
SCHWA

A D ICTIONARY PRONUNCIATION DATABASE SYSTEM

by

ERIC ROCHESTER

(Under the direction of William A. Kretzschmar, Jr.)

ABSTRACT

Although pronunciations have been an integral feature of dictionaries for over two
hundred years, they have never been the most important aspect of lexicography. Conse-
quently, when dictionary editors adopted computer technology, pronunciations benefited
from these new tools less than did other aspects of dictionary production. Recently, how-
ever, new technologies such as Unicode and XML have made it possible to work with
pronunciations more easily and effectively. Schwa, a database system for managing and
editing lexicographical pronunciations, incorporates these and other technologies to facili-
tate working with pronunciations. This dissertation describes Schwa, the design decisions
that went into creating it, and some of the history and theory of lexicography that lie
behind it.

INDEX WORDS: Lexicography, Dictionaries, Pronunciation, Phonetics, Phonology,
Orthoepy, Computers, Unicode, XML, Databases

SCHWA

A D ICTIONARY PRONUNCIATION DATABASE SYSTEM

by

ERIC ROCHESTER

B.A., Southern Adventist University, 1993

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OFPHILOSOPHY

ATHENS, GEORGIA

2004

© 2004

Eric Rochester

All Rights Reserved

SCHWA

A D ICTIONARY PRONUNCIATION DATABASE SYSTEM

by

ERIC ROCHESTER

Approved:

Major Professor: William A. Kretzschmar, Jr.

Committee: Michael A. Covington
Nelson Hilton
Stephen Ramsay

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2004

DEDICATION

This work is dedicated to my wife, Jackie, who has shown extraordinary patience

throughout this process.

iv

ACKNOWLEDGMENTS

The production of a project of this size takes a lot of work and patience, not just from those

directly doing the coding and writing, but also from friends, relatives, and associates.

First, I thank my parents for their support and my wife, Jackie, for her unconditional

love, support, and patience.

I also thank my dissertation committee: William A. Kretzschmar, Jr., Nelson Hilton,

Michael Covington, and Stephen Ramsay. Without their input and guidance, this would

not have been. Also, I want to thank all the other professors at the University of Georgia

with whom I have had the privilege of studying.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

L IST OF FIGURES . viii

L IST OF TABLES . x

CHAPTER

1 INTRODUCTION . 1

2 LEXICOGRAPHICAL AND PHONETIC ISSUES 5

3 TECHNICAL ISSUES . 34

4 SCHWA . 56

4.1 DATA . 58

4.2 CODE . 67

4.3 THE PROGRAM . 87

4.4 SCHWA IN USE . 93

4.5 IN THE END . 114

5 CONCLUSION . 115

BIBLIOGRAPHY . 119

APPENDIX

A SCHWA KEY MACROS . 126

B REGULAR EXPRESSIONS. 128

vi

vii

C XPATH . 131

D SIMPLE DATA FORMAT FILTER . 136

L IST OF FIGURES

2.1 Typical Usage Pattern forundergofrom Stubbs’ Lexical Profile (92) . . . 31

3.1 Converting Hexadecimal 0x8F1C . 36

3.2 Entities and Relations in a Simple Dictionary Entry 46

3.3 A Tree Model of a Simple Dictionary Entry 47

3.4 Example of Serialization in Python . 49

3.5 MW11Entry forPhoneticsMarked Up Using the TEI 52

3.6 Dictionary Entries Stored in a Relational Database (Entries fromMW11) . 54

4.1 An Entry forHexagonwith an SVG Illustration 62

4.2 ODPEntry forEntryMarked Up Using the TEI 64

4.3 ER Model for the Schwa Database . 65

4.4 Pronunciation Object Model forNew Orleans 78

4.5 An Example of a Long-Running Task 81

4.6 Papier-m̂ach́e: An Example GML Dictionary Entry 83

4.7 Papier-m̂ach́e: Imported into Schwa . 84

4.8 The Schwa Tool, “Open Tools Directory.py” 86

4.9 Editing Window . 88

4.10 Search Window . 90

4.11 Entry View Window . 91

4.12 General Options . 92

4.13 Search Options . 93

4.14 Key Maps Options . 94

viii

ix

4.15 Import Wizard . 97

4.16 Sample Data for a Simple Data Format 98

4.17 Sample Data for a Simple Data Format, Imported 99

4.18 Options to Integrate Simple Data Format into Schwa 100

4.19 Sample XPath Expression to Create a Word List 104

4.20 An Example Responsibility<note > Element 107

4.21 A Regular Expression to Match One IPA Vowel Character 109

4.22 An Extended Regular Expression to Match One IPA Vowel Character . . 109

4.23 Encoding a Variant Pronunciation Using thetype Attribute 110

4.24 ODPEntry forVariant . 111

4.25 An Example Tool: “Insert Last-Modified Note.py” 113

C.1 Using XPath Extension Functions frompron: 135

L IST OF TABLES

2.1 Top 20 Collocates forundergoin COBUILD 30

3.1 Numbers in Binary, Decimal, and Hexadecimal 36

3.2 File Encodings of Unicode Characters 41

3.3 UTF-8 Bit Distribution (Unicode77) . 42

4.1 Default XML Named Entities . 59

4.2 Results of Benchmarking Storage Options 67

4.3 Navigating the List of Words in the Editing Window 89

4.4 Values for String Interpolation . 108

x

CHAPTER 1

INTRODUCTION

“Glorious,” said Steerpike, “is a dictionary word. We are all

imprisoned by the dictionary.”

— Mervyn Peake,Titus Groan

From the first generally acknowledged English dictionary, Robert Cawdrey’sA Table

Alphabeticall, to the voluminousOxford English Dictionary, these reference works have

been major undertakings. The task of selecting entries, writing definitions, and gathering

illustrative quotes for tens or hundreds of thousands of words is itself a staggering achieve-

ment. At that point, however, the logistics of layout, typography, printing, marketing, and

distribution have only begun.

To manage these tasks and to make them feasible, lexicographers have developed

tools, the most notable of which is the note card. Note cards allow lexicographers to break

the entries and the information in them into manageable pieces. Then these smaller pieces

of information could be combined and rearranged into the most appropriate organization

for the specific task at hand.

Dictionary editors used some ingenious means to impose order on the chaos that

threatened to overwhelm them. In the first building that James A. H. Murray used when he

started work on theOxford English Dictionary(OED), the walls were lined with pigeon

holes that he could use to organize the citation slips, while still making them easy to move

around. To process the citation slips as they poured in at the rate of 1,000 a day, first

1

2

someone would look over the slips to make sure there were no egregious errors. Next,

someone, often his children, would alphabetize them so that a more skilled assistant could

sort the words by part of speech and by sense. Next, the quotes within each group were

arranged chronologically. Then a sub-editor would look over each group to determine

if a word’s senses needed to be further subdivided. Finally, Murray himself would look

at the bundles, fine-tune the subdivisions, and add the etymologies and pronunciations

(Murray 186–87). The editors of theMiddle English Dictionaryused another tool to help

sort through the citations for each word. Oscar Johnson, the associate editor for theMED

in the 1930s and 1940s, fashioned a “sorting board,” which looked like a greeting card

display rack. This board made it easy to view the various citations for a word and to group

them spatially in two dimensions. Citations that had the same sense could be stacked,

and those with related senses could be clustered. Likewise, the stacks and clusters could

be easily split back apart, as the editor’s understanding of a word’s meanings developed

(Kuhn 27–29).

Once computers were available, however, lexicographers quickly recognized the

importance of them to their work. Because computers could manage huge amounts of

data and perform repetitious tasks without complaining or losing focus, they were the

perfect tool to use in managing the voluminous amount of information that goes into a

dictionary and in doing much of the mindless drudgery involved in lexicography.

However, one aspect of lexicography that has not benefited from computerized tools as

much as other aspects is pronunciation. Traditionally, pronunciation has been a secondary,

or even tertiary, consideration of lexicography. No dictionary even attempted to provide

any guide to pronunciation for over 100 years after Cawdrey’sTable Alphabeticall. Even

the first dictionary that did attempt pronunciations, Nathan Bailey’sUniversal Etymolog-

ical English Dictionary, only showed the word’s primary stress. Since then, although the

way that dictionaries have approached and handled pronunciations has improved, they still

raise a number of issues—social and linguistic—beyond what the rest of the entry raises.

3

Because of pronunciations’ relative lack of importance and the problems they entail, com-

puterized tools for pronunciations have tended to be less sophisticated than those used for

the rest of lexicography.

However, the application of computers to other aspects of dictionary production has

provided enormous benefits. Some parts of producing dictionaries are significantly easier:

producing, managing, and searching the citation file is far faster with a computer. Other

aspects of dictionary production can be radically improved with the use of computers:

through applying techniques of computerized corpus linguistics, the production of defini-

tions can be moved from a largely intuitive activity to one with some empirical foundation.

Also, computerizing the publishing process has made that aspect of dictionary production

far less costly and labor-intensive.

It is important to remember that new tools, computers especially, are not a panacea,

and this is true in applying computers to lexicography. First, computers have only partially

addressed some of the previous problems with creating dictionaries. This was particu-

larly true when dictionary production was just beginning to be computerized from the

1960s through the 1980s. Although dictionaries make use of a wide variety of typo-

graphic symbols, particularly in their pronunciations, computer systems of the time had

trouble providing these characters, so typographic production and printing often relied

upon non-standard, ad hoc systems. These difficulties in representing pronunciations

helped to sidetrack and retard advances in how pronunciations are handled in dictionaries.

Other problems are more theoretical. Certain aspects of dictionaries—definitions and

citations, especially—are easily improved by computers, corpora, and databases, while

other aspects—such as pronunciations—are less easily helped by computer processing.

Because of this, dictionary editors may be tempted to pay less attention to pronunciations

because they require more work. This is exacerbated because definitions have always been

theprimary aspect of dictionaries anyway. Fortunately, as computers have developed over

the last few years, many of the particular problems presented by dictionary pronunciations

4

have been addressed by the computing world at large. However, the dictionary industry

already has a considerable amount invested in its current systems, and this has prevented

it from taking advantage of these developments.

In Chapter 2 of this dissertation, I will examine the history of lexicography, particu-

larly how pronunciations have been handled, including the social and theoretical issues

involved in choosing a pronunciation and the balance between linguistic realities and the

expectations of dictionary users. Aside from these larger issues of how dictionaries fit into

society, there are also the more prosaic, yet still very important, issues of how the pronun-

ciations should be represented within the dictionary. Over time and even today, different

dictionaries use very different schemes to represent pronunciations. Although many dic-

tionaries in Britain and Europe use the International Phonetic Alphabet (IPA) to represent

pronunciations, American dictionaries still use diacritic respellings of the head words.

How well these systems work is a question that should be considered in determining how

to handle this data with a computer. In Chapter 3, I will evaluate a number of possible

technologies and how they apply to the specific problems involved in managing and pro-

ducing pronunciations. In Chapter 4, I will suggest solutions to the problems raised by

dictionary pronunciations in light of the technical resources available. I will describe how

these solutions contribute to the design and development of Schwa, a computer applica-

tion that accompanies this dissertation and that facilitates working with lexicographical

phonetic data. Finally in Chapter 5, I will explore some of the issues this tool raises con-

cerning both the technologies involved and the advantages and drawbacks this program

might present in the work of writing dictionary pronunciations.

CHAPTER 2

LEXICOGRAPHICAL AND PHONETIC ISSUES

Lexicographer — A writer of dictionaries, a harmless

drudge.

— Samuel Johnson,Dictionary

To understand dictionaries as they are today, it is necessary to look at their history

and at the social forces that influenced them and were, in turn, influenced by them. In

this chapter, I look first at the general history of lexicography, with a particular emphasis

on how dictionary entries have developed. Then, I summarize current practices in writing

pronunciations. Finally, I look at how dictionary writers have used computer technology

to ease their work load and to improve their products.

Although simple dictionaries have been available for thousands of years in the form

of bilingual glossaries, the first English dictionary is usually considered to beA Table

Alphabeticall, published by Robert Cawdrey in 1604. The information it provided for its

3,000 entries was rudimentary, although he does include some simple etymological infor-

mation: he uses a “g” to indicate that a word derives from Greek. However, he included no

information on the pronunciation of its entries (Landau,Dictionaries48). Another early

dictionary was Henry Cockeram’s 1623The English Dictionarie: or, An Interpreter of

Hard English Words. At this time, most dictionaries only covered difficult words, and this

dictionary and others like it acted as a kind of bilingual simple English-difficult English

5

6

dictionary. One section of Cockeram’s dictionary listed difficult words and simple syn-

onyms; another listed simple words and their difficult synonyms. Since many of the diffi-

cult words were based on classical languages and the sciences, he also included a section

on mythology, nature, geographical terms, and such. This began the tradition of including

encyclopedic information in dictionaries. He also tried to include usage information on

words, such as whether a term was vulgar or cultivated (Landau,Dictionaries50).

Henry Blount’s 1656Glossographia: or, A Dictionary Interpreting all such Hard

Words . . . as are now used in our refined English Tonguealso broke new ground in sev-

eral respects. First, while all dictionaries writers at the time borrowed liberally from their

predecessors, Blount went further and supplemented the word lists he took from other

dictionaries with words he found in his own readings. He also altered the definitions he

took from previous dictionaries and even rejected some entries he considered unsuitable.

Second, he included two woodcuts, thus making his dictionary the first to boast illustra-

tions (Landau,Dictionaries51).

In 1658, Edward Phillips publishedThe New World of English Words. Although this

was nearly a copy of Blount’sGlossographia, it also included some innovations. The

primary one was including a list of specialists and giving the impression that they had been

consulted on and contributed to the dictionary, although it is doubtful that they actually

did so. Phillips also indicated the subject field of each term and continued the practice of

indicating the language of origin (Landau,Dictionaries52).

The first dictionary to go beyond the hard words tradition and include common terms

as well as difficult ones was John Kersey’s 1702A New English Dictionary. Although

its definitions tended to be inadequate because they were too short, this dictionary rep-

resented a break from those were modeled on Latin-English dictionaries and started a

new trend in which dictionaries were based upon spelling books. Later, Kersey went on to

revise Phillips’New World of English Words. This work was important because it included

a list of multiple meanings for the same word (Landau,Dictionaries53).

7

Up to this point, no dictionaries had attempted to indicate how their entry words should

be pronounced. The first to do so was Nathan Bailey’sUniversal Etymological English

Dictionary, Supplement II, published in 1721. It accented the stressed syllable in some

head words. He also included extended etymological information. Previous dictionaries

had, at most, indicated the language terms were immediately borrowed from. Bailey also

included earlier forms in other languages. Later editions also included symbols to indi-

cate whether words’ were of impeccable or dubious correctness. This may have been

more necessary than in other dictionaries because, unlike many of his contemporaries, he

also included terms considered vulgar or taboo, such asshiteand fuck (which he only

defined in Latin) (Landau,Dictionaries 53–55; Bronstein 137). The first dictionary to

include pronunciations as a standard feature in all of its entries was Thomas Dyche’sNew

General English Dictionary, published in 1735. It also included an extensive commentary

on pronunciation in its front matter (Bronstein 137).

Also, at this time definitions began to take their modern, multi-part form in Benjamin

Martin’s Lingua Britannica Reformata. He used numbered senses in his definitions and

put more work into his distinctions than did the lexicographers before him (Landau,Dic-

tionaries60–61).

The first landmark English dictionary, of course, was written by Samuel Johnson. His

plans for the dictionary were ambitious beyond what had been done before. In his 1747 “A

Short Scheme for Compiling a New Dictionary of the English Language,” he intimates that

a dictionary should include information on pronouncing words (Congleton 60). Toward

this goal, he proposes listing words beside words they rhyme with. For example,tear (cry)

with peerandtear (rip) with dare(Congleton 61). However, by 1755 when Johnson pub-

lished hisDictionary of the English Language, this system had been set aside. Instead, he

used four ways to indicate the pronunciation of a word. First, he continued Bailey’s system

of marking the primary stress with accents. Second, he illustrated the sounds of letters

and combinations of letters using common words. Third, he gave rules for determining a

8

word’s pronunciation from its orthography. And fourth, he provided further directions for

irregular pronunciations by using alternate spellings, cross references, accents, directions,

and respellings (Congleton 62). How innovative Johnson’s handling of pronunciations

was and how much influence it may have had on his successors is debatable. However,

Johnson’s dictionary did include a number of important features. His handling of defini-

tions and illustrative quotations, while not original, was masterful (LandauDictionaries,

64–65).

After Johnson, the eighteenth-century featured a number of pronunciation dictionaries,

which were dominated by the work of two men: Thomas Sheridan and John Walker. Both

made important contributions to lexicography and dictionary pronunciations. However,

the extent to which they each balanced their own natural prescriptivist tendencies with

real, descriptive pronunciations varied, as did how well they each fulfilled the public’s

expectations for dictionary pronunciations.

Thomas Sheridan contributed the most to lexicographic pronunciations and how they

were technically represented, and hisComplete Dictionary of the English Language, pub-

lished in 1789, included a number of innovations. He used a system of detailed respellings,

diacritics, and stress marks that continued to influence dictionary writers into the twen-

tieth century. Also, of the two, his pronunciations were the most descriptively accurate,

both for the standard forms and in the variant pronunciations he listed (Bronstein 139).

The other influential dictionary writer was John Walker, with hisCritical Pronouncing

Dictionary and Expositor of the English Language. It made use of many of the technical

innovations that Sheridan introduced. However, he took a radically different approach to

deriving pronunciations, as Walker’s comments on Sheridan in the preface to Walker’s

dictionary illustrate:

It must, indeed, be confessed, that Mr. Sheridan’s Dictionary is greatly supe-

riour to every other that preceded it; and his method of conveying the sound

9

of words, by spelling them as they are pronounced, is highly rational and

useful.—But here sincerity obliges me to stop. The numerous instances I have

given of impropriety, inconsistency, and want of acquaintance with the analo-

gies of the Language, sufficiently show how imperfect I think his Dictionary

is upon the whole, and what ample room was left for attempting another, that

might better answer the purpose of a Guide to Pronunciation. (qtd. in Sheldon

131–32)

This quote illustrates how Walker made use of Sheridan, how he deviated from him, and

what his primary criteria were: consistency with spelling and analogy with other words

(Sheldon 143). He regarded the spelling of a word as sacred and considered movements

to reform spelling to make it more consistent with pronunciation as being exactly back-

ward from how the process should work. A number of his pronunciations—in conflict

with Sheridan’s and other dictionaries of the time—matched the spelling of the words.

For example, a number of contemporary dictionaries list the pronunciations ofsuper(and

many other words that begin withsu-) as being /SupÄ/. Walker, however, gives only the

modern pronunciation of /supÄ/. (Modern examples of words in whichsu- is still pro-

nounced as /Su-/ would includesureandsugar.) Another example of his heavy-handed

approach is his handling of pronunciations for jargon and other special terms. Modern

dictionaries go to great lengths to secure the pronunciations of, for example, lawyers for

legal terms and sailors for nautical terms. Walker explicitly did not do this, and in fact

provided pronunciations that “corrected” those used by specialists (Sheldon 141).

Walker’s dictionary and its pronunciations were incredibly influential. As Esther

Sheldon states, “There can be no doubt that, if any one single person were to be named

as the greatest influence on English pronunciation, that person would have to be Walker”

(146). There are a number of reasons for his success. First, English teaching was based

upon Latin, and sometimes English grammars were little more than translations and adap-

10

tations of Latin ones. Because English was considered to be an inferior, debased descen-

dant of Latin or Greek, English syntax that conflicted with rules derived analogously from

Latin were condemned. Moreover, because those writing the English grammars were

often retired clergy, they expressed their disapproval in strongly moral terms (Landau,

Dictionaries244). This was the way the public expected linguistic authorities to talk, and

Walker fulfilled those expectations well.

Another reason for his success was the social mobility of the time, which created

a ready audience for such advice. After all, “It is the person who is moving to what he

thinks is a superior station who fears that he will be stigmatized by the kind of language he

learned at home—and often is” (McDavid 24). For the immigrants coming to the United

States and for the upwardly mobile middle class, “Walker’s advice was a much appreciated

help” (Landau,Dictionaries 68). Those who were looking for instruction, not on how

wordswerepronounced, but on how wordsshould bepronounced, could turn to Walker

and find advice that was logical and consistent, and therefore easy to follow, even if it was

not wholly accurate.

In America, Walker was also successful because of the political and linguistic realities

of colonization. In 1779, Benjamin Franklin said that a pronunciation dictionary would

be useful in America because there were a number of words that British writers used,

and which all Americans could read and understand, but which Americans did not know

how to pronounce (qtd. in Read, “Social Impact” 69–70). This attitude of colonial lin-

guistic insecurity continued in America and helps to explain Americans’ continued need

for linguistic guidebooks and authorities. William Dean Howells perhaps best explains

and expresses this insecurity:

If one has moved in good English society, one has no need even to ask how a

word is pronounced, far less to go to the dictionary; one pronounces it as one

has always heard it pronounced. The sense of this gives the American a sort

11

of despair, like that of a German or French speaking foreigner, who perceives

that he never will be able to speak English. (qtd. in Read, “Social Impact” 73)

In fact, Walker was so popular and influential in America that Noah Webster complained

about Americans’ being “misled” by him and that at least one British person visiting

here mentioned that Americans generally spoke well, except for where they had adopted

Walker’s pronunciations (Read, “Social Impact” 71, 72).

The final reason why Walker’s dictionary was so successful was the influence it had

on other dictionaries. Because the pronunciations were careful, logical, and consistent,

they appealed to other editors. His dictionary went through a number of editions, more

than Sheridan’s. Moreover, when a new edition of Sheridan’s dictionary was published

in 1788 after his death, its new editor, Stephen Jones, completely reworked the pronun-

ciations, bringing them more in line with those of Walker (Sheldon 146). In fact, Walker

continues to influence us today, not only in his individual pronunciations, but even his

idea about what constitutes a correct pronunciation (Sheldon 130). Esther Sheldon, in

studying Walker’s pronunciations, sums up the causes of his success: “The reason for this

is, I believe, that while Sheridan reflects the speech of his time better, Walker satisfies the

temper of his time better, and its demand for linguistic regulation and reform” (Sheldon

146).

On the other side of the Atlantic, the first American English dictionary was by Samuel

Johnson, Jr. It was a slim volume, only 198 pages, designed to be used by school chil-

dren, not as a general-purpose American dictionary. The task of writing a general Amer-

ican dictionary was left to Noah Webster. His two dictionaries—the 1806Compendious

Dictionary of the English Languageand the 1828American Dictionary of the English

Language—were part of his project to provide a distinctly American dictionary, one that

reflected the linguistic realities of American speech, not merely recommending British

usage. Webster spent ten years working on etymologies for theAmerican Dictionary, but

12

because of his rejection of the discoveries of Joseph Grimm and other philologists and

because of his preconceived ideas about the history of languages, his etymologies were

bad, even for his time. Some of his other, more fortunate innovations included listing the

principle parts of irregular verbs and appending tables of weights and measures U. S. pop-

ulation figures (Landau,Dictionaries69). He also included information about pronuncia-

tions; however, he often relied upon Jones’s edition of Sheridan and, hence, upon Walker’s

pronunciations. In general, however, hisDictionary was more descriptive than Walker’s

was, although it missed the mark of being a general American dictionary, since much of

his usage and pronunciation do not reflect the usage of America in general, but only of

New England (Krapp 366).

Webster’s major competitor was Joseph Worcester. He produced three dictionaries:

Comprehensive Pronouncing and Explanatory Dictionary of the English Language

(1830), Universal and Critical Dictionary of the English Language(1846), andDic-

tionary of the English Language(1860). In general, his dictionaries were better than

Webster’s. Although the definitions were generally shorter, the coverage of the vocabu-

lary was better. Only the last of these included etymologies, but these were also better than

Webster’s. Also, he included quotations to illustrate his definitions (Landau,Dictionaries

72–74). In Worcester’s dictionaries, pronunciations were handled more carefully than in

Webster’s dictionaries. Pronunciations are more clearly indicated, and Worcester listed

variations based upon twenty-six different dictionaries and linguistic treatises (Krapp

371). However, his dictionaries did have a distinctly British bias to them (Bronstein 139).

This bias toward British pronunciations was also evident in the first pronunciation

dictionaries in America. R. S. Coxe producedA New Critical Pronouncing Dictionary of

the English Languagein 1813, B. Allison,The American Standard of Orthography and

Pronunciation and Improved Dictionary of the English Languagein 1815, and W. Bolles,

A Phonographic Pronouncing Dictionary of the English Languagein 1846 (Bronstein

139).

