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ABSTRACT

Resource Description Framework (RDF) has been extensively used to represent the data for

Semantic Web in recent times. Due to a large amount of RDF data, it is difficult to store it

in a single system and query it using SPARQL. Instead, it is possible to partition the data

into subsets and then query it using federated SPARQL queries. There are many challenges

related to distributed querying: for instance, the processing time for a query increases in

proportion to the number of distributed joins. We present a study on the impact of query-

adaptive partitioning of the RDF data. We present a system called RePart that shuffles the

data among the nodes of the cluster according to the incoming query workload to reduce

the number of distributed joins while querying. Our evaluation based on several benchmarks

demonstrates that the performance of federated queries is improved after performing the

repartitioning of the triples according to the query-workload.
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CHAPTER 1

INTRODUCTION

With the technological innovation, World Wide Web (WWW) has become an essential part

of our life. The Internet has become a universal source of information, and a medium of

communication as more and more people express their thoughts by posting tweets, blogs,

videos and images. In a real sense, Internet has become a ”Global Village” as stated by

Marshall Mchulan [2] in 1970. Around 44 billion GB of data is added on the Web daily1.

The massive amount of data makes it difficult to manage, store, analyze and find relevant

information out of it.

The users can read and comprehend the content of the Web pages available on the Internet.

They are also able to navigate from one page to another using interconnected links. It

has been made possible because of HTML which provides an ability of build interactive

components on the Web that is meant for human consumption. The amount of data on

the Web is increasing continuously and therefore; it becomes an intricate task for humans

to absorb all the data. Semantic Web attempts to automate the Web by adding machine-

readable semantics to the data.

1.1 Introduction to Semantic Web

Universal Resource Locator (URL) locates a Web page on the World Wide Web (WWW)

using hypertext transfer protocol (HTTP). Most of the resources on the Web are written

using HTML that encodes the rendering information for Web browsers and therefore is

1https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/

1
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intended for human use. Machines are unable to read and comprehend this information

for any purpose. Semantic Web aims to deliver a set of standards and best practices for

sharing data and the semantics of the data over the Web for the use by applications [3].

These set of standards are defined by W3C [4] for the people to follow the universal rules

to embed machine-readable information on the existing Web page. This machine-readable

syntax assists the applications, machines, tools, and programs to efficiently communicate

and share the meaning (semantics) of the data. The Semantic Web can be considered as

a massive graph of interconnected resources through meaningful edges that represent the

relationships between the resources [5]. These are the set of standards defined by W3C for

Semantic Web:

• RDF Data Model

• RDF Schema and OWL standards for storing Vocabularies and Ontologies

• SPARQL Query Language

W3C defines RDF [6] as a data model for Semantic Web. RDF has been discussed extensively

in section 2.1. The entities on the Web are considered as resources which can be uniquely

identified using (Universal Resource Identifiers) URIs. RDF provides an ability to deploy

information about the resources on the Web. Relationships between different resources can

also be represented with the RDF data model.

1.2 Motivation

The popularity of representing data in RDF format has been growing in the past several years

as RDF data does not require a proper schema and it is able to represent information from

the diverse sources. RDF is increasingly being used to encode data for the Semantic Web and

for data exchange, for example, shopping sites, search engines, social networks and scientific

databases are adopting RDF for publishing Web content [7]. Many large knowledge bases
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have billions of RDF triples such as Bio2RDF (bio2rdf.org), Uniprot RDF (dev.isb-sib.

ch/projects/uniprot-rdf) and Yago [7, 8, 9].

As the amount of RDF data increases on the Web, it becomes often too large to fit in

a single server. For instance, in performance-critical applications, it is common to use in-

memory RDF store, however, the comparatively high cost of RAM limits the capacity of such

systems [10]. When dealing with Linked-data [11], it becomes challenging task to integrate

large databases that cannot be processed together even in disk-based systems.

To incorporate scalability in the applications dealing with a significant amount of RDF

data, many approaches have been discussed where the RDF data is stored in shared-nothing

clusters [12, 13, 14, 15, 16, 17]. Querying RDF data which is divided among the nodes of a

cluster has following challenges [10]:

1. Intermediate results during distributed join evaluations may grow with the size of the

data and it is possible that it might surpass the capacity of the individual node.

2. Intercommunication between nodes of a cluster increases with the evaluation of the

distributed joins as triples participating in joins are stored in different nodes.

The challenges reflect that due to the random partitioning of triples among the nodes of the

cluster, the number of distributed joins increases. As a result, the time required by a query

to evaluate these joins also increases proportionally. Thus, overall query performance of the

distributed data store is affected.

An appealing solution is to perform a sophisticated initial partitioning and even replication

of the data to minimize the number of distributed joins and increase the data locality [18].

However, in a long run, the systems which performs sophisticated initial partitioning incur

high overhead due to data pre-processing and the partitions are unable to adapt according

to the query workload [9]. Query-Adaptive partitioning distributed systems redistribute and

replicate the content of their nodes by monitoring the query workload instances of the most

dev.isb-sib.ch/projects/uniprot-rdf
dev.isb-sib.ch/projects/uniprot-rdf
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frequent ones among workers. The goal is that each node has all the data it needs to evaluate

the entire query and there is no need for exchanging intermediate results. In such a parallel

query evaluation, each node contributes a subset of a complete (partial) result. As a result,

the number of distributed joins are reduced and the communication cost for future queries

is also drastically reduced or even eliminated [19]. The systems like WARP [14] and Partout

[13] do consider the workload during the data partitioning and achieve a significant reduction

in replication ratio while showing better results compare to the systems that partition the

data blindly. However, both the systems assume a representative (static) workload and do

not adapt to the changes. [20] showed that the system needs to continuously adapt to the

workloads in order to consistently provide a good performance.

1.3 Contributions

In this thesis, we propose a distributed RDF query processing architecture that performs

query workload-adaptive partitioning on RDF data in a cluster. Each query from the query

workload is monitored, and data is incrementally rearranged to reduce inter-partition data

exchange while executing the queries. It is possible that some amount of the data is replicated

to achieve the data locality. Our primary goal is to increase the overall performance of the

query workload.

For the exchange of the data to happen, it is required to have a robust, efficient system to

transfer RDF triples from one processing node of a cluster to another. We introduce a dis-

tributed system RePart, which is deployed on a cluster of machines. It facilitates the exchange

of RDF triples between the nodes of the cluster. RePart follow HTTP protocol to commu-

nicate between various components. Therefore, the components do not have geographical

distance as a constraint which allows for a flexible setup. We also introduce RDF-Metadata

Notation (RDF-MN) that provides exhaustive information about the type of triples present

in every processing node of RePart. ML describes the capability of a node regarding what
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kind of query patterns it can answer. Each processing node of RePart is composed of three

components, (i) triple store to store the RDF data, (ii) an off-the-shelf SPARQL query

engine capable of evaluating SPARQL queries on the data stored in the triple store and (iii)

a metadata store to store the metadata described by ML. This thesis is a part of a bigger

project which is focused on developing all the components of RePart. The main contribution

of this thesis is to provide an underlying system that is capable of shuffling the triples among

the nodes of a cluster when required. Following steps are taken manually to emulate all the

other components of RePart:

1. The RDF data is manually divided into n partitions (n corresponds to the number of

processing nodes in RePart). This is called the initial partition.

2. Instructions are manually encoded into RScript to repartition the data after considering

the query-workload.

3. The generated RScript is provided as an input to RePart.

RePart executes that RScript and (i) initiates the exchange of triples from a source node to

a destination node, and (ii) updates the metadata of each node after the process of triple

repartitioning.

In summary, our contributions are:

1. We propose RePart, a distributed system that contains a triple store and an off-the-shelf

SPARQL query engine. It is capable of performing efficient query workload adaptive

repartitioning of RDF data. It takes RScript as an input that initiates the exchange of

the triples.

2. We introduce Metadata Notation which is capable of providing insight about the type of

triples that exist in each node. RePart has a metadata store that stores this information.

3. We evaluate RePart using sythetic data that is generated using LUBM and BSBM

benchmarks. RePart successfully stores and shuffle RDF data. There is a significant
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performance gain regarding query running time after the data is repartitioned using

RePart while considering the query-workload.

The rest of the thesis is organized as follows. Chapter 2 covers preliminaries that provide

a better understanding of the domain. Chapter 3 reviews existing distributed RDF systems

that are related to our work. Chapter 4 presents the architecture of RePart and provides

an overview of the system’s components and the implementation. Chapter 6 contains the

experimental results, and Chapter 7 concludes the thesis.



CHAPTER 2

BACKGROUND

In this chapter, we provide a detailed explanation of the terminology used throughout the

thesis. We cover the core concepts related to the Semantic Web and some other terms that

will be helpful in understanding the implementation.

2.1 Resource Description Framework (RDF)

Resource Description Framework [6] enable users to embed machine-readable information on

the Web. RDF is a language for the representation of the resource. A resource is anything

that can be located using URL on the Web. RDF helps to create links between different

resources which are already available on the Web, thus, creating a graph. The basic building

block of RDF is a statement which has three parts and therefore it is called a triple. A triple

consists of the following three parts:

• Subject - a resource being described

• Predicate - a property of that resource

• Object - a value of that property, that can be another resource or a literal

Figure. 2.1: Graphical representation of a RDF Triple

7
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In Figure 2.1, a basic RDF triple is shown. The subject and object are represented in oval and

rectangle respectively. The edge of the graph is represented by a predicate. The information

described by the triple is: UGA’s location is Athens. Here, UGA, location, and Athens are

URIs and ”ns” in the predicate represents a namespace for that URI.

Various RDF triples put together form a graph. In this graph, a subject node is connected

to an object node via directed edge, called a predicate. The predicate has a dual purpose: it

represents the value of an object and also expresses the relationship between the subject and

the object. As stated before, each triple expresses some knowledge and an RDF graph as a

whole can be read by machines to gather the information with each of its resources tagged

with a Uniform Resource Identifier.

RDF graph helps to connect different data sources by explicitly defining that a resource in a

dataset is similar to some different resource in another dataset. This creates a Web of data

that can be read by machines. Different parts of the RDF graph can be defined as:

• URIs - they are used to refrence resources unambiguously

• Literals - they are used to describe data values with no clear identity like ”abc@xyz.com”.

• Blank Nodes - they represent resources for which a URI or a literal is not given

By defining their own URIs, users can add information about any resource in the RDF

graph. Thus, an RDF model allow users to integrate the data sources at different location on

the Web. RDF triples collectively form a directed labeled graph. Following are the popular

formats in which RDF data can be serialized [21]:

• RDF/XML - the official XML serialization of RDF,

• N-Triples - a text format focusing on simple parsing,

• Turtle - a text formal focusing on human readability, and

• Notation 3 - a text format with advance features beyond RDF.
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Figure. 2.2: Example of a Turtle file describing an RDF Schema, adopted from [1]

2.2 Resource Description Framework Schema (RDFS)

In Semantic Web development, a vocabulary [22] is a set of terms stored in a standard

format that people can reuse. A vocabulary of property names has its own namespace to

make it easier to use it using other sets of data. RDF Schema [23] is description language

for vocabularies which adds some extra knowledge to RDF. RDF Schema is the set of triples

that are used to describe other triples in the data. Figure 2.2 shows a few of the triples

from the RDF Schema vocabulary description of the Dublin Core vocabulary [24] in the

form of .ttl file. Prefix are included at the top of the file to assign a shorter name for a

namespace of a URI. This makes it easier to mention the URIs in the triples. rdf:type is

part of a RDF vocabulary. It describe that the creator is an instance of the class Property.

Similarly, RDF Schema provides an ability to describe the data in a more expresive way.

For example, rdfs:label lets the user to add a label to describe the subject. Moreover, RDF

Schema defines Classes and Properties that creates a taxonomy for arranging the RDF data

[24]. Resources in the RDF data can be grouped together into Classes. A member of a class

is called an instance of that class. It is possible for a resource to be an instance of more

than one class. Classes are also resources, and therefore, they can be defined by properties to

add more information about the class itself. For example, the domain and range are the two
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properties that can be defined for a class. RDF Schema, however, provides a limited amount

of reasoning. OWL overcomes this limitation.

2.3 Web Ontology Language (OWL)

W3C’s Web Ontology Language [25] is used to describe complex knowledge about the entities

on the Web. It provides a way to represent the relationships between a group of things.

