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Abstract

Shortwave infrared spectral imaging is an emerging nondestructive technique for food

safety and quality inspection. In this research, a liquid crystal tunable filter based shortwave

infrared spectral imaging system was developed based on the state-of-the-art technologies.

The system was fully calibrated and optimized in both spectral and spatial domains. A

LabVIEW software program was also developed for image acquisition. The system can be

used for hyperspectral or multispectral image acquisition in the spectral range of 900 - 1700

nm.

The spectral imaging system was applied to detect sour skin in Vidalia sweet onions.

A nondestructive sensing method was developed based on the shortwave infrared spectral

imaging. The method can effectively detect sour skin in onions in the early stage. Results

of these studies indicated that this shortwave infrared spectral imaging system is a powerful

nondestructive tool for food safety and quality inspection.
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Chapter 1

Introduction

This thesis presents a research with three main aspects: the development of a liquid crystal

tunable filter (LCTF) based shortwave infrared (SWIR) spectral imaging system, the devel-

opment of a LabVIEW data acquisition software program for the LCTF-based spectral

imaging system, and the early detection of sour skin in Vidalia sweet onions by using the

SWIR spectral imaging technique. This chapter provides a brief introduction of the back-

ground, the motivations, and the objectives of this research. The last section of this chapter

provides an overview for the overall structure of the thesis.

1.1 Project Background and Motivations

Vidalia sweet onion is one of the most important contributors to the agricultural economy of

the state of Georgia. The brand of Vidalia sweet onions is recognized nationally (Clemens,

2002). This national reputation was confirmed by a survey of primary food shoppers in 2003

(Costa et al., 2004): about 63% of respondents indicated that the Vidalia onions were their

favorite sweet onions. Vidalia onion production has dramatically increased in the last two

decades. In 1989, there were only 4800 acres of Vidalia onions planted in Georgia, with

a farm gate value of $17.27 million (USDA, 2005). In 2009, about 13,000 acres of Vidalia

onions were planted in Georgia, which contributed a farm gate value of $126 million, 13.77%

of Georgia’s total vegetable farm gate value in the year (Boatright and McKissick, 2010).

The great success of Vidalia sweet onions can be attributed to its national reputation,

regulatory control of the Vidalia name, the adoption of controlled atmosphere (CA) storage,

and the effective marketing and research assistance from research institutions. Among these

1
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factors, the CA storage technology, which was introduced into the Vidalia onion industry in

the 1990s, plays a critical role. The main benefit of using CA storage is that it extends the

marketing season of Vidalia onions from spring to fall, and thus it enables growers to keep

a premium price for a longer time (Boyhan and Torrance, 2002). However, the performance

of CA storage has been inconsistent with respect to the quality of stored onions. Thus,

the percent marketable onions after CA storage would fluctuate rapidly from year to year

(Boyhan et al., 2005). In some years, annual onion production and storage losses would be

up to 70% due to postharvest diseases (Schwartz and Mohan, 2008). Although postharvest

diseases in onion storage are very difficult to be avoided, they can be controlled or slowed

within certain limits. One of the most effective methods is to identify and eliminate those

diseased onions in packing houses before they are stored in CA rooms. Nevertheless, it is

extremely difficult to assess the quality of onion bulbs because they are covered by thick

and inhomogeneous dry leaves. Also, most of onion diseases happen inside onion bulbs at

the early stage. Currently nondestructive inspection technologies used by the onion industry,

such as human visual inspection (HVI) and conventional machine vision approaches, are not

able to detect internal defects and diseases of onions and also cannot assess invisible quality

attributes of onions such as sugar content and dry matter content. Therefore, research on

advanced sensing technologies for quality inspection of onions is highly demanded.

Another imperative motivation for developing effective sensing technologies for quality

inspection of onions was the increasing consumer demand on high quality onion products.

Vidalia onions now face the increased competition from both other states in U.S and South

America. Since Vidalia sweet onions are mild and lack some pungent compounds, which

make them prone to bruising and postharvest diseases (Maw et al., 1996). Without effective

quality control, onions with internal diseases or external defects could readily be delivered

into the fresh vegetable market, which will greatly reduce consumers’ satisfaction.

To keep the competitive advantage of Vidalia onions, more stringent inspection and

grading requirements had been applied to the Vidalia onion industry in 2002. From that
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time, all Vidalia onions have to be inspected and pass U.S. No.1 grade before they are

sold (State of Georgia, 2003). However, current inspection is conducted mainly by using

human visual inspections. It’s difficult to identify onions with internal defects and diseases by

human labors. Moreover, results of human visual inspections are often inconsistent. Although

inspectors under federal and state supervision inspect 100% of Vidalia onions, currently

inspection methods are often limited to straightforward factors like shape, size, color, and

etc.

To address onion postharvest problems and enhance onion postharvest handling effi-

ciency, a research team including scientists in the University of Georgia has proposed a

series of multi-disciplinary research plans. These ongoing research efforts have been finan-

cially supported by USDA National Institute for Food and Agriculture (NIFA) Specialty

Crops Research Initiative (SCRI), Georgia Food Industry Partnership, Vidalia onion com-

mittee, and Georgia Vegetable Commission. The research reported in this thesis is part of

this comprehensive study. The principal incentive of my thesis work was to develop effective

engineering solutions to enhance the onion quality inspection efficiency.

1.2 Objectives

The work reported by this thesis aimed to develop sensing methods that can be used to

improve the efficiencies of the quality inspection and classification of onions. From our pre-

liminary studies, the shortwave infrared (SWIR) spectral imaging showed great potentials

for developing new nondestructive inspection techniques to test onion quality, due to its

capability of collecting both spatial and spectral characteristics of the test object. Thus, the

main target of this work was to develop an SWIR spectral imaging system for non-destructive

quality inspection of onions. The detailed objectives of this research theme were to:

• Design and calibrate a high performance SWIR spectral imaging system.
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• Develop a user friendly spectral image acquisition software program on the LabVIEW

platform.

• Apply the system to detect sour skin-infected onions in the early stage.

1.3 Thesis Overview

The first chapter of the thesis introduces the project background, rationales and objectives.

It also presents a brief overview of the organization of the chapters in this thesis. Chapter

2 reviews the literatures of the fundamental principles of multispectral and hyperspectral

imaging techniques, the development and applications of spectral imaging systems in food

and agricultural inspection, and the cause organism and symptoms of sour skin-infected

onions. Chapter 3 demonstrates the development of a shortwave infrared spectral imaging

system, and discusses the architecture, development, and calibration of the system in details.

Chapter 4 illustrates the design and implementation of the spectral image acquisition soft-

ware for the LCTF spectral imaging system. Chapter 5 presents a successful application of

the spectral imaging system for the early detection of sour skin in Vidalia onions. Finally,

chapter 6 discusses the results and significances of this work and draws conclusions. Future

improvements of the system and its potential applications in onion quality inspection are

also discussed in chapter 6.
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Chapter 2

Quality inspection of food and agricultural products by shortwave

infrared LCTF spectral imaging - overview

Quality produce is very important to consumers and retailers, and it is a key

factor consumers use in evaluating a supermarket.

— Christine M. Bruhn

2.1 Introduction

Currently, US consumers have an unprecedented interest in safety and quality of their food.

Government authorities are also interested in public health and consumer protection and

place considerable obligations to ensure the safety and quality of food. As a result, assuring

the safety and quality of food and agricultural products has become one of the major goals of

food engineering in the 21st century. To provide effectual food safety and quality inspection

and consumer protection, the need of high performance nondestructive inspection technolo-

gies is rapidly increasing.

Optical technology has been widely used for nondestructive inspection of food and agricul-

tural products due to its fast, objective and nondestructive nature. The most common optical

inspection techniques are color and monochrome imaging methods. Color and monochrome

imaging technologies investigate the spatial distribution of light intensity in visible or near-

infrared range and are often used for classification of size, color, and shape (Davies, 2009).

Another widely adopted optical technology for inspection is the spectroscopy technique

(Nicolai et al., 2007). Different from imaging techniques which mainly examine the sur-

face irradiance of the test object, spectroscopy is an analytical technique that studies the

6
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interaction between the light and the matter. Spectroscopy can examine internal physical or

chemical characteristics of the test object while conventional color or monochrome imaging

only measures external characteristics of the tested object.

Taking advantages of strengths of both imaging and spectral techniques, a technique

called spectral imaging was developed in the 1980s (Kerekes and Schott, 2007). Spectral

imaging collects information of a test object in spectral and spatial domains simultaneously.

As a result, spectral images contain a wealth of spectral and image data. However, due to its

high requirements of hardware, this technique was constrained mainly in astrophysics, remote

sensing, and military applications until the middle of 1990s. Since the late 1990’s, spectral

imaging has been adopted to food safety and quality inspection (Lu and Chen, 1998) and has

undergone a rapid development since recent advances in electronics and optics have reduced

the cost to a practical range. Because of its capability to characterize a test object in both

spectral and spatial domains, spectral imaging has been widely accepted for nondestructive

inspection of food and agricultural products.

Based on the wavelength number (n), spectral imaging can be divided into two divisions:

hyperspectral imaging (n>10) and multispectral imaging (n<10). In the current literature,

spectral imaging is often referred to hyperspectral imaging (HSI). Similar with the spec-

troscopy technology, spectral imaging can be divided to many divisions based on the range

in electromagnetic spectrum. There are a number of ways to divide the electromagnetic

spectrum of light in this range. In the literature regarding spectral imaging for food and

agricultural products quality inspection, several division schemes have been found for sub-

dividing the electromagnetic spectrum of light: ISO 20473 (International Organization for

Standardization, 2007a), ISO 21348 (International Organization for Standardization, 2007b),

and the division scheme based on sensor response (Miller, 1994). Figure 2.1 shows the division

schemes of these three methods. ISO 20473 and the division scheme based sensor response

are two most common methods used in food and agricultural engineering area. The divi-

sion scheme of ISO 21348 is similar with the division scheme recommended by International
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FIR: Far infrared

Figure 2.1: Part of the electromagnetic radiation spectrum which is of interest in spectral
imaging and three common subdivision schemes for the range of electromagnetic radiation
spectrum

Commission for Illumination (CIE). But this scheme has been rarely reported in the litera-

ture of food and agricultural engineering. In this thesis, the division scheme based on sensor

response is used.

2.2 Spectral imaging systems

Spectral imaging includes hyperspectral imaging and multispectral imaging (MSI). Both

HSI and MSI are fast growing areas in non-invasive inspection for food safety and quality.



9

Hyperspectral imaging has superior inspection capabilities because it is able to collect full

spectral and spatial information of the test object simultaneously (Gowen et al., 2007).

Multispectral imaging only collects spatial information of the test object at a small number

of wavelength bands that contain most useful information for inspection or classification.

Hence, multispectral imaging is much faster and more efficient than hyperspectral imaging.

On the other hand, since hyperspectral imaging technique collects information over full

spectral region prior to understanding spectral characteristics of the test object, it has unique

strengths in developing algorithms for multispectral imaging.

2.2.1 Techniques for spectral imaging system

Hyperspectral/multispectral imaging systems can mainly be grouped into two categories

based on spatial scanning and spectral selection techniques (Kerekes and Schott, 2007):

• Systems that use filter wheel, interferometer, or tunable filter (TF) to collect spectrum

over time, and make use of two-dimensional framing cameras for imaging.

• Systems that use prism and grating methods for spreading out spectrum spatially, and

collect images by using line-scan, whiskbroom, or pushbroom scanning techniques.

In food safety and quality inspection, most reported multispectral imaging systems are

grouped in the first category. For hyperspectral imaging, configurations in both categories are

widely used. Specifically, two HSI configurations have commonly been used for food safety

and quality inspection (Gowen et al., 2007):

• The system that uses a line scanner and moves the scanner or the test object during

scanning. These systems often use line-scan (moving the test object) or pushbroom

(moving the line scanner) acquisition modes.

• The system that uses an electronically tunable filter (ETF) for selecting wavelength

bands iteratively and takes 2-D images over time.
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A line-scan/pushbroom HSI system for food safety and quality inspection often uses a

spectrograph to disperse light from a slit over a two-dimensional focal-plan-array (FPA).

When the sensor scans in the direction that is perpendicular to the slit, the images captured

by the camera FPA can record the spectral information of the test object line by line. Thus,

the spectral and spatial information of the entire object in a given wavelength range can be

obtained.

Compared to the identical configuration of line-scan HSI systems, configurations for filter-

based HSI systems are more diverse. One decade ago, Gat (2000) reviewed the mainstream

configurations of tunable filter (TF) based spectral imaging system. In the past decade, the

ETF based spectral imager has gained wide acceptance for spectral imaging. Two types

of electronically tunable filters have been reported in food engineering literature. One is

liquid crystal tunable filter (LCTF) and the other is acousto-optical tunable filter (AOTF)

(Gowen et al., 2007). A liquid crystal tunable filter is essentially a multistage Lyot-Ohman

type polarization interference filter using a stack of polarizers and tunable retardation liquid

crystal plates (Tran, 2005). An AOTF applies radio frequency acoustic waves to a crystal

to separate a broadband light beam and then selects a single wavelength light (Bei et al.,

2004).

Comparing the LCTF and the AOTF, the main strengths of the LCTF are large aperture,

large field of view, low wave front distortion, and flexible throughput control. The major

weaknesses of the LCTF are its low throughput and slower tuning speed (Evans et al.,

1998). On the other hand, the main advantages of the AOTF are good transmission, faster

tuning time, and broad spectral range. Disadvantages of the AOTF are smaller aperture,

broad spectral imaging bandpass, and striking image shifting during wavelength tuning. In

summary, the LCTF-based HSI system is relatively slower than the HSI system using an

AOTF, but it often provides better imaging performance.
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2.2.2 Principles of Liquid Crystal Tunable Filter

Liquid crystal tunable filters select a narrow band of light centering at a specific wavelength

for transmission and block all others. A typical LCTF consists of a stack of filters. Gen-

erally, each filter is a combination of a briefringent element with fixed retardance, a liquid

crystal waveplate, and linear polarizers, as shown in figure 2.2a. The briefringent element and

linear polarizers form an essentially Lyot-Ohman type polarization interference filter, which

can select light of a specific frequency. The further electronical control of light selection is

implemented by the liquid crystal waveplate. Each liquid crystal waveplate contains a cell

of liquid crystals and two transparent electrodes (see figure 2.2b). When voltage is applied

across the electrodes, liquid crystal molecules re-align their orientations based on the E-field

introduced. As a result, the retardance of the liquid crystal waveplate changes, which also

changes the overall retardance of the filter. Thus, the retardance of the filter is adjusted

electronically by controlling the voltage applied to the liquid crystal waveplate.

The filter element of the LCTF filters light according to the choice of polarizers, the

fixed retarder, and the liquid crystal waveplate. Since the retardance of the filter element

is adjustable, a narrow bandpass of light could be selected by a combination of selective

transmissions of the filters inside the LCTF. Figure 2.2c shows the principle of selecting a

single passband of light by the LCTF. In summary, when light passes through the LCTF,

multiple retardance stages caused by successive filters select light step by step until a narrow

band of light is isolated. Detail introduction of the working principle of the LCTF can be

found in Slawson et al. (1999).

2.2.3 Hyperspectral imaging, Pushbroom vs. Electronically Tunable Fil-

ters

The line-scan/pushbroom hyperspectral imaging has been studied in depth and has gained

considerable acceptance for food safety and quality inspection (Wang and Paliwal, 2007;

Gowen et al., 2007; Kim et al., 2001) due to its high speed and high spectral resolution.
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Figure 2.2: (a) Schematic diagram of a single Lyot-Ohman cell, (b) alignment of liquid crystal
in the presence of the E-field, (c) ideal transmittance through through all four stages. The
whole figure was adapted from Slawson et al. (1999)
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Another reason for the popularity of the line-scan HSI configuration is that the line-scan tech-

nique can be readily integrated with the current online inspection systems using a conveyor

belt. Since the majority of HSI applications for food and agricultural products inspection

target at real time inspections for online sorting and classification, the line-scan technique

is preferred by agricultural researchers.