13

One curious experiment in pronunciation dictionaries was attempted in 1855.The

American Phonetic Dictionary of the English Language, Adapted to the Present State of

Literature and Science; with pronouncing vocabularies of Classical, Scriptural and Geo-

graphical Nameswas designed by Nathaniel Storrs and compiled by Dan Smalley. This

dictionary used a phonetic alphabet invented by Benn Pitman, Elias Longley, A. J. Ellis,

and others for the dictionary. The words were listed in alphabetical order, but the head-

words were given as transcribed into the phonetic alphabet. The definitions were also

printed using phonetic transcriptions. Although the phonetic alphabet was good, its use

in both headwords and definitions proved to be too much. As George Philip Krapp points

out, “It proves that even a phonetic alphabet does not hold the mirror up to nature, but that

after all it is only an approximate, therefore conventional, representation of real speech,

like the traditional alphabet” (374).

In England in the late nineteenth century, the Philological Society sponsored one of

the largest, most impressive dictionary projects in the world. The new dictionary would

be historical in focus and would not be merely a revision of any previous dictionary, but

would instead be original, hence its first title,A New Dictionary on Historical Princi-

ples. Although he was the third editor, work on this dictionary really began when James

A. H. Murray became editor in 1879. When this dictionary—eventually to be called the

Oxford English Dictionary(OED)—was finally finished in 1928, nearly half of its contents

had been edited by Murray. TheOED provides the historical development of each word,

with illustrative quotations from various sources for each of the many, detailed senses that

it includes. Its etymologies are as a whole still the most complete and authoritative of any

dictionary. It represented an outstanding achievement of lexicography, in spite of some

imperfections. One such imperfection was its pronunciations and the system of pronunci-

ations used. Although they were sufficient, they were not up to the standard of the rest of

the dictionary (Landau,Dictionaries80–81).

14

After the OED, throughout the twentieth century, in England a series of authorita-

tive pronunciation dictionaries were produced by Daniel Jones. He was the first to use

the International Phonetic Alphabet (IPA). In 1913 he wrote thePhonetic Dictionary of

the English Language(with H. Michaelis) and in 1917 theEnglish Pronouncing Dictio-

nary (EPD). This described “Received Pronunciation” (RP), a dialect of British English

that was based upon educated pronunciation in London and the Home Counties, but in

the nineteenth century was spoken by the upper class throughout the country. This went

through a number of editions and was revised by A. C. Gimson in 1967. In 1997 a new

EPDwas published, based upon the Daniel Jones’ original and edited by Peter Roach and

James Hartman. It includes new entries and American pronunciations, and it continues

to be an authoritative dictionary for RP today. Since the 1997 edition of theEPD, how-

ever, theLongman Pronunciation Dictionaryand theOxford Dictionary of Pronunciations

for Current Englishalso provide authoritative pronunciations for RP (Bronstein 140–41;

Landau,Dictionaries37).

The only major pronouncing dictionary for the United States in the 20th century is

J. S. Kenyon and T. A. Knott’s 1944 and 1945A Pronouncing Dictionary of American

English(PDAE). Kenyon also authored the extraordinary preface on pronunciations given

in the front matter toWebster’s Second New International Dictionary(NID2), which con-

tain information on basic phonetics and phonology, the IPA, and numerous other topics.

ThePDAEwas explicitly descriptive. It included a number of variants for each entry and

incorporated data from the Linguistic Atlas project and other sources (Bronstein 142–43).

Unfortunately, thePDAEhas never been updated, so that Sidney I. Landau citesWebster’s

Third New International Dictionary(NID3) as “the best source for American English pro-

nunciations” (Dictionaries 37). However, since Landau wrote this,The Oxford Dictio-

nary of Pronunciation for Current English(ODP) has been published, which covers both

British and American pronunciations and uses IPA for both sets (Upton, Kretzschmar, and

Konopka).

15

One specialized kind of pronunciation guide on both sides of the Atlantic is targeted

to broadcasters. In England,Broadcast English(1928–39) and theBBC Pronouncing Dic-

tionary of British Names(1971, 1983) serve this function. In America, W. Cabell Greet’s

1948World Wordsserved as a pronunciation guide for CBS. It primarily contained foreign

words. NBC, however, used James F. Bender’s 1943NBC Handbook of Pronunciation,

which used both diacritic respelling and IPA (Bronstein 143–45).

Another source of pronunciations, more familiar to the general public, is standard

desk dictionaries. In Britain, these have used a number of systems, including diacritic

respelling, IPA, and IPA variants, although recently all have moved to using the IPA.

In the United States, however, dictionaries only use diacritic respelling. Beginning with

Random House’sAmerican College Dictionary, which introduced the schwa character to

its pronunciations in 1947, many dictionaries use the schwa (@) and eng (N) characters,

although it appears that these adoptions in no way represent a move toward using the IPA

generally.

The most influential general and desk dictionaries in the United States have been pro-

duced by Merriam-Webster, the commercial inheritors of Noah Webster’s dictionaries.

They produce two lines of dictionaries: theWebster’s New International Dictionaries, also

known as the “unabridged,” and theMerriam-Webster’s Collegiate Dictionaries, which

typically follow the policies of the unabridged dictionary on pronunciations and other

matters. In the twentieth century, theSecond New International Dictionary’s (NID2) major

contribution to phonetics was the preface by J. S. Kenyon. TheThird New International

Dictionary (NID3) went further, however. Its pronunciation editor, Edward Artin, tried to

make systematic use of linguistic research and greatly improved the quality of the pro-

nunciations. Unfortunately, the transcription system used inNID3 marred its usefulness

by being overly complex.

In general, dictionary pronunciations have been poorly handled, more so than any

other aspect of the dictionary (Hulbert 55), and analyzing how dictionaries do work with

16

pronunciation is muddied by the apparent lack of a well articulated theoretical approach to

pronunciations and by a poorly defined audience and goals for the pronunciations (Gimson

115). When pronunciations have been written in the past, usually they are based upon

either prescriptivist rules, personal idiolect, or observation (Read, “Theoretical Basis” 87).

In analyzing the handling of pronunciations in lexicography, the starting point and

center of the inquiry should be the usefulness of the pronunciations for the user. As

Landau points out, this is the emphasis of Johnson’s 1747Plan and it should still be

“the first rule of good dictionary making” (Dictionaries359). Of course, this immediately

raises a problem, since at least one study has indicated that only a minority of regular

dictionary users even want pronunciations and even fewer occasional users do (Quirk

81). Overlooking that, however, there are two identifiable objectives that influence how

decisions involving dictionary pronunciations are made. The first is the target audience,

whether they be specialists, the general public, or both, native speakers or foreign lan-

guage learners. The second is the purpose of the pronunciations, whether it be to describe

in detail how words are spoken, using many variations, or to indicate how a word is pro-

nounced within the context of the user’s own dialect or, alternatively, within the standard

form of the language.

Whatever any individual dictionary publisher and editor decides those goals to be,

there are essentially two main tasks involved in handling dictionary pronunciations: first,

gathering possible pronunciations and choosing one or more from the many variants, and

second, communicating that pronunciation in print (Gimson 116).

The first issue—choosing a pronunciation—is multifaceted. It first involves gathering

evidence for pronunciations. Historically, this has often involved the pronunciation editor

deciding how he or she pronounces words. This contributed to Noah Webster’s dictio-

naries’ New England bias. Later, Edward Artin tells how his predecessor at Merriam-

Webster would spend much of his time muttering words to himself (126). The next more

sophisticated way of gathering pronunciations involves surveys. These can range from

17

informal ones in which the pronunciation writer polls colleagues for their pronunciation

to theLongman Pronunciation DictionaryPronunciation Preference Survey to the sophis-

ticated surveys conducted for the various Linguistic Atlas projects (Wells). Obviously,

the quality of data obtained by each of these kinds of surveys will be similarly variable.

Both of these methods contribute to the dictionary’s working collection of pronunciations.

This may simply be the previous edition of the dictionary or a more elaborate database

(electronic or on cards) of pronunciation entries or transcriptions.

For example, Edward Artin, the pronunciation editor forNID3, says that his primary

concern during his work there was to gather evidence for pronunciations. When he began

his work, the earliest pronunciation evidence he could find in the Merriam-Webster files

primarily involved transcriptions taken from other dictionaries (Artin 125), so he began

making transcriptions from radio and television, and he made use of data from theLin-

guistic Atlas of New England(LANE) (128). As a result of the project he began,Merriam-

Webster’s Collegiate Dictionary, 11th edition, (MW11) says that “The pronunciations in

this dictionary are informed chiefly by the Merriam-Webster pronunciation file” (33a),

which is a collection of 3x5 cards recording pronunciations transcribed from radio, tele-

vision, and speeches since the 1930s, and which is the authorityMW11relies upon for its

pronunciations.

Unfortunately, a citation file of pronunciations has many of the same weaknesses as a

standard citation file. First, it is limited to what those contributing to the file are exposed

to. In the case of the Merriam-Webster file, this and the use ofLANE could perpetuate

their New England bias, although the citations from radio and television might introduce

some pronunciations from other parts of the country. Either way, it is possible that much

of the country is underrepresented in their files. Second, citation files tend to be targeted:

a transcription is made only if support for a specific word is needed or if the pronunci-

ation for some reason catches the transcriber’s attention. Both of these factors make the

authority of the pronunciation citation file less than perfect.

18

However, while definition writers now have large computerized corpora to give their

definitions a more empirical basis, this development is unlikely to happen for pronunci-

ation writers in the near future. For one thing, corpora of spoken language, even without

phonetic transcriptions, are time-consuming and costly to produce (Landau,Dictionaries

324). The spoken corpora that do exist—the London-Lund corpus, the British National

Corpus, the American National Corpus, Santa Barbara Corpus of Spoken American

English, and others—tend to be too small for lexicography, which requires very large

corpora just to get sufficient coverage of the lexicon. Also, the data from the various

Linguistic Atlas projects are of limited utility for lexicographers, since the aims of these

projects are different than the needs of lexicographers for writing pronunciations. For

example, lexicographers need fairly complete coverage of the lexicon, which would be a

waste of resources for most linguistic studies.

In the end, pronunciation writers wind up roughly where they began, intuition, but

hopefully they have learned some lessons. First, they need to take many pronunciations

into account consciously, and to work to train their ear and intuition to be aware of variant

pronunciations. Also, the writer must be aware of the incredible variation in how words

are pronounced and to be humble in his or her knowledge of pronunciations. In short,

the dictionary pronunciation writer should work to become an informed, trained expert in

pronunciations. All of this is simply to avoid providing incorrect or biased pronunciations.

As Artin wrote, “How does one go about avoiding this sort of thing? The best answer I

could think of was, by doing all the listening one possibly can” (127).

Once the evidence has been gathered, it must be evaluated and one or more pronun-

ciations chosen to be included in the dictionary. In British dictionaries, this decision is

somewhat simpler. They present Received Pronunciation (RP), which is the dialect of

educated speakers in and around London. (The issues and variation involved in RP will

not be covered here, since this treatment deals more specifically with American Standard

pronunciation and its variants.) On the other hand, pronunciations in American dictio-

19

naries generally reflect what is referred to as “Standard American.” This is supposed to

represent a form of American speech that is devoid of any distinctive regional features

and is representative of educated speakers. The problems with this are well summarized

by Arthur J. Bronstein when he compared the problems faced by American lexicographers

to those faced by their British peers:

one must recognise that the indication of pronunciation in North America

does present any lexicographer who plans to enter only a single ‘type’

of American English pronunciation with a very difficult task. There is

no single ‘prestigious’, ‘educated’, ‘acceptable’ or ‘standard’ dialect that

exists throughout the continent, even if one did exclude the northeastern and

southern United States. However, if not as homogeneous as supposed earlier,

the regional differences among most educated speakers are relatively minor

(when compared to the differences used by British English speakers). Thus,

despite the large number of local and regional variant forms, communicative

interferences are not typical. These differences do not easily permit a single

label to embrace all of them, unless the term (label) used is understood to rep-

resent no single, preferred dialect of the language spoken in North America.

(142)

This difficulty is exacerbated because dictionaries rarely define the group whose pro-

nunciations they represent, beyond socially and linguistically vague terms like “culti-

vated,” “literate,” and “educated” (Pederson 130). For example, the “Guide to Pronun-

ciation” in MW11states that it “attempts to include—either explicitly or by implication—

all pronunciation variants of a word that are used by educated speakers of the English

language,” although it also warns, “Among such speakers one hears much variation in

pronunciation” (33a). In practice, this involves representing the prestige dialect, which

Landau defines as “a dialect widely accorded respect by all social levels in a community

20

because it is identified with well-educated people of high social and economic standing”

(Dictionaries220). In actuality, the prestige dialect is a useful abstraction, since it is not

based upon any well-defined, coherent dialect and since there are no speakers who do

more than approximate it to varying degrees. Instead, it is defined by a lack of recog-

nizable regional markers (Upton, Kretzschmar, Konopka xiii–xiv). And although it is an

abstraction, being able to reproduce it may be useful to those who wish to move into a

higher social class and avail themselves of opportunities there.

Because the prestige dialect is an abstraction, how many variants to list is an issue.

Should the lexicographer list more than one pronunciation if more than one is current,

and if so, how does he or she choose which one to list? Simply listing all variants is

not an option because of the high premium placed upon space in a dictionary. One way

to approach this problem is to choose a method of transcription that is intentionally

ambiguous, so that one grapheme represents more than one phonetic value simultane-

ously. However, as we shall see, this also has its drawbacks.

After deciding upon which pronunciations to include in the dictionary, they must still

be represented in a graphical, printable form. There are two issues here, although they

are interrelated and often confused. However, for the sake of clarity, I will consider them

separately, insofar as possible, before considering them together.

The first issue is the level of representation to use in pronunciations. On the one hand,

there arephonetictranscriptions, which are represented graphically by enclosing the tran-

scriptions in square brackets ([. . .]). These describe the pronunciation in terms of points

of articulation, that is, in terms of what the teeth, lips, tongue, and so forth are doing when

the sound is produced. The problem with this is that the more specificity and detail in

description of sounds, the more variants that need to be listed to capture all of the possible

standard pronunciations. For example, one commonly cited variation in standard Amer-

ican speech is the vowel incot, which can be realized as either [A] or [O]. This is systematic

21

in American English for a certain class of words, and a decision to list both variants for

all such words would take much of a dictionary’s precious space.

On the other end of the spectrum arephonemictranscriptions, which are represented

by enclosing the transcriptions between slashes (/. . . /). These are based upon phonolog-

ical theory that posits abstract underlying sounds, calledphonemes, which are actually

realized in speech by different sounds, calledallophones. In the example ofcot above,

[A] and [O] are phonetic allophones for thephoneme/A/. Phonemes capture the fact that,

for the purpose of distinguishing words, multiple actual speech sounds are used to rep-

resent, and are heard as, one sound. Phonemic transcriptions are good for saving space,

but they intentionally hide a certain amount of phonetic variation. Unfortunately, some of

the differences that they cover can be differences between prestige and marked regional

forms, which would theoretically be allophones of the same phoneme. Since one purpose

of dictionary pronunciations is to differentiate marked regional forms from the prestige

forms, hiding these differences is a major drawback.

Today, American dictionaries use a phonemic system to represent pronunciations.

Although the actual system of transcription—what symbols represent what sounds—

varies from dictionary to dictionary, all the systems are phonemic in nature: they rely

upon the native speaker’s knowledge of how to pronounce words to define the symbols.

This results in the symbols’ definitions corresponding to the speaker’s idiolect, not to the

prestige dialect.

Fortunately, a compromise between these two forms of transcription is possible. This

involves using a broad phonetic transcription. At its core the transcription is still phonetic,

but it redefines some symbols to represent more than one sound in some contexts. The

transcriptions are still essentially phonetic, but these redefinitions allow them to handle

regular, predictable, standard variants more gracefully (Landau,Dictionaries123; Sledd

136). For example, theODP uses broad phonetic transcriptions to handle the variation

between stressed and unstressed central vowels: that is, [@] is used in both unstressed

22

environments (sofa; ["soUf@]) and in stressed environments (sun; [s@n], which other lin-

guists might transcribe as [s2n]) (ODP xvi). This allows the one symbol to cover both

pronunciations in a regular, systematic manner, and it simplifies the transcription system.

However, it does not prevent the reader from reading the transcription and discovering the

standard pronunciation.

After considering the level of representation, the next issue is the system of pronun-

ciation transcription to use. To represent pronunciations, American dictionaries currently

use diacritic respelling. This makes use of the standard English alphabet, some digraphs

based upon those characters, a few phonetic symbols (usually schwa and eng), and dia-

critics to modify those symbols. Respelling systems are not defined by sounds or points

of articulation, but by key words. For example, inAmerican Heritage College Dictionary,

4th edition, (AHCD4), ă is defined using “pat.”

This kind of system is based upon the assumption that the users are native speakers

who are not experts in linguistics, that they will primarily only be in question about the

words’ stress, and that they want to know how to pronounce words within the context of

their own dialect (Neufeldt 111–12; Pearsons 115). It provides no help for those, such as

foreign language learners, who have little or no intuitive knowledge of English pronun-

ciations. Furthermore, it also provides no help to native speakers who wish to know the

pronunciation of a word in the prestige dialect. The primary virtue of respelling systems

is that they leverage the native speaker’s intuitive knowledge of English pronunciation,

not just as a system, but also in the correspondences between pronunciation and spelling

(Neufeldt 111). At heart, this system is phonemic, because the defining key words used,

such aspat above, represent word classes. Thus ana in a pronunciation will represent a

sound that many, if not all, native speakers will associate with the graphemea; diacritics

will simply specify which of the sounds it actually is.

While this ease of use would appear to be a major advantage for respelling systems,

in practice, it is not. Even proponents of respellings admit that “a great many—possibly

23

most—people who use dictionaries do not know how to use even the simple respellings

found in current dictionaries” (Neufeldt 112). This situation is exacerbated by the number

of respelling systems, since each dictionary uses its own.

Looking at the extended explanation for\t\1 in MW11illustrates several things about

respellings:

\t\ as intie, attack, late, later, latter (IPA [t]). In some contexts, as when a

stressed or unstressed vowel precedes and an unstressed vowel or\@l\ fol-

lows, the sound represented byt or tt is pronounced in most American speech

as a voiced flap produced by the tongue tip tapping the teeth-ridge (IPA [R]).

In similar contexts the sound represented byd or dd has the same pronuncia-

tion. Thus, the pairsladderandlatter, leaderandliter, parodyandparity are

often homophones. At the end of a syllable\t\ often has an incomplete artic-

ulation with no release, or it is accompanied or replaced by a glottal closure.

When\t\ occurs before the syllabic consonant\@n\ as inbutton\"b@-t@n\, the

glottal allophone is often heard. This may reflect a syllabication of\t\ with

the preceding stressed syllable (i.e.,\"b@t-@n\).

Many speakers pronounce\t\ like \ch\ when it occurs before\r\ in the same

syllable. (35a)

The first thing to notice is that, judging from the list of key words containing that

sound,\t\ corresponds to at least two different sounds:tie [taI] and latter ["læRÄ]. How-

ever, the next item in the explanation is an equivalent symbol in IPA ([t]). Next, the expla-

nation lists a set of exceptions to the symbol\t\ being pronounced either [t] or [R]. It

specifically mentions the phones [R] and [tS], and it implies the phone [P] (the “glottal

allophone”). Obviously, the user is expected to have either an intuitive or a learned under-

standing of how /t/ is realized in various environments, since the symbol\t\ does not

1MW11uses\. . .\ to indicate the beginning and end of a pronunciation transcribed in their
respelling system, and I follow that convention here.

24

actually provide this information. This quote also illustrates how complex a respelling

system can be and how overwhelming.

The main alternative to respelling systems is the IPA. This is a system of symbols

that is widely used by linguists, foreign dictionaries, and foreign-language dictionaries to

describe pronunciations. The IPA is a phonetic system, that is, its symbols are defined in

terms of sounds and points of articulation, not key words. Generally, pronunciation editors

prefer to work in IPA. In fact, Edward Artin, the pronunciation editor forNID3, says that

having to use respelling systems instead of IPA is one of the griefs of the job (Landau,

Dictionaries125).

The main arguments against using the IPA is that its symbols are Eurocentric, that

is, that its vowel symbols especially more closely resemble graphemes from European

languages, for examplei and [i]. Even worse, English words transcribed into IPA can end

up more closely resembling the orthographic spellings of other English words:feetis [fit]

(Neufeldt 113; Pearsons 115). Another argument is that IPA requires listing too many

variants, because of its phonetic nature.

However, while some may argue that the IPA symbology is biased toward European

languages, the system is essentially arbitrary, as are the respelling systems (Bladon, et al.,

126). Also, as has been mentioned, respelling systems’ resemblance to English graphemes

has evidently not contributed to their intelligibility. If American general dictionaries began

the process of moving to IPA, it would not be moving from a system that works to a

(possibly better) unknown; the current respelling system does not work, so moving to a

system that is more theoretically sound, is more descriptively accurate, and is successfully

used elsewhere will in all likelihood be a benefit.

So why do American dictionaries still use respelling systems? Aside from the rea-

sons listed above, tradition appears to be a factor, since systems of this type have been

used in dictionaries since Thomas Sheridan’s 1789Complete Dictionary of the English

Language. Another reason is the cost of educating dictionary users, who expect diacritic

25

respelling because of its long tradition. The “Guide to Pronunciation” forWebster’s New

World College Dictionary, fourth edition, states it this way:

In general the PRONUNCIATION SYMBOLS used inWebster’s New

World are of the type that has been used in American dictionaries for many

years. They are familiar symbols that most Americans learned in school. The

set of symbols used in this dictionary is unique, however.

The INTERNATIONAL PHONETIC ALPHABET (IPA) has not been

used. The IPA has many symbols for showing a wide range of sounds with

great exactness. Many British and foreign language dictionaries use the IPA,

as do language specialists. Most Americans, however, are not familiar with

the IPA, so this dictionary does not use it. (xxii)

Also, the American dictionary market is competitive and hence very conservative, and

any dramatic change, such as the use of IPA would be, even if implemented gradually,

would be too risky from the publishers’ perspective. Combine this with the perception that

dictionary users would be unable to understand IPA and do not want a change and dic-

tionary publishers have good reason to maintain their current, conservative stance. Sidney

I. Landau summarizes the situation well:

The fundamental question we have to ask is: Would we rather represent pro-

nunciation precisely though few understand it or represent it imprecisely to

be grasped in a general way by the many? Would we prefer that a few be well

informed while many others remain benighted or that a great many people be

only slightly misinformed? (“Should We Change?” 119)

So far, American dictionaries have elected to provide partial information to many, and

thus have shunned using IPA.

26

One advance that dictionary writers have made use of, however, is computers.

Although the use of computers is recent in the larger context of the history of dictio-

naries, publishers adopted these new tools for data management and printing quite early.

Laurence Urdang, working onThe Random House Dictionary of the English Language,

Unabridged, first reported using computers in dictionary production in the early 1960s.

He set up a database that allowed the lexicon to be assembled according to subject,

which permitted greater consistency in handling the information. Along with the sub-

ject area, the database also contained all other information about the items: “main entry

word, pronunciation, definition(s), variant(s), etymology, run-in entry, illustration” (155).

Unfortunately, he was unable to produce a print-image directly from this database. He

instead had to use technology that was still under development to produce microfilm

images.

BesidesRandom House, during the sixties a number of other dictionaries began using

computers:Trésor de la Langue Française; Dictionary of the Older Scottish Tongue;

Dictionary of Old Spanish; Dictionary of Old English; andAmerican Heritage Dictio-

nary (Sedelow 97). The last of these was the first to be typeset by computer in 1969

(Logan 352). Also,Merriam-Webster’s Seventh New Collegiate DictionaryandMerriam-

Webster’s New Pocket Dictionarywere early dictionaries that were prepared for computa-

tional applications (Logan 352).

In all, computers are used in lexicography in a number of ways. The first way that they

are used is in production, printing, and logistics. For example, at theOED, computers have

been used for on-screen editing since the early 1980s, when they first starting the process

of computerization (Simpson and Weiner 15; Hultin and Logan; Weiner 2). Also, as John

Simpson describes, the Internet has revolutionized communications between editors and

consultants:

27

Editors benefit from being able to maintain a range of handpicked specialist

advisors around the academic world who respond by e-mail to lexicograph-

ical enquiries both authoritatively and, in some cases, almost instantaneously.

