

ALGORITHMS FOR SEMI-AUTOMATIC WEB SERVICE COMPOSITION:

DATA MEDIATION AND SERVICE SUGGESTION

by

RUI WANG

(Under the Direction of Eileen T. Kraemer and John A. Miller)

ABSTRACT

This dissertation presents a semi-automatic Web service composition approach, which

works by ranking all the candidate Web service operations and suggesting service operations to a

human designer during the process of Web service composition. The ranking scores are

determined by computing sub-scores related to inputs/outputs, data mediation, functionality and

precondition/effects. A formal graph model, namely IODAG, is defined to formalize an

input/output schema of a Web service operation. Three data mediation algorithms are developed

to handle the data heterogeneities arising during Web service composition. The data mediation

algorithms analyze the schema of the input/output of service operations and consider the

structure of the schema. Typed representations for the data mediation algorithms are presented,

which formalize the data mediation problem as a subtype-checking problem. An evaluation is

performed to study the effectiveness of different data mediation and service suggestion

algorithms as well as the effectiveness of semantic annotations used to assist human designers

composing Web services.

INDEX WORDS: Web service composition, data mediation, service suggestion, semantic

annotations, SAWSDL

ALGORITHMS FOR SEMI-AUTOMATIC WEB SERVICE COMPOSITION:

DATA MEDIATION AND SERVICE SUGGESTION

by

RUI WANG

B.S., Zhengzhou University of Light Industry, China, 1998

M.S., Xi’an Jiaotong University, China, 2005

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2011

© 2011

Rui Wang

All Rights Reserved

ALGORITHMS FOR SEMI-AUTOMATIC WEB SERVICE COMPOSITION: DATA

MEDIATION AND SERVICE SUGGESTION

by

RUI WANG

Major Professor: Eileen T. Kraemer
 John A. Miller

Committee: Hamid R. Arabnia

Jessica C. Kissinger

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2011

iv

DEDICATION

To my husband Trentin Bishop and my daughter Athena Bishop for their encouragement,

support and love.

v

ACKNOWLEDGEMENTS

I feel so lucky to have Dr. Kraemer as my major professor. She is such a nice professor that

she helps me with both school and personal life. When I first came to UGA, as a new

international student, new country, new school, new classmates, different language, different

custom, different life style and so many things just made me feel frustrated. She is always there

helping me, encouraging me and never turns me down. I really appreciate and would like to give

her many thanks for all her help to me.

I would also like to thank my co-major Dr. Miller for all his advice for my research. He is a

very knowledgeable professor. He showed me the amazing technologies in the semantic Web

and Web services. Meeting, talking and discussing with him always stimulates many new

thoughts for my research.

I would like to give my appreciation to my other two committee members, Dr. Arabnia and

Dr. Kissinger, for their time and help for my PhD study and research. Thanks to all my team

members, classmates and friends for their help. Here is a list of some of them: Shefali, Srikalyan,

Douglas, Zhiming, Jun, Haibo, Liren, Chaitanya, Haseeb, Maryam, Alok, Yonglong, Shiva,

Cristina, Mark, Kelly, Sumedha, Haiming, Jeremy, Wenyuan, Jianxia, Haipan, Meng, Dong,

Yong, Tianhao and etc.

Last but not the least, I want to thank my husband, daughter, mother, father, brother, mother-

in-law, father-in-law and all my relatives for all their support and kindness to me. I am happy to

have such a sweet family and so much love from all my family members and relatives.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ...1

2 MOTIVATING SCENARIO ...16

3 SERVICE SUGGESTIONS...21

4 DATA MEDIATION ...33

5 FORMAL SERVICE SPECIFICATION ...61

6 SIMILARITY MEASURES ..67

7 ARCHITECTURE AND IMPLEMENTATION ...79

8 EVALUATOIN..85

9 RELATED WORK ..102

10 CONCLUSIONS AND FUTURE WORK ..111

BIBLOGRAPHY ...118

APPENDICES ...131

A SAWSDL ANNOTATIONS FOR WSDL 2.0 ..131

B RANKINGS OF CANDIDATE WEB SERVICES ...132

C STATISTICAL DATA FROM EVALUATIONS...137

vii

LIST OF TABLES

Page

Table 1.1: Allowable SAWSDL annotations for WSDL 1.1 ...8

Table 2.1: Candidate Web services ..17

Table 8.1: Different cases of annotations ..92

Table A.1: Allowable SAWSDL annotations for WSDL 2.0 ..131

Table B.1: Rankings from the first evaluator...132

Table B.2: Rankings from the second evaluator ..133

Table B.3: Rankings from the third evaluator ...135

Table C.1: Degree of overlap of request 1 for evaluation I ...137

Table C.2: Degree of overlap of request 2 for evaluation I ...137

Table C.3: Degree of overlap of request 3 for evaluation I ...137

Table C.4: Degree of overlap of request 4 for evaluation I ...137

Table C.5: Degree of overlap of request 5 for evaluation I ...138

Table C.6: Degree of overlap of request 6 for evaluation I ...138

Table C.7: Average degree of overlap of all six requests for evaluation I138

Table C.8: Degree of overlap of request 1 for evaluation II ..138

Table C.9: Degree of overlap of request 2 for evaluation II ..139

Table C.10: Degree of overlap of request 3 for evaluation II ..139

Table C.11: Degree of overlap of request 4 for evaluation II ..140

viii

Table C.12: Degree of overlap of request 5 for evaluation II ..140

Table C.13: Degree of overlap of request 6 for evaluation II ..141

Table C.14: Average degree of overlap of all six requests for evaluation II141

Table C.15: Degree of overlap of request 1 for evaluation III ...142

Table C.16: Degree of overlap of request 2 for evaluation III ...142

Table C.17: Degree of overlap of request 3 for evaluation III ...142

Table C.18: Degree of overlap of request 4 for evaluation III ...142

Table C.19: Degree of overlap of request 5 for evaluation III ...142

Table C.20: Average degree of overlap of all six requests for evaluation III143

Table C.21: Time (sec) comparison of three data mediation algorithms143

Table C.22: Time (sec) comparison of different annotation cases ..143

Table C.23: Time (sec) comparison of forward and bi-directional suggestion algorithms143

ix

LIST OF FIGURES

Page

Figure 2.1: A scenario: a WSC process that performs multiple alignments on related protein

sequences of a given protein sequence ..18

Figure 3.1: Forward suggestion ...24

Figure 3.2: Backward suggestion ...29

Figure 3.3: Bi-directional suggestion ...31

Figure 4.1: An input message that will be fed by the output message...40

Figure 4.2: XSD build-in data type hierarchy ..43

Figure 4.3: Graph G is sub-graph homeomorphic to graph H ...47

Figure 4.4: Algorithm for approximated labeled sub-tree homeomorphism50

Figure 4.5: An example for path-based data mediation algorithm ..60

Figure 5.1: Precondition and effects for operation “getIds” ..64

Figure 5.2: Algorithm to compute current state for a process ...65

Figure 5.3: States in a BPEL process ...66

Figure 6.1: Different types of subsumption relationships: exact match is a special case of plug-in

match and plug-in match is a special case of subsumed-by match ..73

Figure 6.2: The decay graphs of concept coverage similarity of four cases74

Figure 6.3: Examples of four cases in formula 6-4 ..75

Figure 7.1: System architecture ...80

x

Figure 8.1: Degree of overlap of three data mediation algorithms for request 1 (selected

operation: "getIds") ...88

Figure 8.2: Degree of overlap of three data mediation algorithms for request 2 (selected

operation: "array2string") ..88

Figure 8.3: Degree of overlap of three data mediation algorithms for request 3 (selected

operation: "fetchBatch") ..89

Figure 8.4: Degree of overlap of three data mediation algorithms for request 4 (selected

operation: "run") ..89

Figure 8.5: Degree of overlap of three data mediation algorithms for request 5 (selected

operation: "getResult") ..89

Figure 8.6: Degree of overlap of three data mediation algorithms for request 6 (selected

operation: "base64toString") ...89

Figure 8.7: Average degree of overlap of all six requests for three data mediation algorithms90

Figure 8.8: Compare different annotation cases - request 1 (selected operation: "getIds")94

Figure 8.9: Compare different annotation cases - request 2 (selected operation: "array2string") .94

Figure 8.10: Compare different annotation cases - request 3 (selected operation: "fetchBatch") .95

Figure 8.11: Compare different annotation cases - request 4 (selected operation: "run")95

Figure 8.12: Compare different annotation cases - request 5 (selected operation: "getResult") ...96

Figure 8.13: Compare different annotation cases - request 6 (selected operation: "base64toString")

 ...96

Figure 8.14: Compare different annotation cases - average ..97

Figure 8.15: Forward vs. bi-directional suggestion algorithms in request 1 (selected operation:

"getIds") ...100

xi

Figure 8.16: Forward vs. bi-directional suggestion algorithms in request 2 (selected operation:

"array2string") ...100

Figure 8.17: Forward vs. bi-directional suggestion algorithms in request 3 (selected operation:

"fetchBatch") ...100

Figure 8.18: Forward vs. bi-directional suggestion algorithms in request 4 (selected operation:

"run") ...100

Figure 8.19: Forward vs. bi-directional suggestion algorithms in request 5 (selected operation:

"getResult") ...101

Figure 8.20: Forward vs. bi-directional suggestion algorithms - average101

Figure 9.1: NetBeans manual data mediation GUI ..103

Figure 9.2: NetBeans BPEL designer ..104

1

CHAPTER 1

INTRODUCTION

Web services provide a standard way to publish, discover and invoke diverse software or applications

distributed on the Internet. Many Web services have been developed and are available on the Web. Reusing

existing Web services for new tasks can speed up people's work. However, in many cases, a complex task

may require several Web services working together. Web service composition (WSC) targets this issue by

reusing existing Web services and composing them into a process. Web services have well-defined

interfaces and are platform and programming language independent, which makes them perfect functional

building blocks for WSC.

Composing Web services is not an easy job in general. Over the last decade, a considerable amount of

research has been performed on the problem of WSC. Part of the work on WSC is concerned with making it

easier to design and develop Web service compositions by increasing the automation level of WSC.

The focus of this dissertation is the development of techniques and algorithms for WSC that have some

degree of automation, in order to reduce the work of WSC. The approach presented is to make timely and

effective service suggestions and handle data mappings during the design of a WSC process. Using the

SAWSDL W3C standard [1], semantic annotations are used in service suggestion algorithms to assist a

designer in developing WSC processes. Three data mediation algorithms are developed to establish data

mappings during WSC and support the suggestion algorithms. A concept similarity measure is used to

2

calculate similarity scores for the data mediation and service suggestion algorithms. The service suggestion

algorithm also offers the option for users to specify preconditions and effects to guide service suggestions.

1.1. Web Services

Web services have been widely used in many different areas including both business and science. For

example, in business, Amazon1 provides many Web services for its cloud computing services, and the

USPS2 offers various Web services for customers to handle shipping related processes. In the science, EBI3,

DDBJ4, NCBI5 and KEGG6

Web services can be categorized as either SOAP Web services and RESTful Web services. REST

stands for Representational State Transfer. RESTful Web services use the HTTP protocol and interact with

other RESTful Web services through a set of standard HTTP operations, e.g., GET, POST, PUT and

DELETE. RESTful Web services focus on stateful resources rather than messages or operations. The Web

Application Description Language (WADL)

 host many Web services for biologists to retrieve or analyze biological data.

7

According to W3C [

 may be used to describe the interfaces of RESTful services.

2], the definition of a SOAP style Web service is: "a software system designed to

support interoperable machine-to-machine interaction over a network. It has an interface described in a

machine-processable format (specifically WSDL). Other systems interact with the Web service in a

manner prescribed by its interface description using SOAP messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related standards." This dissertation

1 Amazon Web services: http://aws.amazon.com/
2 USPS Web services: http://www.usps.com/webtools/
3 EBI Web services: http://www.ebi.ac.uk/Tools/webservices/
4 DDBJ Web services: http://www.xml.nig.ac.jp/index.html
5 NCBI Web services: http://www.ncbi.nlm.nih.gov/entrez/query/static/esoap_help.html
6 KEGG Web services: http://www.genome.jp/kegg/soap/
7 WADL: http://www.w3.org/Submission/wadl/

http://aws.amazon.com/�
http://www.usps.com/webtools/�
http://www.ebi.ac.uk/Tools/webservices/�
http://www.xml.nig.ac.jp/index.html�
http://www.ncbi.nlm.nih.gov/entrez/query/static/esoap_help.html�
http://www.genome.jp/kegg/soap/�
http://www.w3.org/Submission/wadl/�

3

concentrates on the SOAP style Web services, but the algorithms can be extended to RESTful Web

services, as stated in the Future Work section (Chapter 10).

The Web Service Description Language (WSDL) is an XML format language used to describe the

interface of a Web service. A WSDL file of a Web service abstractly specifies the operations offered by the

Web service as well as sufficient information to allow these operations to be invoked, including input,

output, binding, etc.

There are two major versions of WSDL, i.e., WSDL 1.18 and WSDL 2.09

SOAP once stood for Simple Object Access Protocol in version 1.1, but not in version 1.2

. The main elements of

WSDL1.1 are <service>, <port>, <binding>, <portType>, <operation>, <message> and <types>.

WSDL2.0 has substantial differences from WSDL1.1: WSDL2.0 also offers support for RESTful Web

services. WSDL2.0 also has different XML elements, e.g., the <message> element is removed; <portType>

is changed to <interface> and <port> is changed to <endpoint>. However, software support and

implementations are still rare for WSDL 2.0 compared to those for WSDL1.1. This dissertation work is

based on WSDL1.1, but the algorithms presented here can be extended to WSDL2.0 and further

implemented as discussed in the Future Work section (Chapter 10).

10

8 WSDL 1.1:

 due to the

less than ideal choice of work (e.g., it is not really object-oriented). It is a protocol for exchanging structured

information with SOAP style Web services across the Internet. A Web service client can invoke a Web

service by sending/receiving SOAP messages to/from the Web service. A SOAP message has an XML

http://www.w3.org/TR/wsdl
9 WSDL 2.0: http://www.w3.org/TR/wsdl20/
10 SOAP 1.2: http://www.w3.org/TR/soap12/

http://www.w3.org/TR/wsdl�
http://www.w3.org/TR/wsdl20/�
http://www.w3.org/TR/soap12/�

4

format and can be exchanged over various Internet application layer protocols, such as HTTP. SOAP is

designed to be independent of any particular program model or implementation.

Universal Description Discovery and Integration (UDDI) is a platform independent XML-based

registry that can be accessed over the Internet. UDDI enables businesses to register Web services in the

registry and discover Web services listed in the registry through SOAP messages. Web services listed in the

registry can be discovered based on the information provided by the businesses, e.g., operation name,

business name, etc. UDDI was proposed as a core Web service standard. However, usage of UDDI

registries has diminished over the years.

1.2. Ontology

In the computer science area, an ontology is a formal knowledge representation for describing the

world or part of it, or as Gruber [3] puts it, "a specification of a conceptualization." It provides a shared

vocabulary to model the world through a set of concepts, their properties and the relationships between

those concepts. An ontology language is a knowledge representation language used to specify the ontology.

Currently, the Web Ontology Language (OWL) is the chosen language for the ontology layer of the

Semantic Web. Therefore, the implementation presented in this dissertation works with OWL. Another

reason we chose OWL is because of the large number of high quality available tools (e.g., Protege11 for

editing, Pellet12 for reasoning/correctness checking, OntoViz13 for visualization and Jena14/OWL-API15

11 Protege:

for programmatic access, etc.)

http://protege.stanford.edu/
12 Pellet: http://clarkparsia.com/pellet/
13 OntoViz: http://ontoviz.sourceforge.net/
14 Jena: http://jena.sourceforge.net/

http://protege.stanford.edu/�
http://clarkparsia.com/pellet/�
http://ontoviz.sourceforge.net/�
http://jena.sourceforge.net/�

5

OWL is developed following the Resource Description Framework (RDF) 16 and RDF Schema

(RDFS)17

4

, as well as earlier ontology language projects including Ontology Interchange Language (OIL)

[], DARPA Agent Markup Language (DAML)18 and DAML+OIL19

Endorsed by W3C, OWL currently has two versions, i.e., OWL 1

. However, OWL has more facilities

for expressing meaning and semantics than these earlier languages. All the elements of OWL, e.g., class,

property, individual, can be expressed as RDF resources and identified by URIs. OWL is intended to be

used for information processed by computer. It aims to make it easier for machines to automatically process

and integrate information on the Web.

20 and OWL 221

5

. OWL 1 includes

three sublanguages with increasing levels of expressiveness, namely, OWL Lite, OWL DL and OWL Full.

OWL 2 has a very similar overall structure to OWL 1, but adds following new features: increased

expressive power for properties, extended support for datatypes, simple metamodeling capabilities,

extended annotation capabilities, and keys. The basic elements of OWL 2 include classes, properties,

individuals, and data values. OWL 2 has three sublanguages, namely, OWL 2 EL, OWL 2 QL, and OWL 2

RL. The EL acronym reflects its basis in the EL [] family of description logics, logics that provide only

Existential quantification. The QL acronym reflects the fact that query answering can be implemented by

rewriting queries into a standard relational Query Language. The RL acronym reflects the fact that

reasoning can be implemented using a standard Rule Language. Each of them trades off different aspects of

expressive power in return for different computational and/or implementation benefits.

15 OWL API: http://owlapi.sourceforge.net/
16 RDF: http://www.w3.org/RDF/
17 RDFS: http://www.w3.org/TR/rdf-schema/
18 DAML: http://www.daml.org/
19 DAML+OIL: http://www.w3.org/TR/daml+oil-walkthru/
20 OWL 1: http://www.w3.org/TR/owl-features/
21 OWL2: http://www.w3.org/TR/owl2-overview

http://owlapi.sourceforge.net/�
http://www.w3.org/RDF/�
http://www.w3.org/TR/rdf-schema/�
http://www.daml.org/�
http://www.w3.org/TR/daml+oil-walkthru/�
http://www.w3.org/TR/owl-features/�
http://www.w3.org/TR/owl2-overview�

6

1.3. Semantic Web Services

WSDL is the standard description language for the interface of a Web service. It mainly deals with

syntax and technical aspects such as the schema of messages or the addressing of certain operations. WSDL

lacks support for semantics to enable automation that would allow machines to sufficiently understand the

descriptions of Web services. Therefore, adding semantics to represent the requirements and capabilities of

Web services and to address the heterogeneity challenges is essential for achieving (semi) automated

discovery and composition. To bridge the gap between the standards for Web services and the Semantic

Web, a semantic Web service model must transform normal Web services into semantic Web services.

Semantic Web services have been studied for several years and a few well-known semantic Web service

models/languages have been developed, including Web Service Modeling Ontology (WSMO) [6], OWL-S

[7] / DAML-S22, Semantic Web Services Framework (SWSF)23 1, and SAWSDL [] / WSDL-S [8]. We

selected SAWSDL/WSDL-S for this work, mainly because it is lightweight and easier for users to

generate (annotating to existing WSDL files rather than creating new files).

SAWSDL stands for Semantic Annotation for WSDL and XML Schema. Based on WSDL-S,

SASWDL provides flexible mechanisms for users to annotate existing WSDL documents with semantic

concepts. Semantic content is added to service descriptions in a simple and lightweight manner as first

suggested in the work on WSDL-S [8]. Annotations to a semantic model (e.g., an OWL ontology) are

added at a few strategic points in a WSDL specification. In essence, SAWSDL provides reference

mechanisms via extensibility elements in WSDL, i.e., <interface>, <operation>, <message>, etc., to

22 DAML-S: http://herman.w3.org/services/daml-s/0.9/daml-s.html
23 SWSF: http://www.w3.org/Submission/SWSF/

http://herman.w3.org/services/daml-s/0.9/daml-s.html�
http://www.w3.org/Submission/SWSF/�

7

make them point to the semantic concepts defined in the externalized domain models for services. This

allows designers to add as many or as few semantic annotations as they wish and can help disambiguate

the description of Web services during automatic discovery or composition of Web services.

SAWSDL provides three extended attributes to WSDL elements, to enable semantic annotation of

WSDL components, namely, "modelReference", "liftingSchemaMapping" and

"loweringSchemaMapping." Table 1.1 shows the commonly annotated parts of WSDL 1.1 (see Appendix A

for the commonly annotated parts for WSDL 2.0).

 ModelReference: This extension attribute specifies the association between a WSDL component

and the concepts in a semantic model. It can be used to semantically annotate different parts of

WSDL/XSD documents, such as <complexTypes>, <simpleTypes>, <element> and <attribute>

tags in XSD as well as <portType>, <operation>, and <fault> tags in WSDL to relate them to the

ontology.