On the other hand, the hyperspectral imaging system based on an ETF has its advantages

in many respects. First, an ETF-based HSI system is a natural extension of a multispectral

imaging system, which provides the versatility to the system to be used for either HSI or MSI

applications. Second, an ETF-based HSI system has an area field of view (FOV), whereas

the line-scan HSI systems can only see one line of the test object at one moment. Thus,

the ETF-based HSI systems have superiority for instantaneous imaging applications. Third,

the ETF-based HSI systems select spectral bands rapidly and randomly, which make them

appropriate for applications required selective spectral information. Moreover, the parameter

setting of an ETF-based spectral imaging system, such as the exposure time of the camera, is

often dynamic and adjustable over each spectral band in a scan, while a pushbroom system

often has to keep its parameter setting constant during scanning. Finally, compared to the

line-scan systems, the ETF-based spectral imaging systems do not rely on moving mechanical

devices such as a linear conveyer module. Therefore, they are compact, easily integrated with

other applications, and have higher potential for the field employment.

In the past decade, a number of ETF-based spectral imaging systems have been reported

for food and agricultural products quality inspection. Evans et al. (1998) demonstrated

a LCTF spectral imaging system for studying plant health, and introduced a calibration

approach of leveling system response by linear and logarithmic methods. Cogdill et al. (2004)

reported a LCTF-based HSI system for predicting the constituent concentrations of maize

kernels by hyperspectral transmittance imaging. Singh et al. (2010b) used the LCTF-based

spectral imaging for detecting fungal contamination in wheat and identifying insect-damaged
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wheat kernels. However, to date, techniques of applying the LCTF-based spectral imaging

system for food safety and quality inspection have not been sufficiently explored.

2.3 Shortwave-infrared spectral imaging for food and agricultural prod-

ucts inspection

2.3.1 Principles of shortwave-infrared technology

Shortwave infrared (SWIR) covers the wavelength range from 1000 nm to 3000 nm. This

spectral range is classified as near-infrared in ISO 20473 scheme. The utility of SWIR spec-

tral technology has been successfully demonstrated by numerous nondestructive inspection

applications of fruit and vegetable (Williams et al., 2001; Nicolai et al., 2007). The fun-

damentals of the SWIR spectral technology are the interactions between the light and the

matter. Figure 2.3 shows the schematic of the interaction between the light and an onion

bulb. When the incident light is projected on the test object, light energy can be absorbed,

transmitted and reflected, with a wavelength dependency determined by the material phys-

ical or chemical properties. The wavelength dependency can be observed in spectral curves

within a given spectral range. The reflectance, transmittance or scattering spectra of the

test object could contain useful physical or chemical information, which is induced by the

electronic and vibration absorption process of the constituent materials.

Currently, most spectral instruments measure the radiation of reflectance or transmit-

tance. The spectral absorption of the test object can be obtained from the reflectance or

transmittance by using the Beer-Lambert law:

A = log
Io
It

in which A is the absorption, Io is the incident radiation, and It is the intensity of the

reflectance or transmittance raditaion (Williams et al., 2001).
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Figure 2.3: The illustration of four types of light interactions with an onion bulb

2.3.2 Applications of shortwave-infrared spectral imaging for quality

inspection of food and agricultural products

Shortwave infrared spectral imaging is a recent trend of spectral techniques. Wang and

Paliwal (2007) has reviewed the shortwave-infrared spectral imaging applications for food

quality and safety inspection by 2006. This section illustrates an overview of the shortwave-

infrared spectral imaging applications for quality inspection of food and agricultural products

from 2006 to 2010 (table 2.1). The table 2.1 only includes peer-reviewed publications. Papers

in conference proceedings are not included since most of them overlap with publications in

this list.

The majority of the reported SWIR spectral imaging applications in table 2.1 used the

LCTF-based or the line-scan/pushbroom systems for food quality and safety inspections.
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Sugiyama et al. (2010) reported a system with a seldom used configuration in spectral

imaging, which tunes wavelength bands by filtering the light source. This method is often

used with spectroscopy, but its performance for that system is unknown.

Most applications in table 2.1 studied the spectral range from 900 nm to 1700 nm.

This was likely due to the availability and the cost of off-the-shelf hardware products. A

few applications extended the upper bound to 2500 nm by using up-to-date spectrographs

and HgCdTe detectors. Similar with the SWIR or NIR spectroscopy techniques, the SWIR

spectral imaging were used mainly for detecting internal/invisible attributes that can be

traced by the SWIR spectrum. Thus, the spectral sensitivity of the SWIR spectral imaging

system is still a key foundation for the success of the SWIR spectral imaging application.

In addition, the feature selection and classification techniques used by the SWIR appli-

cations were classical chemometrics for spectral images, such as PLS, PCA, LDA, etc (table

2.1). Moreover, all of these applications were conducted in the laboratory. This indicates

the SWIR spectral imaging technique is still at the research stage. However, these publica-

tions demonstrated the feasibility of using the SWIR spectral imaging for safety and quality

inspection of food and agricultural products. It appears that developing high performance

hardware and advanced spectral image analysis techniques is the current trend of the SWIR

spectral imaging.

2.4 Sour skin - one of the major threats for onion postharvest

Sour skin is one of major threats for onions. The cause of sour skin is the gram-negative

organism bacterium Burkholderia cepacia, which is the phytopathogen responsible for a bac-

terial rot of onions. Burkholderia cepacia is a versatile organism found as an inhabitant of

soil and water. Bacterial cells are rods occurring singly or in pairs. The optimum growth

temperature for B. cepacia is 30-35 ◦C and they could stop grow below 4 ◦C (Schwartz and

Mohan, 2008).
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Table 2.1: Overview of shortwave-infrared spectral imaging applications for quality inspec-
tion of food and agricultural products

Product Subject(s) Acquisition
mode

Wavelength
selection
method

Spectral range
(nm)

Feature selec-
tion classifica-
tion methods

Reference(s)

Apple Bitter pit Reflectance Line-scan 1000 - 1600 Partial least
squares (PLS)

Nicolai et al.
(2006)

Pickling
cucumber

Bruises Reflectance Line-scan 900 - 1700 Principal com-
ponent data
(PCA), band
ratio

Ariana et al.
(2006)

Beef Tenderness Reflectance pushbroom 900-1700 PLS Naganathan
et al. (2008)

Canadian
wheat

Wheat class Reflectance LCTF 960-1700 Quadratic
Discriminan-
tAnalysis
(QDA), ANN

Mahesh et al.
(2008)

Cotton Fiber micron-
aire

Reflectance Optical band-
pass filters

1450, 1550,
1600

Linear regres-
sion

Sui et al.
(2008)

Wheat Storage
fungi, insect-
damaged
wheat ker-
nels, midge-
damaged
wheat kernels

Reflectance LCTF 1000 - 1600 Multivariate
image analysis
(MIA) based
on PCA,
K-means
clustering

Singh et al.
(2007), Singh
et al. (2009),
Singh et al.
(2010a)

Maize Kernel hard-
ness

Reflectance LCTF and
Pushbroom

960-2498 partial least
squares dis-
criminant
analysis (PLS-
DA)

Williams et al.
(2009)

Canadian
western wheat

Sprout
damage

Reflectance Line-scan 1000 - 2500 PCA, PLS Xing et al.
(2009)

Apple Starch index Reflectance Line-scan 1000 - 1700 PLS Menesatti
et al. (2009)

Blueberry Foreign mate-
rials

Reflectance NIR illumi-
nator with
monochrom-
eter

1000 - 1600 Discriminant
analysis

Sugiyama
et al. (2010)
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Sour skin can be serious in individual fields and storage rooms. Because onions are rel-

atively resistant to B. cepacia prior to bulbing, infections usually begin in the field at the

late stage in harvest. But losses often happen in stored onions. Bacteria can gain entrance

to onions when onion tops are cut during harvest, or through other wounds on the neck

and shoulder areas of onions, such as the wounds caused by the sand blowing by wind.

Inoculum of B. cepacia also associated with contaminated water like rain and overhead irri-

gation (Schwartz and Mohan, 2008). At the early stage of an infection, the primary symptom

of sour skin in the onion is a pale yellow decay in one to a few inner scales on the neck or

shoulder area. There is often no exterior symptom initially except a softened neck. The rot

will gradually develop into the entire scale and adjacent onion scales, as pale yellow to light

brown decay. In advanced stages, one or a few inner bulb scales could be slimy and slip off

from the onion bulb. When sour skin-infected onions are cut open, one or several inner fleshy

scales often can be seen to be soft and have a water-soaked appearance.

 

 

 

 

Figure 2.4: An example of sour skin-infected onions
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Chapter 3

Development and Calibration of an LCTF-based Shortwave Infrared

Spectral Imaging System for Food Quality Inspection

3.1 Overview

The liquid crystal tunable filter (LCTF) based spectral imaging is an important branch in

spectral imaging. Recently, there has been an increasing need of high performance LCTF-

based spectral imaging systems for food safety and quality inspections. This chapter thor-

oughly demonstrates the design, hardware selection and the integration of an LCTF-based

shortwave infrared (SWIR) spectral imaging system. A series of tests were conducted to

calibrate the linearity of the system output, measure the field of view of the spectral imager,

level the system spectral sensitivity, test the spatial and spectral resolution of the system,

correct the image distortion, and reduce the spectral noise of the system output. Results of

these calibration tests showed that the system satisfied the design criteria in both spatial

and spectral domains. As a validation test, the system was used to capture the hyperspectral

images of water, 95% ethanol, sugar, and wheat flour in the SWIR region. The results of the

validation test demonstrated that the SWIR spectral imaging can be used to differentiate

these four materials. This LCTF-based shortwave infrared spectral imaging system can be

used for nondestructive inspections that require fast selections of spectral bands and images

of high quality.

3.2 Introduction

Spectral imaging is a rapid growing area in food safety and quality nondestructive inspec-

tion. By capturing images of the test object at a number of narrow wavelength bands nonde-

23
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structively, spectral imaging offers a wealth of spatial and spectral information of the scene

imaged. Spectral images can be used to ascertain the intrinsic interrelationships between spa-

tial/spectral observations and physical/chemical properties of the measured objects (Lu and

Chen, 1998). Currently, spectral imaging often refers to hyperspectral imaging (HSI), which

acquires images at hundreds of contiguous spectral bands. Spectral imaging that uses a small

number of discrete spectral bands (<10) is often called multispectral imaging (MSI). In the

last decade, spectral imaging has gained recognition in food safety and quality inspection due

to its nondestructive inspection capability. Its sensing capabilities have been demonstrated

by numerous applications reported for a broad range of food and agricultural products such

as poultry (Chao et al., 2010; Yoon et al., 2010), beef (Naganathan et al., 2008), wheat

(Singh et al., 2010), apple (ElMasry et al., 2008; Kim et al., 2008), citrus (Qin et al., 2009)

and cucumber (Ariana and Lu, 2009).

In food safety and quality inspection, two most common spectral imaging configurations

are: (I) the system uses an imaging spectrograph with the thin line aperture as the line

scanner, and moves the scanner (known as line-scan) or moves the test object (known as

pushbroom acquisition) during scanning, and (II) the ETF-based system which uses the

ETF to select wavelength bands and takes 2-D images over time (Gowen et al., 2007). To

make the statement concise, this paper uses the term line-scan to represent the line-scan

and pushbroom spectral imaging configurations. In multispectral imaging, reported systems

mainly used interference filter (Yang et al., 2005), interchangeable filters (Kise et al., 2010)

or electronically tunable filters (ETFs) (Peng and Lu, 2006). Recently, researchers started

to use the imaging spectrograph to build the multispectral imaging system in which only

image data at a number of key wavelengths was processed and used (Chao et al., 2010).

In hyperspectral imaging, the line-scan system has been predominantly used for food

safety and quality inspection due to its high speed and high spectral resolution. Another cause

for the popular use of the line-scan HSI is that, compared to stationary area imaging, the line-

scan technique is easier to be integrated with the current online inspection systems using a
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conveyor belt. As for the ETF-based spectral imaging, liquid crystal tunable filters (LCTF)

and acousto-optical tunable filters (AOTF) are the two most commonly used wavelength

selection methods (Gowen et al., 2007). The LCTF-based systems are relatively slower than

the systems using AOTFs, but they have better imaging performance since LCTFs have

larger apertures, relatively wider field of view, and lower wavefront distortions than AOTFs

Evans et al. (1998). Thus, the LCTF-based system is the mainstream for the ETF-based

spectral imaging.

Methods for calibrating the line-scan/pushbroom spectral imaging system have been well-

developed and presented in the literature. Polder and Van der Heijden (2001) discussed the

calculation method for quantifying the sensitivity and SNR of a spectrograph. Lawrence

et al. (2003) demonstrated a general procedure for calibrating a pushbroom spectral imaging

system and attributed an image distortion correction approach of using geometric control

points. Details of spectral/spatial accuracy and resolution calibration, and CCD responsi-

tivity calibration methods can be found in Mehl et al. (2004) and Kim et al. (2001). Moreover,

some advanced calibration techniques for the line-scan/pushbroom spectral imaging system

have been explored, such as spectral and spatial repeatability of HSI (Peleg et al., 2005)

and noise reduction (Shafri and Yusof, 2009). Egloff et al. (2009) conducted a thoroughly

analysis of grating-induced spectral and spatial distortion for a near-infrared pushbroom

hyperspectral imager.

Compared with the widely employed and much studied line-scan hyperspectral imaging

technologies (Chao et al., 2010; Gowen et al., 2007; Lawrence et al., 2003; Park et al.,

2002; Kim et al., 2001), the LCTF-based hyperspectral imaging has been less studied for

food safety and quality inspection in the past decade. Although there are some similarities

between the LCTF-based spectral imaging system and the line-scan spectral imaging system,

developing an LCTF-based spectral imaging system requires many special considerations on

system design, integration, and calibration. For instance, an LCTF-based spectral imaging

system can alter the camera exposure time over wavelength bands to correct system spec-
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tral sensitivity while a line-scan system can only use a fixed camera exposure time for all

wavelengths during one scan. Gat (2000) summarized the most fundamental principles of

designing a tunable filters based spectral imaging system, with an example of integrating

an LCTF-based hyperspectral imaging system. In food safety and quality inspection, Evans

et al. (1998) demonstrated an LCTF-based spectral imaging system for studying plant health,

and introduced a calibration approach of leveling system response by linear and logarithmic

methods. Archibald et al. (1999) developed an LCTF-based spectral imaging system to dif-

ferentiate color class of wheat kernels. Cogdill et al. (2004) reported an LCTF-based HSI

system for predicting the concentrations of maize kernels’ constituents by the hyperspec-

tral transmittance imaging. Williams et al. (2009) evaluated the maize kernels hardness by

using both LCTF-based and line-scan HSI imaging systems. Singh et al. (2007, 2010) used

the LCTF-based spectral imaging for detecting fungal contamination in wheat and iden-

tifying insect-damaged wheat kernels. Nonetheless, the development and calibration of the

LCTF-based spectral imaging systems were seldom discussed in depth in these papers.

So far, the majority of the reported LCTF-based spectral imaging systems were designed

in the spectral range of 400 - 1100 nm. However, there have been increasing interests of

SWIR spectral imaging for food safety and quality inspection (Wang and Paliwal, 2007).

In fact, designing an LCTF-based SWIR spectral imaging system requires many special

considerations on lens selection, illumination, and system calibration. To our knowledge,

methodologies for designing an LCTF-based spectral imaging system in SWIR (900 - 1700

nm) have been rarely demonstrated in detail in food safety and quality inspection. Particu-

larly, the calibration process of an LCTF-based SWIR spectral imaging system was seldom

demonstrated in the literature.

This paper demonstrates the methodologies that were used for the design, development,

calibration, and characterization of an LCTF-based SWIR spectral imaging system. The

main objective of this work was to incorporate the state-of-the-art technologies to develop and

calibrate an LCTF-based spectral imaging system for acquiring shortwave infrared spectral
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images. The system was designed to operate in dual-mode (HSI and MSI). The specific

objectives of this work were to:

• Design a dual-mode spectral imaging system to capture either hyperspectral or multi-

spectral images in the spectral region of 900 - 1700 nm.

• Develop a data acquisition software program to integrate the system for SWIR hyper-

spectral and multispectral image acquisition.

• Calibrate and characterize the system, including calibrating the linearity of system

output, measuring field of view, leveling system spectral response, testing spatial and

spectral resolution, and calibrating the lens distortion, etc.