Knowledge expressed by OWL can be exploited by computers. The documents in OWL are

known as Ontologies [22] which are a form of knowledge management. It is a way to represent

all the entities that exists and the relationships between the different entities. Ontologies are

a formal definitions of vocabularies that allow the users to define complex structures and

new relationships between vocabulary terms and between members of the classes that were

defined in the Ontology. Ontologies are collections of RDF triples. Information about the

resources mentioned in these triples or relationships between different resources is described

using the OWL vocabulary. OWL builds on RDFS, therefore; it has a vocabulary that is

richer and more expressive than RDFS itself. Some of OWL’s most notable features are its

ability to provide a way to state transitive, inverse and symmetrical properties.

Figure 2.3 shows some triples that use OWL’s vocabulary. The terms defined in the vocab-

ulary can be accessed using the prefix owl. For the resource spouse, the property Symmet-

ricProperty is defined using OWL’s vocabulary. Symmetric property works both ways. Triple

ab:i0432 ab:spouse ab:i9771 means that ab:io432 has spouse as ab:19771. Since spouse is a

symmetric property, it explicitly conveys information that ab:i9771 also has ab:i0432 as

a spouse. It is not required to have an extra triple describing this information. Similarly,

owl:InverseOf property is also used to describe a relationship between two resources which

adds an explicit meaning to the data.
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Figure. 2.3: Example of a Turtle file describing OWL Schema, , adopted from [1]

There are lots of RDF dataset available on the Web. Users can extract meaningful informa-

tion and make inferences from this data using the RDF query language SPARQL.

2.4 SPARQL Protocol and RDF Query Language (SPARQL)

As discussed in the previous Sections, using W3Cs standards, users are able to deploy struc-

tured data on the Web that can be exploited by the machines. OWL vocabulary allows

the users to create ontologies, which represents resources and relationships between var-

ious resources. SPARQL Protocol and RDF Query Language (SPARQL) [26] is the W3C
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standard that is used for querying the data in RDF graphs for exploring any unknown rela-

tionships between resources. SPARQL query RDF data in the same way as SQL query data

represented by the Relation Databases. A SPARQL SELECT query comprises of different

components as shown in Figure 2.4 in the order they appear in a SPARQL query [27].

Figure. 2.4: Sparql Query Structure

Functionality of each component is described below:

• Prefix deceleration - for abbreviating URIs

• Dataset definition - stating what RDF graph(s) are being queried

• Result clause - identifying what information to return from a query

• Query pattern - specifying what to query in a given dataset

• Query modifiers - allows to rearrange the query results

A SPARQL query is executed against an RDF dataset that consists of RDF graphs. A

SPARQL endpoint [28] accepts SPARQL queries that returns the result via HTTP. The

results of a SPARQL query can be returned or rendered in various formats: XML, JSON,

RDF, HTML.
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SPARQL attempts to match a triple pattern in an RDF graph. Triple patterns are similar

to a triple, except that any of the parts of a triple, i.e. subject, predicate or object can be a

variable. Matching of a triple pattern is called binding.

Figure. 2.5: Simple RDF Data in TTL format, adopted from [1]

Consider that the data represented by the .ttl file in Figure 2.5 is stored in an RDF graph.

The data will be available through a SPARQL endpoint. The query shown in Figure 2.6

can be used to extract the information represented by a triple pattern. The RDF graph

addressbook will be searched for all the triples that have ab:craig as a subject and ab:email

as a predicate. The answers will be bound to the variable ?craigEmail, which is an object.

Figure. 2.6: Simple Sparql Query

The query is searching for all the email address available for the URI ab:craig. In the end,

values bound to ?craigEmail are returned. The result is displaced in the Table 2.1 .
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Figure. 2.7: Data exposed through SPARQL endpoint: <http://example.../addressbook1>

Figure. 2.8: Data exposed through SPARQL endpoint: <http://example.../addressbook2>

Table. 2.1: Query results

?craigEmail
craigellis@yahoo.com

c.ellis@usairwaysgroup.com

It is possible to query more than one RDF graphs exposed through different SPARQL end-

points in a single query. This can be achieved by using federated SPARQL queries.

2.4.1 Federated SPARQL Query

Users are increasingly publishing large amounts of RDF data on the Web. This data can be

queried through open SPARQL endpoints. Federated Query [29] allow the users to combine

solutions from different RDF datasets. Keyword SERVICE is used in the WHERE clause

that directs a portions of a query towards a particular SPARQL endpoint. Federated query

processor merges the results coming from the various SPARQL endpoints. Consider the

data represented by .ttl file in Figure 2.5. Currently, the whole data is stored in a single

RDF dataset and therefore a normal query is able to obtain the results. Suppose this

data is divided in two different RDF datasets, as shown in Figures 2.8 and 2.7. To obtain
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Figure. 2.9: Federated query

the email addresses of the subjects ab:craig and ab:richard, a federated query has to be

executed. The query is shown in Figure 2.9 which is executed against the SPARQL end-

point <http://example.../addressbook2> . The query search for the triple pattern ab:craig

ab:email ?email locally. Whereas, SERVICE keyword prompts the federated query processor

to search for the triple pattern ab:richard ab:email ?email in the RDF dataset exposed

through the SPARQL endpoint <http://example.../addressbook1> . Finally, results are

combined and displayed as shown in Table 2.2.

Table. 2.2: Federated query results

?email
craigellis@yahoo.com

c.ellis@usairwaysgroup.com
richard49@hotmail.com

There are many available RDF triple stores that provide the functionality of storing and

querying the RDF data, such as Redland [30], Sesame, Jena [31], Virtuoso, etc. For our

thesis, we have selected Virtuoso [32] as the system to store and query RDF triples.



16

Figure. 2.10: RDF QUAD

2.5 Standard RDF Triple Store With Associated SPARQL Processor

According to the documentation, “OpenLink Virtuoso 7.0 [32] is a revolutionary, next gen-

eration, high-performance virtual database engine for the Distributed Computing Age”. It

provides support to store and query the RDF data. Virtuoso stores RDF triples in the form

of Relational database tables. One of the main tables of the default RDF storage system is

shown in Figure 2.10. Each triple in RDF QUAD is represented as one row in RDF triples.

The table is called ”QUAD” as it stores triple with one extra column representing the graph

to which that triple belongs to. Therefore, the columns represent the graph, subject, predi-

cate, and the object. To answer the SPARQL queries, Virtuoso converts them to SQL queries

and executes them against the tables, where the RDF triples are stored. Virtuoso also pro-

vides the support to run federated queries over multiple SPARQL endpoints. In Virtuoso,

SPARQL and SQL share the same query execution engine, query optimizer, and the cost

model. For federated queries, the logic for optimizing the message flow between multiple

end-points on the Web is similar to the logic for message-optimization on a cluster. Virtuoso

also has an Interactive SQL (ISQL) which provides a faster way to perform some tasks, like

bulk loading of RDF triples.
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2.6 REpresentational State Transfer (REST)

There are numerous Web Services that are exposed to the internet for programmatic access.

Published Web APIs can be accessed by application developers to perform various kind of

tasks. For example, Twitter1 has its own Twitter API2 that allows users to engage with

the Twitter platform. It provides functionalities to search tweets or filter real-time tweets.

These APIs are similar to Web pages, however, their response does not contain HTML or

CSS . The response is in barebone data formats like XML or JSON which helps application

developers to parse the data and use it accordingly.

There are many ways to build such Web Services or APIs. One way to build them is by

following REST architecture and they are called RESTful Web Services. The term REST

was introduced by Roy Fielding in the year 2000. REST stands for REpresentational State

Transfer. It is an architectural style which consists of certain constraints and criterions that

can be used as guidelines while designing the Web Services. RESTful Web Services are

lightweight, scalable and manageable services that uses concepts behind HTTP. The goal

when building a RESTful Web service is to make it as RESTful as practically possible.

Following are the primary constraints required under RESTful architecture:

• Resource-based URI - Unique URIs should be created for every resource and the

resources should be addressable using this identifier. URI should contain nouns and

not verbs. Mostly, nouns are resource name themselves.

• Unique Interface - All interactions between client’s application and resources in the

system should be carried out through a constrained unique interface. The system should

provide well-defined set of methods to manipulate the data related to resources.

1https://twitter.com/
2https://developer.twitter.com/en/docs
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• Manipulation of resources through representation - Data related to resources can be

returned in many formats such as HTML, JSON, XML, PNG, etc. These formats are

the representations of the identified resource [33]. RESTful applications may support

different representations of the same resource at a given URI. RESTful applications

allow a client to define what representation of a resource is required. This can be

accomplished by passing Accept HTTP header with each request of a resource. Rep-

resentations can be sent from a client to a server for the purpose of updating the

resource. This is achieved by a Content-type HTTP header that is passed by the

client to the server with each resource sent to the server.

• Self-descriptive messages - Client and server communicate via messages and Restful

Web Services expect these messages to be self-descriptive. Each message should contain

all the information to complete the task. The messages can have a body and a meta-

data.

• Stateless Interaction - All client-server communications are stateless. The server does

not store information about the latest HTTP request and treats every request as a new

request.

All Web Services that incorporate these constraints within their architectural design can be

called RESTful Web Services. REST uses HTTP methods for exposing services provided by

the system. These methods can be classified based on two aspects, (i) their functionalities and

(ii) method Idempotence. Idempotence is a property of certain operations in methamatics

and computer science, that can be applied multiple times without changing the result beyond

the initial application. A client can perform different operations on resources by using the

following four HTTP methods:

• GET - Provides a read-only access to a resource. It is used to get information about

a resource which is specified by a URI. GET method does not change the state of a

resource, therefore; it is idempotent.
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• PUT - Provides a way to update or change a resource. The new content is sent in the

body of the PUT request from the client side to the server. For a specific resource, the

new data replaces the old content. This method is idempotent as well.

• DELETE - Provides a way to delete a resource and is idempotent.

• POST - Provides a way to create a resource. The body of this method contains the

content of the new resource. Every time a POST request is made, a new resource is

created, therefore, it is not idempotent.

In this thesis, we have used a RESTful architecture to facilitates the exchange of triples

among the nodes of a cluster.



CHAPTER 3

RELATED WORK

3.1 Distributed Graph Query Processing Systems

3.1.1 LOOM

The paper [34] discuss a general graph partitioning system. According to the query workload

Q, Loom allocates the new vertices and edges to various partitions. The primary focus of this

paper is online graphs (graphs that continuously increase). For example, the incoming stream

of data that has to be added to the already existing graph. As the graph is already divided

into partitions, it is critical to decide to which partition, the incoming edges and vertices have

to be allocated. Therefore, LOOM aims to efficiently partition the large, dynamic graphs to

optimize for given streams of sub-graph pattern matching queries.

Loom has the following main goals:

1. First, when answering queries from a given workload, it aims to discover patterns of

edge traversals that are common among various queries. For example, it tries to find

the sub-graph patterns that are frequently traversed by the queries during execution.

2. Second, it detects similar instances of these sub-graph patterns in the incoming streams

of the online data which is itself a combination of edges and vertices.

3. Finally, it tries to assign these matched patterns entirely within an individual partition

or across as few partitions, as possible, in order to reduce the inter-partition traversal

and increasing the average performance of the queries.

20
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A query motif is a graph which occurs with a frequency of a user-defined threshold T as a sub-

graph of query graphs from Q. At first, Loom employs a trie-like data structure to index all of

the possible sub-graphs from all the queries in Q. Then, it identify the sub-graphs that occur

most frequently (motifs). Secondly, Loom monitors all the incoming streaming data. It checks

whether each new edge added to the graph creates a sub-graph which matches one of the

motifs. To achieve this matching, it uses graph stream pattern matching procedure. Finally,

it employs an existing partitioning heuristics to assign each sub-graph that matches a motif

to an individual partition, thereby reducing the interpretation- traversal. For experiments,

the graphs are streamed using three techniques: (i) Breadth-first, (ii) Random and, (iii)

Depth-first. The tests indicate that Loom significantly reduces the number of inter-partition

traversals required when executing query workload over the partitions.

3.1.2 Sedge

Sedge [15] uses similar techniques for SPARQL query execution on top to the vertex-centric

processing model Pregle [35]. The authors propose a graph partition management strategy

that supports overlapping partitions and replication for fast graph query processing by elim-

inating a constraint in Pregel that does not allow duplicate vertices in partitions. The focus

is to replicate some regions of a graph and distribute them in multiple machines to serve

queries in parallel. For this goal, the authors have developed three techniques in Sedge. (i)

Complementary partitioning is to find multiple partition schemes such that their partition

boundaries are different from one another. (ii) Partition Replication is to replicate the same

partitions on multiple machines to share the workload on these partitions. (iii) Dynamic

Partitioning is to construct new partitions to serve cross-partition queries locally.
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3.1.3 DREAM

DREAM [16] is a distributed RDF system that avoids partitioning RDF datasets and parti-

tions only SPARQL queries. Dataset is replicated at each node while an incoming query is

decomposed into subqueries and sent to the suitable node to be evaluated. DREAM follows

a master-slave architecture where each machine uses RDF-3X [36] on its assigned data for

statistical estimation and query evaluation. A user submits a SPARQL query to the master

that converts the query to a graph pattern and feeds it to the query planner that decomposes

the graph to sub-graphs. Master then place the sub-graphs at a single-slave machine and all

machines are executed in parallel. It also avoids expensive intermediate data shuffling and

only exchanges small auxiliary data. Depending on the query complexity, DREAMs optimizer

decides to run it either in a centralized or a distributed fashion. Although DREAM does not

incur any partitioning overhead, it exhibits excessive replication and costly preprocessing

because of the centralized database construction.

