 8 9
Frequency 162 267 271 185 111 61 27 8 3 1

MHD(m = 2) 161.575 270.867 262.243 191.714 114.413 57.345 24.560 9.128 2.986 0.870
MLE(m = 2) 161.230 271.346 262.073 191.199 114.191 57.548 24.859 9.335 3.089 0.911
L2E(m = 2) 159.247 273.207 263.319 190.193 113.195 57.397 25.168 9.652 3.273 0.992
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Table 2.8: Parameter estimates for Poisson mixture models: Accident data.

Method π1 π2 π3 λ1 λ2 λ2 χ2

L2E(3) .4377 .5203 .0420 .000001 .6355 3.8415 0.04074985
L2E(ZIP (3)) .4376 .5204 .0420 0 .6355 3.8415 0.04068744
MHD(2) .8796 .1204 .22749 2.1859 1.040910

MHD(ZIP (3)) .42335 .52580 .05084 0 .5896 3.0449 1.049298

Table 2.9: Comparison of observed frequencies and expected frequencies: Accident data.

X 0 1 2 3 4 ≥ 5
Frequency 296 74 26 8 4 6

MHD(m = 2) 295.66 78.23 20.89 10.32 5.36 3.54
MHD(ZIP (m = 3)) 297.02 74.20 25.62 8.84 4.19 4.13

L2E(m = 3) 295.6599 73.9419 25.7963 8.409 4.1635 5.7334
L2E(ZIP (m = 3)) 295.6595 73.9423 25.7962 8.4087 4.1634 5.7338
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ABSTRACT

In many applications, there may not be sufficient information about the number of mixture

components, termed mixture complexity, to determine a satisfactory finite mixture model fit

for a dataset. This article focuses on continuous data and develops an estimator of mixture

complexity which is consistent when the form of the component densities are unknown but

are postulated to belong to a parametric family, and which is simultaneously robust against

model misspecification. We construct an estimator of mixture complexity as a by-product

of minimizing an information criterion based on L2 distance. When the model is correctly

specified, Monte Carlo simulations for a wide variety of normal mixtures show that our

estimator correctly identifies the true mixture complexity. Robustness of the estimator is

examined via simulations under symmetric departures from postulated component normality.

The performance of our estimator is assessed through simulations and comparisons are made

with other procedures in the literature. It is shown that our estimator performs better than

all other procedures including the minimum Hellinger distance estimator of Woo and Sriram

(2006). Three well-known real datasets are examined to illustrate the performance of this

method.

Key words and Phrases: Finite mixtures; Mixture complexity; Information criterion;

Threshold; Consistency; Robustness.

3.1 INTRODUCTION

Ever since the work of Pearson (1894), finite mixture models have been widely used

in many disciplines such as astronomy, biology, engineering, genetics, medicine, and social

sciences, among others. Finite mixture models are applicable in situations where datasets

consist of two or more subpopulations. Due to this flexibility in modeling, researchers con-

tinue to study finite mixture models theoretically and identify new applications areas such

as Bioinformatics. A comprehensive account of statistical inference for mixture models with
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applications can be found in Everitt and Hand (1981), Titterington, Smith and Makov (1985),

and McLachlan and Basford (1988), Lindsay (1995), Böhning (1999), McLachlan and Peel

(2000), and Böhning and Seidel (2003).

When the number of components, termed mixture complexity, is assumed to be known

and there is no contamination in the data, there is an enormous body of literature giving

a variety of approaches to estimate the unknown component parameters in finite mixture

models. EM algorithm of Dempster, Laird and Rubin (1977) is undoubtedly a useful way to

compute maximum likelihood estimates (MLE) of all the component parameters. However,

the MLE becomes highly unstable (Aitkin and Wilson 1980) when there is a small pertur-

bation in one of the component densities, thereby affecting the quality and interpretability of

fitted mixture models. To address the issue of robust estimation of component parameters,

a variety of methods such as M-estimation (McLachlan and Basford 1988), robust version

of the EM algorithm (De Veaux and Krieger 1990; Windham and Cutler 1994) and several

minimum distance estimation methods (Woodward et al. (1984); McCann and Sarkar (2000))

possessing some degree of automatic robustness (Donoho and Liu 1988) have been studied in

the literature as alternative approaches. For each estimation approach, the literature offers

associated theory along with computational methodologies.

Robust methods such as M-estimation are not easily adapted for mixtures and these

generally achieve robustness at the cost of efficiency at the true parametric model density.

One possible way to partially reconcile the conflicting concepts of robustness and efficiency is

to use a density-based minimum Hellinger distance (MHD) estimator introduced by Beran

(1977). In the context of mixtures, Cutler and Cordero-Bran̆a (1996) developed a MHD

estimator for all parameters when the exact form of the component densities are unknown

but are thought to be close to members of some parametric family. They proposed a new

computational algorithm, somewhat similar to the EM algorithm, and an adaptive density

estimate to compute the MHD estimates. In addition to studying basic asymptotic proper-

ties, they showed via simulations that their MHD estimates are also robust under gross-error
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contaminations. Woodward, Whitney and Eslinger (1995) also studied MHD estimators in

the case of estimation of mixing proportion in a mixture of two normals.

In many situations, the mixture complexity is not known in advance. In such scenarios,

fitting a parsimonious finite mixture model becomes considerably more challenging. Exam-

ples of scenarios where mixture complexity is not known are plentiful; see, for instance,

Bogardus et al. (1989), McLaren et al.(1991), Roeder (1994), McLachlan, McLaren and

Matthews (1995), McLaren (1996) Richardson and Green (1997), McLachlan and Peel (1997,

2000). Developing methods of estimation for mixture complexity has been an area of intense

research over the last two decades; see Henna (1985); McLachlan (1987); Roeder (1994);

Escobar and West (1995); Chen and Kalbfleisch (1996); Dacunha-Castelle and Gassiat (1997,

1999); Roeder and Wasserman (1997); Keribin (2000); Priebe and Marchette (2000); and Ish-

waran, James and Sun (2001); Roeder (1994), Dellaportas et al. (1997), Basu et al. (1998),

Karlis and Xekalaki (1999), James et al. (2001), Ishwaran et al. (2001), McGrory and Tit-

terington(2007); Chen and Khalili (2008) and references therein. Once again, the estimation

methodologies proposed in the above articles are sensitive to model misspecification and

presence of outliers in datasets.

Recently, Woo and Sriram (2006) treated the estimation of mixture complexity as a model

selection problem and constructed an estimator of mixture complexity as a by-product of

minimizing a Hellinger Information Criterion (HIC). They showed that their estimator

of mixture complexity(MHDE) is consistent and also illustrated through simulations the

ability of their estimator to correctly determine the number of components when the postu-

lated mixture model is correct. Furthermore, they showed that their estimator continues to

perform well even when the data comes from a model that is somewhat different from the

postulated mixture model; see Woo and Sriram (2006) for more details.

Undoubtedly, the MHDE estimator of mixture complexity considered in Woo and Sriram

(2006) has attractive large sample and robustness features. However, the implementation of

the MHDE algorithm requires specification of an adaptive nonparametric density estimator



69

and careful choice of bandwidth; see Woo and Sriram, 2006 for details. Clearly, these specifi-

cations severely impact the computations of MHDE estimates, especially if the true mixture

complexity is more than two.

To overcome computational difficulties associated with MHDE, Scott (1998, 1999, 2001

and 2004) introduced an alternative minimum distance estimation method based on inte-

grated squared error criterion, termed L2E, which avoids the use of nonparametric kernel

density estimators. The L2E approach is a special case of a general method introduced by

Basu et al. (1998), who devised a whole continuum of density-based power divergence estima-

tors that begin with the MLE and interpolate to the L2E estimator and beyond. While the

L2E approach has the advantage of not requiring any nonparametric density estimator, L2E

estimators suffer from moderate loss of efficiency at the parametric model relative to MHDE

and maximum likelihood estimators. Nonetheless, within the family of density-based power

divergence measures, the L2E approach has the distinct advantage that a key integral can

be computed in a closed form, especially for finite mixtures; see equation (3.2.7) below and

Scott (2001). These findings motivate us to investigate the L2E approach for the estimation

of mixture complexity, when all the component parameters are unknown.

This paper describes a new algorithm for estimating mixture complexity based on L2E

distance. As a member of the family of minimum distance estimators, the L2E criterion

is by nature robust and hence less influenced by outliers. Our primary aim is to develop

an estimator of mixture complexity based on L2E distance which is not only consistent

and robust, but also computationally simpler than MHDE. By treating the estimation of

mixture complexity as a model selection problem, we construct an estimator of mixture

complexity as a by-product of minimizing a Information Criterion (LIC) based on L2E

distance introduced in section 3.2; see display (3.2.8) and details below it.

In section 3.2, we introduce the L2E criterion due to Scott and propose an estimator

of mixture complexity using this criterion. The main theorem concerning the consistency

of the estimator is stated in section 3.3 but proved in the Appendix. Computational details
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concerning our estimator are given in section 3.4. In the first two subsections of section 3.5, we

carry out extensive Monte Carlo studies for a variety of mixtures with normal components,

in order to support the consistency result and compare the performance of our estimator

with those available in the literature. In section 3.5.3, we examine the robustness of our

estimator through extensive simulations. Here, we examine the robustness of our estimator

against model misspecification and compare them with the estimator of James et al. (2001)

and MHDE of Woo and Sriram(2006). In section 3.6, we estimate the mixture complexity

for three well known real data sets and compare our performance with those in the literature.

Overall summary and conclusions are given in section 3.7. We begin with some basic notations

and definitions.

3.2 L2E ESTIMATOR

The L2 distance estimators, termed L2E, were introduced by Scott(1998, 1999), who con-

vincingly argued that the estimation method is particularly appropriate for analyzing large

data sets in which an estimator is expected to be robust to the existence of gross errors and

still retain acceptable level of efficiency. In this section, we introduce some basic notations,

the L2 estimation approach and then propose an estimator of the mixture complexity.

Consider a parametric family of distribution functions Fm = {Fθm
: θm ∈ Θm ⊆ Rp} for

each fixed m <∞ such that Fθm
can be represented as a finite mixture of the form

Fθm
(x) =

m∑
i=1

πiF (x|φi), x ∈ X ⊆ R, (3.2.1)

and θm = (π1, . . . , πm−1,φ
T
1 , . . . ,φ

T
m)T . The class Fm ⊆ Fm+1 for all m and we denote

F =
∞⋃
m=1

Fm. For each m, let fθm
(x) denote the mixture density function corresponding to

Fθm
(x) with component densities denoted by f(x|φi), for i = 1 · · ·m. That is, fθm

(x) =∑m
i=1 πif(x|φi).
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Let X1, . . . , Xn be independent and identically distributed random variables with an

unknown distribution F0 with corresponding density function f0. For an arbitrary distri-

bution G, define the index of the economical representation of G, relative to the family of

mixtures Fm, as

m(G) = min{m : G ∈ Fm}. (3.2.2)

If indeedG is a finite mixture thenm(G) is finite and denotes the true mixture complexity;

otherwise m(G) = ∞. Note that m(G) represents the most parsimonious mixture model

representation for G. Henceforth, we let m0 = m(F0).

