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ABSTRACT 

 Clusters in social network tell the heterogeneity of people’s connections, and clusters in 

geographical movement network display the difference in movement pattern. I test whether the 

two clusters show similar pattern to understand the complexity between social network and 

movement behaviors for implications on future urban structure that helps maintaining face-to-

face social connections. I do community detection simultaneously and independently in both 

networks drawn from a mobile phone call dataset in Jiamusi, China. I involve distance decay to 

detect clusters due to long-distance geographical movements. I also do community detection in 

social network and project the social communities into geographical space by anchor points to 

examine whether long-distance movement communities are spatially associated with social 

communities. The result testifies my argument that people still require physical interaction in 

social life, even in the era of information. 

INDEX WORDS: Social network, Urban activity space, Community detection, Distance 

decay, Cell phone call dataset 

 

  



 

 

DETECTING ASSOCIATED COMMUNITIES IN SOCIAL NETWORK AND URBAN 

ACTIVITY SPACES 

 

by 

 

YAOLI WANG 

B.S., Peking University, China, 2012 

 

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of the University of Georgia in Partial Fulfillment of 

the Requirements for the Degree 

 

MASTER OF SCIENCE 

 

ATHENS, GEORGIA 

2014 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

Yaoli Wang 

All Rights Reserved 

  



 

 

DETECTING ASSOCIATED COMMUNITIES IN SOCIAL NETWORK AND URBAN 

ACTIVITY SPACES 

 

by 

 

YAOLI WANG 

 

 

 

 

      Major Professor: Xiaobai Yao 

      Committee:  Lan Mu 

         Steven Holloway 

         Clio Andris 

          

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Maureen Grasso 

Dean of the Graduate School 

The University of Georgia 

May 2014 



 

iv 

 

 

ACKNOWLEDGEMENTS 

 I sincerely appreciate the aegis of Dr. Xiaobai Yao in my two years’ study in the 

Department of Geography at the University of Georgia. Without her support, I would not have 

had my research fruits or the manuscript attached in my thesis. I gratefully thank my committee 

members, Dr. Lan Mu, Dr. Steven Holloway, and Dr. Clio Andris for their guidance in my study 

and research. I benefited a lot from Dr. Mu’s programming class and from Dr. Holloway’s 

instruction of statistical analysis. Dr. Clio Andris infused me with great ideas and helped me with 

some data pre-processing during my summer internship with her at the Santa Fe Institute. I also 

appreciate Dr. Yu Liu at the Peking University, China, for releasing the dataset to me, and 

Chaogui Kang, a doctoral student with Dr. Liu, for running code for me remotely to draw sample 

data. I thankfully appreciate the funding from the International Geographic Informational Fund 

to grant me the student travel grant for my research presentation at the 2014 Annual Meeting of 

the Association of American Geographers, Tampa, FL. I acknowledge the funding from the 

Special Fund of Key Laboratory of Eco Planning & Green Building, Ministry of Education 

(Tsinghua University), China to support my manuscript publication. Last but not least, as an 

international student, the support from my parents and friends are so valuable! I love them! 

  



 

v 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ..................................................................................................................... viii 

CHAPTER 

 1 INTRODUCTION AND LITERATURE REVIEW .....................................................1 

   Reasons for This Research .......................................................................................1 

   Objectives of This Research ....................................................................................4 

   A Review of the Major Methods .............................................................................4 

   Innovations of This Research...................................................................................6 

 2 DETECTING ASSOCIATED COMMUNITIES IN SOCIAL NETWORK AND 

URBAN MOVEMENT SPACES ..................................................................................9 

   Abstract ..................................................................................................................10 

   Introduction ............................................................................................................10 

   Dataset and Methods ..............................................................................................15 

   Results and Discussions .........................................................................................35 

 3 SUPPORTING INFORMATION ................................................................................56 

   I. Proof for Expert el al.’s Deterrence Function as an Alternative to Distance 

Decay Function ......................................................................................................57 

   II. Decision on the Number of Social Network Communities ...............................58 



 

vi 

 4 CONCLUSIONS..........................................................................................................63 

REFERENCES ..............................................................................................................................66 

APPENDICES 

 A A List of Abbreviations ...............................................................................................74 

 

  



 

vii 

 

 

LIST OF TABLES 

Page 

Table 2.1: Data structure of the raw data and processed data ........................................................20 

Table 2.2: Number of active users and average number of calls per user on each of the selected 

seven days ..........................................................................................................................22 

Table 2.3: Example of the bias of community size to detection result ..........................................25 

Table 2.4: The numbers of detected communities for each day ....................................................33 

Table 2.5: t-test (two-tail) result for the similarity coefficient (SC) ..............................................38 

Table 3.1: 95% Confidence Interval for λQ in SNCD ...................................................................62 

 

  



 

viii 

 

 

LIST OF FIGURES 

Page 

Figure 1.1: The count of shared POIs by friends against that by randomness.................................3 

Figure 1.2: Community detection results without involving distance into modularity (upper) and 

with distance in modularity (lower) .....................................................................................7 

Figure 2.1: Location of the city of Jiamusi in Heilongjiang ..........................................................16 

Figure 2.2: Map of metropolitan Jiamusi with population distribution and POIs .........................18 

Figure 2.3: The cell phone towers with corresponding TSAs in Jiamusi, China...........................19 

Figure 2.4: Distance decay of the spatial movement (without intra-TSA flow) ............................29 

Figure 2.5: Detected social network and urban movement communities for each of the seven 

days  ................................................................................................................................37 

Figure 2.6: The overlapped map of Day 1’s SNCD and UMCD results on the basemap of 

©OpenStreetMap with digitized POIs ...............................................................................43 

Figure 2.7: Visualizations for social network on each of the seven days ......................................47 

Figure 2.8: The frequency of each cell phone tower being the AP of members in the dominant 

community on Day 1 ..........................................................................................................50 

Figure 2.9: The top 4 mostly used TSAs utilized by the users of the selected isolated purple 

community on Day 1 ..........................................................................................................52 

Figure 3.1: The λQ of each merging step in the UMCDs for each of the seven days ...................59 

Figure 3.2: The λQ of each merging step in the SNCDs for each of the seven days .....................61 

 



 

1 

 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Reasons for This Research 

Urban sprawl has been a predominant trend in contemporary society. Landscape 

Urbanism argues that urban design should be a flexible, open-ended, strategic and non-

hierarchical process instead of a static plan as is traditionally done (Chaeles Waldheim 2002; 

Charles Waldheim 2006), which should make advantage of the existing resources on the ground 

(e.g., the Sustainable Park proposed by Cranz and Boland (Cranz and Boland 2004)), implement 

ecological infrastructure design that prevents urban encroachment of wilderness (e.g., (Yu, Wang, 

and Li 2011)), to name a few. The doctrine of Landscape Urbanism hence more or less 

encourages, or at least accepts urban sprawl (Koolhaas and Mau 1998). 

However, distance decay, as elaborated by Tobler’s First Law of Geography (Tobler 

1970), has been widely observed in concrete geographical space (Eldridge and Jones 1991; Gao, 

Wang, et al. 2013; Fotheringham 1981; Kang et al. 2010). Thus, urban sprawl will definitely 

generate higher impedance of distance. On the other hand, as argued by Cairncross (2001), the 

development of telecommunication has diminished the importance of distance, especially in 

terms of organizational businesses, given the prosperities of, for example, numerous international 

companies. In this sense, the telecommunication network seems able to disperse everywhere free 

of geographic constraints. However, by evidence from the geography of internet usage, Kolko 

(Kolko 2000) proved that internet, as a good substitute simply for long-distance communication 

which benefits remote cities, is actually a complement, instead of a substitute, for face-to-face 
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communications. Not only have observation results confirmed that distance decay does exist in 

virtual space, as shown by evidences from telecommunication (Ratti et al. 2010; Gao, Liu, et al. 

2013; Walsh and Pozdnoukhov 2011) and social media check-in data (Liu et al. 2014), but also 

some studies argue that telecommunication is not functionally identical to face-to-face 

communication (Flaherty, Pearce, and Rubin 1998; Duke 2001).  

Zooming in to an urban scale, the linked activity spaces (Wang et al.) suggests that 

friends (in this research, defined as a pair of persons with any possible social connection, e.g., 

business, family, classmate, friends, etc.) tend to use the same urban infrastructure more often 

than by random chance (Figure 1.1). By saying random chance, we mean the possibility that two 

random selected persons utilize the same urban infrastructure approximated by Point of Interest 

(POI), like parks, bars, restaurants, etc.). Such finding indicates that friends are spatially 

clustered in urban activity space. Inspired by that, we hypothesize that agents who are clustered 

by the relation of friendship in social network are more likely to have their physical activity 

spaces belonging to the same cluster as well. Moreover, while the linked activity spaces 

demonstrate more about local pattern (of short-distance movements), we aim to find out the 

mutual interplay between social network and long urban trips. By saying “long”, we particularly 

refer to the trips longer than the expectation from the average distance decay.  
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Figure 1.1 The count of shared POIs by friends against that by randomness (Wang et 

al.). This is calculated by counting POIs in the overlapped activity spaces of each 

possible pair of users or each pair of friends. The horizontal axis depicts the number 

of POIs in the overlapped activity spaces, POIs within in which are shared by both 

users. Density is the frequency distribution: pink frame bars shows what percentage of 

all pairs of friends share the corresponded count of POIs, while blue frame bars 

displays the same thing but of random pairs of users, i.e., users either friends or non-

friends. It demonstrates that friends tend to share more POIs than randomness, 

indicating potential spatial clusters in their activity spaces. 
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Objective of This Research  

While many works discuss the issue of smart growth and urban sprawl from diverse 

angles (Geller 2003; Ewing et al. 2003; Greca et al. 2011), this research particularly adopts 

community detection in network analysis to examine the association between the clustering 

patterns from the social network built via telecommunication and the long-distance urban 

movements. If there is significant similarity between the social and the movement clustering 

patterns, I would argue that, in terms of social connections, urban sprawl should not be 

extensively encouraged, despite its advantages as argued by Landscape Urbanism (Livesey 2009; 

Chaeles Waldheim 2002; Koolhaas and Mau 1998). 