3.1.4 EAGRE

EAGRE [37] is a technique that provides a new representation of RDF data on Cloud plat-

form. It also proposes an I/O efficient strategy to evaluate SPARQL queries as quickly as

possible. To improve the efficiency in answering SPARQL queries on a Cloud platform, it

necessary to have an RDF data remodeled and organized. Therefore, EAGRE transforms the

RDF data into an entity graph by grouping triples based on the subject where each subject is

called an entity. Then it groups entities with similar properties into an entity class. EAGRE

then generate a compressed entity graph that contains only entity classes and partition it

using METIS. At each machine, entities belonging to the same class are treated as high

dimensional data indexed by a Space-Filling Curve. This maintains an order preserving the

layout of the data which fits well range and order by queries. EAGRE converts SPARQL
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queries into MapReduce jobs. Therefore, it suffers from the overhead of MapReduce joins for

queries that cannot be evaluated locally.

3.1.5 S2RDF

S2RDF [38] is a SPARQL processor based on the in-memory cluster computing framework

called Spark. It introduces relational partitioning schema for the RDF data called Extended

Vertical partitioning (ExtVP) that can significantly reduce the input size of a query. The

reduction of data input size tends to be more effective than decrease in join operations for

Spark as it is an in-memory system. ExtVP is an extension of Vertical Partitioning (VP)

introduced in [39]. In such representation of triples, a triple pattern based on a predicate can

be obtained by accessing the corresponding VP table, which leads to a reduction of input size.

The size of these tables is highly skewed in a typical RDF dataset with some tables containing

only a few entries, while others comprising a large portion of the entire graph. Hence, there

are still a lot of dangling tuples, i.e., input tuples that do not contribute to the output of a

query, which are potentially shuffled during query execution. ExtVP uses semi-join reduction

to minimize data skewness and eliminate dangling triples that do not contribute to any join.

For every two vertical partitions, S2RDF pre-computes join reductions: (i) subject-subject

join, (ii) subject-object join and (iii) object-subject join. As these semi-join tables are much

smaller compared to the base tables, they are used for joins, while query evaluation. S2RDF

converts the SPARQL queries into SQL jobs which are then executed on top of Spark SQL.

3.1.6 DARQ

DARQ [17] is an engine for federated SPARQL queries. It is a system to query an RDF data

stored in a distributed environment, which is exposed through a SPARQL endpoint. It gives

the user an impression to query one single RDF graph. However, the real data is distributed

around the Web. A service description language enables DARQ to obtain information about
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the data available on each service. This helps the DARQ’s query engine to decompose the

SPARQL query into sub-queries, each of which can be answered by individual services. To

speed up the query execution, DARQ uses a query optimization algorithm that re-writes the

query and builds a cost-based query execution. DARQ is compatible with any endpoint that

supports SPARQL standards. Apart from this, nothing else is required.

Figure. 3.1: DARQ architecture

DARQ’s architectural diagram is shown in the Figure 3.1. A wrapper can be used to convert

the data from other formats to RDF. Endpoints provide access to the RDF data stored in

data store. An incoming query is received by the DARQ’s engine, an d the query is processed

in 4 steps:

1. In the first step, the query is parsed into a tree model by using the parser shipped with

ARQ.

2. In the second stage, the DARQ query divides the incoming query into sub-queries by

using the information from various endpoints (service descriptions). Each of the queries

could be answered by one known data source (endpoint).

3. In the third stage, the sub-queries are sent to query optimizer that builds an optimized

query execution plan.
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4. Finally, the query plan is executed. The sub-queries are sent to the respective endpoints

and at the end, the results are combined.

Figure. 3.2: Service Description example

Service description provides data about the RDF data available from each data store in the

form of capabilities. Service descriptions are represented in the RDF format. The capability

is a measure of what kind of triple patterns can be answered from a data store. For example,

consider the Figure 3.2. Here, it is possible to say that a Service A can only answer queries for

names starting with a letter A to R, whereas, another service can answer queries for the names

with letter Q to Z. In addition to that, statistical data available from data stores in the form

of service descriptions, like the number of total triples for a given predicate, help the query

optimizer to generate the cost-effective execution plan. By using these service descriptions,

query planner can find relevant sources and possible sub-queries. To find the appropriate data

sources for an incoming query, the algorithm matches all the triple patterns in the query

to the capabilities of various data sources. The Matching compares the predicate in a triple

pattern to the predicates defined in the capabilities and finds constraints for subject and

objects. The query plan consists of multiple sub-queries after the process of Query planning.

Query optimizer builds a cost-effective execution plan.
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3.1.7 PARTOUT

PARTOUT [13] is a workload-aware distributed RDF engine that generates fragments of

the whole dataset based on a query log and allocates the fragments to nodes in a cluster.

PARTOUT makes the following contributions:-

1. It provides a system for RDF storage that can handle updates to the RDF dataset.

2. A partitioning and allocation algorithm for RDF dataset is introduced while considering

a given query workload.

3. It provides an optimizer for distributed SPARQL query processing and a cost model

for proposed architecture.

There are three primary steps involved in the partitioning and allocation process: (i)

extract representative triple patterns from a query workload by applying normalization and

anonymization,(ii) define a load score for each fragment and sorts fragments in descending

order, and finally (iii) for each fragment, calculate a benefit score for allocating it to each

machine. The benefit score takes into account both the machine utilization well as the

fragment locality.

Figure. 3.3: System Architecture of Partout
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3.1.8 WARP

WARP [14] is a distributed SPARQL engine that combines graph partitioning techniques

with a workload-aware replication of triples across the partitioning which enables query

execution for complex queries. The authors also propose cost-aware query optimization and

query execution for arbitrary queries without the need for MapReduce jobs. WARP uses

the underlying METIS [40] algorithm to assign each vertex of the RDF graph to a partition.

Triples are then assigned to partitions according to their subjects. Each partition is stored at

a dedicated host in a triple store (RDF-3X). WARP uses a representative query workload to

replicate frequently accessed data by extending the n− hop guarantee method [41]. WARP

determines queries center node and radius. If the query is within n−hop guarantee, it sends

the query to all partitions to be executed in parallel. On the other hand, if it is a complex

query, it is decomposed into several sub-queries for which a distributed query evaluation plan

is created. Subqueries are evaluated in parallel by all machines and the results are sent to

the master, which combines them using the merge join.

3.1.9 AdPart

In the paper [12], the authors propose AdPart, a distributed, in-memory RDF system, that

re-partitions the RDF data incrementally, according to the query workload to increase the

query performance. AdPart has two primary functions:

1. Initially, AdPart does not require expensive data preprocessing. It uses hash parti-

tioning that avoids the cost associated with initial partitioning of data.

2. AdPart provides an ability to monitor and index workloads in the form of hierarchical

heat maps. It also introduces Incremental ReDistribution (IRD) technique for data

portions that are accessed by hot patterns, which are guided by query workload. Thus,

AdPart adaptively partitions the data.
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Figure. 3.4: System Architecture of AdPart

In the figure 3.4, the architecture of AdPart is shown. It follows master-slave paradigm and

uses MPI (message passing interface) for communication among the nodes. Master begins

by loading the partitions among the respective workers. Each query is sent to the master,

which decides weather the query should be executed in distribute or parallel fashion. In

parallel mode, the query is executed by each worker at the time without communication. In

distributed manner, the execution of the query by all worker require communication. Various

components of AdPart’s system are discussed below.

Master

• String Dictionary encodes RDF strings into numerical IDs and build an i-directional

dictionary.

• Data Partitioner performs node-based partitioning by hashing the subject values.

Therefore, any star based query can be evaluated without any communication cost.

• Statistics Manager maintains statistics about the RDF graph. This is used to gen-

erate query evaluation plan and during RePartitioning.
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• Redistribution controller monitors query workload in the form of heat maps and

triggers the incremental redistribution of triples for the patterns that occur often and

are called hot patterns. Data accessed by hot patterns can be answered by all workers

without communication. If a hot pattern is replicated, it is indexed in a structure called

pattern index (PI).

• Locality-aware query planner decides if an incoming query can be executed without

communication. For this purpose, it uses global statics from statistics manager and

PI. Query are executed by each worker independently if it can be answered without

communication. On the other hand, for distributed queries, the planner uses hash-

based data locality and triple patterns in the query to generate a plan which requires

minimum communication cost.

Worker

• Storage Module Each worker stores its local set of triples in an in-memory data

structure. Primarily, each triple is hashed on its predicate. Therefore, resulting pred-

icate index supports search by predicate. To re-partition each bucket of triples with

same predicate, two hash-maps are used that support search operations like predicate-

subject index and predicate-object index. When answering a query, if a predicate value

is variable, the they iterate over all the values of a predicate.

• Replica Index Each worker has a local replica indexes that index the data which is

replicated as a result of adaptivity.

• Query Processor Each workers query processor can run in two modes, (i) distributed

mode for the queries that require communication. (ii) parallel mode for queries that

can be answered without communication.
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• Local query planner Workers make a local plan for queries that execute in parallel.

For example, star queries joining on subjects are processed in parallel.

AdPart Adaptivity

AdPart redistributes the data needed for a current workload and adapts to the workload

change. The IRD component of AdPart is a combination of hash-partitioning and k-hop

replication, guided by a query workload. Given a hot pattern (that often occurs in the query

workload), AdPart selects a specific vertex called core vertex. It transforms the pattern into

a redistribution tree rooted at core vertex to group the data accessed by pattern around the

binding of this vertex. Then, starting from the vertex, first-hop triples are hash distributed

based on core-bindings. AdPart uses redistributed patterns to answer the query in parallel

without communication.

3.2 Comparison

This section covers detailed comparison (summarized in Table 1) of all the systems1 discussed

above with respect to various criterion mentioned below:

3.2.1 Partitioning Strategy

All the distributed systems have to partition the data among the nodes of the cluster, and

they apply different techniques to do that. In this section, various partitioning techniques are

compared. AdPart and Sedge use lightweight subject hashing technique where they assign

a triple to a node according to the subject hash value. DREAM, instead of partitioning,

replicates the data among the nodes of the cluster. EAGRE depends on METIS for the

initial partitioning of the data. WARP, on the other hand, applies METIS to partition the

1AdPart-NA, which is a nonadaptive version of AdPart, is also included for comparison
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Table. 3.1: Summary of various Distributed RDF systems

System
Partitioning
Strategy

Execution
Model

MapReduce
Based

Replication
Level

Workload
Awareness

Dynamic
Partitioning

Specialized
Q Processor

S2RDF
Extended

Vertical Partitioning
SPARQL
to SQL

Yes Partial No No Yes

EAGRE METIS
MapReduce-based

Join
Yes None No No Yes

Sedge Subject Hash
Vertex-Centric
BGP matching

No Complete No No Yes

DREAM
No partitioning:
full replication

RDF-3X No Complete No No Yes

AdPart-NA Subject Hash
Distributed
Semi join

No None No No Yes

DARQ -
ARQ + Built-in
Query Engine

No None No No Yes

Partout
Workload based
fragmentation

RDF-3X No None Yes No Yes

WARP
METIS on query

workload
RDF-3X Yes Partial Yes No Yes

AdPart Subject Hash
Distributed
Semi Join

No Partial Yes Yes Yes

graphical query pattern. S2RDF uses Extended Vertical Partitioning (ExtVP) to partition

the data. For every two VPs, ExtVP pre-computes its join reductions and materializes the

results as new partitions (tables for Spark SQL) in HDFS. Hence, ExtVP incurs significantly

higher overhead. Partout divides the data into fragments according to the query workload and

stores them into different nodes. AdPart initially partitions the data using subject hashing

and it incrementally updates the partitions as the query workload changes.

3.2.2 Execution Model

This section compares various execution models used by distributed RDF frameworks.