Our goal is to find a semi-parametric estimator of the form

f̂ ∗n(x) =
m̂n∑
i=1

π̂if(x|φ̂i), (3.2.3)

with the property that m̂n → m0 almost surely (a.s.) as n → ∞. Consequently, if F0 ∈ Fm

for some m, then f̂ ∗n → f0. If F0 /∈ Fm for any m, then m̂n →∞ a.s.; nevertheless f̂ ∗n → f0.

To this end, define the squared L2 distance between two density functions g, f as

L2(g, f) =

∫ ∞
−∞

(g(x)− f(x))2dx

=

∫ ∞
−∞

g2(x)dx− 2

∫ ∞
−∞

g(x)f(x)dx+

∫ ∞
−∞

f 2(x)dx. (3.2.4)

Let

L(θm, F ) =

[∫ ∞
−∞

f 2

θm
(x)− 2

∫ ∞
−∞

fθm
(x)dF (x)

]
(3.2.5)

for each fixed integer m > 0, and define a L2E functional TL2E
m on F by the requirement

that for every F ∈ F

TL2E
m (F ) = {θm ∈ Θm : L(θm, F ) = min

tm∈Θm

L(tm, F )}. (3.2.6)
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Let F̂n denote the empirical distribution of {Xi, i = 1, . . . , n}. Then, an L2E estimator of

θm is one that minimizes L(θm, F̂n) =
[∫∞
−∞ f

2

θm
(x)dx− 2n−1

∑n
i=1 fθm

(Xi)
]

with respect

to θm. That is, we define

θ̂
L2E

n,m = TL2E
m (F̂n) = arg min

θm

[∫ ∞
−∞

f 2

θm
(x)dx− 2n−1

n∑
i=1

fθm
(Xi)

]
, (3.2.7)

with L(θ̂
L2E

n,m , F̂n) = minθm
L(θm, F̂n). In order to propose an estimator of m0, as in Woo

and Sriram (2006 or 2007, section 2), we introduce a model selection criterion based on

L(θ̂
L2E

n,m , F̂n) defined by

LIC = L(θ̂
L2E

n,m , F̂n) + n−1b(n)ν(m), (3.2.8)

where b(n) depends only on n and ν(m) is the number of parameters in the mixture model.

Here, the value of m yielding the minimum LIC specifies the best model. Since Fm ⊆ Fm+1,

we have L(θ̂
L2E

n,m , F̂n) ≥ L(θ̂
L2E

n,m+1, F̂n). Therefore, we penalize the goodness-of-fit statistic by

a term proportional to the number of parameters in the mixture model. A simple heuristic

to search for the best model from a sequence of nested models is to try successive models,

starting with the smallest, and stop with model m when the LIC value for model m is lesser

than that for model (m+ 1). That is, this heuristic stops

L(θ̂
L2E

n,m , F̂n) + n−1b(n)ν(m) ≤ L(θ̂
L2E

n,m+1, F̂n) + n−1b(n)ν(m+ 1)

or, equivalently,

L(θ̂
L2E

n,m , F̂n)− L(θ̂
L2E

n,m+1, F̂n) ≤ n−1b(n)[ν(m+ 1)− ν(m)].

Setting αn,m = n−1b(n)[ν(m + 1) − ν(m)] naturally leads to the following estimator of m0

defined by

m̂L2E
n = min{m : L(θ̂

L2E

n,m , F̂n) ≤ L(θ̂
L2E

n,m+1, F̂n) + αn,m}. (3.2.9)

Note that in equation (3.2.9) the threshold value αn,m has not been specified yet. It can be

seen easily that threshold values directly impact the m̂L2E
n values, which increase as αn,m
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values decrease. Since an m̂L2E
n value determines the mixture complexity of the final mixture

model, choice of αn,m may be viewed as model selection. Following the suggestions in Woo

and Sriram (2006, section 4), we use the Akaike Information Criterion (AIC) threshold value

αn,m = 3/n to numerically study the performance of m̂L2E
n throughout the article.

3.3 CONSISTENCY THEOREM

The main theoretical result of the article is the consistency of m̂L2E
n , which is stated as

a theorem below. First, we state a Proposition giving regularity conditions for the existence

and uniqueness of TL2E
m (F ) in (3.2.6). The proof of the Proposition and the theorem are

given in the Appendix.

Theorem: Suppose the assumptions of the Proposition (see Appendix) hold. If f0 is a

finite mixture with mixture complexity m0 <∞, then for any sequence αn,m → 0

m̂L2E
n → m0 a.s.

as n→∞, where m̂L2E
n and m0 are as defined in (3.2.9) and (3.2.2), respectively. If f0 is not

a finite mixture, then m̂L2E
n →∞ a.s.

3.4 COMPUTATIONAL DETAILS

Computation of an estimate of mixture complexity using (3.2.9) is clearly an iterative

procedure which can be used for any mixture density. The computation of the integral term

in L(θm, F̂n) =
∫∞
−∞ f

2

θm
(x)dx− 2n−1

∑n
i=1 fθm

(Xi) during minimization can be difficult for

some mixture densities. However, as noted in Scott (2001), computation of the integral term

in the L2E criterion is particularly easy for normal mixtures with the use of the following

identity ∫ ∞
−∞

φ(x| µ1, σ1
2)φ(x| µ2, σ2

2)dx = φ(µ1 − µ2| 0, σ1
2 + σ2

2),

where φ(x| µ, σ2) is the normal density function with mean µ and variance σ2. The identity

above is one of many useful formulas given in Wand and Jones (1995). The following shows
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that for normal mixtures, fθm
(x) =

∑m
i=1 πiφ(x| µi, σi2), the use of the above identity reduces

the key integral to

∫ ∞
−∞

f 2

θm
(x)dx =

m∑
i=1

1

2
√
πσi

π2
i + 2

m∑
j<k

πjπk φ(µj − µk| 0, σj
2 + σk

2),

making the integral tractable and thereby significantly reducing the computations involved

in minimizing L(θm, F̂n). Thus, the L2E criterion for normal mixture has the following

analytical form:

L(θm, F̂n) =
m∑
i=1

1

2
√
πσi

π2
i + 2

m∑
j<k

πjπk φ(µj − µk| 0, σj
2 + σk

2)

− 2/n
n∑
i=1

m∑
j=1

πjφ(Xi| µj, σj2). (3.4.10)

Now, using the logarithmic transformations for the variances and a logistic-like transfor-

mation for the mixing proportions, πi, in (3.4.10) leads to an unconstrained optimization

problem that is solved with standard built-in quasi-Newton method algorithms such as nlm

in R.

We will now describe our algorithm for normal mixtures; however, one could adopt this

algorithm for any family of finite mixture models.

3.4.1 L2MIXAlgorithm

• Step 1 : Start with m = 1, i.e data comes from a single normal density, and

formulate L(θ1, F̂n) in equation (3.4.10). Using the nlm or nlminb routine in R with

a choice of initial value (to be discussed below) for θ1, compute θ̂
L2E

n,1 which

minimizes L(θ1, F̂n). Now use θ̂
L2E

n,1 as an initial value and recompute an L2E

estimate of θ1. This yields the minimum value L(θ̂
L2E

n,1 , F̂n).

• Step 2 : Now set m = 2 and compute L(θ2, F̂n) in equation (3.4.10). Using the nlm

or nlminb routine in R once again with a choice of initial value for θ2, compute θ̂
L2E

n,2 .
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Once again, use θ̂
L2E

n,2 as an initial value and recompute an L2E estimate of θ2. This

yields the minimum value of the function, L(θ̂
L2E

n,2 , F̂n).

• Step 3 : Calculate the difference L(θ̂
L2E

n,1 , F̂n)− L(θ̂
L2E

n,2 , F̂n) and compare it with the

threshold value αn,m in (3.2.9). If this difference is less than αn,m (= 3/n in all

simulations and data analysis) then stop and report m̂L2E
n = 1. Otherwise go to

Step 4.

• Step 4 : Repeat Steps 2 and 3 by adding one more component to the previous

mixture and comparing the difference until the first value m = m∗ for which the

difference L(θ̂
L2E

n,m∗ , F̂n)− L(θ̂
L2E

n,m∗+1, F̂n) falls below the threshold value αn,m∗ . At this

point, the procedure terminates and declares m∗ as an estimate of the mixture

complexity. Note that, at this stage, our procedure automatically provides the best

parametric fit determined by θ̂
L2E

n,m∗ .

As mentioned above, an important step in our iterative method is the choice of initial

values. For our L2E methodology, extensive preliminary simulations indicated that the final

estimate of mixture complexity is not severely affected by the choice of initial values. This is

also because our estimation algorithm recomputes to arrive at the final estimate; see Step 1,

for instance. In our numerical studies given m, we chose initial values for the remaining

parameters using three different methods, namely K-Means, H-cluster and sample(x,n) rou-

tines in R. In our studies, we found that the estimates of mixture complexity were not sensi-

tive to different initial value choices. We used K-means method for most of our simulations

and data analysis given in this article. However, in few cases with one of the components

having a small mixing proportion, we received warning/error messages concerning insuffi-

cient group size or matrix singularity, which were overcome by using sample(x,n) routines

to generate initial values.

With respect to computing time, on a typical desktop it took on the average about

5 seconds to obtain one value of m̂L2E
n based on a simulated dataset of size n = 1000
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from a normal mixture model with 3 components, which is the largest number components

considered in Tables 3.1 and 3.2 in section 3.11. Since our algorithm automatically provides

L2E estimates of the component parameters, the time reported above also includes the

estimation of parameters and the overhead of generating a dataset. Furthermore, the number

of iterations required for nlm or nlminb in R to converge was usually no more than 10. The

time reported here is based on using K-Means to choose initial values; this is slightly different

for other initial value choices.

The L2E method has distinct advantages over the other methods compared in this article.

