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Abstract

In this dissertation the study of Si and Si-Ge systems is conducted to provide
answers to both statistical mechanics and material science questions. The compress-
ible Ising model provides a general framework for describing phase transitions in
alloys where the ordering is accompanied by a displacive structural change. Its
behavior in the case of ferromagnetic interactions and constant volume conditions is
investigated here using a model of binary alloys driven by elastic interactions. Clas-
sical Monte Carlo simulations in the semi-grand-canonical ensemble are utilized, and
the two species composing the alloy are modeled by Si and Ge interacting via the
Stillinger-Weber potential. A volume much closer to pure Ge than to pure Si is chosen
to introduce a significant difference between the two species. The phase diagram con-
tains a closed first order line which divides a “phase-segregated” (“ordered”) phase
from a disordered one. In the “ordered” phase the most unfavorable species (Si in
this case) congregates forming planes in-between which the other species is located.
When interested in the study of technological important materials, few, if any, are
more relevant than Si and Ge. In this work a classical, hybrid MC-MD algorithm
is introduced for the study of surface phenomena (2D island stability or step-edge
evolution) on (001) Si or Ge surfaces. This method is very general and can be easily
expanded to other semiconductors and different surfaces. With respect to previously
developed algorithms, this presents the advantage of working off-lattice and uti-
lizing bulk-fitted potentials. It is based on the introduction of collective moves, such
as dimer jumps, into the MC algorithm. MD-driven local relaxations are considered
as trial moves for the MC. Results on early stages of island formation, island stability
versus temperature and system size, and step-edge evolution are obtained in good
qualitative agreement with experimental results.
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“Considerate la vostra semenza:

nati non foste a viver come bruti,

ma per seguir virtute e conoscenza.”

(Dante Alighieri, Inferno, Canto XXIV, 118)

“Consider ye the seed from which ye sprang:

ye were not made to live like brutes,

but for the pursuit of excellence and knowledge.”

(Dante Alighieri, Inferno, Canto XXIV, 118)
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U. Happek, S.P. Lewis and Prof. H-B. Schüttler for their help along these years and

their careful reading of this dissertation. A special thank to Mike Caplinger and Jeff

Deroshia for being always so patient and willing to help.

I also wish to thank Dr. S. Tsai, Dr. B. Dünweg, Prof. K. Binder and Prof. A.

Milchev for many stimulating suggestions and fruitful discussions. I would like to

mention my visit to Dr. J. Adler at Technion, Haifa, as one of the most interesting

and profitable moments of my Ph.D., and deeply thank her for such an opportunity.

I’m also strongly indebted to Dr. J. Adler for the graphic package AViz developed

by the Computational Physic Group at Technion, Israel, that enabled much of my

data analysis.

A special thank to Laura Nurminen: working together has been not only very

productive but also real fun!

I would like to thank CSC, Finland and NPACI for providing some of the com-

puting time much needed in this research.

I also would like to thank faculty, staff members and my fellow graduate students

in the department of Physics and Astronomy for their kindness and friendship.

v



vi

It goes without saying that I owe a great deal to the interest and encouragement

my family has shown at every stage of this work, in particular my brother Angelo

who, from afar, always cared for me, my research and my personal life. Finally I

would like to acknowledge, though in a very inadequate manner, the constant help

and support furnished by my husband, Jay, without whose aid this dissertation

probably never would have been written.



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Experimental and theoretical characterization of the Si(001)

surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The Si(001) surface: the dimer model . . . . . . . . . . 5

2.2 Other reconstructions . . . . . . . . . . . . . . . . . . . 7

2.3 Structure of terraces and step edges on Si(001) . . . . 9

2.4 Intrinsic surface stress of Si(001) . . . . . . . . . . . . . 11

2.5 Step edge evolution . . . . . . . . . . . . . . . . . . . . 12

2.6 1D and 2D islands . . . . . . . . . . . . . . . . . . . . . 17

3 Characterization of the phase diagram for bulk Si1−xGex alloys 23

3.1 Phase diagram under constant pressure conditions . . 24

3.2 Phase diagram under constant volume conditions . . . 27

4 Model and standard simulation techniques . . . . . . . . . . . 29

4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Simulation methodology . . . . . . . . . . . . . . . . . . 32

4.3 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . 37

4.4 Hysteresis calculations and thermodynamical integra-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



viii

4.5 Histogram reweighting . . . . . . . . . . . . . . . . . . . 41

4.6 Parallel tempering . . . . . . . . . . . . . . . . . . . . . 46

4.7 Techniques to speed up the simulations . . . . . . . . 48

5 A new algorithm for studying semiconductor surfaces . . . . 61

5.1 Single-atom moves only: results . . . . . . . . . . . . . 61

5.2 The need for a collective MC algorithm . . . . . . . . 71

5.3 Implementation of “coupled jumps” and “row shifts” 73

5.4 Implementation of “dimer jumps” . . . . . . . . . . . . 74

6 Results for the Si(001) surface . . . . . . . . . . . . . . . . . . 87

6.1 Coupled jumps and row shifts . . . . . . . . . . . . . . 87

6.2 Tersoff potential vs Stillinger-Weber potential . . . . . 89

6.3 Island formation . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Step-edge evolution . . . . . . . . . . . . . . . . . . . . 94

6.5 Quantitative results . . . . . . . . . . . . . . . . . . . . 97

7 Phase diagram for constant-volume Si1−xGex alloy . . . . . . 100

7.1 Low temperature results . . . . . . . . . . . . . . . . . 100

7.2 The “ordered” phase . . . . . . . . . . . . . . . . . . . . 104

7.3 High temperature results and phase diagram . . . . . 108

7.4 Structural properties . . . . . . . . . . . . . . . . . . . . 113

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix

A Step fluctuations: theory . . . . . . . . . . . . . . . . . . . . . . 130

B Velocity Verlet algorithm . . . . . . . . . . . . . . . . . . . . . 133



ix

C SW Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



Chapter 1

Introduction

Elastic interactions play a fundamental role in describing a wide variety of phys-

ical phenomena, as, for example, the evolution of semiconductor surfaces. They are

also the key factor in determining the behavior of the compressible Ising model, an

important part of Statistical Mechanics. In this dissertation we address both prob-

lems, the former in the particular case of the (001) surface of Si or Ge, the latter

focused on the bulk under constant-volume conditions. We decided to investigate

two phenomena that are significantly different in order to analyze a broader range of

effects related to elastic interactions. A computational approach is followed in both

investigations, and, more specifically, Monte Carlo (MC) simulations are utilized.

The compressible Ising model provides a general framework for describing phase

transitions driven by elastic interactions and ordering effects related to lattice dis-

tortions. It is a long standing problem in Statistical Mechanics: because of its fun-

damental interest it has been addressed for several decades but up to now only

incomplete or partial solutions have been found. In this model two sets of variables

are considered: the spins si=±1 and the displacements ui which define the motion

of the spins from their original lattice sites. The interactions among spins are elastic

and generally well described by classical potentials. A simple linear transformation

relates the “Ising representation” (each spin is either up or down) to the “binary

alloy picture” (each atom is either of species A or B), and in this dissertation a Si-Ge

alloy with variable composition (Si1−xGex) is used to perform the investigation. Fer-

romagnetic interactions and constant volume conditions are considered, because no

1
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complete results are available in the literature for this case. On the contrary, several

studies have been performed for ferromagnetic interactions under constant pressure

conditions, so that comparisons will be made between the two cases. In our study

the interatomic interactions are modeled via Stillinger-Weber potential [1], and a

volume closer to that of pure Ge than to pure Si is chosen to induce different struc-

tural rearrangements for the two species. Because of the size difference between Si

and Ge, this choice corresponds to the introduction of compressive or tensile stress

on the system as the composition varies.

As far as technological important materials are concerned, few, if any, are more

relevant that Si and Ge. The (001) surface of silicon, in particular, has a wide

range of applications in the micro- and optoelectronic industries. Moreover, it also

provides an ideal model for the study of semiconductor epitaxy as well as of a

variety of surface structural modifications like reconstruction, island stabilization

and step edge modification. Because of its relevance, a substantial amount of work

has been done on this surface, yet several questions are still open. Among these is the

determination of equilibrium shapes and thermal stability of 2D islands, or a precise

description of substrate modification in the presence of a Ge or Si adsorbate. The

scarcity of definitive answers to these queries is related to the difficulty of carrying

out thorough theoretical investigations. Experimental results have shown that stable

islands are constituted of at least several hundred atoms and that surface processes

occur on a time scale of the order of seconds, so that large-scale long-time simulations

are needed to correctly reproduce the physics of the system.

In this dissertation we develop a classical, hybrid Monte Carlo-Molecular

Dynamics (MC-MD) algorithm to answer these problems. The particular ver-

sion presented here is targeted to the study of the Si(001) surface with Si or Ge

adatoms, but the idea behind it is rather general and can be easily expanded to

the study of other semiconductor surfaces. The idea at the basis of this algorithm
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is to add the possibility of collective moves to the standard MC single-atom moves.

With MC the evolution of the system is definitely faster than it would be using

standard Molecular Dynamics (MD); moreover, because of the collective moves, it

is possible to overcome high potential barriers that otherwise would trap the system

in metastable states. The identification of the collective moves to implement is the

only point where knowledge of the particular physical system under consideration is

necessary. As an example, in the case of the Si(001) surface, the existence of a (2×1)

reconstruction, where adjacent atoms dimerize, leads us to introduce the possibility

of moving each dimer as a whole.

This dissertation is organized as follow. Chapters 2 and 3 contain reviews of

experimental (when available) and theoretical results on the Si(001) surface and

the compressible Ising model, respectively. In Chapter 4 the method and simulation

techniques are discussed. Because of the remarkable flexibility of the MC method,

physical systems as different as bulk and surfaces can be explored using very similar

methodologies, so that only one chapter is needed to review them. Chapter 5 contains

results that we obtained studying the (001) surface with standard single-atom moves.

Those findings show that the standard MC approach introduced in Chapter 4 is

unsatisfactory when simulating phenomena involving simultaneous motion of several

particles, as it is the case for surface reconstructions or island evolution. The rest of

chapter 5 is therefore dedicated to the development of the MC-MD hybrid algorithm.

In Chapter 6 we present the most significant results obtained using the combination

of single-atom and collective moves described in Chapter 5. These findings are mostly

qualitative, and are intended to prove the efficacy of the algorithm. Because of that,

only qualitative comparisons with experimental data discussed in Chapter 3 are

possible. An example of quantitative evaluation of physical quantities is presented

in this chapter as well, to show that the algorithm is also suitable for quantitative

applications. Finally, in Chapter 7 we discuss results obtained using Si-Ge alloys to
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study the compressible Ising model under constant volume conditions. Particular

attention is paid to the determination of the phase diagram and to the investigation

of the phase-segregated phase that is found at lower temperatures.



Chapter 2

Experimental and theoretical characterization of the Si(001) surface

One of the topics of this dissertation is the study of surface phenomena, like for-

mation and stability of 1D and 2D islands on the Si(001) surface. For this reason a

brief introduction to the physics of such a surface is presented in this introductory

chapter.

The wide variety of phenomena that take place on the (001) surface of Si can

only be understood in terms of the surface reconstruction. A brief account of this

phenomenon is given in the following, before reviewing the most important exper-

imental and theoretical findings related to the physics of step edges, terraces and

islands on this surface.

2.1 The Si(001) surface: the dimer model

In the presence of a surface the bulk periodicity either remains unchanged (relaxed

surfaces) or shows novel features (reconstructed surfaces), in which case the surface

primitive cell is different from the bulk one. For silicon surfaces, as is the case for

most covalent semiconductors, reconstruction is what happens. Moreover, because

of the presence of strongly directional bonds, the specific reconstruction occurring

on each surface is determined by the following criteria. Firstly, the reconstruction

should minimize the number of broken (dangling) bonds per surface atom in order

to minimize the increase in cohesive energy. Secondly, the bulk bond lengths must

be preserved as much as possible, and, lastly, in symmetric environments the most

5
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Figure 2.1: Si(001): a) ideal surface, b) symmetric dimer model and c) asymmetric
dimer model. Solid circles represent atoms on the surface (larger circle in c) indicates
the atom that protrudes out of the surface), open circles atoms in the plane just below
the surface. Solid lines represent nn bonds, dashed lines nnn bonds.

favorable relaxation corresponds to an axial displacement of the trifold coordinated

atom [2].

In the case of the (001) surface these criteria lead to the formation of dimers.

When the bulk structure ends on a (100) surface two covalent bonds are broken

for each surface atom. The easiest way to reduce the cost of such a surface is the

creation of one new bond per surface atom. A new bond is indeed formed by moving

two initially second nearest neighbors on the surface towards each other in such a

way that all the distances between them and their nearest neighbors are kept as close

as possible to their value in the bulk. The energy cost of forming such a new bond

is low because of the small elastic energy associated with distortions in bond angles.

The two atoms partecipating in this new bond are said to form a dimer. In the ideal

case the length of the dimer bond is also close to the value that the nearest neighbors

(nn) distance assumes in the bulk. All this is illustrated in Figure 2.1a) and b), where

1 and 2 are the surface atoms and A, B, C, D their nearest neighbors in the plane

underneath the surface. The atomic rearrangement just described greatly stabilizes
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the surface since it reduces the number of dangling bonds per surface atoms from

two to one. Moreover, it also allows the two dangling bonds of a dimer to form a π-

like bonding arrangement, which stabilizes the surface structure even further. Such a

reconstruction, where pairs of surface atoms become covalently bonded, corresponds

to the dimer model and is called a “symmetric reconstruction”. To conclude, it must

be mentioned that the dimers are formed so that they line up in rows, with the

bonds parallel to each other [3]. The space between two adjacent rows is called a

”trench” or ”trough”.

2.2 Other reconstructions

The symmetric dimer reconstruction is just the simplest kind of reconstruction pos-

sible for the Si(001) surface. A great number of experimental observations, mostly

scanning tunneling microscopy (STM) measurements, have shown that in reality

the ground state (GS) reconstruction is much more complicated than the simple

dimer model suggests [4–9]. Much theoretical work has been done on the subject as

well [10–15]. It is beyond the scope of this dissertation to review all these findings,

and only a general description of such reconstructions will be provided here.

The origin of any surface reconstruction other then the symmetric one is in the

buckling of the atoms composing the dimer. Experimental results have shown that

dimers have a preference for a tilted geometry (buckling), with one dimer atom

rising and the other lowering, relative to the surface plane [16] (Figure 2.1c)). The

existence of buckling induces a charge transfer from the lower to the upper atom of

the dimer. Since a tilted dimer has two possible orientations that are energetically

equivalent, different reconstructions can be explained in terms of different arrange-

ments of alternatively buckled dimers. When all the dimers are buckled in the same

direction the reconstruction is called ”(2x1)-asymmetric”, instead, when the buck-
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Figure 2.2: Top view of the (001) unreconstructed (ideal) and reconstructed surface.
The black circles are 2nd layer atoms and the larger gray and white circles are
surface atoms. The large white circles protrude further out of the surface than the
gray circles. (Ref. [14]).
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A DA

SB DB

S

Figure 2.3: Top view of SA, DA, SB and DB types of steps on Si(001), respectively.
The dashed lines indicate the step locations. Open circles denote atoms with dangling
bonds. Larger circles are used for upper terrace atoms (Ref. [17]).

ling is alternated the reconstruction can either be p(2x2) or c(4x2) depending on the

kind of alternation. All these different possible surface configurations are shown in

Figure 2.2.

Lastly, it must be noted that every time dimers in a row are coupled in an

anti-correlated manner, as in the c(4x2) case, they give rise to zigzag appearance

along rows of buckled dimers. Experimental results show that such an anti-correlated

pattern is never violated unless interrupted by an adsorbate or a defect.

2.3 Structure of terraces and step edges on Si(001)

Due to the crystal lattice structure dimer bonds on alternating layers are orthogonal

to each other, which means that each monoatomic surface step separates two per-
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AB SS

Figure 2.4: 300x300 Å2 STM image of the Si(001)-2x1 surface at 682 K. The type A
(straight) and B (rough) step edges are clearly visible (Ref. [29]).

pendicular domains of (2x1) reconstruction. These are usually indicated as (2x1) and

(1x2). As a consequence, two types of terraces exist on the surface: A-type terraces

(TA), having rows of dimerized atoms parallel to the edge of the down step (SA step),

and B-type terraces (TB), with the dimer rows perpendicular to the down-step edge

(SB step). More complicated steps are also possible, as in the case of double-layer

(D) heights, but those, too, are either of A or B type (DA and DB). All these dif-

ferent geometries are shown in Figure 2.3, and their formation mostly depends on

the preparation method and the degree of misorientation of the (001) axis towards

the [110] or [11̄0] direction.

In the case of TB terraces, the SB step has two different possible endings with

respect to the substrate dimer rows. It can terminate either at the trough between

the dimer rows (in which case the step is called nonbonded SB) or on top of the dimer

rows (re-bonded SB). In the latter case, the edge atoms of the step rebond with those
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in the last row of the lower terrace creating an energetically more favorable situation

than the nonbonded one [18].

A very significant amount of theoretical and experimental work has been done

studying monoatomic terraces, and the following conclusions have been reached [19–

27]:

1) the diffusion on terraces is strongly anisotropic: adatoms and dimers diffuse much

faster (of about a factor 103) in the direction of underlying dimer rows than

in the perpendicular direction;

2) the SB steps are much rougher (Figure 2.4) and advance faster during growth

than SA steps;

3) the most common defect on these terraces is missing dimers.