3.3 Shortwave infrared LCTF-based spectral Imaging System

3.3.1 System design criteria and architecture

The spectral imaging system was designed for nondestructive safety and quality inspection of

food and agricultural products. The system was designed to be used for indoor inspections.

Therefore, the fundamental design criterion for the system was that it must be able to

capture spectral images of the test object accurately and completely in a distance of 0.5-1.5

m. Specific design criteria for the system were: (1) accurate spectral response and good image

resolution, (2) use in indoor environment, (3) high signal to noise ratio, (4) minimal response

time, and (5) high extensibility.

A successful spectral imaging system requires a deliberate design, proper selections of

hardware components, good integration and functional software. Figure 3.1 shows the overall

architecture of the LCTF-based spectral imaging system. The system was designed on a

multi-tier architecture so that functional modules are logically separated and reusable. The

system consists of five independent logical tiers including hardware (2 tiers) and software

(3 tiers). The bottom tier includes the spectral imager and the illumination system. The

next tier consists of a computer and two I/O hardware interfaces which connect the spectral
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Figure 3.1: The architecture of the LCTF-based spectral imaging system

imager and the computer. The top three layers provide a 3-tier architecture for software.

The top three layers takes care of data I/O between software and hardware, handles data

process, and provides graphic user interface (GUI), respectively.

Physically, the system consists of a spectral imager, an illumination system, a frame

grabber, a computer and data acquisition software. The key sensing unit is the SWIR spec-

tral imager, which takes monochromatic images at specified wavelengths in the spectral
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range of 900 - 1700 nm. The spectral imager was designed and fabricated with off-the-shelf

commercial products: an LCTF (Model Varispec LNIR 20-HC-20, Cambridge Research &

Instrumentation, MA, U.S.A), an InGaAs camera (Model SUI320KTS-1.7RT, GOODRICH,

Sensors Unlimited, Inc, NJ, U.S.A) and a lens (Model SOLO 50, GOODRICH, Sensors

Unlimited, Inc, NJ, U.S.A). The illumination system used four quartz-halogen lamps to pro-

vide a SWIR light source for the system. The configuration of the illumination system is

adjustable and should be customized and optimized based on the specific requirements of

the applications. The data acquisition software was developed using the LabVIEW graphical

programming language (National Instruments, Austin, TX, U.S.A).

3.4 Hardware selection and configuration

Design of an LCTF-based spectral imaging system is a comprehensive process of selecting

optical and electrical components, and determining the optimal configuration for the system.

The primary strategy for designing this system was to select the state-of-the-art and reliable

products. Moreover, only off-the-shelf commercial products were considered to restraint the

cost and time for developing the system.

3.4.1 The LCTF-based Spectral Imager

3.4.1.1 The Computation Model of the LCTF-based Spectral Imager

The fundamentals of the LCTF-based spectral imaging are based on the interactions between

the light and the test matter. When the light interacts with the test object, the ratio of the

reflected, scattered or transmitted light to the incident light is a function of wavelength (λ).

In spectral imaging, this function is depicted as the spectrum in spectral domain. Figure

3.2 shows the schematic view of the LCTF-based spectral imaging. In LCTF-based spectral

imaging, when light (S(λ)) passes through the LCTF, light energy is filtered based on the

overall transmission of the LCTF (τTF (λ)). A convergent lens, which is usually placed behind

or before the LCTF, also absorbs and blocks part of light energy (τLens(λ)). The focal plan
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Figure 3.2: The schematic of the LCTF-based spectral imaging

array (FPA) of the camera detects the level of light energy (E(λ)) and then generates the

analog signal accordingly. The analog signal, consequently, is converted to digital counts

by the analog-to-digital conversion (ADC). The digitized data provides the pixel intensity

values of the monochrome images, which are the outputs of the spectral imager. By simplify

a 2-D image to one pixel, the following equation can be obtained:

E(λ) = S(λ)τTF (λ)τLens(λ) (3.1)

To derive the computational mode of the LCTF-based spectral imaging, we start from a

spectral sensitivity model used by Lopez-Alvarez et al. (2008), which was originally derived

from a conventional camera sensitivity model given by Ferrero et al. (2006):

R(λ) =
Cc

E(λ)texp
(3.2)

Where (R(λ)) refers to the responsivity of the spectral imager, Cc is the pixel value after

eliminating noise and uniformity correction, E(λ) is the original radiance received by the

camera FPA, and texp is the camera exposure time. Since the camera exposure time is also

adjustable as a function of wavelength, the texp should be extended to texp(λ). Thus, the

equation 3.2 is rewritten as:

R(λ) =
Cc

E(λ)texp(λ)
(3.3)



31

In hyperspectral imaging, a wide-used method for removing noise and correcting the camera

uniformity is the flat field correction, which converts the original radiance image (Ir) to a

corrected percentage image by using the reference image of a uniform diffuse white target

(Iw) and the dark current image (Id). The corrected image (Cc) is calculated as follows:

Cc = k
(Ir − Id)
Iw − Id

(3.4)

Where k is the reflectance rate of the white reference target. In practical, the coefficient k is

also wavelength-dependant. So, it should be extended to k(λ). Using the Eqs. 3.1, 3.3 and

3.4, the computational model for the LCTF-based spectral imager can be obtained:

R(λ) =
k(λ)(Ir − Id)

(Iw − Id)S(λ)τTF (λ)τLens(λ)texp(λ)
(3.5)

Where R(λ) depicts the responsivity of the system, and Ir, Iw, andId are the 2-D images of

the test object, the white reference, and the dark current at the wavelength number k(λ) ,

respectively.

3.4.1.2 Hardware Selection and Integration

The detector (camera) was the first item selected for this system. Generally, two types of

high performance photodiode detectors are used for the SWIR imaging: the indium gallium

arsenide (InGaAs) sensor and the mercury cadmium telluride (HgCdTe) sensor (Becker and

Huntsville, 2005). Both InGaAs and HgCdTe sensors were originally developed for the high

performance military applications and have high quantum efficiency. The HgCdTe detectors

cover a very broad infrared range, but they need to be operated at a high temperature and

are very expensive. In the SWIR region up to 1700 nm, the standard InGaAs sensor or the

InGaAs with indium phosfide substrate (InGaAs/InP) sensor can achieve close performance

with the HgCdTe sensors (Becker and Huntsville, 2005), while their costs are much lower

than HgCdTe sensors. At present, the InGaAs sensors are still the most mature and practical

products for inspections in the SWIR region. Thus, our system used a standard InGaAs

SWIR camera produced by Sensors Unlimited, Inc (SUI). The camera has a solid state
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InGaAs FPA of 320 × 256 pixels with 25 m pitch. It has high response from 900 nm to

1700 nm and provides a number of useful functions such as the on-board non-uniformity

correction, predefined corrected camera configuration modes and a programmable startup

configuration. Since the camera uses a 12-bit digital Camera Link compatible output, a NI

PCI-1426 frame grabber is used to acquire monochromatic images in a 60 frames per second

(fps) frame rate.

Selection of an LCTF was straightforward since only limited off-the-shelf LCTF products

were available. The aperture size of the LCTF is an essential parameter that could affect the

performance of the system. Generally, a large aperture LCTF was preferred when the LCTF

is placed at the front of the spectral imager so that more light can pass through. However,

to the date that the system was completed, the largest working aperture of the LCTFs in

the SWIR range was 20 mm. The LCTF used by the system consists of an optic module and

an electronics controller module. The controller module is linked to the computer through a

USB interface and connected with the optic module by a serial cable. The controller receives

serial commands from the computer and control the LCTF to tune wavelength over the

spectral region from 850 nm to 1800 nm with Full-Width at Half-Maximum (FWHM) 20

nm.

The lens is the most critical optics component that could affect the performance of the

system. Before calculating the required parameters of a lens, it is important to first determine

the assembly order of the three key components of the imager: the camera, the LCTF and

the lens. Different assembly layouts have different requirements for the features of the lens.

Figure 3.3 shows two possible layouts of an LCTF-based spectral imager. The lens could

either be placed between the LCTF and the camera (layout I), or be put in the front of the

spectral imager (layout II). In layout I, light passes through the LCTF and then converges

to the detector. Because light would easily be blocked by the LCTF, this integration layout

requires a relatively large aperture LCTF to avoid severe mechanical vignetting.
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Figure 3.3: Schematic of two typical layouts for the LCTF-based spectral imager to integrate
camera, lens, and LCTF: (I) the lens is mounted between the LCTF and the camera, and
(II) the lens is placed in the front of the imager, and uses relay optics to focus the image of
the test object on the camera FPA.
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When the lens is placed in the front of the imager, it must have a long flange focal

distance (FFD) to focus the object on the FPA of the camera. The FFD of a lens, which

is determined by the lens’ mount type, is the distance between the lens rear flange and the

focal plane of the camera. Appendix A lists the designed the FFDs of several common lens

mount types. In this system, the thickness of the LCTF is 49.5 mm and the default camera

mount type is M42. Thus, both the FFD and the effective focal length (f) of the lens must

be larger than 49.5 mm if it is placed in the front of the imager. Since the majority of off-

the-shelf high performance SWIR lenses can’t meet this requirement, a relay optics is often

used to extend the focal length and the FFD of the lens, as shown in figure 3.3 layout II.

This arrangement, nevertheless, requires a comprehensive optical design and would greatly

increase the complexity, size and constructing cost of the imager. Therefore, in this system,

the first configuration (layout I in figure 3.3) was used.

Once the layout of the spectral imager was determined, decisions regarding detailed

parameters and characteristics of the lens were made. This design process was started by

calculating the field of view (FOV) and the magnification (M). This system was designed

for the purpose of the quality inspection of onions in postharvest. Therefore, the expected

optimal FOV was 187.5 mm × 150 mm which covered a single bulb of most onions. The

camera FPA is a 8.0 mm × 6.4 mm plane of a 320 × 256 pixel array, and it has a pixel size

(pixel pitch) 6.4 mm/256 = 0.025 mm. Thus, with the expected FOV, the resolution of the

image should be 256 dots/150 mm = 1.7 dots per mm (about 43 dpi or 0.85 lp/mm). Thus,

the expected image resolution was 1 lp/mm. The magnification was predicted as the ratio

of the FOV and the camera sensor size, which was 150 mm/6.4 mm = 23.4.

The expected focal length (f) of the lens was calculated based on the estimated FOV,

the magnification, and the object-to-camera distance (D). As shown in figure 3.4, the lens

focal distance could be predicted using a pin-hole lens model by f = D/(M-2). Since the

expected object-to-camera distance was 0.5 - 1.5 m, the focal length of the lens could be

a value between 24 mm and 70 mm. For an LCTF-based SWIR spectral imaging system,
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Figure 3.4: Pin-hole optical model of the LCTF-based spectral imaging system for estimating
lens parameters.

nevertheless, the angle of view (α) of the system could be affected by the LCTF. Due to

its relatively small aperture, the LCTF could block light and cause vignetting problems on

images. A lens with a large focal length can mitigate the vignetting problem. But a lens

with a large focal length will require a longer object-to-camera distance due to its small

angle of view. Therefore, selecting the right focal length of the lens was to make a tradeoff

between guaranteeing the image quality, maximizing the angle of view, and minimizing image

vignetting.

To accurately evaluate the optimal focal length of the lens, an experimental test was

conducted using a manual zoom lens (model Fuji H6x12.5R, Fujinon, NJ, USA), which has

an adjustable focal length of 12.5 - 75 mm. A test pattern was designed to indicate the FOV

of the system. The size of the pattern was 200 mm × 200 mm and it was printed on an A4

size paper as the test target. The target was placed on a 500 mm × 500 mm Teflon sheet to

get a white background. The distance between the target and the front of the spectral imager

was 1.5 m. Four 35 watt quartz halogen lamps were used to illuminate the test target. Figure

3.5 shows the test pattern and its images taken at different focal lengths (35 mm, 50 mm,
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and 75 mm) at 1100 nm. All images were quite blurry because this lens was designed for

the use in visual range. The image taken at the 35 mm focal length had a large field of view

but with a severe vignetting problem. The FOV was larger than the target size (200 mm ×

200 mm) but only the middle area of the camera FPA was effective. The image of using 50

mm focal length indicated that most pixels of the camera FPA were effective and the image

covered an area larger than 200 mm × 160 mm. The vignetting effective (four relative dark

corners in the image) was moderate. When the focal length of the lens increased to 75 mm,

the vignetting effective was further mitigated whereas the FOV of the system shrunk to 150

mm × 120 mm, which was much smaller than the expected FOV. Therefore, the lens of 50

mm focal length was considered as a tradeoff between a larger FOV and less vignetting effect

in images.

Several additional important aspects were considered to meet the special requirements

of the SWIR LCTF-based spectral imaging. First, taking into considerations of relatively

low throughput of LCTF, a fast lens (a large aperture or a small f-number) was preferred so

that more light can pass. In addition to the numerous NIR or SWIR lenses, using off-the-

shelf commercial VIS glass lenses is also feasible since light at the SWIR range can readily

pass through glass. However, coating of a lens is another important but easily neglected

factor. Generally, antireflective coatings on most lenses are optimized for visible light, and

these lenses often have a larger reflectivity and poor throughput in the SWIR region. Thus,

it’s important to ascertain that the coating of the lens is optimized for the correct spectral

region. Moreover, a wide-angle lens is not recommended because it would cause remarkable

image distortion. Another critical consideration is related to the optical phenomenon named

“axial chromatic aberration”. As for a converging lens, light beams at different wavelengths

have different refractive indexes. Therefore, when the wavelength of light changes, the focus

point of the lens shifts too, leading to blurred images (Smith, 2008). For a spectral imaging

system, it’s essential to reduce chromatic aberration to avoid spectral distortion. Although

it is feasible to use image processing methods to reduce axial chromatic aberration (Wang
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Figure 3.5: A test pattern for measuring the system field of view and its images at 1100 nm.
Images were taken when the focal length of the lens was 35 mm, 50 mm, and 75 mm.
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et al., 2006), the optical techniques such as using achromatic doublet are the most reliable

and effective approach to correct the chromatic aberration. Therefore, although the initial

investment would be higher, a lens that has been chromatically corrected over the interested

spectral region is a key factor for the success of an LCTF-based SWIR spectral imaging

system. In summary, a 50mm F/1.4 SWIR lens (Model SOLO 50, GOODRICH, Sensors

Unlimited, Inc, NJ, U.S.A) was selected for the system. The lens has been optimized for the

spectral region from 900 nm to 1700 nm, and has a minimum 90% throughput in the spectral

region from 900 nm to 1700 nm. Two step-up ring adapters (47 mm - 52 mm, 52 mm - 55

mm) were also used to attach the LCTF to the lens. A detailed performance comparison

between this SWIR lens and other lens has been reported by Hansen (2009).

3.4.2 The Illumination System

The illumination system was another major design challenge in hardware. An ideal illumi-

nation should provide the stable, constant spectral output, and the uniform lighting on the

area of interest. Although the illumination unit should be customized for each specific appli-

cation, some general issues need to be taken into consideration for an LCTF-based spectral

imaging system. For the spectral imaging systems in the visual and NIR/SWIR region, tung-

sten halogen lamps are the most common and suitable light sources which have been widely

used, as they could provide stable and continuous spectral output (Wang and Paliwal, 2007).

In addition, a stabilized DC power supply is always necessary to keep the light output con-

stant. However, it has to be noted that real spectral output of different brands’ lamps are

often distinct. Moreover, since the halogen lamp emits a board wavelength region of light,

some optical filters can be used to block out the light in the spectral regions not of interests.

However, it is not recommended to utilize a polarization filter for an LCTF-based spectral

imaging system, since the LCTF is polarization sensitive (Gat, 2000).