This work hence will leverage a mobile phone dataset, doing community detections 

independently in social network and in urban movement network. The social network community 

detection is initially conducted in a completely virtual network without spatial information, the 

result from which will be projected into urban space via each user’s mostly visited cell phone 

towers (i.e., anchor points). For unban movement network, distance decay is involved to detect 

communities caused by long-distance trips. The similarity of patterns from social and movement 

communities is measured by an index called relative cardinality, and hypothesis test is utilized to 

ensure the significance of the similarity. 

A Review of the Major Methods 

Despite that “community” may have varied specific definitions according to its different 

application situations, the basic idea is the intra-community interaction should be stronger or 

closer than inter-community ones. Community is an important mesoscopic structure, which is 

caused by the heterogeneity in network, and which is about the presence of high densities of 

connection in some regions while of low densities in other regions (M. Newman and Girvan 
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2003). In spatial network, community structure is identical to the concept of spatial heterogeneity, 

for which the “spatial cluster” is defined as high densities of connections, say, communication 

strength, traffic flow intensity, not necessarily short distance between two nodes. 

Community detection is the set of methods and process to partition a network into smaller 

scale networks while meeting the aforementioned requirements. Among those different methods 

(Barthélemy 2011) for community detection, we adopt the modularity-based method, initially 

proposed by M. E. J. Newman & Girvan (2004). Modularity is a measure quantifying the 

difference between really observed connection strength and the expected connection strength. 

This method sets a null model to quantify the theoretical network structure, i.e., a network with 

the intact topological connection structure but with different connection strength (link weight).  

The reasons to choose it are due to two partially overlapped reasons. Firstly, compared 

with other methods, community detection considers the significance of detected communities 

against randomness (by null model). The phenomenon called “small world”(Watts and Strogatz 

1998; Watts, Dodds, and Newman 2002; Amaral et al. 2000) supports that, instead of growing 

evenly, network innately have clusters; high degree nodes are inclined to attract new nodes more 

rapidly through evolution (Liben-Nowell and Novak 2005; Watts, Dodds, and Newman 2002; 

Guimerà et al. 2005; Thiemann et al. 2010; Ratti et al. 2010; Grady et al. 2012). Hence, if we 

consider the random clustering mechanism to show a robust community structure beyond 

randomness, modularity-based method is a convenient way.  

Secondly, it allows the flexibility to either include or exclude distance into community 

detection (Expert et al. 2011). By plugging the distance decay model into modularity as the 

approximation to the expected connection strength, I am able to detect the communities formed 

by long-distance urban movements, because the null model predicts that the cell phone towers 
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with short distance should have higher cell phone call volume than the towers with long distance, 

and thus short-distance towers are not assigned to the same community simply due to the 

absolute high volume between them.  

Innovations of This Research 

Transportation network and mobile phone network are two areas that intensively use 

network analysis to understand our complex social systems with regard to spatial relationship 

(Kang et al. 2012; Lambiotte and Blondel 2008; Liben-Nowell and Novak 2005; Grady et al. 

2012; Onnela et al. 2011; Guo 2009; Gao, Liu, et al. 2013). Other works exploring social 

network also start referring to the underlying geographic space to explain the intensity of social 

interaction or the structure of social network (Steinhaeuser and Chawla 2008; Watts and Strogatz 

1998; Correa et al. 2008; Vespignani 2009; Onnela et al. 2011; Eagle, Pentland, and Lazer 2009; 

Girvan and Newman 2002; Expert et al. 2011). Although some of the previous works referred 

above try to link social and spatial components together to explain their results, their analyses are 

still anchored in one field, either social or spatial. None of them has conducted analysis in both 

social and spatial networks in parallel and compared them with each other, nor has any of them 

concentrated particularly on long-distance movements on an urban scale. For example, Expert et 

al. (2011) introduced gravity model into social network community detection, arguing that such 

method tells the story beyond space (Expert et al. 2011, Figure 1.2). They realized that even 

virtual connection is constraint by space, but if removing spatial factor, they can uncover a real 

pattern depicting the underlying nature of social network. However, despite their realization of 

the spatial influence on social connection, they didn’t perform any analysis with physical 

movements.  
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Figure 1.2 Community detection results without involving distance into modularity 

(upper) and with distance in modularity (lower). The former demonstrate good spatial 

continuity while the latter displays some scattered parts belong to the same 

community. Adopted from Expert et al. (2011). 

  

 

This study, in contrast, proposes to perform social network analysis and spatial 

movement analysis independently initially, and then to juxtapose them to see if social network 

and physical movement yield similar clustering pattern. The research design is aimed to decipher 

the effect of social network on the generation of long urban trips. If the results demonstrate 
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similar patterns, there will be good argument for the assumption that social connection is 

associated with long urban movements, which protests against urban sprawl. 

Additionally, there are methodological innovations. Firstly, I revise the form of modularity from 

subtraction to division. As I will elaborate in the methodology section, the previous form of 

modularity is problematic because it is biased by the size of the community. I will show how the 

new version of modularity I propose can adjust for it. Secondly, I generate a new method to 

make the social communities and the spatial communities comparable. Since there are few 

people doing community detection in social and spatial networks separately, no approach has 

been proposed about projecting social communities into urban space or about comparing the 

similarity between two community patterns. 
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CHAPTER 2 

DETECTING ASSOCIATED COMMUNITIES IN SOCIAL NETWORK AND URBAN 

MOVEMENT SPACES
1
 

  

                                                 
1
 Wang, Y. and Yao, X. To be submitted to PLOSONE. 
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Abstract 

The development of Information and Communication Technology makes the relationship 

between virtual social network and face-to-face interaction more complex. In this study, we base 

our points from the perspective of network analysis to discuss the association between social 

network and physical movements. As communities (i.e., clusters) emerge in both social network 

and geographical movement network, it is important to find whether the clusters show similar 

spatial patterns. This helps to understand the influence of telecommunication-based virtual social 

links on urban trips, whether replacement or supplement. We propose to do community detection 

simultaneously and independently in social and movement networks drawn from a mobile phone 

call dataset in Jiamusi, China. The social network community detection is originally performed 

without considering any geographic information, after which the social communities are 

projected into urban space. We involve distance decay into the modularity-based community 

detection of movement network to detect clusters particularly due to long-distance geographical 

movements. With random permutation and hypothesis test, we find significant association 

between the spatial patterns of long-distance movement communities and social network 

communities. The statistical result, followed by specific discussions contextualized in the city, 

testifies our argument that social connections yield meaningful indications on long urban trips. 

Information technology in social life, therefore, is not a substitute, but instead, a supplement for 

urban-scale physical interaction, which disputes intense urban sprawl. 

Introduction 

The complex relationship between the “virtual” space built up via telecommunication and 

the geographic impedance for physical interaction has attracted much research interests. Distance 

decay, as elaborated by Tobler’s First Law of Geography that “everything is related to everything 
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else, but near things are more related than distant things” (Tobler 1970), has been widely 

observed in concrete geographical space (Eldridge and Jones 1991; Gao, Wang, et al. 2013; 

Fotheringham 1981). Admittedly, as argued by Cairncross (Cairncross 2001), the development of 

telecommunication has diminished the importance of distance, especially for organizations and 

companies that rely on the remote transmission of information to do global businesses. However, 

by evidence from the geography of internet usage, Kolko (Kolko 2000) proved that internet, 

which is presumably a good substitute simply for long-distance communications, is actually a 

complement, instead of a substitute, for face-to-face communications. Real world observations 

confirm that distance decay does exist in virtual space, as shown by evidences from 

telecommunication (Ratti et al. 2010; Gao, Liu, et al. 2013) and social media check-in data (Liu 

et al. 2014). Wang et al. (Wang et al.) further quantitatively proved that people with social links 

via telecommunication are significantly more inclined to have geographic proximity in their 

daily activity spaces. All these previous studies testify that interactions in the virtual space are 

indeed influenced by geographic distance. Expert et al. (Expert et al. 2011) explained the 

distance decay in virtual space by “homophily” (McPherson, Smith-Lovin, and Cook 2001) and 

“focus constraint” (Feld 1981); they tried to remove the bias of geographic proximity from social 

network and detected social communities (i.e., clusters in social network) beyond space to 

uncover hidden structural or cultural similarity. 

