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ABSTRACT

Fish are known to conserve energy by synchronizing their motion with vortices shed from

a nearby object. In this thesis, the prospect of capturing energy from passing vortices to

generate upstream propulsion is explored. The configuration of interest is a flexible can-

tilevered beam in the wake of a rigid cylinder. The system is simulated by modeling the

vortices as loads that move down the length of beam at a given flow speed. The model

is used to calculate the dynamic response of the beam. The results show that the beam’s

resonant response can be maximized when its length is equal to the diameter of the cylinder

divided by the Strouhal number. Data from preliminary experiments conducted in a high-

speed water tunnel are also presented. In separate experiments, a flexible beam and plate

are placed in the wake of a cylinder and response data are collected using a laser Doppler

vibrometer.
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Chapter 1

Introduction

Live fish are able to conserve energy by synchronizing their body to vortices shed by a

nearby object. By capturing energy from the passing vortices, the fish can sometimes

remain stationary or propel themselves forward without expending muscle energy [3–5].

There has been significant interest in developing devices designed to mechanically imitate

fish behavior, with the goal of designing vehicles that are faster, more energy efficient, and

less detectable than traditional underwater vehicles [6].

Different species of fish have different swimming styles. Webb [7] identified one of the

main swimming styles as body and/or caudal fin (BCF) propulsion. This describes species

that swim by creating wave-like movements with their body. BCF propulsion is divided

into five subcategories: anguilliform, subcarangiform, carangiform, thunniform, and os-

traciiform. Species belonging to each of these categories swim with a varying amount of

body movement. Anguilliform locomotion consists of a full-body undulatory motion while

carangiform locomotion typically uses one-third of the body for swimming, and thunni-

form locomotion uses only the caudal fin or tail for propulsion [8]. Prior work has mainly

focused on studying the wake of fish with subcarangiform locamotion, such as trout [3,5,9],

and carangiform locamotion, such as bluegill sunfish [10,11]. These locomotion forms are

most commonly studied using thrust or power as a metric for comparison [12–15].
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Many studies have endeavored to simplify hydrodynamic environments in an attempt to

better understand the complex motions associated with swimming. Early studies assessed

the swimming motion of fish in still water or uniform flow [16, 17]. As models became

more complex, conflicting evidence arose surrounding the effects of turbulence on swim-

ming fish, primarily looking at whether fish are attracted to or repelled by turbulence. At

extremely high levels of turbulence, the metabolic cost of swimming can be increased and

shear stresses can even damage the bodies of fish, but it has also been shown that altered

flows that maintain periodicity can be exploited by fish and reduce energy requirements

associated with swimming. This energy reduction shows that energy costs, previously es-

timated using steady flow conditions, must account for the effects of complex flow. In

general, non-periodic, turbulent flow that produces large fluctuations in velocity tends to

repel fish, while periodic fluctuations can attract fish. Non-periodic turbulent flows tend to

require powered movements from fish to maintain propulsion, while periodicity can lead to

passive propulsion through altering posture of the body and fins. With advancing technolo-

gies, real-time measurements of energy expenditure can be obtained. Electromyography

(EMG) transmitters have been inserted into fish and calibrated to tail-beat frequencies and

swimming speeds, which can be correlated to oxygen consumption and muscle activity.

An alternative method of analyzing the metabolic cost of fish swimming is to measure the

pressure changes along the body of the fish to determine power production. However, nat-

ural velocity gradients in the flow may make it difficult to accurately interpret the data.

Expanding simple hydrodynamic environments to include environmental effects and deter-

mining how these effects influence fish biomechanics is important to establishing a better

understanding of how fish use environmental conditions to their benefit [18].
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1.1 Fish in Periodic Flow

Fish encounter vortices in their environment from fluid flowing past stationary objects or

the movements from other animals. It is believed that fish often exploit these vortices by

extracting energy from them to increase their swimming performance. In fact, salmon and

trout migrate to optimal positions within streams to maximize their net energy gain [19].

Beal [4] later conducted an experiment to further this idea by finding the optimal position

and testing whether the amount of expended energy used to swim was reduced at this posi-

tion. Because of the possibility to capture energy from cylinder vortices, rainbow trout are

allowed to freely swim in the presence of a vertically mounted D-section cylinder. A D-

section cylinder is used because in flow it is able to produce a Kármán wake, with stronger

vortices than a circular cylinder and has a Strouhal number of approximately 0.2 [20]. In

the experiment, the fish are allowed to find the cylinder’s wake on their own. The trout

adapted to the presence of the cylinder fairly quickly, and in each iteration of the experi-

ment, the trout slowly moved upstream until they were approximately 4D downstream from

the cylinder [4].

In a similar experimental setup, Liao et al. [3] found that trout synchronize their tail-beat

frequency to the vortex shedding frequency of the cylinder and adopt a locomotion termed

the Kármán gait. Here, the vortex shedding frequency is defined as St = fD
U

. Liao et al.

went even further in their experiment and studied the muscle activity of the trout swimming

by using fine wire electrodes to record electrical muscle activity. They found that opposed

to the pattern of propagating muscle activity the trout experiences from swimming in free

stream, trout only activate their anterior, axial muscles when they adopt the Kármán gait.