2.4 Intrinsic surface stress of Si(001)

The surface energy of a solid has, in general, two contributions: the formation energy

and the deformation energy. The former reflects the breaking of bonds to make a

solid surface; the latter reflects the tendency of a solid surface to distort because it

is a quasi-2D system and hence would like to assume different atomic structure and

bonding configuration from those of the bulk. The deformation energy gives rise to

a nonvanishing surface stress.

For clean Si(100) the most important feature is the (2x1) reconstruction. Surface

atoms form rows of dimers to reduce surface chemical energy by removing half of

the dangling bonds, but at the expense of increasing surface strain energy because

of the bond distortion. The surface stress introduced by the dimer reconstruction

is highly anisotropic [30]. The stress σ|| along the dimer bond is tensile (i.e. the

surface atoms would like to be closer together along the bond direction than they



12

are), while the stress σ⊥ along the dimer row is consequently compressive, or at least

less tensile then σ||. This stress anisotropy, F = σ|| - σ⊥, is predicted to cause mor-

phological instabilities : a single-domain surface breaks up into a strip like structure

with alternating domains. On a vicinal Si(100) surface the surface misorientation

induces stress-domain structures consisting of alternating (2x1) and (1x2) domains

separated by monoatomic steps [31].

2.5 Step edge evolution

In the study of step edge dynamics, both thermodynamics and kinetics consider-

ations must be taken into account. Configurational free energies [40], i.e. thermo-

dynamics, control the equilibrium surface step morphology while kinetics of mass

transports regulates the kinetic stability of the surface. In other words, thermody-

namics dictates, e.g., that steps will be rough if the kink formation energy is low.

Kinetics, on the other side, regulates activation barriers for step-atom detachment,

attachment, atomic or vacancy diffusion and so on, i.e. it determines at what temper-

ature and on what time and length scale equilibrium configurations become frozen

or metastable structures decay [38].

In the case of stepped Si(001), the most important kinetic processes responsible

for the step evolution are: step-edge diffusion (SD), terrace diffusion (TD), and evap-

oration/condensation (EC), and their relative rates determine which one regulates

the step edge shape. EC provides a source or sink of diffusing species; it is therefore

the rate-limiting process if it is slow compared to either of the other two. In the

limit of fast EC kinetics, on the other hand, TD determines the morphology if much

faster than step-edge diffusion, and vice-versa.

In this dissertation the study of the surface behavior is conducted using simu-

lations where the number of particles is always kept constant. The only mechanism
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Figure 2.5: Step stiffness β̃ vs temperature for SA and SB steps. Solid symbols cor-
respond to data measured in Ref. [34], open symbols to data measured in Ref. [41]
(Ref. [34]).

regulating step evolution included in our calculations is therefore step-edge diffu-

sion. Experimentally, though, the three processes are observed at the same time. It

is important for us to briefly analyze some of these findings in order to identify the

temperature range for which SD dominates the step evolution.

The determination of the rate-limiting process for step kinetics has been

addressed in several experimental works [32, 34, 41, 42]. All the results agree in

measuring a much higher step-edge stiffness for SA steps than for SB (Figure 2.5),

which would explain the qualitative observation that SB steps are rougher that SA

steps. For a precise definition of the step stiffness see Appendix A. On the contrary,

some works [32, 41, 42] find SD to determine the step morphology for all temper-

atures between 913 and 1443 K, while others [34] restrict this range to 800-1000

K only. From the same measurements activation energies for step diffusion can be

evaluated, and 0.8 ± 0.2 eV is what is found in Ref. [34]. It is beyond the scope of

this dissertation to investigate the evolution of step growth as more and more atoms
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(B)

(A)

Figure 2.6: (A) Schematic model of the rough step. The shaded region is an example
of the smallest unit that comprises observed changes at the step. (B) Four sequential
300x300 Å2 STM images of the Si(001) surface taken at 245 C showing step rear-
rangement events occurring between images. Each image was acquired in about 15
sec. (Ref. [38, 39]).

are deposited on the surface because it doesn’t correspond to any of the physical

processes that we analyzed, but a very accurate description of such a phenomenon

can be found in Ref. [28].

In the following, the mechanism behind step diffusion is discussed on the atomic

scale, i.e. kink evolution (diffusion, creation and annihilation) is analyzed. Looking

at the geometry of the Si(001) surface it is easy to realize that no kinks smaller

than two atoms can occur on this surface. The formation of a one-atom kink would

in fact require the breaking of a dimer, and this is energetically very expensive.

Experimentally it is found that kink events are always comprised of units of at

least four atoms (two dimers) [33, 38, 39](Figure 2.6). The reason for this is that

monoatomic-height terraces of type A and B are alternatively grown on the (001)

surface, so that kinks steps SA are comprised of segments of SB steps, and vice-
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(a)
(b)

Figure 2.7: (a) Schematic diagram showing kink creation, annihilation, diffusion,
enhanced creation, double creation and enhanced double creation events. (b) Arrhe-
nius plot for four kink processes. The solid line corresponds to an activation energy
of 0.97 eV. (Ref. [29, 33]).

versa. A four-atom kink is therefore energetically favorable because the lower surface

[18, 36, 43] has a two-atom periodicity perpendicular to the step.

Using STM in a temperature range between 500 and 700 K, Pearson et al. [29,33]

studied the rates at which events like kink creation, kink annihilation and kink

diffusion occur (Figure 2.7a). From their data it appears that kink creation events

are rare because the starting configuration (a flat segment of step edge) is quite a

stable one. It is possible, however, that not all the creation events that occurred

have been recorded during the experiment because a rapid annihilation may have

healed the edge before the next STM image was taken. For an annihilation event to

happen, a starting configuration with a kink-antikink pair is obviously needed. Very

few events of those kinds are observed because the kinks creation rate is low and the

annihilation rate is high. Finally, the kink diffusion is observed to be the dominant
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process: as there is no change in the step length for a kink diffusion event, the energy

difference between the initial and the final state is small, making this phenomenon

very common. More generally, because it is the final state energy to determine the

relative rates for all these processes, the following rules are found to hold:

- events that reduce the total step length, i.e. kink annihilation, occur at a faster

rate;

- events that increase the total step length (kink creation) occur at a slower rate;

- corner-healing events occur at a much higher rate then ordinary diffusion events.

This is interpreted to be due to the fact that the corner energy Ec is higher

than kink energy εS (see Appendix A);

- local configurations can affect event rates: for example it is determined that the

presence of a kink increases events rates up to a factor of two. This is shown

in Figure 2.7b), where the creation rate is shown to have doubled in the case

of enhanced creation.

Extensive studies of the dependence of the atomic arrangements of the steps on

the local configuration were done by Swartzentruber et al. [36,38,39] using variable-

temperature scanning tunneling microscopy. Temperatures between 490 and 620

K were investigated. This temperature range was chosen because the steps were

found to be stable on the time scale of hours for temperature lower than 490 K,

and to rearrange on a time scale much faster than the scanning time for T above

620 K. From these measurements it appeared that the four-atom unit detached

from one dimer column doesn’t reattach at one of the two neighboring columns.

In fact, no identifiable correlation between detaching and attaching units was found

within the area of the STM images except for detailed balance. Moreover, formation,

diffusion and annihilation of surface vacancies were observed at the same time as the
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a) b) KinkedKinkless

Figure 2.8: Schematic representation of kinkless vs kinked columns. (Ref. [39]).

kink events, especially at higher temperatures. Qualitatively, it was noticed that the

average position of the steps remains constant during the observation time, i.e. the

observed rearrangement events were equilibrium fluctuations. When considering how

the event rate depends on the local step configuration, it is important to distinguish

between kinked and kinkless columns. Columns are called kinked when the dimer

row that terminates at the step has at least one neighboring kink, kinkless otherwise

(Figure 2.8). Experimental data tell that, in the temperature window between 490

and 620 K, the relative probability that an event happens at a kinked column is

2.5-3 times higher than at a kinkless one. Assuming that the relative rate is given by

the Boltzmann factor of the energy difference between the activation barriers at the

two types of step configurations, the authors estimated an energy difference ∆E of

180±60 meV that is consistent with the configurational energy difference between

kinked and kinkless regions of the step [36, 43].

2.6 1D and 2D islands

In the following, the main characteristics of mono- and bidimensional silicon islands

on Si(001) are briefly reviewed. The early stages of nucleation are analyzed first, then

the island stability as a function of temperature, shape and/or size is discussed. This
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(a) (b) (c)

Figure 2.9: STM micrographs of islands shapes and distributions for growth at a
rate of 1/200 ML (monolayer) per second to a coverage of 0.2 ML at (a) 300 K
and (b) 475 K. Scale of the micrograph is 230x230 Å2. (c) 40 nm x 40 nm image
of the Si(001) surface at 536 K showing many small Si islands. The direction of
fast monomer diffusion is parallel to the dimer rows, indicated by the black arrows.
Examples of 1D and 2D islands are indicated with white arrows. (Ref. [19, 45]).

review doesn’t mean to be exhaustive; important phenomena like Oswald ripening

[42] won’t be discussed because they do not have a counterpart in our simulations.

2.6.1 Early stages of nucleation

Several STM studies [19, 45, 46] have shown that Si atoms form islands that are a

single dimer row wide (1D islands) when deposited at a low rate, for temperatures

between room temperature and 500 K and coverages of a fraction of a monolayer

(Figure 2.9 a) and b). At slightly higher temperatures both 1D and 2D islands have

been observed (Figure 2.9 c)). The long axis of these 1D islands is always aligned

perpendicular to the substrate dimer rows, and typical aspect ratios are about 15:1.

Two main models have been proposed to explain this strong anisotropy. One is a

kinetic model based on sticking anisotropy [19], where an end-site is supposed to be

roughly 50 times more likely to gain a block (i.e at least two dimers at one time) than
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(A)
(B)

Figure 2.10: (A) A schematic diagram of possible nucleation pathways. The energet-
ically favored one is (d), where a trench dimer can attach to either end, and then
the “square” would break up into two dimers as a dimer string (see text). (B) A
schematic picture of the growth process for a dimer string (Ref. [46]).

a side site. The second model is based on an exchange mechanism [47] between an

adatom arriving on the side of the silicon island and an existing island atom on top

of the island itself. The displaced atom diffuses rapidly along the top of the island

(the direction of fast diffusion) until reaching an end, where it falls over the edge

and sticks. Experimental evidence seems to support the former model more than the

latter [45].

Owen et al. [46] identified dimers strings that are one dimer wide and three

dimers long as the smallest immobile island on Si(001) at 570K. In their work they

considered several possible nucleation pathways and growth processes for the dimer

strings, all starting from nucleus structures given by structures composed of two

dimers (Figure 2.10). They also established the lowest energy barrier for the forma-

tion of dimers strings to be about 1.5 eV.

As for theoretical models, solid-on-solid Kinetic Monte Carlo simulations have

been successfully used to study island nucleation and island anisotropy on the Si(001)
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(a) (b)

Figure 2.11: Calculated surface structures after 0.2 monolayers of growth at 300 C
on initially flat surfaces for different values of the parameter EA (EA=-0.05 eV in (a)
and 0.10 eV in (b)). EB=0.05 eV for both. Open circles indicate the surface, gray
circles the second level and black circles all the higher levels (Ref. [48]).

surface [48]. Example of results are shown in Figure 2.11. The main limitation of

these models is the fact that they require a pre-knowledge of the possible diffusion

mechanisms so that simulation results are dependent on how well a large number

of parameters is fitted. Moreover, the solid-on-solid model utilizes rigid lattices, so

that restrictions to the atomic motion are introduced.

Using the nucleation theory developed by Tersoff et al. [49], Theis et al. [50]

estimated a critical nucleus size (Rc) of about 650 dimers for islands on Si(001) at

900K. They also found that Rc increases with temperature as a thermally activated

quantity with an activation energy of about 0.6 eV.

2.6.2 Growth and equilibrium island shapes

The shapes of Si islands on Si(001) have been extensively investigated both during

growth and at equilibrium [19, 41, 45, 51]. As a result, it was established that the



21

(a) (b) (c)

Figure 2.12: STM micrographs of island shapes: (a) as deposited, for deposition of
0.5 ML of Si at 1/20 ML/sec and 575K, (b) after annealing for 10 min at 575 K, (c)
after annealing structures such as those in Figure 2.9 at about 600K for 2 min with
the flux off. Scale for (a) and (b) is 500x500 Å2, for (c) is 320x320 Å2 (Ref. [19]).

anisotropic island shapes observed during growth are to a large degree a kinetic

effect. As temperature rises, for example during annealing, the islands grow, become

more widely dispersed and adopt a more rounded shape (Figure 2.12). The mea-

sured aspect ratio changes from about 0.685 at 1100 C to 0.39 at 700 C [41]. The

equilibrium aspect ratio of 3:1 corresponds to the fact that the SA steps are about

three times more stable than SB ones. As shown in Figure 2.12c) a typical equilib-

rium island shows a great number of missing dimers (dark spots on the island) and a

shape still far from being circular. Moreover, the SA steps, which are along the dimer

rows of the island, have straight edges and the SB steps, which are perpendicular to

the dimer rows, include many kinks.

From the analysis of the thermal decay for islands on Si(001) [51] it was deter-

mined that stable islands decompose after kinks are created at the SB step edges.

Decay curves are approximately linear in most cases, although decay rates fluctuate

during several stages of the decay. In general, decay rates for the Si(001) islands are

about 100 times larger than those of the Si(111) ones at the substrate temperature
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Figure 2.13: Arrhenius plots of the decay rates for Si(001) islands (Ref. [51]).

of about 400 C. The Arrhenius plot of the decay rates for Si(001) islands is shown in

Figure 2.13, from which an activation energy of 2.1 eV and a pre-exponential factor

of 1018±4 s−1 are determined.



Chapter 3

Characterization of the phase diagram for bulk Si1−xGex alloys

The compressible Ising model has been widely utilized throughout the last few

decades to simulate very different systems and physical phenomena [56–62]. It is par-

ticularly appropriate for describing phase transitions in alloys where the ordering is

accompanied by lattice distortions. The role of elastic degrees of freedom in a system

near criticality has also long been an object of debate [63–65]. Several studies have

been conducted to characterize the behavior of the compressible Ising model under

constant-pressure conditions using the language of binary alloys [64–69]. In these

works a binary mixture of Si and Ge was simulated with the interatomic interac-

tions modeled using different classical potentials (Tersoff [70], Stillinger-Weber [1],

and Keating [71]). The analysis of the compressible Ising model under constant-

volume conditions, on the contrary, has been mostly unaddressed [63,72] and is the

subject of part of this dissertation. Because of theoretical predictions [74], we expect

results significantly different from those obtained in the constant-pressure case.

In a generic compressible Ising model two sets of variables are considered: the

spins si=±1 and the displacements ui which define the motion of the spin from the

original lattice site i. Given an initial position r0
i , the actual position of the spin

during the simulation is therefore ri = r0
i + ui. The interactions between the spins

depend on the distance between them, so that a general Hamiltonian for this system

can be written as

H = KS + hM = KHpot + hM (3.1)

23
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where K is the coupling constant, S=Hpot is the contribution due to the classical

potential, where the dependence on the interatomic distances is included, h is the

external field and M the magnetization. As an example, Equation 3.1 becomes

H = −J
∑

i,j

σiσj − h
∑

i

σi (3.2)

when applied to the Ising model.

To facilitate comparisons with constant pressure results, we decided to adopt

the same binary alloy picture used in Ref. [64, 65], where bulk Si1−xGex was simu-

lated. Moreover, Si-Ge alloys are very good systems to study the effects of having

a fixed volume when the relative concentration between species is changed, because

Si and Ge are chemically very similar but differ in size. Ge is slightly bigger than Si

(about 4%) so that a compressive or tensile stress acts on the system as the com-

position varies if the volume is kept constant. This global effect adds to the elastic

forces in determining the system behavior, resulting in a different and wider variety

of phenomena, sometimes very localized, than under constant-pressure conditions

(Chapter 7).

In the following the most important results obtained for bulk Si1−xGex phase dia-

gram for fixed pressure are briefly reviewed, as are predictions for constant volume.

3.1 Phase diagram under constant pressure conditions

Very detailed studies of the phase diagram and related properties of bulk Si1−xGex

under constant pressure conditions (P=0) have been conducted by Kelires et al. [66],

Dünweg et al. [64] and Laradji et al. [65] using Monte Carlo simulations in the grand-

canonical ensemble (see Chapter 4). Classical potentials (Tersoff in Ref. [66], Keating

in Ref. [64] and Stillinger-Weber in Ref. [65]) were utilized to model the inter-atomic

elastic interactions. All the results presented below are gathered from such references.

Each atom was given four degrees of freedom: one, discrete, given by the nature of



25

(b)(a)

Figure 3.1: (a) Hysteresis loop of 〈cB〉 versus µB at kBT=0.026 eV (about 94% kBTc)
calculated using Keating potential. (b) The branches of the free energy corresponding
to (a). The insets show the transition regions on an expanded scale (Ref. [64]).

the atom (pseudospin) and the other three corresponding to its position, moreover,

only nearest-neighbor interactions (nn) were considered. Such a model corresponds

to a compressible Ising model, even if, as pointed out by Dünweg et al. [64], not

necessarily to a standard one. This because the latter requires that the displacement

field couples to the square of the spin field [63], while our coupling is linear.