However, the influence of distance decay may play out differently in the virtual space 

than that in the physical space. Previous studies argue that telecommunication is not functionally 

identical to face-to-face communication (Flaherty, Pearce, and Rubin 1998; Duke 2001). From a 

perspective of psychology, Salomon (Salomon 1985) proposed that technology is not a substitute 

for personal urban trips. He brought up the ambiguity of the potential influence of 
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communication technology on urban trip generation, arguing that people cannot bear being 

homebound for long. Thus, when studying the effect of telecommunication on individual level 

and within cities, it is even more difficult to predict the influence of distance. Studying 

telecommunication interactions within a city raises the need to consider the physical movements 

of callers, unlike the inter-city interactions for which researchers can generally georeference 

individual callers to respective cities (as in (Expert et al. 2011)).  

In this work, we aim to uncover, by network analysis, the uncertainty of the relationship 

between telecommunication-based social links and urban-scale face-to-face interactions. The 

aforementioned works observed that geographical distance decay may constrain social network, 

resulting in the “virtual” distance decay. This study, however, tends to investigate the 

relationship the other way around: what is the attraction between social network and 

geographical movements? Is the generation of long-distance urban trips associated with the 

existence of social links located physically far apart? Do they reinforce or replace each other? 

Simply, we want to answer the question: are social links in the virtual space associated with 

long-distance physical urban movements? If yes, we would argue that telecommunication is 

complementary to physical contact, because, instead of being widely dispersed in space, 

telecommunication is partially implemented, and thus implicated by urban movements. Note that 

the “long-distance” is a relative concept compared with the average movements in a particular 

city. We are primarily interested in long-distance urban trips because telecommunication usually 

plays a more important role in long-distance events, and we argue that the decrease in the amount 

of social links (with longer distance) does not mean the decay of their importance, as is 

suggested in the literature (Apicella et al. 2012).  
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We examine the association between social connections and long-distance urban 

movements by leveraging cell phone call records, one type of the most popular 

telecommunications. The “social connections” here is used in a broad sense, including both 

business and personal social contacts. We treat both social connections and urban movements as 

networks, by which the interactions between different participants or places are best represented. 

We apply community detection method to measure the pattern of relations among nodes. 

Community in network science means “cluster”, i.e., a subgroup of nodes among which 

connections are stronger while inter-community connections are much weaker (M. Newman and 

Girvan 2003). Community detection is a method to partition the whole network into closely 

related clusters as communities (Steinhaeuser and Chawla 2008; Guimera, Sales-Pardo, and 

Amaral 2004; Wang 2012; Onnela et al. 2011; Girvan and Newman 2002; Palla, Barabási, and 

Vicsek 2007; Expert et al. 2011). We adopt modularity-based community detection (M E J 

Newman and Girvan 2004) to ensure the robustness of the detected community structure 

contingent on the expected connection strength. Modularity is a measure alike residual, which 

quantifies the gap between the observed and the expected values. 

Our basic methodological idea is to perform community detection in the social network 

and the caller’s physical movements in the urban space independently. Both social network and 

movements are extracted from cell phone call records. For social network, we start community 

detection with an entirely space-irrelevant network (i.e., a network containing no geographic 

information at all), and then map the resulted communities into urban space based on the most 

frequently utilized cell phone towers for each user. For physical movements, we apply a 

modified community detection method that rule out the influence of distance decay so that the 

identified communities result from other underlying factors than distance. Finally, we create a 
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similarity measure for the two community patterns and conduct hypothesis test to verify the 

associations between social connections and physical urban movements from the perspective of 

network analysis.  

The innovations of our work are twofold. Firstly, although there are many studies doing 

social or spatial network community detection (Steinhaeuser and Chawla 2008; Comber, 

Brunsdon, and Farmer 2012; Onnela et al. 2011; Expert et al. 2011; Gao, Liu, et al. 2013; Ratti et 

al. 2010), few of them has examined both social and spatial networks simultaneously and 

compared them. This study is one of the first to reflect the association between the two networks 

and give hint to urban future. Secondly, we are one of the earliest to involve distance decay in 

movement network to discover long trips. Although Expert et al. (Expert et al. 2011) have 

considered distance decay in community detection, their study subject is social network.  

The findings of the study suggest that interactions in the physical space and in the social 

network space in a city are mutually following each other and may reinforce each other. It 

informs future urban development. Our findings suggest that face-to-face interactions are natural 

results of social links, which supports the importance of social connections in urban life as 

elaborated by Gehl’s book Life between buildings (Gehl 1987). This provides important 

implications to the issue of urban sprawl. According to the scaling law in cities (Bettencourt 

2013), a more sprawled city definitely demands more urban infrastructures, and thus requires 

higher costs to maintain social networks.  
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Dataset and Methods 

Study Area and Data Preprocessing 

A case study is performed to illustrate the idea and to test the hypothesized association. 

The study area is the metropolitan part of the city of Jiamusi (marked by the red circle), a 

prefectural level city located in Heilongjiang province bordering Russia in northeastern corner of 

China. The red circle marks the location of Jiamusi (Figure 2.1). The city sits along the Songhua 

River, and is well connected via railway, waterway, and highway with Harbin, the capital city of 

Heilongjiang Province. Our study area covers the metropolitan area, including Xiangyang 

District, Yonghong District (merged to Suburban in 2006), Qianjin District, and Dongfeng 

District. The city has 2,552,097 people in total (2010), and 850,750 in the built-up area of the 

metropolitan Jiamusi (2010). The city serves as a producer of wood pulp and newsprint as well 

as an international trade harbor near the China-Russia border. Because of its advantageous 

location, Jiamusi is the economic center of eastern Heilongjiang Province.  
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Figure 2.1 Location of the city of Jiamusi in Heilongjiang. Adopted from (Ctrip). The map of 

China does not show the islands in the South China Sea. 

 

 

On the map of the metropolitan Jiamusi (Figure 2.2) shows the city’s resource 

distribution and land use by overlapping the satellite image of the city with the boundary of the 

built-up area, the mark of downtown, the locations of POIs, population density distribution 

(LandScan
TM

 data (©Oak Ridge National Laboratory)), and the major transportation 

infrastructures, e.g., a railway station, and two airports. The downtown area, marked by the light-

blue star, is located at about the geometric center of the built-up area delineated by the white 

built-up area boundary. The population density (displayed by the grid data) in the city center can 

be as high as about 27 thousands of people per square kilometers, which is much higher (red 
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color on Figure 2.2) than the surrounding suburban and rural areas (blue color on Figure 2.2). 

Such high density is possible in China, especially on university campus. To approximate the 

distribution of city infrastructure and resources, we use the same set of points of interest (POIs, 

yellow dots on the map) as (Wang et al.), including services, transport, and recreational areas. 

POIs are much denser near the city center, signifying the high attraction of this area, while 

become more dispersed towards periphery. Such pattern is highly likely to influence people’s 

activity spaces and social network distribution. The city demonstrates a homocentric pattern in 

terms of the distributions of both population and POIs. Regarding transportation infrastructure, 

there is a railway station on the southeast side of the downtown area, and two airports on east 

and west side of the city, respectively. The airport on the west is named Jiaxi Airport, which is 

an airport specifically targeted to farmland usage (for example, spreading seeds), while the one 

on the eastern side is a normal airport for the public. 
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Figure 2.2 Map of metropolitan Jiamusi with population distribution and POIs.  

 

 

The research dataset is a set of anonymized cell phone call records from one 

telecommunication company. It contains roughly 1.6 million call records per day times 31 days 

during an undisclosed month. The total number of cell phone users during the month is 324,752, 

about 38.2% of the built-up area population. There are 96 cell phone towers (represented by red 

dots in Figure 2.3) in the study area, all of which are located on the south bank of Songhua River 

without physical barrier between them. The towers are denser near the city center while more 
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distributed in suburban area. Since the range served by a particular tower may vary because of 

the limit of call volume load and other technical reasons, we utilize Voronoi diagrams to 

approximate the tower service area (TSA) covered by each tower (Figure 2.3). But there is 

possibility that a person in the TSA of one tower is drawn to another tower. 

 

  

 

Figure 2.3 The cell phone towers with corresponding TSAs in Jiamusi, China.  

 

 

In this study, we concentrate on two types of networks, social network and movement 

network, both of which are weighted network. Social network treats each cell phone user as a 

node, and the existence of calls as link. The weight of each link is the number of calls during the 

time period under study. In the caller’s movement network, each node is a cell phone tower 
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which represents the corresponding TSA. A link between two nodes is weighted by the 

movement flows between the pair of TSAs. The complete raw data are pre-processed and 

prepared in two forms, Aggregation 1 as social network and Aggregation 2 as human movement 

trajectory (Table 2.1). Aggregation 1 is extracted by ranking Caller and Receiver IDs, 

aggregating by the same Caller and Receiver, counting the number of records of the same Caller 

and Receiver as Count of Calls, and summing up the corresponding call durations as Total 

Duration. Aggregation 2 is drawn out by copying each call record to both Caller and Receiver 

(collectively termed users hereafter) and ranking records by UserID while keeping all the other 

information as the original.  