In other words, the trout display a significant reduction in muscle activity when they are

entrained behind the cylinder rather than swimming in free stream, implying that the trout

are using the vorticity for energy benefit.
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To prove that the trout are stationing themselves in this position for energy benefits

and not just taking advantage of the wake’s velocity deficit, tests were conducted with

euthanized fish that had to overcome their drag using only the oscillating flows in the wake

as energy input. In an experiment, conducted by Beal et al. [5], a line was hooked to the

fish and tied to a stationary D-sectioned cylinder. The fish was held taut 4D downstream of

the cylinder. This decision was based on the range in which the live fish were seen to hold

station in the previous experiment. Results showed that the dead fish synchronized with the

wake and moved upstream until it ran into the cylinder. These experiments were able to

prove conclusively that fish were extracting energy from the vortices and, essentially, were

able to rest behind the cylinder. Additionally, the dead fish’s frequency closely matched

that of the wake. This is in agreement with results from Liao et al. [3].

More recently, Lauder et al. [21] conducted a study to examine the passive swimming

capabilities of freshly dead fish bodies. It was ensured that rigor mortis had not set in

during the experiments. The body was attached to a robotic flapping mechanical device

and actuated in heave and pitch in various combinations. Similar body waveforms to that of

live trout were able to be generated by the passive fish bodies. The data showed that heave

had the greater effect on swimming performance than pitch. As the driving frequency of

the mechanical device was increased from 0.1 to 4.5 Hz, the tail beat amplitude remained

relatively constant from 0.1 to 2 Hz before increasing steadily to a peak at 3.5 Hz. This

increase in tail beat amplitude of the magnitude shown in the results is comparable to those

observed from live fish as they increase their swimming speed and alter both frequency and

amplitude of their tail beat.

Gopalkrishnan et al. [20] investigated the effect that spacing between a cylinder and

an oscillating foil has on the efficiency of the foil and the possibility of energy extraction.

The foil is placed in the wake of a D-section cylinder, and the testing range begins about

3D downstream from the cylinder as not to interfere with the formation of vortices. The

cylinder is towed at a constant speed generating a Kármán vortex street and forced to os-
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cillate with a displacement of y(t) = Acsin (2πfct) where Ac is the oscillation amplitude

of the cylinder and fc is the oscillation frequency. The tests were performed with three

different cylinder oscillation amplitude ratios, Ac/D = 0.500, 0.667, and 0.833 where D

is the diameter of the cylinder. These values were chosen to ensure strong vortex shedding

lock-in. From the results distinct peaks and hollows can be identified, which implies that

foil efficiency is highly dependent on the separation length between the cylinder and foil.

Here, efficiency is defined as ηF = ThFU
PF

where ThF is the average thrust force acting on the

foil, U is the free stream velocity, and PF is the average power input to the foil. The first

peak is at about 4.3D, which coincides with Beal’s [4] later finding that live fish station

themselves about 4D downstream from a D-section cylinder. Additionally, the presence

of the peaks and hollows suggests that the oscillating foil interacts with the vortices in the

Kármán street. If there was no interaction, the efficiency of the foil would decrease as the

spacing between the cylinder and foil increased. The peaks in the efficiency are associ-

ated with the foil extracting energy from the oncoming cylinder eddies. Further, the peaks

represent a ‘destructive interaction’ meaning the cylinder vortices encounter vortices of the

opposite sign shed by the foil, and the cylinder vortices are repositioned, and ultimately,

weakened. Similarly, the hollows represent a ‘constructive interaction’ where the cylin-

der vortices merge with vortices of the same sign shed by the foil to form much stronger

vortices.

Having earlier established a dead fish’s capability to extract energy and generate thrust

from its interaction with a Kármán wake, Beal tested whether a mechanical device was able

to produce a similar effect. Following the same procedure as Gopalkrishnan et al. [20], but

instead using an oscillating D-section cylinder, a passive foil is tested moving through an

unsteady drag wake. A potentiometer is used to record the instantaneous lift, thrust, torque,

and pitch positions for the foil. Based on the measured phase angle, length of separation

between the cylinder and foil, and the motion of the foil, the foil adopts a slaloming mode

by avoiding intercepting the oncoming cylinder eddies. The resulting wake consists of two
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vortices, one from the cylinder and the other from the foil. The foil is able to extract energy

from the flow and generate enough thrust to overcome its drag. Liao et al. [3] discovered

this same slaloming mode in live fish. The slaloming mode is a high-efficiency mode

employed by both live fish and mechanical foils [5].

With the possibility of mechanical devices generating thrust proven, more recent work

has looked into how it is influenced by different traits. For example, using flexible plastic

foils, experiments are conducted to analyze the effects of shape, length, and stiffness on

self-propelled swimming speed. These foils are driven at their leading edge by a computer-

controlled robotic flapper and swim in a recirculating flow tank. The plastic foils are made

to exhibit key characteristics of undulatory locomotion in freely-swimming fish. Lauder

et al. [22] found that length has a non-linear effect on the foil’s self-propelled swimming

speed. Changing the stiffness was also shown to have non-linear changes in speed as the

length of the foil was increased. Essentially, there is no simple relationship between self-

propelled swimming speed and length or stiffness of the foils. Furthermore, experimental

results suggest that the flexible foils are experiencing a resonance phenomenon in which

certain lengths interact with the moving fluid in a manner that enhances propulsion, while

other lengths interact in a negative manner that decreases swimming speed. Due to limi-

tations of the testing space, a two-dimensional inviscid analytical model of the swimming

foils was created to calculate self-propelled swimming speeds for a wider range of lengths.

Results show that to correctly interpret the swimming performance among different self-

propelling bodies requires knowledge of both the stiffness and length of the body. Lauder

et al. [22] also tested five different foil shapes to determine its effect on propulsion. They

found that shape alone is not a primary determinant of swimming hydrodynamics. Instead

active control of fin stiffness is an important component of thrust magnitude.