DREAM, Partout, and WARP take advantage of RDF-3X to execute SPARQL queries in a

distributed domain. RDF-3X engine is an implementation of SPARQL that achieves excel-

lent performance by pursuing a RISC-style architecture developed for distributed SPARQL

querying. S2RDF has been developed on Spark, which is an in-memory cluster computing

system that runs on Hadoop. S2RDF converts the SPARQL queries into multiple SQL oper-
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ations, which are then executed using Spark. Similarly, EAGRE also preforms SPARQL joins

by leveraging MapReduce. However, using MapReduce also lead to higher pre-processing

overhead in some cases. Sedge uses Vertex Centric basic graph pattern matching for query

evaluations. DARQ has an inbuilt query engine that also uses ARQ for parsing the incoming

queries. AdPart uses their implementation of distributed semi-join to reduce the overhead

of intercommunication between the nodes while query execution.

3.2.3 MapReduce Based

TSome distributed RDF systems use the underlying framework, such as MapReduce, to

accelerate the evaluation of joins that occur, while executing the SPARQL query in a dis-

tributed fashion. For example, EAGRE uses MapReduce to process the joins. S2RDF, on

the other hand, converts the SPARQL queries into SQL and executes them over Spark.

WARP gathers the query evaluation results from various nodes using merge join that is

executed using MapReduce. S2RDF has higher preprocessing overhead but shows significant

performance improvements compared to purely MapReduce-based systems.

3.2.4 Replication Level

Some systems use data replication to improve the overall query performance. For example,

S2RDF, WARP, and AdPart partially replicate the data. This is shown in the Table 1 as

”Partial” in the ”Replication Level” column. Each system has a different technique to decide

which triples to be replicated. Some systems, for example, DREAM and Sedge, reproduce

the entire data in every node of a cluster. It then partitions the query and sends the sub-

queries to the optimal node for execution. DREAM exhibits excessive replication and costly

preprocessing because of the centralized database construction. Rest of the systems do not

replicate any data.
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3.2.5 Workload Awareness

Most of the distributed RDF systems blindly partition the data and rely on their execution

method to reduce the intercommunication overhead while executing the query. However,

according to [42], there might be no single partition that is good for all workloads. There-

fore, systems like Partout, WARP and AdPart change the partitions by monitoring the

query-workload. This is an efficient way to reduce the distributed-joins that occur during

query execution due to random partitioning. Adapting the partitions to the workload change

increases the data locality and improves the overall query performance.

3.2.6 Dynamic Partitioning

Dynamic partitioning refers to changing the data in each node incrementally by monitoring

the workload. AdPart is the only system that performs incremental adaptive partitioning

according to the query workload. On the other hand, Partout and WRAP also partitions

based on the workload, however, if the workload is changed, they adapt only by applying

expensive re-partitioning of entire data which incur high communication cost for a dynamic

workload.

3.2.7 Specialized Query Processor

It can be observed from Table 1 that none of the distributed systems use standard triple

store, which has an associated SPARQL query processing engine for storing and querying

the RDF data. Most of the systems have either (i) implemented their own SPARQL query

engine (AdPart), (ii) use the underlying framework like MapReduce to execute the query

(EAGRE), or (iii) apply a modified SPARQL query engine like RDF-RX (WARP, Partout).

Thus, they use a Specialized SPARQL query engine.



CHAPTER 4

ADAPTIVE PARTITIONING OF RDF DATA

As mentioned earlier, RDF has become a very popular framework to publish the data for

Semantic Web due to its flexible and universal graph-like data model. Therefore, ever-

increasing size and collections of RDF data exhibits the need for scalable RDF systems

[38]. This section introduces the distributed RDF architecture and demonstrates the chal-

lenges related to static partitions that do not adapt to the workload changes. Furthermore,

we discuss the need for adaptive partitioning of the RDF data and explain how it reduces the

problems associated with querying RDF data which is stored in a distributed environment.

4.1 Initial Partitions

To deal with a large amount of RDF data, many clustered RDF systems distribute the RDF

graph G into n number of partitions, P1, P2..Pn, which are called Initial partitions. The

primary purpose is to divide the triples in a way to reduce the number of distributed joins

that are evaluated during the execution of a SPARQL query. Evaluation of distributed joins

increases the inter-communication cost among the workers as the intermediate data has to

be exchanged. If most of the queries in the query set have many distributed joins, the query

performance of the whole query set declines.

There are numerous ways to generate the initial partitions. For example, RDF triples can be

randomly partitioned among the machines, based on the hash values of their subject, predi-

cate or object. Initial partitions can also be generated according to the given query-workload.

We assume that the given query-workload QW is a set of SPARQL queries Q1, Q2...Qn.

34
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Systems that partition the triples randomly incur a low pre-processing cost. However, this

method introduces many distributed joins. On the other hand, systems that use sophisticated

partitioning, suffer from high pre-processing cost and sometimes high replication of triples.

4.2 Metadata

RDF Metadata can be termed as a data that describes the RDF triples. In a distributed

domain, it is essential to keep track of what kind of triples are stored in each partition.

Primarily, RDF metadata helps in discovering if the existing triples in any partition can

answer a given query pattern. This helps to identify all the nodes that contains the required

data to answer the query. Based on the metadata, the original SPARQL query is decomposed

into several sub-queries, where each sub-query is sent to its relevant SPARQL endpoints. The

results of the sub-queries are then joined together to answer the original SPARQL query.

Various distributed RDF stores use metadata differently. For example, DARQ [17] has a

service description which provides a declarative description of the data available from an

endpoint. AdPart [12] uses global statistics to decide if the query can be processed without

communication. Some systems, like FedX [43] send SPARQL ASK to collect the metadata

on the fly. Based on the results of SPARQL ASK queries. FedX decomposes the query into

subqueries and assign subqueries with relevant SPARQL endpoints.

4.3 Query Rewriting

The incoming query can be rewritten for query optimization [44]. Another reason for query

rewriting, especially in a distributed domain is to reorder the basic query pattern according

to the availability of these pattern in the nodes of the cluster [17]. For instance, when the

RDF data is distributed on multiple nodes, the result of the incoming query might include

the data from any given node. The metadata is used to decide which query pattern a node
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Table. 4.1: Initial Partition

Node1 Node2
rdf:type rdf:type

ub:worksFor ub:undergraduateDegreeFrom
ub:name ub:mastersDegreeFrom

ub:telephone ub:emailAddress
ub:advisor

can answer. With this information, a query can be rewritten to ask a given node only for the

pattern it can answer. Later, all the data is aggregated and presented as a complete result. In

our proposed architecture, the incoming query is rewritten into a federated query (Section

2.4.1). The federated query is then sent to the suitable node where a standard SPARQL

query processor executes it and gathers the result (Section 5.2).

Figure. 4.1: First query added to the QW

To understand this process, consider the two partitions shown in the table 4.1. Let’s call

this the initial partition. Node1 and Node2 contains all the triples that have the predicates

which are listed in the table under the column name Node1 and Node2 respectively. The data

is generated using the benchmark LUBM [45]. Table 4.2 lists some triples with predicates

included in the initial partition. Initially, the query workload is empty. Then, the first query

is added to the query workload which is shown in Figure 4.1. The query asks for the name,

email address and the telephone number of all the professors that work for the specified

department. It is evident that the data from both nodes have to be accessed to obtain the
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Table. 4.2: Sample RDF triples

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#
PREFIX ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>
Subject Predicate Object

http://www.Depart0.Univ0.edu/Professor0
rdf:
type

ub:Professor

http://www.Depart7.Univ6.edu/Student3
rdf:
type

ub:Student

http://www.Depart0.Univ0.edu/Professor0
ub:

worksFor
http://www.Depart0.Univ0.edu

http://www.Depart0.Univ0.edu/Professor0
ub:

name
”Professor0”

http://www.Depart7.Univ6.edu/Professor0
ub:

telephone
”xxx-xxx-xxxx”

http://www.Depart0.Univ0.edu/Student3
ub:

advisor
http://www.Depart0.Univ0.edu/Prof0

http://www.Depart7.Univ6.edu/Professor0
ub:

emailAddress
”Prof0@Depart0.Univ0.edu”

http://www.Depart11.Univ9.edu/Student3
ub:

undergraduate
DegreeFrom

http://www.University0.edu

http://www.Depart5.Univ2.edu/Student3
ub:

masters
DegreeFrom

http://www.University0.edu

answer to the query because the triples that have ub:emailAddress as their predicates are

stored in the different node than the rest of the triples. This shows that the query involves

one distributed join. There are two available options, either we can execute the query on

Node1 and send the partial results to Node2, or the inverse could be done. Executing the

query on Node2 will lead to huge intercommunication cost because of the excessive partial

results will be transferred between Node1 and Node2. Executing the query on Node1 node

would be more cost-effective as most of the triples that are accessed by the query are stored

in that processing node. Using this knowledge, the query is rewritten into a federated query,

as shown in Figure 4.2. It is then executed on the Node1.
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Figure. 4.2: Federated query to be executed on Node2

4.4 Adaptive Partitioning

As discussed in the previous section, the query workload currently consists of only one query,

which can be denoted as QW = {Q1}. Q1 is rewritten into a federated query because it

involves a distributed join which requires the intermediate results to be transferred between

the processing nodes. This incurs a communication cost and degrades the query performance.

As the query workload increases, the queries that includes distributed joins may also increase.

To improve the average performance of the query set, it is imperative to reduce the number

of these joins. By regularly monitoring the query workload, it is possible to detect the

distributed joins that frequently occur in the queries and transfer the triples that are part

of these joins from one node to another to make that data local to a single node. This

increases the data locality, which means that all the queries that earlier required the data

from different nodes can now execute from within a single node to produce the result. This

significantly reduces the inter-node communication cost and improves the query performance.

This process is called adaptive partitioning of the dataset based on the observed queries.

To understand the process of adaptive partitioning, consider a list DS that shows the number

of distributed joins introduced by each query from QW . Currently, there is only one query

in QW . Therefore, the lists can be represented as
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Table. 4.3: 1st Adaptive Partition

Node1 Node2
rdf:type rdf:type

ub:worksFor ub:undergraduateDegreeFrom
ub:name ub:mastersDegreeFrom

ub:telephone
ub:advisor

ub:emailAddress

QW = [Q1]

DJ = [1]

because Q1 introduce one distributed join. The aim is to minimize the every element in the list

DJ . Again, consider Q1 (figure 4.2) and the initial partition (table 4.3). If all the triples with

predicate ub : emailAddress are moved to Node1, the distributed join is eliminated, which

increases the query performance. Let’s call this new partition the 1st adaptive partition,

shown in the table 4.3. The list DJ can now be represented as,

DJ = [0]

Figure. 4.3: Second query added to the QW

Suppose, a new query, shown in Figure 4.3 is added to the query workload. The query requests

for all the students and their advisors who have an undergraduate degree and master’s degree

from the same college. The query adds a distributed join as the data from both the nodes

have to be accessed. Therefore, both the lists are updated.
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Table. 4.4: 2nd Adaptive Partition

Node1 Node2
rdf:type rdf:type

ub:worksFor ub:undergraduateDegreeFrom
ub:name ub:mastersDegreeFrom

ub:telephone ub:advisor
ub:emailAddress

QW = [Q1, Q2]

DJ = [0, 1]

This distributed join is removed by transferring all the triples with the predicate ub : advisors

from Node1 to Node1. The query can now be executed entirely on Node2, thus eliminating

the expensive inter-communication cost between the nodes and increases the overall perfor-

mance. The 2nd adaptive partition is shown in the table 4.4.

The updated lists looks like,

QW = [Q1, Q2]

DJ = [0, 0]

Notice that the partitioning can be changed from initial (table 4.1) to 2nd adaptive partition

(table 4.4) based on the queries that were introduced to maximize the performance. Similarly,

as the query workload changes, our proposed system generates a plan to perform adaptive

partitioning of the triples which increases the performance of the whole query set.



CHAPTER 5

SYSTEM ARCHITECTURE AND IMPLEMENTATION

We propose a system which stores an RDF graph by partitioning it into sub-graphs and

distributing it. It changes the partition by transferring a chunk of RDF triples from one

partition to another based on the query workload. In this chapter, we describe the system

architecture of our system RePart. We discuss in details about its various component and

their functions.

Figure. 5.1: System architecture of RePart

41
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RePart is deployed on the shared-nothing cluster of machines. Each computing node in the

system is called a Processing Node as shown in Figure 5.1. In the context of distributed

RDF stores, the triples of graph G have to be assigned to different processing nodes. Par-

tition Manager completes this task. It divides G into n partitions and sends the individual

partitions to the respective processing nodes. QRP (Query Rewriter/Processor) rewrites the

incoming query into a federated query according to the current partition of the triples (Sec-

tion 5.2). The Federated query is then sent to the appropriate node where it is executed.