 

 

Table 2.1 Data structure of the raw data and processed data 

Original 

Table 

Caller Receiver 

Caller 

Location (x, y) 

Receiver 

Location (x, y) 

Start 

time 

Duration 

Aggregation 

1 

User1 User2 - - 

Count 

of Calls 

Total 

Duration 

Aggregation 

2 

UserID Location (x, y) 

Start 

time 

Duration 

 

 

Because of the impossibility to process the huge size of the entire dataset and the issues 

of data copyright as well as confidentiality, we are allowed to draw out a randomly selected 

sample dataset by a hierarchical method. We initially select a random sample of 150 users, and 
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then draw out their friends (1
st
 degree ties), their friends’ friends (2

nd
 degree ties), and their 

friends’ friends’ friends (3
rd

 degree ties), in total four layers. The friendship in this case study is 

defined as the following: between any two users, if the count of calls between any two users is 

no less than 10 or the duration of call is no less than 10 minutes, the two users are connected by 

friendship. Those “friends” who do not meet such requirement will be left out. We also set a 

criterion to ensure users are active so that we can extract the database of physical movements. 

This criterion requires that each user must show up at least 3 cell phone towers during the whole 

month. The data selection yields a well-connected network with 8,231 users and 47,297 

friendship links. The first 150 users produced 460 first degree ties, 2,242 second degree ties, and 

11,316 third degree ties. On average each sampled user has 44 friends, 328 calls and 6.18 hours’ 

call during the month. 

The original dataset is organized day by day, which allows us to analyze the temporal 

changes of the detected communities by day of the week and find contiguous patterns throughout 

the week. After sampling the 8231 cell phone users, we extract social network and spatial 

movement flow data day by day within a full week (from Sunday to Saturday). Further analyses 

are performed on each of the seven sets of data as well as the comparisons among them. We need 

to clarify three things. Firstly, not all the users sampled from the entire dataset during the whole 

month make phone calls on each day of the selected week. The final dataset of the seven days is 

a subset of the whole month, with 7,906 users (about 2.4% of the total cell phone users during 

the whole month) and 730,620 calls (i.e., sum of link weights). We name the ones who do make 

calls “active users” (Table 2.2). The temporal dynamics varying from weekends to weekdays are 

noticeable. On D1 and D7, less people make calls than on weekdays. On Sunday (D1), each 

person makes fewer calls on average. People generally make 3.36 calls per user per day on 
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weekdays, but slightly more calls on Saturday. It is possible that Saturday is usually a time to 

hang out with friends when people rely on calls to negotiate time and find others, while Sunday 

is a day for rest and religion ritual when calls are less necessary. Secondly, for social network, 

although the link weights are computed by day, the degrees (i.e., the total number of calls from 

or to a user) of the sampled users are calculated based upon the records within the whole week. 

We think this method makes more sense to represent a robust social network structure that is 

relatively stable within a week. This is also to solve the problem of data scarcity on some days 

(many of the sampled users have no calls on one specific day) and to smooth extreme cases (e.g., 

on a special day one person may have significantly more calls than usual). Finally, for similar 

reasons, the distance decay function in the urban movement community detection (UMCD) is 

approximated by fitting the inter-TSA flows of all the seven days. 

 

 

Table 2.2 Number of active users and average number of calls per user  

on each of the selected seven days 

Day D1 D2 D3 D4 D5 D6 D7 

#ActiveUsers 6448 6789 6733 6732 6807 6846 6703 

Avg. #calls/user 2.32 3.37 3.35 3.40 3.39 3.37 3.40 

 

 

Before generating the urban movement network, we simplify the trajectories (i.e., a series 

of visited TSAs by each sampled user in time sequence) of trips by the following way. Based 

upon the size of the study area and the average travel situation, we choose the time threshold of 
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thirty (30) minutes to filter data. Any two successive trips with a time gap shorter than 30 

minutes should be merged, and thus the intermediate stops are removed. Given that we care 

about the inter-TSA movement, we exclude intra-TSA movements (i.e., two calls happened 

consecutively in the same TSA). This is done for each of the seven days. 

Modified Modularity and the Greedy Technique for Community Detection 

Previous studies (Liben-Nowell and Novak 2005; Watts, Dodds, and Newman 2002; 

Guimerà et al. 2005; Thiemann et al. 2010; Ratti et al. 2010; Grady et al. 2012; Arenas and Diaz-

Guilera 2007) have found that network innately have clusters, i.e., high degree nodes attract new 

nodes more rapidly through evolution. Consequently, even a random network is not evenly 

distributed. Modularity (M E J Newman and Girvan 2004) Q was initially defined as a measure 

of the quality or strength of a detected community structure (eq. (1)), but later on has been 

directly used to detect significant community structure to show clusters caused by meaningful 

reasons other than random clusters in networks (M E J Newman 2006). The measure can be 

explained as the residual weights of edges after taking the expected weights from the observed.  

 2 2|| ||ii i
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        (1) 

In equation (1), the total fraction of (weighted) links with both ends in the same community i is 

denoted as eii, and the square of the total quantity of (weighted) links with at least one end in that 

community is ai
2
. In a broad sense, modularity indicates the deviation of the observed fraction of 

(weighted) edges within each community (denoted by eii) from the expected fraction of 

(weighted) edges in the same community (represented by ai
2
). The formula that quantifies the 

expected fraction is called null model. By comparing against the null model, modularity 

discloses a significant community structure caused by other reasons instead of by the intrinsic 

random property of a network (Danon et al. 2005).   
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Our modularity calculation is modified from Newman and Girvan’s model. The general 

form of our modified formula of modularity is defined by equation (2), where em,n is the link 

weight between node m and n that both belong to the same community i, and R, E represent real 

connections and expected connection between the two nodes, respectively. This function is 

basically a multiplication-division alternative to Newman and Girvan’s. We propose to use ratio, 

i.e., division, between real and expected edge weights to remove the potential influence of the 

community size. When considering two communities, A and B (degrees and connections shown 

in Table 2.3), the larger community with more nodes (i.e., A in this case) is more likely to yield 

bigger difference (eii - ai
2
), which is very likely to be caused by having more nodes in community 

A than B instead of stronger interplay between A and B. This change is mathematically denoted 

as each individual term in equation (2), i.e., the part within the bracket. Secondly, community 

detection is aimed not only 1) to group nodes with strong interactions together, but also 2) to 

partition weak connections into different groups. We hence use multiplication upon the terms to 

get the final modularity, instead of adding the ratios up, because addition is not sensitive to small 

ratios and thus leads to the failure of aim 2) and may contribute to the resolution limit in 

community detection which results in the misleading merging of smaller communities (Fortunato 

and Barthélemy 2007). In this study, we also release the constraint that the total of R(em,n) should 

be equal to that of E(em,n) as suggested by (Reichardt and Bornholdt 2006) and (Expert et al. 

2011) to adjust for the resolution limit. Therefore, we do not require to use fraction by 

normalizing R(em,n) and E(em,n) with their total. We will elaborate later on how to decide the 

number of communities based upon such revision.   
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25 

Table 2.3 Example of the bias of community size to detection result 

 A B 

eii 0.50 0.075 

ai
2
 0.41 0.042 

eii - ai
2
 0.09 0.033 

eii / ai
2
 1.22 1.8 

 

 

In social network, for each community i, R(em,n) stands for the observed social link 

weights between each particular pair of nodes m and n, and E(em,n) is the quantity for expected 

social links within that community. The specific formula of social network modularity (QSN) is 

shown by equation (3), where lm,n is the number of connections between two egos m and n of the 

same community i, M is the total weights of links over the whole network, and dm, dn are the 

weighted degree centrality for m and n, respectively.  
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           (3) 

Regarding movement network, R(em,n) is the observed movement flows (from the origin to the 

destination in a trip) between intra-community TSAs, and E(em,n)  is the estimated flow within 

community i by our theoretical model. The detailed formulas for the movement network will be 

demonstrated below.  
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Community detection targets to maximize the value of Q for the optimal community 

partition. Since we revise the modularity into a division-multiplication form, many Q-

optimization algorithms (Pons and Latapy 2005; M E J Newman 2006; Barthélemy 2011; Mark 

E. J. Newman 2004), such as spectral method, cannot be used because some properties of the 

adjacency matrix are no longer kept. We therefore employ the very basic greedy technique that 

generates a hierarchical clustering dendrogram for detection result and stops when all the 

connected nodes have been merged to one community. This method may not be safe due to the 

possibility of local optima (Barthélemy 2011; Guo 2009), but we argue that it works for our 

study because we utilize hypothesis test to compare results later on. 