6



1.2 Contributions of the Thesis

While prior studies have focused on fish swimming in steady flow [7, 17], the analysis on

the hydrodynamic response of fish to oncoming vortices is relatively new due to complexity

involved. A simplified analytical model is created to provide physical insight and a prelim-

inary experiment is conducted as a first step toward understanding how to design systems

to efficiently capture vortex energy.

• Chapter 2: With analogies to an anguilliform swimmer in a periodic wake, this

chapter models the case of a flexible cantilevered beam subject to a periodic moving

load. The intent is to capture the salient features of the response of flexible structures

in vortical flows without a lot of complexity and computational expense.

• Chapter 3: This chapter experimentally considers the hydrodynamic interaction be-

tween a cylinder and an attached, flexible, downstream splitter plate over a range of

Reynolds number from 12,400 to 108,000. The experiment has some similarities to

fish swimming in the wake of bluff bodies and also is considered as a benchmark test

of a new force balance system.
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Chapter 2

Moving Load Model

This chapter develops a moving load model to capture the salient aspects of the dynamic

response of a cantilever beam subject to vortex induced excitation. Because previous work

has shown that fish generate optimal thrust in the wake of a Kármán street [23, 24], the

model seeks to simulate this wake pattern. A Kármán wake is the periodic detachment of

pairs of alternate vortices shed off a bluff body. A bluff body is a general term used for

a body that, because of its shape, separates flow over most of its surface; an example is a

cylinder. For this model, the wake is represented by a moving load pattern of alternating

forces, as seen in Fig. 2.1. This model is similar to the ‘moving force’ models, seen in

previous works [25–27], which are often used to model the interaction between vehicles

and bridges. Results from the model will be used to guide the design of forthcoming

experiments.
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Figure 2.1. A simplified schematic of a fish in the wake of a Kármán vortex street. The
wake is represented by a moving load pattern of alternating forces, while the fish is ideal-
ized as a cantilever beam.

2.1 Background

The response of structures excited by a moving force has been of great interest to many

researchers involved in the analysis of railroad bridges and highway structures. In 1996,

Esmailzadeh and Ghoreyshi [28] used a finite difference algorithm to study the dynamic

behavior of a Timoshenko beam carrying a moving mass. The equations of motion are

converted to equivalent finite difference equations of motion and solved. Increasing the

length of the load distribution decreases the maximum deflection of the beam.

In a similar study, a Timoshenko beam is subject to a moving mass with a constant

velocity. The beam is discretized into a number of simple elements, each with four degrees

of freedom. The inertial effects of the moving mass are used to build a finite element

model. Using direct integration on the equations of motion, the dynamic response of the

Timoshenko beam and the contact force can be obtained. Lou et al. [29] found that the

results from this study matched well with those in other literature.

In another study, Bilello et al. [30] investigated the dynamic response of a small-

scale bridge model under a moving mass. The analysis is based on the continuous Euler-

Bernoulli beam theory. By expanding the unknown structural response in a series of eigen-

functions, the given problem is reduced to a set of second-order linear differential equations

with time varying coefficients. A scale model experiment is conducted to validate the ana-

9



lytical results. A prototype of a single span bridge structure with a smooth roadway is built

and subjected to a vehicle traversing it at constant velocity. Results show that the analytical

approach compared well with the experiment.

While many studies assumed that the moving mass and beam always remained in con-

tact, Lee [31] believed that separation between the two occurs. His study assumed that the

interaction force between the mass and structure depends on both the velocity of the mov-

ing mass and the flexibility of the structure. He analytically investigated a Bernoulli-Euler

beam subject to a single mass at a constant velocity. By using the integro-differential equa-

tion and modal analysis, Lee found that separation between the beam and moving mass can

occur easily and affects the dynamic response of the beam, especially at high velocities.

Because moving load models are usually used to study bridges, roadways, and railways,

prior work has mostly involved fixed-fixed beams. This work is unique in that it considers

the moving load problem on a cantilever beam.

2.2 Finite Element Beam Model

The problem is first solved by dividing the beam into a defined number of elements. As-

sume a cantilever beam of length L, width b, and thickness h is subject to a moving load.

The equation of motion for an element of the beam is given by

[M ] {ẍ}+ [C] {ẋ}+ [K] {x} = {F} , (2.1)

where {x (t)} is a vector of displacements in physical coordinates, [M ] is the global mass

matrix, [C] is the damping matrix, [K] is the global stiffness matrix, and {F} is the force

vector.
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The structural element mass matrix is defined as [32]

[Me] =
mLe

420


156 22Le 54 −13Le

22Le 4L2
e 13Le −3L2

e

54 13Le 156 −22Le

−13Le −3L2
e −22Le 4L2

e

 , (2.2)

where m is the mass per unit length

m = ρsbh, (2.3)

and Le is the length of each element

Le =
L

Ne

, (2.4)

with ρs being the structural density and Ne being the number of elements. The structural

element stiffness matrix is defined as [32]

[Ke] =
EI

L3
e


12 6Le −12 6Le

6Le 4L2
e −6Le 2L2

e

−12 −6Le 12 −6Le

6Le 2L2
e −6Le 4L2

e

 , (2.5)

with E being Young’s modulus and I the moment of inertia of the beam, I = bh3

12
. Both the

structural element mass and stiffness matrices are two node elements modeling displace-

ment and rotational degrees of freedom at each node. The global matrices [M ] and [K] are

computed using direct assembly. To illustrate the assembly process, assume the beam in