Independent of the potential utilized in the simulations, at low temperatures

hysteresis is found in Ge concentration (x) when sweeping through the chemical

potential difference ∆=(µSi-µGe)/2 at fixed temperature. As a consequence, a two-

phase coexistence region is found, corresponding to a first order line in the grand-

canonical ensemble. One example of such hysteresis loops is shown in Figure 3.1a)

for T about 94% Tc. Note that the jump in concentration between the two branches

at the transition µB (B=Ge) covers a significant interval of concentration (roughly

from 0.3 to 0.75). As it will be discussed in Chapter 7, a very different situation is

encountered in the constant volume case. For each analyzed temperature, the value

of µB correspondent to the transition (µt
B) is evaluated from the crossing of the free
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(a) (b)

Figure 3.2: Phase diagram in the grand-canonical (a) (Ref. [64]) and canonical (b)
(Ref. [65]) ensembles. Data in (a) are obtained using Keating potential, while in
(b) open squares correspond to Keating, solid circles to Stillinger-Weber and open
circles to Tersoff potential.

energy branches (Figure 3.1b)). Once that µt
B is known, the coexisting values of x are

determined from the hysteresis loops. A similar method is used in this dissertation

as well (Chapter 4), so that the behavior shown in Figure 3.1b) will be compared to

the one found at constant volume.

The final determinations of the phase diagram in the canonical and grand-

canonical ensembles are shown in Figure 3.2. The overall shape of the curve is

independent of the choice of the potential, only the values of Tc differ. The slight

asymmetry is due to the lack of any spin-up/spin-down symmetry resulting from

inequivalency of Si and Ge. From a detailed finite size analysis of the critical behavior

it was determined that the first order line ends in a critical point belonging to the

mean-field universality class (again, for both the Keating and the Stillinger-Weber

potentials). The same analysis provided more accurate estimates of the critical tem-

perature: kBTc=0.02762 eV (320.5 K) when using the Keating potential and 0.02125

eV (246.6 K) when using the Stillinger-Weber one. Lower values (Tc about 170K)
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T

∆µ

T (a)

cGe

(b)

Figure 3.3: Schematic phase diagrams as predicted under constant volume conditions
in the (∆µ,T) plane (a) and in the (∆µ,cGe) plane. In (a) the two curved lines indicate
two first order transitions, each ending in a critical point. The shaded areas indicate
coexistence regions.

were found by Kelires and Tersoff [66] and de Gironcoli et al. [73]. At higher tem-

peratures a disordered phase was found.

An evaluation of the effect of the elastic part of the Hamiltonian was performed

by comparing the estimated valued of Tc to the one obtained when the elastic con-

tribution is turned off, i.e. using a rigid lattice. This latter model is the well known

ferromagnetic nearest-neighbor Ising model on the diamond lattice and for both the

Keating and the Stillinger-Weber potential Tc so determined is roughly half of what

found including the elastic interactions.

3.2 Phase diagram under constant volume conditions

A few theoretical studies have been performed on the compressible Ising model under

constant volume conditions, starting from the work of Bergman and Halperin [63],

but very little consistency is found in the results mostly because of the differences

in the models used. Up to now, no simulations have been conducted under constant

volume conditions on a binary system with mismatch between the two species, as

it is the case here. A theoretical treatment of the problem has been conducted by
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Dünweg [74] in terms of a Landau-Ginzburg-Wilson Hamiltonian. As a result, two

first order lines are predicted in the grand-canonical ensemble, each ending in a

critical point of mean-field character (Figure 3.3). The first order transitions are

determined to be field driven and, at low temperatures, not only a ”mostly Si” and

a ”mostly Ge” phase are expected, as in the constant pressure case, but also a ”50-

50” (equal number of Si and Ge) one. No details on the nature of this new phase are

given. This analysis was conducted under the condition of linear coupling between

the displacement field and the spins and with the assumption of negligible elastic

energy of the phase boundary.



Chapter 4

Model and standard simulation techniques

The topic of this dissertation is the study of the Si(001) surface in the presence of

Si or Ge adatoms and of the compressible Ising model at constant volume using the

binary alloys representation. Both studies are performed using Monte Carlo methods.

Because of the remarkable flexibility of this simulation technique, physical systems

as different as bulk and surfaces can be explored using very similar methodologies.

In the following the model adopted for studying both bulk and surface is presented

first, then simulation details for each case are given. In the second part of the chapter

the most important techniques used in our simulations (bulk or surface) are briefly

reviewed. Here no distinction is made between the two cases because several of the

techniques were employed in both studies.

4.1 Model

In our bulk simulations we considered a binary alloy where each atom is given

four degrees of freedom: three describing the position (vector ri) and one, discrete,

describing the atomic species (pseudospin). This model is completely equivalent to

a compressible Ising model which was described in Chapter 3. When simulating

surfaces, the possibility of changing atomic species was usually turned off because

our primary interest was to develop an efficient algorithm to simulate the surface

evolution. Most of the simulations were, therefore, done to test the algorithm more

than to evaluate physical quantities, and only one atomic species was considered (Si

29
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on Si(001)) to simplify the problem as much as possible. However, the program was

written allowing the possibility of two species and at the end of Chapter 6 a few

results obtained for Ge/Si(001) are presented.

For bulk studies the interatomic interactions are modeled using the classical

Stillinger-Weber potential [1] (SW) and only nn interactions are considered. When

studying the surface, we are interested in a representation of materials as close to

reality as possible, so that the choice of the potential was quite critical. Together with

the SW we originally tried the Tersoff potential (T) [70, 75] as well, but our results

showed that for surface applications SW is also the best choice (Chapter 6, [76]).

Because of that, most of the results presented in Chapter 6 have been obtained using

SW (it will be indicated when otherwise). In the following both potentials are briefly

reviewed.

In the Stillinger-Weber potential the atomic energies are given by the combina-

tion of a two-body term (H2) dependent on the interatomic distances and a three

body term (H3) function of the nn angles. Its explicit form is the following:

HSW = H2 + H3 (4.1)

H2 =
∑

<i,j>

ε(Si, Sj)F2[rij/σ(Si, Sj)] (4.2)

H3 =
∑

<i,j,k>

[ε(Si, Sj) ∗ ε(Sj, Sk)]1/2 ∗ [λ(Si)λ(Sj)
2λ(Sk)]1/4 (4.3)

∗ F3[rij/σ(Si, Sj)] ∗ (cosθi,j,k + 1/3)2

F2(y) =















A( B
yp − 1

yp )eδ/(y−b) for y < b

0 for y ≥ b
(4.4)

F3(y1, y2) =















eγ/(y1−b)+γ/(y2−b) for y1 < b, y2 < b

0 otherwise
(4.5)
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The Tersoff potential includes only nn distances and angles as well, but acquires

a many-body character because it weights the contribution of each interaction with

factors depending on the local environment. This can be seen more clearly by looking

at the explicit form of such a potential:

HT =
∑

i

Ei =
1

2

∑

<i,j>

Vij (4.6)

Vij = fc(rij) ∗ [fR(rij) + bij fA(rij)] (4.7)

fR(rij) = Aij exp(−λij ∗ rij) fA(rij) = −Bij exp(−µij ∗ rij) (4.8)

bij = χij (1 + βni

i ζni

ij )−1/(2ni) ζij =
∑

k

fc(rik) g(θjik) (4.9)

g(θjik) = 1 +
c2
i

d2
i

−
c2
i

d2
i + (hi − cosθjik)2

(4.10)

For each atom i, each attractive interaction fA(rij) is weighted by the factor bij con-

taining the quantity ζij which depends on all the angles centered on i and involving

j, i.e. on the local environment of atom i. This potential is computationally more

demanding than SW, and, for example, Vij is different from Vji. fc(rij) is a standard

cutoff function. The value of the parameters are given in Ref. [65] for SW, Ref. [75]

for Tersoff.

When we are interested in the possibility of changing the relative concentration

of the two atomic species, i.e. when studying the bulk Si-Ge phase diagram under

constant volume conditions, we add a one-body term to the Hamiltonian:

H = H1 + Hpot; pot = SW, T (4.11)

H1 = −µANA − µBNB (4.12)

where A(B) indicates the atomic species (Si or Ge in our case), µ and N the chemical

potential and the number of atoms of each species, respectively. Obviously, this term

is just a constant if the number of atoms of each species is kept constant during the
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simulation, while it becomes meaningful otherwise. All our bulk simulations are

performed in the semi-grand-canonical ensemble, i.e. keeping the total number of

atoms in the system (N = NA + NB) constant, but changing the number of atoms

of each species (NA, NB 6= const). Under these conditions H1 becomes:

H1 = −(µGe − µSi)NGe + const = −∆µNGe + C; C = −µSiN (4.13)

Lastly, it is necessary to remark that a consequence of using this model for surface

simulations is the impossibility of correctly reproducing the dimer buckling (Chapter

2). The tilting effect is created in the dimer because of charge transfer from one atom

to the other and can not be reproduced by classical potentials, at least SW and T

are equally incapable of doing it. This limitation precludes the usage of this method

to investigate which reconstructions correspond to the GS, but it does not represent

a problem in this study because all the analyzed phenomena are driven by the coarse

geometry of the system, in particular by the presence of dimer rows, and this is well

described in the model.

4.2 Simulation methodology

The simulation method employed in this dissertation is importance sampling Monte

Carlo (MC). The physics of bulk and surfaces is significantly different, so that dif-

ferent simulation methodologies have to be considered. Each case is therefore dis-

cussed individually in the following.

4.2.1 Bulk investigation

For the determination of bulk properties at constant volume our simulation cell

consists of a cubic LxLxL cell constructed along the (100), (010) and (001) directions

(L being the number of diamond conventional cells used along the x, y or z direction).

Such a cell contains N=8×L3 atoms. The conventional cell for the diamond lattice is
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(0,0,1)

(1,0,0)
(0,1,0)

12 nnn, d(nnn) = 0.71 a
 4 nn,    d(nn)   = 0.43 a

0

0

Figure 4.1: Conventional cell for diamond lattice. The open and solid circles indi-
cate the atomic position for species A and B, respectively; a0 indicates the lattice
constant. nn bonds are indicated by dashed lines.

shown in Figure 4.1. We considered 3D periodic boundary conditions (PBC) because

we wanted to eliminate surfaces and allow extrapolation to bulk behavior.

We decided to use a volume V corresponding to a lattice constant a0 (lattice

constant for the diamond conventional cell) of 5.5929 Å, i.e. 1.03 times a0 in pure

silicon (V=L3 × a3
0). Remembering that a0(Ge) = 1.04 a0(Si), it is easy to see that

this choice is closer to the Ge equilibrium volume than to the Si one, and that a

75-25 mixture (75% Ge concentration) corresponds to the ideal, i.e. unstrained, com-

position. This choice of volume is motivated by the desire to enhance the difference

between Si and Ge and results in having significant compressive or tensile stress

acting on the system as the composition varies.

As mentioned earlier, all our simulations were conducted in the semi-grand-

canonical ensemble so that the phase diagram was determined in the (cGe,T) plane

(cGe=Ge concentration). As is obvious from Equation 4.13, only the chemical poten-
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tial difference (∆µ = µGe − µSi) has physical meaning, not the individual values of

each chemical potential. Moreover, from Equation 4.13 it can be seen that it is the

value of ∆µ to determine cGe so that the H1 term in Equation 4.12 can be interpreted

as an external field acting on the system.

Lastly, it is important to remark that our simulations were performed ”semi-on-

lattice”. This means that the atoms were allowed to move from their equilibrium

positions on the nodes of a diamond network, but the lattice coordination could not

change. This means that the atoms nn of a given atoms i remain nn of such an atom

for the whole duration of the simulation, but that the value of their distance from i

(dij) could change every Monte Carlo step (MCs). This assumption was introduced

because it significantly speeds up the calculations allowing us to compute the list

of neighbors (Verlet list) only once at the beginning of the simulation, rather than

every n steps. It is justified by the fact that we consider temperatures well below

melting, and in a bulk system the 4-fold coordination is retained.

4.2.2 Surface investigation

When interested in exploring surface properties we consider a slab geometry with

periodic boundary conditions (PBC) parallel to the surface (Figure 4.2). As a conse-

quence, each sample provides two surfaces to be studied at one time. This geometry

has the advantage of not arbitrarily forcing any atom into bulk positions, while a

concern is that the two surfaces may not be completely independent if the sample

is not thick enough to have bulk-like behavior towards the center. Because it is

convenient to consider systems that are as small as possible, preparatory work was

done to determine the minimum usable thickness for such a slab. 24 atomic layers

were found to be sufficient for our purposes (Lz=6) (details on these calculations

are discussed in Chapter 5). 22x22, 28x28 and 34x34 are typical surface sizes for

which results are presented in this dissertation. Our interest here is mainly on the
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Figure 4.2: Slab geometry. The arrows indicate the directions along which PBC are
applied.

development of the algorithm, more than on the accurate determination of physical

properties, so that the system sizes used during these simulations do not represent

the largest ones treatable with this method but only those that can be studied in a

relatively short amount of time.

As seen in Chapter 2, the main feature of the Si(001) surface is the dimer recon-

struction. In order to respect the intrinsic geometry of the problem as much as

possible, our simulation cell is constructed along the [110][11̄0] and [001] directions

and consists of a Lx×Ly×Lz repetition of the cell shown in Figure 4.3, both for

the reconstructed and unreconstructed case. Both cases have been used as starting

point in our simulations. Such a cell contains N=4×Lx×Ly×Lz atoms; we always

considered Lx=Ly.

All our simulations concerning surface studies have been performed in the canon-

ical ensemble, i.e. keeping temperature and number of particles constant. Moreover,

in these simulations the pressure, and not the volume, was kept constant (P=0)
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dashed for dangling bonds).



37

because this is the most common experimental condition. In order to maintain con-

stant pressure, the volume was varied during the simulation by randomly changing

each cell side independently by a small amount. Lastly, all these simulations were

performed off-lattice, i.e. each atom could move everywhere in space and the dia-

mond structure wasn’t necessarily preserved. This flexibility, for example, allowed us

to test the efficacy of the potentials by starting from unreconstructed configurations

and checking what kind of reconstruction was obtained at the end of the simulation

(Chapter 5). An unfortunate consequence of this flexibility is that the Verlet list

must be recalculated quite often, especially if the physics suggests that the lattice

structure is easily changed (as in the case of initial un-reconstructed surfaces). More

about this is discussed in Section 4.7.1.

Summarizing, in these standard Monte Carlo simulations at first the atoms

attempt to move, one by one. This kind of trial move is referred to as single-atom

move in the rest of this dissertation, to distinguish it from more involved ones that

will be introduced in the next chapter. Once that all the atoms have tried to move

and the volume variation is attempted, we say that one MC step (MCs) has passed.

4.3 Metropolis algorithm

The way that we chose to perform importance sampling MC is to use the Metropolis

algorithm [77]. In this case we generate configurations from a previous state using

a transition rate Wmn which depends only on the energy difference between initial

and final state (∆E = Efin − Ein). The sequence of states that are produced using

this algorithm follows a time ordered path, but this ”time” is not-deterministic. It

is usually referred to as ”MC time”.
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The explicit form of the Metropolis transition rate is the following:

W Metr
mn =















τ0 exp(−∆E/KT ) if ∆E > 0

τ0 if ∆E < 0
(4.14)

where τ0 is the time required to attempt a move. Often this “time unit” is set equal

to unity and hence suppressed in the equations. Remembering that the Boltzmann

probability distribution Peq for the state Sn has the form:

Peq(Sn) =
exp(−Es/KT )

Z
Z=partition function (4.15)

it is immediate to see that W Metr
mn satisfies detailed balance

WmnPeq(Sm) = WnmPeq(Sn) (4.16)

In the Metropolis algorithm every time a move is attempted, the transition proba-

bility between the old and the new state is given by Eq. 4.14 and the move is accepted

if W Metr
mn is bigger that a random number generated uniformly between 0 and 1 [78].

In those simulations where the volume is allowed to change, the energy change

∆H associated with the global distortion of the system is not the only quantity

entering the Metropolis acceptance criterion. In addition, the term

∆Heff = ∆H− NkBT ln(
 L′

x L′
y  L′

z

 Lx Ly  Lz
) (4.17)

has to be considered as well, representing the change in translational entropy when

the volume changes.  Li,  L′
i, i=x,y,z are the old and new cell sides along the x, y and

z directions.

4.4 Hysteresis calculations and thermodynamical integration

To determine the phase diagram in the (∆µ,T) plane different techniques were used,

depending on the values of T under consideration. In the low temperature regime
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hysteresis calculations and free energy integrations were performed to determine the

transition ∆µ and the corresponding coexistence values of cGe (details below), while

the high T regime was analyzed using parallel-tempering (PT) [84–86] simulations

(Section 4.6) together with histogram reweighting [80, 81] (Section 4.5).

Hysteresis loops in the Si and Ge equilibrium concentrations were obtained by

sweeping through the chemical potential difference ∆µ = (µGe − µSi) in both direc-

tions at fixed temperature. In each case we started in the complete Si (or Ge) regime

and first increased (or decreased) ∆µ, then swept it back to its initial value. During

these runs each simulation started from the end of the previous one and was 105 MC

steps long. Examples of hysteresis loops are presented in Chapter 7.