 LiftingSchemaMapping: This attribute specifies how to map an XML component to an

individual in an ontology (instance of a class). In this sense, the data content is lifted from the

XML schema definition (XSD) level to the ontological level.

 LoweringSchemaMapping: This attribute specifies how to map an individual in an ontology to

an XML component, in other words, to lower the data content down to the XSD level.

These two annotations, "liftingSchemaMapping" and "loweringSchemaMapping," apply only to XSD.

They specify mappings between XML (input/output of a Web service) and an ontology. These mappings

work in tandem to facilitate data mediation. If one operation wishes to send data to a second operation, if

they cannot communicate directly due to the heterogeneities between their output and input, they may be

8

able to communicate indirectly by first lifting the output data to the ontological level and then lowering it

back down in the form required by the succeeding operation. However, this technique has its limitations,

i.e., it requires the lifting mapping to fill in enough properties of the ontological class so that the lowering

mapping will not fail due to missing property values. In other words, the lifted output values plus default

values must cover all the needed lowered input values.

Table 1.1. Allowable SAWSDL annotations for WSDL 1.1

Annotation
Tag

modelReference

lifting
SchemaMapping

lowering
SchemaMapping

<portType> Yes No No
<operation> Yes No No
<message> Yes Yes Yes
<part> Yes Yes Yes
<element> Yes Yes Yes
<complexType> Yes Yes Yes
<simpleType> Yes Yes Yes
<attribute> Yes No No
<fault> Yes No No

Besides the above three extension attributes defined in SAWSDL, WSDL-S provides two more types

of annotations [8]:

 Preconditions: Preconditions are required to be satisfied (ensured to be true) prior to the

execution of a Web service operation, if the Web service operation has a precondition annotation.

 Effects: Effects are what will be true upon the successful execution of a Web service operation.

Precondition and Effect are specified as child elements of <operation>. They are used to describe

9

the semantics of Web service operations. Preconditions and effects are primarily used in

automatic service composition or discovery.

Category: An extension attribute on the <interface> element in WSDL-S, it consists of service

categorization information that could be used when publishing a service in a Web Services registry such

as UDDI. It functions in the same way as a "modelReference" annotation on the <interface> in SAWSDL.

1.4. Web Service Composition and Research Motivation

For complex real world tasks and applications, multiple Web service operations are often required. For

instance, if a dealer uses a USPS Web service to ship goods to his customer, several Web services have to be

used, e.g., to validate the customer’s mailing address, request a shipment, make a payment, make an

appointment to pick up goods, and check status. In the biological domain, even for a task as simple as using

a BLAST program to find sequences similar to a given DNA or protein sequence, multiple Web service

operations are required to be executed in a coordinated manner: one operation runs the main BLAST

algorithm and returns a "jobid" that is an identifier of the BLAST execution; a second operation is then used

to obtain the actual results (a collection of ranked matching sequences). Web service composition is a way

to compose many Web services into a process to perform a complex task.

1.4.1. Composition Issues

Creating a WSC process that meets all the requirements, such as the correct inputs/outputs or

minimizing the cost of the process, etc. is not easy in general. In software engineering, requirements can be

categorized as functional requirements or non-functional requirements. A functional requirement defines

10

the function of the software, such as inputs, outputs and behavior. If a generated WSC process meets all the

functional requirements, the process will function correctly. On the other hand, a non-functional

requirement describes the criteria to judge the software, e.g., cost, security, or reliability. It is good for a

WSC process to meet all the non-functional requirements, but it does not ensure that the process will

function correctly. Therefore, any WSC approach has to at least make sure that the created process meets

the functional requirements to have the correct functionality.

To create a WSC process that functions correctly, users have to handle many problems, such as which

Web services should be selected, how to connect them, and how the inputs of a Web service will be fed by

the preceding Web services, etc. Studies have been performed by many researchers on data mediation and

process mediation to tackle these problems of WSC (see details in related work chapter 9).

Data mediation for WSC addresses the problem of how the inputs of a Web service will be fed by the

preceding Web services [9]. It focuses on the data communication between the Web services in a WSC

process. Web services that are to be composed together often convey heterogeneous messages between

them, which means that the output messages from one operation cannot directly feed into the input message

of the succeeding operation. Data mediation is the process of resolving message heterogeneities and

possibly transforming one message format into another.

 Process mediation in this context focuses on construction of the whole process [10]. More specifically,

it deals with which Web services will be used in the WSC process and how they are chained together.

Process mediation and data mediation are not completely independent of one another. For example, if

two Web services are selected to be connected one after another in a process, the inputs of the second Web

11

service have to be correctly provided by the outputs of the preceding Web services, which is handled by data

mediation.

Data mediation and process mediation can deal with more than just functional requirements. For

instance, quality of service (QoS) based Web service composition, which is one approach for WSC, takes

the QoS parameters into consideration during WSC [11]. A process mediator may use the more reliable

(given as QoS parameters) Web services in the process to increase the stability of the whole WSC process or

use the cheaper Web services to reduce the total costs. The cost and stability are all non-functional

requirements.

1.4.2. Automation of WSC

To make it easier for a user to create a WSC process, several GUI designers have been developed, such

as ActiveVOS24, NetBeans BPEL designer25, Oracle BPEL designer26, and Taverna27

24 ActiveVOS:

. GUI designers are

useful because users can visually create a WSC process through drag and drop or menus or other types of

graphical interfaces. However, creating a WSC process is still painstaking work, even using GUI designers.

Currently, these designers do not offer sophisticated support for partial automation or computer assisted

development of compositions. Users still have to handle data dependencies and control structure and feed

outputs to inputs, etc., which are not easy. Still, there is room for increased automation/assistance to be

incorporated into these GUI tools, based upon research done in automatic and semi-automatic composition.

http://www.activevos.com/
25 NetBeans BPEL: http://soa.netbeans.org/soa/
26 Oracle BPEL: http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
27 Taverna: http://www.taverna.org.uk/

http://www.activevos.com/�
http://soa.netbeans.org/soa/�
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html�
http://www.taverna.org.uk/�

12

Studies have been performed to increase the automation level for WSC to ease users’ work when

composing a WSC. According to the automation level, WSC approaches can be categorized as manual

approaches (with GUI), automatic approaches and semi-automatic approaches. Manual approaches let

users manually select services and compose them together into a WSC process using GUI designers such as

those mentioned above.

In automatic Web service composition, given a request created by a user, the WSC process will be

generated automatically. The request formulates the description of the problem and all other required

knowledge to create the WSC process. There is no manual intervention during the WSC generation process.

Thus, it hides the complexity of the service composition from the user and reduces the development time

and effort for the new WSC process. Automatic Web service composition is a challenging and a rather

interesting problem. Many researchers have been working on it, such as [11-19]. They mainly map the

WSC design problem into a planning problem, for which a considerable amount of research in AI has

contributed to ever improving planners. A planner will look for actions/operations that will take the state of

a WSC process from the initial state to a goal state. An operation may be invoked, if the current state

satisfies both the precondition and input requirements of the operation. When invoked, an operation may

produce output and/or change the current state (i.e., apply its effects).

From a practical point of view, the fruits of research on automatic WSC are likely to come some

distance in the future. Some current limitations include (1) the difficulty of specifying control dependencies

(branching, looping, etc.), (2) the handling of data heterogeneity between outputs and inputs, (3) and the

difficulty of giving complete and correct specifications of operations and goals. A skeptic might even view

automatic Web service composition as a modern version of automatic programming [20]. Automatic

13

programming is an area of Artificial Intelligence that began in the 1960's and is still a work in progress. On

the other hand, the granularity of the problem in the case of Web service composition is much coarser,

leading to smaller state spaces and hence improved chances for success.

Semi-automatic Web service composition recognizes the complexity of the WSC design problem and

works by combining human and machine capabilities. It has some degree of automation compared to

manual approaches, but aims to be more practical to use than automatic approaches. As discussed in the

related work chapter, some work on semi-automatic WSC focuses on increasing the automation of data

mediation, and other work concentrates on increasing the automation of process mediation (see Chapter 9

for details).

This dissertation presents a WSC approach that fits in the semi-automatic category. A user starts with a

GUI designer and augments it with computer assistance at critical points in the design process to add a new

service operation to a partially designed WSC process. Semantic annotations on input, output, functionality,

precondition and effects (IOFPE) are used to rank service operations that may be plugged in at a particular

point in a WSC process. A user can pick the desired Web service operations and then connect them into a

process. Three different data mediation algorithms are developed to automatically handle the data flow as

well as support the service suggestion algorithms. An evaluation is presented in the dissertation to compare

these three data mediation algorithms.

Because human-computer interaction is enabled during WSC, some non-functional requirements may

be included indirectly by the user's decision. For example, a user may pick the second choice of the

suggested Web services because the user might know the second is cheaper than the first suggestion.

Therefore, fewer requirements might need to be encoded as machine understandable documents that will be

14

handled by the program. The fewer documents that the user has to create, the less work for the user.

Moreover, direct user interaction with a computer reduces the possibility of misunderstanding between

humans and computers caused by errors or incomplete specifications in the documents.

In this work, minimally, the annotations may simply be "modelReferences" to ontological concepts

that capture the notion of a semantic type with a well-defined notion of subsumption determined by

description logic reasoning. Additional annotations may be provided to specify lifting and lowering schema

mappings that enable more Web services to communicate with each other. Finally, if provided,

preconditions and effects can be used for additional checking and/or local planning (at this point we do not

attempt to create an entire WSC process using planning). In other words, our approach is incremental and

based on the amount of semantics that Web service providers and WSC designers are willing to specify.

In this dissertation, another evaluation of the different degrees of semantic annotations for their

effectiveness of service suggestions has also been performed. The study aims to find some ideal degree of

semantic annotations that result in effective results with less effort to create.

1.5. Structure of This Dissertation

The rest of this dissertation is organized as follows: Chapter 2 introduces a motivating scenario that

will be used in the rest of this dissertation. Chapter 3 covers the details of service suggestion algorithms.

Three data mediation algorithms are presented in Chapter 4. Chapter 5 gives a formal service model, which

is a base model for our service suggestion and data mediation algorithms. Similarity measures are discussed

in Chapter 6, which are used by both the service suggestion and data mediation algorithms. Chapter 7

briefly describes the implementation and architecture of this work. Three evaluations are given in Chapter 8

15

to study the relative effectiveness of the three data mediation algorithms, the tradeoff between the

annotation complexity and the effectiveness of service suggestions as well as the performance of the

different suggestion algorithms. Related work is discussed in Chapter 9 followed by conclusions and future

work presented in Chapter 10.

16

CHAPTER 2

MOTIVATING SCENARIO

 In this chapter we develop a motivating scenario that will be used as an example to explain the ideas

and algorithms presented in the rest of this dissertation. Furthermore, since it is moderately complex and

practically useful, it will be used in the evaluations of our approach.

 The goal in the scenario is to discover more information about a particular protein sequence, such as

Multiple Sequence Alignment (MSA) of its related known proteins. A WSC process can be developed to

find this information. The input to this WSC process would be a protein sequence of interest. The WSC

process would utilize two popular bioinformatics tools: BLAST [21] and ClustalW28. First, BLASTP

would search the given protein sequence against a user-specified database of protein sequences, for

example the UniProt29

28 ClustalW:

 dataset, to identify other similar proteins. The purpose of this is to assess the

relatedness of the given protein to others based on sequence similarity. Moreover, a biologist would take

the set of related proteins and align them to each other using ClustalW or some similar multiple sequence

alignment tool to map the sequences to each other, and to then visualize the conserved and divergent

regions at the sequence level. Further study, such as to illustrate how the sequences are related to each

other in terms of evolution, could use the multiple sequence alignment to generate a phylogenetic tree.

http://www.clustal.org/
29 UniProt: http://www.uniprot.org

http://www.clustal.org/�
http://www.uniprot.org/�

17

The workflow described above represents the two major analytical steps. However, there are numerous

other actions which occur along this path, for example obtaining the sequences for the top-k hits identified

in the BLASTP analysis to input into ClustalW and proper formatting of the multiple sequence alignment

into a format that can be accepted for further analysis.

The Web services that could be used in this scenario are listed in Table 2.1 including some real Web

services often used by biologists and bioinformaticians. Even though this scenario is from the biological

domain, our approach, algorithms and prototype implementation are not limited to this domain, but can be

applied to other areas as well.

Table 2.1. Candidate Web services

Web service Provider WSDL
WU-BLAST EBI http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl
WSDbfetch EBI http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl
ClustalW2 EBI http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl
T-Coffee EBI http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl
NCBI BLAST EBI http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl
WSConverter Local http://cs.uga.edu/~guttula/Galaxy/wsdlfiles/pe/WSConverter.wsdl

A possible solution to the above scenario is a WSC process depicted in Figure 2.1. The following

service operations are required in the WSC process:

http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://cs.uga.edu/~guttula/Galaxy/wsdlfiles/pe/WSConverter.wsdl�

18

Figure 2.1: A scenario: a WSC process that performs multiple alignments on related protein sequences of
a given protein sequence

1. WU-BLAST: runWUBlast is used to find similar sequences to a given protein sequence. This

step performs a similarity search on the given protein sequence against protein databases such as

UniProtKB/Swiss-Prot. The reason for doing this step is to assess the relatedness of the given

protein sequence to other protein sequences, based on sequence similarity. The desired output of

this step is a collection of protein sequences related to the given protein sequence; however, this

operation gives "jobid" as the output instead of actual results.

2. WU-BLAST: getIds is used as a complementary operation to the first step. This step gives the

sequence ids of the similar sequences found in the previous step. The reason we invoke this

operation is that the results of the runWUBlast operation are stored in the server and if we wish

to retrieve the details, e.g., obtain the sequence ids of the related proteins, we have to take the

"jobid" returned from the last step as the input to invoke this operation.

19

3. WSConverter: array2String resolves the data format compatibility issue between step 2 and

step 4. Step 2 gives an XML formatted array as the output, whereas, step 4 takes sequence ids as

a string of comma separated values. This step converts an XML formatted array to a comma

separated string, so the output of step 2 can be fed as the input to step 4.

4. WSDbfetch: fetchBatch takes sequence ids as input and retrieves the corresponding sequences

as a string from the specified database. Until now we have the sequence ids of similar sequences,

but in order to do a multiple sequence alignment, the actual sequences, in some format like

FASTA, are required. The results from this step are all the related protein sequences for the given

protein sequence provided in step 1.

5. ClustalW2: run performs multiple alignments of the similar sequences returned from the prior

step. This step is vital, as comparing related proteins in a multiple alignment is the starting point

for assessing the evolutionary relationships between the proteins. What we expect to learn by

doing this step is to identify conserved sequence regions across a group of sequences to aid in

establishing evolutionary relationships. From the results of multiple alignments, phylogenetic

analysis can then be conducted to assess the sequence's shared evolutionary origins.

6. ClustalW2: getResult is a retrieval step for the "ClustalW2: run" operation. Similar to the

"runWUBlast" operation, the multiple alignments produced by the " ClustalW2: run" operation

are saved on the server. Given the "jobid,” this operation will retrieve the user requested results

according to the user specified value of the "type" parameter. Here, the value of "type," which

specifies the type of the alignment output, is given as "aln-clustalw" to retrieve a ClustalW

20

alignment. The results returned are the multiple alignments of the given similar protein

sequences.

7. WSConverter: base64toString is a decoding converter used as a translation step for the

"ClustalW2: run" operation, which converts a base64 encoded string to an ordinary string. The

converter is necessary because the multiple alignments returned from the prior step are presented

as a base64 encoded string, which is not readable by humans.

In the scenario outlined above, a user may know of only some of the operations, e.g., 1 and 5. The

user might also notice that there are some missing steps needed to make the WSC process complete, but

may not know exactly what they are. Thus, if there is some mechanism that could suggest the missing

steps 2, 3, 4, 6, 7, etc., it would be very helpful for the user. This scenario provides the motivation for the

service suggestion work presented in this dissertation.

 The inputs depicted in Figure 2.1 are all the required inputs of the Web services. Other inputs are

defined as optional in the corresponding WSDL file and users do not have to give a value for them, e.g.,

the "runWUBlast" operation has almost twenty inputs, but most of them are optional. Our data mediation

algorithm will differentiate the required and optional inputs and assign different weights to them. This

alters their matching score contribution to the service suggestion score.

21

CHAPTER 3

SERVICE SUGGESTIONS

As discussed in section 1.4, process mediation is one of the major issues a user has to deal with to

create a WSC process. It answers the questions about which Web services should be used in the WSC and in

what manner they will be connected together. Most automatic WSC approaches handle process mediation

automatically, utilizing AI planners such as [11-19]. They use domain knowledge and problem

specifications to remodel the WSC problem as an AI planning problem. The planner will automatically

generate a plan, which will be translated into a WSC process. However, the costs, difficulties and

complexities of generating all the required annotations for the automatic approaches may limit their

usability and practicality. Semi-automatic approaches try to reduce those limitations while still providing

some degree of automation to ease the user's workload.

This chapter presents our semi-automatic process mediation approach. More specifically, it suggests

Web services to aid the user designing a WSC process. When designing a WSC process using a graphical

design tool, a user may ask the system to suggest services that can be plugged into the WSC process at a

particular place and receive a ranked list of candidate services. Conversely, the user may ask for feedback

on a service that they have placed in the WSC process. For example, for our motivating scenario, let us

suppose that it is clear that the designer wishes to run the operation for the BLAST and ClustalW Web

services. They select these operations and drag them onto the design canvas. Now they need help. What

22

services may be needed to provide input data to BLAST and how does one get the necessary information

out? How should this information be reformatted to serve as input to ClustalW and again how is the

desired information extracted and formatted in the way the user wants? Many steps and details are

required to complete the WSC process. Unfortunately, after the design is complete, many errors are likely

to occur when the WSC process is running (debugging WSC processes, e.g., Business Process Execution

Language (BPEL) processes, is more challenging than debugging ordinary programs). By using service

suggestion algorithms, the human designer can be assisted in coping with these details and design steps

can be checked to reduce the burdens of debugging to some degree.

The service suggestions are computed based on any level or combination of semantic annotations on

the Web service operation's input, output, functionality, precondition and effects as well as syntactic

information. Our service suggestion algorithms rank available Web services and suggest to the user those

services scoring over a certain threshold. The ranking score is calculated based on the following three

aspects: data mediation (input-output compatibility), functionality and precondition/effects. Users can ask

the system to make suggestions as to which services to connect after, before, or in the middle of the current

process, referred to as forward, backward and bi-directional suggestions, respectively.

In comparing the similarity of the annotations of the input and output messages, the service

suggestion score is analogous to a Web service discovery score [22-24] that is used to rank services when

discovering Web services. However, those discovery approaches only compare the annotations of the

<message>. For example, [22] defines the search template of a service operation as <NOP, DOP, Osst, Isst>,

where NOP and DOP are the name and description of the operation, and the output and input of the

operation are described by Osst and Isst, which ignore the structure of the input/output and only include the

23

name and the annotation of the <message> of the corresponding input/output. Our path-based data

mediation algorithm traverses through the whole input/output message, which provides richer and more

complete information for the input/output and results in a more accurate matching score. Our service

suggestion and ranking algorithms start where discovery algorithms leave off. In discovery, often, the goal

is to find several relevant services. Our goal, though, is to minimize the need for an experienced

programmer. Therefore, our suggestion criteria must be appropriate to the need to connect the suggested

services into a WSC process. Prior work on discovery considers this in a limited way (e.g., plug-in match

in OWL-S MX [24]), but we go further in this direction by considering type safety and data mediation

within our service suggestion algorithms. Service selection also differs from service discovery in that

discovery finds services matching a request specification, while composition-oriented selection tries to

find services that fit (possibly on multiple sides) into a growing WSC process.

3.1. Forward Suggestion

As shown in Figure 3.1, the forward suggestion recommends a Web service operation (OPx) to be

placed after a specific operation or, more generally, the current process. The forward suggestion ranking

score (S) is calculated as a weighted sum of three sub-scores, as indicated by formula (3-1).

S = wdm · Sdm + wfn · Sfn + wpe · Spe (formula 3-1)

where wdm, wfn and wpe are the weights for data mediation (dm), functionality (fn) and preconditions/effects

(pe), respectively. Initially, wdm = wfn = wpe = 1/3, they can also be trained by machine learning algorithms

after gathering enough experimental data (see future work section 10.2).

24

Figure 3.1. Forward suggestion

Using SAWSDL, each operation has a syntactic name implicitly indicating functionality and a

semantic annotation more precisely indicating functionality. Therefore, the Sfn score is calculated based on

the functionality of the Web service operation, which includes both semantic and syntactic functionality of

the Web service operation as shown in formula (3-2).