For each iteration, the two communities (initially isolated nodes) that yield the biggest 

increase of Q will be merged as a new community. Using Q(n) to represent the modularity at the 

n-th iteration step, we give the formula of the increase of modularity (λQ) by equation (4), where 

Int(n-1) stands for the set of (weighted) inter-community edges at step n-1 between the two 

communities i1 and i2 that are merged at step n. 
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Distance Decay in Urban Movement Community Detection (UMCD) 

While the original modularity by Newman and Girvan (M E J Newman and Girvan 2004) 

makes sense in an abstract topological graph in which the expected flow between two nodes are 

proportional to the product of their degrees, it overlooks the spatial properties of the system that 

flows between near places are usually stronger than between remote ones. As a result, the 

identified community structure is under the mixed influences of distance decay and all other 

factors, which makes no surprise to find spatial contiguity in the detected communities even 

without superimposed requirement of adjacency. Expert et al (Expert et al. 2011) tried to deal 
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with the shortcoming by explicitly introducing distance decay function in the calculation of 

expected values so that the resulting community structure shows the influence from other non-

spatial factors. Accordingly, we argue that the traditional modularity of the popular Newman and 

Girvan model is not sufficient to depict the urban movement network. It not only lacks the 

geographical meaning of the weight of node (i.e., geographic entities such as a TSA, a city, or a 

state), but also absences the consideration of distance decay. Node weight in a geographical 

context usually represents the area or population of a place. For example, Guo (Guo 2009) did 

community detection in US immigration flow network by involving population of each state into 

his null model. In this work, we assume that the movement flow between two TSAs is 

proportional to the product of their populations, inspired by the gravity model. The population is 

approximated by the LandScan
TM

 data (©Oak Ridge National Laboratory) because we do not 

have access to the accurate census data at present. Regarding distance decay, Expert et al. 

propose a method that involves decay model into modularity (eq. (5)), where the distance decay 

function f(dij) is given by equation (6).  
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Here Ni, Nj denote the population of place/community i and j, respectively, and d is the center 

value of the distance bin [d - Δ, d + Δ] (Supporting Information I). Similar to our social network 

modularity, we transform the addition-subtraction form to a multiplication-division form and 

finally get equation (7), where f(dij) is also denoted by equation (6). QUM means the modularity 

for urban movements. 
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In this study, we also discard the constraint of spatial adjacency following some previous studies 

(e.g., (Liu et al. 2014; Ratti et al. 2010; Gao, Liu, et al. 2013)), because enforcing such a 

requirement on detection process may hide intrinsic patterns of places that are really closely 

related.  

It is worth attention that our aim is to remove spatial clustering from the movement 

network, which is different from Expert et al. who include distance decay in social network. 

Because what is put into the null model is excluded from the observed connections, we remove 

the relatively frequent short urban trips to find the hidden community structure formed by 

relatively weak long-distance trips. We introduce the decay only in the network of urban 

movements, and claim that, in our social network, no geographic locations are related to the cell 

phone users at the stage of community detection. 

The distance decay function, different from the traditional method of fitting a gravity 

model with parameters, is approximated by inversion from empirical data. We adopt such 

method for three reasons (see Chapter 3 Supporting Information I). Firstly, we have proved that 

equation (6) is distance decay in nature. Such proof guarantees that the function reserves the gist 

of distance decay. Secondly, equation (6) makes sense from a technical perspective. In fact, 

equation (6) can be treated as a distance decay model by aggregating individual plots into bins 

before data fitting. Even if we adopted the traditional method to fit a gravity model in a normal 

formula with parameters, we still need to aggregate data. Thirdly, equation (6) is more robust for 

empirical data, because we do not really know what function the real data follows. The function 

of the empirical data might not be a perfect gravity model such as power law or exponential 
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curve as is usually utilized; it might be an irregular step-function, which cannot yield a good 

distance decay coefficient for the whole range of data. Therefore, the formula of distance decay 

should be a deterrence function f(dij) to be fitted with the empirical data. The fitted distance 

decay function using equation (6) is shown in Figure 2.4. Interestingly, there is a minor peak at 

about 14 kilometers. We speculate that it is caused by the commutation between the city center 

and the airport, since the distances between the centroids of the TSAs in the city center and of the 

TSA where the eastern side public airport is located are roughly 14 kilometers. This minor peak 

substantiates that the distance decay function is not a regular one that can be well depicted by a 

perfect mathematical formula, and thus supports our selection of equation (6). 

 

 

 

 

 

Figure 2.4 Distance decay of the spatial movement (without intra-TSA flow).  
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Mapping Social Network Communities into Urban Space 

In our research design, we carry out social network community detection (SNCD) in 

parallel with UMCD, but in a virtual social space without any geographical location information. 

This method reverses from Expert et al.’s method to Newman and Girvan’s traditional way for 

SNCD, despite the changed form from subtraction to division. It may be perceived initially that 

our goal is similar as Expert et al’s (Expert et al. 2011). However, we do not intend to remove the 

role of distance from social network communities for two reasons. For one thing, we want to 

understand whether the social network matches urban movement pattern. If we eliminate spatial 

factor from social network, we may not be able to observe the underlying association. For 

another, Expert et al’s method (Expert et al. 2011) is not adoptable in our work because we 

conduct SNCD on mobile individuals (i.e., each node in the social network represents a user), 

while social network in (Expert et al. 2011) is on an aggregated level (i.e., a node stands for a 

city made up of all users in the city). In this study, each user in a city can have multiple 

frequently visited places, so it is difficult to tie a user to only one geographic location.  

However, as we intend to compare the detected patterns from SNCD and UMCD, we still 

need to map SNCD results into urban space. We therefore rely on anchor point (AP), defined as 

the mostly visited places in a person’s daily activity space (Huang et al. 2010), to solve this 

problem. Cell phone users expose themselves in urban space by making calls that are transmitted 

via the geo-located cell phone towers, so we use the top three mostly visited cell phone towers by 

a particular user as his/her APs. We set the threshold relative to each of the users because some 

of them are active who make many calls while others have much less locations exposed by cell 

phone.  
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The challenge is that we cannot simply assign the towers to the community each user 

belongs to, because a tower can be frequently visited by many users who belong to different 

communities. To handle this problem, we create a weighted co-community matrix (WCCM) for 

the AP towers, which is an AP similarity matrix. Then a hierarchical clustering method utilizes 

this matrix to complete its process. The basic idea is to cluster AP towers according to how 

closely they are related with each other in the social network. The WCCM is built by two steps: 

1) to measure how closely an AP APx is associated with a social network community i (denoted 

by w(APx i) in eq. (8)), and 2) to calculate the probability that a pair of APs, APx and APy, 

belong to the same community (eq. (9)). WCCMx,y is the cell value of (x,y) in the WCCM.  
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                    (8) 
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                 (9) 

To calculate equation (8), we adopt two criteria that form a community-user-AP chain: 1) 

the AP-user link is the visiting frequency of a specific user (u) to one of his/her APs; and 2) the 

user-community link is the extent to which a user belongs to the assigned social network 

community. We represent the user-community link by the average contribution a link makes to 

the increase of modularity, denoted as u
Q

, where u stands for one of the users in the 

community i who was an isolated node before joining this community. It is calculated by 

dividing λQ (eq. (4)) by the count of links (i.e., the cardinality of set Int(n-1) denoted by |Int(n-

1)|) between the two merged communities (including one-node community). Although in its 

calculation, all the inter-community edges are involved, u
Q

is only assigned to a node u when 

the node is merged into a community for the first time, even if the community is merged to 

another community later on. This is because only newly added edges will affect the increase of 



 

32 

modularity. The second term in equation (8), p(APux), quantifies a user (u)’s visiting frequency to 

a particular AP APx normalized by the frequency to all the towers visited by this user. While 

equation (8) illustrates how a single AP is related to a community, equation (9) quantifies the co-

occurrence of two APs in the same community. As a result, the hierarchical clustering assigns 

those cell phone towers into the same number of communities per day as that of the urban 

movement communities. 

Decision on the Number of Detected Communities 

Since the resulted community is a hierarchical clustering dendrogram, the number of 

detected communities is flexible depending on which level to cut the dendrogram (M E J 

Newman and Girvan 2004). Although sometimes we can decide the number of communities 

subjectively, we adopt an objective method to approach an optimized community structure. 

Modularity-based community detection is aimed to maximize the value of modularity, so the 

greedy technique each time merges two nodes/communities that yield the biggest λQ (eq. (4)). 

Ideally, the best community structure is reached when modularity reaches its peak value. 

Mathematically, it can be derived that modularity reaches its top value exactly when the 

increasing rate λQ is larger than or equal to one for the last time in the iterative process. After 

this point, all the rest increasing rates of modularity become smaller than one (Figure 3.1 in 

Supporting Information II).  

This method works well for the decision of the number of urban movement communities 

during which we find a peak value of Q (Figure 3.1), but fails to do so for the social communities 

for which we do not know where the peak value of Q really is. The final step of merging in the 

social network yields a single community while the λQ is still greater than one (Figure 3.2). If we 

followed our original decision principle, the social community result would be a meaningless 
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single community losing all its inner structure. Nevertheless, we find that many merging steps 

before the final step only yield a small value of λQ, which do not increase the Q significantly 

(Figure 3.2). We therefore propose to use the number of communities at the merging step from 

which on all the λQs are smaller than the lower bound of the 95% confidence interval of λQs. 

Despite the outlier in the list of λQs, this approach cuts off those merging steps that cannot yield 

significant increase of modularity (see Supporting Information II). Listed in Table 2.4 is the final 

result of the numbers of detected communities for each day in social network and urban 

movement network. The number of communities is derived by subtracting the number of 

merging steps from the total number of nodes (users or towers) in each network. Note that the 

total number of nodes in the social network varies for each day.  