When studying hysteresis loops obtained at low ∆µ and low T, we determined

the coexistence values of cGe and the transition ∆µ from direct inspection of the

hysteresis loops itself, because of its small width and symmetry. On the contrary, for

high ∆µ and low T the loop is strongly asymmetric so that we considered necessary

to evaluated the same quantities more carefully. To do so we used the ”free energy

crossing” method.

In this technique [64, 78] the branches of the free energy (F ) are obtained inte-

grating the relation

∂F

∂µB
= −〈NB〉 (4.18)

in both phases (B indicates one of the two atomic species under consideration).

Naturally, this intersection method requires the knowledge of the difference in free

energy ∆F=FB-FA between the end points deep in each phase. Such a difference can

be estimated using thermodynamic integration, i.e. integrating Equation 4.18 and

Equation

∂

∂T

(

F

T

)

= −
U

T 2
(4.19)
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Figure 4.4: Loop ABCD: example of loop for thermodynamic integration. The thick
solid lines represent first order lines ending in critical points (solid circle at the end
of each line). The dashed line represents a region where properties might change
rapidly but there is no hysteresis. In our case the dashed line represents a weak 1st

order transition and the solid and dashed lines together schematically represent our
finding for the phase diagram.

(U=〈H〉 being the internal energy) over such a loop as shown in Figure 4.4 using

the fact that each side of the loop is deep enough in one phase or sufficiently high

in temperature that integration along paths AD, DC and CB encounters no discon-

tinuities. This method is therefore effective independently of what is at the end of

the first order line (i.e. along the dashed line in Figure 4.4) as long as the integral

along AD is continuous. More specifically Equations 4.19 and 4.18 are rewritten as

F (T1)

NT1
−

F (T0)

NT0
= −

∫ T1

T0

U/N

T 2
dT for ∆µ=const (4.20)

F (∆µ2)

N
−

F (∆µ1)

N
= −

∫ ∆µ2

∆µ1

cGe d∆µ for T=const (4.21)
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where cGe = 〈NB〉/N, the “B” species in Equation 4.18 is assumed to be Ge and

N=total number of particles. Because of Equation 4.13, it is identical to sweep in

∆µ or in µGe, if µSi is kept fixed. Next, these equations are applied to the branches

α, β and γ of the loop ABCD and ∆F is finally determined as

(F (B) − F (A))

N
=

∆F

N
=

= −TA

∫ TC

TA

U(∆µA, T )/N

T 2
dT −

TA

TC

∫ ∆µB

∆µA

cGe d∆µ

−TA

∫ TA

TC

U(∆µB, T )/N

T 2
dT (4.22)

All the integrals in Equation 4.22 can be easily calculated once that data are taken

on the appropriate loop branch.

As discussed more thoroughly in Chapter 7, our final finding for the phase dia-

gram consists in one single first order line in the (µ,T) plane (as schematically shown

in Figure 4.4 considering the solid and dashed lines together). Therefore, any choice

of point A in the intermediate cGe regime necessarily corresponds to a crossing of

the first order line (dashed line in Figure 4.4). This, though, was not a problem in

our calculations because it was found that the first order transition weakens going

toward higher T and we encountered no observable discontinuity when integrating

Equation 4.19 along the AD path for a choice of µA=1.45 eV (i.e. ∆µ=0.45 eV) and

a 6x6x6 system.

4.5 Histogram reweighting

The basic idea of the histogram reweighting technique is to use data collected at one

point in the parameter space to estimate physical quantities at different point in the

same parameter space [79–82]. This method was first developed to study the Ising

model in a magnetic field [79]. In that case the Hamiltonian can be written as

−βH = K
∑

i,j

σiσj + h
∑

i

σi = KS + hM (4.23)
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where K is the dimensionless coupling constant (J/kBT), h the dimensionless

external magnetic field, M the magnetization and σi the value of the spin at site

i. In the same formalism the probability distribution of S and M at a point in the

parameter space (K,h) is given by

P(K,h)(S, M) =
1

Z(K, h)
W (S, M) exp(KS + hM) (4.24)

where W(S,M) is the density of states (DOS) at the point (S,M) in the phase space

and Z(K, h) the canonical partition function

Z(K, h) =
∑

S,M

W (S, M) exp(KS + hM) (4.25)

Using the fact that the DOS is independent of (K,h), it is easy to show that proba-

bility distributions at different values of (K,h) are related by

P(K′,h′)(S, M) =
P(k,h)(S, M) exp[(K ′ − K)S + (h′ − h)M ]

∑

S,M P(k,h)(S, M) exp[(K ′ − K)S + (h′ − h)M ]
(4.26)

where P(K,h)(S, M) is given by Equation 4.24. Remembering that the histogram

of values of (S,M) (H(k,h)(S,M)) generated by a MC simulation is proportional

to P(K,h)(S, M), Equation 4.26 means that P(K′,h′)(S, M) can be estimated from

H(k,h)(S,M) without additional computations.

To apply this technique to the study of the Si-Ge phase diagram under constant

volume conditions, we re-expressed our Hamiltonian (Equation 4.12) as

−βH = β∆µNGe − βHpot = KS + hM (4.27)

so that in our case the S,M,K and h in Equation 4.23 are given by

h = β∆µ M = NGe

K = β S = −Hpot = −∆µNGe −H (4.28)

The energy of our system is therefore given by

E = −
h

K
M − S (4.29)
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To be precise, M as defined in Equation 4.28 is not exactly the magnetization of the

system, but it is related to it by

magnetization M = N − 2NGe = N − 2M (4.30)

However, it is easy to see that P(K,h)(S, M) = P(K,h)(S,M), so that in the following

we’ll indicate the quantity defined in Equation 4.28 as magnetization, for simplicity

and because it has a more immediate physical interpretation.

In our study we utilized this method together with parallel tempering, which

will be discussed in Section 4.6, to accurately determine the location of the phase

transition. Once that good histograms of S, M and E were collected (see Section

4.6), we used reweighting to compute quantities such as the specific heat (cv), the

susceptibility (χ) and the fourth order cumulant in energy (E4) or magnetization

(M4) whose maximum indicates the location of the transition. Note that in these

calculation we used the complete form of the fourth order cumulant

U4 = 1 −
〈(A − 〈A〉)4〉

3〈(A − 〈A〉)2〉2
A = E, M (4.31)

instead of the reduced form, because 〈A〉 6= 0.

As an example, in the following we show how to calculate the specific heat using

histogram reweighting. From fluctuation theory the specific heat can be expressed

as

cv

kBN
=

N

(kBT )2

[

〈
(

E

N

)2

〉 − 〈
E

N
〉2
]

(4.32)

Defining the reduced quantities c∗v = cv/kBN, T ∗ = kBT, E∗ = E/N, M∗ = M/N

and S∗ = S/N as used in the simulations, and remembering that

〈A〉 =
∑

A

P (A) A (4.33)

we can rewrite the specific heat as

cv(K, h) = NK2











∑

S,M

P(K,h)(S, M)

(

−
h

K
M∗ − S∗

)2


−
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



∑

S,M

P(K,h)(S, M)

(

−
h

K
M∗ − S∗

)





2










(4.34)

Having taken data at (K,h), we can therefore obtain cv at any point (K′,h′) of the

phase space simply using Equation 4.34 and expressing P(K′,h′)(S, M) in terms of

P(K,h)(S, M) using Equation 4.26.

When using reweighting, it is crucial to guarantee that the “initial” (i.e. mea-

sured) histogram corresponds to the correct distribution of the analyzed quantity.

In order to collect good statistics very long runs (on the order of 106 MCs) must

be performed, but sometimes this is not enough. As it will be discussed more in

detail in Chapter 7, in our case, it was rarely possible to sample both states across

the transition line during a single run, even when running simulations with more

that 5 ×106 MCS. Parallel tempering had therefore to be used to collect good initial

histograms.

A limitation of reweighting is that it is effective only for points (K′,h′) not too far

from the point (K,h) where data are collected. This restriction is a consequence of the

fact that MC runs are finite: not many data are collected toward the ”wings” of the

measured histogram, and if (K′,h′) is too far from (K,h), the peak of its distribution

ends up in the part of the spectrum where the statistical error is high. The maximum

distance between (K′,h′) and (K,h) depends on the problem under examination and

on the system size used in the calculations. An example of reweighting in temperature

is shown in Figure 4.5 for our problem and a test-system of 512 atoms. The (∆µ,T)

used are above the transition line, so that collecting a good initial histogram was

straightforward. The measured histogram is collected at T0=0.0043 eV, and ∆µ is

0.472 eV in all runs. It is easy to notice how much the quality of the histograms

generated by reweighting decreases as the temperature moves away from T0.
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Figure 4.5: Histogram reweighting in temperature for energy (E): solid lines cor-
respond to the measured histograms (i.e. to simulations ran at the temperatures
shown above the curves and 2×106 MCs long), dashed lines to histograms obtained
by reweighting data taken at kBT=0.0043 eV to different T. ∆µ=0.472 eV in all
cases.
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Figure 4.6: Histograms collected at ∆µ=0.472 eV, kBT=0.0040 eV for different
system sizes.

Lastly, note that the width of the histograms decreases as the size of the system

used in the simulation increases (Figure 4.6). This obviously means that the larger

the system used, the closer (K′,h′) must be the initial (K,h).

4.6 Parallel tempering

One of the problems that most frequently occurs in MC simulations is becoming

trapped in some metastable state. If such a state is very stable, as it is the case for

metastable states that require collective changes in the atomic configuration to be

eliminated, the trapping may last several millions MCs. A technique developed to

help free the system is the Replica Monte Carlo, or Parallel Tempering. The idea is to

simulate simultaneously and independently several replicas of the same system, each
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at a different temperature, but every so often configurations between neighboring

replicas are exchanged [83–86].

Let’s consider M non-interacting replicas of the system under investigation. The

m-th replica, described by a usual Hamiltonian H is associated with a temperature

Tm (βm). For convenience let’s consider βm < βm+1. In constructing a Markov process

we introduce a transition matrix W (X, βm|X
′, βn) which gives the probability of

exchanging configurations between the n-th and the m-th replicas (X indicate a

state in the extended ensemble: {X}={X1,X2, ... Xm}). For the system to remain in

equilibrium, it is sufficient to impose that detailed balance (DB) is satisfied by the

transition matrix:

P (...;X, βm; ......; X ′, βn; ....) W (X, βm|X
′, βn)

= P (...; X ′, βm; ......; X, βn; ....) W (X ′, βm|X, βn) (4.35)

Adopting the Metropolis algorithm, the transition rate W that we used to decide

if we accept the configuration exchange is simply

W (X, βm|X
′, βn) =















exp(−∆) if ∆ > 0

1 if ∆ < 0
(4.36)

where

∆ = (βn − βm)(H(X) −H(X ′)) (4.37)

It has been proven [83,84] that the acceptance rate for the configuration exchange

decreases exponentially with the difference βm − βn, so that it is usually convenient

to restrict the replica-exchange to the case n=m+1 (nearest neighbor replicas). We

adopted this restriction in all our simulations.

As seen in Section 4.5, the width of the histograms depends on the system size

used in the simulations. In terms of parallel tempering, this means that temperatures

closer to each other must be considered as the size of the system under investigation

is increased, because the overlap between energy-histograms is reduced.
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Figure 4.7: Cutoff function for the potential and skin distance for Si on a diamond
lattice at T=0 K.

4.7 Techniques to speed up the simulations

One important difference between the simulations performed when studying the bulk

phase diagram and those performed to analyze surface properties is that the former

are conducted semi-on-lattice while the latter are not. As discussed in Section 4.2,

this implies that the nearest-neighbor list (Verlet list) must be often recalculated

in the latter case and this, for a large system, is rather expensive computationally.

As a result, computing 1 MCs when studying the surface takes a much longer time

that in the bulk, for similar system sizes. It was therefore important to find ways to

accelerate the simulations when dealing with surface calculations.

In Section 4.7.1 two standard techniques used to speed up calculations are

reviewed: the introduction of a skin distance and the performance of non-uniform

sampling on the system. In Section 4.7.2 a different approach is discussed: the
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Figure 4.8: Non-uniform sampling: the atomic planes closer to the surface are sam-
pled more often than those toward the center of the slab.

parallelization of the code. As long as only single-atom moves were utilized, these

approaches were implemented together in the simulation code.

4.7.1 Preferential sampling and “skin” distance

The idea at the basis of the use of a skin distance is depicted in Figure 4.7. Classical

potentials are designed such that the interatomic interactions go to zero smoothly at

a certain distance rc in order to include only a limited number of interactions in the

calculations. The potentials that we utilize only consider “nn” interactions, so dnn <

rc < dnnn, where dnn=nn and dnnn= next-nearest neighbor (nnn) distances in the

perfect lattice at zero temperature. At finite temperature we have a distribution of nn

and nnn distances and each MC step atoms whose distance before was just above rc

may now be close enough to contribute to the potential, and vice-versa. If we record

in our “neighbor” list only those atoms that do contribute to the potential, then

we necessarily must recompile such a list after every step. If, on the other side, we

include in the list all the atoms whose distance is less that rc+2×n×displmax, where

displmax is the maximum displacement allowed to each atom in one MC step, then
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we can safely recompute the Verlet list every n steps. The distance 2× n× displmax

is referred to as skin distance and must be determined balancing the advantage of

reducing the frequency of recalculation of the nn list with the increase in memory

and computational time due to having a larger number of interactions to compute

and store.

An even simpler idea stands behind the non-uniform (preferential) sampling. We

expect that the great majority of the events will take place on the surface and that

deeper inside the sample fewer atomic rearrangement will occur with respect to the

initial diamond structure. Because of that, we attempt to move atoms within k layers

from the surface every MCs, and atoms deeper in the bulk only every Nskip MCs

(Figure 4.8). The actual values of k and Nskip must be determined case by case

making sure that results obtained using the preferential sampling are identical to

those obtained without it. In our case, for example, k=5 and Nskip can be as big as

10.

4.7.2 Code parallelization

In the following we describe the parallelization scheme employed for the surface

study when only single-atom moves and volume variations are utilized. Paralleliza-

tion doesn’t reduce the total CPU time needed to perform a simulation, but shortens

the waiting time for the results very effectively by dividing the work load among sev-

eral processes. In general, multiple processes can be run on one processor, but the

most efficient way to use parallelization is to run each process to a different processor.

This is how we did it, and in the following the terms process and processor will be

used interchangeably. The efficiency of this method increases dramatically with the

size of the system under investigation, to the point that parallelization becomes the

only possible approach when very large systems are analyzed. Compared to simula-

tions performed on single processes the usage of parallelization increases the total
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Figure 4.9: Example of 2D decomposition with 4 processes.

amount of computations because the processes need to communicate with each other.

To increase the efficiency of a code it is extremely important to minimize commu-

nications, and in the following we discuss how communications are organized in our

code.

The initial step in writing a parallel program is deciding what kind of decom-

position to use. In Section 4.2.2 we pointed out our interest in simulating surfaces

that are as large as possible, and we proved that a slab 6 cells thick is sufficient to

guarantee independent evolution of the surfaces. Because of all of this we decided to

use a 2D decomposition (Figure 4.9) even if our system is tridimensional. Given a

Lx x Ly x Lz system, each process is therefore assigned a Lx

np x
x Ly

np y
x Lz subsystem

to deal with, where np x(y) = number of precesses along x (y).

Identification of neighbor processes

Each process needs to send and receive data from its neighbors. The first step in

doing so is to identify them. This is accomplished in the function startMPI through
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Figure 4.10: Neighbor processes for process ”myid”.

the vector p vic. For each process, p vic[0] contains the name of the neighbor process

on the left, p vic[1] of that on the right, p vic[2] of that below, p vic[3] of that above,

and so on, as shown in Figure 4.10.

The 2D decomposition considered in the program has periodic boundary condi-

tions (PBC), so that every process has the same number of neighbors. As a conse-

quence, this code requires at least 4 processes to run, two along x and two along y,

otherwise each process tries to communicate with itself.

Regions

To parallelize calculations, all the processes must be allowed to attempt to move their

particles at the same time. To decide if a particle moves, it is necessary to calculate

the energy change corresponding to such a move, and the upgraded positions of all

the particles nearest and next-nearest neighbors to the one under examination are

needed.

If the processes move all their particles before communicating with each other,

problems occur for those particles that are in one process but have neighbors in
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Figure 4.11: Regions inside process ”myid” (AA, BB ≥ CUTOFF).

other processes, because once that such a particle i has been moved, its position

is automatically upgraded in its own process but not in all the others. This means

that, when one of its neighbors is moved in a different process, the old position of

the particle i is used in the calculation instead of the new one.

Then, on one side we want all the processes to work contemporaneously, in order

to get good parallelization, on the other it’s not possible to simultaneously move

particles that are in different processes but closer than a certain distance. Because

both nearest and next-nearest neighbors are needed to calculate the energy, this dis-

tance, labeled CUTOFF in the code, is taken to be twice the distance that identifies

nearest neighbors. This last distance is called ”cutoff distance for the Verlet list”

and is labeled CUTOFF V in the code.
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To solve this problem, the part of the system assigned to each process is divided

into rectangular regions, as shown in Figure 4.11. These areas are numbered from 0

to 8, and are designed such that particles in one of them have no nearest or next-

nearest neighbors in regions with the same name in other processes. This allows the

simultaneous movement of particles inside areas with the same name. The code is

therefore written such that all the processes move the atoms inside a region S k at

one time, then communicate with each other, then pass to region S k+1 and so on,

until all the areas have been done.