Firstly, the L2E criterion could be reduced to a closed form expression given in (3.4.10) for

normal mixtures. Whereas, the numerical integration required to compute MHD in HMIX

algorithm (see Cutler and Cordero-Bran̆a, 1996; Woo and Sriram, 2006) places a practical

limitation not only in the computation time but also in obtaining sufficient accuracy to

perform quasi-Newton optimization. Similar comments as for MHD also apply to NKE

and MKE estimators of James et al. (2001). Chen and Khalili (2006,2008) developed a

new penalized likelihood approach called MSCAD, which deviates from information-based

methods such as AIC and SBC. The objective function for MSCAD is also relatively

more complicated because it involves a SCAD-type penalty, hence the name MSCAD. The

MSCAD method is also based on revised EM algorithm, which uses the penalized likelihood

instead of the log-likelihood.

Secondly, as for the choice of initial values, observations made by Cutler and Cordero-

Bran̆a (1996) and Woo and Sriram (2006) show that the MHDE parameter estimates are

sensitive to the choice of initial values, which in turn affects the estimate of mixture com-

plexity. Furthermore, the MHDE algorithm also shares some of the weaknesses of the EM

algorithm in terms of slow convergence. Similar comments as for MHDapply to NKE and

MKE estimators of James et al. (2001), the Bayesian algorithm of Roeder and Wasserman

(1997) denoted by R&W ; the Bootstrap algorithm of McLachlan (1987) denoted by Boot-

strap; and the CDF method of Henna (1985) denoted by Henna. While not mentioned explic-
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itly in Chen and Khalili (2008), the fact that MSCAD is also an EM type algorithm, it is

also likely to share some of the drawbacks of EM in terms of slow convergence and choice of

initial values. Furthermore, MSCAD procedure also requires careful choice of tuning param-

eters for their SCAD penalty (Fan and Li, 2001). Finally, as for computing time, the time

reported above for L2E is substantially lower than those for MHDE (Woo and Sriram, 2006,

Section 7) and all other competing procedures considered here. These computational advan-

tages make our L2E approach a more attractive alternative to all other available procedures

in the literature.

3.5 SIMULATION STUDIES

In this section, we conduct a variety of Monte Carlo simulations to validate the consistency

Theorem by assessing the performance of m̂L2E
n in (3.2.9) for moderate to large sample sizes.

We carry out simulation studies for two different scenarios, but in both the postulated model

is a member of family of normal mixtures. In the first scenario, the data are generated from

a normal mixture model, whereas in the second the data are generated from a mixture

model with symmetric departures from component normality. Note that the first scenario

would examine the efficiency of our estimator when the model is correctly specified, while

the second would assess the robustness of our estimator against model misspecification.

For the first scenario, we perform the two simulation studies discussed in Woo and Sriram

(2006) and in each study compare the performance of our estimator with six other estimators

for mixture complexity available in the literature. The first simulation demonstrates the

performance on a target density, which is a three-component mixture of normal densities,

for a variety of sample sizes. The second is a simulation study on a variety of normal mixtures

from Marron and Wand (1992) for a fixed sample size.

For the second scenario, we perform four different simulation studies to assess the robust-

ness of our estimator under symmetric departures from postulated component normality. In

these simulations, the samples are drawn from mixtures with two components, where the
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component densities are those of scale and location transformations, respectively, of a Stu-

dent’s t random variable with two or four degrees of freedom, or a rescaled t random variable

with three or four degrees of freedom. In addition, we consider varying degrees of separation

(or equivalently, overlap) between the two component densities. The setup for our robust-

ness analysis is similar to those described in Woo and Sriram (2006), Woodward et al. (1984)

and Markatou (2001); also see Woodward et al. (1995) and McCann and Sarkar (2000). In

each of these simulations, robustness of our estimator of mixture complexity under model

misspecification is also compared with the estimator of mixture complexity defined in James

et al. (2001)and the MHDE estimator defined in Woo and Sriram (2006).

3.5.1 Three-component mixture

The first simulation demonstrates the performance of (3.2.9) for the target density given

by

f(x) = (1/2)φ(x|(0, 10)) + (1/4)φ(x|(−0.3, 0.05)) + (1/4)φ(x|(0.3, 0.05)), (3.5.11)

where φ denotes the normal density with mean and variance identified inside the parentheses.

Here, one of the components has a large variance and the other two have small variances.

We implement our computational algorithm for sample sizes n = 50, 250, 500 and 1000

drawn from (3.5.11). For each sample size, we perform 100 Monte Carlo replications of our

algorithm, each yielding an estimate of mixture complexity. We then tally the estimated

number of components (out of 100 replications).

These counts are reported for each sample size in Table 3.1 of section 3.11, where L2E

corresponds to the estimate given by (3.2.9). In addition, for comparison purposes, we also

provide in Table 3.1 the counts obtained via the MHDE algorithm of Woo and Sriram

(2006); the NKE and MKE algorithm of James et al. (2001); the Bayesian algorithm of

Roeder and Wasserman (1997) denoted by R&W ; the Bootstrap algorithm of McLachlan

(1987) denoted by Bootstrap; and the CDF method of Henna (1985) denoted by Henna. In
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this case, the true mixture complexity is 3. In Table 3.1 of section 3.11, we denote the highest

percentage (50% or above) of correct identifications in bold with an asterisk beside it.

The simulation results in Table 3.1 of section 3.11 show the following: For sample size

n = 50, only the R&W algorithm correctly identifies a large percentage of times, while all

the other algorithms largely underestimate the true mixture complexity. While the R&W

procedure correctly identifies the true mixture complexity, it should be noted that in this

case, it also overestimates the true mixture complexity about 12% of the times. For sample

size n = 250, only our L2E and the R&W algorithm correctly identifies a large percentage

of times (50% or above). While the L2E and R&W procedure correctly identify the true

mixture complexity, it should be noted that in this case, R&W procedure also overestimates

the true mixture complexity about 40% of the times, where as our L2E over estimates only

about 5 % of the times.

For sample size n = 500, only our L2E and the MHDE algorithm correctly identify a

large percentage of times. However, MHDE underestimates the mixture complexity about

35% of times. Out of the two, our L2E was indisputably the best, as it correctly identifies

the mixture complexity substantially higher percentage of times. For sample size n = 1000,

only our L2E, MHDE and MKE algorithms perform well. However, both MHDE and

MKE underestimate the mixture complexity substantially more than that of L2E. In addi-

tion, it should be noted that in this case, MKE algorithm also overestimates the true

mixture complexity about 19% of the times. In comparison, our L2E neither overestimates

nor underestimates severely. Overall, when the model is correctly specified, when the sample

size is larger than 250, our L2E is the best as it correctly identifies the mixture complexity

substantially higher percentage of times than all the others considered here.

3.5.2 Marron and Wand mixtures

Here we carry out similar studies as in section 3.5.1, where target densities are normal

mixture models #2 and # 4 - #9 considered in Marron and Wand (1992, see pages 717
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and 718). These mixtures exhibit a range of unimodal, skewed and multimodal densities

appropriate for testing the performance of the above algorithms. As in Woo and Sriram(2006)

and James et al. (2001), we compare the performance of all the algorithms mentioned in Table

3.1 of section 3.11 based on percentage correct identification of the true mixture complexity.

The sample size for this study is n = 1000. Once again, in Table 3.2 of section 3.11, we

denote the highest percentage (50% or above) of correct identifications in bold with an

asterisk beside it.

The simulation results in Table 3.2 of section 3.11 show the following: When the true

number of components m = 2, as in mixtures model # 4 - 8, all the algorithms perform

well by correctly identifying a large percentage of times, except the R & W algorithm which

overestimates the true mixture complexity for model # 4. For model # 5, while the R&W

procedure correctly identifies the true mixture complexity a large percentage of times, it

should be noted that in this case, it also overestimates the true mixture complexity about 45%

of the times. Once again, for model # 8, despite correct identification, the R&W procedure

also overestimates the true mixture complexity about 18% of the times.

In the case of mixture model # 2 (m = 3), our L2E was indisputably the best as it is the

only one that correctly identifies the true mixture complexity a large percentage of times,

while all the other algorithms largely underestimate the true mixture complexity. However, it

should be noted that in this case, our L2E also underestimates the true mixture complexity

about 46% of the times.

In the case of mixture model #9 (m = 3), our L2E, the MKE, the MHDE and the

Bootstrap algorithms perform well. And our L2E out performed all other methods by a

healthy margin. While the L2E and Bootstrap procedure correctly identifies the true mixture

complexity , it should be noted that in this case, Bootstrap procedure overestimates the true

mixture complexity about 12% of the times and L2E procedure also overestimates the true

mixture complexity about 19% of the times. On the other hand, while theMKE andMHDE

procedure correctly identifies the true mixture complexity , it should be noted that in this



81

case, MKE procedure underestimates the true mixture complexity about 38% of the times

and MHDE procedure also underestimates the true mixture complexity about 49% of the

times.

Overall, our L2E is the only procedure which correctly identifies large percentage of

times in all the seven models considered here. These show that, when the model is correctly

specified, the L2E algorithm provides a useful way to estimate the mixture complexity for

a variety of mixtures. Undoubtedly, L2E algorithm is the best among those considered here

and associated computations are considerably less intensive compared to those considered in

the article.

3.5.3 Robustness

In this section, we describe an approach to assess the robustness of m̂n in terms of

its ability to correctly identify the true mixture complexity when the postulated mixture

model is misspecified. We assess the robustness of m̂L2E
n when the postulated model is a

mixture of normals but the data are generated from a mixture with symmetric departure

from component normality. As in Woo and Sriram (2006), we consider two slightly different

setups for our simulation study. The first setup is as described in Woodward et al. (1984)

for the estimation of mixing proportions (also see Woodward et al. (1995) and McCann and

Sarkar (2000)). The second setup is as described in Section 29.3.3 of Markatou (2001); also

see section 4 of Markatou (2000). More specifically, for our simulation study, we consider a

mixture with two components given by

fθ2
(x) = πf1(x) + (1− π)f2(x), (3.5.12)

where f1 is the density associated with a random variable X1 = aY and f2 is the density

associated with a random variable X2 = Y +b for some a > 0 and b > 0. Here, the postulated

distribution for Y is standard normal but, in the first setup, the samples are generated from

the mixture in (3.5.12) when Y is a Student’s t(df)-random variable with degrees of freedom

df = 2 or 4. For our first setup, we set π = 0.25, 0.50 and 0.75, a = 1 and
√

2, and for each
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pair of (π, a) values, we choose the values of b so that the overlap (see Woodward et al. 1984

for definition ) between the two t-component densities in (3.5.12) is either 0.10 or 0.03. We

will not explicitly give these b values, except in three cases (see below), but refer to these

b values as t-overlap in Tables 3.3 and 3.4 of section 3.11. Note that the general shapes of

such a two-component postulated (normal mixture) model and a two-component t-mixture

model from which the data are generated are markedly different for some values of π, a and

b (see, e.g., Figure 1 in McCann and Sarkar (2000) for π = 0.75, a =
√

2, overlap = 0.10 and

df = 4). In addition, the component densities in the sampling model have much heavier tail

than those in the postulated (normal) mixture model.