Fig. 2.1 is divided into three elements; the global mass and stiffness matrices for the model

are shown. Because the lengths of elements are the same, the global stiffness matrix can be

constructed and simplified to
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[M ] =
mLe

420



156 22Le 54 −13Le 0 0 0 0

22Le 4L2
e 13Le 3L2

e 0 0 0 0

54 13Le 312 0 54 −13Le 0 0

−13Le −3L2
e 0 8L2

e 13Le −3L2
e 0 0

0 0 54 13Le 312 0 54 −13Le

0 0 −13Le −3L2
e 0 8L2

e 13Le −3L2
e

0 0 0 0 54 13Le 156 −22Le

0 0 0 0 −13Le −3L2
e −22Le 4L2

e


.

The global stiffness matrix [K] is assembled in a similar manner. The global stiffness

matrix for the model in Fig. 2.1 is expressed as

[K] =
EI

L3
e



12 6Le −12 6Le 0 0 0 0

6Le 4L2
e −6Le 2L2

e 0 0 0 0

−12 −6Le 24 0 −12 6Le 0 0

6Le 2L2
e 0 8L2

e −6Le 2L2
e 0 0

0 0 −12 −6Le 24 0 −12 6Le

0 0 6Le 2L2
e 0 8L2

e −6Le 2L2
e

0 0 0 0 −12 −6Le 12 −6L2
e

0 0 0 0 6Le 2L2
e −6Le 4L2

e


.

The damping matrix, [C], can be found by a modal analysis procedure in which damp-

ing is first neglected. The undamped equation of motion for the system is

[M ] {ẍ}+ [K] {x} = {F} . (2.6)

By substituting {x} = [Φ] {η} into Eq. (2.6) and premultiplying the equation by [Φ]T the

modal coordinates of Eq. (2.6) can be written

[Φ]T [M ] [Φ] {η̈}+ [Φ]T [K] [Φ] {η} = [Φ]T {F} , (2.7)
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where η is used to denote the modal degrees of freedom and [Φ] is the mass normalized

mode matrix. Since [Φ]T [M ] [Φ] is then identity matrix and [Φ]T [K] [Φ] is a diagonal

matrix of natural frequencies squared, ω2, Eq. (2.7) becomes

{η̈}+

ω
2
1

. . .

ω2
N

 {η} = [Φ]T {F} , (2.8)

where N is the number of modes. With the equations uncoupled in modal space, damping

can now be added back to the system in the form

η̈i + 2ζiωiη̇i + ω2
i ηi = {Φi}T {F} i = 1, 2, 3, ...N (2.9)

where ζi is the modal damping. The damping matrix is composed of the term 2ζiωi along

its diagonal. The Newmark-β method is then used to numerically integrate the problem in

modal coordinates. The system response is then transformed back into physical coordinates

using the mode matrix.

2.2.1 Construction of the Force Matrix

The construction of the force matrix depends on the distance between loads, ∆x, which

varies with the vortex shedding period, Tvs. The vortex shedding period can be found from

the vortex shedding frequency

fvs =
StU

D
, (2.10)

where St is the Strouhal number, U is the flow speed, and D is the diameter of the cylinder.

With period being the inverse of frequency, the vortex shedding period is

Tvs =
D

StU
. (2.11)
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Now, ∆x can be expressed in terms of Tvs

∆x = TvsU. (2.12)

Substituting Eq. (2.11) into Eq. (2.12), ∆x becomes

∆x =
D

St
. (2.13)

Eq. (2.13) shows that ∆x, the distance between two like-sign vortices, depends on the

diameter of the cylinder and St. This finding is in agreement with Liao et al. [3]. They

also found the wake wavelength, or vortex spacing, was strongly dependent on cylinder

diameter.

At each time step, a spatial forcing vector is defined and the individual forcing vectors

are assembled into a matrix [FM ]; the force matrix for one positive force in Fig. 2.1 can be

seen below.

FM =

 F 0 0

0 F 0

0 0 F


time step

space step

The beam is exposed to alternating forces with a distance of ∆x between them. The forces

are then consecutively superimposed into one matrix, FT , with a spacing of ∆t.

FT =


F . . . 0

∆t︷ ︸︸ ︷
0 . . . 0 −F . . . 0

... . . . ...
... . . . ...

... . . . ... . . .

0 . . . F 0 . . . 0 0 . . . −F


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In the numerical integration, the integration time step is set to ∆te, so the force matrix can

be assembled using diagonal submatrices. Essentially, ∆t defines the time between the

forces and is expressed as

∆t =
∆x

U∆te
, (2.14)

where ∆te is the amount of time the force spends on each element which is given by

∆te =
L

NeU
. (2.15)

2.3 Results

2.3.1 Time Domain Response

In this analytical experiment, a beam of length 0.5 m, width 0.075 m, and thickness 0.0025

m is placed behind a cylinder with a diameter of 0.05 m. The density of the beam, ρs, is

900 kg/m3. The Young’s Modulus, E, of the beam is 1.7× 109 N/m2. The beam is divided

into 100 elements and the first ten modes are used in the analysis. The modal damping ratio

is assumed to be 0.01 across all modes.