 

 

Table 2.4 The numbers of detected communities for each day 

1) # social communities 

Day D1 D2 D3 D4 D5 D6 D7 

#Communities 438 1815 2521 2858 2527 2059 29 

2) # movement communities 

Day D1 D2 D3 D4 D5 D6 D7 

#Communities 38 35 35 37 39 40 41 
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Similarity between SNCD and UMCD Structures and Hypothesis Test 

To judge whether the SNCD pattern is similar to the UMCD pattern, we define a measure 

called similarity coefficient (SC) as equation (10), which shares a similar idea to the coefficient 

of areal correspondence (Taylor 1977). Here, SNCDi is the set of the elements in the i-th SNCD 

community and j for UMCD, and N is the total number of communities for a specific day. SC is 

the sum of the relative quantities of shared elements by two communities. The relative quantity is 

the normalized ratio of the number of shared elements (i.e., individual towers) in each pair of the 

SNCD and UMCD communities to the number of the elements in the union of the two sets. As 

the SC denotes, the more similar the two patterns, the higher the ratio. 
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To guarantee that the similarity between SNCD and UMCD is significant against 

randomness, we conduct a t-test on SCs based upon 100 times’ permutations of social network. 

Each permutation is performed by randomly assigning social network connection (link) as well 

as connection strength (link weight) between cell phone users while keeping the users’ original 

APs intact. We then map the social network communities into space via the APs, and calculate 

the RC. We repeat such process for each of the seven days under study. By keeping the original 

anchor points for each user in the random permutations, we avoid the bias caused by tower usage 

frequency (i.e., some towers are more intensely used than the others), and ensure that social 

network structure is the only factor that makes a difference. The random permutations form a 

sample distribution, to which the SC between the observed social network communities and 

urban movement communities will be compared. The null hypothesis is that there is no 

significant similarity between the spatial pattern of the observed social network communities and 
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that of the urban movement communities. But if the SC from the observed case is significantly 

larger than the average SC from the random permutations, it signifies a significant similarity in 

the community pattern of social network and urban movements.  

Results and Discussions 

The Association between Social Network Communities and Urban Movement Communities 

The detected results from SNCD and UMCD are shown in Figure 2.5. For social network 

(column B is the result from the observed social network and C is that from one of the randomly 

permuted social networks), people are more likely to call others whose calls are covered by the 

TSAs of the same color, though not necessarily the same TSA. Regarding urban movements 

(column [A]), people generally have higher probability to travel to the TSAs of the same color 

than the chance quantified by distance decay model. We call the occurrence of such movements 

“long trips”, meaning the trips longer than the constraint by distance.  

Why is there stronger movement attraction among certain TSAs? Does it have anything 

to do with social network? We confirm the association not only by the visually apparent 

similarity between the spatial pattern of long trips and that of the real social network against the 

result from the random social network (Figure 2.5), but also by the quantitative result from the 

hypothesis test. The two-tail t-test result is displayed in Table 2.5 to measure the similarity. For 

each of the seven days, SC from the observed SNCD and UMCD (oSC) is significantly larger 

than the randomly generated SC sample distribution (rSC).  

Since SC plays a similar function as correlation coefficient, our result confirms that social 

network is associated with (i.e., shows a similar community pattern as) long-distance urban 

movement network, which indicates that social and geographical behaviors are mutually 

affected. When somebody develops a social link, no matter by a physical or virtual means, for 
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example, an on-site interview or an online admission to a school, the link then becomes an 

“attraction” for the person’s behaviors if finally she is accepted by the employer or school. On 

the other hand, a visit to some place exposes a person to more potential opportunities for 

building new social connections. Although it is hard to tell which is the cause and which is the 

result, social network or urban movement, we think the former plays a more active role in our 

study.  The long-distance trips that cost higher time and monetary budget are less likely to take 

place for no certain reasons, which is different from a local-scale random wandering.  

The similarity between social communities and movement communities confirms our 

assumption that the social network contributes to, and gives implications on the generation of 

long trips. If telecommunication constructed a virtual social space sufficient to substitute for 

physical interactions, we would possibly see people develop social connections everywhere 

though may have never personally been there. However, the social network under our 

observation is not randomly diffused in space. People visit where they know somebody, 

particularly when they spend more time and money to make a trip longer than the usual case 

quantified by the distance decay model.  
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Figure 2.5 Detected social network and urban movement communities for each of the 

seven days. [A] Detected urban movement communities: the pattern illustrates 

communities caused especially by long-distance travel; [B] Detected social network 

communities based upon the observed social network; [C] Detected social network 

communities based upon one of the simulated social networks. All the TSAs with white 

color are assigned to an isolated community that contains only the TSA itself. All the 

TSAs with the same color other than white are assigned to the same community with 

multiple TSAs. 

 

 

Table 2.5 t-test (two-tail) result for the similarity coefficient (SC) 

(Sample size = 100, degree of freedom = 99) 

Day Mean of the rSCs 

[95% Conf. Interval of 

rSC] 

oSC 

D1 0.0154 0.0152 0.0156 0.0335* 

D2 0.0168 0.0166 0.0170 0.0356* 

D3 0.0166 0.0164 0.0168 0.0351* 

D4 0.0157 0.0155 0.0159 0.0306* 

D5 0.0150 0.0149 0.0152 0.0262* 

D6 0.0143 0.0141 0.0144 0.0252* 
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D7 0.0139 0.0138 0.0141 0.0259* 

*p-value < 0.0001 on a 0.95 confidence level 

 

 

The Implicit Nature of Jiamusi and the Linked Activity Spaces (LAS) 

We then look into some details to understand what the association between SNCD and 

UMCD results can jointly tell the nature of the city. Due to a lack of access to accurate land use 

and census data in the city, we utilize Google Map (©2014 AutoNavi, Google), 

©OpenStreetMap, and the POIs digitized from Google Map by (Wang et al.) to speculate the 

ground truth. Figure 2.6 overlaps the ©OpenStreetMap, the POIs, the SNCD result, and the 

UMCD result together. In order to display SNCD and UMCD simultaneously, we render SNCD 

results with hash-line colors (transparent between lines) and UMCD with solid colors. Different 

hash line colors represent different SNCD communities, while different solid colors represent 

different UMCD communities. When the results are overlaid (for each day separately, here we 

just show Day 1), readers can see the color of the underneath layer (i.e., UMCD) through the 

slots of SNCD results. Stand-alone TSAs in both SNCD and UMCD results are transparent. 

Though we only illustrate the result on Day 1, our analyses are based upon the temporal patterns. 

We find some interesting results. 

Firstly, self-contained TSAs usually suggest some typical land use types where people 

can either avoid calls or just call people within the same region. By saying “self-contained”, we 

mean TSAs have stronger inner-region interplay rather than with outside. In Figure 2.6 (a), the 

SNCD results are colored by hash lines with slots in between so that we can see the colors of 

UMCD underneath. The visualization method is the same in Figure 2.6 (b) and (c). A TSA with 
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only solid color means it is assigned to a multi-member community (i.e., not stand-alone) in 

UMCD, but is stand-alone in SNCD; similarly, a TSA with only hash line color (for which the 

basemap can be seen) is assigned to a multi-member community in SNCD, but is stand-alone in 

UMCD. Therefore, if a TSA is stand-alone in both communities, its color will be transparent on 

the map. We just show the data on Day 1, but the selected cases (i.e., TSAs) are stand-alone 

TSAs throughout the seven days, which ensures that they are typical stand-alone ones. Some 

TSAs are consistently not assigned to other communities (transparent on the map) but instead, 

stand by themselves in both social and movement communities. We select not only self-

contained TSAs but also the ones with high call volume (having larger red dot at the centroid) 

because we want to understand why the users in those TSAs are active but isolated from the 

outside. The selected cases on Figure 2.6 (a) are some typical examples. The land cover images 

suggest that the TSA with blue-frame mainly covers a recreation resort, and the TSAs with 

orange-frame serve universities. People go to the recreation resort together for fun, so in that 

meantime, people may call to find each other, but have no need to contact the outside. On 

university campus, students contact their classmates and professors who are mostly on campus as 

well, so there are no strong connections with outside. The social ties and activity spaces are 

concentrated and overlapped. The calls to people off-campus are mostly for families in another 

city, the signals of which are not involved in our dataset. Calls do not happen with places a 

person never goes and knows nobody, so the border of a university separates people inside and 

outside. 

Additionally, when zooming in to the downtown area (Figure 2.6 (b)), urban movements 

seem cover a wider range than social network. Especially in the dense small TSAs near the 

center, the call volumes are even quite low (with small red dot tower), which shows that cell 
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phones may not be intensely used at the city center. The continuous magenta color representing 

the dominant community in UMCD implies people’s strong cross-boundary movements in 

downtown. Referring to linked activity spaces (LAS, (Wang et al.)), we would infer that 

downtown is a place full of resources and infrastructures that make the budget of face-to-face 

interactions low, which therefore makes virtual social connections less indispensable. Moreover, 

downtown attracts such a high amount of people that a lower percentage of them are in 

friendship (Figure 10 and 11 in (Wang et al.), i.e., both friends and strangers enjoy the resource 

here). Different cliques of social connections will share one TSA, which makes adjacent TSAs be 

more easily assigned to different communities and thus demonstrates a trivial social community 

pattern. When resources are so sufficient and convenient for physical connections, not only 

people in the same social circle, but also people from different groups of social ties will be tied 

together in geographical space.  