Our second simulation setup differs slightly from the one above in that the samples are

generated from the mixture in (3.5.12) when Y is a rescaled Student’s t(df)-random variable

with degrees of freedom df = 3 or 4. As in Markatou (2001), by a rescaled Student’s t(df)

we mean a t(df)-random variable that is rescaled to have variance 1. Also, for each pair of

(π, a) values given above, we choose the values of b so that the overlap between the two

normal-component densities in (3.5.12) is either 0.10 or 0.03. That is, we use the b values

that are given in Table 2 of Cutler and Cordero-Bran̆a (1996). We will refer to these b values

as N -overlap in Tables 3.5 and 3.6 of section 3.11.

The sample size for this study is n = 1000 and we performed 100 Monte Carlo replications

of our L2E, MHDE algorithm of Woo and Sriram (2006) and the MKE algorithm of

James et al. (2001), with αn,m = 3/n. Tables 3.3 to 3.6 give a tally of estimated number

of components for the L2E, MHDE and MKE algorithms, for each choice of a, π and b

given above. In all these cases the true mixture complexity is 2 and we denote the highest

percentage (50% or above) of correct identifications in bold with an asterisk beside it, in

Tables 3.3 to 3.6.

The simulations presented here span over a variety of moderate to more extreme sym-

metric departures from component normality along with two different types and amounts

of separation between the component densities. In all, there are 40 different cases of model
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misspecifications considered here. Our L2E algorithm was indisputably the best as it per-

formed well in all 40 cases. Although the MHDE algorithm was not the best but nearly so,

it performed well in about 36 cases out of 40. The MKE algorithm, as expected, performed

well only in 9 cases in terms of correctly identifying the true mixture complexity m0 = 2.

However, when the t(2) components are poorly separated (t-overlap = 0.10) and in the fol-

lowing three cases, (π, a) = (0.5, 1), (0.5,
√

2) and (0.75,
√

2), Table 3.4 shows that (our L2E)

and the MKE perform better than the MHDE algorithm.

In Tables 3.1 and 3.2 of section 3.11, we noticed that our L2E algorithm overestimates

the true mixture complexity in some instances. However, Tables 3.3 to 3.6 of section 3.11,

show that our L2E algorithm overestimates slightly in some instances but rather severely

in some other cases. We do not observe much underestimation with our L2E algorithm

here at all. However, Tables 3.3 to 3.6 of section 3.11, show that in many instances the

MKE algorithm rather severely underestimates the true mixture complexity and in some

instances MHDE algorithm also rather severely underestimates. Given the extreme nature

of symmetric departures from component normality considered in our simulations, the results

in Table 3.3 to Table 3.6 of section 3.11, serve as a testament that our L2E algorithm is

highly robust against model misspecification, and simply the best when the computational

aspect is also taken into account.

3.6 DATA ANALYSIS

The goals in analyzing finite mixture models are two-fold: (1) to determine what model

best fits the data at hand (eg, a mixture of 1, 2, or 3 normal distributions) and (2) to

estimate the parameters of that best-fitting model. In practice, these steps are performed

in reverse order: parameters are first estimated, and the solutions for different models are

then compared. However, we perform the data analysis in such a way we simultaneously

determine an estimate of mixture complexity and estimates of the component parameters.



84

In this section, we analyze three well-known real datasets to further demonstrate the use of

our L2E method.

3.6.1 SLC data

Red blood cell sodium-lithium contertransport (SLC) activity data collected from 190

individuals was analyzed originally in Dudley et al. (1991). The SLC is measured as the

difference in lithium efflux rate from lithium-loaded cells into sodium chloride and sodium-

free media. Roeder (1994) discussed that a trait such as blood pressure is determined by

simple mode of inheritance compatible with the action of a single action gene with two

alleles, A1 and A2, which occur with probabilities p and 1− p. Furthermore, Roeder (1994)

argued that red blood cell SLC is believed to follow one of the following two competing

genetic models.

Model I : (Simple dominance model) Genotypes A1A1 and A1A2 have pheno-type θ1,

where as A2A2 have phenotype θ2. Hence P (Θ = θ1) = p2 + 2p(1 − p) and P (Θ = θ2) =

(1− p)2.

Model II : (Additive model) Each of the three genotypes yields a distinct phenotype

with P (Θ = θ1) = p2, P (Θ = θ2) = 2p(1 − p) and P (Θ = θ3) = (1 − p)2. Furthermore,

θ1 < θ2 < θ3 and θ3 − θ2 = θ2 − θ1 .

Geneticists are interested in SLC because it is correlated with blood pressure and hence

may be an important cause of hypertension. Roeder(1994) fitted a mixture of normal with

three components to this data. Her fit corresponds to the additive model Model II above.

Ishwaran, James and Sun (2001) adopted a Bayesian approach to estimating the mixture

complexity and proposed two algorithms called the generalized weighted Chinese restaurant

(GWCR) and blocked Gibbs sampler. Their analysis of SLC data showed that GWCR sup-

ported a three component mixture while the blocked Gibbs sampler based on Bayes Informa-

tion Criterion penalty supported a two-component mixture. Recently, Woo and Sriram (2006)

analyzed this data using MHDE and suggested a two-component mixture. Also Chen and
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Khalili (2006) used their MSCAD procedure and fitted a three-component mixture which is

similar to one of the models reported in Ishwaran, James and Sun (2001). Recently, Fujisawa

and Eguchi (2006) proposed robust parameter estimates, called β-estimates, for normal mix-

tures using a modified likelihood approach suggested in Basu et al. (1998); they also analyzed

the SLC data using their method. Here, we revisit the SLC data using our L2E algorithm.

We used our L2E algorithm to first determine an estimate of mixture complexity and

simultaneously obtain estimates of the component parameters for the SLC data. Our pos-

tulated model is a normal mixture with unknown means, (unequal) variances and mixing

proportions, and we used our L2E algorithm with threshold value αn,m = 3/n. Our analysis

yielded an estimate m̂L2E
n = 3 of the mixture complexity for the SLC data. When our L2E

algorithm stops and reports m̂L2E
n = 3, it also automatically provides L2E estimates of all

the parameters in the three-component mixture. These L2E estimates corresponding to the

best fitting three-component normal mixture density are given in Table 3.7 of section 3.11.

For the SLC data, Fujisawa and Eguchi (2006) computed robust estimates for the parameters

(optimal β-estimate ) assuming that the underlying distribution has a normal mixture model

with m = 3. Interestingly, their fitted mixture model is almost identical to our L2E fit. The

fitted mixture density using our L2E method along with the MHDE method of Woo and

Sriram (2006), the MKE method given in James et al. (2001), the MSCAD method of

Chen and Khalili (2006), the optimal β-estimate of Fujisawa and Eguchi (2006) and Kernel

density estimate of the data are superimposed over the histogram of the data in Figure 3.1

of section 3.11. Mixture fit given by L2E(m = 3), MHDE(m = 2), MSCAD(m = 3),

MKE(m = 2) and optimal β given in the Table 3.7. From these graphs and tables, we

conclude that the three-component L2E provides a better fit of the data.

Note that all procedure considered in the Table 3.7 with the excepetion of MSCAD

assume unequal component varainces. With equal variance assumption, the MSCAD pro-

cedure seems to satisfy the additive model assumtion approximately. It should be noted that

all the procedures considered in Table 3.7 (with the exception of MSCAD) do not satisfy
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the additive model. Nevertheless, Figure 3.1 show the L2E and optimal β estimate fit the

data better than the rest.

3.6.2 Acidity Data

The acidity data involves an acid-neutralizing capacity (ANC) index measured in a

sample of 155 lakes in North-central Wisconsin, United States. Acidification is an environ-

ment problem and identifying different subpopulations of lakes(e.g. at-risk lakes, not-at-risk

lakes) can be useful in determining which lake characteristics, if any can be used to pre-

dict higher acidification. The data have been previously analyzed using a mixture of normal

distributions on the log scale; see Crawford et al. (1992), Richardson and Green (1997),

McLachlan an Peel(1997b) and Ishwaran et al. (2001). Recently Mcgrory and Titterington

(2007) analyzed this data using Deviance Information criterion (DIC) based on Bayesian

measures of the complexity. Chen and Khalili (2006) also analyzed the acidity data using

their MSCAD procedure.

Richardson and Green(1997), McLachlan an Peel(1997b), Ishwaran et al. (2001) and

Chen and Khalili (2006) suggested a three-component normal mixture for the acidity data.

Mcgrory and Titterington (2007) based on their DIC suggested a two-component normal

mixture. We used our L2E algorithm to determine an estimate of mixture complexity and

simultaneously determine an estimate of the component parameters. For this, we assumed

normal mixture models with unknown means, (unequal) variances and mixing proportions,

and used our L2E algorithm with threshold value αn,m = 3/n. Our analysis yielded an

estimate m̂L2E
n = 3. The L2E estimates corresponding to the best fitting three-component

normal mixture density are given in Table 3.8 of section 3.11 along with the DIC(m = 2)

estimates from Mcgrory and Titterington (2007) and MSCAD(m = 3) estimates of Chen

and Khalili (2006). We also graph all these fitted densities along with the kernel density

estimate superimposed over the histogram of the data in Figure 3.2 of section 3.11. Once
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again, from these graphs and tables, we conclude that the three-component L2E provides a

better fit of the data than the others.

3.6.3 Enzyme Data

The Enzyme data concerns the distribution of enzymatic activity in the blood, for an

enzyme involved in the metabolism of carcinogenic substances, among group of 245 unrelated

individuals. The study was undertaken to validate the caffeine as a probe drug to establish

the genetic status of rapid metabolisers and slow metabolisers, and to use such subgroups

as a marker of genetic polymorphism in the general population.

Richardson and Green (1997) also analyzed the enzyme data and suggested mixture

models with 3 to 5 components. Ishwaran et al. (2001) suggested a mixture model with 8

components. Recently, Mcgrory and Titterington (2007) used their DIC method and fitted

a four-component normal mixture. We used our L2E algorithm to determine an estimate of

mixture complexity and simultaneously determine an estimate of the component parameters

for the Enzyme data. We postulated a normal mixture model with unknown means, (unequal)

variances and mixing proportions, and used our L2E algorithm with threshold value αn,m =

3/n. Our analysis yielded an estimate m̂L2E
n = 3. The L2E estimates corresponding to

the best fitting three-component normal mixture density are given in Table 3.9 of section

3.11 along with the DIC(m = 4) estimates from Mcgrory and Titterington (2007). Also

the fitted densities of these estimates along with the kernel density are superimposed over

the histogram of the data in Figure 3.3 of section 3.11. All these make a compelling case

that our three-component mixture density based on the L2E estimates provides a good and

parsimonious fit of the Enzyme data.