The moving load represents a vortex street. For a smooth cylinder, a vortex street forms

only for a range of 40 < Re < 3 × 105 [33]. Yet, the model can assume a moving load

for any value of U . The Strouhal number changes with Reynolds number; however, the

change in St associated within the range of Reynolds numbers of most interest,103 and

105, is minimal, so the change can be neglected, as seen in Fig. 2.2. For this study, St is

held constant at 0.2.
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Figure 2.2. Strouhal Number of vortex shedding from a stationary smooth circular cylinder
[1].

For low flow speeds, the force can be seen moving on and off the beam(see Fig. 2.3). As

the force moves along the beam, the beam has time to decay in amplitude before it grows

in amplitude in response to encountering another force. At higher flow speeds, the beam

responds at a constant amplitude. Resonance is seen at StUr = 2. The term StUr is the

reduced velocity multiplied by St with reduced velocity expressed as

Ur =
U

fnD
, (2.16)

where fn is the first natural frequency of the beam in hertz. In this study the natural fre-

quency for the beam’s first mode is used.

Because resonance is seen at StUr = 2, the results for the time histories at the end of

the beam at StUr = 2.0 for D = 0.08 m, D = 0.1 m, and D = 0.2 m are analyzed (see

Fig. 2.4). As the flow speed increases, Tvs decreases. When D = 0.2 m, the ratio of the

length of the beam to load distance, L
∆x

, is 0.5. At this ratio the beam is exposed to multiple

forces at once. However, when L
∆x

= 1.25, a force leaves the beam before the subsequent

force comes into contact with the beam.
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Figure 2.3. The ratio of the displacement at the end of the cantilever beam behind a cylinder
with a diameter of D = 0.1 m to the static displacement of a unit force at the end of a beam
at (a) StUr = 0.2 (b) StUr = 0.5 (c) StUr = 1.0 (d) StUr = 1.5 (e) StUr = 2.0 (f)
StUr = 2.5. The term StUr is the reduced velocity multiplied by the Strouhal number
with reduced velocity expressed as Ur = U

fnD
, where U is the flow speed and fn is the

natural frequency. The Strouhal number is held constant at 0.2. Here, the natural frequency
for the beam’s first mode is used.
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Figure 2.4. The ratio of the displacement at the end of the cantilever beam behind a cylinder
with a diameter of (a) D = 0.08 m (b) D = 0.1 m (c) D = 0.2 m to the static displacement
of a unit force at the end of a beam.

2.3.2 Frequency Domain Response

The RMS displacement values in Fig. 2.5 show a peak at L
∆x

= 1 before decaying. This is

in agreement with Fig. 2.6, as ∆x
L

= 1 produces the greatest peak amplitude.
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Figure 2.5. The ratio of RMS values for displacement data at the end of a cantilever beam
behind a cylinder with a diameter D = 0.1 m to the static displacement of a unit force at
the end of the beam for ζ values of 0.01, 0.025, and 0.05 compared to the ratio of the length
of the beam to load distance. Here, the distance between loads is held constant, while the
length of the beam is varied.

Fig. 2.6 shows the max displacement, Amax, for various ∆x
L

. Amax is normalized by the

deflection due to a static unit load at the end of the beam, which is defined as

A0 =
FL3

3EI
, (2.17)

where F is the force on the beam’s tip. In Fig. 2.6, displacement peaks at StUr = 2 for

all values of L
∆x

. A second peak, lower in amplitude, is located at StUr = 0.667. This

trend resembles the magnitude spectrum of the Fourier series of a square wave, because the

moving load model’s similarity to a square wave, as seen in Fig. 2.7.
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Figure 2.6. Max deflection of a cantilever beam behind a cylinder normalized by the static
displacement of a unit force at the end of the beam for various values of L

∆x
. The length of

the beam is held constant. The term ∆x is expressed as ∆x = D
St

. The Strouhal number,
St, is set at 0.2, while the diameter of the cylinder, D, is varied.

A square wave alternates between two levels at regular intervals. For example, turning

the signal on and off at regular intervals of period, T . The transitions between the two

levels is instantaneous.

T
∆x ∆x

εT

A

f(t)

t

-A

Figure 2.7. A square wave representative of a cantilever beam exposed to a moving load
pattern of alternating forces traveling at a constant speed.
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In the model, the load being introduced to and leaving the beam resembles a signal being

turned on and off. An element encounters a force for a time, εT . The time between the

first and secondary loads coming in contact with the beam is defined as ∆x. The model is

composed of forces with alternating signs. Consequently, the time between like sign loads

encountering the beam is 2∆x or T . The fundamental frequency can be defined as

f0 = 2fvs. (2.18)

Similar to a square wave, the present forcing function contains content at odd integer

harmonics, (i.e, 3, 5, 7,...). Because the fundamental frequency is two times the vortex

shedding frequency and StUr is based on the vortex shedding frequency, the content pro-

duces sub-harmonic resonances at StUr values of 0.66, 0.4, 0.286, etc.
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Chapter 3

Experimental Studies of Bodies Placed

in the Wake of a Cylinder

3.1 Performance of a Cantilever Beam in a Vortex Wake

Based on the configuration in Chapter 2 a set of experiments are designed to physically

model Fig. 2.1. As with the analytical model, a flexible body is placed in the wake of

a Kármán street for optimal thrust generation. To produce this wake pattern, a cylinder

is horizontally mounted in fluid flow (see Fig. 3.1). Two test cases are considered; the

first case studies a cantilever beam of chord length L = 25.4 cm, span b = 7.62 cm, and

thickness h = 2.54 mm, while the second case observes a cantilever beam of chord length

L = 15.24 cm, span b = 5.08 cm, and thickness h = 2.54 mm.
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Figure 3.1. A cantilever beam with a chord length of 15.24 cm, span of 5.08 cm, and
thickness 2.54 mm stationed behind a horizontally mounted cylinder with a diameter of
7.62 cm located in the test section of a water tunnel.