Sfn (OPx)= wsem · Ssem + wsyn · Ssyn = wsem · conSim (Cf, Cd) + wsyn · synSim(Nf, Nd) (formula 3-2)

where wsem and wsyn are the weights for the semantic and syntactic functionality score, wsem = wsyn = 0.5; Cf

is the semantic functionality annotated on the candidate service, Nf is the syntactic functionality (name) of

the candidate service, Cd/Nd is the user desired functionality that can be a keyword (Nd) or an ontological

concept (Cd); conSim is the concept similarity and synSim is the syntactic similarity (see Chapter 6 for

detail). If the user does not provide a desired functionality (Cd/Nd), the Sfn score will be set to zero.

25

For each operation of a Web service, its semantic functionality is specified using an ontological

concept Cf. This concept is the value of the "modelReference" provided with the <operation> tag in the

SAWSDL document. If the user provides a concept for the desired functionality (Cd) for the operation to be

added, it will be compared to the functionality annotation (Cf) of each candidate operation.

The syntactic functionality of a Web service operation is determined by the value of the attribute

"name" of the <operation> tag, e.g., <operation name= "getIds">, i.e., "getIds." If the user provides a

keyword (Nd) for the desired functionality, it will be compared with the name of each candidate operation Nf

using the syntactic similarity measure (synSim) (see Section 6.1). The syntactic functionality score is the

syntactic similarity score between this and the user desired functionality, Nd. Many string metrics can be

used, such as N-Gram [25], or the Jaro-Winkler algorithm [26] (see Section 6.1 for further discussion of

different string metrics).

Since our approach is applicable to various types and levels of annotations, the further expression of

formula 3-2 will be shown as below. There are three cases of annotations for the calculation of the

functionality score: the first is that no desired functionality (both Cd and Nd) is presented. In this case, both

the semantic and syntactic functionality scores will be zero, so the final functionality score will be zero. In

the second case, the user provided the desired functionality (Nd or both Cd and Nd), but there is no

"modelReference" annotation (Cf) for the operation tag in the SAWSDL. Hence, the semantic functionality

score Ssem will be zero and Sfn = wsyn · Ssyn. The third case is that all the required annotations to calculate the

functionality score are provided, i.e., desired functionality and "modelReference" for the operation.

The Sdm sub-score of formula 3-1 is calculated based on the data mediation algorithm. A higher score

means the input message of the candidate operation achieves a better match than its competition. It utilizes

26

our data mediation algorithm to retrieve the score for every input component of the candidate operation.

The weighted sum of the scores for all input component will give the Sdm score as specified in formula 3-3.

There are three data mediation algorithms presented in this dissertation, i.e., leaf-based, structure-based and

path-based data mediation. The detailed calculation for the input component may vary with the different

data mediation algorithms (see Chapter 4 for detail).

𝑆𝑆𝑑𝑑𝑑𝑑 = � [𝑤𝑤𝑖𝑖 ∙ �𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑗𝑗=1

]
3

𝑖𝑖=1

 (formula 3-3)

where Sij is the score of the jth input that is either required (i=1), unknown (i=2) or optional (i=3) and n1, n2

and n3 are the number of required, unknown and optional inputs, respectively (n1+n2+n3 = n, the total

number of inputs).

Inputs to a Web service operation may be specified as required or optional in the WSDL/XSD

documents (unknown indicates our software could not determine whether the input was required or

optional). A required input, defined in the XSD of the WSDL file, has attribute "nillable = false" or

"minOccurs = 1." For example, <xsd:element name = "program" nillable = "false" type = "xsd:string">

defines a required input "program" for the "runWUBlast" Web service operation in our scenario.

An optional input has attribute "nillable = true" or "minOccurs = 0." For instance, <xsd:element

minOccurs = "0" maxOccurs = "1" name = "exp" nillable = "true" type = "xsd:string"> describes the

optional input "exp" for the "runWUBlast" Web service operation.

The unknown type of input has neither the "nillable" nor the "minOccurs" attribute defined in the

WSDL file, so our program cannot detect whether the input is required or not. For example, <xsd:element

27

name = "type" type = "xsd:string"> defines an input without any hint about whether it is required or

optional for the "runWUBlast" Web service operation.

We argue that the required inputs are more significant, the optional inputs are the least significant and

the other type of inputs might or might not be significant since it is not clearly defined whether the input is

required or not. Therefore, we give different weights for these three types of inputs as follows: required

input weight w1 = 1/(n1 +0.8n2 + 0.2n3), unknown input weight w2 = 0.8/(n1 + 0.8n2 + 0.2n3) and optional

input weight w3 = 0.2/(n1 + 0.8n2 + 0.2n3). The ratio between the three type of weights is: wr : wu : wo =

1:0.8:0.2. All the weights can be adjusted or trained by machine leaning algorithms in the future after

gathering considerable of experimental data (see the details in chapter 10).

The Spe score of formula 3-1 is calculated based on preconditions, effects, and the states of the WSC

process. These annotations require the use of WSDL-S [8], a richer specification which served as the basis

for SAWSDL.

In our current work, which is less dependent on using a planner, we intend to allow more expressive

preconditions and effects by using a subset of first order logic. We originally planned to use the Rule

Interchange Format (RIF)30, but to the best of our knowledge there is no mature RIF engine and Java

support library available, so we use the Prolog language, the SWI- Prolog31 engine and the JPL Java

library32

30 RIF:

 support for WSI- Prolog instead. Prolog is a well-established programming language. Pure Prolog

is based on a subset of first-order predicate logic, Horn clauses, so it falls within the RIF Core. RIF also has

www.w3.org/TR/REC-rdf-syntax/
31 SWI-Prolog: http://www.swi-prolog.org/
32 JPL: http://www.swi-prolog.org/packages/jpl/java_api/index.html

http://www.w3.org/TR/REC-rdf-syntax/�
http://www.swi-prolog.org/�
http://www.swi-prolog.org/packages/jpl/java_api/index.html�

28

Prolog-like syntax. Therefore, in the future, it might be straightforward to translate the Prolog rules into

RIF Core rules.

To calculate the Spe score, the SWI- Prolog engine is used for logical reasoning. The Spe score is

decided by whether the current state (st) entails33

𝑆𝑆𝑝𝑝𝑝𝑝 = �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠 ⊨ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑂𝑂𝑂𝑂𝑥𝑥)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� (formula 3-4)

The current state (st) is maintained for the current process in, for example, a Prolog knowledge base.

The knowledge base can be queried for entailment. After a candidate operation is selected to be connected

to the process, the current state (st) will be updated to a new state (st'). The new state (st') is determined by

applying the effects of the candidate operation effect(OPx) to the current state (st) (see Chapter 5 for details).

 the precondition of the candidate operation pre(OPx) as

presented in formula 3-4. A candidate operation (OPx) will be connected after the current process.

3.2. Backward Suggestion

A backward suggestion is used to recommend a service operation (OPx) to be placed before a particular

service operation or, more generally, the current process as shown in Figure 3.2. The backward suggestion

ranking score (S) is similarly calculated based on the three sub-scores used for forward suggestions, i.e., the

data mediation (Sdm), functionality (Sfn) and preconditions/effects (Spe) scores. However, there are some

differences in calculating each sub-score.

33 http://en.wikipedia.org/wiki/Math_symbol
entail, A ⊧ B means the sentence A entails the sentence B, that is in every model in which A is true, B is also true.

http://en.wikipedia.org/wiki/Math_symbol�

29

Figure 3.2. Backward suggestion

The data mediation score for a backward suggestion is based on how well the input message of the first

operation (OP3) of the current process is matched by the output message of the candidate operation (OPx).

The functionality score (Sfn) is calculated in the same way as for the forward suggestion using formula 3-2.

Compared to the forward suggestion score algorithm, the preconditions/effects score (Spe) is decided

based on the following criteria: It is a sufficient condition for the state (st') to be the same as the initial state

(stin) of the current process. The state (st') is obtained by applying the effects of the candidate operation to a

state (st) that is given as the new initial state for the new process. If this condition is not satisfied after the

candidate operation is placed in front of the current process, the initial state of the current process will be the

state (st'). Since it is different from the original initial state, all the states after execution of each operation

will be changed. The newly changed states might or might not entail the precondition of the succeeding

operation. Moreover, the final state of the current process might be changed too, which might or might not

be what the user desires. Therefore, if the state (st') is the same as the initial state of the current process,

such that the new state (st') achieved by the execution of the candidate operation (OPx) will automatically

30

entail the precondition of the first operation (OP3) in the current process (st' = stin and stin ⊨ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑂𝑂𝑂𝑂3)). If

the candidate operation is placed in front of the current process, the initial state for the new process will be

the state (st). The new state (st') is produced by applying the effects of (OPx) to the state (st), i.e., st' = apply

(effect (OPx), st).

𝑆𝑆𝑝𝑝𝑝𝑝 = �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠 ′ = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� (formula 3-5)

where stin is the initial state of the current state.

3.3. Bi-directional Suggestion

A bi-directional suggestion is used when one wishes to insert a service, so that it is wired in on both

sides, its input on one side and its output on the other side. With respect to a chosen point of insertion, the

current WSC process is logically divided into two parts. We name the front part the WSC prefix and the back

part the WSC suffix. The user needs a Web service operation to be placed in between the WSC prefix and

suffix to connect them together.

Figure 3.3 shows that the bi-directional suggestion is to recommend a service (OPx) to place between

two operations (OP2, OP3) in the current process or more generally a WSC prefix and suffix. Its suggestion

score calculation also includes the three sub-scores: the data mediation (Sdm), functionality (Sfn) and

preconditions/effects (Spe) scores.

31

Figure 3.3. Bi-directional suggestion

The data mediation score algorithm for the bi-directional suggestions combines both the forward and

the backward data mediation scores, 𝑆𝑆𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑆𝑆𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏 , respectively. As shown in Figure 3.3, to calculate

𝑆𝑆𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓 , the WSC prefix is taken as the current process for the forward data mediation, 𝑆𝑆𝑑𝑑𝑑𝑑

𝑓𝑓𝑓𝑓𝑓𝑓 ({OP1, OP2},

OPx) = 𝑆𝑆𝑑𝑑𝑑𝑑 ({I0, O1, O2}, Ix). The WSC suffix is considered the current process to calculate the backward

data mediation score 𝑆𝑆𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏 (OPx, {OP3, OP4}) = 𝑆𝑆𝑑𝑑𝑑𝑑 ({Ox}, I3). The final score for bi-directional data

mediation is the average of these two scores, i.e., Sdm = (𝑆𝑆𝑑𝑑𝑑𝑑 ({I0, O1, O2}, Ix) + 𝑆𝑆𝑑𝑑𝑑𝑑 ({Ox}, I3))/2.

The functionality score (Sfn) is computed in the same manner as the other two types of suggestions

using formula 3-2. The preconditions/effects score (Spe) is now based on satisfying two conditions as

described in Fomula-3-6. The first is that the current state (stpre) of the WSC prefix has to entail the

precondition (pre(OPx)) of the candidate operation (OPx). The second condition, a sufficient condition, is

32

that the new state (stx) has to be as same as the initial state (stsuf) of the WSC suffix, since it will affect the

current state of the WSC suffix or the connections in the WSC suffix if its initial state is changed. The new

state (stx) is the state obtained by applying the effects of the candidate operation to the current state of the

WSC prefix. Since the initial state (stsuf) of the WSC suffix entails the precondition of the first operation in

the WSC suffix, the second condition implies that the new state (stx) entails that precondition too.

stx = apply (effect(OPx), stpre)

 𝑆𝑆𝑝𝑝𝑝𝑝 = �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 ⊨ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑂𝑂𝑂𝑂𝑥𝑥) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� (formula 3-6)

where stsuf is the initial state of the WSC suffix.

33

CHAPTER 4

DATA MEDIATION

 To compose Web services, one of the major challenges is how to feed the inputs of a Web service

from the outputs of preceding Web services. The way to tackle this problem is often referred as data

mediation. More specifically, data mediation is the process of resolving message heterogeneities and

mapping one message into another.

 Deciding which output can be mapped to a specific input is not easy for many users. Therefore, we

developed a data mediation approach, which finds the optimal mappings between outputs and inputs

automatically for the user. In order to precisely address the mapping of the output of one service into the

input of another service, we rely on prior work done in databases, i.e., data mediation [27] and

programming languages, i.e., type theory [28]. Data mediation has a long history in the database field for

data integration [27]. A common use is to send a query to a mediator that decomposes the query to send

sub-queries to component databases. Each component database may have its own schema or even its own

query language. It is the mediator's job to perform the necessary translations. In our case, the overall goal

is the same: Have multiple services talk to each other and let the system act as a mediator, so that

translations and format conversions need not be hand coded by the WSC designer every time a WSC

process is developed. A good overview of the challenges involved in applying data mediation techniques

34

to Web service composition is given in [9], which itemizes the kinds of heterogeneities and proposes

solutions.

In our data mediation approach, the input or the output of a Web service operation will be

represented as a semantic structural data type. If the type of the output of a Web service operation is a

subtype of the type of the input of another Web service, then the output can be fed to the input in a type

safe manner. We define the rules for subtyping in our type system and depict our data mediation solution

with the typed representations. In this work, type checking is performed at WSC design time using

structural subtyping. Although structural subtyping [29] is more complex than nonstructural, it is more

flexible and appropriate for Web services.

 In this Chapter, a brief overview of type theory will be given at first. Section 4.2 will describe how

the metadata of the input/output of a Web service operation is modeled as a graph. Based on this graph

model, sections 4.3, 4.4 and 4.5 will describe our leaf-based, structure-based and path-based data

mediation approaches, respectively.

4.1. Type Theory

 Type theory [28] in computer science refers to the design, analysis and study of type systems. A type

system associates values with types and seeks to guarantee that operations expecting certain types of

values do not receive values that lead to type errors. Moreover, a type system specifies rules to control

how the typed program may behave, which makes any behavior outside the rules illegal. Type systems

provide some level of type safety through type checking, an important form of correctness checking.

35

 Type checking and, more recently, type inference are two problems that have received considerable

study [30-36] for type systems. Type checking is the process of verifying and enforcing constraints on

types. When assigning a value to a variable of a type, type checking decides whether the assignment is

type safe. Type inference, on the other hand, is used to determine the type of an expression. Type

checking can be done either statically at compile time or dynamically at runtime. It can be performed

based on name equivalence (most programming languages) or structural equivalence (O'Caml34 and

Modula-335 37). The best known type-inference algorithm is probably the one developed by Hindley []

and later rediscovered and extended in a programming language context by Milner [38]. The algorithm is

today an integrated part of compilers for the ML family of functional programming languages.

Subtyping appears in a variety of type systems [28, 31-33, 36, 39-42]. One of the common uses is

"coercions," such as automatic conversion from integer numbers to real numbers and subclassing in

object-oriented languages. If Tx is the type of variable x and Ty is the type of variable y, then it is type safe

to make the assignment x = y, iff Ty is a subtype of Tx. We use "≼" to denote subtype, i.e. Tx ≼ Ty means

the type Tx is subtype of type Ty.

 The subtype relation is reflexive: ⊢ 𝑇𝑇 ≼ 𝑇𝑇

 and transitive:

 ⊢ 𝑇𝑇1 ≼ 𝑇𝑇2
 ⊢ 𝑇𝑇2 ≼ 𝑇𝑇3
 ⊢ 𝑇𝑇1 ≼ 𝑇𝑇3

 A typing rule has the form of:
𝐽𝐽1 𝐽𝐽2 … 𝐽𝐽𝑛𝑛

𝐽𝐽𝑛𝑛+1
 where all the Ji are typing judgments. The denominator

is the conclusion and the numerator is all of the hypotheses. The rule indicates that the typing judgment

34 Objective Caml: http://caml.inria.fr/ocaml/
35 Modula-3: http://modula3.org/

http://caml.inria.fr/ocaml/�
http://modula3.org/�

36

Jn+1 will hold if all the hypothesis type judgments J1 J2 … Jn hold. A typing judgment is of the form:

 ⊢ 𝑡𝑡 ∶ 𝑇𝑇 , which means that the term t has the type T. Here, T is a type. A typing judgment will hold if it

is an axiom or if it can be inferred by some typing rules.

4.2. Graph Model of Input / Output Types

In this subsection, we will develop a graphical model to represent WSDL/XSD data structures for

Web service inputs and outputs. The input/output types of a Web service operation are specified in a

WSDL document/file using WSDL/XSD tags. In WSDL 1.1 the following tags are used: <message>,

<part> and related XSD tags, while in WSDL 2.0, only XSD tags are used.

In choosing an appropriate graphical representation the obvious candidates are Trees, Directed

Acyclic Graphs (DAGs) or general Directed Graphs. For complete generality, the schema specified using

WSDL/XSD for an input or output would require a general directed graph, since recursive structures are

permitted in XSD. However, since they are less common and using general directed graphs will make

some of the problems we are trying to solve NP-Hard, we will limit our work to DAGs. More specifically,

node-labeled DAGs as below:

Definition: An Input / Output DAG (IODAG) is a node-labeled DAG G = <N, E, md, Metadata>,

which represents the schema of an input or output of a Web service operation described using

WSDL/XSD.

 N = {n1, …, nm} is a set of nodes in the DAG. Each node of G corresponds to an element defined

in a WSDL/XSD document (more specifically, to the <message>, <part> in the WSDL 1.1 file

37

and to the <element> in the XSD defined / imported in the WSDL 1.1 file). A parser has to be

coded to extract all these element.

 E ⊂ 𝑁𝑁 × 𝑁𝑁 is a set of directed edges in the DAG. The edges indicate the relationships between

the elements defined using WSDL/XSD. For example, the <message> element has one or more

<part> elements in WSDL, so there will be corresponding edges from the <message> node to

every <part> node in the DAG. Each edge eij ∈ E is defined as a tuple eij = <ni, nj> indicating a

directed edge from ni to nj, where ni, nj ∈ N

 md: N → Metadata is a function assigning labels to nodes. The labels are the metadata that are

used in our service suggestion and data mediation algorithms.

 Metadata = Name × XSDtypes × OWLtypes

G is a rooted graph, which has exactly one root node. The root node corresponds to the <message>

node in the WSDL 1.1 file. We consider the root as the top level. The next lower level nodes that are

children of the root node correspond to <part> nodes of the message in the WSDL file.

Definition: The root node nroot ∈ N of an IODAG is the node that has no incoming edge.

Definition: A leaf node nleaf ∈ N of an IODAG is defined as a node that has no outgoing edge. The

leaf node set Nleaf ⊆ N is defined as the set of all the leaf nodes in an IODAG. We consider the leaf nodes

as the bottom level nodes of the IODAG.

Definition: A path in an IODAG is an ordered list of nodes from a leaf node to the root node along

the edges in the IODAG. It corresponds to the reversed path of a conventional path of a tree.

path = (n1,…, ni ,…, nm)

where ni ∈ N, n1 is a leaf node n1 ⊆ Nleaf and nm is the root node nm = nroot in the IODAG

38

4.3. Leaf-based Data Mediation Approach

One aspect of WSC is data dependency analysis in terms of possible data flows within the WSC

process. In a broad sense, data mediation finds out how the inputs of a Web service operation should be fed

by the outputs of the preceding Web service operations. The simplest form of communication happens

when one operation sends its output to the succeeding operation, which gets its input values from the

output. A leaf-based approach tackles this simply by directly looking for a matching component from the

output for each component of the input. For example, in our scenario, the "getIds" Web service operation

takes a jobid as its input. If we look at its WSDL file, <part name="jobid" type="xsd:string" /> is the

element that actually defines this input, as the "part" element of the "message" element "getIdsRequest."

Similarly, the <part name="jobid" type="xsd:string" /> "part" element of the "message" element

"runWUBlastResponse" defines the output of "runWUBlast" Web service operation that will be fed into the

input of the "getIds" Web service operation. Basically, if we could find this pair of elements in the two

WSDL files, make sure they match, and then assign the output element to the input element, we would be on

our way to solving the data mediation problem.

Our leaf-based data mediation approach works in two stages. In the first stage, we parse the

WSDL/XSD files to create IODAG graphical representations: one DAG for the input and one DAG for

the output. (In the more general case of having multiple preceding services, the output would be

represented as a list of DAGs.) The second stage involves some form of graph matching. Each input must

be paired with some output (either in an exclusive or shared fashion) in a way that maximizes the overall

quality of the match.

39

For the first problem, recall the graph model we defined for the input/output meta-data in a WSDL

document in Section 4.2. The leaf nodes of an IODAG are always elements in its WSDL document, which

define the elements that hold the value of the input or output. Therefore, the first step of our leaf-based data

mediation approach is to parse the WSDL document and discover all the leaf nodes of the input / output. For

details about parsing, please see the implementation section.