The uniformity of the lighting was the major difficulty for designing a light unit for

the system. Different from the line light in a line-scan spectral imaging system, the light
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source in an LCTF-based spectral imaging system has to illuminate an area uniformly on

a heterogeneous surface. A good strategy for achieving a good light uniformity is to use

multiple lamps and arrange them meticulously with a suitable geometry. Some optic diffusers,

reflectors and chambers with a white reflectance coating, can be also used to enhance the

light uniformity. The MR lamp is a good light source for the LCTF-based spectral imaging

since it is compact and provides directional area lighting. The multifaceted reflector (MR)

halogen lamp uses a single-ended, quartz halogen filament capsule mounted within a pressed

glass reflector. There are two important parameters for characterizing the light distribution

of the MR lamp: the beam spread and the center beam candlepower (CBCP). The CBCP is

the intensity emitted at the center of a directional lamp beam, which is determined by the

lamp voltage and the beam angle (Paget et al., 2008). The beam spread is a beam angle that

covers the illuminated area in which the beam intensity is 50% of the CBCP (figure 3.6).

For the LCTF-based spectral imaging system, the beam spread of the lamp is determined

by the expected lamp-to-object distance and the size of the illumination area. However, a

lamp with a wide beam spread is generally preferred because it requires a relatively shorter

lamp-to-object distance, which could reduce the need for the power of the lighting unit. In

summary, this system used four 12V 35 watt MR16 halogen lamps (model S4121, Superior

Lighting, FL, U.S.A), which have build-in reflectors and a front frosted lens to diffuse light.

The lamps used by the system have 36◦ beam spread angle and the CBCP is 520 cd.

3.4.2.1 System hardware integration

Figure 3.7 shows the overall configuration of the system hardware. A dark chamber was

fabricated to enclose the spectral imaging system. The chamber is a 600mm × 600mm ×

2000 mm (L×W× H) box and the frame is composed by aluminum square tubes. A curtain

and a top cover were made by the black commando cloth to completely block the outside

ambient light. A heavy-duty camera mounting bracket is mounted on a 2 m long stainless

steel tube with a diameter of 38.1 mm. The spectral imager is attached to the mounting
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Figure 3.6: Illustration of the beam spread and the center beam candlepower (CBCP) of the
MR16 halogen lamp

bracket by a customized mounting plate. The spectral imager can be moved up and down

along the steel tube when the mounting bracket loosens from the steel tube. When the

mounting bracket is fastened, the adjustment nob on the mounting bracket can be used to

fine tune the position of the imager in a range of 0-100 mm.

Lamps were mounted on the horizontal aluminum beams to achieve good light projection

angles. However, the setup of the illumination unit is flexible and could be optimized for

specific application requirements. A tripod with a 3-way head was modified to be used as

the sample stand, so that the distance between the sample and the spectral imager can be

easily adjusted without moving the spectral imager. Moreover, the orientation of the test

sample can be easily adjusted by using the 3-way head of the tripod.
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Figure 3.7: The hardware configuration of the LCTF-based spectral imaging system
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3.5 Software Overview

A software program was developed to control the InGaAs camera and the LCTF to collect

spectral images. The software was developed by using the LabVIEW graphical programming

language. The advantages of the LabVIEW platform are its rich GUI components and capa-

bilities for hardware control. The LabVIEW NI-IMAQdx toolkit provides a high level tool to

control the InGaAs camera via the Camera Link interface. The VariSpec Software Developer

Kit (SDK) (Cambridge Research & Instrumentation, MA, U.S.A) provides a set of LabVIEW

sub-virtual instruments (sub-VIs), which were used for controlling the LCTF. The software

comprised a main function module and a number of sub-modules, which were developed as

LabVIEW sub-VIs. As shown in figure 3.1, the software modules were organized into three

layers (hardware I/O, data collection and processing, and GUI) to maximize the reusability

of modules and the flexibility of the software program. The lowest hardware communication

layer sends commands and receives data from hardware components. The data collecting and

processing layer contains all processing modules for hardware control, data collection, data

processing, and system configuration. The GUI layer provides the graphic user interfaces of

the system.

The software can be operated under two modes: hyperspectral imaging or multispectral

imaging. Before starting a scan, the user selects the system operation mode (HSI or MSI),

and set corresponding scan parameters. For a hyperspectral image acquisition, the user needs

to specify the start and the end wavelength numbers of the spectral region to scan, and the

spectral interval between bands in the spectral region. For a multispectral image acquisi-

tion, the user has to specify the band numbers of all wavelengths that need be scanned.

The software also provides several advanced functions for operating the system, such as auto

correction, auto naming, and selection of region of interest, etc. During the data acquisition,

images at each band are displayed in the live preview window on the main GUI. The recon-

structed hyperspectral or multispectral image file will be automatically named and saved

into the pre-defined path.
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3.6 System Calibration and Characterization

Since a spectral image records the spectral and image characteristics of the test object, it

is essential that the system accuracy be guaranteed in both spectral and spatial domains.

A well calibrated spectral imaging system has to test and calibrate all critical aspects that

would affect the system performance, including wavelength accuracy, spectral sensitivity,

spectral resolution, spectral linearity, spatial resolution, spatial contrast, the uniformity of

field illumination, and lens functions etc.

For an LCTF-based spectral imaging system, all hardware components have to be regu-

lated precisely before integration. Unfortunately, the fully calibration of all components indi-

vidually requires spatial, spectral and optical tests with particular calibration tools, which is

a formidable task that beyond the capability and scope of most laboratories. To simplify the

calibration task to a manageable level, this LCTF-based spectral imager was treated as a

single unit in calibration tests. Thus, the calibration tests treated the LCTF-based spectral

imager as a “black-box”, and didn’t explicitly calibrate the camera, the lens and the LCTF

separately. With this premise, the LCTF-based spectral imaging system was meticulously

calibrated. Moreover, some essential parameters like the spatial and spectral resolution of

the imager were also measured to characterize the performance of the system.

3.6.1 Image preprocessing

Before each calibration test, dark images of the system were measured by completely covering

the optical entrance of the spectral imager. The dark images recorded the internal noise signal

mainly caused by the dark current within the InGaAs camera. In all following calibration

tests, dark images were measured and subtracted from the hyperspectral and multispectral

images.
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3.6.2 Calibration Tests in Spectral Domain

3.6.2.1 Spectral Accuracy

A pencil style krypton calibration lamp (model 6031, Oriel Instruments, Stratford, CT, USA)

powered by an AC power supply (model 6045, Oriel Instruments, Stratford, CT, USA) was

scanned to test spectral accuracy. The lamp was scanned in the spectral region of 900 nm -

1700 nm with 1 nm intervals. The lamp was scanned three times and the three hyperspectral

images were averaged. A square ROI was selected on the averaged lamp image to cover the

lamp light tube area. The mean spectrum of the lamp light tube was calculated from the

extracted data. Figure 3.8 shows the spectra of the krypton calibration lamp measured by

this system and the spectra provided by the lamp manufacturer. The wavelength location

values of eight spectrum peaks (975, 1182, 1318, 1363, 1443, 1475, 1528, and 1685 nm) were

identified and compared to the known krypton spectrum published by Sittner and Peck

(1949) and the spectrum provided by the lamp manufacturer (Newport, 2010).

Generally, the spectrum of the krypton lamp measured by this LCTF-based spectral

imaging system matched the published krypton spectrums accurately. Due to the 20 nm

bandwidth of the system, spectral peaks were shown as crests instead of straight lines. The

peaks at wavelength 975 nm, 1363 nm, and 1443 nm precisely matched the krypton lamp

spectral datasheet published by the lamp manufacturer. Since the spectral datasheet of the

lamp manufacture didn’t provide corresponding data, peaks at wavelength 1182 nm, 1318 nm,

and 1475 nm were compared to the krypton spectrum published by Sittner and Peck (1949),

and the location errors of these three wavelength peaks were less than 1 nm. Two peaks

(1528 nm and 1689 nm) showed obvious deviations from the published krypton spectrum.

These deviations were caused by the relatively large bandwidth of the system (20 nm) and

the short location distance between the two peaks, which resulted in a combination of two

spectral crests. Thus, the strong spectral peaks at 1528 nm and 1689 nm can be interpreted

as the combinations of wavelength peak pairs of 1523.9 nm and 1533.4 nm, 1678.5 nm and

1689 nm, respectively.
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Figure 3.8: The spectra of 6031 Krypton Lamp: (a) adapted from the lamp manufactory
catalog (Newport, 2010), and the spectrum was measured with MIR 8025 FT-IR with CaF2
beam splitter and InGaAs Detector; (b) measured by this spectral imaging system in the
spectral region from 900 nm to 1700 nm.
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3.6.2.2 Sensitivity

Ideally, the spectral output of a spectral imaging system should be consistent at wave-

lengths that the test object has identical reflectance spectral characteristics. That means the

sensitivity (responsivity) of a spectral imaging system should be consistent in the working

spectral range. The sensitivity of the LCTF-based spectral imaging system is determined by

a combination of the spectral output of the light source, the transmittance of the LCTF, the

transmittance of the lens, and the sensitivity of the InGaAs camera, which all are wavelength-

dependent. Evans et al. (1998) reported a linear and a logarithmic method for leveling

LCTF-based spectral imaging system sensitivity by controlling the LCTF attenuation and

the camera gain. A similar approach was used in this work to level the system spectral sen-

sitivity by controlling the camera exposure time and gain. However, the camera exposure

time was used instead of the LCTF attenuation because the camera exposure time is easier

to be manipulated. Moreover, increasing the camera exposure time can improve the signal

to noise ratio of the system.

To obtain the original spectral response of the system, a 99% diffuse Spectralon target

was scanned in the spectral region of 900 nm -1700 nm with 1 nm increments. The mean

reflectance spectrum of a 30×30 pixel ROI was extracted from the center region of the target.

Based on the visual observations of the mean spectrum collected, the system spectral region

was divided into several sections to apply different camera exposure times. The InGaAs sensor

provides a number of preset camera operation configurations that use different exposure

times. Instead of assigning a specific exposure time to each individually wavelength band, the

preset camera operation configurations were used to adjust the camera exposure time because

those preset operation configurations also offered several useful camera-level functions, such

as the FPA uniformity correction and the bad pixel correction. Direct manipulation of the

camera exposure time will result in the loss of these applied functions. After the system

spectral sensitivity was adjusted by applying preset camera operation configurations, the

digital gain was used to fine tune the system sensitivity to a consistent level. The mean
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reflectance spectrum of the Spectralon target was obtained again by using the previous

method. A MATLAB program (2009b, The MathWorks, Natick, MA, U.S.A) was written to

calculate the gain values for each wavelength band to make the system spectral sensitivity

uniform. These wavelength-dependent camera exposure times and gains were saved to a text

profile file. Using the profile file, the image acquisition software program alters the camera

exposure time and gain correspondingly to calibrate the system sensitivity at each wavelength

during image acquisition. Figure 3.9 illustrates three mean spectra of the Spectralon target

before leveling sensitivity, after controlling the exposure time, and after applying both the

camera exposure time and the digital gain control, respectively.

The dot curve in figure 3.9 shows the spectrum of the target scanned with the default

camera exposure time (7.47 ms) and without gain control. It showed the great disparities

at different wavelength regions. The system sensitivity was very low in the spectral regions

below 970 nm and above 1670 nm. Thus, the working spectral range of this system is from

970 nm to 1670 nm. In the range of 970 nm - 1670 nm, the spectral signature curve showed

three ascending plateaus from the low wavelength end to the high wavelength end. The

system sensitivity in the region of 1500 - 1670 nm had three-fold increase over the region

below 1150 nm, which revealed a strong need of leveling system sensitivity. Thus, multiple

exposure time values (up to 16.57 ms) were applied to level up the system sensitivity below

1500 nm. After adjusting the exposure time, the system sensitivity had been increased 25% to

150% in the spectral region below 1500 nm. Finally, after applying wavelength by wavelength

gain control, the system sensitivity curve was corrected to a relative flat line (figure 3.9). The

means and standard deviations of these three curves are listed in the figure 3.9. The standard

deviation of the reflectance spectrum of the 99% diffuse Spectralon target was reduced from

47.5% of the mean to 0.76% of the mean after correction, which indicated that the overall

uniformity of the system spectral responsivity at the spectral axis had been great improved.
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Figure 3.9: Reflectance spectra of the Spectralon 99% diffuse target before leveling the system
sensitivity, after adjusting the camera exposure time, and after applying both the exposure
time control and the gain control, respectively.

3.6.3 Linearity

In spectral imaging, the spectral signatures of the test object are built upon the pixels’

intensity values of images. Thus, the linearity of system’s response is a vital factor for a

spectral imaging system. Ideally, the pixel intensity value of the system output should change

linearly to the input light intensity. To verify the linearity of the system, a Spectralon multi-
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step contrast target (model SRT-MS-050, LABSPHERE, NH, USA) was used. The target

was a 127 mm × 127 mm square panel and consisted of four side-by-side panels which had

equal reflectance of 99, 50, 25 & 12%, respectively. In this work, the target was scanned

three times continuously from 900 nm to 1700 nm with 1 nm increments, and then the three

captured hyperspectral images of the target were averaged, resulting a spectral image (T).

The 99 % diffuse reflectance Spectralon target was also scanned to provide the white reference

image (R). Dark current image (D) was recorded by averaging three scans as well. Thus, the

following equation was used to convert the raw hyperspectral image of the multistep contrast

target to a percentage image (I):

I = 99× T −D
R−D

From the converted percentage hyperspectral image of the multistep contrast target, a 30 ×

30 pixels ROI was extracted on each of four small reflectance panels and the mean spectra of

ROIs were calculated. Figure 3.10(a) shows relative reflectance values of four panels in the

spectral range of 950 - 1700 nm. Spectra of the four spectral contrast panels were approxi-

mately parallel, which indicated a linear relationship between the system input and system

output. It should be noted that the real reflectance rate of the 99% diffuse reflectance Spec-

tralon target varied from 98.3% to 98.8% in the spectral range of 900 - 1700 nm. Thus,

the reflectance values of a reflectance panel have small variations between 900 nm and 1700

nm. Figure 3.10(b) shows the linear equation obtained from the linear regression analysis

by using the standard reflectance values (99%, 50%, 25%, and 12%) and the observed mean

reflectance values (97.5%, 54%, 22.8%, and 15.9%) of four panels. The result (the coefficient

of determination (r) = 1) confirmed the spectral linearity of the system.
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Figure 3.10: (a) Reflectance spectra of four Spectralon contrast panels (99, 50, 25 & 12%
reflectance), measured by the LCTF-based spectral imaging system; (b) the linear regression
plot of observed mean reflectance values and standard reflectance values of four Spectralon
contrast panels.
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3.6.4 Calibration Tests In Spatial Domain

3.6.4.1 Field of View

Field of view (FOV) describes the size of the area that is visible to the imaging system. FOV

is often depicted by the angle of view (α). Calculating the angle of view as a function of

distance enables system users to determine the optimal distance between the test object and

the camera of the spectral imager. In the spectral imaging system, the narrow angle of view

of the LCTF may change the FOV of the lens. Therefore, the FOV of the spectral imaging

system should be measured on-site instead of an approximation based on the parameters of

system components. In this work, a plastic transparent ruler was placed on a white Teflon

board and imaged by the spectral imaging system from 950 nm to 1700 nm with the 50

nm intervals. The vertical heights of the camera’s views were measured when the object-to-

imager distances were set to 0.5 m to 1.2 m, with 0.1 m increments. Figure 3.11 shows the

results of the test and the linear relationship between the vertical FOV and the object-to-

imager distance. The FOV of the system was verified to be linear to the object-to-imager

distance. When the object distance was 50 mm, the actual area imaged by the system was

77 mm × 61.5 mm (3 inch × 2.4 inch). Since the slope of the linear regression equation was

0.122, the actual angle of the view of the system was equal to: arctan (0.122) × 2 = 13.9 ◦.



52

Figure 3.11: The vertical FOV of the system versus the distance between the test object and
the lens of the LCTF-based spectral imager.

3.6.4.2 Spatial Resolution

The spatial resolution of the system was measured using a USAF 1951 resolution paper

target (Edmund Optics Inc. Barrington, NJ, USA). The target was placed under the spectral

imager, perpendicular to the optical axis of the system. The distance between the spectral

imager and the target was adjusted until the overall test pattern fit in with the image plane.