Dividing each process into such regions not only results in good parallelization

of the calculations, but also allows the identification of those particles with nearest

and next-nearest neighbors belonging to their own process. All the atoms in region

S8 have this property and it is advantageous to identify them because they can be

excluded from any communication.

Particles contained in a process

Because of the need to use both nearest and next-nearest neighbors to calculate

the energy with any of the potentials utilized, each process contains the particles

that are in its part of the system (group A), plus all the particles contained in

the neighbor processes within a distance CUTOFF from its border (shaded area in

Figure 4.12, group B). The first second group of particles is known to the process

since the beginning, while the second group is communicated to it in the function

scambio.

Numbering of the particles

At the beginning of each run the positions of all the particles in the system are read

from an outside file or are calculated in the function diam. At the same time a name
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Figure 4.12: Particles contained in a process.

is assigned to each particle, and such a name is never changed during the simulation

and is memorized in the vector name.

In order to greatly reduce the memory needed, each process also assigns a local

name to its own particles, numbering them from 0 to n inproc. Because of this,

vectors used only inside a process have a much smaller size, the loops are much

faster and so on. Obviously, a particle that is contained in more than one process

has a different local name in each process.

When numbering the particles, the first ones to be counted are those of group A,

then the others. The naming procedure for particles A takes place in the function

lista, obeying the following rules:

• first those contained in region S8,

• then those in region S0,

• then those in region S1,
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Figure 4.13: Strips and areas from which a process receives particles.

• .....

• finally those in region S7.

The total number of particles of group A is npp (number [of] particles [in the]

process), and the number of particles in each region is nump[k], k=number of the

region.

The particles of group B are added into the process in the function scambio and

immediately given a name. Their total number is nadd (number [of particles] added),

and their naming procedure obeys the following rules:

• first those received from area R0 (R0 = S1 in process p vic[0]),

• then those received from area R1 (R1 = S0 in process p vic[1]),

• .....

• finally those received from area R7.
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R5R4 R6 R7

R5_0R4_0 R6_2 R7_0 R7_2R4_2 R5_2 R6_0
R5_1R4_1 R6_1 R7_1npp particles

R3S0S8 S7 R0

nadd particles

Figure 4.14: Numeration of the particles inside a process.

These areas Rs, together with the regions Ss are shown, for one process, in Figure

4.13. In Figure 4.14 we display how the particles are organized inside each process.

All of this can appear awfully complicated, but numbering the particles inside

each process in this way is very important because it allows a quick updating of the

positions. As seen before, the particles attempt to move region by region, and when

all the atoms in an area have attempted a jump, their new positions are communi-

cated from their process to the neighbor processes. The upgrading procedure in the

neighbor processes becomes very fast if it is easy to identify the particles to modify,

and this is what is accomplished through such a numbering.

Communications

Now that all the notations have been introduced, we summarize how communication

processes are organized in the code. Simple broadcasts of data occur many times

during the execution of the program, but massive processes of sending and receiving

data take place only in four different moments:

1) at the very beginning, before the Monte Carlo cycle is started, when each process

receives the particles of kind B to add to its own (function scambio);
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Figure 4.15: Communications after that all the particles in region k=4 have been
moved.
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2) during the Monte Carlo cycle, every time that all the particles in a region have

attempted to move. In this case not only the positions of the particles are com-

municated, but also other quantities related to the calculation of the energy.

These quantities are prepared to be sent in the function prepara and are com-

municated in the functions comunica and aggiorna;

3) at the end of one or more Monte Carlo steps, when we check if the particles have

moved so much that they don’t belong anymore to the process they are in. If

this is the case, they are sent to the new process (function scambio in);

4) after the execution of the function scambio in each process contains different

particles than before; the situation is therefore as it was at the beginning of

the run and the function scambio has to be executed again.

To understand how these communication processes take place, let’s consider a

process (myid) that, having moved all the particles in a region k, communicates the

new data to other processes. The same exact pattern is followed in the communica-

tions executed in scambio or scambio in. As we know, all the processes move their

particles in region k at the same time, so, while a process myid sends its data, it also

receives data from another process, as shown in Figure 4.15 for the case of k=4. In

Table 4.1 the way in which this send/receive data works for each region k is sum-

marized. For areas S4, S5, S6 and S7, the names of the processes to send data to

(column two in the table) or to receive data from (column four) are contained in the

vectors s vic, r vic, respectively. These vectors are defined in the function startMPI.

In the same function the list of storing addresses for the received data is also defined,

and is called r ind (column five in the table).
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Data sent Data received
Strip moved Process the data Strip sent Process the data are Storing place
(in myid ) are sent to (with (in myid ) received from (with for the data

respect to myid) respect to myid) (in myid )
S0 p vic[0] S0 p vic[1] R1
S1 p vic[1] S1 p vic[0] R0
S2 p vic[2] S2 p vic[3] R3
S3 p vic[3] S3 p vic[2] R2
S4 p vic[4] S4 p vic[5] R50

p vic[2] S4 p vic[3] R71

p vic[0] S4 p vic[1] R62

S5 p vic[5] S5 p vic[4] R40

p vic[3] S5 p vic[2] R61

p vic[1] S5 p vic[0] R72

S6 p vic[6] S6 p vic[7] R70

p vic[2] S6 p vic[3] R51

p vic[1] S6 p vic[0] R42

S7 p vic[7] S7 p vic[6] R60

p vic[3] S7 p vic[2] R41

p vic[0] S7 p vic[1] R52

Table 4.1: Communications scheme.



Chapter 5

A new algorithm for studying semiconductor surfaces

In this and in the following chapter we present results obtained when studying the

Si(001) surface. We first show that the use of the standard MC approach introduced

in Chapter 4 is unsatisfactory when simulating phenomena involving simultaneous

motion of several particles, as it is the case for surface reconstructions or island

evolution. The need for a more involved algorithm that contains the possibility of

collective moves is therefore introduced. The development of such an algorithm is

the subject of the second part of this chapter. Finally, results obtained using this

original algorithm are presented in Chapter 6.

5.1 Single-atom moves only: results

Before starting the actual study of the Si(001) surface evolution, it was important to

perform preparatory calculations to determine simulation parameters like the min-

imum slab thickness (Section 4.2.2) or the depth and frequency for the non-uniform

sampling (Section 4.7.1). Moreover, whenever simulations are performed using empir-

ical potentials, it is a safe habit to evaluate their capability by reproducing already

known quantities before applying them to the study of unknown phenomena. This is

particularly true when, as in our case, potentials whose parameters have been fitted

only on bulk properties are used to reproduce surface behavior. Several comparative

studies of potentials for Si and Si-Ge systems are present in the literature [89–91],
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but none of them is exhaustive on the topic of surface studies. In the following these

preparatory results are presented.

5.1.1 Determination of slab minimum thickness

The most important parameter to determine before starting the ”real” simulations

is the minimum thickness necessary to insure independent evolution of the surfaces

in the simulational cell. This evaluation is performed by simulating slabs of different

thickness and comparing results. In all these simulations the atoms initially sit on

the nodes of a perfect diamond network everywhere but on the surfaces where, on the

contrary, (2x1) symmetric reconstruction is present. The system relaxes for about

2×104 MCs, then data are taken for about 8×104 MCs.

In Figure 5.1 results are shown for nn distances, nn angles and atomic plane

energies. This quantities are plotted versus the atomic plane number for three slab

thickness (Lz=4, 6 and 8), so that one can immediately see that results for Lz=6

and 8 coincide within the errorbars, while Lz=4 is too thin. From these and other

similar data we decided that 24 atomic planes (i.e. Lz=6) is enough to insure inde-

pendent surface evolution. Such a conclusion is correct only in the limits of being

interested in identifying general trends of surface behavior (as it is our case), not

when evaluating physical quantities with great accuracy. If, for example, we were

interested in calculating energy differences between reconstructions with different

numbers of vacancy lines (as done in [87]), much thicker slabs would be required.

From the analysis of data like those in Figure 5.1 it appears that the presence of

the surface significantly affects the structural quantities only within 5 atomic planes

from the surface itself. Because of that, we decided to sample the first 5 layers from

the surface every MCs, the others only every Nskip MCs (commonly used values of

Nskip are 5 or 10). In Figure 5.2 an example of test results obtained when checking
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Figure 5.1: nn angles (a), atomic plane energies (b) and nn distances (excluding
dimer bonds) (c) versus atomic plane (i.e. position inside the slab) for three slab
thickness (Lz=4,6 and 8). Any time error bars are not shown, they are smaller than
the symbols. T=0.06 eV, surface size 16x16, SW potential.
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Figure 5.2: Atomic plane energy versus plane number for different values of Nskip

(5, 10, and 15). The simulations were run using a 16x16x8 system and T=0.06 eV.
Error bars are smaller that symbol size. SW potential.

this assumption are displayed. As can be seen, no noticeable difference is found when

Nskip MCs is changed from 5 to 10 to 15.

Data such as those shown in Figure 5.1 allow some comparisons with experimental

and ab-initio results, from which a first insight can be obtained on how accurate our

potentials are in reproducing surface properties. In Figure 5.3 our findings using

both SW and Tersoff potentials are compared to some experimental and theoretical

results. No significant difference is found between the values estimated with SW

and Tersoff: both potentials reproduce the correct trends for the quantities under

examination (like having a smaller distance between the surface and the first atomic

plane underneath it than between the first and the second plane). All our values are

slightly larger than their experimental or ab initio counterpart, which is consistent

with having considered a much higher temperature in our simulations.
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2.30

(2) (3)Distance

2.385

2.361

2.25

2.33

2.24

TersoffSW

Distances between atomic planes

1.09

1.39

1.385

Distance (A)

sup−I plane

I−II plane

II−III plane

(4) (6)

1.105

1.41

1.36 1.354

1.400

1.1291.075

1.395

1.36

SW Tersoff(5)

Dimer properties

NN angles centered on a surface atom
Angle (deg)

A−A−B 105.6

(4) (5) (6)

103.6

B−A−B 110.9
106.80106.9

TersoffSW

where: A  = surface atom, B = bulk atom;
(1) = PRB 60, p. 1488, 1999: ab_initio, T=0;
(2) = PRB 51, p. 14504, 1995: ab_inito,T=0;
(3) = PRB 59, p. 7293, 1999: EXP, T=0.025 eV;
(4) = PRB 55, p. 4731, 1997: EXP, T=0.010 eV;
(5) = PRB 55, p. 4731, 1997: EXP, T=0.016 eV;
(6) = Appl. Surf. Sci. 56−58, p.15, 1992: ab_inito;
SW, Tersoff = our results, T=0.06 eV.

Inter−atomic distancesInter−atomic distances

A−A

A−B

(A) (1)

104.6

108.6

1.230

1.357

1.385

2.407

2.375

Figure 5.3: Surface properties estimated using single-atom moves and SW or Tersoff
potentials. As a comparison results from the literature are shown as well. Error bars
are on the first digit that is not shown.
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Figure 5.4: (a) Example of initial (open symbols) and final (solid and gray circles)
configurations obtained when investigating what happens to a reconstructed surface
when adatoms are deposited on top of it. The simulation temperature is T=0.06
eV, the final snapshot is taken after 3×104 MCs. The surface size is 16x16. (b)
enlargement of the central part of (a).

5.1.2 Reproduction of dimerization

The details of the (2x1) dimerization on the Si(001) surface are well-known, so we

can test the capability of the potential and method together to reproduce the correct

physics. Such an analysis is done utilizing two sets of simulations: one to test if the

dimerization disappears when adatoms are adsorbed on top of the surface, the other

to verify if dimerization occurs when a clean surface is created.

To investigate what happens to a reconstructed surface when adatoms are

deposited on it, we consider a silicon slab with (2x1)-reconstructed surfaces on

top of which we deposit square islands. The islands present a (2x1) reconstruction

as well, but in the direction perpendicular to that of the reconstruction on the
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surface. Such a configuration is shown in Figure 5.4 by the open symbols (t=MC

time=0). The system then evolves for some time at finite temperature (T=0.06 eV,

for example). It usually only takes 1 or 2 ×104 MCs for the dimers under the island

to open up, as they should. Moreover, the atoms originally forming those dimers

correctly move toward the ideal positions of a diamond lattice. This behavior is

displayed in Figure 5.4, where the solid and gray circles indicate the positions of

island and surface atoms, respectively, in a snapshot configuration taken after 3 ×104

MCs. As expected, the atoms in the island or on the surface away from the island

moved very little (they already were in energetically “convenient” positions), while

those on the surface underneath the island moved significantly. To conclude, all the

simulations run to test surface behavior in the presence of newly deposited adatoms

were successful, i.e. produced results in agreement with experimental findings.

To determine if the method and the potential together are capable of generating

the correct surface reconstruction, we ran simulations starting from a Si slab with

perfect diamond lattice structure, i.e. with unreconstructed (001) surfaces, hoping

to recover the expected (2x1) reconstruction. Temperatures typically used in these

calculations are anywhere from 500 K to 1100 K. Contrary to what was found in the

previously described series of tests, in this case all our simulations were unsuccessful,

no matter how long they lasted or how high the temperature was.

Figure 5.5 shows a snapshot configuration obtained after 106 MCS at T=580 K

as an example of what typically happens when we use only single-atom moves to

perform these simulations. The open squares in the picture are the initial positions,

corresponding to a perfect diamond lattice, and the solid circles are the positions

after 106 MCS. As expected, many dimers have formed, but the number of undimer-

ized atoms greatly exceeds what is experimentally measured at similar temperatures.

Moreover, unphysical anti-phase domains have formed between the different islands

(shown in Figure 5.5 by dashed lines). It is important to specify that all these fea-
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Figure 5.5: Snapshot of a Si(001) surface at T=580K. Open squares represent the
initial positions, solid circles the positions after 106 MCS. Dashed lines indicate
anti-phase domains.
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tures do not improve with MC time: after a quick reorganization of the atoms at the

beginning of the simulation, the configuration becomes almost frozen and only small

oscillations of the atoms around their positions are observed. Both the excessive

number of undimerized atoms and anti-phase domains are problems found in every

simulation. They are, therefore, due to the method itself, and an immense number

of MCS would be required to see further changes.

It is known from ab initio calculations [14], and our results agree, that when

two atoms with two dangling bonds each form a dimer, they lower their energy of

about 2 eV/dimer. On the contrary, the energy gained when two or more dimers

line up to form a dimer row is at least one order of magnitude smaller. This gain

is actually so small that some classical potentials, e.g. Tersoff [76], find misaligned

dimers to be energetically lower than dimer rows. In light of all this, the excessive

number of undimerized atoms seen in our simulations can be easily explained. When

the simulation begins, the surface energy is significantly lowered every time a dimer

is formed, independently from the resulting dimer alignment. This means that each

atom randomly tries to form a dimer with any of its i neighbors, and such a process

obviously leads to a disordered surface as in Figure 5.5. Once that this surface reor-

ganization has taken place, the only way to eliminate ”defects” (i.e. atoms that have

been left undimerized) is to break some of the dimers already formed. It is important

to remember that when performing standard MC simulations the maximum displace-

ment that each atom is allowed to move in a single step is small compared to the

inter-atomic distances, so that appreciable acceptance can be achieved. Because of

that, if only single-atom moves are allowed, the removal of a defect requires the

following two-step process, at best. At first, one of the atoms that is already part

of a dimer must move towards the defect, i.e. away from its neighbor. Later, the

defect itself has to move close enough to its new neighbor to form a bond. During

the first part of this process the original dimer is broken, while the new dimer hasn’t
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.

formed yet. The energy cost of breaking a dimer makes the first step in this process

extremely inconvenient energetically. This corresponds to having an excessively low

acceptance in a Metropolis MC, since the acceptance probability depends exponen-

tially on the energy difference between the initial and the final state. The reason for

the formation of anti-phase domains is very similar: once dimers have formed ran-

domly on the surface, their rearrangement in organized rows can only happen via

a series of intermediate configurations where one atom per dimer has moved away

from its neighbor in order to align with a different dimer row. A state like this has

high energy and is, therefore, extremely unlikely to be accepted.
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Similarly unsatisfactory results were obtained when we tried to simulate the

evolution of an island on top of the surface or adatom diffusion. In both cases we

always obtained final configurations that are practically identical to the initial ones,

independently from the length of the simulation itself. As an example, the MC

diffusion paths obtained for five adatoms are shown in Figure 5.6 after a 8.5 ×105

MCs long simulation at T=0.16 eV (i.e. extremely high temperature). The adatoms

initially deposited far from surface atoms moved a bit in the course of the simulation,

while those starting close to surface atoms barely moved at all.

As mentioned before, this can be explained in terms of the energy cost of bond

breaking. If only small displacements are allowed for each trial move, then it is

extremely unlikely that an atom succeeds in moving away from a step edge, in the

case of an island, or from a nn surface atom, when considering adatom diffusion.

The reason for this is that the atom is forced to go through a series of energetically

unfavorable configurations, because of the inconvenient placing of its other neighbors,

while moving away from its original nn and before reaching a new, energetically

convenient location. On the other hand, if long jumps are allowed, we still obtain

very low acceptance because atoms already forming dimers attempt to move so far

from their neighbor that they break the dimer bond. This, too, corresponds to a

high-energy situation, i.e. to low acceptance.