The node where the query is executed is called Primary Processing Node (PPN) for that

particular query. Partition manager monitors the query workload and if necessary, initiates

the repartitioning of the triples. PM generates an RScript (Section 5.3), which is a series of

operations that need to be executed to (i) initiate the process of exchanging triples from one

processing node to another and (ii) also to update the metadata of each processing node.

This RScript is sent to Repartitioning Script executor that executes the operations (Sections

5.4) mentioned in the RScript.

For the rest of the thesis, the finite set of processing nodes will be denoted as PN , and the

ith node will be indicated as PNi.

All the nodes in the cluster are exposed to the network by a RESTful interface. Each node acts

as a RESTful Web application and the communication among the nodes is achieved using

the HTTP Protocol by accessing the resources which are described below. Each resource

serves a different purpose in RePart.

• Triple resource represents RDF data (triples) in any node. This resource can be

accessed using the URI1 http : //PNi/rdfpartition/webapi/triples.

• Metadata resource represents the data that provides information about the type of

triples stored in any node. It is accessed with the URI

http : //PNi/rdfpartition/webapi/metadata.

1PNi is the IP address of ith processing node
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• RScript resource represents the RScript which is used to trigger the repartition of

data among the nodes of the cluster. Further details are mentioned in the coming

sections. It is accessed with the URI http : //PNi/rdfpartition/webapi/rscript.

Various operations are defined which are executed by RePart to provide specific functional-

ities. These operations, which are listed below, provide an overview of ReParts capability.

• TRANSFER TRIPLES - transfer triples from one processing node to another based

on given constraints. This operation is a combination of various other operations listed

below.

– GET TRIPLES - obtain triples from a processing node.

– UPLOAD TRIPLES - upload triples to a processing node.

– DELETE TRIPLES - delete triples from a processing node.

• GET METADATA - request metadata from a processing node.

• UPDATE METADATA - update the metadata of a processing node.

• SEND RScript - send a RScript to RScript executor.

• EXECUTE RScript - RScript executor executes the RScript.

As mentioned earlier, this thesis is a part of a bigger project. The primary contribution

of this thesis is to provide an underling distributed system which is able to transfer the

triples within the nodes of the cluster (adaptive partitioning) and update metadata based

on the incoming instructions. PM, with the help of the QRP are responsible for generating

the instructions (RScript) that initiate the re-partitioning. We have explained the functions

of these components, however for the evaluations, their working is simulated manually. For

instance, the RScript is generated manually by observing the query workload and given as

an input to RScript Executor. Therefore, this thesis provides a full implementation of the

components RScript executor, triple store, and Metadata store. All the functions that QRP
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and PM performs are realized manually to simulate the entire system RePart and observe the

performance gain. In the following sections, we describe the functionalities of each component

of RePart’s in detail.

5.1 Processing Node

Processing node comprises of three major components, triple store, metadata store and

Sparql query processor. Triple store acts as a storage for RDF triples. SPARQL query

processor execute the queries and metadata store keeps track of information about the type

of triples present in any processing node at a given time.

5.1.1 Triple Store and Sparql Query Processor

Triple store acts as a database for RDF triples. Each processing node has a triple store where

corresponding partition Pi of RDF graph G is stored. On the other hand, SPARQL query

processor can execute SPARQL queries over the triples which are stored in the triple store.

It is also possible to run federated SPARQL queries which provide an ability to collect the

results from multiple processing nodes. For RePart’s evaluation, we have used OpenLink

Virtuoso (section 2.5 ) that serves a dual purpose. It acts as a triple store, as well as the

SPARQL query processor. We make sure that any RDF store that is used as a triple store

in RePart is consistent with the ACID properties.

Triple resource represents RDF triples in each processing node. RDF triples can be manip-

ulated by executing various HTTP methods on the triple resource with the URI: http :

//PNi/rdfpartition/webapi/triples. To obtain the triples from the triple store, an HTTP

GET request is made on the mentioned URI which corresponds to the operation GET

TRIPLE. To specify the type of triples that have to be obtained, following query parame-

ters can be used while using HTTP GET :
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• metadata - triples can be requested based on the metadata. Metadata provides infor-

mation about the type of triples that have to be obtained. It is itself is a resource and

is explained in Section 5.1.2. Example of such URI is:

• To get all the triples stored in a processing node, no query parameter has to be used.

Example of URI for such request is http : //PNi/rdfpartition/webapi/triples.

The operation DELETE TRIPLES is performed by executing HTTP delete request on

the triple resource. Similar to the GET request, metadata is used as a query parameters to

denote which triples have to be removed from the triple store.

To load the triples into the triple store, Virtuoso’s ISQL bulk load2 is used. In RePart, ISQL

bulk load performs the operation UPLOAD TRIPLES.

5.1.2 Metadata Store

Metadata store maintains the information about the type of triples present in the triple

store. Metadata is the data that describes the RDF data in a Processing Node. For exact,

informative and concise representation of the type of triples in the triple store, we have

designed a RDF-Metadata Notation. The PM and QRP use metadata for different purposes.

Repartitioning of RDF data is triggered by the partition manager after searching for patterns

in the metadata that reflects the need for shuffling of triple for better query performance.

Metadata, of each processing node that was involved in data repartitioning is updated to

show the current state of triples in the triple store (Section 5.5). Furthermore, the information

presented by metadata helps the query analyzer to compute a cost-effective query execution

plan. By analyzing the metadata, QRP rewrites the incoming query and sends it to the most

suitable processing node where the query is executed, which increases the query performance

by reducing the distributed joins while query execution. Metadata resource represents the

2https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtBulkRDFLoader
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metadata of any processing node. PM and QRP obtains the metadata by executing an HTTP

GET request on the URI: http : //PNi/rdfpartition/webapi/metadata. This corresponds

to the task GET METADATA.

RDF-Metadata Notation (RDF-MN)

We have developed a Metadata Notation that uses predicate values to describe various query

patterns that could be answered by a given processing node. Following are the various tech-

niques in which the patterns are described using RDF-MN:

• Subject-Subject Join (SSJ): It represents all the triples with the predicates that

share a same subject or join on same subject. For example, as shown in Figure 5.2,

PI, P2, P3, P4 share A as their subject. Similarly, P5, P6, P7 also share the same

subject F . With such representation of data, it is shown that all the triples that have

P1, P2, P3 or P4 as predicates and A as a subject exists in the triple store. This

information gives indicates that this triples store can answer a star query involving

P1, P2, P3, P4 predicates. Similarly, it can also answer a star query that includes

P5, P6, and P7 predicates. Figure 5.2 provides a graphical representation of the star

queries.

• Object-Subject Join (OSJ): It represents all the triples with the predicates that

are involved in the object-subject join. As shown in Figure 5.3, J is an object for

P8, whereas for P9 it is a subject. All the triples where predicates P8 and P9 are

connected through J exists in the triples store. Similarly, predicates P10 and P11

are also represented. Such data representation is beneficial when a query includes an

object-subject join. This kind of a join is also called an elbow join. It helps to identify

if a query can be answered by a processing node after analyzing the metadata.

• Object-Object Join (OOJ): It represents all the triples with given predicates that

points to the same object or join on the same object. For example, Figure 5.4 provides a
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graphical representation of all the triples that have a predicates values of P12,P13,P14,

or P15 share the same object O. Similarly, triples with the predicate values of P16,

P17, or 18 points to the same object T . This kind of a representation helps to detect

if a node can answer a query pattern that involves joins on the object.

• All the triples with a given Predicate (P): This representation is used when all

the triples with a given predicate are present in a single node. For example, if all the

triples that has P19 as their predicate value are stored in a single processing node,

then P19 will be represented under this section (Figure 5.5).

• All the triples with a given Predicate-Object (PO): It is sometimes required

to divide the triples with not only a given predicate value but also on a combination

of a predicate and an object value. This is done to reduce the replication of triples

in multiple processing nodes. Therefore, if the triples are further divided based on

the object value, then they are represented using this section. For example, consider

Figure 5.6 that graphically show all the triples that have a predicate value of P20 and

an object value as obj.

Figure. 5.2: Graphical representation of a Subject-Subject Join (Star Pattern)

As mentioned before, one of these metadata representations is used to determine what kind

of triples have to be transferred between two processing node. Suppose, some triples that

are represented using SSJ are moved from PN1 to PN2, triples with predicates that do not
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Figure. 5.3: Graphical representation of a Object-Subject join (Elbow join)

Figure. 5.4: Graphical representation of a Object-Object join

share the same subject are left behind in PN1. It is important to represent these triples

too, or otherwise, there is no way to know the location of the triples that are left behind.

Therefore, there are three more representations that are included in RDF-MN that act as a

complement of SSJ, OSJ or OOJ.

• Subject-Subject Join Complement (SSJ-C): It represents all the triples with the

given predicates that do not share the subjects. Therefore, it acts as a complement

of SSJ. For example, consider Figure 5.2. If the predicates P1, P2, P3, or P4 are

mentioned in the SSJ, it means that all the triples with these predicates that have a

common subject, exists in the same node. However, when these predicates are men-
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Figure. 5.5: Graphical representation of all the triples with the predicate P19

Figure. 5.6: Graphical representation of all the triples with given Predicate-Object

tioned in SSJ-C, it means that the particular processing node contains all the triples

that have P1, P2, P3, or P4 as their predicate values and do not share the same

subject.

• Object-Subject Join Complement (OSJ-C): It represents all the triples with

the given predicates that are not involved in the object-subject join. Therefore, it

acts as a complement of OSJ. For example, consider Figure 5.3. If the predicates P8

and P9 are mentioned in the OSJ, it means that all the triples with these predicates

that are involved in the object-subject join, exists in the same node. However, when

these predicates are mentioned in OSJ-C, it means that the particular processing node

contains all the triples that have P8 and P9 as their predicate values and do not have

an object-subject join.
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• Object-Object Join Complement (OOJ-C): It represents all the triples with the

given predicates that do not share the objects. Therefore, it acts as a complement

of OOJ. For example, consider Figure 5.4. If the predicates P12, P13, P14, or P15

are mentioned under OOJ, it means that all the triples with these predicates that

have a common subject, exists in the same node. However, when these predicates are

mentioned in OOJ-C, it means that the particular processing node contains all the

triples that have P12, P13, P14, or P15 as their predicate values and do not share the

same subject.

Triple Metadata Notation Encoding In JSON

The information represented by RDF-MN is encoded in JSON to make it easier to parse

and transfer between various components of RePart. Figure 5.7 shows the encoded version

in JSON. Below are the details about every key-value pair in the metadata JSON object.

Figure. 5.7: RDF-MN encoding in JSON

• nodeIndex: The value of nodeIndex is an integer, and it represents the index of the

processing node for which the triples are described.
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• SSJ: The value of SSJ is a 2-D array. Predicates that share the same subject are

grouped together and it represents that all the triples with grouped predicates that

share the same subject are present in this node.

• OSJ:The value of OSJ is also a 2-D array. It represents that all the triples with grouped

predicates that are involved in an object-subject join are present in this node. Note

that OSJ only groups two predicates at a time as shown in the encoded version of

metadata.

• OOJ: The value of SSJ is also a 2-D array. Predicates that share the same object are

grouped together, and it represents that all the triples with grouped predicates that

share the same object are present in this node.

• P: The value of P is an array which contains the predicate values. The values are

included in this array only if every triple of a given predicate is present in this processing

node.

• PO: The value of PO is also an array. The elements of the array are a combination of

predicate and object value separated using “,”. For each value of the array, it is true

that all the triples with the given predicate and object values exist in this node.

• SSJ-C, OOJ-C and OSJ-C: The representation of SSJ-C, OSJ-C, and OOJ-C is

the same as their counterpart SSJ. OSJ and OOJ respectively, which is a 2-d array.

However, currently it is empty as there are no triples that can be represented by them.

The Process Of Updating The Metadata

To understand the process of how the metadata is updated when the triples are transferred

between the nodes, consider the initial partitioning shown in Table 4.1. The metadata for

this initial partitioning is shown in Figure 5.8. It can be seen that every representation is
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empty except P, because the triples are initially divided based on the predicate values. As

the triples are shuffled between the nodes, the metadata will be updated.

For this example, assume that all the triples that have the predicate value rdf:type can also

be divided based on only two object values, ub:Student and ub:Professor. The triples will be

shuffled in three steps and each time the metadata has to be updated.