The target was scanned three times in the spectral range of 950 - 1700 nm with the intervals

of 50 nm. Images were extracted from the hyperspectral image by using the ENVI software

(ITT Visual Information Solutions, Boulder, CO, U.S.A). To quantify the spatial resolution,

the horizontal and vertical histogram profiles of lines were extracted from the ruling sets

(three identical bars in each set) in the resolution test chart. Intensity peaks and valleys of
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histogram profiles were identified and the peak to valley ratio (PVR) of intensity profile was

calculated for each ruling set, as shown in figure 3.12. A MATLAB program was written

to calculate the PVRs of each ruling set in each extracted test chart image. A ruling set

was deemed to be discernible when its PVR was larger than
√

2 (Gebhart et al., 2007). By

this way, the system spatial resolution was recognized at the tested bands (figure 3.13). The

measured spatial resolution of the system was from 3.17 to 2.52 line pairs per millimeter

(lp/mm) in the spectral range from 1000 nm to 1650 nm, and 2 lp/mm at two ends (950

nm and 1700 nm). The results indicated that the spatial resolution of the system meets the

design criterion (1 lp/mm).
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Figure 3.13: Spatial resolution of the spectral imaging system measured by using the 1951
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3.6.4.3 Lens Distortion

Lens distortion is one of the major concerns in calibration of machine vision systems. Accu-

rate modeling the lens distortion requires the use of some complex non-linear techniques

or the combination of linear and non-linear techniques (Remondino and Fraser, 2006). The

planar checkerboard pattern (Zhang et al., 1999) is a common target used for testing and

correcting lens distortion. In this work, a simplified approach was developed to estimate and

calibrate the lens distortion based on the planar checkerboard pattern. A square checker-

board pattern (10 × 10) was printed on a piece of A4 transparent film. The target was

mounted on a flat Teflon sheet to create a planar checkerboard pattern target. The planar

checkerboard target was scanned from 950 nm to 1700 nm with intervals of 50 nm. Images
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at the wavelength 1000, 1100, 1200, 1300, 1400, 1500 and 1600 nm were extracted for esti-

mating the image distortion caused by the lens. The method used is demonstrated in figure

3.14. Mean histogram was first calculated for each raw and each column of the test pattern.

The first derivative of each histogram was computed. The absolute local maxima in the first

derivative plot of each histogram were identified to indicate the positions of the internal

borders between white and black grids. By comparing the positions of each internal border

in rows/columns, the distortion of the lens can be estimated.

 

Figure 3.14: The schematic for estimating the lens distortion.
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Figure 3.15 demostrates the positions and the first derivative values of the mean his-

tograms of rows in the checkerboard target image at 1200 nm. At the 3rd, 4th, and 5th rows

(from left to right in figure 3.15), the border positions kept constant. For all other rows, the

positions of the internal borders showed very small (1-pixel) differences. These differences

could be caused by the lens distortion or other factors such as the blur of the borders in

the images. Thus, these small shits of the borders’ positions were treated as acceptable.

Similar results were obtained from the extracted images of the checkerboard target at other

wavelengths. In summary, the distortion of the lens was confirmed to be an acceptable level.

Figure 3.15: The scatter plot of the derivative values and positions of absolute local maxima
in the first derivative plots of the mean histograms of rows in the image of the checkerboard
target (at 1200 nm).
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3.7 Demonstration

Water, 95% ethanol, sugar, and wheat flour were scanned by this LCTF-based SWIR system

to demonstrate the system’s capability for distinguishing agricultural materials in spectral

and spatial domains. The goal of the test was to differentiate water from ethanol, and wheat

flour from sugar. In the test, two liquid materials (3 ml 95% Ethanol and 3 ml water),

and two solid materials (5 grams pure sugar and 5 grams wheat flour) were placed in the

individual transparent glass plates. The plates with liquid materials were put on the sample

stand side by side (figure 3.17) and then were scanned by this spectral imaging system from

950 nm to 1700 nm with 2 nm intervals. The process was repeated to scan the plates with

solid materials. A dark image and an image of the 99% white reference were also captured

for converting the collected images to percentage images. On the image area of each plate,

a 10 × 10 pixels ROI was selected and the mean reflectance spectrum of the ROI was

calculated. Figure 3.16 illustrates the extracted reflectance spectral signatures of these four

materials. The spectrum of the water plate showed a lower reflectance than the spectrum

of the plate with 95% ethanol, while the spectrum of the plate with wheat flour showed a

higher reflectance than the spectrum of the plate with sugar. Reflectance differences were

calculated wavelength by wavelength to identify the wavelengths that could show the best

contrasts between the plates of water and the plate of ethanol, and between the plate of sugar

and the plate of wheat flour. The two-end arrows in figure 3.16 indicated two wavelength

bands which had biggest reflectance differences between the spectra of water and ethanol

(1400 nm, marked by the left arrow), and between the spectra of sugar and wheat flour (1500

nm, marked by the right arrow).
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Figure 3.16: The reflectance spectra of 95% ethanol, water, sugar, and wheat flour in the
wavelength range of 950 nm - 1700 nm.

Figure 3.17 demonstrates the images of the plate with water and the plate with 95%

ethanol at 1100 nm and 1400 nm, and the images of the plate with sugar and the plate with

wheat flour at 1100 nm and 1500 nm. In the image taken at 1100 nm, water and ethanol was

shown as transparent liquid in plates and it’s very difficult to distinguish them on the image.

In the image taken at 1400 nm, because water absorbed more light energy than ethanol at

this band, the plate with water was about 7 times darker than the ethanol plate on the image.

Thus, water and ethanol can be easily distinguished using the image at the wavelength 1400

nm. Similar patterns can be observed on the plates with solid materials, the mean intensity

of the wheat flour plate was 90% greater than the mean value of the sugar plate in the image

taken at 1500 nm, whereas the pixel intensity difference between these two plates was only



59

20% in the image of 1100 nm. Therefore, using the intensity information provided by the

image taken at 1400 nm, sugar and wheat flour can be easily distinguished.

Figure 3.17: Spectral images of water, 95% ethanol, sugar, and wheat flour.

3.8 Conclusions

A dual-mode LCTF-based shortwave-infrared spectral imaging system was developed for

safety and quality inspection of food and agricultural products. The data acquisition software

can be used to control the hardware for acquiring hyperspectral images or multispectral

images in the spectral region of 900 nm -1700 nm. The system was fully calibrated and

optimized in both spatial and spectral domains. It was shown that the system has a 13.7

◦ angle of view and its spatial resolution is from 2 lp/mm to 3.17 lp/mm. The spectral

responsivity of the system was corrected and the spectral accuracy and spectral linearity of

the system were also confirmed by calibration tests. Results of the validation test showed
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that the SWIR spectral imaging is a promising technique for differentiating agricultural

materials. Particularly, the system is suitable for spectral imaging applications that require

fast selection of spectral bands and high quality images.
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Chapter 4

Development of the Data Acquisition Software for an LCTF-Based

Shortwave Infrared Spectral Imaging System

4.1 Overview

Software development is a major challenge for developing a spectral imaging system. This

chapter presents the design and development of a LabVIEW program for the liquid crystal

tunable filter (LCTF) based spectral imaging system. The goal was to develop a robust and

flexible image acquisition software program that can be used by the LCTF-based spectral

imaging system. The software was developed by using the LabVIEW graphic programming

language. The architecture, design, and implementation of the program are described and

discussed in depth in this chapter. This program has been successfully employed to an LCTF-

based spectral imaging system, which was developed for food safety and quality inspection.

It has been proven that the software program is a reliable and flexible tool to control the

LCTF-based spectral imaging system for spectral image acquisition.

4.2 Introduction

Spectral imaging, which includes hyperspectral and multispectral imaging, is a rapidly

growing area in food safety and quality inspection. In the past decade, spectral imaging

hardware has become more cost-effective due to the advances in electronics and optics.

Spectral imaging, particularly hyperspectral imaging, has been applied for various purposes.

As a result, the need for the high performance spectral imaging systems has grown rapidly.

A spectral imaging system, nonetheless, requires sophisticated software to control hardware,

65
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and acquire and process spectral images. Currently, commercial hyperspectral software like

ENVI (ITT Visual Information Solutions, CO, U.S.A) is derived from the remote sensing and

can provide powerful functions for displaying and analyzing spectral images. But the spectral

image acquisition software is still a grey area. Currently, spectral imaging data acquisition

software is often provided by hardware manufacturers. This kind of software is often with

inadequate functions, and limited flexibility and extensibility. Actually, a spectral imaging

system is a complex integration of optical and electronical hardware components, which are

integrated and controlled by the software. In practice, a small change of the lighting could

require re-calibration and re-optimization of the system hardware and software. Therefore,

spectral image acquisition software has strict requirements on flexibility and extensibility.

As a result, many researchers and engineers have to design and develop their own hyper-

spectral image acquisition software programs due to their unique hardware configurations,

or requirements for additional functions and superior performance.

Although most publications of the spectral imaging applications included some descrip-

tion of the software, only a few introduced the design and implementation of their software

programs in detail. Lerner and Drake (1999) demonstrated the design of a software program

for a line-scan microscopy hyperspectral imaging system in the spectral range of 385 nm - 750

nm. Their program was developed on LabVIEW and can collect 242 spectra at each line that

it scanned. However, the paper put emphasis on presenting its software’s functions rather

than discussing software design strategies. To our knowledge, there are few publications that

discussed the software development for the LCTF-based shortwave infrared spectral imaging

system. In fact, LCTF-based spectral imaging has many special requirements and consider-

ations. This chapter describes the design and implementation of the software program for

spectral image acquisition, using the hardware system described in Chapter 3.

Software architecture is a critical factor for the success of a software program (Bass

et al., 2003). To cope with the complexity of the spectral imaging system, the software for

spectral image acquisition requires a well-designed architecture. The finite state machine
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(FSM) model, which is often described by a “Moore machine”, is a powerful design pat-

tern for implementing complex decision-making algorithms. It is one of the most common

software architectures of controlling systems (Wagner et al., 2006). The FSM can provide

good support for both design and implementation phases of software development. It allows

dynamic operations of the system by defining the system operations to a number of states

and providing flexible transitions between the states. Due to its effectiveness and high flexi-

bility, the FSM is one of the most common software structures used by real-time applications

(Williams, 2006).

Many programming languages/platforms, such as C++ (Evans et al., 1998; Yoon et al.,

2010), Microsoft Visual Basic (Kim et al., 2001), and LabVIEW (Lerner and Drake, 1999;

Martin et al., 2006), have been used to develop HSI/MSI software. Selection of a program-

ming platform depends upon many factors, including the skill of the developer, the type

of drivers/modules/libraries provided by the hardware manufacturer, and the extensibility

and reliability of the platform, etc. The software presented here was developed on LabVIEW

platform because of its capability for controlling electronical hardware. Another advantage of

LabVIEW is its rich graphic user interface (GUI) widgets, which can be easily linked to and

control the hardware components of the spectral imaging system. Moreover, LabVIEW has

gained recognition for its simple graphic dataflow programming language and low learning

curve for new programmers.

The objectives for developing this software program were to design and implement a

LabVIEW program to collect spectral images for the LCTF-based spectral imaging system,

and optimize the flexibility and extensibility of the software for future maintenance and

enhancement.

4.3 Hardware System Overview

A spectral imaging system was developed to capture hyperspectral or multispectral images

in the spectral region of 900 - 1700 nm for reflectance and transmittance measurements.
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The system hardware included a spectral imager, an illumination system, the frame grabber,

and a computer. The essential hardware component of the system was the spectral imager,

which includes a liquid crystal tunable filter (Model Varispec LNIR 20-HC-20, Cambridge

Research & Instrumentation, MA, U.S.A), an InGaAs camera (Model SUI320KTS-1.7RT,

GOODRICH, Sensors Unlimited, Inc, U.S.A), and an optical focusing lens (Model SOLO 50,

GOODRICH, Sensors Unlimited, Inc, NJ, U.S.A). The bandpass of the LCTF be tuned over

the spectral region 850 -1800 nm, with 20 nm FWHM (Full-Width at Half-Maximum) and

a working aperture of 20 mm. It takes 50 ms to 150 ms for the LCTF to tune the bandpass

to a specific wavelength.

The spectral response of the InGaAs camera is from 900 nm to 1700 nm, which is part

of the spectral response region of the LCTF. Thus, the HSI imager has a spectral response

region from 900 nm to 1700 nm. The digital output interface of the InGaAs camera was a 12

bit Base Configuration Camera Link. A frame grabber (NI PCI-1426, National Instruments

Corporation, U.S.A) is linked to the InGaAs camera and is used to capture 12-bit 320 × 256

pixels gray images with a maximum speed of 60 frames per second (fps). The light source

was provided by four quartz halogen lamps (MALIBU 81664, Intermatic, IL, USA). A tripod

with a 3-way head was modified and used as the sample stand, so that the object-to-camera

distance and the orientation of the test sample can be easily adjusted. To demonstrate the

versatility of the system, an additional digital color CCD camera was added. The color

camera can collect the complementary color information of the test object since this spectral

imager was designed to collect spectral images in the shortwave infrared (SWIR) region.

Figure 4.1 shows the schematic of the system hardware setup.
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Figure 4.1: The schematic of the LCTF spectral system hardware
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Figure 4.2: The diagram graph of the three-tier structure of the data acquisition software

4.4 Software Design

The software was designed to a three-tier structure, as shown in figure 4.2. A set of toolkits

provided by the National Instruments form the low level I/O communication tier, which

sends commands and collects data from the hardware components. The data collecting and

processing tier contains the most of the processing models for controlling hardware, collecting

data, and processing images. The graphic user interface (GUI) tier built on LabVIEW virtual

instruments is the topmost level of the system, which provides user interfaces for the system

operators. All modules were written by the LabVIEW graphic programming language and

organized as virtual instruments (sub-VIs). The details of these modules are discussed in

following sections.

System operating processes and status were organized by using a finite state machine

model. When the software is operated by a user, different user actions from the user inputs
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lead to different processing segments. These segments can either be followed by another

segment, or wait for another user event or the end the process flow. In a FSM, each pro-

cess segment/status is modeled as a state. The process flow and transitions of states are

managed by the state machine, depending on the history activities and the current inputs.

LabVIEW provides simple but fully-formed state machine infrastructures to help developers

build applications quickly.

Figure 4.3 demonstrates the main state diagram of this software program. The FSM was

implemented following the design pattern recommended by technical documents of National

Instruments. It consists of while loops, case structures, shift registers and transition codes.

Data collecting segments and data processing segments of the system were modeled to eight

states in the FSM. Each state includes a set of transactions that should be executed as a

batch for the same objective. The program can either enter to another state or stay in the

current state waiting for another user event. As shown in figure 4.3, the application starts a

scan from an “initialization” state, which represents the status that software is loaded into

computer memory, and ready for accepting user’s input. A “stop” state represents the close

of the software program by performing a sequence of clean up actions. State 2-7 represent the

main operating statuses of the program for controlling hardware components and collecting

images. The system can flexibly perform image acquisition processes to collect a color image

and a spectral image together or acquire them independently.

Using the FSM design pattern, the program can easily adjust the process flow or add more

states into the system based on the requirements of different applications. A typical process

for image acquisition is illustrated in figure 4.4. The system is first initialized by establishing

connections with all hardware components. Then, the software program monitors the user’s

inputs from GUI for setting parameters and waits for the commands to collect images. In this

stage, the user can preview the color/SWIR images, set parameters, specify the directory

for storing collected images, and start an image data acquisition process. In this case, the

image collection starts from capturing a color image. The color image is automatically saved



72

1

8

2 643 5 7

1. INITIALIZATION
2. PARAMETER SETTING
3. WAIT FOR UI EVENTS
4. CHECK PARAMETERS AND HARDWARE CONNECTIONS 
5. COLOR IMAGE ACQUISITION
6. HSI/MSI HEADFILE GENERATION
7. HSI/MSI IMAGE RECONSTRUCTION
8. STOP

Set
parameters

Exceptions Another HSI/MSI scan 

Quit

Only scan 
color image

Preview 
(Default)

Complete

Default Default Start a scan Default Default Default

Only scan 
HSI/MSI image

Figure 4.3: The state diagram for the data acquisition software of the spectral imaging system
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to the predefined directory. Next, based on the parameters set by the user, the head file

for the spectral image cube is created and saved to the predefined directory. After that, the

software controls the spectral imager to take images of the test object at each wavelength

in the specified wavelength region. During scanning, the software program sends commands

to LCTF to tune the filter to a specific wavelength, and then synchronizes the InGaAs

camera to take a snapshot of the view. The image data from the snapshot is first cached

in memory until it is sent to the image reconstruction module, in which the cached image

s pre-processed and then appended to the spectral image cube. After all wavelengths are

scanned, the spectral image cube is named automatically and saved to a predefined path in

computer.