5.2 The need for a collective MC algorithm

The results presented in Section 5.1.2 clearly show that standard MC, i.e. MC where

only single-atom moves are utilized, doesn’t represent an efficient way to simulate

complex phenomena such as those occurring on the Si(001) surface. It is also clear

that the reason for such a failure is in the impossibility of including collective pro-

cesses in the MC move.
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Traditionally Molecular Dynamics (MD) has been used when collective processes

play a key role in determining the physics of a system. Unfortunately it has been

established that phenomena like step edge modification or island thermal decay occur

on a time scale of the order of seconds [29, 32, 33, 39, 50]. This means that extended

periods of time have to be simulated if these problems are to be addressed. In MD

the need to integrate the equations of motion demands the use of time-steps of the

order of femtosec at best, so that it is just not possible to cover a time span of a

few seconds. This makes MD unsuitable for our investigation. A different possible

approach is the use of Kinetic Monte Carlo or of standard MC with a solid-on-solid

model (some results obtained with this method are shown in Chapter 2). These

techniques though require a pre-knowledge of the possible diffusion mechanisms and

simulation results are strongly dependent on how well a large number of parameters

is fitted. Moreover, the use of a solid-on-solid model forces discretization on the

system, so that restrictions to the atomic motion are introduced.

Because it is our desire to investigate surface behavior with as few restrictions

as possible, we decided to develop a new Monte Carlo algorithm instead of simply

utilizing any of the above listed techniques. The particular version presented in this

dissertation is targeted to the study of the Si(001) surface with Si or Ge adatoms, but

the idea behind it is rather general and can be easily expanded to the study of other

semiconductor surfaces. The main idea that this algorithm is based upon is to add the

possibility of collective moves to the standard MC single-atom moves. With MC the

evolution of the system is definitely faster than it would be using standard Molecular

Dynamics; moreover, because of the collective moves, it is possible to overcome high

potential barriers that otherwise would trap the system in metastable states. The

identification of the collective moves to implement is the only point where some

knowledge of the particular physical system under consideration is necessary. As an
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Figure 5.7: Coupled jumps: dashed circles represent undimerized atoms, open circles
are dimerized atoms and solid circles indicate the new dimer that formed after the
coupled jump took place.

example, in the case of the Si(001) surface, the existence of a (2x1) reconstruction

leads us to introduce the possibility of moving each dimer as a whole.

5.3 Implementation of “coupled jumps” and “row shifts”

The simplest kind of collective move that we considered is designed to aid the pro-

duction of the (2x1) reconstruction when starting from an unreconstructed surface.

This was useful for a complete testing of the potentials [76].

When reviewing results obtained using single-atom moves only, we determined

that the reason for the extremely low acceptance obtained once the dimers have

formed was the high-energy cost of the intermediate configurations. A natural solu-

tion to this problem is to introduce the possibility of moving two atoms at the same

time (“coupled-jumps”). This is accomplished choosing an atom on the surface and

randomly selecting its left or right neighbor along the direction perpendicular to

the dimer rows. The two atoms are then randomly moved towards or apart from

each other of a random amount, as shown in Figure 5.7. In this way we rarely end

up comparing a configuration with two dimerized atoms and an undimerized one to

a configuration with three undimerized particles, as always happens in the single-

atom move case. Now, mostly, if a dimer is broken, another one is formed, so that
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Figure 5.8: Row shifts: open circles represent dimers already aligned in rows, solid
circles represent dimers out of alignment before the collective move.

the energy difference between the initial and final configuration is rather small, and

consequently the acceptance is relatively high. This move is rather straightforward

to implement, only requiring a larger cutoff for the Verlet list (list of neighbors)

than that usually utilized for single-atom moves, because of the need for long jumps.

Detailed balance is perfectly obeyed in this case.

Similarly, we can speed up the elimination of the anti-phase domains by intro-

ducing the possibility to shift a dimer column as a whole. This is shown in Figure

5.8. As it will be discussed more in detail in Chapter 6, all the simulations starting

from unreconstructed surfaces ended up with the expected (2x1) reconstruction when

using collective moves and SW potential.

5.4 Implementation of “dimer jumps”

The aim of our surface investigation is the analysis of phenomena like step edge

evolution or island stability as a function of temperature or size. From the simulations

done to reproduce the (2x1) dimerization we have learned how important it is, from

a computational point of view, not to break a dimer bond without forming another
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Figure 5.9: Schematic representation of an island edge: the island atoms are dimer-
ized (solid circles) while those on the surface (open circles) sit on a perfect diamond
lattice (for simplicity sake). The dimer attempting to move is represented by larger
solid circles, and the arrows show some of the possible directions of motion. An
example of final position for such a dimer is shown by the gray shaded circles.

at the same time. Therefore, in order to efficiently simulate edge fluctuations, we

need to introduce a way to move each dimer as a whole. This is the key point in

the dimer jumps algorithm, whose multiple implementations are described below.

Each implementation is algorithmically correct but not as efficient in reproducing

the physics of the (001) surface as the one that follows it.

5.4.1 First implementation

Our first attempt to introduce the possibility of dimer jumps was pretty straightfor-

ward: once that two atoms are identified as belonging to the same dimer, they are

translated by the same random amount at the same time. A small rotation of the

dimer (θmax = 5 or 10 degrees) is attempted as well (Figure 5.9), before comparing

the energy of the final configuration to that of the configuration before the jump.

The move is then accepted or rejected using the standard Metropolis criterion. The

possibility of deciding how often to perform such a collective move is also intro-
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duced in the code: the parameter N skip coupl indicates how often the dimer jumps

are attempted.

An important observation related to the introduction of this kind of move is that

a fast evolution of the system is attained only if a rather long maximum displacement

(maximum jump) is considered. Because of geometric considerations, the central area

of each square formed by surface atoms, as shown in Figure 5.9, is an energetically

favorable location for the dimers. On the contrary, high energy corresponds to a

dimer located across one of the lines in Figure 5.9. If one of the dimers in Figure

5.9 tries to move to a significantly different location by a series of small steps, then

it has to battle the high potential barriers due to a whole series of energetically

inconvenient positions. This problem is completely avoided if the possibility of very

long jumps is introduced. Specifically, a maximum jump of 0.9 × a0(Si) was usually

considered in the program along the x and y directions, to compare to a maximum

displacement of 0.010 × a0(Si) used in the case of single-atom moves. Along z the

maximum jump was usually about 0.075 × a0(Si) because no particular barriers are

expected in this direction.

The computational cost of this ”shortcut” is the need to consider a much larger

skin distance than before (Section 4.7.1): the cutoff distance that we considered for

dimer jumps is 2.60 × a0(Si) instead of 0.8 × a0(Si), as in the case of single-atom

moves. In order to minimize the computational and memory cost of such moves, we

considered separate nn lists for the ”bulk” (i.e. single-atom) moves and the surface

dimer jumps. Moreover, given the long range of the dimer jumps, the parallelization

scheme described in Section 4.7.2 becomes unsuitable for surface moves because the

surface cutoff is now different and much bigger than the ”bulk” cutoff. We therefore

added to the previously described parallelization a second one, active only when the

code is performing dimer jumps, in which each surface is assigned to a processor.

Considering the system sizes that we worked with, and the size of the surface cutoff,
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Figure 5.10: Atomic plane energy per atom as a function of depth inside the slab:
atomic plane 1=surface, atomic plane 12=in the middle of the slab. The first two
numbers in each legend indicate the surface size, the numbers between brackets indi-
cate the island size and N skip coupl tells how often the dimer jumps are attempted.
Results obtained using SW potential, T=0.05 eV, Ge on the island and Si on the
surface.

it was not convenient at this point to use more than one processor per surface. In

the case of future calculations, when the algorithm is in its definitive formulation,

all the testing is done and ”really” large surfaces are considered, using more that

one processor per surface will be efficient.

The outcome of all the simulations where the dimer jumps were implemented

as just described was highly disappointing. If the initial configuration consisted in

a (2x1) dimerized island on a (2x1) dimerized surface everywhere but under the

island, then no acceptance was found for the collective move. Little acceptance was

obtained if, unphysically, we considered as initial configuration a dimerized island

on an undimerized surface, so that the atoms on the surface aren’t in their minimum

energy positions to begin with. Results obtained under these conditions are shown in

Figures 5.10 and 5.11 for Ge islands on Si surfaces and SW potential. In Figure 5.10
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Figure 5.11: Ge island (solid circles) on Si surface (open circles) for different system
sizes: (a) 14x14 surface, 8x8 island after 8 104 MCs, (b) 20x20 surface, 12x12 island
after 4 104 MCs, (c) 28x28 surface, 16x16 island after 6 104 MCs, (d) 34x34 surface,
20x20 island after 4 104 MCs. In all cases SW potential and T=0.05 eV.
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Figure 5.12: Snapshot of part of an island after 5,000 MC steps of relaxation at T=
700 K (i.e. before dimer-jumps are allowed). Open and solid circles are surface and
island atoms, respectively. Parts of SA and SB steps are shown.

the energy of each atomic plane is plotted as a function of the plane number, i.e. as a

function of distance from the surface (plane 1 corresponds to the surface and plane

12 to the the middle of the slab). Results corresponding to different system sizes

and values of N skip coupl are compared, from which can be established that the

choice of N skip coupl is not critical in the simulations and that no significant size

effect can be detected at this point. Figure 5.11 shows examples of configurations

obtained after n ×104 MCs at T=0.05 eV (n between 4 and 8). Not only very few

dimer jumps have been accepted, but unphysical reconstruction of the surface has

occurred as well (as in Section 5.1.2), because the coupled-jump algorithm wasn’t

activated in these calculations for reasons of computational cost. It can therefore

be easily speculated that those few moves that were accepted, had been accepted

because of the unphysically high energy corresponding to some local configurations

on the surface.
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Figure 5.13: Schematic representation of an island edge: the island atoms are dimer-
ized (solid circles) while those on the surface (open circles) sit on a perfect diamond
lattice (for simplicity sake). The dimer attempting to move is represented by larger
solid circles, and the arrows show some of the possible directions of motion. An
example of final position for such a dimer is shown by the gray shaded circles. The
small arrows indicate a possible displacement direction for the atoms that are allowed
to move during the local relaxation.

5.4.2 Second implementation

The reason behind such a low acceptance for dimer jumps implemented as described

above is in the difference between the geometry of a reconstructed and of an unre-

constructed atomic environment. In Figure 5.12 one example of atomic arrangement

in the neighborhood of SA and non-bonded SB edges is shown. The open circles

are the dimerized atoms on the surface, while the solid circles are the atoms in the

island. Let’s consider the SB step: when any of the dimers from the island is moved

along the negative y direction by any amount between 0.25 and 0.6 nm, it ends up

in a position such that at least two of his nearest neighbors are too distant to effec-

tively act as nn. A similar problem is encountered at SA and at rebonded SB steps,

with the difference that in this last case the nn distances end up being too short.
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Figure 5.14: Dark gray spheres represent atoms that are moved during the local
relaxation, light gray spheres represent some of their neighbors (for clarity not all of
neighbors in the lowest layer are shown). The bonds are drawn for distances equal
or less than 2.715 Å. The dimer (black spheres) is shown just after it jumped and,
at this time, only has 2 nn.

Summarizing, when considering a dimerized surface and a dimer-jump as described

above, the acceptance rate is really low because most of the times the post-jump

configuration ends up being extremely inconvenient energetically.

In order to achieve a much higher acceptance, once that a dimer is displaced

as described in Section 5.4.1, we introduced the possibility of relaxing the local

environment around it before deciding to accept or reject the move via the Metropolis

algorithm. As local environment we consider all the dimer’s neighbors before and

after the move within a cutoff distance of 0.81 a0(Si) and two layers from the surface.

The dimer itself is included in such an assemblage as well. A schematic picture of

such a collective move is given in Figure 5.13, where small arrows indicate a possible

displacement direction for each of the atoms that are allowed to move during the

local relaxation. In Figure 5.14 an example of local environment for one particular
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dimer is shown. The dimer (black spheres) is shown just after it jumped, and at that

time it only has two nearest neighbors.

The simplest way to introduce the possibility of such a local relaxation into the

code is to insert a secondary MC loop (mini-loop) inside the loop over the dimers: for

each dimer, once that the jump has been attempted, each of the atoms belonging to

the local environment list attempts to move as well, and its new position is accepted

or rejected via Metropolis. Every time each of the atoms in the list has tried to move

once, one miniMC step is completed. At the end of the mini-loop the energy of the

final configuration is compared to the energy of the configuration before the dimer

jump, and the final configuration is accepted or rejected via Metropolis. Usually,

a relatively high number of miniMCs (60 to 80) are necessary to attain significant

acceptance for the global move.

The addition of local relaxation to the dimer jump was definitely successful:

enough acceptance is now obtained at reasonable temperatures (T=0.08 eV) to

enable some study of step edge evolution and island modification. In Figures 5.15

and 5.16 some qualitative results are displayed as examples of the algorithm capa-

bilities. In all cases the initial configuration consisted of a (2x1) reconstructed island

on top of a surface (1x2) reconstructed everywhere but under the island, as seen

experimentally. In Figure 5.15 a) and b) systems of almost identical size are shown

after evolving at two different temperatures for the same amount of MC time. No

significative change in atomic positions has occurred in the lowest temperature case

(a), with respect to the initial configuration. On the contrary, in (b) the island has

altered its initial squared shape to a certain degree. An increase in the step edge

modification with temperature is certainly to be expected, but we interpreted the

lack of modification at T=0.05 eV as mostly due to having quite low acceptance of

dimer jumps. Apart from such indications that the algorithm efficiency still has to be

improved, these preliminary results showed very encouraging features, like the fact
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Figure 5.15: Configuration snapshots: a) 14x14 surface, 10x9 island, T=0.05 eV, 40K
MCs, b) 14x14 surface, 8x7 island, T=0.08 eV, 40K MCs, c) 20x20 surface, 14x14
island, T=0.08 eV, 20K MCs, d) 30x30 surface, 22x22 island, T=0.08 eV, 25K MCs.
Solid circles represent Si atoms on the island, open circles Si atoms on the surface.
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that much higher modification was seen at SB steps than at SA ones, in agreement

with experimental results.

5.4.3 Final implementation

The addition of the local relaxation to the dimer jump introduces the “collective

motion” effect that is needed to correctly describe the physics of the (001) surface.

The only problem still to solve in designing the algorithm is its low efficiency, i.e.

we must find a way to obtain higher acceptance for the collective move without

increasing the computation time.

This goal is reached by substituting the MC mini-loop with a Molecular Dynamics

(MD) one: now the new positions for the atoms during the mini-loop are determined

from the integration of the equations of motion with the Velocity Verlet algorithm

(Appendix B). The explicit form for the forces obtained from the SW potential

is given in Appendix C. Initial velocities are assigned from the Maxwell velocity

distribution at the simulation temperature. Later, constant temperature conditions

are maintained using velocity rescaling. Test runs performed on different system sizes

and under different initial conditions showed that, in most cases, a relaxation of 7

MD steps using a time step of 10−15 sec is enough for achieving good acceptance. On

average, the acceptance obtained using this final implementation of the algorithm is

about 8 times higher than using MC in the mini-loop.

Checking that detailed-balance is obeyed is much more difficult in this case than it

is when dealing with ”coupled-jumps”. We could not find a way to explicitly calculate

the probability for the exact reverse path, once that a dimer-jump is accepted.

However, no biases of any kind are applied when choosing the direction of the jump

and the only effect of the MD loop is to relax the neighborhood of both places where

the dimer used to be and where it is as a result of the jump. On this basis we feel

confident that no appreciable violation of detailed-balance comes from the use of this



86

collective move as long as the system is sufficiently relaxed before the dimer-jumps

are started. For the same reason, it is important that not too many collective moves

are accepted during each MC step, so that enough time is given to the system to

relax in-between accepted dimer-jumps. That is the case in our simulations where,

moreover, a value of at least 5 was always chosen for N skip coupl as a way to

further insure relaxation between dimer-jumps. As independent test of the fact that

MD does not impose some kind of bias in determining the configuration at the

end of each dimer-jump, i.e. that the detailed-balance violation, if exists, has no

appreciable consequences on the evaluation of the physical quantities, we compared

results obtained using MD to those obtained using MC in the mini-loop. In all cases

the results are qualitatively consistent with each other.



Chapter 6

Results for the Si(001) surface

In this chapter we present the most significant results obtained applying the com-

bination of single-atom and collective moves described in Chapter 5 to the study

of Si on Si(001). These findings are mostly qualitative, and are intended to prove

the efficacy of the algorithm. As a consequence, only qualitative comparisons with

experimental data discussed in Chapter 3 are discussed.

6.1 Coupled jumps and row shifts

As anticipated in Section 5.3, the introduction of coupled jumps and row shifts in

simulations starting from undimerized surfaces lead to the formation of correctly

reconstructed surfaces in reasonable computing times (on the order of 104 MCs) and

at physical temperatures (T=580-800 K).

In Figure 6.1 snapshots of configurations obtained during one of these simulations

are shown as an example. The initial configuration (a) consists of a reconstructed

surface (open circles) on top of which we deposited an unreconstructed island (solid

circles). In (b) a snapshot taken after 15,000 MCs is shown: most of the atoms on the

surface have already formed dimers but a few defects, and consequent misalignment

of the dimer rows, can still be seen. All the dimers formed by surface atoms under

the island have already opened up. In (c) the final configuration is presented: all

the dimers on the island are aligned in rows and no island atom is left undimerized.