3.1.1 Experimental Set-Up

The cantilever beam (E = 1.70 × 109 N/m2, ρ = 900 kg/m3) is used as a proxy for an

eel. An attachment head, designed as not to disrupt fluid flow, is used to place the flexible

beam behind a cylinder with diameter, D = 7.62 cm. The beam and attachment head are

3D printed as a single piece with a Makerbot Replicator 5th Gen using PLA filament. The

fluid natural frequency of the structure, fn, is found using the equation for natural frequency

of a cantilever beam in fluid [1]

f =
λ2

2πL2

√
Eh3

12ρsh+ 3πρfb
(3.1)

where λ2 is a natural frequency parameter dependent on the mode, boundary conditions,

and dimensions of the beam. For the first mode of a fixed-free beam, λ = 1.875. The fluid

natural frequency for the first case is fn = 1.65 Hz; the cantilever beam in the second case

has a fluid natural frequency fn = 5.6 Hz. The structure’s fluid natural frequency can be
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controlled by its input parameters, h, b, and L. Values for these parameters are selected

to ensure the beam will resonate with the vortex shedding frequency, shown in Eq. (2.10),

while the von Kármán vortex street is still present. Since the von Kármán vortex street is

desired the Reynolds number must be limited to a range of 40 < Re < 3 × 105 [33]. The

flow speed relating to the desired Reynolds number range is found to be 0 m/s < U < 2.63

m/s for a cylinder with a diameter of 7.62 cm.

3.1.1.1 High-Speed Water Tunnel

All tests are conducted in a high-speed water tunnel located in the Dynamic Devices and

Solutions Lab at the University of Georgia. The tunnel is able to produce uniform flow as

high as 11 m/s. The tunnel’s test section is 1 m long with a 0.3× 0.3 m2 cross-section. The

tunnel contains a honeycomb, upstream of the test section, that serves as a flow straightener

to minimize the effects of turbulence of the incoming flow; as a result, the turbulence

intensity of the flow outside of the boundary layer is about 0.5% [34].

3.1.1.2 Laser Doppler Vibrometer

A laser Doppler vibrometer (LDV) is a primary tool for data collection. A LDV focuses a

laser beam on a test article, and the structure scatters or reflects the light from the laser. The

back-scatter is demodulated using interference and the Doppler effect to measure vibration

velocity at a point. The LDV is chosen because of its non-contact nature and ability to

produce high resolution measurements. A LDV also has a larger measurement range than

other available non-contact lasers.

3.1.2 Case 1

A cantiliever beam of chord length L = 25.4 cm, span b = 7.62 cm, and thickness h =

2.54 mm is stationed behind a a cylinder with a diameter of 7.62 cm. Using an LDV, the
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displacement at the end of the beam is observed as the fluid flow is constantly accelerated

over a range of 0.1458 m/s to 2.916 m/s.

3.1.2.1 Results

Figure 3.2 shows the response data results in a scatter plot modeled after a spectrogram.

The response frequency is normalized by the natural frequency of the beam. The Strouhal

number is assumed to remain constant at a value of St = 0.2. The colors represent the

deflection of the beam with lighter colors depicting higher amplitude. At low speeds, the

body tries to vibrate at its natural frequency. However, once the flow speed increases the

body is forced to vibrate at the forcing frequency. At higher speeds the body begins to

vibrate at random frequencies. At these higher speeds, the wake is no longer in a Kármán

street pattern, so the vortices display a sporadic pattern.
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Figure 3.2. Response data from the end of a cantilever beam with a length of 25.4 cm, width
of 7.62 cm, and thickness of 2.54 mm as fluid flow, U , is constantly accelerated over a range
of 0.1458 m/s to 2.916 m/s. The response frequency is normalized by the beam’s natural
frequency. The term StUr is the reduced velocity multiplied by the Strouhal number, St,
with reduced velocity express as Ur = U

fnD
. The Strouhal number is assumed to be held

constant at St = 0.2, and the diameter of the cylinder is D = 7.62 cm.
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3.1.3 Case 2

The beam in Section 3.1.2 is replaced with a cantiliever beam of chord length L = 15.24

cm, span b = 5.08 cm, and thickness h = 2.54 mm. The beam is exposed to a constant

flow speed, and using an LDV, the response data is measured at the end beam. The flow

speed is varied from 0.43 m/s to 3.63 m/s in increments of 0.21 m/s. New response data is

collected at each flow speed.

3.1.3.1 Results

The RMS value of each data set is found and plotted in Fig. 3.3. The Strouhal number in

the term StUr is assumed to be held constant at St = 0.2. Distinctive peaks and hollows

can be seen in Fig. 3.3. As with Fig. 2.6, the data in Fig. 3.3 increases, reaches a peak, and

then decreases before increasing again. This pattern is repeated throughout the data. The

trend in Fig. 3.3 is similar to that found in Fig. 2.6 wherein the function contains content

at odd integer harmonics. The max peak can be seen at StUr = 1.5 with a secondary peak

located at StUr = 0.53. The location of these peaks differs from that found in Fig. 2.6.