4.4.1 Programming Language and Tools

The LabVIEW graphic dataflow programming language, referred to as the language G, was

used as the main programming language. Using drivers offered by the LabVIEW, the program

can easily communicate with the hardware devices through standard software interfaces. The

LabVIEW NI-IMAQdx toolkit provided very good supports to the Camera Link interface of

the InGaAs camera. Another benefit of using LabVIEW was that the graphical programming

approach allows programmers to implement a program quickly by dragging and dropping

virtual representations of lab equipment. This feature can shorten the time period required

for the software development. The whole system development work was conducted in the

Windows XP (Windows XP SP2, Microsoft, U.S.). Two open source software programs,

Subversion 1.6 and TortoiseSVN 1.6.5 (Tigris.org, CollabNet Inc.), were used to maintain

the versions of the source code.
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Figure 4.4: The flow chart of a typical spectral image acquisition process
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4.5 Description of Software

4.5.1 Graphic User Interface (GUI)

The GUI of the program provides user friendly interfaces for users. It contains a main window

and several popup windows. The main window includes five panels: the camera setting panel,

the LCTF setting panel, the image preview panel, the system operation panel, and the

system status panel. Figure 4.5 shows the main GUI window for spectral image acquisition.

The camera setting panel provides the user the interface for setting the camera name and

other parameters. The LCTF setting panel was designed to control the LCTF for collecting

spectral images. The user can switch the system mode between the HSI and MSI modes by

using the two-item radio controls on the top of the LCTF panel. When the user makes a

choice of conducting a HSI or MSI scan, the corresponding inputs in the LCTF setting panel

are enabled for setting parameters. The parameters stored in the global configuration file

will be applied if the user doesn’t set parameter values. The image preview panel is used for

previewing images before or during HSI/MSI scans. The status panel consists of two read

only text input boxes, for prompting help messages to the user and displaying the status

information of the system, respectively. In addition to the main operation window, a few

popup windows are used for selecting a region of interest (ROI), set camera parameters, and

setting multispectral wavelength numbers.
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4.5.2 System Configuration and Log Files

The configurations of the system are stored in several text configuration files. Each configu-

ration file includes a number of keywords written in ASCII. Two types of configuration files

are used for this program: the global configuration file and the module-level configuration

file. The global configuration file stores the initial settings and some important parameters

of the system, such as the default camera name, the default LCTF interface name and the

threshold value for the temperature of LCTF, etc. The module-level configuration files store

the parameter settings for processing modules, such as the default start and end wavelength

numbers for the hyperspectral imaging scanning. All configuration files are ASCII text files

and users can change the values of keywords by any text editor. Another type of text file,

known as the log file, is used to record important user activities and system error/warning

messages occurred during system operation. The log file was created and managed in a sim-

ilar approach with the configuration files and it was also used for debugging the program

during the system development stage.

4.5.3 The Camera Module

The camera module was developed to control the camera to acquire, display, and save

monochrome images through the frame grabber. This module was built on the NI-IMAQdx

VI library. The NI-IMAQdx VI library provides groups of application programming interface

(API): low-level functions and high level functions. Low level functions can be used for low-

level camera control, such as start/stop image acquisition, set/change a camera attribute,

and get error information, etc. High level functions encapsulate low levels functions for cap-

turing images more quickly and easily. This camera module mainly uses high level functions

of the NI-IMAQdx library. The NI-IMAQdx library provides three methods of using high

level functions: snap, grab, and sequence. The snap method captures a single image to com-

puter memory at one time. The grab methods grabs a number of images continually but

only the last image can be used for processing and analysis. The sequence method acquires
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a specific number of images in a sequence and all these images are saved into the internal

buffers for further processing.

A spectral image acquisition has to continuously take images at a serial of specified

wavelength bands. The sequence method was first considered since it can acquire consecutive

images in a high-speed. However, a hyperspectral image cube contains data up to several

hundred megabytes. These image data have to be cached in internal and user buffers, which

most likely to exhaust the system resources and lead the program to be unstable. The grab

method is also not appropriate because the problem of hardware synchronization. After the

camera captures one image, the program has to wait for 50-150 ms for tuning a wavelength

by the LCTF. Thus, using the snap functions, the snap image collection process has to be

manually suspended for synchronizing hardware, which could make the program unstable.

In summary, the grab functions were used to acquire images in this program.

Figure 4.6 demonstrates a process of collecting a spectral image by using the grab func-

tions. In the initialization stage, a camera session is first opened to identify the camera and

build a camera session. To establish a camera session, the camera name and camera con-

trol mode have to be specified. As for the camera control mode, the NI-IMAQdx provides

two options: controller or listener. The controller mode controls camera for collecting image

data, while the listener mode can only receive image data. This program uses the controller

mode. After initialization, the program configures the camera attributes using the param-

eters pre-defined in the InGaAs camera configuration file. In a LabVIEW application, the

camera configuration file is managed by the National Instruments Measurement & Automa-

tion Explorer (NI-MAX) software. In runtime, the camera attributes can also be changed

by using the low level functions in NI-IMAQdx VI library. After configuration, images are

acquired by using the snap functions iteratively. In this stage, the module copies 12-bit

monochrome image data from the camera internal buffers to computer memory. In the com-

puter, the raw data is decoded to the image type “Image I16” for further processing and
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Figure 4.6: The flow chart for a snap-shot spectral image using NI-IMAQdx library

displaying. Finally, the camera session is closed and the camera is disconnected from the

computer when the acquisition is completed.

4.5.4 The LCTF Module

The LCTF module was designed to control the LCTF for selecting wavelengths in the spectral

region of 900 - 1700 nm. Although the actual data communication interface is a USB interface,

the LCTF is recognized as a virtual COM device at 9600 baud rate in the computer. The

manufacturer (Cambridge Research & Instrumentation, Inc., MA, U.S.A) provided a software
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developer’s kit (SDK) for controlling the LCTF. The SDK included a set of sub-VI LabVIEW

files for LabVIEW applications. These sub-VIs provide fundamental functions for tuning the

wavelength of the LCTF and inquiring the LCTF status.

Based on the image acquisition mode that the user selected, the LCTF module can control

the LCTF for acquiring hyperspectral images or multispectral images. For a hyperspectral

image acquisition, the user must set up a start wavelength band, an end wavelength band,

and the wavelength interval. All values are integers with nanometers as units. Base on these

parameters, the LCTF module automatically calculates the next wavelength number on

which it has to tune the LCTF during scanning. In contrast, the user has to specify the

wavelength numbers and the order of the wavelength bands in a multispectral imaging scan

(figure 4.7). During scanning, the LCTF module tunes the bandpass of the LCTF to the

pre-defined wavelength bands in order.
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The temperature of the liquid crystal (LC) cells is monitored in the program for guar-

anteeing the safety of the equipment. The LCTF only allows a narrow band of light to pass

through it and blocks light in all other bands. As a result, the energy received by the filter is

several hundred or several thousand times greater than the energy that passed through the

filter. This system uses halogen lamps as the light source, which emits heat carried by light in

infrared bands. Since this LCTF works in the shortwave infrared region, it does not utilize a

dielectric hot-mirror for reflecting the infrared energy away, which is a common method that

the LCTFs for VIS use. Thus, the majority of the infrared energy will be absorbed by the

LCTF filter. Under some situations like using improper lighting, the energy could accumulate

and damage the LCTF. Thus, it is necessary that the temperature of the LCTF during the

operation period be monitored. This program queries the temperature of the LCTF every

30 seconds when there is no image acquisition task. It also queries the temperature of the

LCTF before and after every HSI/MSI scan. The temperature of LCTF is displayed in the

status window on the main GUI in centigrade. When the temperature of the LCTF exceeds

the threshold value preset in the configuration file, the program will signal with an alarm

and set the LCTF to the sleep mode.

4.5.5 The Spectral Image Reconstruction

The spectral image reconstruction module combines the acquired two-dimensional images

into a three-dimensional spectral image, known as an image-cube. This program stores the

captured raster image data as a stream of binary bytes. The images collected by this software

are in ENVI format. There are three common encoding methods for a spectral image: Band

Sequential Format (BSQ), Band Interleaved by Pixel Format (BIP), and Band Interleaved

by Line Format (BIL). The BSQ stores 2-D spatial images in a sequential order (image by

image) according to the order of the images in the spectral domain. BIP saves spectra of

the pixels in the image cube in a succession order. It first stores the spectrum of the first

pixel, and then save the spectrum of the pixel next to the previous pixel, and so on. The
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BSQ format is suitable for accessing the spatial bands and the BIP format can provide good

performance for extracting the spectral data in the spectral image. The BIL format, however,

is a tradeoff between the BSQ format and the BIP format. The BIL format saves the first

line in the first band, and then iteratively saves the information of the same line at the next

band, until the last band in the spectral image. Then, it saves the second line for all bands

successively, and so on. In summary, since the LCTF-based spectral imaging system collects

2-D images band by band, this program used the BSQ format for encoding the spectral

images due to its simplicity and efficiency for re-constructing the image-cube.

The ENVI spectral image format also requires an ASCII header file for each image file.

In the image header file, the detailed information of the image is described for automatic

image processing. The information is stored as keyword-value pairs in the header file. Crit-

ical keywords for a spectral image include: samples, lines, bands, file type, data type, header

offset, interleave, band names, and byte order. A LabVIEW sub-VI was developed to auto-

matically create, read, and write image header files during scanning. An image header file is

named as the same as the image data file but with different suffix. The ENVI software will

automatically search and read the information in the image header file when an image data

file is loaded.

4.5.6 The Digital Color Camera Control

The digital color camera module was designed to control the compact digital color camera.

Using the LabVIEW USB camera universal toolkit (NI-IMAQ for USB Cameras 1.0, National

Instruments Corporation, TX, U.S.A), the color camera control module is completely inde-

pendent with the camera hardware. Thus, without any change of the software, the CCD

camera can be easily replaced by any CCD camera using a USB interface. The NI-IMAQ

for USB camera provided two types of image acquisition approaches: snap and grab, whose

principles are similar with the snap and grab image acquisition methods discussed in the

camera module. This program utilizes the grab image to continuously acquire single 32 bits
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RGB color images into the computer memory. The last acquired image saved in the buffer

is saved into the computer.

4.6 Conclusions

This chapter demonstrated the development of the image acquisition software for an LCTF-

based spectral imaging system. The software program was developed on the LabVIEW plat-

form by using the LabVIEW graphic programming language. The use of the finite state

machine design pattern maximized the flexibility and expandability of the system. The soft-

ware provides flexible operations for acquiring spectral and color images. Using this pro-

gram, the LCTF-based spectral imaging system can be used to collect: hyperspectral images,

multispectral images, or color images based on users’ needs. The program was successfully

employed by the applications reported in this thesis for collecting spectral images. Results

indicated that the program is a reliable and flexible tool for acquiring spectral images using

the LCTF-based shortwave infrared spectral imaging system.

4.7 Bibliography

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practices, 2nd Edi-

tion. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Evans, M., Thai, C., Grant, J., 1998. Development of a spectral imaging system based

on a liquid crystal tunable filter. Transactions of the ASAE 41 (6), 1845–1852.

Kim, M. S., Chen, Y. R., Mehl, P. M., 2001. Hyperspectral reflectance and fluorescence

imaging system for food quality and safety. Transactions of the American Society of

Agricultural Engineers 44 (3), 721–729.

Lerner, J. M., Drake, L. A., 1999. Hyperspectral imaging in a labview environment.

Proceedings of SPIE - The International Society for Optical Engineering 3605, 264–272.



85

Martin, M. E., Wabuyele, M. B., Chen, K., Kasili, P., Panjehpour, M., Phan, M., Over-

holt, B., Cunningham, G., Wilson, D., Denovo, R. C., Vo-Dinh, T., 2006. Development of

an advanced Hyperspectral Imaging (HSI) system with applications for cancer detection.

Annals of Biomedical Engineering 34 (6), 1061–1068.

Wagner, F., Schmuki, R., Wagner, T., May 2006. Modeling software with finite state

machines: a practical approach. Auerbach Publications, Boca raton, New York.

Williams, R., 2006. Real-time systems development. Butterworth-Heinemann, 30 Corpo-

rate Drive, Suite 400, Burlington MA 01803.

Yoon, S. C., Lawrence, K. C., Line, J. E., Siragusa, G. R., Feldner, P. W., Park, B.,

Windham, W. R., 2010. Detection of campylobacter colonies using hyperspectral imaging.

Sensing and Instrumentation for Food Quality and Safety 4 (1), 35–49.



Chapter 5

Near-infrared Hyperspectral Reflectance Imaging for Early Detection

of Sour Skin in Vidalia Sweet Onions 1

1This article has been partially presented in American Society of Agricultural and Biological
Engineers (ASABE) 2010 Annual International Meeting. Wang, W., Li, C., Gitaitis, R., Tollner,
E.W., Rains, G., Yoon, S.-C., 2010. Near-infrared Hyperspectral Reflectance Imaging for Early
Detection of Sour Skin Disease in Vidalia Sweet Onions, ASABE Annual International Meeting,
Pittsburgh, Pennsylvania, June 20 - June 23, 2010.
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5.1 Abstract

Sour skin is a major onion disease caused by the bacterium Burkholderia cepacia (B. cepacia).

The disease not only causes substantial economic loss from diseased onions but also could

lead to pulmonary infection in humans. It is critical to prevent onions infected by sour

skin from entering storage rooms or being shipped to fresh vegetable markets. This paper

reports the development of a hyperspectral imaging method for early detection of sour skin-

infected onions. In this study, near-infrared hyperspectral reflectance images of 40 Vidalia

sweet onions were taken in 2 nm increments from 950 nm to 1650 nm, before and after

they were inoculated with B. cepacia. Inoculated onion samples were scanned every day

after inoculation for 7 days, while the hyperspectral images scanned before inoculation were

used as controls. Spectral signatures of onion hyperspectral images were extracted from

selected regions of interest. Based on the principal component analysis conducted on spectral

signatures of control and inoculated samples, two optimal spectral bands (1070 nm and

1400 nm) were selected to construct ratio images, which revealed the difference between

the control and inoculated samples better. Mean ratio values at three different areas on the

onion surface (flesh body area, root or neck area, and the whole onion area) were calculated

from ratio images and used as inputs for classification models. The three spatial features

of mean ratio values obtained from band-ratio images were proven to be good indicators

of sour skin-infected onions. When comparing two classifiers, The back-propagation neural

network (BPNN) models performed better (95% accuracy) than support vector machine

(SVM) classifiers (85%-90%) in discriminating control samples and inoculated samples on

day 6 after inoculation. Then, the optimal BPNN classifier using three spatial features of

band-ratio images was applied to classify hyperspectral images of tested onion samples over

the period of 1-7 days after inoculation, respectively. The results of tests showed that the

near-infrared hyperspectral reflectance imaging technique could detect sour skin-infected

onions effectively from day 4 to day 7 after inoculation by achieving overall classification

accuracies of 80%, 85%, 95%, and 100%, respectively.
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5.2 Introduction

Vidalia sweet onion is a world-renowned specialty crop grown in the southeast area of

Georgia. It has been a remarkable success story of a lucrative niche market and contributed

a farm gate value of $138 million in 2009 (Boatright and McKissick, 2009). Consumers like

Vidalia sweet onions due to the onions’ sweet (mild) flavor. Vidalia sweet onions lack of

pungency compounds found in other varieties (Maw et al., 1989). The absence of pungency

compounds, however, makes Vidalia onions more susceptible to fungal or bacterial diseases

compared to other onion varieties. Sour skin (caused byBurkholderia cepacia) is a bacte-

rial disease that can affect most onion varieties (Burkholder, 1950). The exposure of onions

to sour skin infection in controlled atmosphere (CA) rooms is often disastrous because the

infection may spread out gradually and affect healthy onions, resulting in up to 50% storage

losses (Gitaitis, 1994; Tollner et al., 1995). In addition, some strains of B. cepacia, are human

pathogens and have been deemed a leading cause of death in individuals with cystic fibrosis

(CF) lung disease (Chmiel and Davis, 2003; Isles et al., 1984). Therefore, it is critical to

identify and eliminate sour skin-infected onions during the grading process before they are

stored in CA rooms or delivered to flesh vegetable markets. The screening of defective Vidalia

sweet onions on packing lines is currently carried out manually by human graders. However,

sour skin is often limited in a few inner bulb scales at the early stage, and infection can

remain latent until the onion becomes mature (Schwartz and Mohan, 2008). Therefore, it

is difficult for human visual inspection (HVI) to detect sour skin-infected onion. Further-

more, the performance of detecting sour skin by the HVI is subjected to human subjectivity

and inconsistency. Thus, a non-invasive automated detection method that can accurately

discriminate sour skin-infected onions and healthy onions is urgently needed.
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Researchers have explored a number of nondestructive methods for measuring onion

quality and detecting defective onions. X-ray imaging has been studied for detecting internal

defects in Vidalia sweet onions, including voids and foreign inclusions (Shahin et al., 2002;

Tollner et al., 1995). Birth et al. (1985) reported that NIR spectra of onions can be used to

predict dry matter content of intact onions, which indicated that there are some correlations

between internal quality of onions and their NIR spectra. Few studies have been found in

the literature regarding non-invasive detection of sour skin in onions. The gas sensor array

technology was explored to detect sour skin in onions (Li et al., 2009). It achieved 85%

correct classification rate when six gas sensors were used. Although this technology showed a

promising result to detect sour skin, the gas sensors are more suitable in an indoor confined

environment instead of in packing lines.