In Murray’s day, it could take weeks for a response on a crucial word to arrive

in Oxford from, say, Australia or China, although, of course, Murray had a

pillar box specially installed outside his house in Oxford to facilitate the flow

of correspondence between himself and his own extensive stable of collabo-

rators, both at home and abroad. (Simpson 11)

In the late 1960s and early 1970s, lexicography began a revolution as it incorporated

methodologies and tools created for the field of corpus linguistics, which uses large col-

lections of computerized texts to study language. In one sense, lexicographers have always

used corpora. Johnson’sDictionarywas based upon a corpus of probably well over 1 mil-

lion words, stored on slips of paper. Likewise, theOED’s corpus had perhaps over 50

million words (Kennedy 14–15). However, computers provided new powerful tools for

dealing with such voluminous amounts of information. The first to make use of com-

puterized corpus tools was theAmerican Heritage Intermediate (AHI) Corpus. It was

created from publications widely read by 7–15 year old American school children and

contained 5.09 million words. It was designed as a citation database for theAmerican Her-

itage School Dictionary(Kennedy 34). “TheAHI Corpuswas one of the first computer-

based databases for lexicographical purposes and the resulting dictionary a forerunner

of a number of innovative, commercial, corpus-based dictionary projects which were

published from the 1980s, including theLongman Dictionary of Contemporary English

and theCollins Cobuild English Language Dictionary” (Kennedy 34–35). TheCollins

Cobuild English Language Dictionaryespecially represented a landmark, since it was the

first to use a so-called “megacorpus” and the first to use it from its inception, rather than

simply updating a previously existing dictionary. Also, John Sinclair, its editor, is partic-

28

ularly committed to the field of corpus linguistics, so it is more “theoretically pure” than

other dictionaries (Landau,Dictionaries 287). TheCollins Cobuild English Language

Dictionary is based upon the COBUILD corpus, later renamed the Bank of English. This is

a monitor corpus, one to which material is continually added, begun in 1991 by COBUILD

and the University of Birmingham. On the other hand, theLongman Dictionary of Con-

temporary Englishis based on the Longman/Lancaster corpus, which contains 30 million

words and was created through a partnership between Longman Publishers and Lancaster

University. These two projects have encouraged fruitful collaborations between universi-

ties and commercial interests to construct solid, balanced corpora that can be used both for

academic research and for lexicography. Today, using corpora has become the norm. Since

Webster’s Third, no major English dictionary has not used an electronic database, and

most lexicographers base their dictionaries on some corpus, although how much they actu-

ally use them is open to debate and American dictionaries—includingMerriam-Webster,

which primarily uses citation files—have been slower to adopt this technology than their

British counterparts (Kennedy 15, 91; Simpson 9; Jost, et. al, 16–18).

Originally, lexicographers mainly used key-word in context (KWIC) displays from

text concordancing software. More recently, however, they have taken using software

made for handling large corpora (Simpson 9). They have also found the Internet—

and particularly full-text databases like Lexis/Nexis, JSTOR, and the Middle English

Compendium—to be invaluable (Simpson 7).

Corpora can be used for a number of purposes in lexicography. First, a monitor corpus,

one to which text samples are constantly added, such as the Bank of English, can be

useful in identifying neologisms (Kennedy 91). Another use is in identifying collocates,

or words that are regularly used in conjunction with each other. While all dictionaries

include these, their selection of them is inconsistent, and they regularly omit important

ones (for example, M. Benson mentionsacceptable to). Using a corpus would help to

29

determine which collocates should be explicitly mentioned, based upon their frequencies,

upon their semantic and syntactic importance, or upon irregularities in their use.

Probably the area where corpora have proved themselves the most useful, however, is

determining a word’s meanings. In the past, determining a word’s senses has relied upon

instinct and the citation file. Paradoxically, citations still work better for newer or more

unusual words, for which readers are more likely to fill out a citation card and which are

likely to have fewer senses than more common words. But corpora can provide evidence

for how a word is used, what contexts it is used in, and both its denotation and connotation.

Thus, while using a corpus does not replace a traditional reading program, it does augment

it in useful ways (Simpson 8). Michael Stubbs gives a number of compelling examples of

how corpora can provide useful, interesting insights into semantics in his book on this,

Words and Phrases.

For example, at one point he looks at the occurrences ofundergoin the COBUILD

corpus and builds a lexical profile for it.MW11definesundergothis way:

1 : to submit to :ENDURE

2 : to go through :EXPERIENCEundergo a transformation

3 obsolete: UNDERTAKE

4 obsolete: to partake of

However, Stubbs looks at the top 20 collocates—at the words that occur near the word—

for undergo, which are listed in Table 2.1. He begins by noting that these collocates seem

to present a simple pattern: “people involuntarilyundergoserious and important events,

such as medical procedures” (89). Checking other corpora confirmed this characterization,

except that whenundergooccurs in technical writing, it lacks the negative connotations.

Finally, he presents this analysis ofundergo:

In summary, the main semantic patterns are simple: (1) In general English,

people are forced to undergo unpleasant experiences, especially medical pro-

30

Collocate Frequency Collocate Frequency
surgery 108 women 31
tests 67 forced 26
treatment 62 further 25
change 53 testing 25
training 43 major 24
test 41 examination 23
medical 40 extensive 31
before 37 heart 20
changes 35 required 19
operation 34 transformation 17

Table 2.1: Top 20 Collocates forundergoin COBUILD

cedures, or tests and (often arduous) training. (2) People and things undergo

(usually radical and unpleasant) changes. (3) In scientific and technical

English, the word is usually neutral. (92)

He also notes thatundergohas a typical syntactic usage pattern, which is used in the

majority of occurrences, shown in Figure 2.1. Comparing theMW11 definition with

Stubbs’ definition makes the advantages of using corpora to study a word’s semantics

clear: it makes explicit a number of aspects of the word’s connotations that are, at best,

implicit in the MW11definition, but which are common enough to consider including in

the word’s denotations, for example, the clear negative pattern and the strong medical

bias (89–95).

However, like all tools, using corpora does have its disadvantages. For one thing, the

software currently used to analyze corpora works best with modern texts. Nonstandard

spellings and nonstandard or obsolete syntax can create problems for identifying words

and for automatically tagging parts of speech. Also, corpora do not act as a replacement for

the writer of definitions. “I also think that the ‘art’ of lexicography, the work of analyzing

31

passive or modal +undergo+ adjective + abstract noun

forced to typical typical
required to adjectives lexical fields
must
etc. further medical procedure

extensive testing
major training
severe change
etc. a trauma

etc.

Figure 2.1: Typical Usage Pattern forundergofrom Stubbs’ Lexical Profile (92)

data and framing definitions which takes place in the lexicographer’s head, remains essen-

tially unchanged since Murray’s day and is likely to remain fundamentally unchanged for

the foreseeable future” (Simpson 10).

Perhaps the deepest, most troubling, and most interesting problems in corpus use are

raised by Charles J. Fillmore and B. T. S. Atkins. They examined the definition forrisk

in ten dictionaries and found a number of discrepancies. They had hoped that, by using

a corpus to study the word in use, they could write a better, more consistent, and more

complete definition for the word. Instead, they say, “we found that the challenge of dealing

with the corpus material convinced us that it was impossible to analyse and describe the

word within the constraints of the classical dictionary entry design” (350). As a solution,

they used frame semantics to provide a better paradigm within which to create a dictionary

definition. In it, they drew a schema of the actors and actions involved in the concepts of

risk and identified the parts of the diagram with the parts of the sentences that used that

word. From there, after putting the words and identifications into a database, they could

32

extract patterns of howrisk is used in different ways to create different meanings. In the

end, they determined that this kind of analysis and definition is not currently practical, but

that it could be in the not-too-distant future. Right now the time and resources necessary to

analyze words in this way, and particularly the space required to print it, are too expensive.

However, as more sophisticated computer resources are applied to lexicography and as

electronic printing becomes more widespread, using frame semantics to analyze words

could become more practical. Their criticism, however, is a decade old at this point, and

the analysis of a word’s semantics, if not the requirements of publishing a more space-

consuming type of definition, is more practical now, as Stubbs demonstrates.

Another way that computers are useful in lexicography is in automating various tests

and performing verifications on the entries. For example, a computer can check definitions

as they are modified to ensure that they do not contain words that are not in the dictionary

(that is, definitions that break the Word Not In principle).

A final way that computers are used in lexicography is to change the nature of dic-

tionaries themselves. As John Algeo noted in remarking on theOED2, the real change

between the firstOEDand the second edition was not in the merging of the supplemental

material, the use of IPA, or any of the other visible changes. The biggest difference was

that the new edition was primarily an electronic text. Seen this way, theOED can be

constantly updated, corrected, and supplemented. “The real Second Edition is, at least

in potential, a fluid text, which its editors can make respond as quickly as they wish to

new information or new interpretation” (Algeo 139). John Simpson, chief editor of the

OED, also confirmed this in an interview withEnglish Todayright after theOED Online

was opened on March 14, 2002. In this interview, he was asked if there would ever be a

third edition printed, and his reply demonstrates that he realizes exactly the watershed the

Online’s publication was:

33

OED Onlinewill be the Dictionary in future. I am sure it will be the version

that most people will consult. A dictionary of perhaps forty volumes will

be rather unwieldy, but the present hardback has many fans and theOED

in traditional book form is by no means out of the question. (Simpson and

Weiner 13)

And in another place, he says that the dictionary is moving from “text to dictionary, back

to text, and on to bibliography database, picture, sound, graphical analysis, or whatever”

(Simpson and Weiner 12). Like all forms of print culture, dictionaries are on the brink of

some exciting changes. And although the early stages of their voyage into electronic form

will surely reflect their print past, what they might look like further down the road makes

for interesting speculation.

In all, whether the early hard-word references or the modern electronic lexicographical

databases, dictionaries are an amazing achievement. Although complicated by problems

with authority, logistics, and the vagaries of the publishing business, they represent the

remarkable product of vast amounts of hard work, drudgery, and scholarship. And the end

result is a product that is at once misunderstood by many of its users, but extremely useful,

containing information that is unavailable anywhere else. This is the tradition into which

this product, Schwa, steps, trying to lighten the work load somewhat in working with

pronunciations, which have been, as described above, one of the most neglected parts of

the dictionary.

CHAPTER 3

TECHNICAL ISSUES

Some people, when confronted with a problem, think, “I

know, I’ll use a computer.” Now they have two problems.

— paraphrasing Jamie Zawinksi, “marginal hacks”

Aside from the theoretical issues concerning lexicography and phonetics, planning an

application for processing lexicographical pronunciations also raises technical problems.

These include how the IPA phonetic information is encoded, how to represent the dic-

tionary entries, how to store the information, and how to process phonetic data. Looking

at how these issues have been handled in the past, as well as what options are available

today, allows us to arrive at the best solution for the current problem.

The first technical issue to consider is how to represent IPA pronunciations in a form

the computer understands. Theoretically, this is no different than asking a computer to

work with the English alphabet, the Hebrew alphabet, or Chinese ideographs. To work

with any script, the computer needs four components: a character set defining correspon-

dences between character codes and the characters in that alphabet, a font defining how the

characters in the character set should be displayed on the monitor or printed (the glyphs

in the font), an input method for that character set, and operating system or application

software support (Harold 181).

The first component, the character set, is how computers deal with textual data. Inter-

nally, computers represent all information as positive integers within a specified range

34

35

(often 0–65,535). Computers maintain a table defining correspondences between these

numeric codes and letters, punctuation, digits, and other characters. This set of correspon-

dences is referred to as the character set. The characters in the character set represent all

the characters and only the characters that the computer can deal with and the characters

that applications expect to be available. Thus, to use some characters on the computer, for

instance the IPA, there needs to be a character set defined for it.

Numbers for character codes are usually given in base sixteen, or hexadecimal. Com-

puters store these numbers using base two, or binary. A single binary digit is a bit, and

eight binary digits are a byte. Just as “round” numbers in decimal (base ten) are powers

of ten, so round numbers in base two are powers of two. Thus, the numbers that com-

puters deal with most naturally and are used to specify ranges of numbers and characters

are often powers of two. The “specified range” mentioned in the preceding paragraph is a

good example. 65,536 is216. Moreover, sixteen is used here because it also is a power of

two (24). While round numbers in binary rarely correspond to round numbers in decimal,

they always correspond to round numbers in a base that is itself a power of two. For this

reason, base eight (23, called octal) and base sixteen (24, called hexadecimal) are often

used to represent numbers in computers. Hexadecimal is particularly efficient for this,

because each hexadecimal digit represents four binary digits, so two hexadecimal digits

represent one byte. For an example of how some round binary numbers fail to correspond

to round numbers in decimal, but do correspond to round numbers in hexadecimal, see

Table 3.1. Hexadecimal numbers are often written with a “0x” preceding them, to dif-

ferentiate them from decimal numbers. Of course, hexadecimal requires six more digits

than decimal does, and these are supplied using the first six letters of the alphabet, so in

hexadecimal, counting starts with 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, which

corresponds to decimal 0–16.

Converting hexadecimal characters to decimal is fairly simple. Starting from the right,

each digit is multiplied by 16 raised to the count of the digit, from the right, minus one. The

36

Power of Two Binary Decimal Hexadecimal
22 100 4 0x4
25 100000 32 0x20
28 100000000 256 0x100

210 10000000000 1,024 0x400
216 10000000000000000 65,536 0x10000

Table 3.1: Numbers in Binary, Decimal, and Hexadecimal

0x8F1C = (8× 163) + (F× 162) + (1× 161) + (C× 160)

= (8× 163) + (15× 162) + (1× 161) + (12× 160)

= (8× 4096) + (15× 256) + (1× 16) + (12× 1)

= 32768 + 3840 + 16 + 12

= 36636

Figure 3.1: Converting Hexadecimal 0x8F1C

digits A–F are replaced by their decimal equivalences: 10–15. These are added together

to get the total. As with most mathematical concepts, this process is easier to illustrate

than to explain. Figure 3.1 walks through converting 0x8F1C. First, the equation is set up

according to the process above: each digit is multiplied by sixteen raised to the number

of the digit, counting from the right, minus one. Next, the digits F and C are replaced

by their decimal equivalences, 15 and 12. From this point on, the equation is simplified

using standard algebraic processes. While this is not difficult, fortunately most scientific

calculators, including the calculator applications included with most computer operating

systems, will automatically convert between hexadecimal and decimal.

In summary, base sixteen is used for character codes. For example, in most character

codes,a is character code 97 (decimal), which is 0x61 (hexadecimal;6× 161 + 1× 160).

For the rest of this discussion, hexadecimal will be used for all character codes, while

decimal will be used to specify ranges of character codes.

37

The earliest widely used character set is the American Standard Code for Information

Interchange (ASCII). ASCII defined correspondences for thirty-two non-printing codes

used to control the computer, printer, or teletype, and ninety-six codes for digits, punctu-

ation, and the American English alphabet. It defined these in the range 0–127 (decimal).

While ASCII worked very well for American English, it did not work for Spanish, French,

or German, which used additional characters, much less for Hebrew, Russian, or Japanese,

with their entirely different character sets.

To address these deficiencies, a babel of other encodings arose. In 1984, the Macintosh

computer introduced the MacRoman encoding (Harold 193). This extended the ASCII

character set by defining a number of other characters in the range 128–255. These were

mainly accented Latin letters, Latin digraphs, and Greek letters used for mathematical

symbols.

Of course, MacRoman did not include enough characters to represent all the European

languages, much less the languages for the entire world. To handle European and Arabic

alphabets, the International Standards Organization (ISO) defined fifteen other character

sets. All of these were supersets of ASCII: these character sets used the characters ASCII

defined in the range 0–127, and they extended ASCII by defining other characters in the

range 128–255. The most common of these extended character sets was ISO 8859-1, also

known as Latin-1. It defined many of the same characters as MacRoman, but associated the

characters with different codes. The other character sets (ISO 8859-2 through ISO 8859-

15) defined slightly different characters in the 128–255 range. For example, ISO 8859-

3 defined the ASCII set plus characters for Esperanto, German, Maltese, and Galician;

ISO 8859-6 defined the ASCII set plus Arabic characters. These character sets could not

be used together. Thus, if ISO 8859-3 was used, the document could contain English

and German; if ISO 8859-6 was used, the document could contain English and Arabic.

However, there was no encoding that allowed German and Arabic to be used together.

38

When Microsoft released Windows, it used a new character set, which modified the

ISO 8859-1 character set by adding a few characters for codes that ISO 8859-1 had left

undefined. This encoding is known as Cp1252 or ANSI (although it was never standard-

ized by the American National Standards Institute).

In the general melee, a number of encodings sprang up to address the needs of those

who used Cyrillic and Asian languages. Particularly for Asian languages, these character

sets were still insufficient since they were limited to 256 characters. Also, as would be

expected, none of these character sets defined phonetic symbols. To make up for this

oversight, phoneticians and software developers invented a number of systems, which

generally fall into two categories: those that redefine all or part of the character set and

include a font to provide glyphs for that set and those that use standard printable characters

to represent phonetics.

One system of redefinitions and fonts was developed by William A. Kretzschmar, Jr.,

in 1984 for representing data from the Linguistic Atlas of the Middle and South Atlantic

States (“Phonetic Output”). Unlike other software it only redefined rarely used charac-

ters, not the regular alphabet, so this font could be used in word processing software to

represent both phonetics and standard alphabetic characters. Also, instead of having a sep-

arate character for each letter-diacritic combination, characters would be combined when

printing. For example, “I” was a combination of “I” and “ .” This system used Borland’s

Superkey program to allowCTRL- and ALT- key combinations to be defined to input

common sequences of phonetic characters (Kretzschmar and Konopka).

In 1989, Rebecca Dauer describes Better Letter Setter, another program typical of this

kind. Better Letter Setter illustrates some of the drawbacks of these systems. First, in this

instance at least, the on-screen font did not match the print font. For instance, “Z” would

show on the screen where “Z” would print (42). Also, to enter many characters, users had

to hold down theALT key while typing in a three-digit number on the numeric keypad

(43).

39

A more elaborate system than this, complete with its own word processor, as well as

the ability to integrate with other word processors, is described by Jassem and Łobacz.

This software provided three fonts, all of which redefined the standard alphabet as well as

other codes. One font was for encoding French, Italian, Spanish, and Swedish phonetics;

one for English and Polish; and one for German and Russian (18). Some characters were

redefined consistently across the fonts, while others were redefined differently in each

case. For example, character code 0x70 (“p” in ASCII) was “p” in all three, and 0x35

(ASCII “5”) was “Ã.” On the other hand, 0x56 (ASCII “V”) was “G,” “ 2,” or “v� ”

A different approach is to use regular ASCII and ISO 8859-1 glyphs as phonetic char-

acters. This is useful in some situations, either where the use of phonetics is limited, such

as e-mail, or where it can be easily extended, such as in LATEX. For example, the tipa

LATEX package interprets forty-one standard ASCII characters as phonetics. This small

set of characters is supplemented by a considerable number of longer macros that define

other characters, as well as accents and combinations of characters and accents. Phonetics

are differentiated from regular text with the\textipa{...} macro. For example, the

LATEX command “\tipa{f@"nEtIks} ” is printed “f@"nEtIks.” On the other hand, a pro-

nunciation that uses macros to display other characters, such as that for “jab,” would look

like “ \textipa{\textdyoghlig{\ae}b} ” and would print “Ãæb.”

To fix this mess of character sets, a number of companies and organizations formed

the Unicode Consortium, which publishedThe Unicode Standard 1.0in 1992. Uni-

code expands upon ASCII, which uses 7 bits, and the ISO encodings, which use 8, by

using 16 bits (or 32 bits in Unicode 4.0.0). This allows for 65,536 character codes (or

4,294,967,296 for Unicode 4). Each character in Unicode is defined as a character code,

usually writtenU+0000 or U+00000000 , where0000 or 00000000is the code as a

hexadecimal number. Each of these digits represents four of the bits used by the com-

puter to represent the character in memory. Leading zeros, such as the first two zeros

in “U+0061,” are simply placeholders. Each character is also assigned a name, usually

40

written in uppercase. For example, ana character has the code number of 97 in decimal,

so its Unicode number is written “U+0061,” and its Unicode name is “LATIN SMALL

LETTER A.”

To facilitate backward compatibility, the first 128 codes in the Unicode character set

are the same as the ISO 8859-1 character set. After that, the characters are divided into

blocks, with each block containing the characters for one script (although a few alphabets

have characters in more than one block, such as French, which has characters in the Basic

Latin and the Latin-1 Supplement blocks). IPA extensions are defined in the range from

592–687.

At a basic level, Unicode1 only defines character sets, that is, correspondences between

numeric character codes and the characters themselves. On another level, it also specifies

how Unicode data can be encoded in a file. There are a number of considerations in doing

this. First, many operating systems still expect text files to be encoded using 8-bit charac-

ters. This means that how a Unicode character’s 32 bits are represented in the file needs

to be specified exactly. Second, there are already many, many files that use either the

ASCII or ANSI character sets. Since the Unicode character set is already a superset of

these, being able to treat these legacy files as Unicode would greatly facilitate backward

compatibility.

The simplest way to encode Unicode strings in a file is called UTF-32 in the Uni-

code standard. This simply encodes the 32 bits in four consecutive bytes. For example,

in Table 3.2, U+0061,a, is encoded as “00000061 ,” and U+FFEE,◦, is encoded as

“0000FFEE.” Reading a Unicode character in this encoding is trivial, but it has two

major drawbacks. First, it is not backward compatible with earlier encodings like ASCII

or ANSI. Second, for English texts, it is very inefficient. An ASCII file recoded as UTF-32

would be four times as large without adding any informational content.

1This discussion only describes the version of Unicode current at the time this is being written,
4.0.0.

41

a
U+0061

LATIN SMALL LETTER A
ASCII 61
UTF-8 61
UTF-16 61 00
UTF-32 61 00 00 00

@

U+0259
LATIN SMALL LETTER SCHWA

ASCII N/A
UTF-8 C9 99
UTF-16 59 02
UTF-32 59 02 00 00

æ
U+00E6

LATIN SMALL LETTER AE
ASCII N/A
UTF-8 C3 A6
UTF-16 E6 00
UTF-32 E6 00 00 00

◦
U+FFEE

HALFWIDTH WHITE CIRCLE
ASCII N/A
UTF-8 EF BF AE
UTF-16 EE FF
UTF-32 EE FF 00 00

Table 3.2: File Encodings of Unicode Characters

The next way to encode Unicode strings is called UTF-16. In it, the characters in

the range U+0000–U+FFFF are encoded directly as 2 consecutive bytes. For example,

U+0061,a, is encoded as “0061 ,” and U+0259,@, as “0259 .” This encoding shares both

of the drawbacks of UTF-32: no backward compatibility and inefficiency in encoding

English texts.

The final way to encode Unicode strings is UTF-8. It encodes the characters in the

ASCII range, U+0000–U+007F as a standard 8-bit character, just as it would be in ASCII.

Thus, UTF-8 maintains backward compatibility with all ASCII and many ISO 8859-1

files: any ASCII file is, by definition, a UTF-8 file also. For characters above U+007F,

flags are set at the bit level that indicate what range the code is in and how that code is

distributed over the next two, three, or four bytes. Table 3.3, taken fromThe Unicode Stan-

dard, shows the details of how those bits are distributed over the bytes that represent the

character code in UTF-8 encoded files. For example, U+0061,a, is defined in the ASCII

42

Scalar Value 1st Byte 2nd Byte 3rd Byte 4th Byte
00000000 0xxxxxxx 0xxxxxxx
00000yyy yyxxxxxx 110yyyyy 10xxxxxx
zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 3.3: UTF-8 Bit Distribution (Unicode77)

range, so it is represented in the file as one byte. U+00E6,æ, is above this range, so it

is represented by two bytes. U+0259,@, works similarly. On the other hand, U+FFEE,◦,

which is at the upper range of the characters defined by Unicode within 16 bits, has to

use three bytes to represent the character. Thus, as well as maintaining backward com-

patibility, UTF-8 also is efficient for encoding English texts. However, for texts that use

many characters from the upper extent of the Unicode Standard, it can be less efficient

than UTF-16.

Note that as far asThe Unicode Standardis concerned, all of these are legitimate

representations of Unicode characters. It explicitly says, “It is important not to fall into

the trap of trying to distinguish ‘UTF-8versusUnicode,’ for example. UTF-8, UTF-16,

and UTF-32 areall equally valid and conformant ways of implementing the encoded

characters of the Unicode Standard” (28).

The next thing required to use Unicode is a font that defines glyphs for the current

character set. This font does not have to defineall the characters in the set, but obviously

it does need to define those you intend to use. For Unicode, the number of fonts that

define glyphs is steadily increasing. Microsoft Office, for example, includes a number of

fonts that define glyphs for subsets of Unicode, generally to display the characters for

a given language. It also includes “Arial Unicode MS,” which defines fonts for a large

subset of Unicode. As one would expect, this font is very large, about 22 megabytes in

43

size. However, it does define the IPA extensions block of Unicode, so it is a useful font

to fall back upon when no other is available. Other fonts in Office, such as “Lucida Sans

Unicode,” also define many IPA characters. Also, some Unicode fonts have been designed

just for use with IPA, such as Herman Miller’s Thryomanes font.