To deal with the second problem, our leaf-based approach somewhat naively ignores the non-leaf

nodes and just collects all of the leaf nodes to form two sets, one for outputs and one for inputs. Moreover,

it finds the elements from the output set matching the input set (structure-level match). If we impose the

restriction that all the matches must be one to one (exclusive), this problem becomes a weighted bipartite

graph problem, where the edge weights are the matching scores between every pair of elements. Thus, it can

be solved by a typical weighted bipartite graph algorithm, such as the weighted Hungarian (also known as

the Kuhn-Munkres (KM)) algorithm [43]. Otherwise, in the shared case, it can be solved by a simpler

matching algorithm that runs in O(mn) time, where m is the number of leaves in the output and n is the

number of leaves in the input (note, this ignores the time taken in computing the similarity measures). This

is more efficient than the KM algorithm, which runs in cubic time [43].

The shared and exclusive formulations are defined as below. They indicate that finding the best match

may be expressed as an optimization problem to pick the optimal pairings where xij = 1 (xij = 0 means this

pairing was not chosen). The shared case uses a constraint to ensure that every input component is matched

with exactly one output component. The exclusive case requires an additional constraint to ensure that an

output component is fed to at most one input component.

shared: max{∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖𝑖𝑖 | ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=0

𝑛𝑛
𝑗𝑗=0

𝑚𝑚
𝑖𝑖=0 }

40

exclusive: max{∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖𝑖𝑖 | ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1𝑚𝑚
𝑖𝑖=0

𝑛𝑛
𝑗𝑗=0

𝑚𝑚
𝑖𝑖=0 𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1𝑛𝑛

𝑗𝑗=0 }

where m is the number of leaves in the output and n is the number of leaves in the input.

For the element-level match (compare two leaves), the leaf-based data mediation approach utilizes

both the syntactic information of the XML elements and the semantic annotations for the XML elements in

the SAWSDL file. The data mediation score (Sdm) has been defined in formula 3-3. For leaf-based data

mediation, the score is the weighted average of the similarity scores Sij of the n matched pairs of nodes in the

optimal matching. The element matching score (ES) defined in formula 4-5 is used as the Sij.

Figure 4.1 shows an input message on the right that will be fed by the output message on the left.

Our leaf-based data mediation algorithm will collect the leaf nodes and form two set: {N4, N5, N6}, {N8,

N0}. By comparing their labels, the best match for N8 is N5. N4 and N6 have the same matching score for

N0.

 Figure 4.1. An input message that will be fed by the output message

41

Type checking of the leaves of IODAGs is one part of the type checking used in path-based data

mediation presented later, so we will give a type representation to explain the details of the leaf-based

algorithm using type checking as well as semantic annotations. Leaf-based data mediation has been

implemented as an external engine for a GUI WSC designer, e.g., our previous work, WS-BioZard [44]

utilized this leaf-based data mediation engine to handle data mediation for its WSC designer.

4.3.1. A Typed Representation for Leaf-based Data Mediation

Based on the IODAG defined in Section 4.2, we define a formal type representation for the meta-data

of input / output of a Web service operation. It is similar to a conventional type system of a programming

language. This type representation contains a set of base types and rules to judge the subtype relations

between two types. This type representation will serve as the formal representation for leaf-based data

mediation during WSC.

 We define two basic types, a leaf type Tleaf and a leaf-based IO type TLIO. The notation we use here is

similar to the one used in [28, 30, 32, 33], as described in section 4.1.

Leaf type: The leaf type is the type for a leaf node in an IODAG. It is a structured data type, which is

defined as a tuple.

Tleaf = md (nj) = <name, xsdtype, annotation >,

where nj ∈ Nleaf , name ∈ Name, xsdtype ∈ XSDtypes, annotation ∈ OWLtypes

The name field is a string. It is the value of the name attribute of the node in the corresponding WSDL

document. The annotation expression is an ontology concept. It is the semantic annotation for the node, e.g.,

the value of the "modelReference" for the XML element in the SAWSDL document. The xsdtype field

42

corresponds to the value of the type attribute of an XML element in the WSDL document. A user-defined

data type can be either a simpleType or a complexType, but for a leaf, the xsdtype expression can be empty,

an XSD built-in data type or a simpleType. According to the XSD specification from W3C [45], XSD has

44 built-in data types and the subtype relationships between xsdtype expressions may be defined based on

the XSD built-in data type hierarchy shown in Figure 4.2.

Leaf-based data mediation is based on the idea of only considering the XML elements in a SOAP

message that contain values of an input/output of a Web service operation. The meta-data of these XML

elements in a SOAP message are defined in their corresponding WSDL/SAWSDL and XSD documents.

These meta-data correspond to the leaf nodes in an IODAG for a service operation. Therefore, the leaf type

Tleaf is the type of these meta-data, i.e., the meta-meta-data.

Leaf-based IO type: The Leaf-based IO type is defined as an unordered set whose components

correspond to all the leaf nodes in an IODAG, TLIO = {leaf1, … , leafn | leafi : Tleaf}. An instance of IO type

is a set of leaf type components that correspond to leaf nodes in the IODAG. The Leaf-based IO type will

be used in our leaf-based data mediation as the structural type of the schema of the input/output of a Web

service operation.

In leaf-based data mediation, the Leaf-based IO type TLIO is the type of the meta-data of the

input/output of a Web service operation. It is a set of leaf nodes that correspond to the meta-data of all the

XML elements that will contain values of the input/output in a SOAP message to invoke the operation.

Below is a set of rules for inferring subtype relationships for the base types defined above as part of our

typed representation. We use the same notations presented in section 4.1, e.g., subtype as "≼" and type

equivalence as "≡."

43

Figure 4.2. XSD built-in data type hierarchy [45] (ur types are user defined types)

44

Rules for subtype of type Tleaf:

 ⊢ 𝑡𝑡, 𝑡𝑡 ′: 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 ⊢ 𝑡𝑡 ′[𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥] ≼ 𝑡𝑡[𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥]

⊢ 𝑡𝑡 ′[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] ⊑ 𝑡𝑡[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]
 ⊢ 𝑡𝑡′ ≼ 𝑡𝑡

 (formula 4-1)

The square bracket "[]" indicates the syntactic argument, e.g., 𝑡𝑡[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] denotes the

annotation of t. ⊢ 𝑡𝑡 ′[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] ⊑ 𝑡𝑡[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] is a subsumption relationship between two

semantic concepts in an ontology, and is discussed in the section on concept similarity measures (Section

6.2). ⊢ 𝑡𝑡 ′[𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥] ≼ 𝑡𝑡[𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥] is the subtype relationship between two built-in data types defined

in XSD, as shown in Figure 4.2. This rule can be explained as that 𝑡𝑡 ′ is a subtype of t, if t and 𝑡𝑡′ are

both instances of Tleaf, the xsdtype argument of t′ is a subtype of the xsdtype argument of t, and the

annotation of 𝑡𝑡′ is subsumed by the annotation of t.

 Formula 4-1 describes the elemental level comparison (an output component to an input component)

for leaf-based data mediation. If the type of an output component is a subtype of the type of an input

component of a succeeding operation, then it will be safe to feed this output component to this input

component.

Rules for subtype of type TLIO:

 ⊢ 𝜏𝜏, 𝜏𝜏′ : 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 ⊢ ∀𝑡𝑡. 𝜏𝜏
⊢ ∃𝑡𝑡′. 𝜏𝜏′ ⊢ 𝑡𝑡′ ≼ 𝑡𝑡

 ⊢ 𝜏𝜏′ ≼ 𝜏𝜏

 (formula 4-2)

45

∀𝑡𝑡. 𝜏𝜏 indicates that t is any component of 𝜏𝜏. Here, 𝜏𝜏 is an instance of leaf-based IO type TLIO,

which is a set of leaf nodes, so t has leaf type Tleaf. Similarly, ⊢ ∃𝑡𝑡 ′. 𝜏𝜏 ′ denotes there exists t' that is a

component of 𝜏𝜏 ′.

This subtype rule describes that for two leaf-based IO type instances τ′ and τ, where τ′ is a subtype

of τ (τ′ ≼ τ) holds, if for any component t of τ, there exists a component t' of τ' that is a subtype of t

(𝑡𝑡′ ≼ 𝑡𝑡).

The leaf-based IO type is a structural type. The subtype rule for TLIO actually defines the structural

subtype relationships between the meta-data of the output and input. If the type of the output of an operation

can be inferred to be a subtype of the input of another operation according to the subtype rule described in

formula 4-2, it will be safe to feed the output to the input. This rule depicts how type checking finds the

matching output for the input of the succeeding operation in a WSC process. For every elemental input, if

there exists an elemental output of the preceding operation whose type is a subtype of the type of the

elemental input, the whole structural output type will be a subtype of the whole structural input type.

4.4. Structure-based Data Mediation

The leaf-based data mediation approach only considers the leaf nodes in an IODAG, which leads to the

following questions: Are all the other non-leaf nodes useless for data mediation? Does the structure of the

IODAGs not matter for data mediation? To address these questions, we consider another approach for data

mediation: structure-based data mediation, which utilizes a sub-graph homeomorphism algorithm.

In data mediation, determination of the similarity and/or type compatibility between the output type of

a preceding operation and the input type of a succeeding operation can be modeled as a sub-graph

46

homeomorphism problem between two DAGs: out.IODAG (output type) and in.IODAG (input type). In

other words, out.IODAG is sub-graph homeomorphic to in.IODAG, if out.IODAG contains a sub-graph that

is homeomorphic to in.IODAG. The homeomorphism mapping from out.IODAG to in.IODAG specifies

how the input of the succeeding operation will be fed by the outputs of the preceding operations. In the rest

of this section, we will give a short introduction to sub-graph homeomorphism and then describe the

algorithm used for our structure-based data mediation approach.

4.4.1. Sub-graph Homeomorphism

The concept of homeomorphism is a topological notion. In graph theory, a graph homeomorphism

[46] preserves topological properties between two graphs. More specifically, a homeomorphism mapping

between two graphs preserves the ancestor relations between the nodes in a graph.

Definition: The graph G and H are homeomorphic graphs, if there exists a graph G' that is

isomorphic to graph H. Graph G' is obtained by performing a sequence of subdividing and smoothing

operations on graph G.

Definition: Two graphs G = (N, E) and G' = (N', E') are isomorphic if there exists a bijection f : N →

N' such that (ni, nj) ∈ E if and only if (f((ni), f(nj)) ∈ E'.

Definition: Let e = <ni, nj> be an edge of G. The subdividing operation adds a new vertex nk to the

graph G and replaces edge e with two new edges <ni, nk> and <nk, nj>.

subdividing (G, <ni, nj>) = G (N ∪ {nk}, E – {<ni, nj>} ∪ {<ni, nk>, <nk, nj>})

Definition: Let nk be a node of degree of two, such that two edge e' = <ni, nk> and e'' = <nk, nj>

meet at nk. The smoothing operation replaces edges e' and e'' with a new edge e = <ni, nj>.

47

smoothing (G, nk) = G(N – {nk}, E ∪ {<ni, nj>} – {<ni, nk>, <nk, nj>})

Based on the definition of graph homeomorphism, sub-graph homeomorphism can be defined as:

Definition: Graph G is sub-graph homeomorphic to graph H if G contains a sub-graph G’ that is

homeomorphic to H.

Figure 4.3 shows how to apply sub-graph homeomorphism to solve the same data mediation problem

showed in Figure 4.1. Graph G' is a sub-graph of G. Graph G' is homeomorphic to H, because smoothing

node N2 from graph G' will obtain an isomorphic graph of H. Therefore, graph G is sub-graph

homeomorphic to graph H and the node matches between G' and H indicate how to feed the output to

input of the succeeding operation.

Figure 4.3. Graph G is sub-graph homeomorphic to graph H

For this work, we apply an algorithm for sub-graph homeomorphism to IODAGs. The subdividing

and smoothing operations change an IODAG by either inserting or removing a node that has one

incoming and one outgoing edge, so that the structure is not changed in a fundamental way. Of course, in

48

the optimization, a penalty can be applied to minimize these "small" changes (see section 4.4.2 for more

details).

4.4.2. Algorithm for Structure-based Data Mediation

The decision problem of sub-graph homeomorphism is known to be NP-complete [47]. However,

when the problem is restricted to be a sub-tree homeomorphism (which is often the case of an IODAG

representing an input/output of a Web service operation), the algorithm to solve it can be efficient, e.g., a

cubic algorithm is presented in [48]. Therefore, we will begin with the case where the IODAGs are trees

and apply the approximate labeled sub-tree homeomorphism (ALSH) algorithm from [48] to data

mediation.

Figure 4.4 describes the approximate labeled sub-tree homeomorphism algorithm. The inputs of the

algorithm are two trees: G = (NG, EG, rG) with root rG and H = (NH, EH, rH) with root rH, where H

represents the input of an operation and G represents the output of the preceding operation. The algorithm

returns the root of a sub-tree of G that has the highest similarity score (RScore) to H. To compute the

RScore, the algorithm traverses H and G in a post-order and computes the similarity score between every

pair of nodes nH ∈ NH and nG ∈ NG. If nH and nG are both leaves, the similarity score will be calculated

as the elemental similarity (ES) score in formula 4-5 (see Section 4.5.1). Otherwise, the procedure

ComputeScoresForNode is invoked to compute the similarity score unless nH has a higher level than nG in

the tree, which implies that it is impossible for the tree with root nG to be isomorphic to the tree with root

nH via smoothing operations and the score will be negative. The ComputeScoresForNode procedure

computes the Rscore (nH, nG) using the following steps: First, it constructs a bipartite graph between the

49

children of nH and the children of nG, and computes the AssignmentScore, which is the score of the

optimal matching of the bipartite graph (divided by out-degree of nH to make the value range from 0 to 1).

Second, it computes the BestChild, which is the highest RScore between nH and all children of nG. Finally,

the higher value between (ES(nG, nH) + AssignmentScore)/2 and (BestChild + ρ) will be the Rscore (nH,

nG). ES(nG, nH) is the elemental level similarity score between nG, nH, which is calculated using formula

4-5, and ρ = - 0.001 (used in our evaluation, section 8.3) is the penalty for removing the node nG. The

higher penalty will discourage removing nodes, and the lower penalty will encourage removing nodes.

Algorithm for approximate labeled sub-tree homeomorphism
Input: Rooted trees G = (NG, EG, rG) and H = (NH, EH, rH).
Output: The root of the sub-tree of G that has the highest similarity score to H,

if G has a sub-tree that is homeomorphic to H.
for each node nH of H in post-order do

for each node nG of G in post-order do
if nH is leaf then

if nG is leaf then
Rscore(nG, nH) = ES (nG, nH)

else
Rscore(nG, nH) = ComputeScoresForNode(nG, nH)

end if
else

if Level(nH) > Level(nG) then
Rscore(nG, nH) = −∞

else
Rscore(nG, nH) = ComputeScoresForNode(nG, nH)

end if
end if

end for
end for
Procedure ComputeScoresForNode(nG, nH)
Let k denote the out-degree of node nH and m denote the out-degree of node nG.
if k > m then

AssignmentScore = −∞

50

else
Construct a bipartite graph G with node bipartition X and Y such that X = {x1, …, xk} is the set of
children of nH, Y = {y1, …, ym} is the set of children of nG, and every node xi ∈ X is connected to
every node yj ∈ Y via an edge whose weight is Rscore(yj, xi).
Set AssignmentScore to the maximum weight of a matching in G divided by k.

end if
BestChild = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1

𝑚𝑚 {Rscore(yj, nH)}
return max{(ES(nG, nH) + AssignmentScore)/2, BestChild + ρ}

Figure 4.4. Algorithm for approximated labeled sub-tree homeomorphism [48]

Pinter et al. [48] prove that this algorithm has an O(m2 n + mnlog(n)) time complexity. They point

out that the dominant cost of this algorithm is for the weighted bipartite graph algorithm. They employ a

variant of the Hungrian Algorithm from Fredman et al. [49] to solve the weighted bipartite graph problem,

which has an O(m2 n + mnlog(n)) time complexity, where m and n are the sizes of the two sets of nodes in

the bipartite graph.

The data mediation score (Sdm) is calculated using formula (4-3), which is the optimal sub-tree

homeomorphism similarity score between a sub-tree of G and H. The node of G with the optimal score is

the root of the sub-tree that is homeomorphic to H.

Sdm = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1
𝑚𝑚 {Rscore (yj, r')} formula (4-3)

where yi ∈ NG, a node of the output tree and r' is the root of the input tree H.

4.5. Path-based Data Mediation

To summarize what we have so far, each of our approaches has limitations: The leaf-based approach is

simple and efficient, but it does not consider the structure of the input/output, which may lead to frustrating

runtime errors in the WSC process. The structure-based approach has the potential to reduce runtime errors

51

that are due to input/output structural incompatibility, but is too strict and may rule out some useful

compositions. Our third approach decomposes the input and output into many simple paths, rather than the

sub-trees used in the structure-based approach. In the evaluation chapter, an evaluation will be performed to

compare these three approaches.

While the leaves of a DAG provide important information, certainly the full path from a leaf to the root

of the DAG should provide more useful information. Comparing full paths of a DAG is somewhat like

comparing sub-graph of this DAG. In the worst-case, the number of paths in a DAG may be exponentially

large in terms of the number of nodes, |N|. However, when the structure of the IODAG is restricted to be

planar (often the case with common data structures), the number of paths is bounded by a polynomial [50].

This allows the development of polynomial time algorithms for path matching.

4.5.1. A Typed Representation for Path-based Data Mediation

This section describes in detail our path-based data mediation approach through a typed

representation. The input and output of a Web service operation will be represented as semantic ‘structural’

data types based on the IODAG. (Note, structural type equivalence, e.g., as in Modula-3 and OCaml, is

more general and complex than conventional name equivalence found in most programming languages). If

the output type of an operation is a subtype of the input type of another operation, then the output can be fed

to the input in a type-safe manner. Compared to the leaf-based data mediation, this approach still considers

type compatibility between the output of the current WSC process and the input of a candidate Web

service operation. The difference is that for the structure-level typing, this approach respects the structure

52

of the input/output, using a path-based algorithm to find a mapping between the two graphs

corresponding to the two types.

We extended the type representation described in section 4.3.1 to represent our path-based data

mediation approach. More types are defined below including non-leaf type Tnon-leaf, path type Tpath and

path-based IO type TPIO.

Non-leaf type: The non-leaf type is the type for any node in IODAG except leaf nodes. It is a

structured data type, which is defined as a tuple.

Tnon-leaf = ∏name, annotationmd (nj) = <name, annotation>

where nj ∈ Nnon-leaf, annotation ∈ OWLtypes

Similar to the leaf type Tleaf, the name field is the syntactic name of the XML element in the

corresponding WSDL document, and is the value of the "name" attribute of the XML element.

The annotation field is a concept from an ontology. It is the semantic annotation for the XML element

in the corresponding SAWSDL document. More specifically, it is the value of a "modelReference" attribute

in a SAWSDL document.

In contrast to a leaf type, a non-leaf type has no xsdtype component. The syntactic types of the

corresponding XML elements for the non-leaf nodes are either empty or ComplexType. Since we currently

have not yet defined a type hierarchy for all XSDtypes including complex types, we have to project the

XSDtypes out of the non-leaf type.

We add non-leaf types for the non-leaf nodes in IODAGs to complement the type representation

defined in Section 4.3.1, since our path-based data mediation respects the structure containing all the nodes

in an IODAG including both leaf and non-leaf nodes.

53

Path type: Based on our earlier definition of a path in an IODAG, a path type is defined as an ordered

list of nodes: Tpath = (t1…ti ... tm), where t1 has the leaf type (t1 : Tleaf) and t2, …ti, …,tm has the non-leaf type (ti :

Tnon-leaf for i >1). An instance of Tpath has a corresponding path in the IODAG.

Path-based IO type: The path-based IO type is defined as the set of all paths in one or multiple

IODAG(s): TPIO = { pi | pi : Tpath, i ∈ [1…n]}. Every component in TPIO is a path type Tpath, and n is the

total number of paths.

Path-based IO type actually sets up the mapping between the IODAG and a set of paths. The reverse

of this mapping will transform an instance of path-based IO type to an IODAG.

Below are some rules for inferring subtype relationships for the base types defined above, as an

extension of the type representation defined in Section 4.3.1. These rules are used in type checking for

type compatibility at both structural and elemental levels.

Rules for subtype of type Tnon-leaf:

 ⊢ 𝑡𝑡, 𝑡𝑡′: 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 ⊢ 𝑡𝑡 ′[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] ⊑ 𝑡𝑡[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]

 ⊢ 𝑡𝑡′ ≼ 𝑡𝑡

 (formula 4-4)

 ⊢ 𝑡𝑡 ′[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] ⊑ 𝑡𝑡[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] indicates those two concepts annotated on the two XML

elements have a subsumption relationship in the ontology. Please check the concept similarity measures

discussion (Section 6.2) for details.

 The subtyping rule described in formula 4-4 can be explained as follows: if the annotation for a

non-leaf type instance t' is subsumed by the annotation for another non-leaf type instance t, then t' is

subtype of t.