Figure. 5.8: Metadata for the initial Partitioning

• STEP 1: Move all the triples with the predicate values ub:name and ub:worksFor that

share the same subject from PN1 to PN2. The updated metadata for both the nodes

is shown in Figure 5.9. It can be seen from the metadata of PN1 that the triples

with predicate values ub:name and ub:workFor that do not share the same subject

are represented under SSJ-C. Similarly, the triples that were moved to the PN2 are

represented under SSJ. Now that PN1 no longer has all the triples with the predicate

values ub:name and ub:worksFor, the entries are removed from P.
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• STEP 2: Move all the triples with the predicate values ub:undergraduateDegreeFrom

and ub:emailAddress that share the same object from PN2 to PN1. The updated

metadata for both the nodes is shown in Figure 5.10. It can be seen from the metadata

of PN2 that the triples with the predicate values ub:undergraduateDegreeFrom and

ub:emailAddress that do not share the same object are represented under OOJ-C.

Similarly, the triples that were moved to the PN1 are represented under OOJ. Now that

PN2 no longer has all the triples with the predicate values ub:undergraduateDegreeFrom

and ub:emailAddress, the entries are removed from P.

• STEP 3: Notice that all the triples with the predicate value rdf:type are replicated in

both the processing nodes. However, it might not be necessary that all the triples of

rdf:type are used during the processing of the queries by both the nodes. Therefore,

triples can be further divided using both, the predicate and the object values. Let us

delete all the rdf:type triples from the PN2 and move all the triples with the predi-

cate rdf:type and object ub:Professor from PN1 to PN2. The updated metadata after

moving triples is shown in Figure 5.11. As the triples are now distributed using the

combination of predicate-object value, there are new entries in the PO section. Now

that both PN1 and PN2 no longer has all the triples with the predicate values rdf:type

, the entries are removed from P.

5.2 Query Rewriter/Processor (QRP)

QRP is a combination of Query rewriter and Query Processor. It receives a query q sent by

the user. It then sends an HTTP Get request on the metadata resource of each processing

node to gather the information about the triples that each processing node contains. Based

on this knowledge and the query pattern of q, QRP decides the most suitable node that

can execute the query with minimum communication cost. This node is called as Primary

Processing Node (PPN). Query q is rewritten into a federated query fq by query rewriter if
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Figure. 5.9: STEP 1 Metadata

more then one processing node has to be reached to answer the query. Query processor then

sends fq to PPN for the execution. Finally, results are combined at PPN and sent to the

user. This process is shown in Section 4.3.

5.3 Partition Manager (PM)

As stated before, data placement strategies in the RDF stores plays a very crucial role

with respect to query performance. Partition Manager has two primary responsibilities of

(i) uploading the initial partitions (triples) to the respective processing nodes and (ii) to

perform Repartitioning the RDF data that is distributed among the nodes of a cluster.
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Figure. 5.10: STEP 2 Metadata

Partition manager maintains the Query Workload (QW) which is the set of queries that

have to be executed by RePart. Any new incoming query is added to the QW. The initial

partition IPi is the division of the large RDF graph G that has to be inserted in the triple

store of PNi. There are two ways to generate the initial partitions. If a user already has

a QW along with the G, both can be given as an input to RePart and PM then analyzes

the QW to create the initial partitions. In this case, the data is divided in a way to reduce

inter-communication between nodes when the queries are executed and also to increase the

data locality. As the set of queries are already known, it is possible to divide the data in a

way that involves minimum number of nodes while executing a query. On the other hand, if

the user does not have queries to assist the generation of initial partitions, they can select
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Figure. 5.11: STEP 3 Metadata

numerous ways to partition G, for example, predicate-based partitioning or subject-hash

partitioning.

Partition Manager is also responsible for repartitioning the RDF graph that is distributed

among the nodes of a cluster by analyzing the QW. Repartitioning refers to the migration

of RDF triples from one processing node to another which corresponds to the operation

TRANSFER TRIPLES. PM generates a list of operations, which is collectively called

as a Repartitioning Script (RScript). In RePart, RScript encodes the information to per-

form two operations: TRANSFER TRIPLES and UPDATE METADATA. An example of

such RScript is shown in Figure 5.12. The operation 1 denotes that triples that have to be

transferred from the source node PN1 to the destination node PN2. Metadata represented
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Figure. 5.12: List of operations in an RScript

by MetadataJSON describes what type of triples has to be transferred. It is important

to notice that the operation UPDATE METADATA is usually followed by TRANSFER

TRIPLES as the content of the triples store is changed after the shuffling of the triples.

Therefore, the operation 2 and 3 depicts the need to update the metadata of PN1 and PN2

respectively with the newly computed MetadataJSON 1 and MetadataJSON 2. All the

metadata mentioned in the RScript is encoded in JSON (Section 5.1.2 ).

As discussed before, the RScript is a resource and it can be accessed by the URI http :

//PNi/rdfpartition/webapi/rscript. This resource is part of the component Repartitioning

Script Executor. The generated RScript is encoded into JSON and is sent to Repartitioning

script executor as a payload of the HTTP PUT request on the mentioned URI. This process

corresponds to the operation SEND RScript. Repartitioning script executor receives the

RScript and executes all the operations in a sequential order.

5.4 Repartitioning Script Executor (RSE)

The primary purpose of Repartitioning Script Executor (RSE) is to execute the RScript

which is sent by the partition manager. The process where RSE execute the Rscript cor-

responds to the operation EXECUTE RSCRIPT. Figure 5.13 shows a JSON encoded
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Figure. 5.13: RScript encoded in JSON

version of the RScript shown in Figure 5.12. In Figure 5.13, it can be seen that the each

JSON object denotes an operation, and a collection of these objects is a RScript.

The value associated with the key operation helps RSE to determine the type of operation

it has to execute. The values of the key sourceNodeIndex and destinationNodeIndex, which

are integers, identifies the source node and destination node respectively. Then, RSE gen-

erates a URI to access the triple resource of a source node and add metadataJSON as its

query parameter. For example, the generated URI with PN1 as a source node looks like

http : //PN1/rdfpartition/webapi/triples?metadata = metadataJSON . RSE then sends

an HTTP PUT request on the triple resource of a destination node. Here, HTTP PUT is

used because the content of the triple store of desination node has to be updated. In the

payload of this request, the generated URI is sent. In this way, the RSE directs the desti-

nation node PN2 to send an HTTP GET request on the generated URI that was sent as a

payload. This process triggers the transfer of triples from PN1 to PN2 (Section 5.5.1).
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To execute the operation UPDATE METADATA, RSE first identifies the processing node

whose metadata has to be updated. Then, it sends an HTTP PUT request on metadata

resource of the mentioned node. In the payload, the metadata is sent which overwrites the

already existing metadata on the specified processing node. For example, in operation 2,

RSE will send an HTTP PUT request on metadata resource of PN1. The request will be

sent on the URI http : //PN1/rdfpartition/webapi/metadata with metadataJSON 1 as a

payload. In the next section, we discuss the operations TRANSFER TRIPLE and UPDATE

METADATA in detail.

5.5 Executing RScript

In this section, we discuss the repartitioning of the RDF data using RePart. As mentioned

before, repartitioning refers to the transfering of the triples among the various partitions.

This is done to reduce the exchange of intermediate results between the nodes while executing

the queries that involve distributed joins. Repartitioning of the data includes two operations,

TRANSFER TRIPLES and UPDATE METADATA. TRANSFER TRIPLES triggers

the exchange of data from one node to another. Due to this transfer, the content of the

participating nodes is changed, and their metadata also has to be updated. Therefore, the

operation METADATA UPDATE always follows the operation TRANSFER TRIPLES. As

discussed in the previous sections, RSE receives an RScript that contains the information

about all the operations that have to be executed. Then, RSE sequentially executes the

operations.

Consider the RScript which is shown in Figure 5.13. It is given as an input to the RSE. There

are three operations mentioned in the RScript. We will first focus on the first operation which

is TRANSFER TRIPLES and discuss all the steps related to it.
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Figure. 5.14: Sequence Diagram for the operation TRANSFER TRIPLES

5.5.1 TRANSFER TRIPLES

To demonstrate the steps involved in the execution of the operation TRANSFER TRIPLES,

let us consider transferring all the triples that have ub : emailAddress as a predicate from

PN1 to PN2 (Table 4.1). In the RScript JSON encoding, the destination and the source

nodes are mentioned as PN2 and PN1 respectively. The metadata JSON object, shown in

Figure 5.15 depicts the information about the type of triples that has to be transferred. The
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predicate value ub : emailAddress is mentioned under key P. This means that all the triples

that have predicate value as ub:emailAddress has to be transferred from the source node to

the destination node.

Figure. 5.15: TRANSFER TRIPLES JSON object

The sequence diagram (Figure 5.14) depicts the transfer of triples from PN1 to PN2, which

is initiated by the script executor. As discussed earlier, TRANSFER TRIPLES is a com-

bination of three other operations: GET TRIPLES, UPLOAD TRIPLES and DELETE

TRIPLES. The messages numbered from 2 to 10 shows the GET TRIPLES operation, 11

and 12 are related to the LOAD TRIPLES, while the rest of the message describes the

DELETE TRIPLES operation.

The sequence diagram describes an Entity-Control-Boundary system which consists of Script

executor, PN1 and PN2. Each processing node includes three components:

• HTTP Interface is a boundary object that represents the HTTP endpoints through

which various components of a processing node communicate with each other.

• Triple Store is an entity object that represents the system data (Triples).

• Triple Controller is a controller object that represents functionalities to manipulate

the triples in the triple store.
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GET TRIPLES

MESSAGE 1. RSE makes an HTTP PUT request on the triple resource of PN2, and in

the payload, it sends a URI which encodes the information about what kind of triples has

to be requested from PN1 .

MESSAGE 2. PN2 processes the HTTP PUT request.

MESSAGE 3. PN2 makes an HTTP GET request on the URI that it received in the

payload of the PUT request. The metadata JSON object is attached as a query parameter

in the URI. In this way, PN2 askes PN1 for the triples. Metadata denotes what kind of

triples PN2 is requesting.

MESSAGE 4. PN1 receives and process the HTTP GET request sent by PN2.

MESSAGE 5. The triple controller builds a SPARQL query using the information in the

metadata JSON object to get the required triples from the triple store.

MESSAGE 6 and 7. The triple controller then executes the SPARQL query to get the

triples from the PN1 triple store. This process is enclosed under a ”critical box” because no

other query can be executed on this triple store at the same time, otherwise the data will be

manipulated. The requested triples are sent back to the controller.

MESSAGE 8 and 9. In response to the HTTP GET request, PN1 sends the requested

triples to PN2. The triples are sent as a stream of data.

LOAD TRIPLES

Ones the triples are received by PN2, it has to be uploaded to the triple store.

MESSAGE 10. PN2 receives the streaming data and writes it to a file in chunks. The

entire data is never kept in the main memory at the same time.
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MESSAGE 11 and 12. The triple controller then executes a shell script to upload the

triples stored in the file to the triple store of PN2.

DELETE TRIPLES

Currently, both, PN1 and PN2 had the same set of triples in their triple store. Therefore,

the triples has to be deleted from the triple store of PN1.

MESSAGE 13. PN2 sends an HTTP DELETE request on the URI that is received in the

payload of PUT method. The metadata JSON object encodes the information about the

triples that have to be deleted. This directs PN1 to delete the required triples.

MESSAGE 14. PN1 receives the HTTP DELETE request and process it.

MESSAGE 15. The triple controller builds a SPARQL query using the information in the

metadata JSON object to delete the required triples from the triple store.

MESSAGE 16 and 17. The triple controller then executes the SPARQL query to delete

the triples from the PN1 triple store. This process is enclosed under a “critical box” because

no other query can be executed on this triple store at the same time, otherwise the data will

be manipulated. The status is sent back.

MESSAGE 18 and 19. If the triples are deleted successfully, the “OK” status is sent back

to PN2.

MESSAGE 20 and 21. PN2 sends an “OK” status to the script executor if all the oper-

ations are executed successfully. This also confirms that the required triples are successfully

transferred from PN1 to PN2.
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Figure. 5.16: Sequence Diagram for the operation UPDATE METADATA

5.5.2 UPDATE METADATA

When the triples are successfully transferred, the RSE receives an OK status from PN2.

After this, RSE moves on to execute the next operations in the queue. As discussed ear-

lier, operation UPDATE METADATA always follows the operation TRANSFER TRIPLES

because after the shuffling of triples is completed, the content of the triple stores of the par-

ticipating node is changed. Therefore, the metadata has to be updated to reflect the correct

content of the triple stores.