The next thing necessary to work in a given character set is a way to input the char-

acters. For standard English text the QWERTY keyboard solves this problem well. Also,

solutions have been invented for working with languages based upon the Latin alphabet

that also include some accented characters. For example, French keyboards have some

keys changed to added accents, as well as anAltGr key (“Alternate Graphic”), which

allows keys to input yet a third glyph (Harold 182). Alternatively, languages such as

Hebrew, which do not use the Latin alphabet, but which have only a fairly small number of

characters, can use the standard QWERTY keyboard with an extra key that operates like a

Shift Lock . When the user presses that key, the keyboard changes state, or shifts into

“Hebrew” mode, and registers key presses as Hebrew characters, until the user presses that

extra key again to change the state of the keyboard and returns to “English” mode. On the

other hand, languages like Japanese or Chinese cannot really use either of these methods

because of their large number of characters. Instead, they tend to use a combination of

keyboard keys and software that accepts further input. The details of these systems tend

to be very dependent on hardware, operating system, and application software (Harold

183–84).

Systems for inputting phonetics have relied upon a number of methods, many of which

were described in more detail above and are only summarized here. First, the Linguistic

Atlas Programs used Borland’s Superkey application to provideCTRL- andALT-key com-

binations to input either single characters or strings of characters. For example,ALT-a

would input “æ,”ALT-e “@,” ALT-z “Z” and CTRL-1 “ I.” Better Letter Setter used a

more awkward system, in which what appeared on the screen would print differently on

hard copy. It used the standard keyboard, soZ would appear on the screen as “Z,” but “Z”

44

would print. Others, Jassem and Łobacz, for example, refined this by providing a screen

font. However, their system was complicated by three different fonts, with the same key

producing different characters, depending upon the current font.

The final piece of the puzzle for handling IPA transcriptions by computer is the level

of operating system and application software support. Many of the original characters sets

were dependent upon the operating system. For example, MacRoman was only supported

on Apple Macintosh computers. By default, Microsoft Windows used ANSI, although

language packs could be installed that allowed it to use a variety of other character sets.

And proprietary systems, such as those used for phonetics, relied on software applications

for their support.

Operating systems have been slow to include Unicode support, although momentum

is beginning to swing in this direction, and recently it has even become quite prevalent.

It is the default character set for Microsoft Windows NT/2000/XP, Apple Macintosh OS

X, and Sun Solaris. It is also easily used on most other platforms. Many applications,

including Microsoft Office, also support Unicode, regardless of which operating system

they run on.

For programmers wanting to write applications that use Unicode, the situation is nec-

essarily more complicated. The first requirement for writing a program that supports Uni-

code is either a programming language that supports it or that has a library available for it.

Most programming languages now have Unicode support at some level. Currently, Java,

C#, and most scripting languages have Unicode support built-in, and even older languages

like C have support for it through thewchar t (wide character) type.

An aspect of program development that is less felicitous for Unicode is graphical user-

interface (GUI) libraries. While a few libraries have good Unicode support, for others it

is deficient or lacking altogether. Part of the reason for this is the lack of consistent Uni-

code support in the underlying operating systems. For example, although Windows NT,

2000, and XP all use Unicode natively, Windows 95, 98, and ME can only use it through

45

special libraries. Hence, even Visual Basic 6’s user interface designer does not use Uni-

code controls by default when a program is developed on a version of Windows that sup-

ports Unicode. Instead, developers have to enable Unicode controls intentionally, since

any application built using Unicode will not work natively on Windows 95, 98, or ME.

Third party GUI toolkits for Windows or for other operating systems also have varying

Unicode support. Part of the reason for this is that, since they cannot rely on Unicode sup-

port in the underlying operating system, they must implement it from scratch. Neverthe-

less, a number of third-party toolkits have some degree of Unicode support. wxWindows,

for example, provides a consistent programming interface on any platform for the under-

lying native GUI library. If the underlying library handles Unicode, wxWindows can also.

On the other hand, Tcl/Tk, for example, has very good Unicode support regardless of the

platform. Not only can the elements of the user interface display Unicode, but if the cur-

rent font does not define the characters it needs to display, the toolkit tries to identify one

that does. How well it accomplishes this varies, but this is a feature that no other toolkit

provides, as far as I know. Another library that handles Unicode is the Qt library. Under

Microsoft Windows, there are still licensing issues with this library, and these make it less

attractive than other libraries for open source projects, but its Unicode handling is still

excellent. Of course, Java’s AWT and Swing libraries also have good Unicode support,

having been initially designed for this.

Once the issues of how to use IPA on computers have been considered, however, the

data model for dictionary entries raises more problems. This does not necessarily mean

considering how the entries are stored, which will be examined later, but instead what

overall structure and paradigm is best for representing dictionary entries.

Entity/relational (ER) data models are used to describe collections of entities—

anything that can be distinctly identified—and relationships between one or more entities.

For example, an entry is an entity, as are pronunciations and word senses. Each entry

can have several pronunciations associated with it, but each pronunciation can only be

46

Entry
headword

Pronunciation Sense
n

definition

�
���

���

*

1

H
HHH

HHH

*

1

Figure 3.2: Entities and Relations in a Simple Dictionary Entry

associated with one entry. This relationship is described as beingone-to-many: one entry

is associated with many pronunciations. Other kinds of relationships areone-to-one(one

entry is associated with one headword, for example) andmany-to-many(each entry may

be associated with many subject domains, and each subject domain may be associated

with many entries). Figure 3.2 contains a schematic illustrating the entry, pronunciation,

and sense entities and the relationships between them. The1 and* on the lines expressing

the relationships indicate that the relationship is one-to-many, and which entity in the rela-

tionship is singular (labeled1) and which is plural (labeled*). Theentryentity also has

a specified characteristic, called anattribute. In this example, that attribute is the entry’s

headword. Entities can have as many attributes as necessary, such as thesenseentity,

which has an attribute,n, containing the number of the definition, and another,definition,

which contains the text of the definition. Typically, attributes’ values are atomic—that

is, they cannot be broken into smaller meaningful units—and they have a one-to-one

relationship with the entities they describe.

ER models tend to be static and well-defined from the outset. They do not work well

if there is a lot of variability in the structure of the information, for example if senses may

47

Entry

���������������

�
�

�
�

�

@
@

@
@

@

PPPPPPPPPPPPPPP

Headword Pronunciation Sense
n

Definition

Sense
n

����
HHHH

Sense
n

Definition

Sense
n

Definition

Figure 3.3: A Tree Model of a Simple Dictionary Entry

themselves contain other senses. This seems to be a major obstacle in modelling dictionary

entries with an ER model, since entries contain highly flexible structures. Senses can occur

either directly inside the entry or contained by other senses; an entry can contain multiple

senses tied to different parts of speech. The possibilities are (almost) endless.

However, there is another way to model the data. Instead of conceiving of the parts of

entries as being discrete entities with relationships between them, they can be viewed as a

set of entities that directly contain other entities in a flexible manner. So, for example, an

entrycan contain one or morepronunciationentities and one or moresenseentities. This

gives the entry a tree-like structure. One possible way to express a dictionary entry as a

tree model is shown in Figure 3.3. Entities can also have attributes, which again contain

atomic data tied directly to the entity. This is called a tree model, because there is one root

entity that contains all the other entities, which descend from the root like branches and

leaves.

48

Tree models appear to be a more appropriate way to represent dictionary entries.

Although restrictions can be placed upon what an entity can contain, they do not have

to be as formal and static as the relationships tend to be in ER models. This way, a sense

can easily contain either definitions or more senses.

In practice, ER data models are stored using a relational database, and tree structures

using Extensible Markup Language (XML). However, either data model can be stored

using other formats or in a hybrid combination of formats. For example, senses may be

stored in a database table, and each sense may contain XML markup delimiting its internal

structure. Because of this flexibility, it is worthwhile considering a number of storage tech-

nologies to determine which will provide the best combination of performance, flexibility,

and robustness.

One simple way to store information involves making use of the facilities various

programming languages have to serialize data, or to write them to or restore them from

a file or string. For instance, Java uses theSerializable interface, Python uses the

pickle module, and other languages have other methods. The main advantage of serial-

izing objects is that it is extremely easy and tends to be fairly fast. Typically, serialization

involves little more than calling a function with the object to persist and a file open for

writing. For example, Figure 3.4 demonstrates a short program in Python that creates an

object and serializes it to a file. While serialization is easy to use, its disadvantages are

great. First, it ties the data to one programming language. Second, all the data must be held

in memory at one time. For a dictionary with hundreds of thousands of entries, this can be

prohibitive. Third, serialization is not safe: if the program or computer crashes before the

data is saved, any changes made since the last save are lost. Moreover, if the program or

computer crashes while the data is being saved, the data file will be corrupted and all the

data, past and present, will be lost.

A text markup language, such as XML (Bray), represents an improvement over object

serialization. These markup languages are especially well suited for working with tree

49

import the serialization library
import pickle

create the object
obj = object()

open the file
f = file("output.file.name", "wb")

serialize the object
pickle.dump(obj, f)

close the file
f.close()

Figure 3.4: Example of Serialization in Python

models, but can be used for handling ER models also, albeit not as naturally. Moreover,

dictionary entries have been stored using tree models expressed through markup languages

for some time. When theOxford English Dictionarydecided to computerize in 1983, they

decided to encode the data using IBM’s General Markup Language (GML), an ancestor

of Standard Generalized Markup Language (SGML) and XML.

Another attempt to encode dictionaries using a markup-based tree model was the Text

Encoding Initiative’s (TEI’s) dictionary subset. In 1995, Ide and Véronis discussed the

problems of encoding dictionaries, “among the most complex text types treated in the

TEI” (167). The challenges in encoding dictionaries come first from trying to strike a

balance in adequately describing the often disparate structures of different dictionaries

and second from capturing the visual presentation of the information on the page as well

as the information content, which are often radically different.

50

Following the lead of theOED or any other commercial dictionary publisher in

this matter is difficult, since they provide little information about the internal work-

ings of their systems. However, the TEI’s dictionary subset provides a good example of

encoding dictionaries and of the problems encountered in doing so (Sperberg-McQueen

and Burnard). First, the structure within and across dictionaries varies so widely that it

is difficult to determine a consistent, structured description of the entries or to set guide-

lines for encoding them. Second, like any printed documents, dictionaries exist on two

levels: the typographical and the semantic. Some users may be primarily interested in the

first, others in the second, and still others in both. Thus, the challenge comes in trying

to include markup that is able to capture both typographical and semantic information,

while still striking a balance between having the markup flexible enough to be useful,

yet strict enough to be descriptive. In the TEI, the first problem is addressed by having

entries contained in one of two tags: the<entryFree > tag can contain any elements

in any order; the<entry > tag provides more structure. The TEI recommends using

<entry > whenever possible and to fall back on the<entryFree > tag only when

absolutely necessary. The TEI addresses the second problem by providing a set of guide-

lines to follow according to whether the encoder is interested in capturing the dictionary’s

typographic or semantic information. For example, capturing the typographic information

in the dictionary can be accomplished using the<rendition > tag in the header, and

therend attribute available on every tag. Thus, the TEI is capable of encoding either the

typographical or semantic models of the data or a combination of them.

Within the TEI’s <entry > tag, there are multiple levels of structure. Under the

<entry > tag, the<hom> (homograph) tag groups elements related to one part-of-

speech homograph in the<entry >. The<sense > tag groups elements related to one

sense of the entry or homograph. Moreover, these elements nest according to a set of

guidelines:

51

As may be seen, the content model for<entry > specifies that entries do

not nest, that homographs nest within entries, and that senses nest within

entries, homographs, or senses, and may be nested to any depth to reflect

the embedding of sub-senses. Any of the top-level constituents (<def >,

<usg >, <form >, etc.) can appear at any level (i.e., within entries, homo-

graphs, or senses). (Sperberg-McQueen and Burnard)

These top-level elements are<form >, <gramGrp > (grammatical group),<def >

(definition), <trans > (translation),<eg> (example),<usg > (usage information),

<xr > (cross reference),<etym > (etymology),<re > (reference), and<note >. These

elements all have their own content models. Finally, many of the tags that allow textual

content also allow all of the other tags from the core and base tag sets: for example,

<emph> and others. In all, the TEI provides a rich and thorough set of tags to express

the complex content model represented by dictionaries and dictionary entries. An example

of this is provided in Figure 3.5, which gives the definition forphoneticsgiven byMW11,

with its semantic content marked up. This shows nesting<sense > tags (for senses “2a”

and “2b”), as well as the general encoding for a dictionary entry.

Of course, XML does have both advantages and disadvantages. On the positive side,

it has become a widely used standard, which many applications and software libraries

can handle intelligently. Thus, the data is not closely tied to any particular application

or programming language, such as happens when using programming-language-provided

persistence. Second, this standardization also provides many opportunities to share data

and interoperate with other users. However, XML does have a number of the same prob-

lems as object serialization. Typically, all the data needs to be held in memory in some

format at one time. Thus, it is unsafe for the same reasons that object serialization is.

As an alternative to this, the first kind of database technology to consider is relational

database systems. Typically, when the worddatabaseis used, this is the kind of technology

52

<entry>
<form>

<orth> phonetics </orth>
<hyph> pho|net|ics </hyph>
<pron> fə-ˈne-tiks </pron>

</form>
<gramGrp>

<pos> n </pos>
<number> pl but sing in constr </number>

</gramGrp>
<etym>

<date> 1836 </date>
</etym>
<sense n="1">

<def>
the system of speech sounds of a language
or group of languages

</def>
</sense>
<sense n="2">

<sense n="a">
<def>

the study and systematic classification
of the sounds made in spoken utterance

</def>
</sense>
<sense n="b">

<def>
the practical application of this science
to language study

</def>
</sense>

</sense>
</entry>

Figure 3.5:MW11Entry forPhoneticsMarked Up Using the TEI

53

meant. Relational databases implement an ER model. Entities, as well as many-to-many

relationships, are expressed using tables. Each entity must have a way of uniquely identi-

fying itself. Relationships are expressed by one entity referring to the identifier of another.

For example, Figure 3.6 shows some entries fromMerriam-Webster’s Collegiate Dictio-

nary, 11th edition (MW11), stored in a relational database structured according to Figure

3.2. Each table has an attribute, represented by the columnid, which maintains a unique

identifier for each entity (row) in the table. ThePronunciationsandSensestables each

contain the columnentry id, which holds an identifier for a row in theEntriestable. This

expresses the one-to-many relationship between entities in theEntriestable and those in

thePronunciationsandSensestables, since more than one row in those tables can refer-

ence a single row of theEntriestable.

Relational databases can also incorporate hierarchical, tree-structured data. A simple

table can hold the nodes of the tree, using a field to identify the kind of entity. Another

table can specify the relationships between nodes. However, compared to more direct

ways of encoding such data, or the ease with which relational databases hold ER-

structured data, such a representation is awkward. Another way to use relational databases

to hold such data is to encode the data as XML and to store that in the table. Other data,

for instance identifiers, can be extracted from the XML data and stored in separate fields.

To do so does add a level of complication, however. Although the majority of the data can

be kept in a more natural storage form, the extracted information kept in separate columns

cannot be changed separately. For example, if there is a pronunciation column that takes

its value from the pronunciation given in the XML data, changing it without changing the

corresponding XML would invalidate the data in the database.

This burden can be ameliorated by using some XML-enabled or -aware relational

databases, but this is not necessarily the panacea it might seem. Since XML has become a

buzzword, many databases claim to be XML-enabled, but exactly what this means varies.

Most of these databases can export and import their data using XML. Some can query

54

Entries
id headword
1 lexicography
2 orthoepy
3 phonetics

Pronunciations
id pron entry id
1 �lEks@"kAgr@fi 1
2 �OrT@"wEpi 2
3 Or�ToU@pi 2
4 f@"nEtIks 3

Senses
id n subn def entry id
1 1 the editing or making of a dictionary 1
2 2 the principles and practices of dictionary making 1
3 1 the customary pronunciation of a language 2
4 2 the study of the pronunciation of a language 2
5 1 the system of speech sounds of a language or group

of languages
3

6 2 a the study and systematic classification of the sounds
made in spoken utterance

3

7 2 b the practical application of this science to language
study

3

Figure 3.6: Dictionary Entries Stored in a Relational Database (Entries fromMW11)

using XPath, an XML-based query language. Some accept XML input for columns. A

few store their data in an XML format. Thus, although using an XML databasemaybe

helpful, it does not necessarily ease the burden that storing XML in a relational database

places upon the programmer.

A final option is to use a simpler database system. Libraries such as the Berkeley DB

provide a simple string-to-string mapping (Sleepycat Software). If sufficient, this structure

can be used directly, or if a more complicated system is needed, this can form the basis

for a more full-featured database. For example, MySQL uses Berkeley DB for its low-

level tables. One way to use a Berkeley DB would be to store the entries as XML and key

each entry by its headword. This maintains the natural, hierarchical structure of the entries

55

while providing many of the benefits of relational databases, including more efficient disk

use, speed, and incremental saves for the data so less information is lost in the event of a

crash.

In the end, a consideration of the technical issues in working with lexicography and

phonetics reveals that computers have been used in lexicography for almost half a century.

However, computer technology has advanced continuously, and lexicography, being tied

to legacy systems, has been slow to take advantage of those advances. But by making use

of the latest technologies in character encoding, data models, and other areas, working

with dictionary data and pronunciations can be greatly facilitated.

Bearing in mind the lexicographical and technical issues considered in this chapter

and the previous one, we can turn our attention to designing a specific application that

makes use of these theories and technologies to facilitate managing and editing databases

of dictionary pronunciations.

CHAPTER 4

SCHWA

Anyone who can’t pronounce schwa can’t pronounce any-

thing.

— Metalleus

Of course, the technologies discussed in the last chapter are useless without an appli-

cation that applies them to a particular domain in a user-friendly manner. I have brought

these technologies together in an application named Schwa, a program to manage and edit

large databases of dictionary pronunciations.

In designing this product, I had a number of goals in mind. First, the application should

be easy for the end user. This includes a standard installation procedure, intuitive user

interface, and good error-handling procedures. This doesnot necessarily imply that the

program should have no learning curve, since users—particularly experts using an appli-

cation pertaining to their field—are often willing to spend some time learning to use a

program if the pay-off is sufficient in terms of his or her added ability to accomplish tasks.

In other words, if the application provides enough power, users are willing to expend a

proportional amount of energy to learn to use that application.

Second, in its use and the work-flow it embodies, the application should encourage

good practices in the way that users write and manage dictionary pronunciations.

Although it may be possible to write pronunciations that are based upon poor prac-

tice, the “natural” way to use the program should encourage good phonological practices,

such as those described in Chapter 2.

56

57

Third, the application should be based upon good decisions in the technology it

incorporates. This means that the latest, bleeding-edge technology is often inappropriate

because of the instability of both the standards that define it (if, indeed, there are any) and

the libraries that implement it. Often, a better option is to use a more mature and stable

technology. The resulting application is more solid in its day-to-day use and often more

long-lived in its ability to operate with future technology. Using mature technologies also

means that the program’s design and the structures that go into creating it should represent

good programming practices.

Fourth, the program should be easily extensible by programmers and by more techni-

cally adept users. They should be able to build upon the framework it provides to define

and perform further tasks on the program’s databases and the dictionary entries and pro-

nunciations they contain. Also, further extending the program to import data from and

export data to more data sources should be a well defined process and not unduly difficult.

Together with the considerations covered in Chapters 2 and 3, these goals provide

guidelines for this application, and the rest of this dissertation describes the results of

these guidelines, Schwa. First, this chapter describes the data and databases that Schwa

manages. Second, it describes the program from a programmer’s perspective: the program-

ming language objects and structures that make up the program code. Third, it describes

the program from a user’s perspective: the windows that comprise the program’s user

interface and the processes they make available to the user. Finally, it has a number of

examples and suggestions for using the program, both to illustrate daily use and to show

how to use Schwa to solve certain problems the writer of lexicographical pronunciations

may encounter.

58

4.1 DATA

As Chapter 3 points out, the semantic structure of dictionary entries is both complex and

varied. Because of this, the entries are best represented using XML. At the most basic

level, XML is simply a way to mark information so a computer can easily process it.

Unlike many other ways of making information accessible to a computer, XML is also

fairly readable by humans. The way that XML marks up information is similar to how

SGML and HTML have done it, and for good reason: XML is descended from SGML.

However, in many ways XML is supposed to be simpler than either SGML or HTML.

XML models all data using a hierarchical, tree-like structure. Each document has a

root, which is simply an object that contains all other objects in the document. The objects

in an XML document are calledelements, and each element is marked off usingtags.

There are three kinds of tags: anopen tag, which is always paired with anend tag, and

anempty tag, which is conceptually like having an open tag immediately followed by an

end tag. Tags of all kinds begin with a less than sign and end with a greater than sign.

Open tags simply have thetag or element name: <tag-name >. End tags come after

all of an element’s content, and have a forward slash immediately before the tag’s name:

</tag-name >. Empty tags are like an open tag, except they have the forward slash

immediately after the tag’s name:<tag-name/ >.

Elements also have attributes, which are pairs of names and simple values that are

attached to the open tag. Attributes are expressed using the name, an equals sign, and

the value in quotes:<tag-name attribute="value" >. Empty tags can also have

attributes:<tag-name attribute="value"/ >.

Elements also have content, called the element’schildren. The children can be a list

of complete elements, textual information, or a combination of the two. The textual infor-

mation cannot contain any less-than sign, greater-than sign, or ampersand. To include one

of these characters, anentity is used. There are two kinds of entities. The first is called a

59

Named Entity Character
< <
> >
' ’
"e; "
& &

Table 4.1: Default XML Named Entities

character reference entity. This begins with a “&#” and ends with a “;”. Between these

two is a Unicode character code. This code can be in decimal or, if preceded by “x”,

in hexadecimal. For example, the character code for@ is decimal 601, hexadecimal 259.

Thus, one way to include a schwa character in an XML document is to use a character

reference entity, which would look like “ə ” or “ ə ”. Since the Unicode

character code is written U+0259, often the entity will be written “ə ”. Another

kind of entity is called anamed entity. This kind uses a mnemonic name to represent one

or more characters. Named entities have the form “&name; ”. By default, XML defines a

number of named entities. These are listed in Table 4.1.

These basic building blocks of XML documents—open tags, end tags, empty tags,

entities, and content—must be put together correctly to produce awell-formeddocument.

There are a number of issues involved in a document’s being well-formed, but simply put,

it involves:

1. The open tags, end tags, empty tags, attributes, and entities are formed as described

above.

2. The text content contains none of the characters “<”, “ >”, or “&”.

3. The document is entirely contained in one element (the root) with no content outside

that element.

60

4. Elements areproperly nested. This means that the document does not close an ele-

ment with an end tag if one of that element’s parent elements is still open.

While well formedness provides a basic level of structure for an XML document, it

does not say anything about the semantic content of the document or whether that is valid:

that is, whether the document uses the correct tags and attributes and whether they are

combined correctly. There are several ways to specify a document’s semantic content. The

oldest way is to create adocument type definition(DTD) for the document. This specifies

what tag names and attributes are allowed in the document, as well as what children each

tag can contain. DTDs provide the vocabulary for XML documents. Thus, for example, the

TEI dictionary subset provides a set of tags and a vocabulary for describing and marking

up dictionary entries.

However, sometimes parts of a document serve different purposes, and more than

one vocabulary is necessary to capture the different semantics for the different parts of

the document. For example, the TEI could be used to mark up a dictionary entry, while

scalable vector graphics (SVG), an XML format for graphics, could be used to describe

an illustration for the entry. DTDs do not allow vocabularies to be safely combined. For

example, both TEI and SVG could define a<title > tag, and an application processing

such a document would have no way of knowing which DTD defines the ambiguous

tag. To remedy this problem,namespaceshave been added to XML. Namespaces allow

the software processing an XML document to tell which tags belong to which semantic

vocabulary, while preventing names from different vocabularies from clashing.

Using namespaces involves two steps. First, anamespace prefixmust be associated

with a namespace uniform resource identifier(URI; roughly, a URL). Second, the prefix

is added to the tag names for elements that are part of that semantic vocabulary.

Associating a namespace prefix with a namespace URI is done by putting a namespace

declaration attribute on an element. Usually, this is either the document’s root element or

61

the first element that uses the namespace. For example, the standard namespace prefix for

an SVG document is “svg”, and the namespace URI is “http://www.w3.org/2000/svg”. To

include an SVG illustration in a TEI dictionary entry, the declaration would be an attribute

on the<entry > tag reading “xmlns:svg=’http://www.w3.org/2000/svg’ ”.