54

This rule is used for the elemental level type checking for data mediation, where t and t' represent

two WSDL/XSD elements to be compared based on the definitions in their WSDL files. The subtype

relationship between t and t' will be used to judge the structure-level type checking.

Beyond the type checking for a subtype relationship between the two XML elements (t, t'), the

element-level similarity score (ES) between t and t' is calculated using formula 4-5, which is applicable to

the XML element that corresponds to a leaf node in IODAG as well.

ES (t, t') = w1 · conSim (t.annotation, t'.annotation) + w2 · synSim(t.name, t'.name)

 (formula 4-5)

where w1 and w2 are the weights, which are both set to 0.5 initially, and t and t' represent the two XML

elements to be compared. conSim is the concept similarity, as defined in Section 6.2.1. synSim is the

syntactic similarity, as presented in Section 6.1, which is used to compute the similarity score between the

names of t, t'.

Formula 4-5 can work with or without semantic annotation. If there is no annotation on either of the

elements, the first part of the formula will be zero and the ES score will be calculated based only on the

syntactic information, but with a lower value. This allows our data mediation approach to work with any

level of semantic annotation, from fully annotated input/output to no annotation at all.

Rules for subtype of type Tpath:

 ⊢ 𝑝𝑝,𝑝𝑝′: 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 ℎ
 ⊢ 𝑝𝑝′[𝑡𝑡1] ≼ 𝑝𝑝[𝑡𝑡1]

…
 ⊢ 𝑝𝑝′[𝑡𝑡𝑚𝑚] ≼ 𝑝𝑝[𝑡𝑡𝑚𝑚]

 ⊢ 𝑝𝑝′ ≼ 𝑝𝑝

(formula 4-6)

55

Here, p and p' are two instances of path type Tpath, m is the minimum length of the two path lengths of p

and p', and p[t1] means the component t1 of p, where p[t1] has leaf type Tleaf as defined in path type Tpath.

 This subtyping rule indicates that for two instances p and p' of path type Tpath, starting from the first

pair of components of p and p', if the component of p' is a subtype of component p in every pair, then p' is

a subtype of p.

This rule shows that to compare two paths, every pair of nodes in the two paths will be compared

starting from the pair of leaf nodes. The similarity score of two paths (SP) is calculated as shown in

formula 4-7. It is calculated by computing the optimal sum of node matches for an input path, node by

node without gaps (allowing gaps reduces the efficiency of our algorithms.), starting at the bottom of the

input path (leaf node) and retrieving the match score against the output leaf node. Then, the next higher

input node is matched to the corresponding output node, until we reach the root of the input path. The

score can be used to find the best matching score based on the comparison of paths.

∑
=

⋅
m

1i
])['],[(iii tptpESw=SP(p, p') (formula 4-7)

where p and p' are the two paths to be compared. m = min{|p|, |p'|} is the length of the shortest path of the

two paths. ES is the element similarity score defined in formula 4-5. 𝑝𝑝[𝑡𝑡𝑖𝑖] denotes the ith node of path p

from leaf to the root. Similarly 𝑝𝑝′[𝑡𝑡𝑖𝑖] indicates the ith node of path p'. wi is the weight of the ith node. A

geometric series is used for all these weights, which are decreasing from the leaf node to the root node and

w1 + …, + wm = 1, e.g., w1 = 0.571, w2 = 0.286 and w3 = 0.143. The weights are set to prioritize the leaf

nodes because the leaf nodes represent the type of the XML element that holds the value of an input/output.

56

 Another issue we would like to mention here is the path alignment. The path comparison described

above aligns the two paths to be compared at the leaf nodes, for the same reason that we set the weights

prioritizing the leaf nodes. However, in some cases, aligning the two paths at nodes other than leaf nodes

may get a higher matching score than aligning at the leaf nodes. In this case the output and input that are

represented by the paths will need a converter in between. We plan to do more research on this path

alignment issue in our future work.

Rules for subtype of type TPIO:

 ⊢ 𝜏𝜏, 𝜏𝜏′ : 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 , ⊢ ∀𝑝𝑝. 𝜏𝜏
⊢ ∃𝑝𝑝′. 𝜏𝜏′ ⊢ 𝑝𝑝′ ≼ 𝑝𝑝

 ⊢ 𝜏𝜏′ ≼ 𝜏𝜏

 (formula 4-8)

 Formula 4-8 is the subtyping rule for type TPIO, ∀𝑝𝑝. 𝜏𝜏 specifies that p is any component of 𝜏𝜏. 𝜏𝜏 has

the type TPIO, which has a set of paths, so p has the path type Tpath. . This rule can be explained as, given

two instance of TPIO (𝜏𝜏 and 𝜏𝜏 ′), if for every component p of 𝜏𝜏, there exists a component p' of 𝜏𝜏′ and p' is

subtype of p, then 𝜏𝜏′ is subtype of 𝜏𝜏. The subtyping rule for Tpath is defined in formula 4-6.

 The subtyping rule in formula 4-8 involves some major points of our path-based data mediation.

Firstly, it implies how to resolve data mediation based on path comparisons. The path IO type

decomposes the input/output into many paths based on IODAGs. The goals of data mediation now take on

a different perspective. If for each path of type Tpath for the input IODAG of an operation, we can find a

matching path of type Tpath from all the output IODAGs, we can in some sense feed the appropriate

outputs into the operation. Although decomposing the problem into a set of paths (i.e., not fully

considering the DAG or tree structure) may lose some structural information, e.g., sibling relationships, it

57

relaxes some restrictions to avoid screening out some useful compositions compared to the

structure-based data mediation. One of our evaluations is intended to see whether this compromise is

worthwhile.

Secondly, it specifies our path-based data mediation based on type checking. It presents how to infer

subtype relationships between two TPIO types. Since the two types are the type of an input and the type of

an output data to be fed to the input, a subtype relationship indicates whether it is safe to transfer the data.

This rule is used for the structure-level type checking. It is based on path level type checking (Tpath) and

elemental level type checking (Tleaf, Tnon-leaf).

Thirdly, the rule in formula 4-6 requires that all pairs from nodes of two paths have a subtype

relationships, which might be too strict. As a looser solution, we use formula 4-7 to calculate the path

similarity score (SP) to find the best matching path for every path representing the input of a candidate

operation (note, the best matching path might or might not be type safe). Based on the scores for all the

best matching paths for the input paths, a data mediation score (Sdm) can be calculated using formula 4-9

(a rewritting of formula 3-3 with more details), which is part of the suggestion score, to rank all the

candidate Web service operations. Sdm is the weighted sum of the best path scores, BSP, for the paths in

the optimally matched input, where the matching is between the output and the input as shown in formula

4-9.

𝑆𝑆𝑑𝑑𝑑𝑑 = ��𝑤𝑤𝑖𝑖 ∗ �𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑗𝑗=1

�
3

𝑖𝑖=1

)

 (formula 4-9)

58

where pij is the path for the jth input that is either required (i=1), unknown (i=2) or optional (i=3) and n1, n2

and n3 are the number of required, unknown and optional inputs, respectively (n1+n2+n3 = n, total number

of inputs). Inputs to a Web service operation may be specified as required or optional in the WSDL/XSD

documents (unknown indicates our software could not determine whether the input was required or

optional). Since required inputs tend to be more significant than optional ones, the weights are determined

as follows: w1 = 1/(n1 + 0.8n2 + 0.2n3), w2 = 0.8/(n1 + 0.8n2 + 0.2n3) and w3 = 0.2/(n1 + 0.8n2 + 0.2n3).

Given a path type p in an input IODAG, we find the best matching path type p' in an output IODAG.

BSP(p) is the best score for path p, compared with the paths representing the outputs of all the operations

and global inputs in the current WSC process. The score for this best match BSP is defined in formula

4-10.

BSP(p) = max {SP(p, p') | p' is from out.IODAG} (formula 4-10)

 The rule in formula 4-8 requires all the paths of the input have to have a type compatible (subtype)

path, which might be too strict and might filter out some possible Web service operations. We loosen this

restriction through the application of formula 4-7 and formula 4-9. If only parts of the paths of the input

have a type compatible path, we can still use formula 4-7 to find the best matching paths for other paths

and use formula 4-9 to calculate the data mediation score to contribute to the service suggestion score.

Therefore, all the candidate Web service operations will be ranked and have their data mediation score. At

the same time the type compatibility for the input of each candidate operation is given to show whether

this candidate operation is type safe to connect to the current WSC process, according to the subtyping

rule defined in formula 4-8. If the candidate operation is not type safe to connect to the current process,

we can still use formula 4-9 to calculate the data mediation score to suggest a ranked list of candidate

59

operations to the user. If the candidate operation is selected by the user, maybe not type safe, using

formula 4-10 our data mediation engine can still find the best matching output for each input of the

candidate operation.

Figure 4.5 gives an input message that need to be fed by the output message on the left, as in the

example described in section 4.3. Now, we use path-based data mediation to solve it. In Figure 4.5, there

are three paths for output: p1 = (N4, N2, N1), p2 = (N5, N2, N1), p3 = (N6, N3, N1), and two paths for input: p4

= (N8, N7), p5 = (N0, N9, N7). We need to calculate BSP(p4) and BSP(p5) to find the best matches for p4 and

p5. To simplify the explanation of the path ranking algorithm, this example assumes that the ES scores are

either one (for a perfect match) or zero (otherwise). As shown below, the best matching path for p4 is p2,

and their matching score is 0.667. The best matching path for p5 is p3, with matching score 1. If we look at

Figure 4.5, the best matching for N0 (p5) is N6 (p3), not N4. While the path-based algorithm can find this

matching correctly, the leaf-based algorithm cannot.

In Figure 4.5, if the input is the left half graph and output is the right half graph, our path-based data

mediation can still find the best matching path for p2 is p4, best matching path for p3 is p5, with a lower

matching score since p1 has no match (need an additional global input). However, the structure-based

algorithm is too strict for structure matching compared to path-based algorithm and will fail in this case

because it has to find a sub-graph of the right half graph to match the whole left half graph. As we can see

the right half graph is smaller than the left half graph and it is impossible to make it. Therefore, too strict

structure matching, e.g., our structure-based algorithm, may rule out some useful services, and our

path-based algorithm considers structure in a less strict way may have better performance. Our evaluation

(section 8.3) also shows that path-based data mediation has a higher performance compared to the other

60

two data mediation algorithms.

BSP(p4) = max {SP(p4, p1), SP(p4, p2), SP(p4, p3)}
 = SP(p4, p2)
 = 0.667∙ES(N8, N5) + 0.333∙ES(N7, N2)
 = 0.667+0
 = 0.667
BSP(p5) = max {SP(p5, p1), SP(p5, p2), SP(p5, p3)}
 = SP(p5, p3)
 = 0.571∙ES(N0, N6) + 0.286∙ES(N9, N3) + 0.143∙ES(N7, N1)
 = 0.571+ 0.286 + 0.143
 = 1

Figure 4.5. An example for path-based data mediation algorithm

61

CHAPTER 5

FORMAL SERVICE SPECIFICATION

In the Web service composition literature, a Web service model precisely and abstractly states the

information concerning a Web service that can be used to compose a WSC process. The model presented

here can be considered to be a refinement and a subset of the notion of semantic templates developed in our

prior work on METEOR-S [51]. A semantic template is a placeholder for a Web service that gives names

and semantic annotations for a service including the following aspects: interface/porttype, operations, input,

output and fault types, as well as QoS specifications. These are formalized into a nested 3-tuple consisting

of meta-data about the service, a collection of 7-tuples Semantic OPeration Templates (SOPTs) defining the

operations of the Web service and a set of policy assertions. A SOPT contains the following specifications:

(1) FunctionalConcept, (2) SemanticType-Input, (3) SemanticType-Output, (4) Precondition, (5) Effect, (6)

SemanticFault and (7) OperationLevelPolicy. This dissertation work focuses on the first five specifications.

We refine the model by drilling specifications for (2) and (3) down to a level of detail sufficient to allow

more precise matching of inputs and outputs as well as to support a form of type safety. In the future, we

plan to drill (1) down to the next level.

 A Web service usually has one or more operations, so the formal specification of an operation is the

basic building block of a Web service model. The input, output, precondition and effects (IOPE) are

generally used to describe a Web service operation [11]. Moreover, the syntactic name of a Web service

62

operation may imply its functionality and the semantic annotation of a Web service operation specifies its

functionality as well. Therefore, we formally model a Web service with n operations using formula 5-1. A

Semantic Web Service (SWS) is defined as a set of semantically annotated operations (SOP) and n is the

number of operations of the Web service. Each operation is an instance of IOFPE, which is the metadata for

a Web service operation.

SWS = {SOPj | SOPj : IOFPE, 1 j n} (formula 5-1)

IOFPE = <input, output, functionality, precondition, effects> (formula 5-2)

As shown in formula 5-2, IOFPE defines the metadata of an operation as a 5-tuple. The "input" and

"output" describe the metadata of the inputs and outputs, respectively, which are first modeled as IODAGs

in Section 4.2 and then are further specified as semantic structural types later in Chapter 4. The formal

specification of "input" and "output" are used in data mediation and in the calculation of suggestion scores

based on data mediation (see Chapter 4 for details). The functionality is defined as a tuple: functionality =

<name, annotation>. The "name" is the syntactic name of the operation specified in the WSDL document

and the "annotation" is the semantic annotation for the operation in the corresponding SAWSDL document.

The formal specification of functionality is used to calculate the service suggestion score based on

functionality (see Chapter 3 for details). The precondition and effects utilize a logic-based language to

formally describe a Web service operation and maintain the current state for a WSC process.

≤

≤

63

5.1. Precondition and Effects

In formula 5-2, we model a Web service operation as a 5-tuple, IOFPE, where P and E stand for

precondition and effects, respectively. In the Web service literature, preconditions are logical statements

that are required to be satisfied (ensured to be true) prior to the execution of a Web service operation.

Effects are logical statements that indicate what will be true upon the successful execution of a Web service

operation. Preconditions and effects are not required to invoke a Web service operation, but they are often

used in Web service composition or discovery.

We intend to use Horn logic (a subset of first-order logic) to specify preconditions and effects, which

is more expressive than propositional logic. We were trying to use the Rule Interchange Format (RIF),

which is a rule language, to specify preconditions and effects for our approach. Moreover, since RIF is a

Prolog style language, it would make it easy to rewritten Prolog statements to RIF statements in the future.

However, as a new language, to the best of our knowledge, there is no mature inference engine for RIF

available. Therefore, we use Prolog instead, which has been out for decades and has many mature

inference engines available.

We utilize WSDL-S to annotate the precondition and effects of a Web service operation.

Preconditions and effects are added as extensible elements on an operation in a WSDL-S file (for a

WSDL2 file). If the Web service is specified as a WSDL1.1 document, since the <operation> element is

not extensible, the <document> element is used to annotate preconditions and effects. Figure 5.1 shows a

partial WSDL-S file, which illustrates how precondition and effect annotations are added to a WSDL1.1

document. The operation "getIds" is one of the operations used in our scenario. The precondition and

64

effects are part of the <document> element of the <operation> element. The Prolog clauses are used as

the statements of the preconditions and effects, which are the values of the wssem:expression attribute.

The precondition "hasWUBLASTjobid(X)" indicates that the operation can be executed if there exists "x"

that is a value for variable "X", and that "hasWUBLASTjobid(x)" is true (i.e., "∃x (hasWUBLASTjobid(x) ᴧ

(x ∈ X))"). The effect "assertz(hasWUBLASTHitIds(wuBLASThitid))" indicates that after successfully

executing the operation, a new fact is added to the end of the knowledge base, which is that

"hasWUBLASTHitIds(wuBLASThitid)" is true. The effect "assertz(isProtein(wuBLASThitid) :-

hasDb(proteinDb))" means that a new rule is add to the knowledge base and the rule expresses that if a

protein database is used then the BLAST hit-IDs are protein sequence IDs.

<operation name="getIds" parameterOrder="jobid">
 <documentation>
 <wssem:precondition name="getIdsPre" wssem:expression= "hasWUBLASTjobid(X)."/>

<wssem:effect name="getIdsEff" wssem:expression=
"assertz(hasWUBLASTHitIds(wuBLASThitid)),assertz(isStringArray(wuBLASThitid)),

assertz(isProtein(wuBLASThitid) :- hasDb(proteinDb))."/>
 </documentation>
 <input name="getIdsRequest" message="tns:getIdsRequest" />
 <output name="getIdsResponse" message="tns:getIdsResponse" />
</operation>

Figure 5.1. Precondition and effects for operation "getIds"

Preconditions and effects are used to maintain the current state of the current WSC process. A Prolog

knowledge base is used to express the current state, which can be queried for entailment and updated

through a Prolog inference engine. As we mentioned before, a knowledge base is a collection of facts and

rules. Figure 5.2 shows how to compute the current state. The knowledge base is initialized to the initial

65

state, which includes one or more facts or rules. For every operation (OP) in the current WSC process, if

the current state (st) entails the precondition of the operation (pre(OP)), successful execution of the

operation will update the current state with the effect of the operation (effect(OP)).

Algorithm to compute the current state for a WSC process
Input: st0 : initial state of the process
 process = { OP 1, OP 2, …, OP n}: a WSC process that has a set of operations

begin
 st ← update(KB, st0) //initialize KB with initial state, st is current state
 for OP in process
 if st ⊨ pre(OP)
 st ← update(KB, eff(OP))
 else

error ("current state does not entail the precondition of OP ")
break

 end if
 end for
end

Figure 5.2. Algorithm to compute current state for a process

Figure 5.3 shows a simplified view of a BPEL process. Focusing on the state variables, which are

typically changed by "invoke" BPEL activities, if the candidate operation OPx will be placed in between

OP1 and OP2, the state st1 has to entail pre (OPx). Similarly, the application of the eff (OPx) to state st1

must entail pre (OP2). st0 is the initial state that represents the state after receiving inputs.

The preconditions/effects score Spe, which is part of the calculation of the service suggestion score in

Chapter 3, is calculated based on preconditions and effects. Formula 3-4 in chapter 3 presents the

66

calculation of the preconditions/effects score. If the current state (st) entails the precondition of the

candidate operation pre(OPx), the score will be one, otherwise the score will be zero.

Figure 5.3. States in a BPEL process

In the automatic Web service composition literature, logic-based languages are used to specify

preconditions and effects as well as to describe states of a WSC process. This allows planning algorithms

to be utilized to build complete process specifications. We are doing a similar thing here, but for only a

small portion of the overall design. It is well-known that the complexity trade-off is a challenge to deal

with (i.e., low complexity logic leads to efficient reasoning, but limited expressivity). Considering the

cost of utilizing a planner to generate a plan every time we calculate the suggestion score, we do not

include a planner into our approach but leave the potential, which will be discussed in the future work

chapter.

67

CHAPTER 6

SIMILARITY MEASURES

 Two types of similarity measures are involved in our approach, i.e., syntactic similarity and semantic

similarity. For data mediation, the syntactic similarity score between two XML tags is calculated by

comparing the names of these two XML tags, while the semantic similarity score is achieved by

comparing the semantic annotations on the two XML tags. Similarly, to calculate the functionality score,

the syntactic similarity score used to calculate the functionality score is based on a comparison of the

names of the Web service operation with the given keywords of the user desired functionality, while the

semantic similarity score used to calculate the functionality score is determined by comparing the

semantic annotation on the Web service operation with the given ontology concept of the user desired

functionality.

6.1. Syntactic Similarity (synSim)

 Syntactic similarity measures the similarity between two syntactic information objects, i.e., two text

strings. In WSC syntactic similarity can be used to compare the names of two XML tags in the WSDL

files. String metrics, a class of textual based metrics resulting in a similarity score between two text

strings for approximate string matching or comparison, are used to measure this type of similarity.

68

 A number of string metrics have been proposed, such as edit-distance metrics (also known as

Levenshtein Distance) [52], token-based distance metrics (e.g., N-Gram (Q-Gram) [25]), fast heuristic

string comparators, hybrid methods and so on. Moreover, some researchers, e.g., Cohen, et al. [53],

Piskorski, et al. [54] and Lin [55] compared several string metrics based on their costs, performance, etc.