Hyperspectral imaging (HSI), also named imaging spectroscopy, is another widely used

non-destructive sensing technology that combines advantages of conventional machine vision

and spectroscopy techniques (Gowen et al., 2007; Lu and Chen, 1998). High resolution spec-

tral and spatial information stored in hyperspectral images makes HSI a powerful tool for

studying underlying spectral and/or spatial characteristics of the tested object. In the past,

considerable successful applications have been reported on a broad range of agricultural prod-

ucts for non-invasive quality inspection, such as apples (ElMasry et al., 2008; Kim et al.,

2002; Lu, 2003), citrus (Qin et al., 2008, 2009), pickling cucumbers (Ariana and Lu, 2008),

and poultry (Lawrence et al., 2004; Park et al., 2002; Yoon et al., 2010).

A hyperspectral reflectance image consists of monochrome images over hundreds of bands.

Also, images at neighboring spectral bands are often highly correlated, which contains a lot

of redundant information for classification. Thus, feature selection is a critical and indispens-

able task for hyperspectral image analysis and classification. It is often desirable to select

the most relevant spectral and/or spatial characteristics from substantial features contained

in hyperspectral images of tested objects. Since hyperspectral images are essentially multi-
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variate images, multivariate statistical methods and machine learning techniques have been

widely used for dimension reduction and feature selection (Grahn and Geladi, 2007).

The overall goal of this study was to detect sour skin in Vidalia sweet onions using

near-infrared hyperspectral reflectance images. Specific objectives were to:

• Characterize control and sour skin-infected onions using near-infrared reflectance

images in the spectral region of 950 nm-1650 nm;

• Develop a hyperspectral imaging method for early detection of onions infected by sour

skin;

• Determine two optimal wavelength bands for classification;

• Develop classification algorithms for discriminating sour skin-infected onions from

healthy onions, and evaluate the accuracy and performance of the classification method.

5.3 Materials and Methods

5.3.1 Plant material

One hundred Vidalia sweet onions were harvested in the Vidalia area of Georgia in 2009

and were used for this study. Onion bulbs were visually inspected to remove diseased or

defective bulbs, and then were sorted into medium or jumbo groups based on size. In each

size group, 20 onion bulbs were selected for further testing. As a result, 20 medium and

20 jumbo healthy Vidalia sweet onions were selected as test samples. All 40 onions had

been stored for 3 months in a controlled atmosphere storage room of the Vidalia Onion and

Vegetable Research Center in Tifton, GA prior to use in this study.

5.3.2 Inoculation

The 40 onions were inoculated with a suspension of B. cepacia in sterile tap water. The

concentration of inoculum used in the study was approximately 1×106 colony-forming-units
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(CFU)/ml, which induced rot in one week at 30◦C. Bacterial suspensions were infiltrated

into bulbs (1.0 ml per onion) under the first couple of layers at the root cap. Inoculated

onions were put into plastic bags individually to avoid cross contamination and stored in an

incubator (30◦C) during the test period.

5.3.3 Hyperspectral imaging system

A near-infrared hyperspectral imaging system based on liquid crystal tunable filter (LCTF)

technology was employed for measuring hyperspectral reflectance images of onions. The

system consisted of a near-infrared hyperspectral imager, a frame grabber, an illumination

system, a digital color camera, and a computer with software for hyperspectral image acqui-

sition. The schematic diagram of the system is shown in Fig. 5.1.

The near-infrared hyperspectral imager consisted of a liquid crystal tunable filter (Model

Varispec LNIR 20-HC-20, Cambridge Research & Instrumentation, MA, USA), an InGaAs

camera (Model SUI320KTS-1.7RT, GOODRICH, Sensors Unlimited, Inc, NJ, USA), and an

optical focusing lens (Nikkor 50mm f/1.4D AF, Nikon, Japan). The spectral response of the

monochrome InGaAs sensor is from 900 nm to 1700 nm. The LCTF can tune wavelength

continuously over the wavelength region of 850 nm to 1800 nm, with a minimum 1 nm

interval and 20 nm FWHM (Full-Width at Half-Maximum). Coupled with a frame grabber

(NI PCI-1426, National Instruments, Austin, TX, U.S.A), the HSI imager can capture 12-bit

gray images of 320×256 pixels resolution at spectral bands from 900 nm to 1700 nm, with a

maximum speed of 60 frame per second (fps).

The illumination system consisted of four 10-watt quartz halogen lamps (MALIBU 81664,

Intermatic Incorporated, Spring Grove, IL, U.S.A). Lamps were powered by a stabilized

power supply (12v/DC, 350w). Four lamps were arranged manually so that light on the

imaging area was as uniform as possible. Since the HSI imager could only take images in

near-infrared region, a digital color camera (Microsoft LifeCam Cinema, Microsoft, WA,

U.S.A) was integrated into the system to collect RGB color images of onions to simulate
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Figure 5.1: The schematic view of the near-infrared hyperspectral imaging system

human vision observations. The color camera has high-precision glass lens and can collect

RGB color images of 900×600 pixels resolution with a frame rate up to 30 fps.

The hyperspectral image acquisition software was developed by using LabVIEW 8.2

(National Instruments, Austin, TX) which was installed on a computer (OptiPlex 755, Dell,

Round Rock, TX, U.S.A) with a Intel Duo processor E8200 (6M Cache, 2.66 GHz, 1333

MHz FSB) and a 4 GB RAM (random access memory). The software was able to tune the

LCTF band by band, control the InGaAs camera to take images, and grab data from the

frame grabber to computer memory. After finishing the scans over all bands in the spectral

region, the software constructed a 3-D hyperspectral image cube, and then automatically

saved the image. The digital color camera was also controlled by the software for a color

image acquisition before or after a hyperspectral image scan, so that the color images of the

tested object can be automatically collected.
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5.3.4 NIR Reflectance hyperspectral image acquisition

The 40 onion samples were evenly divided into two groups (Group I and Group II), with 10

medium and 10 jumbo bulbs in each group. For later identification purposes, all samples were

labeled by sequential integer numbers (1-40) written on plastic bags where onions were stored

individually. A sample holder was fabricated to hold an onion bulb so that the onion could be

kept in a fixed position during scanning. The holder consisted of a wooden box (120×120×30

mm) with a hole cut (radius 30 mm) on the top plate. During scanning, onions in the group I

were placed on the sample holder with the neck facing the HSI imager, so that the neck area

of each onion bulb was imaged. Onions of the group II were scanned with the root facing

the HSI imager so that the half bulbs of root side of onions were captured by hyperspectral

images.

The hyperspectral reflectance images of onion samples were collected in a dark room

using the HSI system. The aperture of the lens was set at f/2.0. Before the inoculation,

onion samples were first scanned, and the scanned hyperspectral images were used as images

of “healthy (control) onions”. In the subsequent 7 days after inoculation, all onions were

scanned once every day. After each scan, infection levels and surface symptoms of each onion

were inspected and recorded by a trained inspector. Then, it was replaced in the incubator

(30 ◦C) immediately.

Onions were scanned for 7 days, and then were cut in half from the neck to root and

the outer layers peeled away to examine the infection level caused by B. cepacia. Among

40 onions tested, sour skin successfully developed in 17 onions of Group I and 18 onions

of Group II. In some samples, however, sour skins were slight and limited to the very deep

layers of onions and beyond detections of the HSI system. Thus, only 25 onions (12 onions

in Group I and 13 onions in Group II) that showed sour skin symptoms on the surface at

the end of testing (day 7th) were selected to be further analyzed. For each selected onion,

eight hyperspectral reflectance images (1 before inoculation and 7 after inoculation) were

recorded. In total, 200 hyperspectral images of 25 onion samples were used in this paper.
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5.3.5 Preprocessing of hyperspectral images

Hyperspectral images were preprocessed to obtain relative reflectance hyperspectral images

of samples. The white reference images were obtained by scanning a white reference standard

plate (120mm × 120 mm, Spectralon, Labsphere, North Sutton, NH, USA), which has 98.1%

to 99.3% reflectance in the spectral range of this study (950 nm - 1650 nm). Dark current

images were acquired when the lens of the hyperspectral imaging system was completely

covered by its cap. Using collected white reference and dark hyperspectral reflectance images,

relative reflectance calibration was performed to normalize the intensity values of original

hyperspectral images using the following equation:

IR =
Iraw − Idark
Iref − Idark

where IR is the corrected relative reflectance image, Iraw is the original image without

any correction, Iref is the white reflectance image obtained from the Spectralon panel and

Idark is the dark image. By conducting flat field calibration, image noises caused by dark

current of the camera were removed, and raw hyperspectral images were converted to relative

reflectance hyperspectral images (reflectance value range is 0-1).

5.3.6 Principal component analysis for optimal wavelength selection

Selection of optimal wavelength bands in this study can be thought of as spectral dimen-

sion reduction of the full wavelength bands, since each NIR spectrum is essentially a 1-D

multivariate data that has 351 spectral variables. Principal component analysis (PCA) is

an eigenvector-based algorithm that has been widely used for the dimension reduction of

multivariate data (Rencher, 2002). Using principal components derived from PCA, a low-

dimensional model can be built to best explain the variance in the original data set. The

elements of eigenvectors, called PC loadings, are coefficients that determine the weights of

original variables in new factors. By analyzing the PC loadings, the smaller number of orig-

inal variables, which represent the original dataset best, could be determined. These variables
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could be used to build a fast classifier with less computational complexity than classifiers

using full original inputs. In this study, PC loadings of the first two PCs were analyzed to

select two optimal wavelength bands for the classification algorithm which is discussed in

following sections.

5.3.7 Classification methods based on band ratio images

In hyperspectral and multispectral imaging, an effective technique frequently used is to divide

an image at one wavelength by the image of another band (Ariana et al., 2006). A ratio image

is able to provide unique information that may not be available in single band of the raw

image. In this study, a two-band ratio algorithm was applied to images at two optimal

wavelengths. Ratio images were partitioned to background, flesh body, and neck/root parts

by using masks obtained by image processing. Mean ratio values of flesh body area, neck/root

area, and the whole onion area were used as input features for classification. To test the need

of original image information, these three parameters were also computed on one of original

images at selected optimal wavelength bands. As a result, for each hyperspectral image, six

spatial features were extracted from its image.

For each onion in 25 selected samples, band ratio images were extracted from hyperspec-

tral images of onions scanned before inoculation (control) and day 6, respectively. Grayscale

images at the selected optimal wavelength bands were also extracted. Selected features

described above were calculated on these images. As a result, 50 patterns of onions (25

healthy and 25 diseased) were obtained as dataset I. The dataset was partitioned randomly

into to two parts: a training dataset (60%, 30 patterns) and a testing dataset (40%, 20

patterns). For the use of training Artificial neural networks (ANNs), the training dataset

was further divided into a training set (45%, 22 patterns) and a validation dataset (15%, 8

patterns). The validation dataset was used to stop training of ANN models to avoid overfit-

ting. Based on dataset I, dataset II was created by removing three spatial features from the
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original onion images. That is, dataset II only contained the three features extracted from

band ratio images.

Artificial neural networks (Eberhart and Shi, 2007) and support vector machines (SVMs)

(Cortes and Vapnik, 1995) are very useful and efficient methods for classification. A multi-

layer neural network using back propagation learning rules (BPNN) can learn non-linear

relations between input features and classification labels. SVMs can use linear models to

implement classes that have non-linear boundaries. In this work, these two machine learning

methods have been used to develop classifiers to discriminate diseased and non-diseased

Vidalia sweet onions. Optimal models of classifiers were obtained by trial and error.

The BPNN classifier used in this work was provided by the MATLAB neural network

toolbox (2009b, The MathWorks, Natick, MA, USA). The BPNN model 1, which was used

to classify dataset I, consisted of three layers (6-5-1), with six input nodes, five hidden

units and a single output node. Logistic activation functions were used for the hidden and

output neurons, whereas a linear function was used for the input nodes. The network was

trained by Levenberg-Marquardt back-propagation algorithm with a learning rate = 0.2, a

momentum = 0.2, and initial weights randomly generalized between 0.5 and 0.5. The training

was stopped after 1000 epochs or when the network performance failed to be improved on

validation dataset in 20 epochs. The BPNN model 2, designed for dataset II, had similar

configuration with the BPNN model 1. But it only had three input nodes and three hidden

units since the input feature reduced to three.

The software package called SMO in WEKA 3.6.2 (The University of Waikato, Hamilton,

New Zealand) was employed to develop a support vector machine classifier. In the SVM model

developed for this work, a Gaussian kernel function, called the radial basis function (RBF)

was used as the kernel of the classifier. The exponent value of the RBF kernel was 1.0.
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5.4 Results and Discussion

5.4.1 Characteristics of near-infrared hyperspectral reflectance images

and spectra

Fig. 5.2 shows the mosaic image of one tested onion. It demonstrates images of the onion

at seven wavelength bands from 1000 nm to 1600 nm with 100 nm increments (as shown

in each row) over the testing period from day 1 to day 7 (shown in each column). In fig.

5.2, a dark triangle spot on the left center area can be observed in onion images from 1000

nm to 1300 nm on day 5. This dark spot increased on day 6 and day 7. Alsp, in images at

bands between 1200 nm and 1600 nm, the pixel intensity of the onion root area decreased

along with the development of the sour skin. These observations are in agreement with our

expectation that B. cepacia broke down the inner scale of the onion it colonized, and then

developed towards the outer layers. Hyperspectral images captured the physical or chemical

change of onion tissues beneath the outer surface layer when disease symptoms reach the

layer that hyperspectral system can sense. Based on the visual observation, the best contrast

between the diseased area and the healthy area was in the spectral region from 1100 nm -

1300 nm.

Fig. 5.3 illustrates the mean reflectance spectra of the sour skin-infected onion sample

shown in Fig. 5.2 in the spectral region of 950 nm - 1650 nm over 7 days. Mean spectra were

calculated based on a manually selected ROI that approximately covered the whole onion

area. The control spectrum was obtained from the HSI image scanned before inoculation,

representing the spectrum of the healthy onion. The pattern of the mean spectra in fig. 5.3

indicates a tendency that reflectance intensity of the spectrum in the late stages (such as day

5 and after) is lower than spectra in the early stage. This characteristic matches the cycle of

sour skin development. Sour skin was limited in a few inner bulb scales it occurred initially

before the bacteria were able to affect the neighboring layers closer to the surface. When B.

cepacia affected the scale that the HSI system can detect, the spectrum of the onion showed
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Figure 5.2: The mosaic image of one tested onion in Group II (root facing to the camera) at
seven wavelengths (1000 nm - 1600 nm with 100 nm increments) before (control) and after
inoculation with sour skin inoculum over 7 days.
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Figure 5.3: Mean relative reflectance spectra of one onion infected by sour skin over 7 days.

a step of change. This change can be credited to the increased water percentage in the scale

caused by B. cepacia, which resulted in a higher absorption of light in the near-infrared

region.