On the other hand, if people are located out of reach to each other, social network via 

telecommunication is a good supplementary. Comparing column [A] and [B] in Figure 2.5, social 

network communities are more dispersed than urban movements. A TSA on the peripheral area, 

for example, the one with white-frame shown by Figure 2.6 (c), relies more on virtual 

telecommunication to be connected with the city. The white-frame TSA is consistently stand-

alone in UMCD throughout the seven days, which means its movement interaction with other 

areas is not very strong, or at least no stronger than expected by the distance decay model. 

However, this TSA on six out of the seven days is assigned to the dominant social network 

community containing the majority of TSAs. From Google Map, we find this TSA mainly covers 

part of a farm and its affiliated hospitals in southeastern Jiamusi metropolitan area. A farmland 

affiliated hospital located at a relatively remote rural place is apparently not a popular POI to 
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visit for the average public. But the patients at the hospital, mostly the local residents, need cell 

phones to contact their family members or friends. Telecommunication in this case can be 

regarded as an extension for face-to-face communication.  

Indicated by the above specific case analysis, physical interactions usually happen when 

urban resources and infrastructures are well served, i.e., the cost is low and the attraction is high, 

like in the city center. People won’t go to the places where they do not know anybody or have to 

spend a long time and distance. LAS (Wang et al.) specifies that people’s daily activity spaces 

are linked together via their social connections; friends’ movements are more or less overlapped 

with each other to achieve physical communications, otherwise a purely virtual social tie is 

unlikely to be preserved.   
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a. An overlapped map showing the stand-alone TSAs in both SNCD and UMCD results in the 

built-up area of Jiamusi.  
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b. An overlapped map showing the SNCD and UMCD results in downtown area on Day 1.  
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c. The overlapped map of SNCD and UMCD on Day 1 showing a TSA in suburban area that has 

strong social network connections with other areas but no strong enough movement flows with 

the outside.  

Figure 2.6 The overlapped map of Day 1’s SNCD and UMCD results on the basemap of 

©OpenStreetMap with digitized POIs. 
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Hints from the Spatial Distribution of Social Network in Jiamusi 

 To further understand what social network means in urban space, we look at the specific 

spatial distribution of social clusters detected by SNCD. We visualize the social network 

structure with nodes (i.e., cell phone user) colored by the assigned SNCD community (Figure 

2.7). In Figure 2.7, each different color stands for a different community a user is assigned to. 

The white ones are stand-alone communities with only one member. The light grey dots 

represent the trivial communities with a very small number of users (more than one but mostly 

less than ten). The colorful communities are (top 10) largest communities with multiple members. 

The pink community in the center represents the dominant community, which is the one with the 

majority of nodes. We do this for each of the seven days and find some common regulations.  

First of all, there is a dominant community for each day (e.g., the pink one on each day). 

Secondly, there are a few minor communities that are loosely connected with or even isolated 

from the major body, but form a tight clique within themselves (e.g., the dark purple community 

on the bottom left corner of Day 1 in Figure 2.7).  

Besides, we also see variations across different days. Day 1 and Day 7 (i.e., weekends) 

both yield a well-connected major community (the pink one in the center) with much larger size 

than the other trivial ones. But on Day 2 to Day 6 (i.e., weekdays), the size differences between 

the major community in pink and the other minor ones are smaller. This finding corresponds 

with the fact that the numbers of detected communities on Day 2 to Day 6 are much more than 

on Day 1 and Day 7 (Table 2.4 (1)). It literally means people are more connected on weekends. 

However, given that there are more active users and slightly higher average number of calls per 

person than Sunday (Table 2.2), the lower connectedness is not a result of fewer calls. It is 

possible that people make calls to more diverse groups of people, including business and 
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personal calls, which makes the connections within one particular group less intense and the 

communities more distributed.  

  

Day 1 (64.0% of active users, i.e.,33.4% of 

total users in pink) 

Day 2 (40.9% of active users, i.e., 24.2% of 

total users in pink) 

Day 3 (25.8% of active users, i.e., 15.1% of 

total users in pink) 

Day 4 (16.2% of active users, i.e., 9.4% of total 

users in pink) 
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Day 5 (25.1% of active users, i.e., 14.7% of 

total users in pink) 

Day 6 (34.5% of active users, i.e., 20.8% of 

total users in pink) 

 

Day 7 (84.0% of active users, i.e., 47.3% of 

total users in pink) 

 

 

Figure 2.7 Visualizations for social network on each of the seven days. Made by Gephi 0.8.2. 
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It is not the social network alone, but its spatial distribution that raises our interest. The 

major pink community initially draws our attention. By mapping the frequency of each cell 

phone tower being the AP of the people in the major pink community (Day 1 in Figure 2.7), we 

find the APs are mainly clustered in the city center, especially the areas where both POIs and 

TSAs are very dense (Figure 2.8). It corresponds with the finding by (Wang et al.) that people 

with higher degree (i.e., number of unique friends) usually take advantage of the city center at 

which resources are rich and to which accessibility is high. The urban center is hence the most 

efficient place for people to meet and talk. The pattern is also supposed to correlate with 

population density, which is also associated with urban resource distribution. In China, a 

majority of people live in the city center to get better access to resources, which is different from 

the US.  
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Figure 2.8 The frequency of each cell phone tower being the AP of members in the dominant 

community on Day 1. 

 

 

We have shown above (Figure 2.6 (a)) that the self-contained TSAs indicate some 

particular land use types, so we are involved to know if the “self-contained” cell phone users, 

namely, the isolated cliques, are spatially meaningful. We select Day 1 as a representative 

because there is an obvious isolated clique (i.e., the purple in the bottom left). After mapping the 

four mostly used APs by the members in the isolated purple community on Day 1 (Figure 2.7), 

we find their locations are mainly in suburban area (Figure 2.9). Surprisingly, the TSAs 

corresponding to the top four APs are not of no relation. The TSA in green-frame is a farmland, 

and the one in pink-frame is a botanical park exhibiting agricultural products, new types of plants, 
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as well as selling food like farmers’ market.  So it is reasonable that people on the farm have 

connections with who are in the park, either to negotiate business or to contact their partners. The 

TSA to the west of the park covers a village, where the farmers may live. The most unexpected 

but very reasonable thing is the TSA in blue frame. We know there is an airport in that area, and 

assume that farmers need to contact the airport for product transportation. But we wonder why 

they have to choose the farther Jiaxi Airport instead of the closer Dongjiao Airport. We then find 

that Jiaxi Airport is an airport specifically for farmland usage, not open to the public.  

 The findings above thus reinforce the association between social network and urban 

movements. It also substantiates our argument that social network is not randomly dispersed in 

space. Instead of “reaching” anywhere by cell phone, people contact where they can or need to 

visit to make the physical connections happen. Meanwhile, telecommunication, as a supplement, 

makes such connections a lot easier.  
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Figure 2.9 The top 4 mostly used TSAs utilized by the users of the selected isolated purple 

community on Day 1.  
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Implications for Urban Future 

The implications of our findings are further than simply the justification for the 

association between social network and urban movement communities. As cities are growing 

super rapidly, it is time to ponder on what the urban future should be like. We answer this 

question in terms of the influence of urban form on social life. One topic of the heated 

discussions between New Urbanism and Landscape Urbanism concentrates on future urban form. 

While New Urbanism focuses on neighborhood design, architectural style, and transit-oriented 

development that will create a high-density walkable city center and a compact urban shape (Al-

hindi and Till 2001; Vanderbeek and Irazabal 2007), Landscape Urbanism argues that urban 

design should be a flexible, open-ended, strategic and non-hierarchical process instead of a static 

plan as is traditionally done (Chaeles Waldheim 2002; Charles Waldheim 2006), including 

making advantage of the existing resources on the ground (e.g., the Sustainable Park proposed by 

Cranz and Boland (Cranz and Boland 2004)), implementing ecological infrastructure design that 

prevents urban encroachment of wilderness (e.g., (Yu, Wang, and Li 2011)), to name a few. The 

doctrine of Landscape Urbanism thus more or less encourages, or at least accepts urban sprawl 

(Koolhaas and Mau 1998).  

However, although we embrace the environmentally friendly principles proposed by 

Landscape Urbanism, we protest against urban sprawl based on our research findings from the 

perspective of social network instead of environment. Given that social network plays a 

significant role on the generation of long urban trips, urban sprawl as well as its consequent 

higher travel cost may demolish social connections whose importance has been discussed in 

details by Gehl (Gehl 1987). Indeed, we see from Figure 2.5 that the dominant social network 

community appears covering a wider range in urban space than the dominant urban movement 
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community, which probably indicates that virtual connection via information technology can to 

some extent conquers the impedance of space, and thus is less affected by urban sprawl. 

However, we still question the potential of information technology in substituting physical 

interactions.  

Our work develops a method to detect the associated communities in social network and 

urban movement network as an empirical justification for not only the integrity of physical 

communications in maintaining social ties, but also its priority over virtual links in terms of 

people’s preference. The significant similarity between SNCD and UMCD patterns controverts 

the randomness in the spatial distribution of social network. Social network is not random 

because people develop it when face-to-face communication must be achievable, which explains 

its similarity to UMCD patterns. We have demonstrated that in the downtown area (Figure 2.6 

(b)), physical movements are so frequent and convenient that the virtual connections are much 

less essential. Telecommunication is just an extension of our touchable life when budgets do not 

allow concrete interactions, as is the suburban farm case (Figure 2.6 (c)).   