It must be noted, though, that considering an unreconstructed island as an initial

87
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Figure 6.1: Snapshots taken after 0 MCs (a), 15,000 MCs (b) and 30,000 MCs (c)
(T=580 K, 16x16 surface and 12x12 island). Solid circles are Ge atoms and open
circles are Si atoms. Tersoff potential was used in this simulation.
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configuration, instead of a surface, facilitates the alignment of the dimer rows. This

is due to the presence of edges: because of them there is only one possible alignment

that corresponds to a situation where all the atom in the column participate in

a dimer. On a surface, however, this is not the case because of the 2D PBC, and

obtaining an aligned, reconstructed configuration depends on the very small energy

difference between the aligned and the misaligned case. As seen in Section 5.1.2, such

an energy difference is much smaller than that between a dimer and two undimerized

surface atoms. Consequences of this phenomenon are discussed in the next Section.

6.2 Tersoff potential vs Stillinger-Weber potential

Once that the collective algorithm was sufficiently efficient to be used, we were ready

to start testing the interatomic potentials. This was accomplished by simulating

surface reconstruction and island evolution with both Tersoff and SW potentials,

and comparing results.

All the tests indicated that SW is a suitable potential for surface studies, while

Tersoff isn’t. Examples of final configurations obtained when trying to reproduce the

(2x1) reconstruction using Tersoff potential are shown in Figure 6.2. Because of the

use of coupled jumps no atom is left undimerized, but the introduction of row shift is

not enough to prevent some phase-boundaries from forming. Our results show that

this effect is temperature independent. As discussed in the previous Section, the

energy difference between aligned and misaligned dimer rows is very small, and our

findings suggest that the Tersoff potential doesn’t reproduce this small energy dif-

ference correctly. The energy comparison between relaxed surfaces with and without

phase-boundaries confirmed that, using Tersoff, the case with the presence of phase-

boundaries is energetically more favorable. When performing the same kind of sim-
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Figure 6.2: Snapshots of 8x8 surfaces of Si on Si(001) taken after 7.5 ×105 MCs. The
interatomic interactions are determined using the Tersoff potential. Open circles are
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end of the simulation.
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ulations using SW potential, we always recovered the correct (2x1) reconstruction

with complete alignment of the dimer rows.

As a second test, we studied the island evolution with both potentials. Again,

results obtained using Tersoff were unsatisfactory while SW ones reproduced the

correct physics. In Figure 6.3 a comparison between the two potentials is shown. The

island simulated using SW is very stable and only shows some edge modification, as

expected, but the one evolved using Tersoff is highly disorganized, having formed

several anti-phase domains. The two simulations were run for a very similar number

of MC steps at the same temperature. The differences found between the two islands

are even more remarkable considering that the one simulated using Tersoff is larger

that the other, therefore expected to be more stable.

6.3 Island formation

The first problem we decided to address as a test for our algorithm is the investiga-

tion of the early stages of formation of two-dimensional Si islands on Si(001). This

study was performed considering as initial system for our simulations a slab of Si

with (2x1)-reconstructed surfaces on top of which dimers are randomly deposited.

Using the combination of single-atom and collective moves described in Section 5.4.3,

and the possibility of changing of volume, the system is let to evolve at constant

temperature. Temperatures typically used in simulations of this kind are around 900

K, because it corresponds to a rate of events fast enough to allow the observation of

the physical phenomenon within a reasonable number of MC steps. As a matter-of-

fact, all our simulations reached equilibrium within a couple hundred thousand MC

steps at most.

In Figure 6.4 one example of results is shown: a snapshot of the (001) surface

taken after 1.2 × 105 MCs at a simulation temperature of 930 K. Solid circles are
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Figure 6.4: Snapshot of Si over Si(001) after 1.2 × 105 MCS, T=930K. Solid circles
are adatoms, open circles are surface atoms. The surface contains 900 atoms (30x30,
with pbc) and 170 dimers are deposited on top of it (the entire simulation slab
contains 20480 atoms).

Si adatoms, while open circles represent atoms on the surface. The most noticeable

feature is the fact that most of the ad-dimers have combined to form almost mono-

dimensional islands. This is consistent with what was observed experimentally, as

reported among others by Mo et al. [19] and Pearson et al. [45]. Note that everywhere

adatoms have come together, the dimerization underneath has disappeared. A few

transient configurations are still present; for example, the one where three dimers

have united and aligned parallel to the dimerization direction on the surface. This

is not an indication of unphysical behavior; it simply means that, at this time,

the system has not yet reached complete equilibrium. Moreover, finding dimers in
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Figure 6.5: Snapshot after 3 × 104 MCS, T=700 K. Solid circles are adatoms, open
circles are surface atoms. The surface contains 196 atoms (14x14, with pbc) and the
initial square island was made of 72 atoms.

unexpected configurations emphasizes the fact that the dimer motion is not biased

during the simulation: they are allowed to rotate, to separate into undimerized atoms

(as shown the Figure 6.4 as well) and so on. All the results that we obtained studying

the early phases of island formation are qualitatively identical to those presented

here.

6.4 Step-edge evolution

A second, independent problem we used to evaluate the applicability of our method

to real situations is the study of island stability and step evolution. When doing so,

we always begin our simulations considering a square island of Si over each Si(001)

surface, so that both SA and SB steps could be analyzed at one time. Simulations
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Figure 6.6: Snapshot after 7 × 104 MCS, T=700 K. Solid circles are adatoms, open
circles are surface atoms. The surface contains 784 atoms (28x28, with pbc) and the
initial square island was made of 272 atoms.

are performed at different temperatures and using different system sizes, so that

both thermal and size stability are tested. The kind of results we achieve is well

exemplified by the instantaneous configurations displayed in Figures 6.5, 6.6, and

6.7. Comparing Figures 6.5 and 6.6, it is easy to realize how well size stability is

reproduced by our calculations: as experimentally observed [42,50,51] islands smaller

than a critical size are not stable even at relatively low temperatures. It is not the

aim of this dissertation to accurately estimate such a critical size, but from these

results it appears that the algorithm developed here is suitable for such an inquiry.

Moreover, in Section 6.5 preliminary quantitative findings on such a quantity are

discussed.

From the observation of Figures 6.6 and 6.7, a dependence of the island stability

on temperature can be easily inferred. In the two simulations the same system size
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Figure 6.7: Snapshot after only 4,000 MC steps, T=928 K. Solid circles are adatoms,
open circles are surface atoms. The surface contains 784 atoms (28x28, with pbc)
and the initial square island was made of 272 atoms.

was used, the only difference being temperature. After only 4,000 MC steps the island

that evolved at higher temperature (Figure 6.7) is almost completely disordered,

while the other is still very stable after 7 × 104 MCS. This, too, agrees with previously

reported experimental findings [29,38,51] Analyzing Figure 6.6 we note several other

important features. Firstly the SA and SB steps have evolved in a very different way:

both of the SA steps are still pretty smooth, while the SB steps have definitely

become rough. The same behavior is consistently observed when STM images of

terraces on the Si(001) are taken [28, 32, 34, 41] Secondly, the roughly square shape

for the island has been preserved during the simulation, in good agreement with

experimental observations of silicon islands on Si(001) before annealing [19, 29, 51].

Lastly, dimer vacancies have appeared in the island as the most widespread defect,

and this, too, is a feature common to several experimental findings [19, 29, 51].
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6.5 Quantitative results

Finally, in order to show that this algorithm can also be used for quantitative evalua-

tions of physical quantities, in Figure 6.8 preliminary results on step edge roughness

vs. temperature are presented for a particular island size (16x17). The details of the

computations are outlined elsewhere [88]. Again, a strong temperature dependence

and a definite difference in behavior between SA and SB steps can be noticed as long

as the islands are stable, i.e. for temperature below 900 K.

Similarly, a preliminary determination of the critical island size at T=700 K

(kBT=0.06 eV) is shown in Figure 6.9 a). Islands initially containing less than the

80 dimers have reduced their size of more than 25% before reaching equilibrium,

indicating that they are not stable at this temperature. On the contrary, islands

larger than 130 are stable at T=700 K (their size at equilibrium is almost 90% of

the initial one). In the case of islands initially made of 91 dimers we observed fast

island decays in some runs and great stability in others (for runs of about 1.5 ×105

MCs), which justifies the larger error bar. An error bar almost as large is found for
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Figure 6.9: Critical island size (a), step edge roughness (b) and normalized number
of missing dimers (c) vs. initial island size at T=700 K (kBT=0.06 eV). All data are
preliminary. In b) and c) data for islands below the critical size are taken before the
disintegration starts.

an initial size of 52, and is due to the fact that in some runs the island disintegration

was not completed within the time length of the simulation. Corresponding results

for step roughness and number of missing dimers are displayed in Figure 6.9 b) and

c). As seen in experiments, the step roughness does not depend on system size, and

is higher for SB steps than for SA in case of stable islands. The measure of the

number of missing dimers per island (normalized on the initial island size) clearly
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shows a correlation between stability and presence of defects, being definitely higher

for stable islands (initial size lerger than 130 dimers) than for unstable ones.



Chapter 7

Phase diagram for constant-volume Si1−xGex alloy

In this Chapter we discuss results obtained using a bulk Si-Ge alloy model to study

the compressible Ising model under constant volume conditions. Hysteresis results

are presented first, then findings for the “ordered” phase and lastly the phase-

diagram is determined in both the semi-grand-canonical and the canonical ensemble.

The final part of the Chapter is dedicated to the discussion of the structural prop-

erties of the “ordered” phase.

7.1 Low temperature results

As discussed in Chapter 3, theoretical predictions suggest that the Si1−xGex phase

diagram under constant-volume conditions in the field-temperature plane (∆µ,T)

consists of two first order lines, one in the low and one in the high Ge-concentration

(cGe) regime. To test such a prediction we looked for hysteresis in the Si and Ge

equilibrium concentrations sweeping through the chemical potential difference ∆µ =

(µGe −µSi) at fixed temperature. In each case we started in the complete Si (or Ge)

regime and first increased (or decreased) ∆µ, then swept it back to its initial value.

During these runs each simulation started from the the final configuration of the

previous one and was 105 MC steps long.

If too coarse a resolution is used in sampling ∆µ, the expected jumps in cGe

are not visible, and results as in Figure 7.1b) are found, even if very large jumps

were predicted theoretically (Chapter 3 and Figure 7.1a)). Data shown in Figure

100
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Figure 7.1: (a) Schematic diagram of cGe vs ∆µ as expected from theoretical pre-
dictions (see Chapter 3). Note the size of the expected jumps in cGe. No marks are
shown on the x-axis because no indications were given in the theoretical work on the
actual values of ∆µ corresponding to the jumps in cGe. (b) Ge concentration vs ∆µ
obtained when using a coarse resolution to sample ∆µ. The dashed squares indicate
the locations where hysteresis is later found using a much finer resolution. Data are
taken using a L=4 system, kBT=0.0015 eV and 105 MCs per run. Each run started
from the end of the previous one.

7.1b) are taken using a L=4 system, kBT=0.0015 eV and 105 MCs per run. Each

run started from the end of the previous one. When a much finer resolution is

utilized, hysteresis is indeed found both for high and low cGe, as shown in Figure

7.2. Surprisingly, the difference in concentration between the branches (∆c) is in

both cases much smaller than under constant-pressure conditions [65], indicating a

much weaker first order phase transition. Comparing the two hysteresis loops we

notice two main differences. Firstly, ∆c is definitely smaller in the lower cGe regime

than in the higher one. Secondly, the loop shape is different, being symmetric in one

case and strongly asymmetric in the other. These differences indicate that the two

regimes are somehow not equivalent, as partially expected from the asymmetry in
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the potential and, even more, from having chosen a volume closer to that of pure

Ge than to that of pure Si.

An important consequence of having such a weak transition is that the branches

of the free energy are almost parallel, as shown in Figure 7.3. High precision is there-

fore necessary to evaluate such branches, i.e. relatively large systems (8000 atoms)

have to be used even at temperatures below the transition. Relatively big error bars

appear nevertheless in the final estimate of the phase diagram (Section 7.3). More-

over, hysteresis loops cannot be used to determine the phase diagram for temper-

ature above kBT=0.0030 eV because the difference in energy and/or concentration

between branches becomes too small to be detected even using systems as large as
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L=10. This behavior is qualitatively illustrated in Figure 7.4, where hysteresis loops

obtained at different temperatures for low cGe are shown.

7.2 The “ordered” phase

In order to investigate the asymmetry seen in the hysteresis loops at high Ge concen-

tration, structural properties of different configurations along the hysteresis paths

were analyzed. As a result, the phase transition producing the hysteresis is inter-

preted as corresponding to a transition from a phase where equilibrium configura-

tions are given by random mixture of the atomic species to one where the two phases

segregates from each other (“ordered” phase).

When the phase separation occurs, the less favorable of the two atomic species

(Si in this study, given the volume chosen) segregates surprisingly forming one or

more planes in-between which the other species (Ge) is located. The number of such

planes depends on the availability of Si: for high Ge concentration only one plane of

Si is formed but, as the equilibrium concentration of Si increases, such a plane splits

into more planes, instead of simply growing thicker. Another characteristic of these

planes is that they try to grow perpendicular to each other as much as possible, i.e.

we find two or more along the same direction only when more than three planes are

formed. Examples of “ordered-phase” configurations are given in Figure 7.5, where

snapshots of equilibrium configurations are shown at three different values of ∆µ

and the same T. In correspondence of the lowest cSi (∆µ=0.472 eV, cGe=0.83) only

one plane of Si has formed (Figure 7.5a), while for cGe=0.55 there is already enough

Si in the system to allow the formation of 3 planes (Figure 7.5b). It is easy to notice

that these planes are perpendicular to each other. Figure 7.5c) correspond to a cGe

so low (cGe=0.3) that several Si planes have formed. These findings explain the

asymmetry found in the hysteresis loops: the formation of the Si planes is in fact a
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(a)

(b)

(c)

Figure 7.5: Snapshots of equilibrium configurations for ∆µ=0.472 eV (a), 0.440 eV
(b) and 0.410 eV (c). The correspondent c(Ge) roughly is 0.83, 0.55 and 0.30, respec-
tively; T=0.0029 eV in all cases. For clarity, in (a) and (b) only Si atoms are shown,
in (c) only Ge. The gray scale is used to indicate depth: white atoms are the fur-
ther from the reader, black atoms the closest. 3D PBC are used in all cases. Figure
obtained using the grafic package AViz [92].
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much slower and smoother event than their destruction when a very limited amount

of Si is available.

A more quantitative study of the ordering process is obtained from the analysis

of the average number of Si-Si nn, p (p=〈nn〉Si−Si). This quantity is equal to four

times the Si concentration (1-x) in a completely random mixture, while assumes

higher values if order of some kind is present in the system. When computing it

for configurations along the branches of hysteresis loops in both high and low cGe

regimes, we discovered that short-range order is present even in the disordered phase

(Figure 7.6). This is very reasonable given the inter-atomic potential used and the low

temperatures involved in the calculations. More importantly, the significant numer-
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ical difference between p in the “ordered” and in the disordered phase indicates

that the range of (∆µ,T) still is far from the prospective ending of the first order

lines, even if both ∆c and ∆E (energy difference between the two branches at fixed

(µ,T)) appeared to be very small (Figure 7.6). This apparent contradiction is easily

explained in terms of finite-size effects: appreciable differences in energy and con-

centration between branches would be found if large enough systems are used for

the simulations.

7.3 High temperature results and phase diagram

To investigate the possible ending of the first order lines, simulations were run for

values of ∆µ between 0.41 and 0.473 eV. The study of this part of the phase diagram

was particularly difficult mainly because of the extremely long times required to form

the Si planes at temperatures near the transition: simulations of the order of 107 MCs

are necessary just to see those planes appear. A usually efficient way to determine

the exact location of a first order transition is to use histogram reweighting. Unfortu-

nately, its straightforward application was unfeasible here because it was impossible

to obtain good sampling of both phases in a single run. Such a sampling would in

fact require forming and destroying the Si planes several times during each run.

Forming the planes was found to be a slower process than destroying them.

The most efficient way to determine the phase diagram was, therefore, to start

from “ordered” configurations and let them evolve at different temperatures until a

temperature high enough to destroy the planes was identified. This procedure had to

be repeated for each ∆µ that we wanted to investigate. Runs at temperatures close

to the transition were usually about 3× 106 MCs long and L=12 systems were used.

In a few cases more involved calculations were performed, to allow for finite-size

effects analysis.
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for a L=12 system (cGe=0.63). The number of Si planes present in the configuration
is displayed next to each curve.

When disordering configurations with more than one Si plane, we observed that

the planes disappeared one at a time as T was increased. As an example, instanta-

neous values of p are shown in Figure 7.7 for different temperatures at ∆µ=0.450

eV; the corresponding number of stable Si planes is indicated next to each curve. It

is not clear at the moment if configurations with less than the maximum number of

planes allowed by the amount of Si present correspond to the equilibrium states at

that (∆µ,T) or to very long lived metastable states. We determined the transition

temperature averaging the highest T for which at least one Si plane is stable with

the lowest one for which the configuration is disordered.

In Figure 7.8 the resulting phase diagram is shown in both (∆µ,T) and (cGe,T)

space. As anticipated, a closed first order line is found, instead of two first order

lines predicted by Dünweg [74]. The phase diagram is strongly asymmetric towards
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the Ge-rich region, which is explained by the particular choice of the volume, as

seen in Section 4.2.1. Such an interpretation is further confirmed by the fact that

the maximum transition temperature is reached for cGe near 75%.