Cohen [53], and Piskorski [54] reported good results for variants of the Jaro Metric for similarity of

meaningful strings. Cohen also stated that the Jaro and Jaro-Winkler metrics seem to be intended

primarily for short strings, and are close in average performance among the edit-distance based metrics

and are also substantially more efficient than other edit-based metrics. Under our WSC circumstance,

most strings to be compared would be short strings, such as the value of the name attribute of a tag

defined in a WSDL document. Furthermore, since we are making suggestions to the user, time cost has

also to be taken into consideration, in addition to accuracy. Chapman36

26

 presents a performance evaluation

of the execution cost of string metrics for various size input. Based on all of those comparison results and

our WSC circumstance, we choose the Jaro-Winkler metric [] for our syntactic similarity measure

between strings s and t using formula 6-1. It is faster than other edit-distance based metrics, but still

performs well. It is primarily for short strings and is tested to have good results as a similarity metric for

meaningful strings. In the future, we might explore or test additional string metrics that might fit better for

WSC.

synSim(s,t) = Jaro-Winkler (s, t) (formula 6-1)

36 SimMetrics: http://staffwww.dcs.shef.ac.uk/people/S.Chapman/stringmetrics.html

69

6.2. Semantic Similarity

 Semantic similarity measures the similarity between semantic concepts based on an ontology. In our

WSC approach, it is used to compare the semantic annotations in SAWSDL documents of Web services,

which is important for both process mediation and data mediation for WSC. For instance, to calculate the

functionality score for a service suggestion, we have to measure the semantic similarity between the

annotations on the candidate Web service operation and the user desired Web service operation. In data

mediation, a semantic similarity measure is used to calculate the score that results from comparing two

semantic annotations in SAWSDL at the elemental level.

 Semantic similarity measures have been studied by a number of researchers. Some of them, e.g.

[56-59], calculate the similarity between two semantic concepts based on the distance in the ontology.

Authors of [60, 61] measure the semantic similarity based on the subsumption relationship between

semantic concepts. Properties of a concept are also considered by some researchers, such as Cardoso et al.,

[62] when calculating the similarity score between semantic concepts. Some other researchers combine

several different algorithms together to calculate the semantic similarity between concepts. For example,

Verma [22] developed a similarity measure used for his semantic Web service discovery algorithm, which

is based on property matching and the subsumption relationship between concepts. Furthermore,

Garlapati [23] compared several algorithms for Semantic Web service discovery including semantic

similarity measures. According to his evaluation, he claims that Verma’s [22] similarity measure for

semantic concepts is a better matching technique and has a fairly performance since it measures the

70

concept similarity by taking a weighted average of the syntactic similarity, property similarity and

coverage similarity between the two semantic concepts.

 Therefore, we adopted his algorithm for our semantic similarity measure, and improved and

customized it to fit our WSC approach. For instance, we change the NGram algorithm used in the

syntactic similarity measure for concept similarity to the Jaro-Winkler algorithm, which has better

accuracy and is still quite fast as we discussed in the Section 6.1. We will describe more details about the

semantic similarity measure used in our approach in the rest of this section.

6.2.1. Concept Similarity (conSim)

Formula 6-2 computes the semantic similarity score (conSim(CI,CO)) between two concepts CI and CO

from the same ontology, where CO is the concept annotated on an output and CI is the concept annotated on

the input that will be fed by the output.

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐼𝐼 ,𝐶𝐶𝑂𝑂) = 𝑤𝑤1 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐼𝐼 ,𝐶𝐶𝑂𝑂) + 𝑤𝑤2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐼𝐼 ,𝐶𝐶𝑂𝑂) + 𝑤𝑤3 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐼𝐼 ,𝐶𝐶𝑂𝑂)

 (formula 6-2)

where w1, w2, w3 are the weights for the concept syntactic, property and coverage similarity, respectively.

w1+w2 + w3 = 1, initially, they are set to be 1/3. The concept similarity, concept syntactic, property and

coverage similarity all range from 0 to 1.

In Verma’s original calculation, there is another part, context similarity, which is taken into

consideration for the concept similarity. We remove it because it is time-consuming since it requires

building two more sets of concepts for every concept used in every application context. Our WSC approach

71

is to suggest Web services to the user, which require a shorter overall response time for the user and needs to

take out the time consuming part.

6.2.1.1. Concept Syntactic Similarity (conSynSim)

Concept syntactic similarity (conSynSim) measures the syntactic similarity between two concepts,

which compares the names and labels of the two concepts (Garlapati only compares labels). If no label is

attached for any of the concepts in the ontology, only name comparison is used to compute concept

syntactic similarity as shown in formula 6-3. CI and CO are the concepts to be compared.

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐼𝐼 ,𝐶𝐶𝑂𝑂) = �
𝑤𝑤4 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐼𝐼 .𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐶𝐶𝑂𝑂 .𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) +𝑤𝑤5 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐼𝐼 . 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐶𝐶𝑂𝑂 . 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙),

 𝐶𝐶𝐼𝐼 . 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐶𝐶𝑂𝑂 . 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≠ ∅
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐼𝐼 .𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐶𝐶𝑂𝑂 .𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�

(formula 6-3)

w4 + w5 = 1, to make the final concept syntactic similarity score between 0 to1. Initially, both of the weights

are set to 0.5, so the name and label have the same priority. Later on, these weights could be trained by a

machine algorithm, after gathering enough experimental data. The similarities between the names and

labels are calculated using the syntactic similarity algorithm described in Section 6.1, which both range

from 0 to 1.

6.2.1.2. Concept Coverage Similarity (conCvrgSim)

Concept coverage indicates the extent of knowledge that the concept covers. In an ontology, a concept

is more general than the concepts it subsumes, so it has higher knowledge coverage than its sub-concepts.

72

An ontology may be modeled as a DAG structure based on this subsumption relationships, so our concept

coverage similarity measures the similarity based on the relative position of the two concepts in the DAG

model of an ontology (i.e., the concept taxonomy or subsumption hierarchy). Subsumption relationships are

determined by a reasoner, for efficiency we use a Jena built-in reasoner "OWL mini" (see implementation

details in Chapter 7).

This work adopts the terminologies used for subsumption relationships between Web services in the

OWLS-MX [24] and SAWSDL-MX [61] matchmakers and customizes them to classify different types of

subsumption relationships of semantic concepts defined in an ontology for our similarity measures. We also

extend and formalize Verma’s concept coverage similarity.

Different types of subsumption relationships between two concepts in an ontology are discussed below.

CI and CO are the concepts to be compared from the same ontology, the CO plays an output role and CI plays

an input role, as shown in formula 6-2.

Exact match: CO ≡ CI

CO has exactly the same knowledge coverage as CI, so the concept coverage similarity score between

them is the highest, i.e. 1.

Plug-in match: CO ∈ LSC (CI)

 LSC (CI) is the set of least specified concepts of CI, which are direct children of CI in the ontology

subsumption hierarchy, i.e., immediate sub-concepts of CI, so CO has smaller knowledge coverage than

CI.

Subsumed-by match: CO ⊑ CI

73

CO subsumed-by matches CI indicates that CO is more specific than CI, and has smaller knowledge

coverage than CI. This match is a relaxation of plug-in match as shown in Figure 6.1.

Subsumes match: CO ⊒ CI

CO subsumes CI means that CO is more general than CI and has wider knowledge coverage. However,

in general, it is not type safe for a Web service operation to take a more general input than its requirement.

 In addition to those subsumption relationships listed above, another relationship between two

concepts in the ontology subsumption hierarchy is that the two concepts share one common ancestor.

Figure 6.1 depicts the relationships between all different types of subsumption relationships discussed in

this section. In general, an OWL ontology has "Thing" as the root concept of its subsumption hierarchy, so

any two concepts in an ontology will share a common ancestor. Subsumes match and subsumed-by match

are two more specific subsumption relationships than just sharing a common ancestor. Plug-in match is a

special case of subsumed-by match. Exact match is the conjunction of subsumes match and subsumed-by

match, which indicates: CO ≡ CI ⟺ (CO ⊒ CI) ∧ (CO ⊑ CI).

Figure 6.1. Different types of subsumption relationships: exact match is a special case of plug-in match
and plug-in match is a special case of subsumed-by match

74

According to the different subsumption relationships presented above, we changed Verma’s

calculation of the concept coverage similarity (conCvrgSim) to formula 6-4. Case I is the exact match, CO ≡

CI, and conCvrgSim(CI,CO) = 1. Case II is the subsumed-by match excluding case I, CO ⊏ CI. Since in this

case the output is actually perfectly fine to be fed as the input of the succeeding operation, we set decay

rate λ1= 0.01 such that its coverage similarity score will be very close to 1 shown as the case II in Figure

6.2. Case III is that CO subsumes CI excluding case I, CO ⊐ CI. Since in this case the output is not type safe

to be the input of the succeeding operation, λ2 =1 and its coverage similarity score decreases very quickly to

0, shown as case III in Figure 6.2. Case IV is that CI and CO share a common ancestor excluding case I, II

and III. Their knowledge coverage may not overlap one another. This case experiences the fastest decay for

the concept coverage similarity measure, λ3 =2 shown as case IV in Figure 6.2. Figure 6.2 depicts the decay

rates of various cases of subsumption relationship between concepts in ontology. The decay rates are in

increasing order λ1= 0.01 < λ2 = 1 < λ3 =2 and the final conCvrgSim score ranges from 0 to 1.

Figure 6.2. The decay graphs of concept coverage similarity of four cases

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Co
nc

ep
t C

ov
er

ag
e

Si
m

ila
ri

ty

(C
CS

)

x ------ >

Case I

Case II

Case III

Case IVe−𝜆𝜆3x

e−𝜆𝜆1x

e−𝜆𝜆2x

75

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐼𝐼 ,𝐶𝐶𝑂𝑂) =

⎩
⎪
⎨

⎪
⎧

1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼 ∶ 𝐶𝐶𝑂𝑂 ≡ 𝐶𝐶𝐼𝐼
𝑒𝑒−𝜆𝜆1𝑥𝑥 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼𝐼𝐼: 𝐶𝐶𝑂𝑂 ⊑ 𝐶𝐶𝐼𝐼
𝑒𝑒−𝜆𝜆2𝑥𝑥 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼𝐼𝐼𝐼𝐼: 𝐶𝐶𝑂𝑂 ⊒ 𝐶𝐶𝐼𝐼
𝑒𝑒−𝜆𝜆3𝑥𝑥 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼𝐼𝐼: ∃𝐶𝐶∗ | 𝐶𝐶∗ ⊒ 𝐶𝐶𝑂𝑂 ∧ 𝐶𝐶∗ ⊒ 𝐶𝐶𝐼𝐼

 𝑥𝑥 = 𝑥𝑥1 + 𝑥𝑥2

� (formula 6-4)

where x is the distance between CO and CI via their common ancestor (C*) in the subsumption hierarchy of

the ontology, which is the sum of x1 and x2. x1 is the specialization level between CO and C* in the

subsumption hierarchy of the ontology. x2 is the specialization level between CI and C* in the subsumption

hierarchy of the ontology. Figure 6.3 gives some examples of the four cases in formula 6-4 for the two

concepts CO and CI in the ontology subsumption hierarchy.

Figure 6.3. Examples of four cases in formula 6-4

6.2.1.3. Concept Property Similarity (conPropSim)

Given that concept CI has a set of properties PI = {pi1, pi2,…, pim} and concept CO has a set of

properties PO = {po1, po2, …, pon}, concept property similarity (conPropSim (CI, CO)) is the score of the

optimal match between the two sets. Therefore, this optimal matching problem can be modeled as a

weighted bipartite graph problem.

76

Garlapati [23] also tackles this problem as a weighted bipartite problem and utilizes the Hungarian

algorithm to solve it. We adopt and customize his approach. As shown in formula 6-5, conPropSim is

calculated based on the optimal matching score between the two sets of properties. Further, if the number of

properties of CI is more than that of CO, there will be some unmatched properties of CI. The final

conPropSim score will have a penalty for those unmatched properties, which will be e to the -0.05 times the

number of unmatched properties.

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝐼𝐼 ,𝐶𝐶𝑂𝑂) = 𝑚𝑚𝑚𝑚𝑚𝑚 �
1
𝐿𝐿

 �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐿𝐿

𝑗𝑗= 1

�𝑝𝑝𝑝𝑝𝑗𝑗 ,𝑝𝑝𝑝𝑝𝑗𝑗 �� ∙ 𝑒𝑒−0.05∙ 𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ℎ

 (formula 6-5)

L = min{m, n}, m and n are the size of the properties of concept CI and CO respectively. pij ∈ PI is a

property of CI. poj ∈ PO is a property of CO, which is the optimal match of pij making the maximum

matching score between PI and PO. propSim(pij, poj) is the property similarity between the two properties

pij and poj, which is calculated by formula 6-6. Nunmatch is the number of unmatched properties of PI

Nunmatch = �|𝑚𝑚 − 𝑛𝑛|, 𝑚𝑚 ≠ 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�

6.2.1.3.1. Property Similarity (propSim)

Property similarity (propSim (pi, po)) measures similarity between two individual properties pi ∈ PI

and po ∈ PO as described in Formula 6-6.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) = 𝑤𝑤6 ∙ �(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝))3

(formula 6-6)

77

where w6 is a weight affected by an inverse functional property. If an inverse functional property is

compared with a non-inverse functional property, there will be a penalty for the similarity between the two

properties as shown below.

𝑤𝑤6 = �0.8 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛
1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� (formula 6-7)

1) propRangeSim(pi, po) measures the similarity between the two properties pi and po based on their

range similarity. If both ranges (RI, RO) are described as primitive types, the type compatibility decides their

range similarity score (1 compatible or 0 incompatible). Please see chapter 4 for the details about the XSD

primitive type compatibility. If both ranges are presented as concepts, the shallow concept similarity

(conSimshallow(RI, RO)) will give their range similarity as shown in formula 6-8. Their range similarity will be

zero when one range is presented as a concept and the other is a primitive type.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝)

= �
1 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
0 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�

conSimshallow(RI, RO)

= w7 ∙ conSynSim(RI, RO) + w8 ∙ conCvrgSim(RI, RO) + w9 ∙ conPropSimshallow(RI, RO)

(formula 6-8)

w7 = w8 = w9 =1/3 are the weights for the three parts.

conPropSimshallow =
|𝑃𝑃𝑅𝑅𝑅𝑅 ∩ 𝑃𝑃𝑅𝑅𝑅𝑅 |

| 𝑃𝑃𝑅𝑅𝑅𝑅 |
 (formula 6-9)

78

PRO is the set of properties of RO and PRI is the set of properties of RI. Formula 6-9 shows the calculation of

shallow concept property similarity (conPropSimshallow) is the fraction of the number of common properties

between RI and RO by the number of properties of RI.

2) propCardSim (pi, po) measures the cardinality similarity between two properties using formula 6-10.

The cardinality of a property defines the number of values required by the property.

propCardSim (pi, po) = �
1 𝐶𝐶𝐶𝐶𝑖𝑖 = 𝐶𝐶𝐶𝐶𝑜𝑜 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
0.9 𝐶𝐶𝐶𝐶𝑖𝑖 < 𝐶𝐶𝐶𝐶𝑜𝑜
0.7 𝐶𝐶𝐶𝐶𝑖𝑖 > 𝐶𝐶𝐶𝐶𝑜𝑜

�

(formula 6-10)

CPi is the cardinality of property pi and CPo is the cardinality of property po.

 3) propSynSim (pi, po) is the syntactic similarity between two properties. The two weights w10 = w11

=0.5. Both name and description of the properties pi and po are compared using the syntactic similarity

measure as described in formula 6-11.

propSynSim (pi, po) = �
𝑤𝑤10 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝𝑝𝑝.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) +𝑤𝑤11 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝𝑝𝑝.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑),

 𝑝𝑝𝑝𝑝.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝𝑝𝑝.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≠ ∅
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝𝑝𝑝.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�

(formula 6-11)

79

CHAPTER 7

ARCHITECTURE AND IMPLEMENTATION

Implemented using the Java language our system works as an external engine of a WSC designer to aid

users composing Web services into a process (see section 10.2 for how to attach our suggestion engine to a

designer). Candidate Web service operations are ranked and top-k services are suggested to the user during

the process of Web service composition. We also implemented a data mediation engine to handle the

connections between service operations (how to feed the output of a service operation to the succeeding

service operation). Our data mediation engine can work as a modular subsystem to support the service

suggestion engine or a standalone system invoked by another WSC system or designer to resolve data

mediation issues. The system architecture and the details of each module will be presented in the rest of this

chapter.

7.1. System Architecture

 This system has two major functional components: a service suggestion engine and a data mediation

engine, as shown in Figure 7.1. Several utility components, i.e., parsers, similarity measures, etc., support

the service suggestion and data mediation engines. The service suggestion engine also invokes the data

mediation engine as one part of its ranking algorithm. The data mediation engine can also run

independently, without the service suggestion engine.

80

Figure 7.1. System architecture

7.2. System Components

 The system contains five major components, namely, a service suggestion engine, a data mediation

engine, similarity measures, parsers and a knowledge base management system (KBMS).

7.2.1. Service Suggestion Engine

 The service suggestion engine is a major functional components that ranks and suggests Web service

operations to the user for WSC. It requires parsers to parse the related SAWSDL/WSDL-S and OWL files

81

for the information used by all the ranking calculation modules. All the services available to the user are

described by the SAWSDL/WSDL-S and WSDL files, which can be pre-added to a GUI designer that the

user is using or discovered from some Web service registry/databases, e.g., BioCatalogue

(http://www.biocatalogue.org/) or EMBRACE Service Registry (http://www.embraceregistry.net/).

The service suggestion engine has three ranking calculation modules, as shown in Figure 7.1, i.e., Sdm, Sfn

and Spe score calculators. The Sdm score calculator invokes the data mediation engine and parser to

calculate one part of the ranking score that is based on the data mediation algorithm discussed in Chapter

4. The Sfn score calculator invokes the similarity measure module and parser to compute part of the

ranking score that is based on functionality. The Spe score calculator invokes the KBMS and parser to

calculate part of the ranking score that is based on the preconditions/effects specification discussed in

Chapter 5.

7.2.2. Data Mediation Engine

 Three data mediation algorithms are implemented: leaf-based, structure-based and path-based, as

described in Chapter 4. The leaf-based data mediation and structure-based data mediation are compared

with path-based data mediation algorithm, in the evaluation chapter (chapter 8).

The path-based data mediation engine consists of three components: the path generator, elemental

matcher and structural matcher. The path generator invokes the parser to generate paths for the given

SAWSDL/WSDL-S documents. Two extra Java libraries, Java Document Object Model (JDOM)37

37 Java Document Object Model (JDOM):

 and

http://www.jdom.org/

http://www.biocatalogue.org/�
http://www.embraceregistry.net/�
http://www.jdom.org/�

82

Jaxen38

38 Jaxen:

 help to implement the path generator. The elemental matcher compares elements of two paths

and returns the matching score. It invokes our similarity measure module to compare the syntactic and

semantic information of the two elements. The JDOM library is used to extract information from an

element for the implementation. The structural matcher performs structure-level matching; it finds

matches for the given inputs and computes the matching score for every input.

The structure-based data mediation engine reuses the elemental matcher of the path-based mediation

engine for elemental matching, and also uses three additional components: a DAG generator, a Depth

First Search (DFS) traverser, and a homeomorphism detector. The DAG generator uses parsers to get the

information of input/output and generate a DAG. The DFS traverser goes through the given DAG using a

DFS algorithm to generate a list of nodes, which are represented as instances of the JDOM Element type.

The homeomorphism detector invokes the elemental matcher and calculates the structure-level matching

score with two given lists of nodes for the output and input to be mediated based on the sub-graph

homeomorphism algorithm discussed in Section 4.4.

The leaf-based data mediation engine has a leaf-list generator that uses parsers to get the information

of input/output and generate a list of leaves of its IODAG, which are represented as instances of the

JDOM Element type. The structural matcher of the leaf-based data mediation engine reuses the elemental

matcher of the path-based data mediation engine and finds the best matches between the two given lists of

leaves as well as the best matching score for each leaf of the input leaf-list.

http://jaxen.org/

http://jaxen.org/�

83

7.2.3. Knowledge Base Management System (KBMS)

 The knowledge base (KB) is a collection of Prolog facts and rules, which represents the states of a

WSC process. The KBMS provides an isEntail() method to query the entailment of the KB and

updateState() method to update the KB to reflect the updated state. The Prolog engine SWI-Prolog39 and

JPL40

7.2.4. Parsers

 Java library are used to implement the KBMS. WSDL-S is used to provide the preconditions and

effects annotations for the Web service operations. The KBMS requires the parser component to retrieve

the actual logical statements of preconditions and effects in the WSDL-S document.

This component includes two individual parsers, which provide all the required information to other

components. The first is the SAWSDL/WSDL-S parser and another is the OWL parser. The

SAWSDL/WSDL-S parser uses the JDOM and Jaxen libraries. Currently, the Jena library is used to

implement the OWL parser. In the future we might switch to the OWL API for less execution time cost.