3.7 SUMMARY AND CONCLUSIONS

An information criterion approach based on minimum L2 distances is used to construct an

estimator of unknown number of components in finite mixtures, when the form of component
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densities are unknown but are postulated to be members of some parametric family. This

estimator, termed as L2E, is consistent for any parametric family of finite mixture models.

When the postulated normal mixture model is same as the model from which samples are

drawn, simulations show that our estimator competes well with other procedures available

in the literature, and particularly well against an estimator based on Kullback-Leibler dis-

tance introduced by James et al. (2001) and MHDE. The most distinguishing feature of

our estimator is that it continues to identify the mixture complexity correctly even when

the sampling model is a (moderate to more extreme) symmetric departure from postulated

component normality, while the estimator of James et al. (2001) becomes highly unstable

in these situations. Furthermore, the L2E turns out to have better overall robustness prop-

erty than the MHDE of Woo and Sriram (2006). In addition to better performance than

the MHDE, the L2E is computationally much simpler, avoiding delicate choice of adaptive

density estimator and associated bandwidths as needed in Woo and Sriram (2006). It should

be noted that the conclusions based on our numerical study of robustness (see section 3.5.3)

are by no means definitive. However, we do believe that our findings on robustness are of

sufficient substance to raise the interesting theoretical questions such as behavior of influence

functions and breakdown points.

Choice of threshold values αn,m undoubtedly has an impact on the final estimate of the

unknown mixture complexity. In our numerical studies we motivate our choice of αn,m = 3/n

based on the AIC criterion. More work remains to be done on the choice of αn,m for our

estimator. However, it is shown that this choice of threshold yields a parsimonious mixture

model fit for three real datasets, which are superior to fits provided by other competing

methods in the literature.

Finally, with respect to computation, the L2E procedure has many distinct advantages

over MHD and other procedures in the literature. For example, the L2E criterion has a

simple structure which enables us to use the built-in nlm and nlmbin routines in R for

minimization. Furthermore, the L2E estimates are not affected by the choice of initial values
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and it requires less computing time. Thus, transparency, ease of use and efficiency in achieving

computational speed combined with competitive performance and robustness feature makes

the L2E estimator stand out as an attractive alternative to other existing methods in the

literature.
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3.8 SUPPLEMENTAL MATERIALS

Here we give a list of computer codes used in the simulation and data analysis. We used

R2.8 for all simulations and data analysis in this article.

########################################################################

#This function is to randomly generate the normal mixture

########################################################################

rmixnorm<- function(n,probs,means,sigma) {

out<- rep(0,n)

for (i in 1:n) {

u<- runif(1)

k<-length(probs)

indg<- 1:k

cp = cumsum(probs)

j = min(indg[u <= cp])

out[i] <-rnorm(1,means[j],sigma[j])

}

return(out)

}

########################################################################

#This function for simulating values from t-mixture for robustness study

########################################################################

rtmix <- function(n, prob=0.5,df1=1, df2=1,a=1,b=1){

u <- runif(n)

out <- numeric(n)

for(i in 1:n) out[i] <- if(u[i] < prob) a*rt(1,df1) else (b+ rt(1,df2))

return(out)

}

########################################################################

#This function for simulating values from re-scaled t-mixture for robustness study

########################################################################

rtmixrscale <- function(n, prob=0.5,df1=1, df2=1,a=1,b=1){

u <- runif(n)

out <- numeric(n)

for(i in 1:n)
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out[i] <- if(u[i] < prob) (a*rt(1,df1)/sqrt(3))

else (b+ (rt(1,df2)/sqrt(3)))

return(out)

}

########################################################################

#

#This is the main function: For an input data x

#and given number of components k, this function computes the L2E

#function value for normal mixture and outputs the

#estimates of parameters and the corresponding minimum

#value of the function.

#

########################################################################

# Thanks to Professor David W. Scott for providing this function.

# Inputs:

# x - n x d input data matrix (d=1 vector OK)

# K - number of components desired (K=1 default)

# grps -optional way of inputting initial guesses (data labels 1,2,...,K)

# vector of length n labels = 0 are ignored (useful if w.sum=F)

# w.sum - constrain weights to sum to 1 (T/F)

# mu - input guess for means d x K (matrix)

# sig - d x d x K input guess for covariance matrices (array)

# w - input guess for K weights (always length K, even with w.sum=T)

# nit - max number of iterations for nlm

# nev - max number of function evaluations for nlm

# pl - print level for nlm (0=none 1=some 2=lots)

# Output:

#list containing estimated parameters and the minimum

# (m=mean s=sig w=w,lmin=lmin)

########################################################################

mix.pdc <- function(X,K=1,grps,w.sum=T,mu,sig,w,nit=100,nev=200,pl=1) {

if(!is.matrix(X)) { X <- cbind(X) }; n <- nrow(X); d <- ncol(X)

#Evaluate the initial values for mu & sigma if grps is given

if(!missing(grps))

{ if(length(grps)!=n)

stop("Invalid grps length.(grps length should be same as the sample.)")

if(max(grps)!=K) print("Warning -- max of grps does not match K")

nk <- rep(0,K); mu <- matrix(0,d,K); sig <- array(0,c(d,d,K))

for(k in 1:K) { ii <- seq(n)[grps==k]; nk[k] <- length(ii)

if( length(ii)<2 )

stop(paste("grps insufficient for class ",as.character(k)))

mu[,k] <- apply(X[ii,,drop=F],2,"mean"); sig[,,k] <- var(X[ii,]) }
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w <- nk/n }

# Input Validation

if(d==1) { mu <- matrix(c(mu),1,K); sig <- array(c(sig),c(1,1,K)) }

if(any(dim(mu)!=c(d,K))) stop("input mu matrix wrong dimension")

if(any(dim(sig)!=c(d,d,K))) stop("input sig array wrong dimension")

if(length(w)!=K) stop("input w vector wrong length")

# L2E function to minimize

# x is a list of parameters of mixtures

# x = [mus:sigmas:weights]

pdc <- function(x) { # first extract parameters from x

onen <- rep(1,n); oned <- rep(1,d)

mu <- matrix(x[1:(d*K)],d,K) # assumes fortran order

ns <- d*(d+1)/2; # no of sigmas in a MVG-d (sigx sigy sigxy d=2, ns=3)

sigi.u <- matrix(x[(d*K+1):((d*K)+ (ns*K))],ns,K)

# will make an ns size array

tw <- x[-(1:(d*K+ns*K))];

# total of weigts =1

if(length(tw)==K) {

w <- exp(tw) # if length=K then no sum constraint

} else {

tw <- c(exp(tw),1);

w <- tw/sum(tw) # if length!=K then sum constraint

} #end if tw.length==K

tot1 <- 0;

tot2 <- 0;

cc <- 2^(d/2);

sig <- array(0,c(d,d,K))

deti <- rep(0,K) # determinant inverse sq root

for(k in 1:K) {

muk <- mu[,k];

U <- matrix(0,d,d)

U[row(U)<=col(U)] <- sigi.u[,k]; #upper triangle of U

deti[k] <- exp(sum(diag(U)))

dU <- exp(diag(U)); #variance should be positive

diag(U) <- dU;

sig[,,k] <- solve( t(U)%*%U )

#solve(x) returns the inverse of matrix x

tot1 <- tot1 + w[k]^2*deti[k]/cc

tot2 <- tot2 + w[k] * deti[k] *
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sum( exp( (-.5* ( (X-outer(onen,muk))%*%t(U) )**2) %*%oned ) )

if(k>1) {

for(m in 1:(k-1)) {

mum <- mu[,m];

sigi.km <- solve( sig[,,k]+sig[,,m] )

U0 <- chol( (sigi.km+t(sigi.km))/2 );

deti.km <- exp(sum(log(diag(U0))))

dd <- U0%*%(muk-mum);

tot1 <- tot1 + 2*w[k]*w[m]*deti.km*exp(-.5*sum(dd^2))

}#end for

}#end if k>1

}#end for k

tot <- tot1 - 2*tot2/n

}

x0 <- c(mu) # assumes fortran column order

for(k in 1:K) {

sig0 <- sig[,,k]

if(d==1) {

xU0 <- log(1/sqrt(sig0))

} else {

tmp <- solve(sig0);

sigi <- (tmp+t(tmp))/2

U0 <- chol(sigi); diag(U0) <- log(diag(U0));

xU0 <- U0[row(U0)<=col(U0)]

}

x0 <- c(x0,xU0)

}

if(w.sum) { if(K==1)

{w0 <- NULL} else { w0 <- log(w[-K]/w[K]) } } else { w0 <- log(w) }

x0 <- c(x0,w0) # w0 of length K-1 if sum constraint on (NULL if K=1)

#nonlinear minimization routine-nlm

ans <- nlm(pdc,x0,print.level=pl,iterlim=nit)

pr<-ans$est

ans <- nlm(pdc,x0,print.level=pl,iterlim=nit)

#Can use the following non-linear minimization routine as well

#lower=-Inf; upper= Inf

#lower= min(x)-5; upper=max(x)+5

#ans<-nlminb(x0,pdc,lower=0,upper=upper)

#pr<-ans$par

#ans<-nlminb(pr,pdc,lower=0,upper=upper)
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pr<- ans$est

lmin<-ans$min/sqrt(pi)

xx<-ans$est

#If using the nlminb use the following

# pr<-ans$par

#lmin<- ans$obj/sqrt(pi)

# xx <- ans$par

ns <- d*(d+1)/2

mu <- matrix(xx[1:(d*K)],d,K);

xx <- xx[-(1:(d*K))]

for(k in 1:K) {

U.ans <- matrix(0,d,d);

U.ans[row(U.ans)<=col(U.ans)] <- xx[1:ns]

diag(U.ans) <- exp(diag(U.ans));

sigi <- t(U.ans) %*% U.ans;

sig[,,k] <- solve(sigi);

xx <- xx[-(1:ns)]

}

s<-as.vector(sqrt(sig))

w <- xx;

if(length(w)==K) { w <- exp(w) } else { w <- exp(c(w,0)); w <- w/sum(w) }

list(m=mu,s=s,w=w,lmin=lmin)

}

########################################################################

# Initial guess for the parameters

########################################################################

init<-function(type="km",x,k){

if(type=="km"){

#K-Means

mm<-kmeans(x,k)

g<-mm$cluster

mu<-mm$center

s1<-mm$size

w<- s1/ss

sig<-mm$withinss /s1

#sig<- sqrt(sig)

}

if(type=="rs"){

#Random sample
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g <-sample(0:k,ss,T)

#list(g=g)

mu=0

sig=0

w=0

}

if(type=="hc"){

library(amap)

#Hierarchical-Clustering

hc<-hcluster(x, method = "euclidean", diag = FALSE, upper = FALSE,

link = "complete", members = NULL, nbproc = 2,

doubleprecision = TRUE)

memb <- cutree(hc, k = k)

g=memb

n=length(x)

nk <- rep(0,k)

mu<-rep(0,k)

for(i in 1:k) {

ii <- seq(n)[memb==i]; nk[i] <- length(ii)

sig[i]<- var(x[ii,drop=F])

mu[i] <- mean(x[ii,drop=F])

w <- nk/n

}

}

list(g=g,mu=mu,sig=sig,w=w)

}

########################################################################

#This is the function used to test for the mixture complexity.