Hence, in this work, hyperspectral images of onion taken after day 4 were expected to

contain sour skin information, and could be used for classification. From visual observation

and color images of onions, most of the selected onion samples showed obvious sour skin

symptoms at day 7 that can be easily detected by a human grader. This indicates that, in

this test, the use of hyperspectral images after day 7 does not provide an advantage over

using human visual inspection.
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Figure 5.4: A demonstration of the algorithm for selecting ROIs on onion hyperspectral
images: (a) The gray image at 1200nm; (b) Image partitioned by using density slice tool of
ENVI; (c) Ten ROIs selected on neck and body area on the hyperspectral image of a tested
onion.

5.4.2 Extracting spectral signatures of onions

Hyperspectral images of six randomly selected onion samples were used to provide spectra

for feature selection. Square or circular region of interests (ROIs) were selected manually for

extracting near-infrared reflectance spectra by using the ROI tool in ENVI software (ITT

Visual Information Solutions, Boulder, CO, USA). From direct observations on hyperspectral

images, onion images obtained the best contrast at a narrow spectral band around 1200

nm. Therefore, ROIs were selected on the gray image at 1200 nm. Since onion blubs are

spherical, different areas on onions with non-uniform surface could have different reflectance

and diffuse properties. Thus, for ROI selection, geometric position of pixels on onion images

should also be considered to reduce errors from non-uniform geometric shapes. In addition,

from a preliminary study, root, neck and flesh tissue of onions have slightly different spectral

NIR spectral signatures. Thus, spectra should be extracted from both the flesh body area

and root/neck area, to represent original onion spectral information as well.
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To alleviate the error introduced by geometric differences, the density slice tool of ENVI

was used to partition the gray image to different areas based on predefined pixel ranges. It

was assumed that the geometric variance in the same density level region be small. Hence,

ROIs were selected from image regions in the same density level. Fig. 5.4 demonstrates

procedures of selecting ROIs on an onion hyperspectral image based on an image partitioned

by using the density slice tool. The image intensity range of the gray image at 1200 nm

was first divided into six ranges evenly. ROIs in the same group had the same radius to

centre of the onion image to minimize geometric differences among selected areas. For each

hyperspectral image, 5 ROIs were selected on flesh body area and another five ROIs were

selected from either root or neck area for spectral data extraction. Every ROI contains

about 50-60 pixels. As a result, 500-600 spectra were extracted and saved from each onion

hyperspectral image. Spectra extracted from hyperspectral images of control onion samples

were labeled as ’healthy’, whereas spectra obtained from onions hyperspectral images after

inoculation were labeled as ’diseased’.

5.4.3 Optimal wavelengths selection

Principal component analysis was conducted on the near-infrared reflectance spectral data

set to reduce the dimensionality of original dataset. The eigenvalues of the PCA model

are shown in Fig. 5.5. The majority (95.95%) variance of original training dataset can be

represented by the first PC. The second PC explains 3.6% of the variance from the original

data. The 99.55% variance of the spectral dataset can be explained by the first two principal

components.

Fig. 5.6 shows the scatter plot of the near-infrared spectral data using the first two

principle components. In Fig. 5.6, two clusters of spectra extracted from healthy and diseased

onion hyperspectral images are completely separated. This indicates that spectral signatures

of healthy and diseased onion tissue are distinguishable using the first two PCs. However, a

single PC is a linear transformation of original data with full wavelength bands. Even using
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Figure 5.5: Scree plot of eigenvalues of the PCA model.

the first two PCs, a classification system based on PCs requires a spectral data acquisition

over the full wavelength range. In this work, we expected to use only a few wavelength bands

to build a fast classification system. Thus, the coefficients (PC loading values) of the first

two PCs were studied further, to select a small number of original wavelength bands for

classification.

Fig. 5.7 shows the distributions of PC loading values of the first two PCs. The goal

of studying these PC loadings was to select two optimal wavelength bands for creating

band ratio images. Although the PC1 explains the majority of original dataset’s variance,

the second PC was considered because we wanted to identify two independent wavelength

bands. Since PC1 and PC2 are orthogonal and independent, the strategy of selecting optimal

wavelength bands was to find the dominant band in the PC1 and PC2. In Fig. 5.7, the global

peak of PC1 is located at the spectral region of 1370 nm-1420 nm, which is the spectral region

that contributes most to the PC1. As for the PC2, the global peak is in the spectral region
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of 1050 nm-1100 nm. As a result, the center bands of these two wavelength regions, 1400 nm

and 1070 nm, were selected as optimal wavelength bands for the classification model based

on bands ratio images.

Figure 5.6: Scatter plot of PC1 versus PC2 the PCA on near-infrared spectral data extracted
from hyperspectral images of healthy and diseased onions in the spectral region of 950 nm -
1650 nm.
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5.4.4 Bands ratio image

Using two optimal wavelengths, 1070 nm and 1400 nm, the ratio images of onion samples

were calculated by the following equation:

Iratio =
I1070nm

I1400nm

The I1070nm and I1400nm are relative reflectance images at 1070 nm and 1400 nm, respectively.

The zero values of denominator (in I1400nm ) were treated as background and excluded from

computation to avoid infinite values in ratio image. Fig. 5.8 shows two ratio images of one

onion sample before inoculation (control) and at day 5 (diseased).

In Fig. 5.8, patterns of band ratio images of healthy onion and the onion infected by sour

skin are very distinct. The biggest difference is shown in the neck area of the onion. In ratio

images, the neck area of the diseased onion is much brighter than the neck area of healthy

onion. This characteristic can be explained by the water content change on surface layers.
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Taking the original images of the onion shown in Fig. 5.2 as an example, the overall intensity

of the onion image at 1400 nm was lower than that of the image at 1070 nm. When the onion

was infected by sour skin, liquid seeped out from diseased onion flesh tissue was absorbed

more by dry leaves in neck area and tissues on root cap. It is known that the absorption

peak of water in near infrared region is around 1450 nm (Williams et al., 1987).

Figure 5.8: Band ratio images of an onion sample (1070 nm/1400 nm); the left band ratio
image was extracted from the hyperspectral image of control, and the right image was
attained from the hyperspectral image of the onion taken at day 5.
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The reason that the band ratio image shows more evident difference between control and

inoculated onions is two-fold. First, the reflectance intensity of the neck/root area decreased

more rapidly than the body area in the image at 1400 nm. Second, the effect of the change

pixel intensity values caused by water content change was stronger at 1400 nm than at 1070

nm. Thus, band ratio images which take advantages of these two features can detect sour

skin in onions more sensitively than original gray images.

5.4.5 Image feature extraction and classification

An IDL (Interactive Data Language) program was written to extract grayscale images at

1070 nm and 1400 nm and calculate band ratio images from hyperspectral images auto-

matically. Images were saved in TIFF format. Extracted images were processed to generate

input features for classification. Before extracting features for classification operation, image

enhancement operations were applied on images to remove background, identify edge of the

onion, and build masks of onion neck/root area for each image. The image processing and

feature extraction programs used were written in MATLAB (2009b, The MathWorks, Natick,

MA, USA).

The grayscale image at 1070 nm was selected to provide original image information of

the onion because it has higher light reflectance rate than the band of 1400 nm (as shown

in Fig. 5.3). Consequently, onion images at 1070 nm have higher S/N (signal to noise) rate

and higher contrast than images at 1400 nm. To extract image features, binary image masks

for onion area and onion neck/root area were created on the onion gray image at 1070 nm

by using following algorithm.

To minimize the confusion from background information on the classification process,

background segmentation was performed by using a histogram-based automatic thresholding

method (Jain et al., 1995). All pixels in background area were set to dark (pixel value to 0) to

remove original information, which contained noisy spatial information of sample holder and

light shades of the onion. Based on results of background segmentation, edge of onion bulb
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was determined and the image was converted to a binary image. By applying morphological

erosion operations, the foreground (white area) in binary image shrank further to fit the

onion bulb in the image, which generated a binary mask for partitioning an onion bulb from

the background.

The next step was segmentation of onion neck/root area. To enhance the image contrast,

morphological top-hat filtering and bottom-hat filtering operations (Sonka et al., 1999) were

applied. After that, a texture filter that calculated the local standard deviation was applied

to extract the texture features of an onion image for segmenting root or neck area. The image

after texture analysis was converted to a binary image by using an automatic histogram-

based threshold segmentation method. Morphological erosion and dilation operations were

performed on the binary image so that a bitter fit was obtained between the white area and

the neck/root area. The binary image, joined with the binary mask determined above, could

partition the onion image to background, neck or root, and body areas. Finally, mean pixel

intensity values of neck/root area, body area, and the whole onion area were calculated,

which were used as input features for classification.

BPNN and SVM classifiers were trained using the training dataset that contained 30

spatial patterns extracted from onion images scanned before inoculation (15 patterns, as

healthy) and at day 6 (15 patterns, as diseased). All tested classifiers achieved 100% classi-

fication accuracy over training and validation datasets. Then, classifiers were evaluated by

the testing dataset, which consisted of 20 patterns of 10 healthy (before inoculation) and

10 diseased (at day 6) onions. Table 5.1 shows the classification results of BPNN and SVM

models.

The highest classification rates (95%) were obtained by two BPNN models. In general,

the BPNN classifiers performed better than SVM classifiers. When the three image fea-

tures extracted from original onion image at 1070 nm were removed, the BPNN classifier

achieved the same performance with the previous BPNN model using six image features.

The SVM classifier even performed better on the dataset that only contains three image



108

features extracted from band ratio images. The improved performance of the SVM classifier

on dataset II can be explained by the curse of dimensionality on the dataset. Three image

features from original onion images increased the complexity of sample space and reduced

the sensitivity of the classifier. This also indicates that the three image features extracted

from band ratio images are sufficient to provide information to discriminate healthy onions

and onions infected by sour skin. Hence, the proposed BPNN classifier using image features

(mean pixel intensity values of root/neck area, body area, and overall onion area) in band

ratio images is the best model for this purpose.

The optimal classification algorithm determined above was applied to hyperspectral

images scanned over 1-7 days after inoculation. To provide patterns of healthy onions, spatial

features extracted from ration images of onions before inoculation (healthy) were added to

datasets of 1-7 days. Table 5.2 lists the classification results of the BPNN classifier on the

testing dataset which contains 20 (10 healthy and 10 diseased) patterns calculated from ratio

images of 10 independent onion samples on different days. The classifier misclassified all 10

infected onions as healthy at day 1 and day 2. On day 3, the classifier discriminated infected

Table 5.1: Comparison of classification results of BPNN and SVM models on the testing
data set, which contains 20 patterns from hyperspectral images of onions scanned before
inoculation and inoculated onions at day 6
Image Features Used Classifiers False posi-

tive (%)a
Loss (%)b Correct Pre-

diction
Accuracy
(%)

Six spatial features BPNN 1 0 19 95
from ratio/1070 nm
images

SVM 3 0 17 85

Three spatial fea-
tures

BPNN 1 0 19 95

from ratio image SVM 2 0 18 90
a False positive (%) = 100 × no. of diseased onions predicted as good ones/total no. of onions
b Loss (%) = 100 × no. of good onions predicted as bad ones/total no. of inspected onions
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onions and healthy onions with a 50% false positive rate. Starting from day 4, the overall

classification rates of the BPNN classifier were improved to 80% and above.

Table 5.2: Classification results of the onions on the testing datasets by using the BPNN
classifier with three spatial features extracted from band ratio images
Classification
Rates

Days After Inoculation
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Correct Predic-
tion

10 10 14 16 17 19 20

Loss 0 0 1 2 0 0 0
False Positive 10 10 5 2 3 1 0
Total Accuracy 50% 50% 70% 80% 85% 95% 100%

This result coincides with our previous hypothesis obtained from visual observations

on Fig. 5.2 and Fig. 5.3: onion hyperspectral reflectance images scanned after day 3 could

provide useful spatial and spectral information for differentiating healthy and sour skin-

infected onions. It also indicates the promise of using the proposed classification approach

for detecting sour skin-infected onions at its early stage such as at day 3 or day 4 after

inoculation in this work.

5.5 Conclusion

The near-infrared hyperspectral reflectance image technique showed promise for detecting

onions infected by sour skin as early as 3-4 days after inoculation. A fast and effective clas-

sification approach can be developed based on ratio images of onions at optimal wavelength

bands 1070 nm and 1400 nm, which were determined by principal component analysis on

spectral signatures of healthy and sour skin-infected onions. The BPNN classifier using spa-

tial features extracted from band ratio images achieved higher correct classification rate

(95%) than the SVM model (90%) for discriminating healthy onions and inoculated onions

on day 6 after inoculation. The result of this study can be utilized to further develop a

multispectral imaging system for early detection of Vadalia sweet onions infected by sour

skin.
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Chapter 6

Conclusions

Shortwave infrared (SWIR) spectral imaging is a powerful tool for food safety and quality

inspection. This research consists of three aspects through chapters 3, 4, and 5, which are

related with SWIR spectral imaging development and application. Chapter 3 thoroughly

demonstrates the design, implementation and calibration processes of a liquid crystal tunable

filter (LCTF) based SWIR spectral imaging system. Chapter 4 describes the development of

a reliable and robust data acquisition software program for this LCTF-based SWIR spectral

imaging system. Chapter 5 reports an application of using the SWIR spectral imaging to

detect sour skin in Vidalia sweet onions.

6.1 Contributions

A spectral imaging system was developed for collecting hyperspectral or multispectral images

in the spectral region of 900 - 1700 nm. The system was based on the liquid crystal tunable

filter and has been fully calibrated and optimized in spatial and spectral domain. This system

is particularly suitable for applications that require a fast selection of spectral bands and

high quality image in the spectral region of 900 - 1700 nm. The results of calibration tests

and preliminary experimental tests verified the accuracy of the system in the spectral and

spatial domains, and demonstrated its capability for food safety and quality inspection.

Development of spectral image acquisition software is a grey area that is rarely discussed

in depth in the literature. Chapter 4 fills this gap and demonstrates the design and imple-

mentation process of the spectral imaging data acquisition LabVIEW software. The software
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was designed meticulously to achieve best liability and extensibility. Several build-in calibra-

tion/preprocessing/denoising functions were added to the software to enhance the quality of

the captured spectral images.

The spectral imaging system developed in this work was used to collect data to detect

sour skin in Vidalia onions in the laboratory. A fast classification approach was developed

based on ratio images of onions at two optimal wavelength bands (1070 nm and 1400 nm).

Results of these tests showed that the SWIR spectral imaging is a very promising technique

to differentiate between healthy onions and sour skin-infected onions.

In summary, this research developed a high-performance spectral imaging system for

nondestructive measurements of food and agricultural products in the spectral range of 900

- 1700 nm. This system demonstrated its potential to detect diseased onions by successfully

detecting sour skin-infected onions in the early stage. The system and the SWIR spectral

imaging techniques developed in this research could be extended for testing other foods and

agricultural products.

6.2 Suggestions for Future Research

The development of this LCTF SWIR spectral imaging system provides a foundation for

future studies regarding onion postharvest quality inspection and classification. Future

research could be carried out in the following aspects:

• Make some adjustments on the configuration of this SWIR spectral imaging system, so

that the LCTF-based spectral imager and software can be used for SWIR transmittance

and scattering spectral image acquisition.

• Add and enhance functions of the data acquisition software program to include real-

time image processing functions, and further improve the performance (speed, sensi-

bility, etc) for achieving fast and automated inspection.
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• Develop more effective feature selection and classification methods to process hyper-

spectral image data.

• Apply this system to predict onion internal quality properties such as dry matter

content and sugar content at the spectral region from 900 nm to 1700 nm.

• Use this SWIR spectral imaging system for food safety and quality inspection of other

agricultural products such as cotton fiber quality.



Appendix A

The flange focal distances of common lens mount types

Mount Type Flange Focal Distance (mm)

C-mount 17.52

Canon EF mount 44

Sony Alpha mount 44.5

Nikon F-mount 46.5

M42 45.46

T-mount 55
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Appendix B

Partial source codes of the spectral imaging LabVIEW software program
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