7.2.5. Similarity Measures

 The similarity measures component has two modules: syntactic similarity and semantic similarity

measure modules. The secondString library41

39 SWI-Prolog:

 is used to implement the syntactic similarity measure

module. The secondString library has a number of string metrics implementations. As we discussed in

Section 6.1, we choose to use the Jaro-Winkler string metric for this implementation. We implement the

http://www.swi-prolog.org/
40 JPL: http://www.swi-prolog.org/packages/jpl/java_api/index.html
41 SecondString: http://secondstring.sourceforge.net/

http://www.swi-prolog.org/�
http://www.swi-prolog.org/packages/jpl/java_api/index.html�
http://secondstring.sourceforge.net/�

84

syntactic similarity measure module using the abstract factory design pattern, so that it is easy to switch to

a different string metric.

 The semantic similarity measure module is implemented based on Garlapati’s [23] similarity

measure implementation. We customized and extended his implementation as discussed in Section 6.2.

This module invokes our OWL parser to parse the ontology. It has three sub-modules: a concept syntactic

similarity (conSynSim) module, a concept coverage similarity (conCvrgSim) module and a concept

property similarity (conPropSim) module. The conSynSim module utilizes the syntactic similarity measure

module to compute the syntactic similarity between two semantic concepts. An implementation of the

weighted Hungarian algorithm is used for the conPropSim module.

85

CHAPTER 8

EVALUATION

 Three evaluations are performed and presented in this chapter. The first evaluation compares the

three data mediation algorithms presented in this dissertation regarding how effectively they deal with

various structures of input and output. The second evaluation studies the effectiveness of various semantic

annotations used in our WSC approach. In particular, it tests whether incomplete annotations are

sufficient for effective service suggestions. The third evaluation compares the accuracy of the different

suggestion algorithms proposed in this dissertation.

8.1. Evaluation Settings

This evaluation is performed on a laptop: ThinkPad T61, processor: Intel Core 2 Duo CPU T9300

@2.50GHz, RAM: 4GB, System type: 64-bit windows Vista. Programs run inside Eclipse 3.5 with JRE

1.6_19. The Prolog engine SWI-Prolog 5.10.0 is installed in the system and invoked through the JPL API.

Some Web services from EBI are used for this evaluation, as listed in Table 2.1 in Chapter 2. The

bioinformatics process discussed in Chapter 2 is used as the user desired WSC process. Suggestions are

requested for the six steps of the WSC process, except that the first that must be chosen by the designer.

(Note, for bi-directional suggestions, there will be five requests.) For each request, the fifty candidate

service operations have been ranked by three expert human evaluators (see Appendix B for three ranked

86

lists of the fifty candidate Web service operations). Two ontologies, EMBRACE Data and Methods

(EDAM)42 and Ontology for Biomedical Investigations (OBI)43 are used/enriched for annotating the Web

services. The SAWSDL/WSDL-S and OWL files used in this evaluation as well as the source code of our

implementation can all be downloaded from the following

Website: http://cs.uga.edu/~guttula/Galaxy/wsdls.html.

8.2. Evaluation Measure

Since designing a Web service process is complex, it is difficult to determine precisely if a service is

correct. Therefore, we simply compare how well our suggestion algorithms compare to the human

evaluators in terms of the "degree of overlap" of the top-k suggestions as defined in formula 8-1. Degree

of overlap measures the probability that a service operation suggested within the top-k by the program is

also suggested by the evaluators, which is the number in the intersection of the top-k services suggested

by program and top-k consensus of evaluators divided by k. We calculate the degree of overlap for top-5,

top-10, top-15 and top-20 suggested services, respectively for each suggestion request. We do this by

comparing each of the rankings calculated by our system with the consensus that is the average of the

three expert human evaluators' rankings.

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
|𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑚𝑚 ∩ 𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 |

𝑘𝑘

 (formula 8-1)

where k = 5, 10, 15 or 20.

42 EMBRACE Data and Methods (EDAM): http://sourceforge.net/projects/edamontology/
43 Ontology for Biomedical Investigations (OBI): http://purl.obolibrary.org/obo/obi

http://cs.uga.edu/~guttula/Galaxy/wsdls.html�
http://sourceforge.net/projects/edamontology/�
http://purl.obolibrary.org/obo/obi�

87

8.3. Evaluation I

Three data mediation algorithms have been proposed in this dissertation. The main difference

between the three algorithms is how much they consider the structure of the input/output of a Web service

operation during data mediation. Therefore, this evaluation aims to test the performance of the three

algorithms to assess how much the structure of the input/output affects the performance of the data

mediation algorithms in terms of degree of overlap.

During the evaluation, three data mediation algorithms are used to suggest services using the forward

suggestion algorithm for each request during the composition of the process described in Chapter 2. The

degrees of overlap for the top-5, top-10, top-15 and top-20 suggestions for each request are calculated for

the three data mediation algorithms, as well as for the three human rankings and a random ranking. To

maximize the effectiveness of the data mediation algorithms, we fully annotate the inputs and outputs of

all the candidate services. To further improve results, the functionality annotations are also utilized.

8.3.1. Hypotheses

Considering the structure of the input/output of a Web service operation, the leaf-based data

mediation only considers the leaf nodes, so it should have the lowest degree of overlap. The

structure-based data mediation utilizes a sub-graph homeomorphism algorithm and considers the whole

structure of the input/output. Therefore, it should have a higher degree of overlap compared to leaf-based

data mediation algorithm, but being too strict on structure may rule out some correct suggestions. The

path-based data mediation decomposes the input/output into many simple paths rather than the sub-trees

88

used in the structure-based data mediation, so the path-based data mediation still takes the structure of

input/output into consideration, but in a less strict way compared to structure-based data mediation (see

details and examples in section 4.5). Therefore, the path-based data mediation should have the highest

degree of overlap among all three algorithms.

8.3.2. Results

Figures 8.1 to 8.6 depict the degree of overlap comparison of the three data mediation algorithms for

each request. Three human evaluators' rankings and a random ranking are also presented as comparison.

Figure 8.7 gives the average degree of overlap of all six requests for three data mediation algorithms as

well as three evaluators' rankings and the random ranking. (Please see the appendix C for all the statistical

data for this evaluation.)

Figure 8.1. Degree of overlap of three data

mediation algorithms for request 1 (selected
operation: "getIds")

Figure 8.2. Degree of overlap of three data

mediation algorithms for request 2 (selected
operation: "array2string")

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 10 15 20

D
eg

re
e o

f O
ve

rl
ap

k

Compare Data Mediation Algorithms-
Request 1

human1

human2

human3

leaf

struct

path

random
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20

D
eg

re
e o

f O
ve

rl
ap

k

Compare Data Mediation Algorithms-
Request 2

human1

human2

human3

leaf

struct

path

random

89

Figure 8.3. Degree of overlap of three data

mediation algorithms for request 3 (selected
operation: "fetchBatch")

Figure 8.4. Degree of overlap of three data

mediation algorithms for request 4 (selected
operation: "run")

Figure 8.5. Degree of overlap of three data

mediation algorithms for request 5 (selected
operation: "getResult")

Figure 8.6. Degree of overlap of three data

mediation algorithms for request 6 (selected
operation: "base64toString")

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Data Mediation Algorithms-
Request 3

human1

human2

human3

leaf

struct

path

random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e o

f O
ve

rl
ap

k

Compare Data Mediation Algorithms-
Request 4

human1

human2

human3

leaf

struct

path

random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Data Mediation Algorithms-
Request 5

human1

human2

human3

leaf

struct

path

random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Data Mediation Algorithms-
Request 6

human1

human2

human3

leaf

struct

path

random

90

Figure 8.7. Average degree of overlap of all six requests for three data mediation algorithms

8.3.3 Findings

 As shown in Figures 8.1-8.7, the evaluation results indicate that the path-based data mediation

algorithm has a higher degree of overlap than the other two algorithms and the leaf-based data mediation

has the lowest degree of overlap, which demonstrates that the structure of input/output does affect the

performance. The structure-based data mediation algorithm is more complicated and may rule out some

useful compositions, thereby resulting in lower performance, although it is still substantially better than

the leaf-based data mediation algorithm.

 Some of the Figures show poor results, e.g., Figure 8.4, in which the degree of overlap of top-5 and

top-10 are very low. The reason may be that this request is looking for a service to perform multiple

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e o

f O
ve

rl
ap

k

Compare Data Mediation Algorithms-Average

human1

human2

human3

leaf

struct

path

random

91

sequence alignment on some sequences. The IODAG of the output of operation fetchBatch is a simple

tree with one path consisting of four nodes: fetchBatchResponse – parameters – fetchBatchResponse –

fetchBatchReturn. The structure of the input of operation run (ClustalW) is a complex tree with twenty

six leaves, but only two of them are the required inputs. Among all the candidate operations, fifteen of

them have an input IODAG that exactly match this simple path tree. Therefore, these fifteen operations

result in much higher data mediation scores compared to the operation run (ClustalW). The leaf-based

algorithm has a higher performance compared to other two algorithms in this case, but is still a poor result

because of all the twenty four operational inputs of the operation run (ClustalW). The solution might be

adjusting the weights of internal nodes in the IODAG or the weights of the three sub-scores (Sdm, Sfn, Spe),

but more importantly, we need test Web services with various structures in their input/output IODAGs

other than what we have here (e.g., one third of our candidate services have input IODAGs that are single

path trees).

8.4. Evaluation II

The WSC approach proposed in this dissertation can utilize various types and levels of semantic

annotations and work based on the amount of semantics that Web service providers and human process

designers specified. Generally, less complex semantics leads to lower costs, but limited expressivity.

Therefore, the complexity tradeoff of the semantics is a challenge to deal with. This evaluation aims to

study the effectiveness of different types/levels of semantic annotations used in WSC, i.e., how much the

semantic complexity will affect the performance of WSC approach.

92

For each candidate Web service operation, twelve different annotation cases are prepared for

testing using the forward suggestion with path-based data mediation algorithms. Suggestions are

requested by a user to aid the composition of Web services for each step of our scenario, except

the first, which must be chosen by the designer. The quality of the suggestions are measured by

degree of overlap for the top-5, 10, 15 and 20 suggestions made for each request using twelve

different annotation cases. As shown in Table 8.1, the twelve different cases of annotations

indicate different combinations of information used to calculate Sdm (semantics and syntax), Sfn

and Spe for formula 3-1 in Chapter 3. The information used for Sdm includes the syntactic name

and semantic annotations for all the input and output of a Web service operation, such as

<message>, <part> and <element>. The semantic annotations for Sfn are the functionality

annotations for the Web service operations. The annotations for Spe consist of preconditions,

effects and an initial state. From the Table 8.1, we can tell that case 0 is the least complex,

because it includes nothing, and the ranking based on it is effectively a random ranking. Case 11

is the fully annotated case, which uses all the annotations.

Table 8.1. Different cases of annotations

Information

Case

Syntax used
for Sdm

Semantic
annotations

for Sdm

Semantic
annotations

for Sfn

Semantic
annotations

for Spe
Case 0 No No No No
Case 1 Yes No No No
Case 2 Yes Yes No No
Case 3 No No Yes No
Case 4 Yes No Yes No
Case 5 Yes Yes Yes No
Case 6 No No No Yes
Case 7 Yes No No Yes

93

Information

Case

Syntax used
for Sdm

Semantic
annotations

for Sdm

Semantic
annotations

for Sfn

Semantic
annotations

for Spe
Case 8 Yes Yes No Yes
Case 9 No No Yes Yes
Case 10 Yes No Yes Yes
Case 11 Yes Yes Yes Yes

8.4.1. Hypotheses

Case 0 includes no information, so the ranking based on it is effectively a random ranking, and should

have the worst performance. Better suggestions, in terms of degree of overlap, should be obtained by using

fully complete annotations compared to fewer annotations. However, making fully complete semantic

annotations is much harder and more time-consuming than the simple annotation cases, so some cases, i.e.,

case 4 and case 5, that are not too difficult to create and still have sufficient degree of overlap are more

practical.

8.4.2. Results

Figures 8.8 to 8.14 show the comparisons of the twelve annotation cases used in six service

suggestions in terms of degree of overlap, the left part of each figure shows annotation cases 0-5 (without

precondition/effects) and the right part depicts annotation cases 6-11 (with precondition/effects). Three

human evaluators' rankings are also presented for comparison. Figure 8.15 gives the average degree of

overlap of the six requests using twelve annotation cases as well as three human evaluators and a random

ranking. (Please see appendix C for all the statistical data for this evaluation.)

94

Figure 8.8. Compare different annotation cases - request 1 (selected operation: "getIds")

Figure 8.9. Compare different annotation cases - request 2 (selected operation: "array2string")

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 1

human1

human2

human3

case0

case1

case2

case3

case4

case5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 1

human1

human2

human3

case6

case7

case8

case9

case10

case11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 2

human1

human2

human3

case0

case1

case2

case3

case4

case5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 2

human1

human2

human3

case6

case7

case8

case9

case10

case11

95

Figure 8.10. Compare different annotation cases - request 3 (selected operation: "fetchBatch")

Figure 8.11. Compare different annotation cases - request 4 (selected operation: "run")

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 3

human1

human2

human3

case0

case1

case2

case3

case4

case5 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 3

human1

human2

human3

case6

case7

case8

case9

case10

case11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 4

human1

human2

human3

case0

case1

case2

case3

case4

case5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 4

human1

human2

human3

case6

case7

case8

case9

case10

case11

96

Figure 8.12. Compare different annotation cases - request 5 (selected operation: "getResult")

Figure 8.13. Compare different annotation cases - request 6 (selected operation: "base64toString")

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 5

human1

human2

human3

case0

case1

case2

case3

case4

case5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap
k

Compare Annotation Cases-Request 5

human1

human2

human3

case6

case7

case8

case9

case10

case11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 6

human1

human2

human3

case0

case1

case2

case3

case4

case5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Request 6

human1

human2

human3

case6

case7

case8

case9

case10

case11

97

Figure 8.14. Comparing different annotation cases - average

8.4.3. Findings

As expected, case 0 has the lowest degree of overlap. Overall, complicated annotations result in

higher degrees of overlap, e.g., averaging the top-5 and top-10, the best cases in order are 11, 9, 8, 10 and

5 (see Table C.14 in Appendix C). However, of these, the precondition/effects that require writing formal

descriptions in a logic language can be difficult to specify. Therefore, some users may want to avoid such

complicated annotations, but still keep sufficient performance. In this experiment, cases 2, 3 and 6

represent the pure annotations on input/output, functionality and precondition/effects, respectively. The

results in Figure 8.14 indicate that the relative contributions towards suggesting correct Web services are

ordered as follows: functionality annotations (case 3) contribute the most, followed by input/output

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Average

human1

human2

human3

case0

case1

case2

case3

case4

case5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Compare Annotation Cases-Average

human1

human2

human3

case6

case7

case8

case9

case10

case11

98

annotations (case 2) and finally precondition/effects annotations (case 6). Even better is to try

combinations such as case 5 (ranked 5th) or case 4 (ranked 6th). Note, neither of these two cases requires

writing complex annotations for precondition/effects, i.e., they require less effort to create, but still may

have sufficient performance and hence may be good choices.

8.5. Evaluation III

Our service suggestion algorithms can make forward, backward and bi-directional suggestions. Since

forward and backward suggestions are similar except for the difference in direction, in this evaluation we

decided to just compare the performance of the forward and the bi-directional suggestion algorithms,

which use both forward and backward suggestions for basic calculations.

Based on the results of the first two evaluations, this evaluation uses the path-based data mediation

algorithm with annotations on input/output and functionality. Five suggestions are made in this evaluation

to suggest services that can be plugged in the middle of service prefixes and suffixes. For the first request,

the prefix and suffix are the first and third services in our scenario. Similarly, the second service prefix is

the first two service operations and the second suffix is the fourth service operation. The third, fourth and

fifth prefix and suffix are set in the same manner. Degree of overlap is calculated for all five requests of

the top-5, 10, 15 and 20 suggestions made by the forward and bi-directional suggestion algorithms.

8.5.1. Hypotheses

The bi-directional suggestion algorithm uses both prefix and suffix to calculate ranking scores for all

candidate services, so it would supposedly give more accurate suggestions compared to the forward

99

suggestion algorithm. However, to fairly compare the two algorithms, we have to use the same rankings

made by three evaluators for the two algorithms. The three human evaluators rank all the services in the

forward way that means they rank the candidate services based on the prefix rather than both prefix and

suffix. Therefore, under this condition, the bi-directional suggestion algorithm may filter out some

operations that are ranked in higher positions in the forward way, and may not have a higher degree of

overlap than forward suggestion algorithm. (Ideally, the human evaluators should re-rank the operations

from the perspective of making a bi-directional suggestion.) We also expect our suggestion algorithms

could make sufficient suggestions that have much higher degree of overlap compared to the random

rankings.

8.5.2. Results

Figures 8.15 to 8.19 show the degree of overlap of the top-5, top-10, top-15 and top-20 suggestions

for each request made by the forward and bi-directional suggestion algorithms, as well as the suggestions

made by the three human evaluators and a random ranking. In Figure 8.20, the average degree of overlap

of all five requests is depicted as well as three human evaluators and a random ranking. (Please see

appendix C for all the statistical data for this evaluation.)

100

Figure 8.15. Forward vs. bi-directional suggestion

algorithms in request 1 (selected operation:
"getIds")

Figure 8.16. Forward vs. bi-directional suggestion

algorithms in request 2 (selected operation:
"array2string")

Figure 8.17. Forward vs. bi-directional suggestion

algorithms in request 3 (selected operation:
"fetchBatch")

Figure 8.18. Forward vs. bi-directional suggestion
algorithms in request 4 (selected operation: "run")

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Forward vs. Bidirectional Suggestions-
Request 1

human1

human2

human3

forward

bidirectional

random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Forward vs. Bidirectional Suggestions-
Request 2

human1

human2

human3

forward

bidirectional

random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Forward vs. Bidirectional Suggestions-
Request 3

human1

human2

human3

forward

bidirectional

random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Forward vs. Bidirectional Suggestions-
Request 4

human1

human2

human3

forward

bidirectional

random

101

Figure 8.19. Forward vs. bi-directional suggestion

algorithms in request 5 (selected operation:
"getResult")

Figure 8.20. Forward vs. bi-directional suggestion

algorithms - average

8.5.3. Findings

The results of this evaluation show that the forward and bi-directional suggestion algorithms have a

roughly similar performance in terms of degree of overlap. The random ranking has a far lower degree of

overlap, which indicates our suggestion algorithms can provide useful suggestions. In most of the

requests, the degree of overlap of our suggestion algorithms are close to expert human evaluators,

especially the first evaluator, which shows that our suggestion algorithms could help humans by

suggesting some services needed to compose a WSC process.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Forward vs. Bidirectional Suggestions-
Request 5

human1

human2

human3

forward

bidirectional

random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

D
eg

re
e

of
 O

ve
rl

ap

k

Forward vs. Bidirectional Suggestions-
Average

human1

human2

human3

forward

bidirectional

random

102

CHAPTER 9

RELATED WORK

In the past decade, many studies and research projects have worked on different approaches for Web

service composition. According to Charif-Djebbar et al. [63], Dustdar et al. [64], and Cheng et al. [65],

approaches for WSC can be classified into three categories according to the automation level of the

approach: manual (with GUI), semi-automatic and automatic approaches. Semantics usually can help with

the heterogeneities during WSC and increase the automation level. However, providing more complex

semantic annotations may cost too much. As we mentioned in Section 1.4, data mediation and process

mediation are two major issues of WSC, so the rest of this chapter will discuss the work related to this

dissertation from these points of view.

9.1. Manual Approach with GUI Designer

Many WSC GUI designers have been developed both in industrial and academic areas, which allow

users to manually design a WSC process with the help of a graphical interface. Some of the popular WSC

103

designers are NetBeans BPEL designer44, ActiveVOS45, Oracle JDeveloper46, Eclipse BPEL designer47,

Taverna48 66, Kepler [] and BioExtract [67].

Manual approaches tackle the data mediation and process mediation manually through their graphical

interface. More specifically, for data mediation, users have to figure out how the inputs will be fed by other

operations for each Web service operation in the WSC process through a menu (e.g. Taverna), popup

window (e.g. Oracle JDeveloper), tab (e.g. Eclipse BPEL designer) or even visually drawing lines between

matched outputs and inputs (e.g. NetBeans BPEL designer). Figure 9.1 shows that the NetBeans BPEL

designer lets users draw lines between matched outputs and inputs. These different graphical interfaces help

users create mappings without requiring coding (e.g., of BPEL assign activities) for a WSC process.

However, figuring out those matched outputs and inputs is not easy in general.

Figure 9.1. NetBeans manual data mediation GUI

44 NetBeans BPEL: http://soa.netbeans.org/soa/
45 ActiveVOS: http://www.activevos.com/
46 Oracle JDeveloper: http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
47 Eclipse BPEL designer: http://www.eclipse.org/bpel/
48 Taverna: http://www.taverna.org.uk/

http://soa.netbeans.org/soa/�
http://www.activevos.com/�
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html�
http://www.eclipse.org/bpel/�
http://www.taverna.org.uk/�

104

For process mediation, manual approaches let users manually pick Web service operations and connect

them together visually through the graphical designers. They generally provide drag-and-drop capability so

that users can visually drag their desired operations to the canvas and connect them. Figure 9.2 is the

interface of the NetBeans BPEL designer. On the top right are components and structures that users can

drag to the canvas to invoke an operation or connect into a structure. These convenient graphical designers

enable users to visually create a process and reduce the need for hand-coding. However, which operations to

choose and in which manner to connect them still remain hard for users.