# We need to have other functions such as mix.pdc.r,

# init.r, rmixnorm.r, rtmix.r,....

########################################################################

cc=100 #No of MC tests

ss=1000 #Sample size

count <- rep(0,cc) #results(K) holder

for (ct in 1:cc) {

k=1
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#input the data-using rmixnorm for the mixture of normal or

# for robust study us rmix or input for the real data

xd<- rtmix(ss,0.5,4,4,1,3.066)

#initial guess

imu = mean(xd)

isig=var(xd)

iw=1

# can also use the init function

#g<-init("hc",xd,k)

#call the main function to compute the estimates

# note her sigma here is the variance

l2emix<- mix.pdc (xd,K=k,w.sum=T,mu=imu,sig=isig,w=iw,nit=100,nev=200,pl=1);

# Can input the initial guess as g instead of (mu, sigma, w)

#l2emix<- mix.pdc (xd,K=k,grps=g,w.sum=T,nit=500,nev=200,pl=1);

mu<-l2emix$m

w<-l2emix$w

s<-l2emix$s

s<-sqrt(s)

l2e<-rep(0,50)

#the minimum value fo the l2e

l2e[k]<-l2emix$lmin

repeat {

k=k+1

iVal = init("km",xd,k)

#call the main function to compute the estimates

# note her sigma here is the variance

#l2emix<- mix.pdc (xd,K=k,w.sum=T,mu=iVal$mu,

sig=ival$sig,w=iVal$w,nit=100,nev=200,pl=1);

# Can input the initial guess as g instead of (mu, sigma, w)

l2emix<- mix.pdc (xd,K=k,grps=iVal$g,w.sum=T,nit=500,nev=200,pl=1);

mu<-l2emix$m

w<-l2emix$w
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s<-l2emix$s

#the minimum value of the l2e

l2e[k]<-l2emix$lmin

# compute the difference between the minimum l2e for (k-1) and k

diff<- l2e[k-1]-l2e[k]

#th is the threshold value we use "3/n" here

# Check for the m

if( diff <= (th)) break

} #end of repeat

k= k-1

#k

cat("k=",k)

count[ct]=k

} # end for MC

count

table(count)

########################################################################

This function is for calculating the L2E value-mixture of normal

########################################################################

#Input x-data, m=mean, w=mixing proportions, s=standard deviation

#output theL2E function value

########################################################################

l2ecal<-function (x,m,w,s) {

p=outer(w,w)

c=p[upper.tri(p)]

c1=0

c2=0

e=outer(m,m,FUN="-")

e1=e[upper.tri(e)]

sig=outer(s,s,FUN="+")

esig=sig[upper.tri(sig)]

c1=sum(2*c*dnorm(0,e1,esig))

c2= sum((w^2)/(2*sqrt(pi)*s))

ad=0

fd=0

for( j in 1: length(w)){

ad[j]=sum(w[j]*dnorm(x,m[j],s[j]))

}

n=length(x)
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fd= (2/n)*sum(ad)

l2e=c1+c2- fd

}

########################################################################

The real data used in this chapter are:

######################

The Enzyme Data

########################################################################

xd=c(0.130, 0.080, 1.261, 0.224, 0.132, 1.052, 0.085, 0.124, 0.718,

0.280, 0.687,0.106, 0.088, 0.137, 0.096, 0.124, 0.126, 1.279,

1.007, 0.195, 0.167, 0.213,0.108, 1.371, 0.190, 0.184, 1.298,

1.036, 0.205, 1.950, 1.018, 0.172, 0.148,0.292, 0.113, 0.185,

0.129, 1.329, 0.149, 0.236, 2.545, 1.073, 0.162, 2.518,0.142,

2.880, 0.178, 1.075, 0.128, 0.083, 0.409, 0.340, 0.246, 1.195,

1.452,1.123, 1.361, 0.222, 0.962, 0.875, 0.078, 0.520, 0.194,

1.195, 0.709, 0.021,0.166, 0.081, 0.265, 0.159, 0.308, 1.604,

0.179, 0.172, 0.131, 0.305, 0.215,0.214, 0.853, 0.137, 0.466,

1.419, 2.016, 1.944, 1.040, 1.200, 0.255, 0.232,0.200, 0.240,

0.216, 0.277, 2.427, 0.320, 0.142, 0.134, 0.198, 0.126, 1.173,

0.342, 1.672, 0.193, 1.633, 0.860, 1.293, 0.207, 1.811, 1.741,

1.488 ,0.124,1.326, 0.148, 0.109, 1.848, 1.310, 0.118, 1.004,

0.204, 0.192, 0.299, 1.885,0.264, 0.230, 0.250, 0.061, 0.953,

0.138, 0.313, 0.174, 1.768, 1.369, 0.130,1.113, 0.320, 0.190,

0.818, 1.461, 0.149, 0.291, 0.225, 1.622, 0.185, 0.198,0.360,

0.387, 2.338, 1.713, 0.368, 1.573, 0.309, 0.232, 0.347, 0.325,

1.861,0.258, 0.258, 1.625, 0.291, 1.169, 0.210, 0.241, 0.112,

0.183, 0.258, 0.357,1.176, 0.111, 0.978, 0.279, 1.742, 0.184,

0.230, 0.275, 2.183, 2.264, 1.405,0.408, 0.126, 0.263, 0.162,

0.902, 1.516, 0.293, 0.198, 0.118, 0.305, 0.031,0.192, 0.151,

0.182, 0.909, 0.379, 1.010, 0.167, 0.929, 0.083, 0.179, 1.567,

1.241, 0.077, 0.166, 1.271, 0.100, 1.229, 0.152, 1.374, 0.157,

1.003, 0.084,0.171, 0.953, 0.192, 0.967, 1.300, 0.122, 1.036,

0.200, 0.070, 0.998, 0.176,0.673, 0.839, 0.867, 0.985, 0.096,

0.238, 0.933, 1.231, 0.162, 0.044, 0.175,0.132, 1.166, 0.144,

0.180, 0.945, 0.180, 0.152, 0.108, 0.923 ,0.192, 0.895,0.176,

0.191, 1.161)

########################################################################

The Acidity Data

########################################################################

y1=c(2.928524,3.910021,3.732896,3.688879,3.822098 ,3.735286,4.143135,

4.276666, 3.931826 ,4.077537 ,4.779123 ,4.234107, 4.276666, 4.543295,

6.467388, 4.127134 ,3.977811, 4.264087, 4.007333, 3.921973, 5.384495,

4.912655 ,4.046554 ,4.043051, 4.406719 ,4.505350, 3.931826 ,6.752270,
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6.928538, 5.994460 ,4.248495 ,4.060443 ,4.727388 , 6.047372 ,4.082609,

4.244200, 4.890349 ,4.416428, 5.743003, 4.127134 , 5.489764 ,4.778283,

5.249652 , 4.855929 ,4.128746,4.442651 ,4.025352 ,4.290459, 4.593098 ,

4.652054 , 4.178992 , 4.382027 ,5.569489, 5.049856 ,4.188138, 6.629363,

4.647271, 4.784989, 4.348987, 5.361292 ,4.574711, 4.442651, 6.120297,

4.060443 ,4.143135, 4.510860, 6.049733, 4.510860, 4.406719 ,6.343880,

4.430817 ,5.929589 ,5.973301, 4.481872, 4.301359, 6.452680, 4.204693,

4.143135 ,6.603944, 4.644391, 5.863631, 4.025352, 5.717028, 5.308268,

6.267201 ,4.060443, 5.017280, 4.510860, 5.834811, 4.330733, 4.007333,

6.806829 ,5.257495 ,4.624973 ,4.781641, 4.099332 , 7.044382,3.914021,

4.330733 ,4.016383 , 5.572154 ,4.043051, 4.843399 ,4.110874,4.454347,

4.356709 ,6.154858, 6.284321, 6.978214 ,4.301359, 5.929855 ,4.465908,

6.035481 ,6.726473 ,7.105130, 6.014937 ,4.882802 ,7.032095 ,4.518522,

6.476665 ,6.125558 ,4.189655, 5.323498, 4.938065 ,6.313548 ,5.853925,

6.278146 ,7.020191 ,5.023881, 4.262680, 6.725634 ,6.489205 ,5.743003,

6.739337 ,6.466145, 6.855409, 5.120983, 5.913773 ,6.516932 ,4.058717,

6.213608 ,6.554218 ,6.155707 ,4.314818 ,6.662494 ,6.749931, 6.100319,

4.112512 ,6.946014 ,4.131961 ,6.234411 ,6.595781 ,6.683861 ,6.957973,

4.497585 )

########################################################################

The SLC Data

########################################################################

x=c(.467,.430,.192,.192,.293,.160,.164,.126,.328,.202,.282,.328,.247,.132,

.138,.224,.512,.221,.252,.193,.263,.186,.346,.219,.177,.349,.272,.245,

.213,.197,.229,.245,.210,.281,.175,.273,.439,.471,.451,.237,.313,.136,

.245,.391,.349,.158,.252,.416,.232,.183,.254,.195,.141,.151,.073,.300,

.231,.075,.208,.267,.187,.244,.245,.231,.167,.337,.251,.209,.181,.411,

.191,.288,.280,.119,.394,.443,.423,.534,.393,.273,.149,.225,.159,.170,

.329,.183,.262,.250,.179,.329,.253,.270,.310,.321,.333,.284,.380,.222,

.178,.265,.289,.199,.309,.279,.194,.203,.139,.162,.251,.619,.343,.155,

.340,.332,.412,.218,.304,.261,.206,.231,.182,.267,.198,.191,.258,.179,

.197,.188,.202,.150,.201,.255,.293,.255,.189,.414,.292,.253,.168,.295,

.215,.213,.267,.216,.264,.138,.239,.288,.311,.414,.462,.361,.623,.199,

.215,.321,.273,.259,.206,.376,.228,.155,.186,.097,.179,.174,.386,.393,

.198,.243,.326,.250,.590,.461,.361,.321,.236,.139,.316,.313,.263,.180,

.184,.354,.264,.269,.171,.359,.338,.163)

########################################################################
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3.9 APPENDIX

Here, we state and prove a Proposition under certain regularity conditions followed by a

proof of the consistency Theorem stated in section 3.3.