Later, on tags from the SVG document set, the prefix “svg” is added to the tag name with

a colon (<svg:title >). For example, Figure 4.1 shows an<entry > element for

hexagon(MW11), with an SVG illustration of a hexagon inside it.1

Figure 4.1 also provides a good example of marking up a dictionary entry with XML.

It has one root element,<entry >. Each entry within the root is properly nested. Also,

there are a number of character reference entities in the pronunciation and etymology

(e.g., “ə ” for @ and “ä ” for ä). Most of the document contains open

and end tags, although there is one empty element,<ptr target=’-gon’/ >, near

the end of the etymology.

Beside being an example of XML in general, Figure 4.1 is also good example of

using the Text Encoding Initiative DTD (TEI) to mark up dictionary entries. First, a

dictionary entry may be contained by a<superEntry > element, which contains

one or more homographic entries: entries whose headwords are all spelled alike. In

the program Schwa, all entries are contained in a<superEntry > element. Second,

each entry is contained in an<entry > tag. The various forms that the headword can

take—orthographic (<orth >), hyphenated (<hyph >), pronunciation (<pron >)—are

contained in the<form > element. Grammatical information, such as part of speech

(<pos >), number (<number >), and others, are contained by the<gramGrp > ele-

ment. Etymologies are in the<etym > element. Since this entry only has one sense,

its definition is given in the<def > element, which is directly under the<entry >

element. However, an entry with a more complex definition would group the definition

1MW11does not have an illustration forhexagon. It has been supplied for the purposes of this
example.

62

<entry>
<form>

<orth> hexagon </orth>
<hyph> hexa|gon </hyph>
<pron>

ˈhek-sə-ˌgän
</pron>

</form>

<gramGrp> <pos> n </pos> </gramGrp>

<etym>
<lang>Gk</lang>
<mentioned>hexagōnon</mentioned>,
neut. of <mentioned>hexagōnos</mentioned>
<gloss>hexagonal</gloss>,
fr. <mentioned>hexa-</mentioned> +
<mentioned>gōnia</mentioned>
<gloss>angle</gloss> —
<xr type=’etym’>more at <ptr target=’-gon’/></xr>
<date>1570</date>

</etym>

<def> a polygon of six angles and six sides </def>

<svg:svg xmlns:svg=’http://www.w3.org/2000/svg’
style=’width: 3in; height: 3in;’>

<svg:title> A hexagon </svg:title>
<svg:polygon

points=’50,0 100,25 100,75 50,100 0,75 0,25’
fill=’red’ stroke=’black’ stroke-width=’1px’/>

</svg:svg>
</entry>

Figure 4.1: An Entry forHexagonwith an SVG Illustration

63

in a hierarchy of<sense > elements, such as is done in the definition ofphoneticsin

Figure 3.5.

One useful element, not illustrated here, is the<usg > element, which can occur in

any other element. The<usg > element has the attributetype , which indicates what

kind of usage information the element contains. There are a number of possible values for

thetype attribute:

geo geographic area

time temporal, historical era (“archaic,” “old,” etc.)

dom domain

reg register

style style (figurative, literal, etc.)

plev preference level (“chiefly,” “usually,” etc.)

acc acceptability

lang language for foreign words, spellings, pronunciations, etc.

gram grammatical usage (Sperberg-McQueen and Burnard)

An example of the<usg > element is shown in Figure 4.2, which lists the entry forentry

from theOxford Dictionary of Pronunciation(ODP). This example shows how multiple,

nested<form > elements can be used to group different pronunciation variants (in this

case, different geographical pronunciations) while one parent<form > groups the ortho-

graphic form of the headword with all the pronunciations. Figure 4.2 also illustrates the

extent attribute on the<orth > or the <pron > elements. This attribute indicates

whether it contains an entire word or only part of it. In this case, it is used to indicate that

a pronunciation is only for the plural suffix forentry.

The element<entry > can also contain a number of other elements, the most

important of which from Schwa’s point of view being the<note > element. This tag

64

<entry>
<form>

<orth> entry </orth>
<form>

<usg type="geo"> Br </usg>
<pron> ˈɛntr|i </pron>
<pron extent="suff"> -ɪz </pron>

</form>
<form>

<usg type="geo"> Am </usg>
<pron> ˈɛntri </pron>
<pron extent="suff"> -z </pron>

</form>
</form>

</entry>

Figure 4.2:ODPEntry forEntryMarked Up Using the TEI

takes atype attribute, indicating whether the element contains information about usage,

grammar, context, or some other matter. Another important attribute isresp , which iden-

tifies the person adding the note. Schwa uses the<note > element to add miscellaneous

information to the entry, such as the details of when an entry was imported into the main

database, and it adds aresp attribute with the value “schwa” to these elements. These

<note > elements are also used to add information to the entry about changes that an

editor has made, and Schwa can automatically insert a template for these notes, including

an appropriate value for theresp attribute.

In Schwa, the dictionary entries are maintained as TEI-encoded XML. This allows a

number of advantages. First, the data model is standard and is thus able to make use of

the thought and decisions that went into designing the TEI and the TEI dictionary subset.

Second, keeping the entries in XML allows Schwa to use tools written for working with

65

Entries
id

headword
entry

Word Lists
id

name
. . .

Word List Members
entry id

word list id

Figure 4.3: ER Model for the Schwa Database

XML. Finally, it allows the data to be kept in a flexible format that respects the data’s own

intrinsic complexity.

To organize the entries in the database, Schwa usesword lists. At the most basic level,

a word list is simply a subset of the headwords in the entire database, which can be defined

and used in a variety of ways. Word lists are created whenever data is imported into the

database, and a second word list is usually also created at that time to list the entries that

have been imported that conflict with existing entries. The user can also create word lists

by searching the headwords in the database with regular expressions or by searching the

entries’ XML structure using XPath (Clark). Word lists are also used to view and edit

subsets of the database and to export data. Potentially, word lists can be used for any other

operation that requires a subset of the database.

The database itself could take a number of forms. One possibility would be a relational

database system, in which one table would list the entries, another the word lists, and

a third the relationship between the entries and the word lists. Thus, described using an

entity/relational model, the entities represented by the database would beentriesandword

lists, and there would be a many-to-many relationship between these two, i.e., each entry

might be included in many word lists and each word list would have many entries. There

may also be other entities, for example, to store the pronunciations from the entries so

they can be easily accessible to the database engine. The entities and relationships in the

database are represented graphically in Figure 4.3.

66

When the worddatabaseis used, typically a relational database is being referred

to. However, another option to consider is a more primitive database system, such as a

Berkeley database (Sleepycat Software). This has tables that simply associate one string

value with another, and it does not support any kind of query language, such as SQL. If

the added features of relational databases, such as SQL, are not needed, often a Berkeley

database is a good option upon which to develop a customized database solution. A

Berkeley database for Schwa would have one table for the entries, one for the word lists,

and one for each word list, which would contain all the entries in the word list.

Since either of these options would present a good database solution for Schwa, and

the technical discussion in Chapter 3 did not suggest that one was clearly better than

the other, deciding between them requires implementing both, benchmarking the imple-

mentations, and comparing the results. For the relational database solution, two database

engines were used. One was the JET database engine, used in Microsoft Access, and the

other was MySQL, a large, commercial-grade database server. Although I do not expect

users to install and use MySQL, I implemented this for the sake of comparison. For the

simpler database solution, I used the Berkeley database system. (The details of the object

model for all these implementations is described in Section 4.2.) To benchmark these

storage options, a program uses each database to import and export a series of data files

ranging in size from 2,000 to 10,000 entries. The time it takes to accomplish importing

and exporting is measured in seconds. This procedure, operating on various sizes of data

sets, tests the ability of each database to operate both on small databases and on the larger

ones that most users will be working with.

The results of running the benchmarks are given in Table 4.2. In comparing the

databases, The Berkeley database outperforms all the others, even for smaller data sets,

and it also scales better as the data sets become larger. Given the results of the bench-

marking tests, I used the Berkeley database system in the Schwa program.

67

Database Number of Entries
2,000 4,000 6,000 8,000 10,000

Berkeley 33.08 66.67 101.17 136.76 172.18
JET 80.03 156.11 230.46 304.11 379.03
MySQL 53.76 107.72 161.71 212.96 268.45

The tests were run by importing and exporting the given number of entries into and
out of each kind of database. The tests were performed on a 1GHz Athlon PC with
128MB of RAM, running Windows XP Pro, Service Pack 1. The results are given in
seconds.

Table 4.2: Results of Benchmarking Storage Options

4.2 CODE

Once the underlying data format has been decided upon, the next step is to decide upon the

programming language to use and the structure of the code. In deciding upon the program-

ming language for this application, a number of considerations and criteria are involved.

First, the language needs to provide good XML support. This is not the problem it once

was, since most languages have solid standard or third-party libraries for working with

XML. Second, it needs to be able to work with Unicode. This also is not as much of an

issue as before. However, the ease with which languages can encode and decode Unicode

and work with data expressed in it still varies. Third, the programming language needs to

provide a stable platform for building the application. This also applies to any libraries the

application uses. Fourth, it needs to provide a fairly rapid, easy-to-use development pro-

cess. Fifth, code written in the language needs to be easily maintainable after the program

is written, both in terms of debugging and adding functionality.

The number of possible programming languages to consider is almost endless. How-

ever, for the purposes of this discussion, I will begin by limiting consideration to those

68

languages I am familiar with and would consider doing such a project in. Thus, for this

discussion, I will consider C++, Java, and Python. One caveat concerning this evalua-

tion of languages is that the choice of programming language is at least partly subjective.

While one person may value conciseness and be willing to overlook (or even cherish) syn-

tactic clumsiness, another may be willing to put up with a certain amount of verbosity in

exchange for a more clean syntax, and still another may be willing to overlook syntactic

inconsistencies as long as the semantics are very regular.De gustibus non disputandum.

The first language I want to consider is C++. It can process XML using a variety of

libraries. The Apache project’s Xerces parser provides parsing facilities for XML in C and

C++. Also, its Xalan project provides for XSLT and XPath. Likewise, its Unicode facilities

are good. On the level of C, thewchar t (wide character) type supports working with

Unicode strings, and the C++ standard library has thewstring object, which allows

for manipulating Unicode strings in an object-oriented manner. Libraries such as iconv

provide for encoding and decoding Unicode data (libiconv). The problem with C++ is

stability and maintenance. Theoretically, C++ can be very stable. However, writing stable

applications in C++ requires time to work out pointer issues and to implement and debug

them. These factors also make C++ less maintainable than others. In general, while C++

would be satisfactory, there are better solutions in the other languages.

Of course, no modern discussion of languages would be complete without mentioning

Java (Source for Java). Its internal Unicode handling is excellent: all strings are han-

dled as Unicode. Also, its XML facilities are very good. Java is generally stable and is

easy to develop in, and programs written in it are maintainable. However, its memory

requirements have given it, and particularly its GUI libraries, the reputation of being less

responsive than their C and C++ counterparts.

Finally, the last language, Python, is one of a collection of scripting languages. These

are very high-level, dynamic, interpreted languages that have become popular in a variety

of domains, including web programming and system utilities. Python’s Unicode handling

69

is excellent. It also has the added benefit that programmer-written codecs can be incorpo-

rated and called using the same mechanisms as built-in codecs. That is, the programmer

can define a function for converting between one of the phonetic character sets that rede-

fine the upper range of the ANSI character set, and it can be used in the program as

naturally as the UTF-8 or Latin-1 encodings. Also, there are a number of good libraries

for handling XML, and since Python has been under development for as long as Java

has, it is about as stable. One of the touted benefits of this class of languages is their rapid

development time, and this applies to Python also. Also, its emphasis on readability makes

it very maintainable. Keeping these considerations in mind, Python appears to be the best

option. I know the language well and am productive in it. Its Unicode and XML handling

and, most of all, its rapid development time and maintainability all recommend it.

The Python website describes this language as being “aninterpreted, interactive,

object-orientedprogramming language,” which has a very clear syntax (“What Is

Python?”). Python is interpreted, not compiled, and it has strong, but dynamic, typing

(i.e., it strongly differentiates between different value types, but only values are typed,

not variables). Because of these two factors, writing code in Python is typically quite

fast. While it is possible to use just functions to organize code, the basic building blocks

of Python programs are objects. Objects combine data with actions. In Python, the data

attached to objects is referred to asattributes, and the actions aremethods. Also, attributes

and methods can be combined asproperties. Syntactically, properties look like attributes;

however, when a property is set or accessed, a method call is triggered. This allows data

to be dynamically calculated or protected so that a property can only be read from, not

written to. Objects can subclass other objects, in which case they inherit the attributes and

methods of the object they subclass, and can selectively redefine them.

On a higher level, code is organized intomodules, which collect data, functions, and

classes into onenamespace. In Python (as opposed to XML) a namespace is simply a

named grouping of entities. For example, theos module in the standard library provides

70

access to the operating system. Inside it, there is the constantname, which contains the

name of the operating system. It also has a functionchdir , which changes the current

directory. Both of these—name and chdir —exist in the namespace ofos . They are

accessed using dot notation: “os.name ” and “os.chdir ”. Modules can also be orga-

nized into packages, which are simply modules that contain other modules. For example,

os is actually a package that itself contains a module namedpath , which provides

functions to manipulate OS path names. The modulepath contains a function named

abspath , which creates an absolute path name from a relative path. Again, it is accessed

using dot notation: “os.path.abspath ”. This introduction to Python should provide

enough information to follow the description of how the code in Schwa is organized.

Having decided on the language, the next consideration is the graphical user interface

library, or toolkit. There are a number of GUI toolkits available and in widespread use for

Python. The de facto standard is Tcl/Tk (Tcl SourceForge Project). Another popular one

is the wxWindows library. There are also a number of other toolkits, but these are not as

popular, and none of the others can handle Unicode.

The first, Tcl/Tk, is accessed through Python using the Tkinter module. This toolkit

has been in active development for a long time, so it is very stable. This is also a drawback,

however, because Tkinter does not have as rich a set of controls as other libraries. Where

Tkinter shines, however, is in its Unicode handling. Beyond simply displaying a Unicode

string, if the current font does not have a glyph defined for a character, Tkinter tries to

find a font to use that does define it. This works better on some platforms than others, and

finding a font for a character can take a long time if many fonts are installed, but this is

still a nice feature that none of the other toolkits provide. The awkward part of Tkinter is

passing Unicode data in and out of it, which is sometimes temperamental: sometimes it

will accept a Pythonunicode object; at other times, though, it wants a UTF-8 encoded

string.

71

The second toolkit, wxWindows, and its Python module, wxPython, provide a cross-

platform layer on those of the platform’s native controls (wxWindows). It has not been

in active development as long as Tkinter, but it is still quite stable. Moreover, its set of

controls is very full. On the other hand, its Unicode handling works best on platforms that

support it natively. Windows 98 and ME, however, can use wxWindows in conjunction

with Microsoft’s Unicode emulation layer. Thus, given its adequate Unicode handling and

its superior set of controls, wxPython appears to be the best option for creating the user

interface.

Much of the code in Schwa makes use of a Python library I have been accumulating

for some time, theericr package. While some parts of this package are still quite rough,

the data structures and functions that Schwa depends upon are solid.

Perhaps the most important module in this package isericr.app . This contains the

Application class, which provides a framework for creating applications. New appli-

cations subclass theApplication object, primarily to redefine themain method. By

using this class, applications automatically get command-line option parsing, information

logging, and an exception handling framework. Schwa makes use of this class both in the

main Schwa application and in some utility programs.

Theericr package also defines some useful data structures and design patterns. Data

structures are general-purpose classes that are good in a number of situations. Design

patterns are more abstract solutions to problems which occur repeatedly and can there-

fore be identified and analyzed. Often, design patterns involve many classes interacting

together. The first design pattern implemented in theericr package is the Observer pat-

tern (Gamma, et al., 293). This pattern is used whenever one or more classes needs to be

notified of events by other classes. The implementation of the Observer pattern provided

in ericr.datastruct.observer.ObserverList is a standard Python list that

is callable. TheObserverList instance is populated with functions or methods. Then,

the class sending the notifications calls theObserverList as if it were a function. The

72

ObserverList , in turn, calls each item in it with the same arguments. In Schwa, this

class is used, among other things, whenever one class needs to keep track of the progress

of another, for example, in theschwalib.task framework, described below.

Beside general-purpose objects, theericr package also provides a number of utility

functions and objects for working with XML and text. Theericr.ml.utils module

provides a number of functions for working with XML data. Thenormalize function

changes all sequences of whitespace in a string to a single space.escape converts the

“<”, “ >”, and “&” characters in a string to character entities, so it can be printed as XML

content, andquoteattr escapes the characters in a string, so it can be used for the value

of an attribute. Theericr.text package provides modules that operate on textual data.

The ericr.text.decompose.decompose function decomposesUnicode charac-

ters: it takes composite characters, such asá, and turns them into a string of two char-

acters (a and´). Theericr.text.interp.Interpolator class performs simple

value substitution in a string.Interpolator classes inherit fromdict , the standard

Python dictionary or hash table class, so they act as a dictionary on one level, but calling

the interpolate method on these objects substitutes the values in the dictionary into

slots indicated by the dictionary key names. The syntax for these substitution markers is

the same as for Perl’s variable interpolation feature: a “$” prefix. For example, if “x” is

associated with the value 42 in the dictionary interpolator, performing interpolation on

the string “the answer = $x” would produce the string “the answer = 42”. While this is

functionally similar to Python’s own string formatting operator (%), which is in fact more

powerful, the syntax that theInterpolator class uses is both familiar and simpler.

While theericr package provides some fundamental building blocks and utilities

for the Schwa application, most of the code is in theschwalib package. This package

groups the code for the application, its data objects, and its user interface into one package

that is easy to maintain and distribute.

73

The core of the package is theschwalib.db module. This contains the classes for

working with databases and data objects. The main class isDatabase , which creates,

opens, and closes the database and creates data objects. There are a number of methods

and properties that make up the public interface forDatabase objects:

Database(dbhome) This initializes and returns a newDatabase

object. dbhome is the directory that contains (or will contain) the

database files.

.entries This property returns aDbDict object (see page 73) that

accesses the entries in the database.

.wordlists This property returns aDbDict object that accesses the

word lists in the database.

.iorth This property returns aIndex object (see page 74) that indexes

the entries by orthographic form.

.ipron This property returns aIndex object that indexes the entries by

pronunciation.

.Entry(xml, key) This method constructs a newEntry object (see

page 74).xml is the XML data representing the entry.key is an

optional key to store the entry under in the database. If not provided, the

value ofkey is inferred from the XML data.

.WordList(name, source, note, created, mdate) This

method constructs a newWordList object (see page 75). The argu-

ments are used to create the word list. The most important argument

is name, which specifies the name the word list is stored under in the

database.

74

The entries and word lists are accessed throughschwalib.db.DbDict objects.

The interface for these objects is essentially the same as that for standard Python

dict objects. Objects are stored in the database by associating them with a key in

the DbDict object, and they are retrieved using the same key. Additionally, there is an

ObserverList object that allows other objects to observe additions and deletions.

Currently, this is used to maintain up-to-date indices on the main database. The two

methods defined forDbDict that are not taken fromdict areclose() , which closes

the underlying database table, andgetFrom(key, n, set) , which retrieves the next

n keys, beginning fromkey. If the optional argumentset is specified, the keys must also

be members of that set of entry headwords. This method is used to retrieve keys for the

list of entries in Schwa’s main editing window.

Schwa maintains two indices on the main entry database, one on the orthographic

forms and one on the pronunciations in the entries. These indices are implemented by the

schwalib.db.Index class. The primary interface for this class is the same as that for

Pythondict objects. LikeDbDict , this class also defines aclose() method, which

closes the underlying database table. Objects are retrieved from indices using the value

they are indexed by, and a list of all the objects that are stored in that index is returned.

For example, retrieving the value “-z” from the pronunciation index will return a list of

all the entries that have a suffix pronounced [-z]. Index objects also act as observers of

DbDict objects, automatically updating their contents based upon changes made to the

database they are observing.

The main data for the Schwa program is represented using theschwalib.db.-

Entry class. This class’s primary data is held in thedoc attribute, which holds the entry’s

XML data stored as libxml2 data structures (Veillard). Libxml2 is the XML library for the

GNOME project (GNOME), and these data structures are similar to the World Wide Web

Consortium’s DOM standard (Le Hors, et al.). Theentry property provides access to

the XML data as a string. Thekey property accesses and sets the key under which the

75

entry is to be stored in the database. Finally, theEntry object also overloads the in-place

addition operator (+=). This takes anotherEntry object and merges it into the current

entry. This is used when importing data, so that the new data is merged into the database

without overwriting any existing entries.

The last class in the data model isschwalib.db.WordList . Word lists are a

subset of the entire database, as described earlier.WordList objects publish three oper-

ations: addition, deletion, and querying. Addition is handled by theadd(key) method,

which takes akeyand simply adds it to theWordList ’s subset. Deletion is handled by

remove(key) , which removes the key or throws and exception if the key is not in the

subset, and bydiscard(key) , which removes the key if it is in the subset or silently

returns if it is not. Querying theWordList subset for membership is handled by over-

loading thein operator:key in word list .

WordList objects can be populated using a variety of different methods. Importing

data populates a word list, by adding entries as they are imported.WordList s can also

be created from the entries already in the database by searching the entries’ orthographic

forms, by filtering the data using an XPath expression, and by including all the headwords

listed in a file.

The last two methods of defining aWordList —by XPath expression and by a head-

word file—are implemented in theschwalib.wordlists module. This defines two

functions. The first,XPathTask(db, wl, xpath expr) takes aDatabase as its

first argument and aWordList to add entries to as its second argument. The third argu-

ment is an XPath expression to use in testing the entries in the database. The second func-

tion,ListTask(db, wl, filename) takes the same first two arguments as the first

function. The third argument is a file name identifying a file that lists the headwords. Both

functions are factory functions that create and return an instance ofschwalib.task.-

TaskThread , which adds entries to theWordList instance when run (see page 78 for

more information onTaskThread objects).

76

In definingWordList objects from XPath expressions, users can use a number of

XML namespaces and extension functions that Schwa makes available (see Appendix

C for a short description of XPath and for an explanation of how to use these exten-

sions functions). Using these extensions complicates setting up the XPath processor, so all

access to the XPath processor is kept in theschwalib.utils.xpath module, which

exposes two functions in its public interface. The first,valid(expr) takes an XPath

expression and tests it for validity. If it is invalid, it returns anException object rep-

resenting the problem. The second function,evaluate(expr, doc) takes an XPath

expression and a libxml2 document and returns a list of the results of the expression.

These functions provide a convenient entry point for using XPath, without having to set

up the XML namespaces and extensions functions that Schwa provides. This also sim-

plifies maintaining Schwa, because XPath extensions can be added to this module, rather

than at every point in the code that uses XPath.

One of these extension functions is implemented in theschwalib.utils.-

regexp module, which implements theregexp:test(string, pattern,

flags) function from the EXSLT collection of XPath extensions (EXSLT). This func-

tion tests strings to see if they match a regular expression, which is useful in populating a

WordList from an XPath expression.

Another set of XPath extension functions is provided in theschwalib.prons

module, which Schwa makes available using thepron namespace prefix. These functions

are described in more detail in Appendix C.

Schwa also provides a module to facilitate working with pronunciations from a pro-

grammer’s perspective:schwalib.pom . Although not currently used in Schwa, it does

provide a useful tool for future extensions. This module implements a pronunciation

object model (POM), which deals with pronunciations as a multi-level tree structure.

77

The levels are pronunciation, word, segment,2 and symbol. These objects publish these

attributes and methods:

.data For most objects—Pronunciation , Word, andSegment —this

is a list of the children of the current node. ForSymbol objects, this is

the Unicode character of the symbol the object represents.

.diacritics This is a list of Unicode characters representing symbols

modifying the structure. For different levels, this list has different

semantics:Pronunciation and Word objects, it is ignored; for

Segment objects, it is a list of suprasegmentals; forSymbol objects,

it is a list of diacritics.

unicode(node) Creating a Pythonunicode object from a POM object

returns a Unicode string containing the phonetic data represented by the

POM and its children.

For example, the POM tree forNew Orleansis represented in Figure 4.4. This example

illustrates several things about the object model. First, the suprasegmental primary stress

is pulled out into thediacritics attribute of theSegment object for [Or], as the

secondary stress is for [n(j)u]. While the stress marker does not exist at the level of the

Symbol , other diacritics, for example nasalization, would exist there, but not at the level

of theSegment . Second, the optional [j] in newis represented by maintaining the paren-

thesis around the symbol at all levels. Other variation, however, is best represented using

another pronunciation and another POM tree. For example, the alternate American pro-

nunciation forNew Orleanslisted in theODP, [�n(j)u @r"linz], would be best represented

using anotherPronunciation object tree. Thus, POM objects are designed to integrate

2Throughout this discussion, the termsegmentis intentionally poorly defined. It may corre-
spond to syllabication, or—especially in the context of dictionary pronunciations—it may corre-
spond to the hyphenation given for the headword.