To perform finite size analyses, quantities like transition temperature or specific

heat maximum need to be accurately determined for several lattice sizes. Combining

reweighting (see Section 7.3) with parallel tempering, we were able to obtain good

sampling of both phases across the transition line, so that precise evaluation of the

maximum of the specific heat, of the susceptibility and of the complete fourth order

cumulant were possible. In particular, we avoided the problems related to the use

of reweighting discussed in Section 7.3 because PT made it possible to go from one

phase to the other without having to wait the excessively long times necessary to

form or destroy the Si planes. The only disadvantage of these calculations is their

computational cost: fixed ∆µ, firstly a rough determination of Tt is necessary, done as
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described in Section 7.3, then PT calculations are run for several temperatures close

to that value. The number of temperatures to investigate depends on the system

size because the width of the histograms decreases as the system size increases.

When good histograms were constructed, reweighting was performed and the desired

quantities calculated.

Scaling results for Tc at ∆µ=0.472 eV are shown in Figure 7.9. As expected for

a first order transition, asymptotically Tc(L) scales linearly with the inverse of the

volume. The transition temperature for infinite lattice is therefore estimated to be

0.00394 eV ± 0.00005, 4.5% greater than the one obtained for a L=12 lattice. Similar

results are found for other points in the phase diagram, allowing us to conclude that

a good estimate of the infinite lattice phase diagram can be obtained from the one

shown in Figure 7.8 increasing the evaluated T by 4.5% or 9.1%, depending on how
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big a system was used to calculate them (L=12 or L=10, respectively). In Figure 7.10

the dependence of specific heat, susceptibility, fourth order cumulant in energy and

specific heat maximum on the system sizes is presented. All the data are taken at

∆µ=0.472 eV. Again our findings are in excellent agreement with what is expected

for a first order transition: the linear fit of the specific heat maximum versus volume

produces a correlation coefficient r of 0.9997.

7.4 Structural properties

The last problem still to address in this study is the understanding of the formation

of the Si planes. A structure where one atomic species forms several planes inside the

other doesn’t minimize the interface energy; it is therefore not immediately obvious

why such a configuration constitutes the ground state (GS) for our system.

To check if the structure we find corresponds to the GS we ran several simulations

starting from “phase-segregated” configurations that could be energetically more

convenient. In some of those all the Si was contained in a sphere at the center of

the cubic simulation cell, while in others (referred to as “SLAB” in the following)

it formed one single plane even if at that point in the (∆µ,T) space ((0.440 eV,

0.0029 eV)) we had observed the formation of three planes, each one perpendicular

to the other two. During these simulations a long equilibration was performed at

first, during which the possibility of changing the atomic species was eliminated in

order to maintain the desired geometry. Later, such a possibility was reintroduced

and the configuration was allowed to evolve freely. As a result, in both geometries the

system disordered at first, then reordered forming three, perpendicular, Si planes.

To understand the advantages connected with the formation of the Si planes we

compared structural properties computed for “ordered” (ORD), disordered (DIS)

and SLAB trial configurations. Such a comparison was repeated for several values of
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Figure 7.11: Schematic depiction of the “ordered” (a) and “SLAB” (b) configurations
for ∆µ=0.440 eV. The gray areas contain mostly Si, the white ones mostly Ge

∆µ, i.e. at different cGe. In most cases slightly different temperatures had to be used

to generate the “ordered” and the disordered configurations because it was impos-

sible to obtain sufficiently disordered states using the same (∆µ,T) for which a clear

phase-separation was seen. The comparison is nevertheless completely meaningful

because structural properties mostly depend on the relative concentration of Si and

Ge, which is dictated by ∆µ much more than by T. When calculating structural

quantities for the “ordered” phase we averaged the areas where the Si planes are

(gray areas in Figure 7.11) separately from those that contain mostly Ge (white

area in Figure 7.11). This is indicated in Figures 7.12 and 7.13 by the label “in” for

quantities evaluated inside the Si planes, and “out” for those evaluated outside such

planes.

Because in a random mixture the mean concentration of Si and Ge is uniform, the

disordered phase corresponds to the minimal variation of the structural properties

with respect to their values in the pure phases. This means that any congregation of

atoms of the same species, which is, on the other hand, favored by the interatomic

potential, corresponds to a further increase in such a variation. The balance between

the energy cost of deviating from the ideal lattice structure and the energy cost of
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having mixed (Si-Ge) interaction is the key to understand the formation of the Si

planes.

For all the analyzed values of (∆µ,T) the nn distances (Si-Si, Si-Ge and Ge-

Ge) didn’t significantly depend on the configuration structure, i.e. the values found

for the “ordered”, disordered and “slab” configurations were very similar (Figure

7.12a). On the contrary, the reason behind the formation of the Si planes is found

when studying nn angles and inter- plane distances. As shown in Figure 7.12b), the

energetically most convenient way to fill the given volume in the part of the system

where only Si are present is to move the Si-filled atomic planes closer together by

changing nn angles (open circles in Figure 7.12b)), instead of further stretching the

Si-Si bonds. This way of avoiding excessive stretching of the Si-Si bonds is possible

because in the diamond lattice each atom has two nn lying on one atomic plane

and other two lying on a different one. To make this effect even clearer we plotted

the nn angles distinguishing those where the nn of the vertex atom lie on the same

atomic plane (label “SP”) from those where the nn lie on different planes (label

“DP”). Obviously, a diminished distance between atomic planes must corresponds

to increased SP angles and decreased DP ones with respect to their values in a

perfect tetrahedron (θ=109.47) if the bond length is left unchanged. This effect is

clearly visible in Figure 7.13 a) (nn angles centered on Si atoms) for all the angles

in the “ordered” (solid circles and squares) and in the SLAB (stars and crosses)

phase. Moreover, in the “ordered” phase the angles at the center of the Si planes

(atomic planes 4-7, Figure 7.13 a)) become very similar to the angles in the SLAB

configuration. For obvious geometrical reasons the remaining planes in the system,

which are mainly filled with Ge, must move away from each other to balance those

that had come too close. In Figure 7.13 b) angles centered on Ge are shown, and it is

easy to see how, in this case, angles in the “ordered” phase (solid circles and squares)

assume values very close to the ideal one while those in the SLAB configuration (stars
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and crosses) are significantly away from it. This difference in behavior justifies the

formation of several Si planes for high enough Si concentration, instead of just a

thick one. It indeed shows that the lattice distortion needed to balance the excessive

compression present in the part of the system filled with Si becomes too large to

be convenient when the thickness of the Si slab exceeds a threshold value (about 12

atomic planes in our system).



Chapter 8

Conclusions

In this dissertation we focused on two related problems at the interface between

materials science and statistical mechanics: the study of the (001) surface of Si or

Ge, and the study of the compressible Ising model with ferromagnetic interactions

under constant volume conditions. These problems might appear to be significantly

different from each other, but are united by the fact that, in both, elastic interactions

play a dominant role in determining the evolution of the system. In our study the

elastic interactions are described by classical potentials (Stillinger-Weber and Ter-

soff), and we performed substantial simulations using importance sampling Monte

Carlo algorithms.

When studying the compressible Ising model we adopted the same binary alloy

picture (bulk Si1−xGex) extensively utilized in the literature to investigate the same

model under constant pressure. We did that in order to facilitate comparisons

between the two cases. No previous results are available for comparisons in the

the constant volume case, but theoretical predictions suggest that two first order

lines should appear in the field-temperature plane, ending in critical points. Large

jumps in the species concentrations are expected in the concentration-temperature

plane, corresponding to the crossing of such first order lines. From our study very

different and surprising results appeared. In the field-temperature plane the phase

diagram contains a single, closed first order line, instead of the expected two lines,

which divides a “phase-segregated” (“ordered”) phase from a disordered one. In

119
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the “ordered” phase the most unfavorable species (Si in our case, because of the

volume chosen) congregates forming planes in-between which the other species is

located. The number of these planes depends on the amount of Si available, while

their maximum thickness is a constant. In the concentration-temperature plane we

could identify coexistence regions in concentration only at low temperatures, and the

corresponding jumps in Si or Ge concentration are much smaller than expected. The

first order transition that we find is therefore very weak, much weaker than predicted

and also much weaker than seen under constant pressure conditions. The formation

or disintegration of the “ordered” phase was found to happen over a time scale of

more than 106 Monte Carlo steps (MCs). This, together with the occurrence of very

long lived metastable states, made the treatment of this system extremely difficult.

As a consequence, significant error bars are given in our final estimate of some of

the physical quantities, fact that, though, does not impede a complete qualitative

characterization of the system behavior. Given how surprising these findings are,

it comes natural to wonder how well theoretical predictions for anti-ferromagnetic

interactions under constant volume will actually agree with simulational findings.

Also, a natural development of this study is to determine what happens, for ferro-

magnetic interactions and constant volume, if a different choice of V is made. Will all

the effects that we observed still remain qualitatively the same, or the two predicted

first order lines make their apparence?

When investigating the evolution of Si(001) surface, we utilized standard MC

simulations at first, but with highly disappointing results. An excessive number of

defects (undimerized atoms) was found when trying to reproduce the (2x1) surface

reconstruction, and very little diffusion was attained for adatoms on the surface. We,

therefore, decided to develop a new Monte Carlo algorithm, based on the idea of

adding the possibility of collective moves to the standard MC moves. We preferred

developing a new algorithm instead of simply using Molecular Dynamics (MD),
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Kinetic Monte Carlo or standard MC with a solid-on-solid model because we felt that

each of these methods was simply ill-suited for the study we were interested in: MD

only covers a short time span, while phenomena like step edge evolution and island

disintegration occur on a time scale of a few seconds; Kinetic Monte Carlo requires

the pre-knowledge of the possible diffusion mechanisms and simulation results are

strongly dependent on how well a large number of parameters are fitted; the use

of a solid-on-solid model forces discretization on the system, so that restrictions

to the atomic motion are introduced. In contrast, the algorithm presented in this

dissertation is off-lattice, utilize bulk-fitted potentials and covers a long-time scale.

Because it has been implemented using MPI parallelization, it is also well suited

for large-scale simulations. The particular version presented in this dissertation is

targeted to the study of the Si(001) surface with Si or Ge adatoms, but the idea

behind it is rather general and can be easily expanded to the study of other alloy

surfaces. The basic idea of this algorithm is the addition of collective moves to the

standard MC single-atom moves. With MC the evolution of the system is definitely

faster than it would be using standard Molecular Dynamics; moreover, because of

the collective moves, it is possible to overcome high potential barriers that otherwise

would trap the system in metastable states. The identification of the collective moves

to implement is the only point where some knowledge of the particular physical

system under consideration is necessary. As an example, in the case of the Si(001)

surface, the existence of a (2x1) reconstruction leads us to introduce the possibility of

moving each dimer as a whole. We tested such an algorithm applying it to the study

of dimerization, step edge evolution and island stability on the Si(001) surface. All

the qualitative features attained as a result of our simulations are in good agreement

with experimental results. Quantitative estimates of physical quantities can also also

be obtained using this method, and a few such results are discussed as well. In these

cases, too, a good agreement with experimental findings is attained. We conclude
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that this method will be of great value for other simulational studies of surface

behavior.
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Appendix A

Step fluctuations: theory

In the following a short review of step fluctuation theory will be presented [32]. This

is aimed to help the understanding of experimental figures and results presented in

Chapter 2

x

y

Let x(y,t) be the position of the step edge as a function

of the distance y along the step edge and the time t. The Fourier

component xq of the step edge is then given by

x(y, t) =
∑

q

xq(t)exp(iqy) (A.1)

The analysis of the fluctuations in the step edge is done by studying the correla-

tion function Gq(t-t’) for each Fourier component xq:

Gq(t − t′) =< |xq(t) − xq(t
′)|2 > (A.2)

For wavelengths larger than a few lattice constants, Gq is supposed to have the

general form [35]

Gq(t) = A(q)[1 − exp(−|t|/τ(q))] (A.3)

For an isolated step, the amplitude A(q) of the fluctuation is a function of the

step-edge stiffness β ′:

A(q) =
2kT

Lβ ′q2
(A.4)
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where L is the length of the step under analysis.

The step-edge stiffness is a measure of the free-energy cost of bending a step

edge, which means that it is related to the energy required to create atomic kinks in

the step. In cases where kink excitations can be considered uncorrelated along the

step edge, as experimental measurements have shown to be for Si(001) [36], then:

β ′ = kTa/b2 (A.5)

where a is the lattice constant, b2 is the mean-square size of each kink site

b2(T ) =

∑

n a2n2exp(−E(n)/kT )
∑

n exp(−E(n)/kT )
(A.6)

and E(n) is the energy of a kink of length na. A commonly accepted way to evaluate

E(n) was suggested by Swartzentruber et al. [36] in 1990 as a result of their STM

measurements of the kink structure. In this model E(n) is related to the kink energy

ε by the expression

E(n) = nε + C (A.7)

and C is the corner energy. Both ε and C are obtained from experimental data.

Swartzentruber et al. estimated C to be 80±20 meV and ε to be 90±10 meV for SA

steps and 28±2 meV for Sb steps. Pearson et al. [33] C=71 meV and ε=32 meV for

SA steps.

The time constant τ(q) of the step fluctuation (Eq. A.3) increases as the wave-

length of the fluctuations increases because large fluctuations require more mass

transport to occur. In the most general case, when all three processes are acting

simultaneously, τ(q) can be shown to be [37]

τ(q) =
kT

Γβ ′q2
(
Γ + 2c0D

tω2q + ω3/2Dsq2

2c0Dtω2q + ω3/2Dsq2
) (A.8)

where Γ is the step mobility, Dt the diffusion coefficient for adatoms on terraces, c0

the equilibrium adatom concentration on the terraces and Ds the diffusion coefficient
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for atoms along the step edge. When Ds and Dt are sufficiently large, the attachment

and detachment of atoms from the step edge is the rate-limiting process for step

motion and Eq. A.8 simply becomes

τ(q) =
kT

Γβ ′q2
(A.9)

In the limit of Γ very large and Ds small, the rate- limiting process is the diffusion

on the terraces and Eq. A.8 becomes

τ(q) =
kT

2c0Dtω2q3β ′
(A.10)

Finally, when Γ is large and Dt small, step fluctuations are limited by diffusion along

the step edge and τ(q) is given by

τ(q) =
kT

ω3/2Dsq4β ′
(A.11)

Finally, it can be noted that in the particular case of attachment-detachment

limited kinetics the step mobility Γ is given by (Eq. A.4 and Eq. A.9):

Γ =
LA(q)

2τ(q)
(A.12)



Appendix B

Velocity Verlet algorithm

In the following the Velocity Verlet algorithm is briefly presented. For a more detailed

discussion of its merits and limitations we recommand Ref. [93].

(i) Specify the initial positions r1
i ;

(ii) Specify the initial velocities v1
i ;

(iii) Compute the positions at time step n+1 as

rn+1
i = rn

i + hvn
i + h2F n

i /(2m)

where h=time step, m=mass of particle i, and Fn
i = force acting on particle i

at time step n;

(iv) Compute the velocities at time step n+1 as

vn+1
i = vn

i + h(F n
i + F n+1

i )/(2m)
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Appendix C

SW Forces

In the following the analytic expression of the forces derived from the SW potential is

presented. The calculation of these forces was performed when using MD to increase

the acceptance for the dimer-jump move (Section 5.4.3).

As discussed in Chapter 4, the SW potential can be written as the sum of a

two-body and a three-body term (Equation 4.1). Because of this, the forces due to

the two-body and to the three-body contributions can be derived separately. In the

following we indicate the former as F(2) and the latter as F(3).

Defining g=rij/σ(Si, Sj) and all the other quantities as in Equations 4.2 and 4.4,

we have:

F (2)
xi

=
dH2

dxi
=

∑

<i,j>

ε(Si, Sj)
dF2(g)

dxi
(C.1)

where

dF2(g)

dxi
= xx K2 h(g)

xx = (xi − xj), K = σ(Si, Sj)
−1

h(g) = −
Aeδ/(g−b)

g

(

4B

g5
+

(B/g4 − 1)

(g − K)2

)

Similarly,

dF2(g)

dyi
= yy K2 h(g)

dF2(g)

dzi
= zz K2 h(g)

yy = (yi − yj), zz = (zi − zj)
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In the case of the three body contribution we have:

F (3)
xi

=
dH3

dxi
=

∑

<i,j,k>

C12
d

dxi

[

F3(g1, g2) ∗ (cosθi,j,k + 1/3)2
]

= (C.2)

=
∑

<i,j,k>

C12
dM(g1, g2)

dxi

where index 1 refers to the ij atomic pair, index 2 to the ik atomic pair and

C12 = [ε(Si, Sj) ∗ ε(Sj, Sk)]1/2 ∗ [λ(Si)λ(Sj)
2λ(Sk)]1/4

dM(g1, g2)

dxi
= −

(

γxx1

σ2
1g1(g1 − b)2

+
γxx2

σ2
2g2(g2 − b)2

)

eS (cosθ + 1/3)2 +

2 eS(cosθ + 1/3)

[

xx1 + xx2

σ1σ2g1g2
− cosθ

(

xx1

σ2
1g

2
1

+
xx2

σ2
2g

2
2

)]

S =
γ

g1 − b
+

γ

g2 − b

xx1 = (xi − xj), xx2 = (xi − xk)

Similar expressions are obtained for dM(g1,g2)
dyi

and dM(g1,g2)
dzi

.