Proposition: For each m, assume that the parameter space Θm can be embedded in

a compact subset of Rp, the class Fm is identifiable for θm ∈ Θm, and for almost every

x, the component densities f(x|φi) are continuous in φi, for each i = 1, · · · ,m. Assume

also that there exists a function g(x) (independent of m) such that | ∂
∂x
ftm

(x)| ≤ g(x) and∫∞
−∞ g(x)dx <∞.Furthermore, we assume that the function L(tm, F ) (see equation (3.2.5))

is continuous in tm ∈ Θm. Then the following hold for the functional TL2E
m defined in (3.2.6).

(i) For every F ∈ F , there exists TL2E
m (F ) ∈ Θm satisfying (3.2.6).

(ii) If TL2E
m (F ) is unique, then the functional TL2E

m is continuous at F under the supremum

norm defined by sup
x
|F (x)−G(x)|, for distributions F and G ∈ F .

(iii) TL2E
m (Fθm

) = θm uniquely for every θm ∈ Θm .

Proof: Part (i) directly follows from our assumption that the function L(tm, F ) is con-

tinuous in tm ∈ Θm and that Θm can be embedded in a compact subset of Rp. Part (iii)

follows from our identifiability assumption. Therefore, it only remains to prove the assertion

in (ii).

For this, let us suppose that a sequence {Fn} and F belong to F such that sup
x
|Fn(x)−

F (x)| → 0 as n → ∞. We wish to show that Tm(Fn) → Tm(F ) as n → ∞. Before we show

this, let us examine the large sample behavior of the difference L(tm, Fn) − L(tm, F ), as

n→∞. By (3.2.5) and integration by parts we have

L(tm, Fn)− L(tm, F ) = −2

∫ ∞
−∞

ftm
(x)d[Fn(x)− F (x)]

= 2

∫ ∞
−∞

[Fn(x)− F (x)]
∂

∂x
ftm

(x)dx.
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Therefore,

|L(tm;Fn)− L(tm;F )| ≤ 2 sup
x
|Fn(x)− F (x)|

∫ ∞
−∞
| ∂
∂x
ftm

(x)|dx.

By the assumption that | ∂
∂x
ftm

(x)| ≤ g(x) and
∫∞
−∞ g(x)dx <∞, we have

sup
tm

|L(tm, Fn)− L(tm, F )| → 0 as n→∞. (3.9.1)

Since L(tm, F ) is assumed to be continuous in tm and also Θm is assumed to be embedded

in a compact subset of Rp, we have that

|min
tm

L(tm, Fn)−min
tm

L(tm, F )| → 0 as n→∞. (3.9.2)

Or, equivalently

|L(TL2E
m (Fn), Fn)− L(TL2E

m (F ), F )| → 0. (3.9.3)

Also, by (3.9.1)

|L(TL2E
m (Fn), Fn)− L(TL2E

m (Fn), F )| → 0. (3.9.4)

Therefore, by (3.9.3), (3.9.4) and the triangle inequality

|L(TL2E
m (Fn), F )− L(TL2E

m (F ), F )| → 0. (3.9.5)

Now, using standard subsequence arguments, compactness and the continuity of L(tm, F ) in

tm (see Theorem 1 of Beran(1977), after display (2.4)) it is possible to show that

TL2E
m (Fn)→ TL2E

m (F ) as n→∞.

�

Proof of the Theorem. Recall from (3.2.9) that

m̂L2E
n = min{m : L(θ̂

L2E

n,m , F̂n) ≤ L(θ̂
L2E

n,m+1, F̂n) + αn,m}. (3.9.6)

Clearly, by (3.9.3)

L(TL2E
m (F̂n), F̂n)− L(TL2E

m+1(F̂n, F̂n)→ L(TL2E
m (F0), F0)− L(TL2E

m+1(F0), F0) = dm. (3.9.7)
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Note from (3.2.5) that

dm = L(TL2E
m (F0), F0)− L(TL2E

m+1(F0), F0)

=

∫ ∞
−∞

f 2

T
L2E
m (F0)

(x)− 2

∫ ∞
−∞

f
T

L2E
m (F0)

(x)dF0(x)

−
∫ ∞
−∞

f 2

T
L2E
m+1(F0)

(x)− 2

∫ ∞
−∞

f
T

L2E
m+1(F0)

(x)dF0(x).

Since F0 has an associated density f0, we have

dm = [

∫ ∞
−∞

f 2

T
L2E
m (F0)

(x)− 2

∫ ∞
−∞

f
T

L2E
m (F0)

(x)f0(x)d(x) +

∫
f 2

0 (x)dx]

− [

∫ ∞
−∞

f 2

T
L2E
m+1(F0)

(x)− 2

∫ ∞
−∞

f
T

L2E
m+1(F0)

(x)f0(x)d(x) +

∫
f 2

0 (x)dx]

=

∫ ∞
−∞
|f
T

L2E
m (F0)

(x)− f0(x)|2dx−
∫ ∞
−∞
|f
T

L2E
m+1(F0)

(x)− f0(x)|2dx.

Note that the true mixture complexity

m0 = min{m : L(TL2E
m (F0), F0)− L(TL2E

m+1(F0), F0) ≤ 0}

= min{m :

∫ ∞
−∞
|f
T

L2E
m (F0)

(x)− f0(x)|2dx−
∫ ∞
−∞
|f
T

L2E
m+1(F0)

(x)− f0(x)|2dx ≤ 0}

= min{m : dm ≤ 0},

where dm is defined as in (3.9.7). Let m ≥ m0. Since F0 ∈ Fm0 ⊆ Fj, j ≥ m0 we have that

for each j ≥ m0

L(TL2E
j (F̂n), F̂n) ≤ L(TL2E

m0
(F0), F̂n). (3.9.8)

Therefore, for m ≥ m0, the expression on the right side of (3.9.7)

0 ≤ L(TL2E
m (F̂n), F̂n)− L(TL2E

m+1(F̂n), F̂n)

= L(TL2E
m (F̂n), F̂n) +

∫
f 2

0 (x)dx− {L(TL2E
m+1(F̂n), F̂n) +

∫
f 2

0 (x)dx}.

Note from (3.9.8) and that TL2E
m0

(F0) = θm0 (see Proposition (iii)), which implies f
T

L2E
m0

(F0)
=

fθm0
= f0, we have

L(TL2E
m (F̂n), F̂n) +

∫
f 2

0 (x)dx ≤ L(TL2E
m0

(F0), F̂n) +

∫
f 2

0 (x)dx
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=

∫ ∞
−∞

f 2

T
L2E
m0

(F0)
(x)dx− 2/n

n∑
i=0

f
T

L2E
m0

(F0)
(Xi) +

∫
f 2

0 (x)dx

→
∫ ∞
−∞

f 2

θm0

(x)dx− 2

∫ ∞
−∞

fθm0
(x)fθm0

(x)dx+

∫
f 2

θm0

(x)dx

= 0,

where the convergence is as n→∞. Similarly, L(TL2E
m0

(F0), F̂n) +
∫
f 2

0 (x)dx→ 0. Therefore,

we have that dm = 0 for m ≥ m0.

Let m < m0. Then by the definition of m0, we have F0 ∈ Fm0 but F0 /∈ Fm for m < m0.

Now, we want to show that dm > 0 for all m < m0. Suppose on the contrary that dm = 0

for some m < m0. Then, by (3.9.7), L(TL2E
m (F0), F0) = L(TL2E

m+1(F0), F0) for m < m0 . Then,

L(TL2E
m (F0), F0) ≤ L(tm+1, F0), for all tm ∈ Θm+1

which implies ∫ ∞
−∞
|f
T

L2E
m (F0)

(x)− f0(x)|2dx ≤
∫ ∞
−∞
|ftm+1

(x)− f0(x)|2dx. (3.9.9)

For an arbitrary ε ∈ (0, 1) and φ, let ftm+1(x) = (1 − ε)f
T

L2E
m (F0)

(x) + εf(x|φ). Then, the

associated distribution Ftm+1
∈ Fm+1 and from (3.9.9)∫ ∞

−∞
|f
T

L2E
m (F0)

(x)− f0(x)|2 −
∫ ∞
−∞
|(1− ε)f

T
L2E
m (F0)

(x) + εf(x|φ)− f0(x)|2 ≤ 0.

Now, using the identity x2 − y2 = (x− y)(x+ y) and algebraic calculations we get

ε

∫ ∞
−∞

[f
T

L2E
m (F0)

(x)− f(x|φ)]
{

2[f
T

L2E
m (F0)

(x)− f0(x)] + ε[f(x|φ)− f
T

L2E
m (F0)

(x)]
}
dx ≤ 0,

which implies

2ε

∫ ∞
−∞

[f
T

L2E
m (F0)

(x)− f(x|φ)][f
T

L2E
m (F0)

(x)− f0(x)]dx ≤ ε2
∫ ∞
−∞

[f
T

L2E
m (F0)

(x)− f(x|φ)]2dx.