78

Pronunciation
[�n(j)u "Orl@nz]

�
���

���
���

H
HHH

HHH
HHH

Word
[�n(j)u]

Segment
[n(j)u]

diacritics = “ �”

�
����

H
HHHH

Symbol
[n]

Symbol
[(j)]

Symbol
[u]

Word
["Orl@nz]

���
���

��

HHH
HHH

HH

Segment
[Or]

diacritics = “ "”

�
��

H
HH

Symbol
[O]

Symbol
[r]

Segment
[l@nz]

��������

�
��

@
@@

PPPPPPPP

Symbol
[l]

Symbol
[@]

Symbol
[n]

Symbol
[z]

Figure 4.4: Pronunciation Object Model forNew Orleans

into Schwa’s XML entries by representing all the content of a single<pron > element,

not multiple elements.

While POM objects can be converted to Unicode strings directly, creating POM

objects from Unicode is a bit more complicated. To facilitate this, theschwalib.-

pom module includes a utility function,fromUnicode(string) that takes a Python

unicode object and returns aPronunciation object that represents the phonetic

data in the input string.

One possible extension would be to implement a final level of abstraction below

Symbol, calledFeature. This could hold a feature name and a value, e.g.,voicedandtrue,

and could allow for searching and manipulation by features. However, even at its cur-

rent stage, theschwalib.pom module is a useful tool for programmers working with

phonetic data.

79

Another useful framework that the Schwa library package provides is a set of classes

for executing long-running tasks in a separate thread. Simply put, threads are like multiple

programs, executing simultaneously and sharing memory, data structures, and resources

like files and database connections. Although easy to explain, working with threads is dif-

ficult. Making sure that multiple threads concurrently modifying the same data structures

do not leave those structures in an invalid state involves a lot of thought, planning, and a

few special-purpose data structures. The central object in this framework isschwalib.-

task.TaskThread , and it inherits from thethreading.Thread class in the stan-

dard Python library. This class has a number of features beyond those of standard Python

threads: first, it generates progress messages, and second, it can be paused or stopped

before the task is finished.

To create a long-running task, the programmer defines a class that inherits from

TaskThread and overrides theperform() method. Inside theperform() method,

there are also a number of conventions the programmer should follow to make sure that

the class’s requirements are met. First, either in the class’s initializer or at the beginning

of perform() , she should set thetotal attribute to an integer indicating the size of

the task. While executing the task, she should do a number of things:

1. Check the value of thestop property. If it is true, the task should exit

gracefully.

2. Call thepause() method. If the task is being asked to pause (to wait

for user input, for example), this call will block until the task has been

given permission to resume.

3. Update thecount property. This will generate a progress report and

notify any interested classes.

80

4. Call one of warning(exception) , error(exception) , or

fatal(exception) in the event of an error. This will pause the

task, generate an error report, and notify any interested classes.

TaskThread objects have anobservers property, which is an instance of

ObserverList , so classes that are interested in progress or error reports need to

define a method that accepts two arguments: first, the task instance; second, the object

providing the status or error information, which will be an instance ofschwalib.-

task.ProgressInfo or schwalib.task.ErrorInfo . Then, the class needs to

append that method to the task’sobservers property.

For example, Figure 4.5 presents a class that counts to a total, while notifying another

thread, which prints the notification message. In this case, the observer is just a function,

observer , that prints out a message. If the notification is for an error, the function

prompts the user for whether or not the task should continue. Finally, the program creates

aCounterTask instance, registers theobserver function, and starts the task.

One of the primary purposes of theTaskThread framework is importing and

exporting data. A filter to import and export data using a certain format must be

accessible from a class that uses the interface defined byschwalib.transfer.-

core.IDataTransfer . This class defines two factory functions. The first,make-

Exporter(db, obj, dest) takes aDatabase , a WordList to export, and a

file name to export to. The second,makeImporter(db, wl, source) takes a

Database , a WordList to import into, and a file name. Both functions return an

instance ofTaskThread . When the task to started, the data transfer will be performed.

Since the data in Schwa is kept in TEI-encoded XML, this represents a good format

to provide an importer and exporter for. The entry point for this transfer format is in

schwalib.transfer.xmltrans.XMLDataTransfer . In exporting, the entries

and word lists are placed in<TEI.2 > elements, which are placed in a<teiCorpus.-

81

class CounterTask(TaskThread):
def __init__(self, countTo, errorOn=-1):

TaskThread.__init__(self)
self.total = countTo
self.errorOn = errorOn

def perform(self):
while ((not self.stop) and

(self.count < self.total)):
self.pause()
if self.count == self.errorOn:

self.error(Exception(str(self.count)))
self.count += 1

def observer(task, info):
if hasattr(info, ’exception’):

print ’ERROR’, str(info.exception)
print info.message
print
print ’[C]ontinue or [S]top (S)? ’,
input = sys.stdin.readline()
if input: input = input[0].lower()
else: input = ’s’
if input == ’s’: task.stop = True
task.paused = False

else:
print ’PROGRESS’, info.percent

task = CounterTask(10000, -1)
task.observers.append(observer)
task.start()

Figure 4.5: An Example of a Long-Running Task

82

2> element. If only a word list is exported, only the<TEI.2 > element for that word list

is exported. In importing, the elements are simply merged directly into the database.

Beside TEI-compliant XML, Schwa also can transfer data to and from files in a form

of GML used by Oxford University Press for theOED. The entry point for this format is

schwalib.oxford.OxfordDataTransfer . Briefly, GML is an ancestor of XML,

and it is very similar to XML, with these differences:

1. The elements in the document are not required to occur within a single

parent element.

2. Atomic attribute values do not have to be quoted.

3. General entity references begin with an ampersand and end with a period

(not a semi-colon), for example, “&aacu. ”.

4. Ampersand characters can occur outside of the context of an entity ref-

erence, for example, “this & that ”.

For example, Figure 4.6 contains an entry in GML. The specific tag set that is shown here

and that Schwa can import is a subset of what Oxford University Press uses in dictionary

production.

Because of the differences between GML and current markup languages, Schwa

contains a GML parser that transforms each top-level element into a valid DOM docu-

ment. This document is then transformed into a TEI dictionary entry and entered into the

database.

Another aspect of the Oxford import filter is theschwalib.oxford codec. This

encodes ASCII strings that use standard characters to represent phonetics into Uni-

code IPA strings. These codes use a set of correspondences similar to that of the tipa

LATEX module. This codec can be used exactly like any other Python codecs, so calling

“unicode(’%peIp@rm@"SeI’, ’schwalib.oxford’) ” returns the Unicode

string “�peIp@rm@"SeI”.

83

<e>
<hw>papier-mâ.ch&eacu.</hw>
<pr>

<la>Brit.</la> <ph>%papjeI"maSeI</ph>,
<la>U.S.</la> <ph>%peIp@rm@"SeI</ph>

</pr>
</e>

Figure 4.6:Papier-m̂ach́e: An Example GML Dictionary Entry

Together, the data transfer object and the codec import and export data to and from the

Oxford GML format. For an example of this, compare the GML entry in Figure 4.6 with

the TEI entry in Figure 4.7. Notice that information that Schwa adds for its own use, in

this case thekey attribute, is kept in theschwa XML namespace.

The classes discussed so far all work together to implement the data model, the

database, and classes that operate on the data. They are not useful, however, without a user

interface to make them available to people who want to edit and maintain phonetic data.

Classes that implement the user interface are in theschwalib.gui package. The entry

point for the application is the classschwalib.gui.app.SchwaApplication ,

which subclassesericr.app.Application . Functionally, this class primarily cre-

ates the wxPython GUI application and hands off control to it.

The main window for the application is implemented inschwalib.gui.frame.-

SchwaFrame . Functionally, this is the most important class in the user interface. Beside

creating the main window, it also manages the application’s options and event han-

dlers for the menu and toolbar. The three windows that control user interaction—the

editing window, the search window, and the view window—are implemented in the

84

<?xml version="1.0" encoding="UTF-8"?>
<superEntry

xmlns:schwa="http://www.arches.uga.edu/˜erochest/schwa"
schwa:key="papiermache">

<entry>
<form>

<orth>papier-mâché</orth>
<form>

<usg type="geo">Brit.</usg>
<pron>

ˌpapjeɪ
ˈmaʃea;

</pron>,
<usg type="geo">Am.</usg>
<pron>

ˌpeɪpər
məˈʃea;

</pron>
</form>

</form>
</entry>

</superEntry>

Figure 4.7:Papier-m̂ach́e: Imported into Schwa

85

schwalib.gui.child module. Aside from creating their user interfaces and han-

dling events for controls directly on themselves, they have minimal functionality.

Further features are provided by theschwalib.gui.keymaps.KeyMaps class.

The object manages a set of mappings between keyboard combinations and strings of

characters. It also implements a GUI event handler, so whenever a keyboard combination

is pressed, it inserts the corresponding text into whatever control has the keyboard focus.

Of course, theKeyMaps event handler must first be associated with the control for this

to work. Most of the interface for theKeyMaps class is similar to that of the standard

Python dictionary. However, it also has a method,load(filename) , which loads the

keyboard mappings from a file, and another method,save(filename) , which saves

the keyboard mappings to a file.

Another feature is implemented by theschwalib.gui.tools.ToolsManager

class. Tools are a way that users can customize Schwa and extend its functionality. The

ToolsManager creates a GUI menu from the contents of the%UserProfile%-

\Application Data \schwalib \Tools directory and acts as an event handler for

those menu items. Whenever one is selected, it executes the Python script from theTools

directory associated with that menu item. These scripts are executed with one global vari-

able predefined:frame , which is the current instance ofschwalib.gui.frame.-

SchwaFrame . A sample tool that opens theTools directory is bundled with Schwa

(Figure 4.8). This provides an easy way for users to locate theTools directory and to

add their own scripts there.

Another important GUI feature is handling theTaskThread objects used to transfer

data into and out of Schwa. This is done withschwalib.gui.dialogs.task.-

TaskDialog class, which runs a task and observes it. As it receives progress messages,

it updates a progress bar on a dialog box. This dialog also has a “Cancel” button on it,

which stops the task. Thus, the added thread control thatTaskThread provides meshes

nicely with the functionality required of the GUI.

86

import os

os.startfile(frame.tools.directory)

Figure 4.8: The Schwa Tool, “Open Tools Directory.py”

These packages and modules contain the source code for Schwa. However, as much

as Python facilitates programming, it does not allow programmers to distribute their code

with the easy-to-use installers that users of Windows have come to expect. To provide this

kind of installation utility, first the code for Schwa needs to be packaged with the parts of

the Python system it relies on, then compiled into an installation program.

The first part of this is accomplished by a simple C program, which is modeled on

the Python interactive interpreter. This program simply starts the Python system. After

starting the system, it adds three compressed ZIP files to Python’s search path for modules:

one ZIP file for the standard Python library, one for theericr package, and one for the

schwalib package. Finally, it runs a file named “schwa.py” found in the same directory

as itself. With this system, a user does not need to have Python or any third-party modules

that Schwa uses installed on her system.

Actually to place everything on the user’s system appropriately, Schwa uses the Inno

Setup Compiler, a free installation program compiler (Russell). This places Schwa on the

system, creates the application data directory and tools directory and shortcuts for the

program.

87

4.3 THE PROGRAM

The user only sees the visible effects of this code. To use Schwa effectively, the user

needs to know how to navigate the windows and dialogs effectively. This section describes

Schwa’s user interface and how to use it to accomplish the task of managing and editing

lexicographical pronunciations.

The primary window in Schwa and the one in which users will spend the most time is

the editing window (Figure 4.9). This is a standard Windows application, with a menu and

toolbar across the top of the window and a status bar across the bottom. Down the left side

of the editing window is a navigational panel, and a simple XML editor fills the rest of the

space. To navigate through the entries in the database, the user first must enter a headword

to begin browsing with in the “Start list with” text box. Then, the user can optionally

select a word list from the drop-down box labeled “Word lists.” If a word list is selected,

only entries in that word list will be displayed in the list that fills most of the navigational

panel. Once a word is entered in the “Start list with” box, when the user pressesENTER,

the list of words is populated with at most fifty words. To select the first word in the list of

words for editing, the user simply clicks on that item in the list. To navigate through the

list of words, there are a number of options, which are listed in Table 4.3. Whenever the

user navigates out of an entry, any changes made to it are saved, so the user does not need

to hit any special key to keep her changes.

When editing an entry, the text editor works like most other text editors. The standard

Windows clipboard functions—cut, copy, and paste—are available either through a pop-

up window, menu items, toolbar buttons, or keyboard shortcuts (unless they have been

reassigned using key maps). Moreover, the user can easily enter phonetic characters using

keyboard shortcuts. These shortcuts are defined by the user on the “Key Maps” tab of the

Options dialog. For example, in the default set of key mappings,ALT-e is assigned to

the schwa character, so when the user presses that shortcut,@ is entered. The default key

88

Figure 4.9: Editing Window

mappings are those developed by William A. Kretzschmar, Jr., and Rafal Konopka for

entering phonetic data for the Linguistic Atlas projects, and they are listed in Appendix

A.

When editing pronunciations, often the user will need to view the pronunciation of

similar words to check for consistency. This is done using the search window (Figure

4.10). This window has a bar across the top that allows the user to enter search terms,

which is either a simple string or a regular expression search pattern. The search term is

matched against the entries’ orthographic forms.

Regular expressions are a powerful language for expressing text searches. They allow

you to search for patterns in text that plain string searches do not. For example, you can

specify that you want all the words that end iny. There are many dialects of regular expres-

89

Movement Menu Toolbar Shortcut Key

Move to the next fifty
entries in the database

View → Next 50 F9

Move to the first entry
in the list of entries

View → First F5

Move to the previous
entry in the list of
entries

View → Previous F6

Move to the next entry
in the list of entries

View → Next F7

Move to the last entry
in the list of entries

View → Last F8

Table 4.3: Navigating the List of Words in the Editing Window

sions. The one that Schwa uses is probably the most popular: the regular expression syntax

of Perl (and Python). Appendix B provides a short introduction to regular expressions.

After starting the search, Schwa displays the results in the main part of the window as

a list of headwords and pronunciations. Often, searching for a common string can produce

an overwhelming number of results. To manage them, it is easy to scan only the first few

dozen entries. Although convenient, this does not provide a good overview of the results.

To handle large result sets, the user can have Schwa only display a random sample. This

facilitates looking through the result sets and thereby encourages consistency across the

database, which results in better pronunciations. The results are presented in two columns:

one lists the headword and the other lists all the pronunciations in the entry. After getting

the results, the user can double-click on one to open it in an entry view window (Figure

4.11). This entry cannot be edited, but it allows the user to see the entire entry. Also, the

90

Figure 4.10: Search Window

search results can be saved for later viewing and editing by creating a word list. This is

done by pressing the “Create a WordList” button at the top right of the search window.

Some of the behavior of the search window and the rest of Schwa can be controlled

using the options dialog. This is available by selecting the “Edit→ Options. . . ” menu

item. This dialog contains a number of tabbed pages, the first of which, titled “Editor,”

handles general options for Schwa (Figure 4.12). First, this tab contains an option to

allow “folding” in the editor. When enabled, the editor places plus or minus signs in the

left margin. These icons correspond to the current entry’s structure, and clicking on them

toggles whether parts of the entry are displayed or hidden. For example, the beginning of

a multi-line<form > element would initially have a minus icon displayed. Clicking that

icon would cause the contents of the<form > element to be hidden and the icon to turn

91

Figure 4.11: Entry View Window

into a plus sign. The editor tab also contains an option to enable word wrapping in the

editor. On the “Insert Resp. Note” command, the editor will also insert a<note > ele-

ment into entries, with the responsibility assigned to the value given in the “Responsibility

code” text box. Finally, there is a button to choose the default font in the editor.

The second tab on the options dialog controls how the search window operates (Figure

4.13). The first option controls whether the search uses a plain string search or a regular

expression. If a plain string search is specified, searching for “.*tion$ ” would look

for that stringexactly: the period, asterisk, letters, and dollar sign. If a regular expression

search is specified, the string “.*tion$ ” would look for “tion” at the end of the head-

word. The second option specifies whether the search window should sample the results.

Because some common string may return an overwhelming number of results, sampling

92

Figure 4.12: General Options

the results ensures that a random sample of the results is displayed, so the user can get a

better, more representative set of the search results. If the option to show a random sample

is enabled, the “Sample size” drop-down control allows the user to choose the size of the

sample.

The third and final tab on the options dialog manages the keyboard mappings available

to enter phonetic characters in the editor (Figure 4.14). The box on the left side of the

window lists the currently defined set of key mappings. At the bottom-left, the current file

containing the key mapping definitions is shown. The file used can be changed with the

“Load” button, and the current set of mappings can be saved with the “Save” button. The

mappings are not saved by default, so if any changes have been made to the mappings,

they need to be saved explicitly. New mappings can be defined by clicking in the text box

above the “Key” column and pressing the keyboard shortcut to define. Then, when the user

navigates the built-in Unicode browser on the right side of the window and double-clicks

the character or characters that the shortcut keys should map to, these characters will

93

Figure 4.13: Search Options

appear in the text box above the “Mapping” column. Pressing the “Add” button adds the

contents of those two text boxes into the list of defined key mappings. This combination of

the text boxes and the Unicode browser provide a user-friendly way to define and manage

keyboard shortcut mappings.

These windows provide the basic visual blocks of the Schwa application and the main

means of allowing the user to interact with the database and entries. The next section

examines these GUI elements in action.

4.4 SCHWA IN USE

This section contains information about using Schwa. It covers basic information like

managing databases to more complex tasks like creating a new tool or data transfer filter.

94

Figure 4.14: Key Maps Options

4.4.1 WORKING WITH DATABASES

Some of the most basic tasks in working with Schwa involve managing the databases

themselves. These examples show how to perform basic operations on the databases: cre-

ating, opening, and closing.

CREATING AND OPENING DATABASES

Creating and opening databases involves the same steps. When the user selects the “File

→Open. . . ” menu item, Schwa displays a standard “Browse for Folder” dialog box. From

here, the user can select an existing directory or create a new directory and select it. Since

Schwa’s databases are comprised of multiple files, they are identified by the directory that

contains those files, and since the databases have a core set of basic files that are named

identically across databases, each database must be in its own directory.

Once the directory has been selected, Schwa creates the basic database structure if

necessary and opens the database on a blank editing window.

95

CLOSING DATABASES

Once a database has been opened, the user can close it by selecting the “File→ Close”

menu item. Of course, exiting Schwa with the “File→ Exit” menu item or the “Exit”

toolbar button also closes the current database.

4.4.2 TRANSFERRINGDATA

Once the database has been created, typically users will want to import word lists and

pronunciations from an existing source. Although Schwa can create entries from scratch,

repeatedly doing so would be onerous, to say the least. Instead, the user will receive the

entries and pronunciations in a format that Schwa understands, verify that the data format

is correct, and import the data. After editing, the user will export it back into the original

format and send the changes back to the original source or to another source. With the

appropriate export filters, someone writing dictionary pronunciations can export entries

that originally were from a variety of sources, thus leveraging work done for one project

or dictionary in creating a number of other dictionaries.

If a transfer filter does not exist for the data format, the user may need to create a new

filter. Although not as easy other tasks in Schwa, if the user has a comfortable grasp of

Python—or can find someone who has such a grasp—she can write a new transfer filter

and integrate it into Schwa.

VERIFYING DATA

Before importing data, verifying it is always a good idea. Although the database will not

be corrupted if importing data fails, the entries that were added before the failure will

remain in the database and will be duplicated after the user corrects the data and imports

it successfully. Therefore, verifying data is always a good idea.

96

To perform this verification, the user selects the “File→ Verify Import Data. . . ” menu

item, which starts the verify wizard. First, the user selects the appropriate data format from

the drop-down list. Second, she selects a file name to import the data from. Finally, she

presses the “Finish” button. The wizard displays a progress dialog and begins verifying

the data. If there is a problem, Schwa displays a message showing what error information

it has and exits the verification process. If there are no errors, Schwa displays a dialog box

stating this.

IMPORTING DATA

After the data has been successfully verified, it is safe to import. The import process is

very similar to the verification process. First, the user selects the “File→ Import. . . ”

menu item. This starts the import wizard (Figure 4.15). When prompted, the user selects

the output format from a drop-down box, a file name to import the data from, and a word

list or enters a name for a new word list to import the new data into, and finally, she presses

the “Finish” button. The wizard displays a progress dialog and begins importing the data.

If there is a problem, Schwa displays information about the error and stops importing the

data.

If there are conflicts between the existing data and the new data—that is, if there is

already an entry for one of the headwords the wizard is trying to import—Schwa displays

a dialog box offering to create another word list that contains the conflicts. This makes it

easy to walk through the conflicting entries and to integrate the new data. Finally, Schwa

displays a dialog box providing some statistics about the data that has been imported.

EXPORTING DATA

Exporting data is essentially the opposite of importing it: instead of adding words to the

database from a file; words are added to a file from the database. To export data, the user

97

Figure 4.15: Import Wizard

selects the “File→ Export. . . ” menu item. When prompted, the user selects the word list

to export, a data format, and a file name to export to. Finally, she presses the “Finish”

button. While exporting the data, Schwa displays a progress dialog, and when finished, it

displays a status dialog giving statistics about the exported data.

WRITING A NEW DATA TRANSFERFILTER

Although more difficult than using an existing format, writing a new data transfer filter

is relatively easy. The most difficult part is writing the Python code actually to perform

the data transfers. This section illustrates how to write a data transfer filter for Schwa. The

format itself will be relatively simple: the data will be in a text file, with one entry per line.

Each line contains a headword and one or more pronunciations, separated from each other

by a forward slash (/). The pronunciations are represented using the Oxford University

Press encoding. For example, Figure 4.16 shows several entries containing data taken from

98

bristly/"brIsli/"brIs@li
folding/"foUldIN
mackerel/"m{k(@)r@l
rationalize/"r{Sn@%laIz/"r{S@n@"laIz

Figure 4.16: Sample Data for a Simple Data Format

Merriam-Webster’s Collegiate Dictionary, 11th edition (however, the pronunciations are

represented in IPA). Figure 4.17 shows these entries after they have been imported.

The first step is to create a module that implements the interface specified in

schwalib.transfer.core.IDataTransfer . This code will be in a module

namedsimpledata (Appendix D). This class provides Schwa a single access point to

create the import and export classes for the simple data format.

The class to import the data is calledSimpleImporter . This class must be a

subclass ofTaskThread and conform to all the conventions of that class.Simple-

Importer first reads all the data from the source and splits it into lines. It sets itstotal

attribute to equal the number of lines. Then, in theperform() method, it processes each

line, incrementing itscount property, checking itsstop property, and callingpause()

as appropriate.

The class to export the data is calledSimpleExporter . This class is also a sub-

class ofTaskThread . SimpleExporter first sets itstotal attribute to the number

of entries in the word list. Then, in theperform() method, it process each entry by

encoding the headword and pronunciations appropriately and writing them to the destina-

tion file.

That is all the code necessary to create the import filter. A complete listing is given in

Appendix D. The last step is to integrate the filter into Schwa by telling it where the new

99

<entry>
<form>

<orth> bristly </orth>
<pron> ˈbrɪsli </pron>
<pron> ˈbrɪsəli </pron>

</form>
</entry>
<entry>

<form>
<orth> folding </orth>
<pron> ˈfoʊldɪŋ </pron>

</form>
</entry>
<entry>

<form>
<orth> mackerel </orth>
<pron> ˈmæk(ə)rəl </pron>

</form>
</entry>
<entry>

<form>
<orth> rationalize </orth>
<pron>

ˈræʃnəˌlaɪz
</pron>
<pron>

ˈræʃənə
ˌlaɪz

</pron>
</form>

</entry>

Figure 4.17: Sample Data for a Simple Data Format, Imported

100

[Formats]
Count = 1
Format0 = SimpleFormat

[SimpleFormat]
Name = Simple
Class = simpledata.SimpleDataTransfer

Figure 4.18: Options to Integrate Simple Data Format into Schwa

data format is located. This is done by adding a few lines to Schwa’s options file, which

is located at %UserProfile% \Application Data \schwalib \Schwa.ini .

On Windows 2000 and XP,%UserProfile% will usually be something likeC: \-

Documents and Settings \User Name. The sections and options to add are

listed in Figure 4.18. The section “Formats” specifies how many formats have been added

and their option’s section names. The section “SimpleFormat” specifies the new format’s

name and the class to use in creating the transfer objects.