In the RScript shown in Figure 5.13, next two operations are UPDATE METADATA. The

sequence diagram (Figure 5.16 ) depicts these operations. The sequence diagram describes an

Entity-Control-Boundary system which consists of Script executor, PN1 and PN2. Each pro-
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cessing node includes three components: HTTP Interface, Metadata Controller, and Meta-

data Entity.

MESSAGE 1. RSE makes an HTTP PUT request on the metadata resource of PN1, and

in the payload, it sends the new metadata JSON object which encodes the information about

what kind of triples exists in the triple store.

MESSAGE 2. PN1 processes the HTTP PUT request.

MESSAGE 3 and 4. The triple controller updates the metadata JSON object with the

new JSON object that was sent in the payload of the PUT request. This process is enclosed

under a ”critical box”.

MESSAGE 4 and 5. If the metadata is successfully updated, RSE receives an OK status

and it executes the next operation.



CHAPTER 6

EXPERIMENTS AND EVALUATIONS

RePart is a distributed SPARQL query processing system that performs an adaptive par-

titioning of triples among the nodes of the cluster according to the query workload. As

discussed before, the thesis’s major contribution is to implement the system within RePart

which can shuffle the triples among the various partitions based on RScript.

For evaluation, we present a study on the impact of a query adaptive partitioning of RDF

triples. LUBM [45] and BSBM 1.0 [46] are used for Benchmarking Semantic Web knowledge-

based systems. We use them to generate synthetic data (triples). They also provide a set of

queries that can be executed on the generated data. To perform the experiments, we used

four processing nodes, which means that the triples had to be divided into four partitions.

We used OpenLink Virtuoso 7.0 [32] as a triple store and SPARQL query processor. Table

6.1 shows the SPARQL endpoints to access the triple store of the processing nodes. The

following steps were undertaken for both the benchmarks to show the effect of repartitioning

the data when the query workload changes to increase the performance of the queries. We

used our implemented system to rearrange the data among the various partitions.

Table. 6.1: SPARQL Endpoints to acces the triple store of the processing nodes

Processing Node SPARQL Endpoint
PN1 http://172.17.151.171:8890/sparql/
PN2 http://172.17.151.170:8890/sparql/
PN3 http://172.17.151.172:8890/sparql/
PN4 http://172.17.151.173:8890/sparql/

66
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• STEP 1: Generated the synthetic data (triples) using LUBM and BSBM.

• STEP 2: The entire data (triples) was divided into four partitions. For the experi-

ments, we divided the triples based on their predicate value. For example, if a predicate

is assigned to PN1, all the triples with that predicate value will be stored in the triple

store of PN1. This is called a Predicate Based Partitioning. We obtained all the

unique predicates in the dataset and randomly assigned them to a processing node

while balancing the load among the partitions. We call this the initial partition. We

did not use query-workload to generate this partition initially. However, we reparti-

tioned the data after analyzing the workload and also adapted to the changes that

occur in the workload.

• STEM 3: The queries were added to the query workload.

• STEP 4: The queries in the query workload were re-written into federated queries

according to the initial partition. They were then executed using Virtuoso. The query

performance was measured using two criterions, (i) no. of distributed join the query

introduce and (ii) the time taken by the query to execute. This is done for each query

in the query workload that has at least one distributed join.

• STEP 5: All the queries were analyzed, and an RScript was generated manually

which encodes the information for optimally repartitioning the triples to reduce the

average distributed joins count in the query workload. This RScript was giving as an

input to the RSE and our system repartitioned the triples and updated the metadata

automatically. This is called the 1st Adaptive Partition. Again, the query performance

was measured using two criterions, (i) no. of distributed join the query introduce and

(ii) the time taken by the query to execute. We ploted a graph to compare the query

results of 1st Adaptive Partition to Initial Partition.

• STEP 6: To show that the system is capable of adapting to the query workload

change, a query was removed, and a new query was added to the query workload. The
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performance of all the queries in the current query workload was measured using the

two criterion mention in the previous steps.

• STEP 7: All the queries were analyzed, and an RScript was generated manually

which encodes the information for optimally repartitioning the triples to reduce the

average distributed joins count in the query workload. This RScript was giving as an

input to the RSE and our system repartitioned the triples and updated the metadata

automatically. Let’s call this the 2nd Adaptive Partition. Again, the query performance

was measured using two criterions, (i) no. of distributed join the query introduce and

(ii) the time taken by the query to execute. We plot a graph to compare the query

results of 2nd Adaptive Partition to 1st Adaptive Partition.

• STEP 8: Steps 6 and 7 were repeated one more time. The graph was plotted to

compare the query performance between 2nd Adaptive Partition and 3rd Adaptive

Partition.

6.1 BSBM Results

The Berlin SPARQL Benchmark 1.0 (BSBM) [46] is used for comparing the performance of

the SPARQL systems across architectures. BSBM provides a dataset of an e-commerce use

case where the vendors can offer their products, and the consumers can list their reviews

about these products.

Using BSBM, we generated a total of 100, 031, 2 triples and divide them across the four

processing nodes. BSBM provides a query-set to test the performance of a system. We used

seven queries from the query-set to evaluate our system. The queries are mentioned in the

Appendix A and they are numbered similarly to the BSBM’s query-set 1.

1http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/V1/

spec/index.html#queriesTriple

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/V1/spec/index.html#queriesTriple
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/V1/spec/index.html#queriesTriple
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Table. 6.2: BSBM Initial Partition

PN1 PN2 PN3 PN4

foaf:name
bsbm:rating1
bsbm:rating2
bsbm:raiting3
bsbm:raiting4

dc:title
bsbm:reviewDate

dc:date
rdfs:subClassOf
bsbm:country

bsbm:productPropertyNumeric3
bsbm:productPropertyTextual2
bsbm:productPropertyTextual3
bsbm:productPropertyTextual4
bsbm:productPropertyNumeric6

bsbm:producer
foaf:homepage

bsbm:productPropertyTextual6
foaf:mbax sha1sum

bsbm:productPropertyNumeric1
bsbm:productPropertyTextual1

rev:text
bsbm:validTo
Bsbm:vendor
dc:publisher

Rdfs:comment
bsbm:productPropertyTextual5
bsbm:productPropertyNumeric4
bsbm:productPropertyNumeric5

rdfs:label
bsbm:product

bsbm:productFeature
rdf:type

rev:reviewer

bsbm:productPropertyNumeric2
bsbm:deliveryDays
bsbm:offerWebpage

bsbm:price
bsbm:validFrom
bsbm:reviewFor

Initial Partition

As discussed before, we use predicate based partitioning to generate the initial partition.

We obtain the distinct predicate values in the BSBM dataset and assign each of them to a

processing node. This division is shown in Table 6.2. All the triples with a given predicate

value are stored in the triple store of the assigned processing node.

Rewriting Queries According To The Initial Partition

All the queries in the query workload are rewritten into federated queries because the data is

divided across multiple SPARQL endpoints. The rewritten queries are shown in the Appendix

A.1. For example, let us consider the query shown in Figure 6.1 to understand the process

of re-writing the query.

PN1 is selected the primary processing node to execute the query because it has the highest

amount of data that the query uses compared to the other nodes. It can be observed that
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Table. 6.3: BSBM 1st Adaptive Partition

PN 1 PN 2 PN 3 PN 4

bsbm:country
bsbm:price

bsbm:vendor
dc:publisher
foaf:name

bsbm:rating1
bsbm:product

bsbm:validTo
rdfs:comment

bsbm:productPropertyNumeric5
bsbm:rating2
bsbm:raiting3
bsbm:raiting4

rdfs:subClassOf
foaf:homepage

bsbm:productPropertyTextual6
foaf:mbax sha1sum
bsbm:reviewDate

dc:title
bsbm:reviewFor

bsbm:productPropertyNumeric3
bsbm:productPropertyNumeric6

rev:reviewer

rdfs:label
bsbm:productFeature

rdf:type
bsbm:productPropertyNumeric1
bsbm:productPropertyNumeric2
bsbm:productPropertyNumeric4
bsbm:productPropertyTextual1
bsbm:productPropertyTextual2
bsbm:productPropertyTextual3
bsbm:productPropertyTextual4
bsbm:productPropertyTextual5

bsbm:producer
bsbmOfferWebPage

bsbm:deliveryDays
bsbm:validFrom

dc:date

rev:text

running the query on PN1 introduces nine distributed joins which are shown in bold. The

goal is to reduce the number of distributed joins to increase the performance of the query.

1st Adaptive Partition

After analyzing all the queries in the query workload, the triples were re-shuffled among the

nodes while maintaining the load balance. The data which was accessed together was kept

in a single triple store to reduce the total number of distributed joins in the queries. The

new partition was called the 1st adaptive partition as shown in Table 6.3. After the first

adaptive partitioning, the number of distributed joins in Q7 was reduced from 9 to 7. The

PPN for Q7 was changed to PN3 from PN1. The query was re-written according to the

current partitioning as shown in Figure 6.2. For example, all the triples with the predicate

value rev : reviewer were moved from PN1 to PN3. Now that the query is executed on PN3,

the data is local to its triple store.
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Figure. 6.1: Re-written Federated Query7 According To The Initial Partition

Figure 6.3 shows the comparison of the running time for every query in the query workload

between the Initial and 1st adaptive partition. Similarly, Figure 6.4 depicts the change in the

number of distributed joins for the queries when the triples are shuffled. It can be observed

that the running time of the queries is improved remarkably. This happens because the 1st

adaptive partition tries to make the data local to a single node for every query. The run-

time for Q5 is decreased more compared to the other queries because, after the 1st adaptive

partitioning, no distributed join has to be computed. The graphs attest that adapting to the

query workload decreased the computational overhead and increased the average performance

of the system.

2nd Adaptive Partition

To show how the content of each node was adapted according to the change in queries, we

changed the query workload. The Q8 is removed, and a new query shown in Figure 6.7 was

added to the query workload. All the queries were analyzed again, and if possible, the triples
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Figure. 6.2: Re-written Federated Query 7 According To The 1st Adaptive Partitioning

are shuffled to reduce the number of distributed joins and increase the average performance

of the query workload. This was called the 2nd adaptive partitioning. The newly introduced

query was re-written according to the new partitioning as shown in Figure 6.7. The graph 6.5

compares the run-time of the queries, before and after the 2nd adaptive partitioning. Only

the queries that are affected by the shuffling of the triples are included. Similarly, Figure

6.6 shows that the number of distributed joins have decreased. From these graphs, it can be

concluded that as the queries are changed, the content of the nodes also has to be changed to

increase the data locality. For example, the distributed join in the new query was decreased

from one to zero, and therefore it runs much faster.

3rd Adaptive Partition

We continue the process of changing the query workload and see how the partitions are

adapted to the change. We again added a new query shown in Figure 6.8, and Q1 was

removed from the query workload. The query currently runs on PN3 and has one distributed

join. To reduce the running time of this query and remove the distributed join, all the triples
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Figure. 6.3: Query run-time comparison between Initial and 1st Adaptive Partition

with the predicate value rdfs : comment were moved to PN3 from PN2. We called this the

3rd Adaptive Partition. This makes all the data that was accessed by the new query local

to PN3 and it reduced the running time significantly as shown in Figure 6.9. There were no

other queries in the query workload which were affected by 3rd Adaptive Partitioning.

Final Analysis

To show the importance of re-partitioning the data according to the query workload, we

changed the query workload twice. After each query-workload change, the queries are ana-

lyzed, and if possible, the partitions are changed incrementally. Figure 6.11 depicts that shuf-

fling the triples to increase the data locality for each query workload significantly enhance

the performance of the queries. It can be seen that running the queries on the initial partition

(without any adaptive partitioning of triples) leads to the computation of many distributed

joins and therefore the running time for the entire query workload is huge. After 1st adaptive

partition, it can be observed that the number of distributed joins are reduced to almost half.
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Figure. 6.4: Graphical representation of the change in the number of distributed joins from
Initial to 1st Adaptive Partition

Due to this, less data has to be exchanged among the nodes to evaluate the query results

and consequently, the running time of the query workload improves. Every time after the

query workload changes, there is a possibility of re-partition the data that suits the current

queries. Therefore, an RScript is generated manually and given as an input to RePart, which

initiates the process of shuffling of the triples.