It is thought that the assumed value of the Strouhal number in the experimental study is

incorrect.
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Figure 3.3. RMS values of the experimental velocity data taken at the end of a cantilever
beam with a length of 15.24 cm, width of 5.08 cm, and thickness of 2.54 mm for flow
speeds varied from 0.43 m/s to 3.63 m/s in increments of ).21 m/s. The Strouhal number is
assumed to be held constant at a value of 0.2.

3.2 Interaction Between a Splitter Plate and a Cylinder

This chapter experimentally studies a splitter plate attached to a cylinder. This configu-

ration can be loosely compared to a fish swimming in the immediate wake of a cylinder.

In earlier work Wu and Shu [35] numerically modeled a swimming tadpole using a rigid

flat plate attached to a cylinder to study the effect the flapping tail had on the wake of the

cylinder. They found that when the length of the plate equaled the diameter of the cylinder,

the drag forces on the system is dependent on the plate amplitude and frequency; when

the length of the plate is less than the diameter, a periodic variation of drag coefficients

appeared at moderate and high plate frequency. This current study extends this topic by

investigating a case where the length of the plate is larger than the diameter. Additionally,
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Wu and Shu only considered a Reynolds number of 100. Here, the effects of a splitter plate

on a cylinder are observed over a Reynolds number range of 12,000 to 108,000.

Testing is done with a force balance and dye injection system. These tools were re-

cently constructed and installed. The experiments in this chapter were designed not only

to investigate the hydrodynamic relationship between a splitter plate and cylinder but also

to test the new force balance and dye injection systems that will be used in future vortex

energy capture experiments.

3.2.1 Experimental Set-up

A flexible plate (E = 1.7 × 109 N/m2, ρs = 900 kg/m3) with size a = 14.25 cm and

thickness h = 2.41 mm is attached to a cylinder with diameter D = 2.85 cm and LC =

14.25 cm. The geometry of the model was chosen to ensure accurate measurements at low

speeds, see Section 3.2.3.1. The cylinder and beam are 3D printed as a uniform piece with

a Makerbot Replicator 5th Gen using PLA filament. A bare cylinder of same length and

diameter is also printed for comparison testing.

The structure’s fluid natural frequency, fn, of the model can be found by using the

equation for the natural frequency of a cantilevered plate in fluid [36]

fn
fn,v

=
M1/2

(Ma +M)1/2
=

1√
1 +Ma/M

, (3.2)

where fn,v is the natural frequency in vacuum, M is the structural mass, and Ma is the

added mass. The natural frequency in vacuum is defined as [36]

fn,v =
λ2

2πa2

[
Eh2

12ρs (1− ν)

]1/2

, (3.3)
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where ν is viscosity. For the first mode of a fixed-free plate with a length-width ratio of 1,

λ2 = 3.492. The add mass of a cantilevered plate is given by [36]

Ma =
1

4
πρfab

2 (3.4)

where ρf is the density of the fluid and b is the width of the plate. For the current plate

a = b. The fluid-loaded natural frequency of the test plate is predicted to be 3.61 Hz.

3.2.2 Structural Dynamic Measurements

3.2.2.1 Method

The cylinder and the plate are secured horizontally in the test section and subjected to a

constant flow speed. Response data is taken at the tip of the plate with an LDV. The flow

speed is varied from 0.44 to 3.8 m/s in increments of 0.15 m/s. At each flow speed, a new

set of response data from the plate is collected.

3.2.2.2 Results

From the figure, the plate does not appear to be interacting with the shedding vortices of

the cylinder (Fig. 3.4). Instead, the velocity of the plate increases with speed, seemingly,

responding to turbulent excitation, the intensity of which increases with flow speed. While

the amplitude of velocity generally increases with Reynolds number, there are drops in

magnitude for some values of Reynolds numbers, and for the Reynolds number range of

70,000 to 83,000 the velocity is nearly constant. Shukla et al. [37] observed a similar trend

in their work with a flexible splitter plate in the wake of a cylinder. They found that the

splitter plate experiences two regimes of periodic motion known as mode I and mode II

separated by a regime of non-periodic motion. Mode I is associated with a linear increase

in plate deflection, while at mode II the plate maintains a constant amplitude. The current

data seems to be constantly alternating between the two modes.
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Figure 3.4. RMS values of the experimental velocity data sets taken at the end of a plate
with a length and width of 14.25 cm and a thickness of 2.41 mm attached to a cylinder with
a diameter of 2.85 cm and length of 14.25 cm. The flow speed is varied from 0.44 m/s to
3.8 m/s in increments of 0.15 m/s.

Dye visualization is desired to get a better understanding of how the plate is interacting

with the cylinder (see Fig. 3.5). The dye is injected upstream at a flow speed of 0.1 m/s.

Prior work [20, 35] has observed constructive and destructive vortex interaction modes

when a plate is placed in the wake of a cylinder. However, in Fig. 3.5 the vortices look

suppressed indicating that the plate is acting as a splitter plate. A splitter plate is a device

used to alter the drag force of a cylinder. The splitter plate can be either attached or detached

from the cylinder, and depending on the size of the plate and distance between the cylinder

and the plate, the drag force is either increased or decreased [38]. In a previous study,

Roshko [39] observed flow changes when splitter plates were placed behind a cylinder. He

found that when the plate was attached to a cylinder and the length was five times longer

than the diameter of the cylinder, vortex shedding was fully suppressed and disappeared.

Given that the length of the current plate is five times the diameter of the cylinder, it is

understandable the model is acting in such a way.
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Figure 3.5. Dye visualization of a plate with a length and width of 14.25 cm and thickness
of 2.41 mm attached to a cylinder with a diameter of 2.85 cm and length of 14.25 cm at a
flow speed of 0.1 m/s

.