In the end, writing new data filters and integrating them into Schwa is not a mindless

process, but it is not wholly onerous, either. Schwa andschwalib provide the frame-

works necessary to do most of the work, and the programmer can focus on writing the

code to transfer the data.

4.4.3 SEARCHING

One of the more powerful features of Schwa is its ability to search the database’s entries

by their orthographic forms. Schwa provides a couple of different ways of performing the

searches and displaying the results. These features are particularly important because they

101

help to ensure that all the pronunciations in the database are consistent, which is important

for good lexicographical practice.

A PLAIN SEARCH

Plain searches compare a simple string of characters against the orthographic forms in the

database. This comparison is case sensitive, so “A” would not match “a”. Although not as

powerful as using regular expressions, this search is faster, especially over large databases.

To perform a plain search, first the user needs to ensure that the “Use regular expres-

sions” option has been turned off. To do this, she selects “Edit→ Options. . . ” and the

“Search” tab. On that tab, she should make sure there is no check beside “Use regular

expressions?”

Once the user is certain that regular expression searches have been disabled and a

database is open, she can open the search window one of two ways: first, by selecting the

“View → New Search” menu item; second, by pressing the “Search” toolbar button. The

search window that appears will have a text box stretching across the top of it. The user

enters the string to search for and presses the “Search” button.

After searching the database, Schwa displays the results in the two-column list that

fills most of the search window. The user can change the width of the columns by clicking

and dragging the right border of each column.

USING REGULAR EXPRESSIONSEARCHES

Regular expressions are a powerful tool in searching text; however, they can be slower

than plan searches. Regular expressions are described in Appendix B. To use them in the

search window, first the user must ensure that they are enabled by selecting the “Edit→

Options. . . ” menu item and the “Search” tab. On that tab, the user should make sure there

is a check beside “Use regular expressions?”

102

Once the user is certain that regular expression searches have been enabled and a

database is open, she can open the search window one of two ways: first, by selecting

the “View → New Search” menu item; second, by pressing the “Search” toolbar button.

The search window that appears will have a text box stretching across the top of it. The

user enters the string to search for in there and presses the “Search” button. For example,

searching for “tion$” will find any orthographic forms that end with the letters “tion”: of

conventionandconventionalize, only the first will be displayed in the results list.

After searching the database, Schwa displays the results in a two-column list that fills

most of the search window. The user can change the width of the columns by clicking and

dragging the right border of each column.

SAMPLING SEARCH RESULTS

Many searches for common terms can return an overwhelming number of results. For

example, the plain search for “tion” returned over 3,000 results when run on a database of

almost 100,000 entries. The easy way for the user to manage that amount of information is

to scan the first entries returned to see how the pronunciations in them are handled. Unfor-

tunately, this does not necessarily provide a representative view of the data. To display a

representative snapshot of the search results, Schwa can show only a random sample of

the results.

Enabling and controlling random sampling is done from the options dialog. First,

the user opens this dialog by selecting the “Edit→ Options. . . ” menu item and then

the “Search” tab. The first option available is enabling random sampling. This is done

by making sure there is a check mark next to “Sample search results?” If sampling is

enabled, the user can also change the sample size using the “Sample size” drop-down

box. The default sample size is 50, but there are a number of other options available.

103

If random sampling is enabled, the user can see the total number of results a search

returned by watching the status bar. When the search is complete, the status bar will read

something like, “Found 3188 results. Displaying 50.”

CREATING A WORD L IST FROM A SEARCH

After a search has been completed, it can be saved to a word list. This is done by clicking

the “Create a WordList” button and entering the name of the new word list. By default,

this name is based upon the search terms. When saved as a word listall the results are

saved, regardless of whether sampling is enabled.

4.4.4 WORD L ISTS

Word lists are a powerful, flexible way of managing, grouping, and filtering data. They

allow data to be grouped for easy editing and exporting. While defining word lists from

searches has been covered already, there are other operations in managing and defining

word lists.

V IEWING THE ENTRIES IN A WORD L IST

If the user wishes to view the entries in a word list, she should enter an initial headword in

the “Start list with” text box and select a word list from the “Word lists” drop-down box.

The list of words down the left of the window will include only words from the word list.

DELETING WORD L ISTS

Sometimes Schwa creates word lists that are temporary. For example, importing data can

create a word list containing the conflicts between existing and imported data. After rec-

onciling those conflicts, the user may wish to remove that word list. To do so, she should

select the “Word Lists→ Delete. . . ” menu item. A small dialog box appears, listing the

104

//pron[regexp:test(text(), concat(pron:unichr(618), "z$"))]

Figure 4.19: Sample XPath Expression to Create a Word List

current set of word lists. By selecting one and pressing the “Delete” button, it will be

deleted, although the entries in it will remain in the database. When the user is finished

deleting word lists, she should click “OK”.

DEFINING A WORD L IST FROM AN XPATH EXPRESSION

One way to define word lists is using XPath expressions (see Appendix C for a short

description of XPath). This allows the user to create word lists based upon complex

queries and upon the entire entry, not just the orthographic forms.

To create a word list from an XPath expression, the user should select the “Word

Lists → From XPath. . . ” menu item. Then, she should enter a name for the word list

and an XPath expression. For example, the XPath expression in Figure 4.19 finds all the

pronunciations that end in [Iz]. This word list is a good example of using Schwa’s XPath

extension functions.regexp:test tries to match the contents of a<pron > element

against a pattern, andpron:unichr helps to create the pattern by inserting a Unicode

character 618 (U+026a,I).

While defining the word list, Schwa displays a progress dialog. Sometimes, particu-

larly in large databases, creating a word list based upon an XPath expression can take a

long time. However, the result is a group of entries that result may not be easy to gather

any other way.

105

DEFINING A WORD L IST FROM A L IST

The final way to create a word list is from a file. This file has a simple format: each line

contains a headword, and all the headwords in the file are added to the word list. Defining

a word list from a list in a file is similar to defining a word list from an XPath expression.

The user selects the “Word Lists→ From List. . . ” menu item and enters the name of the

word list to create and enters or browses to find the name of the file containing the list of

words.

4.4.5 EDITING

Although working with word lists is important for organizing the database, most of the

user’s time will be spent editing the entries.

NAVIGATING THE DATABASE

The first step in editing an entry is selecting an entry to edit. First, the user must initialize

the list of words on the left of the editing window. To do this, she either enters a word to

start the list with in the “Start list with” text box or have the list automatically fill itself

with the next 50 headwords. The user has the list of words fill itself automatically either by

clicking the “Next 50” toolbar button, by selecting the “View→ Next 50” menu item, or

by pressingF10. If the user has the list of words fill automatically and the list is currently

empty, the list starts itself with a reasonable default value of “0” (zero).

Once the list of words has been initialized or updated, the user can select an entry by

clicking on it in the list. Also, there are a number of commands for navigating through the

list by moving to the first or last entry or to the previous or next entry. These commands

are listed in Table 4.3.

106

CREATING AND DELETING ENTRIES

Although typically users will rely upon imported data and not add entries to the database

individually, they can manually manage what entries are in the database. Entries are added

using the “Edit→ New Entry. . . ” menu item. This displays a dialog asking for the key

to store the entry under. Typically, this is the headword. Entries are removed from the

database by selecting the entry in the list of words and selecting the “Edit→ Delete

Entry. . . ” menu item.

BASIC EDITING COMMANDS

Schwa responds to the standard Windows text editing commands: cut, copy, paste, delete,

undo, redo, and select all. These can be accessed using the toolbar or the “Edit” menu,

for cut, copy, paste, delete, and undo. Right clicking in the editor displays a context menu

with all of these commands. Also, Schwa recognizes the standard keyboard shortcuts for

these commands, unless they have been reassigned using Schwa’s keyboard mappings.

RESPONSIBILITY <NOTE> TAGS

Often in working with lexicographical databases, the editors need to leave a record of who

made what changes, when, and why, especially if more than one person is maintaining the

entries. In Schwa, this can be accomplished using the responsibility note feature. This

inserts a<note > tag with an attribute giving the responsibility to the current user. Inside

the<note > is a<date > element with the current date and time and room for the user

to leave a comment (see Figure 4.20).

To use this feature, the user first needs to set her initials. This is done by opening the

options dialog (“Edit→ Options. . . ”). The “Editor” tab has a text box labeled, “Respon-

sibility code (initials).” The user should enter her initials there and click “OK.”

107

<note resp="ERR">
<date>2004-03-01 10:30:24</date>
This is a comment.

</note>

Figure 4.20: An Example Responsibility<note > Element

Now the user can insert a<note > element by positioning the cursor where she

wants the element and selecting the menu item “Edit→ Insert Resp. Note”, clicking the

“Resp. Note” toolbar button, or pressingF10.

4.4.6 WORKING WITH PRONUNCIATIONS

Since the primary purpose of Schwa is to manage and edit pronunciations and phonetic

data, the program provides a number of tools to facilitate those tasks. These include key-

board shortcut mappings in the editor and extended regular expressions in the search

window. Working with pronunciations also involves making decisions about how to use

XML to represent them most effectively, and this section also addresses some of the issues

in representing dictionary pronunciations using XML.

KEYBOARD SHORTCUT MAPPINGS

One of the more useful features of editing pronunciations using Schwa is its keyboard

shortcut mappings. Schwa comes with a default set of mappings based upon those

described by William A. Kretzschmar, Jr., and Rafal Konopka. These default mappings

are listed in Appendix A, but they can also be modified using the “Key Maps” tab on the

options dialog. Any changes made to the set of mappings are not saved to disk by default,

so the user should be careful to save them if any changes have been made.

108

Long Form Short Form Value
$consonants $C consonant characters
$vowels $V vowel characters
$suprasegmentals $S suprasegmentals characters
$tones $T tone characters
$diacritics $D diacritic characters
$other $O other IPA characters

Table 4.4: Values for String Interpolation

To use the mappings that are currently defined, the user simply enters one of the key-

board shortcuts while in the main editor window. For example, if the default mappings are

defined and the user pressesALT-e , a schwa character (@) is entered into the editor.

EXTENDED REGULAR EXPRESSIONS

Another way that Schwa facilitates working with phonetics is by extending the regular

expressions used in the search window. These regular expression extensions allow the

user to insert classes of characters into a standard regular expression. In interpolation, the

names are prefixed by a dollar sign (“$”). The names follow immediately (“$vowels ”)

or may be enclosed in curly braces (“${vowel} ”), which is necessary when the name

is not separated from other letters (e.g., “${vowels }other characters ”). A dollar

sign can be included in an interpolated string if it is not followed by a name. If it is

followed by one, it can still be included if it is escaped with a backslash (“\$vowels ”).

The names that are available for interpolation are given in Table 4.4.

Regular expressions allow character classes to be incorporated into patterns. For

instance, “\s ” matches any whitespace character; “\w” matches any word character (as

defined by the programming language C). The programmer can also define other,ad hoc

109

[aeiouy \xe6 \xf8 \u0153 \u0250- \u0252 \u0254
\u0258- \u025b \u025e \u0264 \u0268 \u026a \u026f

\u0275 \u0276 \u0289 \u028a \u028c \u028f]

Figure 4.21: A Regular Expression to Match One IPA Vowel Character

[$vowel]

Figure 4.22: An Extended Regular Expression to Match One IPA Vowel Character

regular expression classes. The class “[a-zA-Z] ” matches any set of English letters.

Since the various classes of phonetic characters are not grouped together in Unicode, sets

of phonetic characters have to be constructed manually. These search sets are verbose and

difficult to construct, debug, and maintain. The values Schwa defines for interpolation

can make constructing these regular expressions much easier. Figure 4.21 shows a reg-

ular expression class designed to search for IPA vowels symbols. Figure 4.22 shows an

extended regular expression that performs the same search.

REPRESENTINGMULTIPLE PRONUNCIATIONS AND VARIANTS

Beside editing and searching for pronunciations when using Schwa, the user must also

represent them in XML. This involves making decisions about how to encode multiple

and variant pronunciations in a single entry. There many ways to encode variant pronun-

ciations using the TEI, and this section simply suggests two ways.

Probably the most important element in any encoding isconsistency: if half the

database handles variant pronunciations differently than the other half, computer tools

will have trouble working with the data. For example, if the user writes an XPath expres-

sion to search the pronunciations that are encoded one way, it may not work properly

when searching pronunciations that are encoded differently.

110

<form>
<orth> ... </orth>
<pron> ... </pron>
<form type="variant">

<pron> ... </pron>
</form>

</form>

Figure 4.23: Encoding a Variant Pronunciation Using thetype Attribute

In the TEI dictionary subset, the primary tag for working with variants is the<form >

tag. This not only contains all the spoken and written forms of a word, but it can also group

them by usage. One way to indicate a variant form is to use thetype attribute with the

value “variant” on the form tag. Figure 4.23 shows a framework for such an encoding

scheme.

Another, more informative way to encode variant pronunciations is to use the

<usg > element in conjunction with nested<form > elements. The<usg > ele-

ment has atype attribute that specifies what kind of variation the usage represents,

and the content of the element specifies the details of the usage. For example, “<usg

type="time" > archaic </usg >” indicates that the usage is archaic; “<usg

type="register" > slang </usg >” indicates that the usage is slang. The TEI

suggests some values for thetype attribute and the content of the<usg > element,

which are listed on page 63. Of course, other attribute values and content are always

possible.

The data imported using the Oxford format uses the<usg > element extensively. For

example, Figure 4.24 shows theOxford Dictionary of Pronunciation’s entry forvariant.

The British and American pronunciations are each grouped together, and the<form >

111

<entry>
<form>

<orth> variant </orth>
<form>

<usg type="geo"> Br </usg>
<pron>

ˈvɛːrɪənt
</pron>,
<pron extent="suff"> -s </pron>

</form>
<form>

<usg type="geo"> Am </usg>
<pron>

ˈvɛriənt
</pron>,
<pron extent="suff"> -s </pron>

</form>
</form>

</entry>

Figure 4.24:ODPEntry forVariant

element for each has a<usg > element identifying its usage as being geographically

determined and with its content specifying where.

4.4.7 OTHER TASKS

Aside from managing data, editing, and working with pronunciations, Schwa also pro-

vides other features, which contribute to the application’s overall purpose of managing

lexicographical pronunciation data; however, they do not directly apply to any particular

aspect of the program. Instead, these features are general and can be used in a number of

areas of Schwa.

112

WRITING A TOOL

First, Schwa gives the user the ability to write small Python scripts that are automat-

ically associated with a menu item. These scripts are stored in%UserProfile%-

\Application Data \schwalib \Tools . The simplest way for the user to find this

directory is to use the default tool provided with Schwa, “Open Tools Directory,” which

opens Windows Explorer to this directory.

The menu structure of the “Tools” menu mirrors the directory structure of theTools

directory. Any Python files—that is, files with a “.py” extension—are automatically added

to the menu when Schwa starts up. The menu item reflects the script’s file name, without

the extension.

Figure 4.25 provides an example of a short, useful tool. This tool takes the current

entry and adds a<note > element. Unlike the “Resp. Note” feature, this tool inserts

the complete text for the note, including the responsibility attribute, the date, and content

saying, “This entry was last modified on. . . .”

This script is placed in theTools directory and named “Insert Last-Modified

Note.py”. First, the script needs to access the edit window. The tools scripts have

one globally defined variable:frame , which is the current instance ofschwalib.-

gui.frame.SchwaFrame . The current edit window is referenced in the frame’s

editChild attribute. The responsibility initials are available from theframe.-

resp initials . Next, the note is constructed, including an end tag for the<super-

Entry > element. This is included so the note can be inserted into the entry by replacing

the existing end tag with the note element plus an end tag. Finally, the data is taken from

the editor, the substitution made so that the<note > element is inserted, and the editor’s

text is updated.

113

from ericr.ml.utils import escape, quoteattr
from schwalib.utils.dt import DateTime

get the editor
editor = frame.editChild.editor
get the information
resp = frame.resp_initials
date = DateTime.today()

construct the note
note = (

u’<note resp=%s>’
u’This entry was last modified on ’
u’<date>%s</date>’
u’</note>\n’
u’</superEntry>’
) % (quoteattr(resp), escape(str(date)))

insert the text and enter it into the editor
data = editor.GetText()
new_data = data.replace(u’</superEntry>’, note)
editor.SetText(new_data)

Figure 4.25: An Example Tool: “Insert Last-Modified Note.py”

Before actually being used, this tool should be improved by checking to see if an

edit window is actually open and by making the error handling more robust, among other

things.

GETTING HELP

Of course, any application needs information on how to use it. Schwa ships with a standard

Windows help file that is available by pressing theF1 key or selecting the “Help→

Contents. . . ” menu item.

114

4.5 IN THE END

Schwa brings together a number of technologies into an application that is easy to use,

yet able to manage large amounts of lexicographical pronunciations. Using it, someone

writing dictionary pronunciations can maintain a large database for a variety of publishers.

Moreover, Schwa is fairly easy to extend to handle more data transfer formats and to add

small, but useful, functions.

CHAPTER 5

CONCLUSION

It occurred to me then that computers increase a lexicogra-

pher’s awareness of what he knows that he does not know

that he knows.

— Jane Robinson (IBM Research)

Having completed this application, it is worthwhile to ask how it helps users accom-

plish the tasks it has been designed for and what effect it has on those tasks themselves. All

tools change the tasks they help accomplish, whether at the fundamental level of simply

making the task possible or the more subtle level of making some—but not other—aspects

of the task easier, and thereby changing the way the task is approached.

Of course, there are a number of tasks that Schwa does not facilitate. It is not a

general-purpose application for computational lexicography. It does not include the corpus

tools necessary for writing definitions, the verification tools for editing, or the layout and

printing tools for publishing. It also does not make the task of determining pronunciations

easier. It does not try to look up pronunciations in data, extract them from sound files, or

provide a portal to linguistic research and resources.

That said, there are also a number of aspects of writing dictionary pronunciations

that Schwa does make easier. It helps in working with IPA by providing an easy way to

enter IPA characters. This has a number of advantages. First, Unicode IPA is commonly

used, and it has better phonetic resolution than most other transcription systems. Because

115

116

Unicode is a standard for text encoding, transferring data between Schwa and other

applications—whether through files or other system resources such as the clipboard—is

significantly easier. Also, because IPA is a standard phonetic transcription, using existing

linguistic research and resources that also use Unicode and IPA is possible. Moreover,

since IPA can represent pronunciations at a lower resolution than the respelling systems

that dictionaries use, it can more easily serve as an archive form for pronunciations, which

would contain the full phonetic information and from which dictionary pronunciations

would be derived.

A second area in which Schwa is helpful is in managing the infamously large amounts

of information that dictionaries contain. There are several ways in which Schwa aids in

this. First, the ability to import and export entries and pronunciations from and to diverse

sources means that a user can incorporate pronunciations created for one dictionary or

project into another one. This can significantly cut down on the amount of work the writer

must do. Also, the user interface provides a number of tools for working with the data,

such as word lists, which provide a means to break the data up into manageable amounts.

Third, Schwa’s ability to import and export XML means that a wide variety of stan-

dard XML tools available can be used to process the data, if necessary. This can be used

to prepare the information for publishing, to make sweeping changes to the data, or to

perform a number of other tasks.

Finally, and more abstractly, Schwa reminds the user of the new reality of dictionaries:

that they are in the early stages of making the transition into an electronic format. Nothing

that makes that trip is entirely what it was, and what dictionaries will look like on the

other side is anyone’s guess. As John Simpson says, the dictionary is moving from “text

to dictionary, back to text, and on to bibliography database, picture, sound, graphical anal-

ysis, or whatever” (12). Schwa, through its electronic nature and ability to deal with the

dictionaries as database and therefore as immanently malleable, emphasizes the journey

that lexicography is still in the beginning stages of: a piece of reference and bibliographic

117

technology that has not significantly changed for several hundred years, but is beginning

to undergo a radical metamorphosis.

However, Schwa’s life cycle is just beginning. In the process of getting it this far, I

have realized there are a number of areas in which it could be improved and a number

of directions in which it can grow. One aspect of Schwa that needs improvement con-

cerns the data management features. Although its current facilities for this are good, they

could certainly be improved. Specifically, more tools, such as more search and verification

mechanisms, for working with pronunciations are needed. Also, currently the ways that

word lists can be defined are limited. New ways to define them based upon other criteria,

for example, using a drag-and-drop user interface, would be helpful.

Another aspect of Schwa that needs improvement relates to features for extensibility

and customization. Primarily, this will involve a better architecture for tools, automation,

and customization. One possibility is to use a Command pattern (Gamma, et al., 233).

In this, objects that perform an operation are defined. These can be either built-in, for

the standard Schwa operations, or defined in extension modules. Either kind could be

bound to menus and tool bars, by the program or by the user. This also allows the key

mapping mechanism to be extended. As they are implemented now, key maps can only

insert text. By having key maps trigger command objects, however, they could be much

more versatile. Thus, extensions could define new commands and either bind them to key

maps themselves or allow the user to do so. Then, after being initially created, commands

could be stored in a file using Python’s serialization facilities. Menus, toolbars, and key

mappings would then be recreated by reading the command file back in.

Another option for improving Schwa’s extensibility would be the creation of a cus-

tomized scripting language. This could provide access to the command objects to imple-

ment basic functionality. It could also include features such as pronunciation-extended

regular expressions and built-in XPath support for working with entries. This would create

a programming language designed to facilitate working with the data in Schwa databases.

118

One important consideration in all these changes is that none of them entail making

backward-incompatible changes to the databases. Thus, this new version of Schwa, which

would in many ways be radically different than the one implemented here, could access

the databases created by the current version of Schwa. This is an important feature for

maintaining consistency for the user base.

In the final analysis, although Schwa still has room to grow, it is nevertheless usable

and useful. It represents a practical tool for computational lexicography, and lexicograph-

ical pronunciations in particular. As such, it stands as part of a journey, beginning with

Cawdrey’sA Table Alphabeticall, extending through Johnson, Webster, and theOED,

and continuing through theOED2andhttp://www.oed.com and into the uncharted

future of electronic lexicography.

BIBLIOGRAPHY

Algeo, John. “The Emperor’s New Clothes: The Second Edition of the Society’s Dictio-

nary.” Transactions of the Philological Society88.2 (1990): 131–50.

American Heritage College Dictionary. Ed. Joseph P. Pickett. 4th ed. New York:

Houghton Mifflin, 2002.

Artin, Edward. “Dictionary Treatment of Pronunciations: General.”Lexicography in

English. Eds. Raven I. McDavid and Audrey R. Duckert. Annals of the New York

Academy of Sciences. 211. New York: NY Academy of Sciences, 1973. 125–28.

Benson, M. “Collocations and General Purpose Dictionaries.”International Journal of

Lexicography3.1 (1990): 23–35.

Bladon, Anthony, et al. “Session 4: American English and the International Phonetic

Alphabet: The International Phonetic Association Reacts.”Conference Papers on

American English and the International Phonetic Alphabet. Ed. Arthur Bronstein.

Publication of the American Dialect Society. 80. Tuscaloosa: U of AL P, 1998.

123–26.

Bray, Tim, et al., eds.Extensible Markup Language (XML) 1.0. 2nd ed. 6 Oct. 2000. 11

Nov. 2003.<http://www.w3.org/TR/REC-xml >.

Bray, Tim, Dave Hollander, and Andrew Layman.Namespaces in XML. 14 Jan. 1999. 24

Feb. 2004.

<http://www.w3.org/TR/1999/REC-xml-names-19990114 >.

Bronstein, Arthur J. “The Development of Pronunciation in English Language Dictio-

naries.”Studies in the Pronunciation of English: A Commemorative Volume in

119

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/1999/REC-xml-names-19990114

120

Honour of A. C. Gimson. Ed. Susan Ramsaran. New York: Routledge, 1990. 137–

52.

Clark, James, and Steve DeRose.XML Path Language (XPath) 1.0. 16 Nov. 1999. 24

Feb. 2004.<http://www.w3.org/TR/1999/REC-xpath-19991116 >.

Congleton, J. E. “Pronunciation in Johnson’sDictionary.” Papers on Lexicography in

Honor of Warren N. Cordell. Eds. J. E. Congleton, Edward Gates and Donald

Hobar. Terre Haute, IN: Dictionary Society of North American, 1979. 59–81.

Dauer, Rebecca M. “IPA Characters on an IBM Compatible Personal Computer: Better

Letter Setter Reviewed.”Journal of the International Phonetic Association18.1

(1988): 41–43.

EXSLT: Regular Expressions. 30 June 2001. 10 Dec. 2002.<http://www.exslt.

org/regexp/index.html >.

Fillmore, Charles J., and B. T. S. Atkins. “Starting Where the Dictionaries Stop: The

Challenge of Corpus Lexicography.”Computational Approaches to the Lexicon.

Eds. B. T. S. Atkins and A. Zampoli. Oxford: Clarendon, 1994. 349–93.