Compared with the finding of significant overlap in people’s daily activity spaces from 

LAS (Wang et al.), we would say the association between social connection and spatial 

movement is even stronger since we emphasize on trips longer than quantified by distance decay. 

Although long trips happen less frequently than short ones due to higher cost, they are likely to 

be driven by more crucial reasons that make people willing to pay for the higher budget. The 

significant similarity between the patterns in SNCD and UMCD therefore proves the importance 

of social network as a motivation of long urban trips. The growth of urban size, consequently, 

may facilitate the generation of more long trips in order to maintain social ties in a physical way, 

which exacerbates traffic congestion; the worse traffic situation in turn will cost higher budget to 
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meet social partners and potentially harm the stability of social connections. If averagely people 

have to spend one hour or more to meet somebody, except that this is a must, the meeting 

frequency will be highly possible to fall drastically.  

We think our methodology is transplantable to other cities, but the results are specific to 

this study area. Case studies in other city may yield similar findings, given alike urban size and 

structure. For instance, Jiamusi metropolitan area is generally homocentric, so another 

homocentric city with similar geometric shape and scale is possible to get indistinguishable 

results. Limited by the access to data, currently our discussions are only based upon monocentric 

cities. But we are interested in comparing different community patterns detected in compact 

monocentric and mega multi-nuclear cities. When a city grows very big, it usually “split” into 

multiple functional zones; what are the consequences in that case? The localness of social 

network may be enhanced because people cannot afford higher space-time budget on physical 

communication, and thus lose long-distance social links. On the other hand, there may emerge 

more long-distance social ties if people are willing to pay higher cost to travel longer, which, 

nevertheless, definitely cause more transportation and environment trouble as encountered by 

many mega cities such as Beijing, Tokyo, and London. 
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SUPPORTING INFORMATION
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 Wang, Y. and Yao, X. To be submitted to PLOSONE as Supporting Information. 
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I. Proof for Expert el al.’s Deterrence Function as an Alternative to Distance Decay 

Function 

Expert el al.’s modularity model is (adopted from eq. [3] in (Expert et al. 2011)):  

,
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| |
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                    (S1) 

where Pij is the expected flow between community i and j (eq. (S2)): 
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By plugging equation (S3) into the left side of equation (S2), we get  
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If we have observed flow Aij between each pair of places i and j, we can get the estimated value 

of b (namely, b̂ ) by fitting data with equation (S4), i.e., by substituting Pij with Aij to get equation 

(S5), which is an individual level function for distance decay, since it fits the curve by each 

particular data plot. 
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where the numerator is an aggregation of flows at a distance bin centered at d (namely, a distance 

band [d - Δ, d + Δ]), and the denominator is the aggregation of the products of node sizes at the 

two ends of each of the flows, i.e., Aij. Up to here, it is obvious to see the correspondence 

between equation (S5) derived from traditional gravity model and equation (S6) proposed by 

Expert et al. (Expert et al. 2011). 

II. Decision on the Number of Social Network Communities 

In urban movement community detection (UMCD), we decide the number of 

communities by watching the trend of the increase rate of modularity (λQ) against the ordinal 

number of merging step (n). Figure 3.1 demonstrates the change trend, where the x-axis is the 

ordinal number of the merging step, and y-axis is the λQ for each step. We find that the change of 

modularity generally yields a single-peak pattern for each of the seven days, with one global 

maximum of λQ at which point Q grows fastest and multiple local maxima (minor peaks). The 

peak value appears roughly when n is between 15 and 20, which signifies the merging of some 

existing smaller communities from the previous merging steps. The final number of communities 

in UMCD is decided by the n* after which step no λQ>1, i.e., the modularity will decrease. 

There is no λQ before n* that satisfies λQ<1. The cut-off step number, which demonstrates how 

many merging steps are needed to get the optimal community pattern, are: 58, 61, 61, 59, 57, 56, 

and 55 (shown by the red reference line in Figure 3.1).   



 

59 

 



 

60 

Figure 3.1 The λQ of each merging step in the UMCDs for each of the seven days.  

 

 

Regarding social network community detection (SNCD), Figure 3.2 shows the λQ–n plot, 

where the red reference line is the merging step n* that yields an optimized social network 

community structure. We see a similar single-peak pattern as UMCD, but it is very noticeable 

that each of the seven days yields a long tail, which indicates that there may be many merging 

steps that do not contribute meaningfully to the increase of modularity, compared with the peak 

value. We find that at the final merging step when all the nodes are merged into one big 

community, λQ is still greater than one, meaning that the modularity is increasing all the way. 

Therefore, we cannot use the threshold 1 for λQ to decide the number of the optimized 

communities. We propose to test the distribution of the values of λQ, which is different from the 

λQ-n plot, and claim that the optimized community structure occurs at the merging step n* when 

λQ is significantly lower than the average of λQ (i.e., λQ is smaller than the lower bound of the 

95% confidence interval) hereafter. The rationale is to get rid of the merging steps that yield no 

meaningful contribution to the general increase of modularity. Table 3.1 demonstrates the mean 

value and 95% confidence interval of λQ for each day, where the lower bound is in bold.   
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Figure 3.2 The λQ of each merging step in the SNCDs for each of the seven days. 

 

 

Table 3.1 95% Confidence Interval for λQ in SNCD 

Day Mean of λQ [95% Conf. Interval] 

D1 10576.12 6869.044 14283.2 

D2 1423356 658737.4 2187975 

D3 1022708 511192.4 1534224 

D4 1997455 1120147 2874762 

D5 2473024 1052318 3893731 

D6 1110521 291238.6 1929803 

D7 4052008 -3823432 1.19e+07 
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CHAPTER 4 

CONCLUSIONS 

In this work, I leverage the cell phone call dataset for community detection in social 

network and urban movement network independently and comparably. By comparing the 

community pattern from the social network and from the urban movement network, I find a 

noticeable association between them. My argument is that, while, on a local scale, social 

connection and geographical movements are mutually influenced, the association in my study 

justifies the attraction of social network to long-distance urban trips.  

The indications of my findings are further than simply the justification for the association 

between social network and urban movement communities. As cities are growing super rapidly, 

it is time to ponder on what the urban future should be like. I answer this question in terms of 

urban form. One topic of the heated discussions between New Urbanism and Landscape 

Urbanism concentrates on future urban form. While New Urbanism focuses on neighborhood 

design, architectural style, and transit-oriented development that will create a high-density 

walkable city center and a compact urban shape (Al-hindi and Till 2001; Vanderbeek and 

Irazabal 2007), Landscape Urbanism argues that urban design should be a flexible, open-ended, 

strategic and non-hierarchical process instead of a static plan as is traditionally done (Chaeles 

Waldheim 2002; Charles Waldheim 2006), including making advantage of the existing resources 

on the ground (e.g., the Sustainable Park proposed by Cranz and Boland (Cranz and Boland 

2004)), implementing ecological infrastructure design that prevents urban encroachment of 
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wilderness (e.g., (Yu, Wang, and Li 2011)), to name a few. The doctrine of Landscape Urbanism 

thus more or less encourages, or at least accepts urban sprawl (Koolhaas and Mau 1998).  

However, although I appreciate the environmentally friendly principles proposed by 

Landscape Urbanism, I protest against urban sprawl based on my research findings from the 

perspective of social network instead of environment. Given my results that social network 

demands play a significant role on the generation of long urban trips, urban sprawl as well as its 

consequent higher travel cost may demolish social connections whose importance has been 

discussed in details by Gehl (Gehl 1987). Indeed, I see from Figure 3 that the dominant social 

network community appears covering a wider range in urban space than the dominant urban 

movement community, which probably indicates that virtual connection via information 

technology can to some extent conquers the impedance of space. However, we still question the 

potential of information technology in substituting physical interactions. The observations 

confirm the existence of geographical proximity in social network space. By linked activity 

spaces, Wang et al. (Wang et al.) have found that people with social ties are more likely to form 

spatial clusters in their daily activity spaces. We would say the association between social 

connection and spatial movement is even stronger since we emphasize on long-distance trips. 

Although long trips happen less frequently than short ones because of higher budget, they are 

more likely to be driven by more crucial reasons that make people willing to spend for the high 

budget. The significant similarity between the patterns from SNCD and UMCD therefore proves 

the importance of social network as a motivation of long urban trips.  

Limited by the access to data, currently our discussions are only based upon monocentric 

cities. But we are interested in comparing different community patterns detected in compact 

monocentric and mega multi-nuclear cities. When a city grows very big, it usually “split” into 
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multiple functional zones; what are the consequences in that case? Our argument on social 

network’s property of being local may be enhanced because people cannot afford higher space-

time budget, or may be diminished if people are willing to pay higher cost, the latter of which, 

nevertheless, definitely cause more trouble as many mega cities such as Beijing, Tokyo and 

London. 
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APPENDICES 

A. A List of Abbreviations 

AP – Anchor point 

LAS – Linked activity spaces 

POI – Point of interest 

SNCD – Social network community detection 

TSA – Tower service area 

UMCD – Urban movement community detection 

 

 