Notice when the query workload is changed for the first time, there is a decrease in the

number of distributed joins. This happens because when Q8 is removed from the workload,

it reduces three distributed joins and the new query add only two distributed joins. When

the 2nd Adaptive Partitioning happens, the triples are re-shuffled in a way to reduce the

maximum number of the distributed joins from the entire workload, thus also reducing the

average run time of the query workload. It can be concluded that incrementally shuffling the

triples among the nodes of the cluster can lead to a better SPARQL distributed system with

efficient query execution.
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Figure. 6.5: Query runtime comparison between 1st and 2nd Adaptive Partition

Figure. 6.6: Graphical representation of the change in the number of distributed joins from
1st to 2nd Adaptive Partition
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Figure. 6.7: Newly Added Query

Figure. 6.8: Newly Added Query
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Figure. 6.9: Query runtime comparison between 2nd and 3rd Adaptive Partition

Figure. 6.10: Graphical representation of the change in the number of distributed joins from
2nd to 3rd Adaptive Partition
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Figure. 6.11: Performance comparison when BSBM query workload changes
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Table. 6.4: LUBM Initial Partition

PN 1 PN 2 PN 3 PN 4

name
advisor

undergraduateDegreeFrom
teachingAssistantOf

type

takesCourse
type

publicationAuthor
teacherOf
telephone

mastersDegreeFrom
subOrganizationOf

type

emailAddress
memberOf

doctoralDegreeFrom
worksFor

degreeFrom
headOf
imports

researchInterest
type

Table. 6.5: LUBM 1st Adaptive Partition

PN 1 PN 2 PN 3 PN 4

name
telephone
worksFor
type

takesCourse
teacherOf
type

publicationAuthor
mastersDegreeFrom

advisor
degreeFrom

headOf
imports

teachingAssistantOf
type

emailAddress
memberOf

doctoralDegreeFrom
undergraduateDegreeFrom

researchInterest
subOrganizationOf

type

6.2 LUBM Results

We used another benchmark to evaluate our system’s performance, the Lehigh University

Benchmark (LUBM) [45]. It consists of a university domain ontology, synthetic data and a

set of test queries. We generated a total of 1562711 triple using the benchmark and divided

it among four processing nodes. To test our system, we select five queries from the queries

that LUBM provides. They are mentioned in Appendix B and are numbered similarly to the

LUBM query-set2.

2http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt

http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt


80

Table. 6.6: LUBM partition based on the predicate-object value

PN 1 PN 2 PN 3 PN 4

name
telephone
worksFor

doctoralDegreeFrom
undergraduateDegreeFrom

type:ResearchAssistant
type:TeachingAssistant

type:UndergraduateStudent
type:Employee

type:AssociateProfessor

takesCourse
teacherOf

type:GraduateStudent
type:Student

type:Course
type:Faculty

publicationAuthor
mastersDegreeFrom

advisor
degreeFrom

headOf
imports

teachingAssistantOf

type:FullProfessor
type:Lecturer
type:Ontology

type:GraduateCourse
type:ResearchGroup

type:Department
type:University

type:researchInterest

emailAddress
memberOf

subOrganizationOf

type:GraduateStudent
type:Student

type:Person

Initial Partition

Similar to the BSBM benchmark, we used predicate based partitioning to generate the initial

partitions. We randomly assigned a predicate to a processing node and all the triples with

that predicate were assigned to the same processing node.

Rewriting Queries According To Initial Partition

Five selected queries from the LUBM query-set were added to the query-workload. The

queries were re-written into federated queries as the data has to be accessed from multiple

nodes. All the re-written queries are mentioned in Appendix B.1. After analyzing the queries,

it was observed that almost all the queries required the triples with the predicate value

rdf:type. At first, all the triples with rdf:type predicate value was kept in a single node.

However, it introduced a lot of distributed joins which eventually increased the running time

of the queries significantly. The SPARQL processor terminated most of the queries as they

were taking excessive time to execute. Eventually, all the triples with the predicate value
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rdf:type were replicated in every node to reduce the number of distributed joins. This brought

down the running time of the queries. However, there was an extensive overhead because of

data replication. The initial partition with replicated rdf:type triples (in bold) is shown in

Table 6.4.

1st Adaptive Partition

Figure. 6.12: Query run-time comparison between Initial and 1st Adaptive Partition

After analyzing all the queries in the query workload, the triples were re-shuffled among the

nodes while maintaining the load balance. The data which was accessed together was kept

in a single triple store to reduce the total number of distributed joins in the queries. The

new partition was called the 1st adaptive partition and is shown in Table 6.5. Figure 6.12

shows the comparison of the running time for every query in the query workload between

Initial and 1st adaptive partition. Similarly, Figure 6.4 depicts the change in the number of

distributed joins for the queries when the triples are shuffled. It can be observed that the

running time of the queries was improved remarkably. This happens because the 1st adaptive

partition tries to make the data local to a single node of every query.
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Figure. 6.13: Graphical representation of the change in the number of distributed joins from
Initial to 1st Adaptive Partition

Reducing The Replication Of Triples

As discussed earlier, all the triples with the predicate value rdf:type in the triple store of

every processing node. This incured an excessive data replication overhead as almost 40% of

the data was replicated.

After further analyzing the queries, it was observed that not all the rdf:type triples were

used during the query evaluation in every processing node. For instance, consider the query

shown in Figure ??. Notice that only the triples with the predicate value rdf:type and the

object value ub:Professor was used by the query. Similarly, Table 6.7 depicts the type:Object

values corresponding to the processing node in which they were used by the queries for

the evaluation of the results. This shows that the triples can further be divided according

to both predicate and the object values. This is called P-O (predicate-object) division of

triples which is shown in Table 6.6. Notice that only the triples with the object value of
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Table. 6.7: List of the Object values that are processed by the queries in the corresponding
nodes.

Object Value Processing Node
ub:Department PN4

ub:GraduateStudent PN4, PN2

ub:University PN4

ub:Professor PN1

ub:Student PN4, PN2

ub:Course PN2

ub:Faculty PN2

ub:Publication PN3

ub:Person PN4

ub:ResearchGroup PN4

ub:GraduateStudent and ub:Student were required to be replicated in processing node PN2

and PN4. This reduces the replication of the triples significantly while there is no effect in

the running time of any of the query in the query-workload. Figure 6.14 shows the reduction

in the replicated triples after P-O division.

2nd Adaptive Partition

To show how the content of each node was adapted according to the change in queries, we

change the query workload. The Q2 was removed, and a new query shown in Figure 6.17

was added to the query workload. All the queries were analyzed again, and if possible, the

content of the nodes was changed to reduce the number of distributed joins and increase

the average performance of the query workload. This is called the 2nd adaptive partitioning.

The newly introduced query was re-written according to the new partitioning. Figure 6.15

compares the run-time of the queries, before and after the 2nd adaptive partitioning. Only

the queries that are affected by the shuffling of the triples are included. Similarly, Figure

6.16 shows that the number of distributed joins have decreased. From these graphs, it can be
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Figure. 6.14: Graphical representation of the change in the number of distributed joins from
Initial to 1st Adaptive Partition

concluded that as the queries are changed, the content of the nodes also has to be changed

to increase the data locality. Observe that the run-time of Q8 is increased due to the new

partition. However, the overall performance of the entire query workload is enhanced.

3rd Adaptive Partition

The query workload was again changed to show how the system adapts to it. A new query

shown in Figure 6.19 was added while Q4 was removed from the query-workload. It can be

seen that the new query introduce a new distributed which was eliminated by transferring

all the triples with the predicate value ub:undergraduateDegreeFrom to PN3. This is called

the 3rd Adaptive Partition. This makes all the data that was accessed by the new query

local to PN3 and it reduced the running time significantly as shown in Figure 6.18. There

are no other queries in the query workload which are affected by 3rd Adaptive Partitioning .
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Figure. 6.15: Query run-time comparison between 1st and the 2nd Adaptive Partition

Final Analysis

As explained in the BSBM benchmark results, the system was able to adapt to the query

workload changes. The repartitioning of the triples was performed whenever required to

reduce the number of distributed joins and eventually reduce the run-time of each query in

the query workload. The performance gain is depicted in Figure 6.20. It can be observed

that whenever the query workload was changed, re-partitioning of the triples was performed

which leads to the performance gain.
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Figure. 6.16: Graphical representation of the change in the number of distributed joins from
1st to 2nd Adaptive Partition

Figure. 6.17: Newly Added Query
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Figure. 6.18: Query run-time and distributed joins comparison between 2nd and the 3rd

Adaptive Partition

Figure. 6.19: Newly Added Query
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Figure. 6.20: Performance comparison when the LUBM query workload changes



CHAPTER 7

CONCLUSION

In this thesis, we have proposed RePart, a distributed SPARQL query processing system that

adaptively partitions the RDF triples according to the query workload. It aims to reduce

the number of distributed joins in a distributed query execution that eventually leads to a

smaller run-time for the queries and better performance. This thesis is a part of a bigger

research, and the major contribution is to develop an underlying system that transfers the

triples from one processing node of a cluster to another. We implement an efficient system to

facilitate communication between the various components of RePart using HTTP protocol.

We develop a RDF-Metadata Notation that provides a profound description of the type of

triples that exists in the triple store of each processing nodes. Partition Manager uses this

information to decides whether a re-partitioning of triples is required. It generates RScript,

which encodes the details about the shuffling of the triples. RScript is given as an input to the

RScript executor, which facilitates the transfer. For evaluations, we used two benchmarks,

LUBM and BSBM. They provide synthetic RDF data and a query set to test the systems.

Our experiments provided a study of the effect of query-workload adaptive partitioning. We

showed that as the query workload is changed, it is necessary to change the partition to

make data local as much as possible for each query. The results depict a significant increase

in the performance of the queries. We are also able to reduce the replication of the data

while maintaining the smaller run-time for the queries.
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APPENDIX A

BSBM Queries

A.1 Rewriting BSBM Queries Into Federated Queries According To The

Initial Partition

Figure. A.1: Re-written Federated Query 1 According To The Initial Partition: Runs on PN3
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Figure. A.2: Re-written Federated Query 2 According To The Initial Partition: Runs on PN2



97

Figure. A.3: Re-written Federated Query 4 According To The Initial Partition: Runs on PN4

Figure. A.4: Re-written Federated Query 5 According To The Initial Partition: Runs on PN3
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Figure. A.5: Re-written Federated Query 8 According To The Initial Partition: Runs on PN1

Figure. A.6: Re-written Federated Query 10 According To The Initial Partition: Runs on
PN2
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A.2 Rewriting Queries Into Federated Queries According To The 1st Adap-

tive Partition

Figure. A.7: Re-written Federated Query 1 According To 1st Adaptive Partition: Runs on
PN2
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Figure. A.8: Re-written Federated Query 2 According To 1st Adaptive Partition: Runs on
PN3
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Figure. A.9: Re-written Federated Query 4 According To 1st Adaptive Partition: Runs on
PN3

Figure. A.10: Re-written Federated Query 5 According To 1st Adaptive Partition: Runs on
PN3
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Figure. A.11: Re-written Federated Query 8 According To 1st Adaptive Partition: Runs on
PN2

Figure. A.12: Re-written Federated Query 10 According To 1st Adaptive Partition: Runs on
PN1
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A.3 Rewriting Query Into A Federated Queries According To The 2nd

Adaptive Partition

Figure. A.13: Re-written Federated Query 10 According To 2nd Adaptive Partition: Runs on
PN1



APPENDIX B

LUBM Queries

B.1 Rewriting LUBM Queries Into Federated Queries According To The

Initial Partition

Figure. B.1: Re-written Federated Query 2 According To Initial Adaptive Partition: Runs
on PN4

Figure. B.2: Re-written Federated Query 4 According To Initial Adaptive Partition: Runs
on PN1
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Figure. B.3: Re-written Federated Query 7 According To Initial Adaptive Partition: Runs
on PN2

Figure. B.4: Re-written Federated Query 8 According To Initial Adaptive Partition: Runs
on PN8

Figure. B.5: Re-written Federated Query 9 According To Initial Adaptive Partition: Runs
on PN1
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B.2 Rewriting Queries Into Federated Queries According To The 1st Adap-

tive Partition

Figure. B.6: Re-written Federated Query 2 According To 1st Adaptive Partition: Runs on
PN4

Figure. B.7: Re-written Federated Query 4 According To 1st Adaptive Partition: Runs on
PN1
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Figure. B.8: Re-written Federated Query 7 According To 1st Adaptive Partition: Runs on
PN2

Figure. B.9: Re-written Federated Query 8 According To 1st Adaptive Partition: Runs on
PN4

Figure. B.10: Re-written Federated Query 9 According To 1st Adaptive Partition: Runs on
PN2
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B.3 Rewriting Query Into A Federated Queries According To The 2nd

Adaptive Partition

Figure. B.11: Re-written Federated Query 4 According To 2nd Adaptive Partition: Runs on
PN4

Figure. B.12: Re-written Federated Query 8 According To 2nd Adaptive Partition: Runs on
PN4
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