3.2.3 Drag Measurements

A force balance is used to measure the steady drag force on the plate. For this experiment,

the force balance is primarily used to observe the overall drag force on the beam and relate

this measurement to thrust.

3.2.3.1 Force Balance System

Strain gauges are attached to the force balance system outside of the test section of the

water tunnel. When forces act on the system, a strain is created. When strain is applied

to the strain gauge, it increases the resistance of the strain gauge. The change in electrical

resistance is measured and converted to a force measurementt. A data acquisition program

then reads the lift and drag measurements relating them to thrust. Currently, the force

balance system is able to accurately measure fluid forces up to 178 N and as low as 2
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N. When designing the model, the length of the cylinder was made equal to the width of

the body to ensure that the resulting force was greater than the limit even at low speeds.

This made the physical model more like a plate than the beams that were analyzed in the

previous chapter.

3.2.3.2 Method

The bare cylinder is secured to the hydrofoil rod of the force balance system, and the flow

speed is varied from 0.44 m/s to 3.8 m/s in increments of 0.15 m/s. The drag force of the

cylinder, FD,C , is measured at each flow speed. The test is then repeated to measure the

drag forces for the cylinder and plate, FD,CP . The plate’s performance is then calculated in

the form of the coefficient of drag, CD, which is defined as [1]

CD =
FD

1
2
ρfU2LCD

, (3.5)

where LC is the length of the cylinder, D is the diameter.

3.2.3.3 Results

The initial assumption was that the test cylinder would show a similar a CD trend as a

smooth cylinder. However, from Fig. 3.6 this assumption did not hold true. The test cylin-

der did not match the trend because, through 3D printing, a surface roughness was created.

There is not a reduction in CD when adding the plate to the cylinder, as shown in

Fig. 3.7. The absence of drag reduction is in contrast to the results found in prior studies

with splitter plates. Roshko [39] observed a significant reduction in the drag of a cylinder

with the addition of a splitter plate. He found that when the vortex shedding disappeared,

drag is reduced which did not occur in the present experiment.
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Figure 3.6. Drag coefficient values for the present cylinder compared to that of a smooth
and rough cylinder from a previous study [2]. The present cylinder has a diameter of 2.85
cm and length of 14.25 cm. The drag force of the cylinder is measured over a flow speed
range of 0.44 m/s to 3.8 m/s.
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Figure 3.7. Drag coefficient values for a bare cylinder with a length of 14.25 cm and
diameter of 2.85 cm and a plate with a length and width of 14.25 cm and thickness of 2.41
mm attached to a cylinder with a length of 14.25 cm and diameter of 2.85 cm over a flow
speed range of 0.44 m/s to 3.8 m/s.
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The results presented in Fig. 3.6 and Fig. 3.7 seem implausible. The drag force data

obtained is believed to be unreliable. More testing of the force balance system is required.

Future work will include comparative testing on the force balance system with a smooth

cylinder. The results from these tests will then be compared to other work to get a better

understanding of the force balance system.
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Chapter 4

Conclusions

4.1 Summary of Main Results

This thesis explores the use of vortex energy capture as a propulsion strategy in underwater

swimmers. An analytical approach is presented; a cantilever beam subject to vortex induced

excitation is used to model a swimming fish in a Kármán street. The wake is represented

by a moving load pattern of alternating forces. The analytical model indicates maximum

thrust occurs when the length of the beam is five times the diameter of the cylinder.

A preliminary experiment was conducted to further understand the hydrodynamic rela-

tionship between a splitter plate attached to a cylinder. This configuration can be loosely

compared to a fish swimming in the immediate wake of a cylinder. Through dye visualiza-

tion, the splitter plate was found to suppress the vortex shedding of the cylinder. This is

because the plate is five times the diameter of the cylinder. These results are in concurrence

with Roshko [39]. From velocity data, the splitter plate seems to experience constant fluc-

tuations between what Shukla et al. [37] termed mode I and mode II. Using a force balance

system, drag reduction is not observed with the addition of a splitter plate. The absence of

drag reduction is in contrast to prior studies which find a significant reduction in drag with

the addition of a splitter plate.
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4.2 Recommended Future Work

The analytical method developed in Chapter 2 studies the dynamic response of a flexible

cantilevered beam subject to a periodic moving load. It is only a first step toward further

understanding vortex energy capture. The next step is to extend the model to solve for

thrust.

Currently, the analytical model only considers the vortices shed off of the cylinder and

does not recognize the effects of the beam’s vortices. However, the interaction between

the two vortices contributes greatly to thrust generation [20]. Future developments to the

model will include making the cylinder and beam a two-way coupled system.

Based on the results from Chapter 2, a set of experiments will be designed to physically

model Fig. 2.1. As with the analytical model, the experimental approach will place a

flexible beam in the wake of a Kármán street for optimal thrust generation. To produce this

wake pattern, a cylinder is horizontally mounted in fluid flow. Previous work found that

maximum thrust is produced with maximum response amplitude [40]. From Fig. 2.7, the

model should experience maximum deflection at L
∆x

= 1 or D
StL

= 1. Assuming St = 0.2,

the experimental model will be designed with a beam length five times the diameter of the

cylinder. Because it is believed the material of the cylinder is the cause of the cylinder not

showing similar behavior to that of a smooth cylinder, the cylinder will be designed with a

different material, such as acrylic. Additional experiments will be performed varying the

shape of the tail and the ratio of L
∆x

.
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