(3.9.10)

Dividing both sides of (3.9.10) by ε, letting ε→ 0, and applying Fatou’s lemma, we get∫ ∞
−∞

[f
T

L2E
m (F0)

(x)− f(x|φ)][fTm(F0)(x)− f0(x)] ≤ 0,
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which implies∫ ∞
−∞

f
T

L2E
m (F0)

(x)[f
T

L2E
m (F0)

(x)− f0(x)]dx ≤
∫ ∞
−∞

f(x|φ)[f
T

L2E
m (F0)

(x)− f0(x)]dx. (3.9.11)

Since f0 ∈ Fm0 , we can write f0(x) =
∑m0

i=1 π
0
i f(x|φ0

i ) and (3.9.11) holds for each φ = φ0
i ,

i = 1, . . . ,m0. Since
m0∑
i=1

π0
i = 1, from (3.9.11)

∫ ∞
−∞

f
T

L2E
m (F0)

(x)[f
T

L2E
m (F0)

(x)− f0(x)]dx ≤
∫ ∞
−∞

f0(x)[f
T

L2E
m (F0)

(x)− f0(x)]dx,

which implies that
∫∞
−∞ [f

T
L2E
m (F0)

(x)− f0(x)]2 = 0. This contradicts the assumption that

F0 /∈ Fm for m < m0. Therefore, dm > 0 for m < m0. Hence the Theorem follows from the

above arguments. �
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3.11 Tables and Figures

Table 3.1: Mixture Complexity Estimation results for three component normal mixture in (3.5.11)
Estimated number of components

1 2 3 4 5 6 7 8
n = 50
L2E 89 11
MHDE 80 20
NKE 44 56
MKE 44 53 3
R&W 22 7 *59 10 1 1
Bootstrap 0 96 4
Henna 25 68 6 1
n = 250
L2E 0 22 *73 5
MHDE 16 39 45
NKE 0 99 1
MKE 0 87 11 1 1
R&W 0 0 *60 22 18
Bootstrap 0 83 16 1
Henna 0 90 10
n = 500
L2E 8 *89 3
MHDE 0 35 *65
NKE 0 97 3
MKE 0 58 34 6 2
R&W 0 0 22 12 61 5
Bootstrap 0 74 20 6
Henna 0 85 15
n = 1000
L2E 2 *97 1
MHDE 0 26 *74
NKE 0 86 14
MKE 0 18 *63 10 2 3 1 3
R&W 0 0 0 1 89 10
Bootstrap 0 79 15 4 2
Henna 0 78 15 5 1 0 1
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Table 3.2: Mixture Complexity Estimation results for the Marron and Wand densities 2 & 4-9
Estimated number of components

1 2 3 4 5 6 7 8 9 10
Mixture2
L2E 0 46 *52 2
MHDE 0 78 22
NKE 0 99 1
MKE 0 99 1
R&W 3 96 1
Bootstrap 0 89 11
Henna 0 100
Mixture4
L2E 0 *100
MHDE 0 *100
NKE 0 *99 1
MKE 0 *91 6 3
R&W 0 0 0 0 75 18 5 2
Bootstrap 0 *95 5
Henna 0 *88 12
Mixture5
MHDE 0 *100
L2E 0 *98 2
NKE 0 *96 4
MKE 0 *91 8 1
R&W 0 *55 45
Bootstrap 0 *95 5
Henna 1 *97 1 0 0 0 0 0 1
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Table 3.2 (continued)
Estimated number of components

1 2 3 4 5 6 7 8 9 10
Mixture6
L2E 0 *100
MHDE 0 *100
NKE 0 *100
MKE 0 *98 2
R&W 0 *100
Bootstrap 0 *95 5
Henna 0 *97 3
Mixture7
L2E 0 *99 1
MHDE 0 *100
NKE 0 *100
MKE 0 *96 4
R&W 0 *100
Bootstrap 0 *93 6 1
Henna 0 *96 4
Mixture8
L2E 0 *97 2 1
MHDE 0 *97 2 1
NKE 0 *100
MKE 0 *97 3
R&W 0 *80 20
Bootstrap 0 *93 7
Henna 0 *99 1
Mixture9
L2E 0 1 *80 18 1
MHDE 0 49 *51
NKE 0 94 6
MKE 0 38 *59 2
R&W 0 91 9
Bootstrap 0 13 *75 12
Henna 0 82 18
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Table 3.3: Mixture Complexity Estimation results for t(4) components
t-overlap=.10 t-overlap=.03

Estimated number of components Estimated number of components
π a 1 2 3 4 5 1 2 3 4 5

.25 1 L2E 0 *99 1 0 *88 12
MHDE 0 *100 0 *100
MKE 33 *60 7 2 23 75

.25
√

2 L2E 1 *99 0 *91 9
MHDE 0 *92 8 0 *100
MKE 0 *74 26 0 35 64 1

.50 1 L2E 0 *99 1 0 *97 3
MHDE 0 *95 5 0 *100
MKE 97 3 100

.50
√

2 L2E 0 *100 0 *99 1
MHDE 0 *100 0 *100
MKE 94 4 2 99 1

.75
√

2 L2E 1 *99 0 *98 1 1
MHDE 0 *100 0 *100
MKE 80 19 1 61 8 31
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Table 3.4: Mixture Complexity Estimation results for t(2) components
t-overlap=.10 t-overlap=.03

Estimated number of components Estimated number of components
π a 1 2 3 4 5 1 2 3 4 5

.25 1 L2E 0 *80 20 0 *59 37 4
MHDE 3 *97 0 *98 2
MKE 6 *91 2 1 72 24 4

.25
√

2 L2E 0 *96 4 0 *71 28 1
MHDE 0 *100 0 *99 1
MKE 8 *89 1 1 1 79 21

.50 1 L2E 2 *87 11 1 *70 27 2
MHDE 89 11 0 *100
MKE 9 *77 14 59 40 1

.50
√

2 L2E 2 *95 3 0 *84 16
MHDE 77 23 0 *100
MKE 15 *76 9 88 12

.75
√

2 L2E 1 *91 8 0 *81 19
MHDE 63 35 2 0 *100
MKE 9 *86 2 3 75 24 1
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Table 3.5: Mixture Complexity Estimation results for Rescaled t(3) components
N -overlap=.10 N -overlap=.03

Estimated number of components Estimated number of components
π a 1 2 3 4 5 1 2 3 4 5

.25 1 L2E 0 *70 26 4 0 *53 46 1
MHDE 0 *97 3 0 *100
MKE 45 41 14 14 41 45

.25
√

2 L2E 0 *61 36 3 0 *53 40 7
MHDE 0 *60 40 0 *100
MKE 10 *63 20 2 14 44 38 4

.50 1 L2E 0 *86 12 2 0 *60 34 6
MHDE 0 *69 31 0 *97 3
MKE 99 1 97 3

.50
√

2 L2E 0 *90 9 1 0 *81 16 3
MHDE 0 *91 9 0 *96 4
MKE 98 2 98 2

.75
√

2 L2E 0 *87 13 0 *65 35
MHDE 1 *91 8 0 *100
MKE 80 18 1 1 66 17 17
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Table 3.6: Mixture Complexity Estimation results for Rescaled t(4) components
N -overlap=.10 N -overlap=.03

Estimated number of components Estimated number of components
π a 1 2 3 4 5 1 2 3 4 5

.25 1 L2E 0 *79 19 2 0 *68 28 4
MHDE 1 *99 0 *100
MKE 35 34 31 0 26 74

.25
√

2 L2E 0 *73 27 0 *68 30 2
MHDE 0 *88 12 0 *100
MKE 55 44 1 0 34 64 2

.50 1 L2E 0 *86 13 1 0 *80 14 6
MHDE 2 *98 0 *99 1
MKE 100 100

.50
√

2 L2E 0 *96 4 0 *90 10
MHDE 1 *99 0 *100
MKE 100 99 1

.75
√

2 L2E 0 *86 13 1 0 *82 17 1
MHDE 23 *77 0 *100
MKE 91 9 56 10 34
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Table 3.7: SLC Data Parameter Estimates

π1 π2 π3 µ1 µ2 µ3 σ1 σ2 σ3

L2E(m = 3) 0.082 0.794 0.124 0.187 0.238 0.418 0.01 0.07 0.053
Beta(m = 3) 0.076 0.584 0.340 0.187 0.227 0.336 0.010 .062 0.108

MHDE(m = 2) 0.695 0.305 0.222 0.352 0.060 0.106
MKE(m = 2) 0.754 0.246 0.225 0.378 0.060 0.102

MSCAD(m = 3) 0.75 0.22 0.03 0.221 0.372 0.564 0.057 0.057 0.057

Table 3.8: Acidity Data Parameter Estimates

π1 π2 π3 µ1 µ2 µ3 σ1 σ2 σ3

L2E(m = 3) .085 .487 0.428 4.07 4.34 6.27 .053 .332 0.607
DIC(m = 2) .59 .41 4.32 6.23 .38 .55

MSCAD(m = 3) .59 .14 .27 4.32 5.69 6.51 .37 .37 .37

Table 3.9: Enzyme Data Parameter Estimates

π1 π2 π3 π4 µ1 µ2 µ3 µ4 σ1 σ2 σ3 σ4

L2E(m = 3) 0.562 0.097 0.341 0.172 1.036 1.216 0.069 0.156 0.603
DIC(m = 4) 0.48 0.13 0.17 0.22 0.16 0.31 1.05 1.49 0.055 0.055 0.184 0.531
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Histrogram for SLC Data
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Figure 3.1: Fitted normal mixture for SLC data.
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Histrogram for Acidity Data
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Figure 3.2: Fitted Normal mixture for Acidity Data
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Histrogram for Enzyme Data
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Figure 3.3: Fitted Normal mixture for Enzyme Data



Chapter 4

Conclusions

In this chapter we give brief concluding remarks regarding the robust estimation of mixture

complexity based on the L2E method developed in this thesis.

4.1 SUMMARY

In Chapter 2, we have introduced an estimator of the unknown number of components in

finite mixtures for count data. This estimator is derived as a by-product of minimizing an

information criterion constructed using the L2 distance plus a penalty, which is a logarithmic

function of the number of components. Our L2E estimator is shown to be strongly consistent

under certain regularity conditions. In comparison with other estimation methods available

in the literature, our L2E estimator has many distinctive features such as transparency, ease

of use, efficiency in achieving computational speed and robustness against model misspecifi-

cation. These features combined with competitive performance makes the L2E estimator an

attractive alternative to other existing methods in the literature.

In Chapter 3, we have developed a similar L2E approach for the robust estimation of

mixture complexity in the continuous case. Once again, we construct an estimator of mix-

ture complexity by minimizing an information criterion based on L2 distance plus a penalty

function, which is similar to the well-known AIC criterion. Our L2E estimator is once again

shown to be strongly consistent under certain regularity conditions. When the data is con-

tinuous, our L2E estimator has many distinct advantages over the other methods compared

in this article. Firstly, the L2E estimating function has a closed form expression given in

(3.4.10) for normal mixtures. Secondly, parameter estimates are not sensitive to the choice of
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initial values. Furthermore, our procedure avoids use of kernel density estimators and choice

associated bandwidth, and continues to be robust against model misspecification.

Overall, we have illustrated via a variety of statistical applications that our procedure

offers an excellent addition to the practitioners toolbox.

4.2 Future Research

We propose to extend our L2E to the multivariate case and also consider different penalty

functions to improve performance. We also propose to investigate the robustness properties

theoretically and study influence functions and breakdown points of the estimators involved.
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