Gimson, A. C. “Phonology and the Lexicographer.”Lexicography in English. Eds. Raven

I. McDavid and Audrey R. Duckert. Annals of the New York Academy of Sci-

ences. 211. New York: NY Academy of Sciences, 1973. 115–21.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns.

Reading, MA: Addison-Wesley, 1995.

GNOME: The Free Linux Desktop Project. 2003. 3 Mar. 2004.<http://www.gnome.

org >.

Harold, Elliotte Rusty.XML Bible. 2nd ed. New York: Hungry Minds, 2001.

Hulbert, James R.Dictionaries: British and American. Rev. Ed. London: Andre Deutsch,

1968.

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.exslt.org/regexp/index.html
http://www.exslt.org/regexp/index.html
http://www.gnome.org
http://www.gnome.org

121

Hultin, N. C., and H. M. Logan. “The New Oxford English Dictionary Project at

Waterloo.” Dictionaries: Journal of the Dictionary Society of North America

6 (1984): 128, 183–98.

Ide, Nancy, Nancy, and Jean Véronis. “Encoding Dictionaries.”Computers and the

Humanities29 (1995): 167–79.

International Phonetic Association.Handbook of the International Phonetic Association:

A Guide to the Use of the International Phonetic Alphabet. New York: Cambridge

UP, 1999.

Jassem, Wiktor, and Piotra Łobacz. “IPA Phonemic Transcription Using an IBM PC and

Compatibles.”Journal of the International Phonetic Association19.1 (1989): 16–

23.

Johnson, Samuel, ed.A Dictionary of the English Language. 1755. 2 vols. New York:

AMS, 1967.

Jost, David, Beth Rowen, and Susan Schwartz. “The Use of On-Line Databases in

Neology.” Dictionaries: Journal of the Dictionary Society of North America16

(1995): 16–18.

Kennedy, Graeme.An Introduction to Corpus Linguistics. New York: Addison Wesley

Longman, 1998.

Kenyon, J. S. “Pronunciation.”Webster’s New International Dictionary of the English

Language. 2nd ed. Ed. William Allan Neilson. Springfield, MA: Merriam, 1934.

xxii–lxxviii.

Krapp, George Philip.The English Language in America. Vol. 1. New York: MLA, 1925.

Kretzschmar, William A., Jr. “Phonetic Output and Display.”Journal of English Linguis-

tics 22.1 (1989): 47–53.

Kretzschmar, William A., Jr., and Rafal Konopka. “Management of Linguistic Databases.”

Journal of English Linguistics24.1 (1996): 61–70.

122

Kuhn, Sherman M. “Making theMiddle English Dictionary.” Dictionaries: Journal of the

Dictionary Society of North American. 4 (1982): 14–41.

Landau, Sidney, I.Dictionaries: The Art and Craft of Lexicography. 2nd ed. New York:

Cambridge UP, 2001.

—. “Session 3: Should We Change the Ways We Represent Pronunciation in American

English Dictionaries?”Conference Papers on American English and the Inter-

national Phonetic Alphabet. Ed. Arthur Bronstein. Publication of the American

Dialect Society. 80. Tuscaloosa: U of AL P, 1998. 117–20.

Le Hors, Arnaud, et al.Document Object Model (DOM) Level 2 Core Specification 1.0.

13 Nov. 2000. 11 Nov. 2003.

<http://www.w3.org/TR/DOM-Level-2-Core/ >.

libiconv. 1998. GNU Project. 11 Nov. 2003.<http://www.gnu.org/software/

libiconv/ >.

Logan, Harry M. “Electronic Lexicography.”Computers and the Humanities25 (1991):

351–61.

Martelli, Alex, and David Ascher.Python Cookbook. Sebastopol, CA: O’Reilly, 2002.

McDavid, Raven I., Jr. “The Social Role of the Dictionary.”Papers on Lexicography in

Honor of Warren N. Cordell. Eds. J. E. Congleton, Edward Gates and Donald

Hobar. Terre Haute, IN: Dictionary Society of North American, 1979. 17–28.

Merriam-Webster’s Collegiate Dictionary. 11th ed. Ed. Frederick C. Mish. Springfield,

MA: Merriam-Webster, 1995.

Metalleus Archive. 2003. 11 Nov. 2003.<http://www.umich.edu/˜archive/

linguistics/texts/papers/metalleus >.

Miller, Herman.The Language Page. 2003. 11 Nov. 2003.<http://www.io.com/

˜hmiller/lang/ >.

Murray, K. M. Elisabeth.Caught in the Web of Words: James A. H. Murray and theOxford

English Dictionary. New Haven, CT: Yale UP, 1977.

http://www.w3.org/TR/DOM-Level-2-Core/
http://www.gnu.org/software/libiconv/
http://www.gnu.org/software/libiconv/
http://www.umich.edu/~archive/linguistics/texts/papers/metalleus
http://www.umich.edu/~archive/linguistics/texts/papers/metalleus
http://www.io.com/~hmiller/lang/
http://www.io.com/~hmiller/lang/

123

MySQL. 2003. MySQL AB. 11 Nov. 2003.<http://www.mysql.com/ >.

Neufeldt, Victoria. “Session 3: Should We Change the Ways We Represent Pronuncia-

tion in American English Dictionaries?”Conference Papers on American English

and the International Phonetic Alphabet. Ed. Arthur Bronstein. Publication of the

American Dialect Society. 80. Tuscaloosa: U of AL P, 1998. 109–14.

OED On-line. 2000. Eds. John Simpson and Edmund Weiner. Oxford University Press.

11 Nov. 2003.<http://www.oed.com/ >.

Peake, Mervyn.Titus Groan. The Gormenghast Trilogy. Woodstock, NY: Overlook, 1988.

7–396.

Pearsons, Enid. “Session 3: Should We Change the Ways We Represent Pronunciation in

American English Dictionaries?”Conference Papers on American English and the

International Phonetic Alphabet. Ed. Arthur Bronstein. Publication of the Amer-

ican Dialect Society. 80. Tuscaloosa: U of AL P, 1998. 114–17.

Python Programming Language. 2003. Python Software Foundation. 11 Nov. 2003.

<http://www.python.org/ >.

Quirk, Randolph. “The Social Impact of Dictionaries in the UK.”Lexicography in English.

Eds. Raven I. McDavid and Audrey R. Duckert. Annals of the New York Academy

of Sciences. 211. New York: NY Academy of Sciences, 1973. 76–88.

Read, Allen Walker. “The Social Impact of Dictionaries in the United States.”Lexicog-

raphy in English. Eds. Raven I. McDavid and Audrey R. Duckert. Annals of the

New York Academy of Sciences. 211. New York: NY Academy of Sciences, 1973.

69–75.

—. “The Theoretical Basis for Determining Pronunciations in Dictionaries.”Dictionaries:

Journal of the Dictionary Society of North America4 (1982): 87–96.

Robinson, Jane. “Discussion.”Lexicography in English. Eds. Raven I. McDavid and

Audrey R. Duckert. Annals of the New York Academy of Sciences. 211. New

York: NY Academy of Sciences, 1973. 298–301.

http://www.mysql.com/
http://www.oed.com/
http://www.python.org/

124

Russell, Jordan.Inno Setup. 25 Feb. 2004.<http://www.jrsoftware.org/

isinfo.php >.

Sedelow, Sally Yeates. “Computational Lexicography.”Computers and the Humanities19

(1985): 97–101.

Sheldon, Esther K. “Walker’s Influence on the Pronunciation of English.”PMLA 62

(1947): 130–46.

Simpson, John. “The Revolution in English Lexicography.”Dictionaries: Journal of the

Dictionary Society of American23 (2002): 1–15.

Simpson, John, and Edmund Weiner. “An On-lineOED.” English Today: The Interna-

tional Review of the English Language16.3 (2002): 12–19.

Sledd, James. “Dictionary Treatment of Pronunciation: Regional.”Lexicography in

English. Eds. Raven I. McDavid and Audrey R. Duckert. Annals of the New

York Academy of Sciences. 211. New York: NY Academy of Sciences, 1973.

134–38.

Sleepycat Software: Berkeley DB. 2003. Sleepycat Software. 11 Nov. 2003.<http://

www.sleepycat.com/ >.

Source for Java Technology. 2003. Sun Microsystems. 11 Nov. 2003.<http://java.

sun.com/ >.

Sperberg-McQueen, C. M., and Lou Burnard.Guidelines for Electronic Text Encoding

and Interchange.May 1999. <http://www.tei-c.org/Guidelines/

index.htm >.

Stubbs, Michael.Words and Phrases: Corpus Studies of Lexical Semantics. Oxford:

Blackwell, 2001.

Tcl SourceForge Project. 2003. 11 Nov. 2003.<http://tcl.sourceforge.

net/ >.

http://www.jrsoftware.org/isinfo.php
http://www.jrsoftware.org/isinfo.php
http://www.sleepycat.com/
http://www.sleepycat.com/
http://java.sun.com/
http://java.sun.com/
http://www.tei-c.org/Guidelines/index.htm
http://www.tei-c.org/Guidelines/index.htm
http://tcl.sourceforge.net/
http://tcl.sourceforge.net/

125

Unicode Consortium.Unicode Standard, Version 4.0.0. Reading, MA: Addison-Wesley,

2003. 11 Nov. 2003.<http://www.unicode.org/versions/Unicode4.

0.0/ >.

Upton, Clive, William A. Kretzschmar, Jr., and Rafal Konopka.Oxford Dictionary of Pro-

nunciations. Eds. Susan Wilkin and Judith Scott. New York: Oxford UP, 2001.

Urdang, Laurence. “A Lexicographer’s Adventures in Computing.”Dictionaries: Journal

of the Dictionary Society of America6 (1984): 150–65.

Veillard, Daniel.The XML C Parser and Toolkit of Gnome: libxml. 25 Feb. 2004.<http:

//xmlsoft.org/ >.

Webster’s New International Dictionary of the English Language. 2nd ed. Ed. William

Allan Neilson. Springfield, MA: Merriam, 1934.

Webster’s New World College Dictionary. 4th ed. Ed. Michael Agnes. New York:

Macmillan, 1999.

Weiner, Edmund. “The NewOxford English Dictionary.” Journal of English Linguistics

18.1 (April 1985): 1–13.

Wells, John. “A New Pronunciation Preference Survey.” 1999. 13 Feb. 2004.<http:

//www.phon.ucl.ac.uk/home/wells/poll98.htm >.

“What Is Python?”Python Programming Language. 2003. Python Software Foundation.

24 Feb. 2004.<http://www.python.org/doc/Summary.html >.

Woolf, B. “The Null Object Pattern.”Pattern Languages of Programming. Sept. 1996.

<http://citeseer.ist.psu.edu/woolf96null.html >.

wxWindows Home. 2003. Julian Smart, Anthemion Software. 11 Nov. 2003.<http:

//www.wxwindows.org/ >.

Zawinksi, Jamie. “marginal hacks.” 2002. 11 Nov. 2003.<http://www.jwz.org/

hacks/marginal.html >.

http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/versions/Unicode4.0.0/
http://xmlsoft.org/
http://xmlsoft.org/
http://www.phon.ucl.ac.uk/home/wells/poll98.htm
http://www.phon.ucl.ac.uk/home/wells/poll98.htm
http://www.python.org/doc/Summary.html
http://citeseer.ist.psu.edu/woolf96null.html
http://www.wxwindows.org/
http://www.wxwindows.org/
http://www.jwz.org/hacks/marginal.html
http://www.jwz.org/hacks/marginal.html

APPENDIX A

SCHWA KEY MACROS

These are the default macros provided with the Schwa application. They are based on the

macros described by William A. Kretzschmar, Jr., in “Phonetic Output and Display” and

still used in the Linguistic Atlas of the United States and Canada for phonetic input.

Control-0 �

Alt-0 "

Control-1 I

Alt-1 I

Control-2 {E}

Alt-2 E

Control-3 �@

Alt-3 3

Control-4 {Ä}

Alt-4 Ä

Control-5 5

Alt-5 A

Control-6 A
�

Alt-6 6

Control-7 {O}

Alt-7 O

Control-8 �@

Alt-8 2

Control-9 U-

Alt-9 U

Control-Down v½

Alt-Down v

Control-Left 2¾

Alt-Left ½

Control-Right v¾

Alt-Right ¾

Control-Up 2½

Alt-Up 2

Control-a æ̃

Alt-a æ

Control-b ß
�

Alt-b ß

Control-c ˜

Alt-c c�

126

127

Control-comma �

Alt-comma
�

Control-d {d}

Alt-d D

Control-e {@}

Alt-e @

Control-f i-

Alt-f
	

Control-g Γ

Alt-g P

Control-h {h}

Alt-h H

Control-i {I-2½}

Alt-i I-2½

Control-j {j}

Alt-j j

Control-k ©

Alt-k k�

Control-l l
�

Alt-l ë

Control-m W

Alt-m M

Control-n ñ

Alt-n N

Control-o o-

Alt-o
�

Control-q ô

Alt-q R

Control-r { rÕ< }

Alt-r rÕ<

Control-s z
�

Alt-s S

Control-semicolon

Alt-semicolon ·

Control-t t�

Alt-t t
�

Control-u Õ

Alt-u Õ

Control-v
�

Alt-v V

Control-w {w}

Alt-w
�

Control-x >

Alt-x <

Control-y L

Alt-y θ

Control-z {z}

Alt-z Z

APPENDIX B

REGULAR EXPRESSIONS

Regular expressions are a powerful language for expressing text searches. They allow the

user to search for things that plain string searches do not, for example, all the words that

end iny.

There are manydialectsof regular expressions. The one that Schwa uses is prob-

ably the most popular: the regular expression syntax of Perl. Python also uses it. There

are many resources available for learning regular expressions.Mastering Regular Expres-

sions, by Jeffrey Friedl, published by O’Reilly is a comprehensive guide to regular expres-

sions. Also, the Python website has a HOWTO guide that is more detailed than this

appendix buy less weighty thanMastering Regular Expressions.

The information presented here builds from the most simple constructs in regular

expressions up to the more complex ones. Each section briefly describes the construct

and provides an example of it.

MATCHING

The simplest regular expressions match a string of one character. For example, the expres-

sion “a” matches the charactera wherever it may appear. Most characters can be repre-

sented this way. Special characters that have meaning in the regular expression can be

matched by escaping the character with a backslash (\) before it (e.g., “\. ” would match

a period).

128

129

However, matching only one character is next to useless. Concatenating two single-

character expressions match that string: “ab” matches the stringab; “ the ” matches the

stringthe.

Regular expression can also match alternatives of characters by separating the alterna-

tives with a pipe character (|). “a|b ” matches eithera or b. Likewise, “x|y|z ” matches

eitherx, y, or z.

The expressions so far have matched specific characters. Wild cards match any char-

acter. The only wild card in regular expressions is the period character (.). Thus the

regular expression “. ” matchesa, z, or any other character, and “a.e ” matchesace, age,

or ate.

Regular expressions also include sets of characters by enclosing them in square

brackets ([]). A set matches any character in the set. Thus, “[aeiou] ” matches the

standard set of English vowels.

Sets can also be defined by what they cannot contain. This is indicated by placing a

caret (̂) as the first character in the set. So “[ˆaeiou] ” would match any character that

is not a vowel. (While this set includes consonant characters, it also includes whitespace,

punctuation, and a good deal more.)

There are also a number of predefined sets:

\d Any digit (0–9).

\D Any non-digit character; anything not in\d.

\s Any whitespace character.

\S Any non-whitespace character.

\w Any alphanumeric character or an underscore.

\W Any character that is neither alphanumeric nor an underscore.

130

REPETITION

There are several modifiers that indicate that the preceding match occurs more than once

or not at all:

? The match occurs zero or one times: “a?”.

+ The match occurs one or more times: “a+”.

* The match occurs zero or more times. A pattern like “a.*b ” is often

used to indicate thata andb are either adjacent or are separated by any

number of undefined characters.

ANCHORS

There are also a number ofanchors: expressions that match places in the string being

searched, but not actual characters.

ˆ At the beginning of an expression, this matches the beginning of a string.

$ At the end of an expression, this matches the end of a string.

\b This matches the edge of a word. That is, the character to one side of it is

a word character (\w) while the character on the other side is a non-word

character (\W).

GROUPS

Finally, regular expressions can be grouped using parentheses. This allows repetition mod-

ifiers (?, +, and*) to modifier a larger unit in the expression.

For example, “a(bc)+ ” matchesa followed by one or more occurrences ofbc: abc,

abcbc, abcbcbcbcbc, but notabbccor abbc.

APPENDIX C

XPATH

XPath is a language to query XML data structures and to return sets of elements that

fulfill the conditions of the query. It allows the user to query on the names, attributes, and

contents of nodes, as well as the overall structure of the XML document. XPath is used in

Schwa to define new word lists. In defining word lists, if the query matches any node in the

entry, that entry is included in the word list. This appendix provides a short introduction to

XPath. A more complete introduction is available in Elliotte Rusty Harold’sXML Bible, in

the chapter on XSL Transformations, beginning on page 513, or the XPath Specification

(Clark and DeRose).

However, this appendix gives a complete description of the extensions to the core

XPath specification that Schwa also provides. These extensions facilitate working with

regular expressions and pronunciations, and they are described below.

STANDARD QUERIES

Any element within an XML document can be found using an XPath location path. This

path can be either relative to another element within the document or absolute from the

root element. All XPath queries are started from the context of a node, and in Schwa this

context node is always the root node. To find a child element of the context node, the

query is simply the name of the child element: “entry ” would find all the<entry >

elements of the current node. When part of a query is matches, the context node becomes

the matched node. Thus, to find all the<form > elements that are children of<entry >

131

132

elements, the query would be “entry/form ”. The slash (/) between the elements indi-

cates a new subquery. A query that begins with a slash indicates that the initial context

node should be the root element: “/entry/form ” matches all<form > elements that

are children of the root<entry > element, if the root element is, in fact, a<entry >

element.

Unfortunately, neither of these queries would match anything in Schwa, since the root

element for all entries is<superEntry >. To modify these queries to work in Schwa,

the query must use the// subquery, which matches all the descendants of the current node

or the current node itself. For example, “form//pron ” matches all<pron > elements

that are the descendants of a<form > element, whether there are any intervening ele-

ments or not. At the beginning of a query,// matches the root node or any descendants:

“ //entry/form ” matches all the<form > elements that is a child ofany<entry >

element, wherever it occurs in the XML document.

To match an attribute, prefix the name of the attribute with an at sign (@). For example,

“ //usg/@type ” matches thattype attribute of any<usg > element that defines a

type attribute.

Wild cards can also be used with either element or attribute names. The only wild

card defined is the asterisk (*), which matches any name: “//form/* ” matches all the

children of a<form > element, and “//usg/@* ” matches all the attributes defined on

all the<usg > elements.

Even with wild cards, matching an attribute directly is less useful than testing for the

content of an attribute or for other details of the current node. This is done using square

brackets ([]). A boolean (true-or-false) expression goes inside the square brackets. For

example, “//usg[@type='geo'] ” matches any<usg > elements that have atype

attribute with the value of “geo”. There are also a number of functions available for tests,

such astext() , which returns the text value of the current node (the value of all the text

133

in the current node and its children). An XPath reference would list the many functions

available.

EXTENSION FUNCTIONS

Beside the standard functions, Schwa also makes available a number of extension func-

tions. One of the most useful is the regular expressiontest(string, pattern,

flags) defined by the EXSLT XPath extensions (EXSLT). This function takes a regular

expression, such as is described in Appendix B. Because extension functions reside in

a different namespace than the standard functions, they must use the namespace prefix

assigned to them. In the case of thetest function, this prefix is “regexp: ”. This func-

tion takes three arguments:

string The string to match the regular expression against.

pattern The regular expression pattern.

flags This argument is optional. If provided, it is a string listing flags that

change how the matching is done. Currently, the only flag recognized is

“ i ”, which performs a case-insensitive match.

For example, “//orth[regexp:test(text(), '.*tion$')] ” would match

any<orth > elements whose text value ends in the string “tion”.

Schwa also provides a number of XPath extension functions to facilitate working with

phonetic data under the “pron: ” namespace prefix. These functions return strings of

Unicode characters corresponding to sets of phonetic characters:

pron:consonants() This function returns all the Unicode IPA conso-

nant characters.

pron:diacritics() This function returns all the Unicode IPA diacritic

characters.

134

pron:other() This function returns all the Unicode IPA characters not

returned by the other functions.

pron:suprasegmentals() This function returns all the Unicode IPA

suprasegmental characters.

pron:tones() This function returns all the Unicode IPA tone characters.

pron:vowels() This function returns all the Unicode IPA vowel charac-

ters.

Another function,pron:pron-sets(string) performs interpolation, as described

in the discussion on page 72 on theInterpolator class. The values that this function

makes available for interpolation are the IPA phonetic character classes. Each class is

available using two interpolation markers:

$consonants, $C These markers interpolate the IPA consonants.

$diacritics, $D These markers interpolate the IPA diacritics.

$other, $O These markers interpolate the IPA characters not covered by

the other markers.

$suprasegmentals, $S These markers interpolate the IPA supraseg-

mentals.

$tones, $T These markers interpolate the IPA tone characters.

$vowels, $V These markers interpolate the IPA vowels.

A final XPath function,pron:unichr(n) takes a decimal character code number

and returns a string containing the corresponding Unicode character. Figure C.1 shows

some examples of using these XPath functions. Combined with theregexp:test

extension function, these can be used to create powerful regular expressions that search

phonetic data.

135

pron:consonants()
pron:vowels()
pron:tones()
pron:pron-sets("Consonant characters: $consonants")
pron:pron-sets("Vowel characters: $V")
concat("Here is a schwa: ", pron:unichr(601))

Figure C.1: Using XPath Extension Functions frompron:

APPENDIX D

SIMPLE DATA FORMAT FILTER

This is the code for the Python modulesimpledata , which acts as a data transfer filter

for the simple data format described in “Writing a New DataTransfer Filter” on page 97.

from schwalib.transfer.core import IDataTransfer
from schwalib.task import TaskThread
from ericr.ml.utils import escape

class SimpleDataTransfer(IDataTransfer):
def makeExporter(self, db, wl, dest):

return SimpleExporter(db, wl, dest)

def makeImporter(self, db, wl, src):
return SimpleImporter(db, wl, src)

class SimpleImporter(TaskThread):
def __init__(self, db, wl, src):

self.db = db
self.wl = wl
self.src = src
read in the data as lines
self.lines = list(src)
set the total to the number of lines
self.total = len(self.lines)
super(SimpleImporter, self).__init__()

def perform(self):
for line in self.lines:

stick to TaskThread’s conventions
if self.stop:

break
self.pause()

136

137

process the line of data
line = line.strip()
data = line.split(’/’)
headword = unicode(data.pop(0), ’latin-1’)
data = [

unicode(p, ’schwalib.oxford’)
for p in data
]

put the data into XML
buffer = [

u’<?xml version="1.0" encoding="UTF-8"?>’,
u’<superEntry><entry><form><orth>’,
escape(headword),
u’</orth>’
]

buffer += [
u’<pron>%s</pron>’ % escape(p)
for p in data
]

buffer.append(’</form></entry></superEntry>’)
xml = u’’.join(buffer)
xml = xml.encode(’utf-8’)

create the entry and put it into the db
entry = self.db.Entry(entry=xml)
key = entry.key
self.db.entries[key] = entry
self.wl.add(entry.key)

update the count
self.count += 1

self.db.wordlists[self.wl.name] = self.wl

class SimpleExporter(TaskThread):
def __init__(self, db, wl, dest):

self.db = db
self.wl = wl
self.dest = dest
self.total = len(self.wl)
super(SimpleExporter, self).__init__()

138

def perform(self):
for key in self.wl:

stick to TaskThread’s conventions
if self.stop:

break
self.pause()

get the entry
entry = self.db.entries[key]

process the entry into a buffer
buffer = []
headwords = entry.doc.xpathEval2(’//orth’)
headword = headwords[0].content
headword = unicode(headword, ’utf-8’)
buffer.append(headword.encode(’latin-1’))
for pron in entry.doc.xpathEval2(’//pron’):

data = unicode(pron.content, ’utf-8’)
data = data.encode(’schwalib.oxford’)
buffer.append(data)

output the data to the file
print >>self.dest, ’/’.join(buffer)

	Acknowledgments
	List of Figures
	List of Tables
	1 Introduction
	2 Lexicographical and Phonetic Issues
	3 Technical Issues
	4 Schwa
	4.1 Data
	4.2 Code
	4.3 The Program
	4.4 Schwa in Use
	4.5 In the End

	5 Conclusion
	Bibliography
	A Schwa Key Macros
	B Regular Expressions
	C XPath
	D Simple Data Format Filter