Figure 9.2. NetBeans BPEL designer

105

9.2. Automatic Approach

Automatic approaches compose Web service operations into a process automatically without users’

intervention. In the automatic WSC, a user formulates a process specification (chiefly an initial state and

goals), which will be processed and the WSC process will be generated automatically. Many techniques

have been applied to automatic WSC including: Golog planning [12], Heuristic Search [68],

Estimated-regression planning [13], rule-based mechanism [69], SWORD [14], Simple Hierarchical

Ordered Planner 2 (SHOP2) [70], HTN planning [71], Constraint Satisfaction Problem (CSP) planning [15],

theorem proving [72], planning by Model Checking [16, 17], finite state machine [73], template-based

approach [74], QoS oriented planning [11], MDP planning [18], Colored Petri-net [75, 76], CSP-based

Graphplan [19], etc.

Most automatic WSC approaches generally use techniques from the Artificial Intelligence (AI) area,

i.e., planning algorithms. [11] uses the QoS properties to guide a heuristic search to generate a plan and an

OWL-S process will be generated based on the plan. [13] applies an estimated-regression planning

algorithm to WSC. It uses a backward analysis of the difficulty of a goal to guide a forward search through

situation space to generate a plan using Planning Domain Definition Language (PDDL). The generated plan

is then translated into a WSC process represented by DAML-S. Simple Hierarchical Ordered Planner 2

(SHOP2) [70] is a planning system based on ordered task decomposition. The inputs to their planner are

specified in OWL-S that reflects the user requirement. SHOP2 is then used to build a plan, which

afterwards is transferred back to an OWL-S description of a WSC process. SWORD [14] applies a

rule-based planner for automatic Web service composition utilizing an Entity-Relation (ER) model. Web

106

services are represented in the form of a Horn rule. A plan will be generated automatically using a

rule-based planner. The ASTRO [16, 17] tool set is a platform that supports automatic Web service

composition based on Planning by Model Checking. Given a set of existing BPEL processes and a

composition requirement, ASTRO translates it into an intermediate file that represents a Planning as Model

Checking problem. With the intermediate file, a plan is generated and then translated back to BPEL format.

[77] presents a Markov Decision Process (MDP) based approach for automatic Web service composition. A

decision-theoretic planning, MDP is used to model the WSC. The solution of a MDP produces a policy to

guide the generation of a WSC process. They focus on automatically establishing the process logic, the

process mediation issue, but ignore the data mediation problems. The template-based approach [74]

customizes an abstract workflow for specific requirements. Abstract activities in templates specify the

features of the required services and concrete service can be ranked, selected based on abstract service

descriptions, and used to generate executable workflows. The HTN-DL planner, an extension to the HTN

planner, is used to handle process mediation, i.e., select templates, rank and select concrete services, and

generate the WSC process specified in OWL-S. No data mediation issue has been discussed. All these

planning based WSC tools tackle process mediation using planners, so the quality of the generated WSC

process relies on the planners, the quality of the domain knowledge, and the problem specification.

However, the complexity of the domain knowledge and the problem specification will lead to higher

complexity to use the approach. Moreover, describing domain knowledge in sufficient completeness is a

challenge to the user, and presenting the problem specification highly and accurately is still a challenge in

the Semantic Web itself. The data mediation problems are ignored in most of the automatic approaches, e.g.,

107

they ignore semantic data heterogeneities and assume all the connected services would have perfectly

matched outputs and inputs, which can make their solutions impractical.

Some other approaches do not use planning algorithms, such as [68], which utilizes a heuristic search

on a dependency graph of all the candidate services to generate a WSC process specified by OWL-S. The

heuristic search algorithm tackles process mediation automatically, but the authors assume every service

only has one output, to avoid the data mediation problems. [73] models the WSC as a protocol synthesis

problem. It uses a finite state machine (FSM) to model the behaviors of services and automatically generate

the WSC process. The data mediation problems are ignored. The automatic approach in [75] tackles both

data mediation and process mediation. It handles the process mediation by creating a Colored Petri-net

(CPN) that represents the WSC process. Data types are defined as object-oriented classes to resolve data

mediation problems, however, no ontology is used to capture the semantic heterogeneities.

9.3. Semi-automatic Approach

The semi-automatic approach allows some degree of human interaction with the computer during

WSC, while still providing some automation to ease the users’ work. It aims to reduce the disadvantages of

the manual and automatic approach, but still keep the advantages of them by combining human and

machine capabilities. Many researchers have been working on semi-automatic WSC approaches [78-92].

This dissertation proposes a semi-automatic approach for WSC including both data mediation and

process mediation issues. Our data mediation (path-based) performs a semantic structural type checking to

handle the heterogeneities between inputs and outputs of service operations. Some other semi-automatic

approaches also can tackle the data mediation problems: [78] uses OWL-S to describe Web services, more

108

specifically, OWL-S profile sub-ontology, so the data mediation problems are tackled by ontology mapping

between the sub-ontologies. However, ontology mapping is still an open problem in the semantic Web and

users may need more effort to create the sub-ontologies for all the services compared to our approach,

which only adds several annotations in the standard WSDL documents. [79] is an OWL-S based approach,

which focuses on verifying a given WSC process. It checks the WSC process based on the semantic

compatibility between outputs and inputs of the operations in the process, i.e., verifying based on data

mediation. Its matching at the element-level only considers identical, generalization and specialization

matching, which correspond to our exact, subsumes and subsumed-by matching. We further compare the

properties of the semantic concepts with their ranges, cardinalities, etc. Moreover, its data mediation

approach ignores the structure of the schema of inputs and outputs and does not perform any type checking.

[80] proposes a data mediation approach that is based on matching schema of input and output messages,

but it only compares the syntax of message schema without any semantics, so it is not able to resolve the

semantic heterogeneities between outputs and inputs of service operations. None of these semi-automatic

approaches tackle process mediation problems.

Our process mediation approach ranks all the candidate service operations based on the data

mediation, functionality, precondition and effect, and makes suggestions to the user. [81] also tackles

process mediation by suggesting services to the user, however, its suggestion algorithm is based on

information provided from social network analysis, which implicitly builds from the interactions between

users and services, and the different services compositions operated by the user's social network members

as well as the global social network. [82] selects services based on QoS parameters, so it handles process

mediation based on non-functional requirements. [84] presents a goal decomposition approach to generate

109

the WSC process. The user provides a goal, which is reduced by repeated partial matching of services

until all requirements are satisfied or there are no more services to consider. As a result, the generated

process will be presented to the requestor to confirm if it is acceptable. In contrast to our approach, it

suggests the whole process to the user rather than single services, which is less flexible since users cannot

make decisions on the service level. The approach described by Xu et al. [85] helps users select

appropriate services by analyzing dynamic semantic association between services. The dynamic

semantics is the semantics of values of IO when the service is executed. The main idea of this approach is

to match dynamic semantics of IO as a basic step to select some services, and then add more services

based on the inheritance relationships between functionalities of services. Afterwards, all the selected

services will be ranked based on the semantic distance of their functionalities in ontology. Michael et al.

[86] ranks and suggests suitable Web services to the user by using a lazy breadth-first search over an

implicit graph of the service space base on the information presented in the Moby49

87

 service ontology. Its

suggestion algorithm does not consider the parameters that are used in our data mediation, e.g., structure

of the message schema or XSD type compatibility, as well as preconditions and effects. [] uses

backward chaining along with filtering to help the user select the next service/operation to add to their

composition. Kim et al. [88] developed a novel tool for finding errors or deficiencies in WSC designs and

providing written suggestions for how to fix the problems. This tool focuses on finding deficiencies and

does not consider data mediation issues in detail. PASSAT [89] promotes an interactive planning to

resolve the process mediation problems. [90, 91] use Case-Based Reasoning (CBR) to compose WSC

processes semi-automatically. All these approaches listed above do not provide any mechanism to tackle

49 BioMoby: http://www.biomoby.org/

http://www.biomoby.org/�

110

data mediation problems.

IRS-III [92] is based on WSMO, which deals with both data mediation and process mediation

semi-automatically. Different from our data mediation approach, its data mediation is solved by users

manually selecting predefined mediators in the system, which is presented as a sub-ontology defined by

WSMO aiming to automatically mediate heterogeneities. It might be impossible to predefine all the

possibly needed mediators, which can make the approach less practical to use. Its process mediation

approach lets the user manually select predefined goals and structures through a GUI, and then the system

selects appropriate services based on those selected goals. It is convenient that the user does not have to

create the goal, but it might be impossible for a system to predefine all the possible goals needed by all

designers, which may limit the usage of this approach.

111

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

Along with the increasing number of Web services implemented and available on the Web, reusing

and composing existing Web services together to complete a new task is becoming increasingly important.

However, for general users, Web service composition is not an easy task. Focusing on this problem, this

dissertation presents an effort to aid the user’s work and resolve challenges during WSC. The rest of this

chapter will describe the conclusions and contributions of this work and then discuss some future research

directions for this work.

10.1. Conclusions

This work seeks to aid users in composing Web services into a process. Three data mediation

algorithms, leaf-based, structure-based and path-based data mediation, are developed to address data

dependency and heterogeneity during the WSC and to support service suggestion. The path-based and

structure-based data mediation algorithms take into consideration the structure of a Web service

operation’s input/output, the former via the path comparisons in the structure-level matching and the latter

using a sub-tree homeomorphism algorithm. The three data mediation algorithms can work with various

types and levels of semantic annotations of SAWSDL documents. All three data mediation algorithms

consider the global inputs and the outputs from all preceding operations, which allow them to handle

112

more general cases. An evaluation is presented to compare three data mediation algorithms, which shows

that path-based data mediation has a higher degree of overlap compared to the other two. The data

mediation engine is implemented as an independent external engine, which can be attached to a WSC

designer to solve data heterogeneities between messages. The data mediation engine can automatically

detect the different types of inputs, i.e., required, optional, and unknown type input. Different weights are

assigned to calculate the matching score, so that the required input has the highest priority, unknown type

is the next, and then the optional input.

A formal graph model (called IODAG) for the input/output of a Web service operation is defined.

The IODAG models the metadata of input/output for a service operation as a labeled DAG, which

represents the structure of the input/output and serves as the basis for our data mediation algorithms.

Type theory has been studied and the data mediation problem is formalized as a semantic structural

subtype compatibility problem. The typed representations for path-based and leaf-based data mediation

based on type checking are given. The input/output of a Web service operation is formalized as a

structural type, which combines the structure, semantic and syntactic type together. Subtyping rules are

defined for the type checking to indicate the type safety of the matching. The type checking is performed

at both elemental and structural levels. The data mediation results include both a matching score and a

type checking result for every pair of matched input and output. Type incompatibility will be detected

even if the pair of output and input semantically matches. For example, in our scenario, the output of the

operation "getIds" is an array of string, "string[]," and the input of operation "fetchBatch" is a string. Even

though semantically they both represent sequence ids, the type checking will detect it as unsafe, and a

converter might be needed to convert the data.

113

A service ranking schema and suggestion algorithm is developed to address the process mediation

issue for WSC. It ranks all the candidate Web service operations and suggests them to the user during

composition. The suggestion score is calculated based on some important aspects of WSC, i.e., data

mediation, precondition/effects and service functionality. The service suggestion algorithm can work with

various types and levels of semantic annotation, such as with or without functionality annotations,

precondition/effects and annotations for the input and output. An evaluation has been performed to

compare the effectiveness of different annotation cases, which shows that complicated annotation cases

result in more accurate service suggestions, but need more effort to create; less complicated annotations

need less effort to create, but result in less accurate service suggestions. The cases with annotations on

input/output and functionality are good to use because they require less effort to create compared to the

cases with precondition/efforts, and still result in sufficiently accurate service suggestions. This service

suggestion approach is implemented as an independent external engine, which can be attached to a WSC

designer to aid users’ work during design time. The service suggestion engine can provide forward,

backward and bi-directional suggestions, which suggest a Web service operation after, before, or in the

middle of the current WSC process.

This work extends the METEOR-S [51] service model and utilizes the precondition/effects to guide

Web service composition using our service suggestion algorithm. A Horn logic language (Prolog), which

is more expressive than propositional logic, is used to describe preconditions and effects. The Prolog KB

is used to represent the states for a WSC process, which is a collection of Prolog facts and rules. A Horn

logic KBMS is implemented on top of the Prolog engine, SWI-Prolog, which is able to query the KB for

the entailment of the given preconditions and update the KB based on the given effects.

114

We studied and compared many string metrics to find an appropriate syntactic similarity measure

algorithm that is used for our similarity measure, i.e., the Jaro-Winkler string metric. Several concept

similarity measure algorithms are studied, customized and extended for use in our data mediation and

service suggestion algorithms, such as Verma’s [22] and Garlapati’s [23] concept similarity measures,

which were originally used for Web service discovery.

10.2. Future Work

 Although the algorithms and approaches for WSC presented in this dissertation are based on our

numerous studies and research, some aspects remain that can be extended or improved in the future.

For forward service suggestions, a planner can be used to complete the rest of the process to estimate

the distance from the state after the execution of the candidate operation to the goal state. This distance

can be taken into consideration to compute the precondition/effects score to impact the service suggestion.

For bi-directional service suggestions, a planner can be used to generate a chain of Web service operations

when one Web service operation is not sufficient. The cost and the gain from using the planner is still an

issue to be studied.

The current approach suggests the connections between service operations based on the data

dependency captured during data mediation, which can be either sequence or parallel. In the future we

plan to suggest more complicated control structures, such as "if conditions" and "loops."

The current service suggestion algorithm considers only functional requirements, such as

functionality, precondition, effects, input/output, etc. In the future, some non-functional requirements can

be taken into account for service suggestions, e.g., QoS parameters, user’s preference, etc.

115

We plan to extend and apply this approach to RESTful Web services. One possible solution is to

extend the current approach to support WSDL 2.0, which can specify both SOAP and RESTful Web

services’ interfaces. Currently, most SOAP Web services are implemented with WSDL 1.1, and there are

very few WSDL 2.0 based Web services, so that solution will only be practical if in the future many

SOAP and RESTful Web services are described using WSDL2.0. Another alternative is Web Application

Description Language (WADL), which is used to describe RESTful Web services. Semantically

Annotated Web Application Description Language (SAWADL) can be used to add semantic annotations

to WADL.

RIF is recommended by W3C as a standard rule language for the semantic Web. Our current

implementation does not use RIF to specify preconditions/effects because there is no mature RIF engine

available at the present time. In the future, we plan to switch to RIF when a mature RIF engine is

available.

Path alignment can be used for path-based data mediation. As discussed in Section 4.5, aligning two

paths at different nodes will result in different matching scores between two paths, which implies a better

match between the two paths. However, since leaf nodes hold the value of the input/output, if two paths

are not aligned at their leaf nodes, which means a leaf node matches to a non-leaf node, a difficult

problem will be how to create a mapping between the leaf node and all the leaf nodes under the non-leaf

node to transfer the values from the output to the input. Another improvement for the path-based data

mediation can be allowing gaps when comparing two paths. Currently, two paths are compared along with

each pair of nodes without gaps. Allowing gaps may give a more accurate matching between the two

paths, but we have to watch the cost to see whether the accuracy gained is worth the extra cost, and the

116

time cost also has to be acceptable for making suggestions to the users.

In addition to the graph homeomorphism algorithm, we also plan to study the graph homomorphism

algorithm and apply it to data mediation. The graph homomorphism differs from graph homeomorphism

in that it provides no subdividing or smoothing operations and keeps the adjacency relationships between

nodes.

Some machine learning algorithms can be used to set the weights in our service suggestion and data

mediation algorithms. We can set the target function (f ({w1, …, wi, …, wn}) = x) as a mapping from all the

weights to a value (x), which represents the performance of the result, e.g., degree of overlap of top-5

rankings used in our evaluation. Some open source software, e.g., WEKA

(http://www.cs.waikato.ac.nz/ml/weka/) that includes many popular machine learning algorithms such as

decision trees, neural networks, etc. can be used. For example, we can run our system with different

weight combinations and get different values of x (e.g., degree of overlap of top-5 rankings). A dataset

can then be created and fed to WEKA to generate a decision tree or neural network, from which we can

get the weight combinations that should result in the best performance (x).

Another improvement we plan to do is to annotate Web services with properties defined in an

ontology. Currently, all the concepts used to annotate the Web services are classes. In the future, we might

consider using properties to annotate Web services. This requires some extensions to our similarity

measure, such as measuring the similarity between class and property in ontology.

We plan to attach our suggestion engine to Galaxy (http://galaxy.psu.edu/), a bioinformatics

integration and workflow system, which provides a Web-based GUI designer to compose workflow. As a

semi-automatic approach, users should be able to request service suggestions only when they want to.

http://www.cs.waikato.ac.nz/ml/weka/�
http://galaxy.psu.edu/�

117

Therefore, a button or menu item can be added to the workflow design canvas and whenever the user

clicks it the service suggestion engine will be fired. The information required by the service suggestion

engine has to be collected according to the workflow on the canvas when the user requests suggestion:

The topological order of the services (operation names and URI of WSDLs) in the current workflow will

be provided to the suggestion engine. The operation names and URIs of the related WSDL documents for

the current workflow can be retrieved from the information of every box (each box represents a service)

on the canvas. The candidate services consist of those Web service operations that have been added to the

Galaxy server. The operation names and URIs of the related WSDL documents for the candidate services

were stored previously whenever the services were added to Galaxy. If a service is annotated using

SAWSDL, the URI for the OWL document was also stored when the service was added to Galaxy. On the

canvas, we also need to add a text field or a upload button, so the user can type in or upload the logic file

(e.g., a fragment of Prolog) for the initial state (optional). A drop-down-list, including all the functionality

concepts in the OWL ontology referenced from SASWDL documents stored in Galaxy, can be added to

the canvas to let the user select the desired functionality (optional). All the information will be fed to the

suggestion engine and a small pop-up window (e.g., using <iframe>) will display the suggested services.

118

BIBLIOGRAPHY

[1] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell, "SAWSDL: Semantic Annotations for WSDL

and XML Schema," IEEE Internet Computing, vol. 11, pp. 60-67, November/December, 2007.

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard, "Web

Services Architecture," http://www.w3.org/TR/ws-arch/, February, 2004

[3] T. Gruber, "A Translation Approach to Portable Ontology Specifications," Knowledge Acquisition,

vol. 5, pp. 199-199, 1993.

[4] D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider, "OIL: An

Ontology Infrastructure for the Semantic Web," IEEE Intelligent Systems, vol. 16, pp. 38-45,

March-April, 2001.

[5] F. Baader, S. Brandt, and C. Lutz, "Pushing the El Envelope," in 19th Joint International

Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland, UK, pp. 364-369,

July-August, 2005.

[6] C. Feier, D. Roman, A. Polleres, J. Domingue, M. Stollberg, and D. Fensel, "Towards Intelligent

Web Services: Web Service Modeling Ontology (WSMO)," in International Conferemce on

Intelligent Computing (ICIC), Hefei, China, pp. 23-26, August, 2005.

[7] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Parsia, T.

Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara, "Bringing Semantics to Web

http://www.w3.org/TR/ws-arch/�

119

Services: The OWL-S Approach," in First International Workshop on Semantic Web Services and

Web Process Composition (SWSWPC), San Diego, California, USA, pp. 26-42, July, 2004.

[8] R. Akkiraju, J. Farell, J. A. Miller, M. Nagarajan, A. Sheth, and K. Verma, "Web Service

Semantics - WSDL-S," in W3C Workshop on Frameworks for Semantics in Web Service (W3CW),

Innsbruck, Austria, pp. 1-5, June 2005.

[9] M. Nagarajan, K. Verma, A. P. Sheth, and J. A. Miller, "Ontology Driven Data Mediation in Web

Services," International Journal of Web Services Research (JWSR) ,USA, vol. 4, pp. 104-126, Dec

2007.

[10] Z. Wu, A. Ranabahu, K. Gomadam, A. P. Sheth, and J. A. Miller, "Automatic Composition of

Semantic Web Services Using Process Mediation," in 9th International Conference on Enterprise

Information Systems (ICEIS), Funchal, Portugal pp. 453-461, Jun. 2007.

[11] J. M. Ko, C. O. Kim, and I.-H. Kwon, "Quality-of-Service Oriented Web Service Composition

Algorithm and Planning Architecture," Journal of Systems and Software, vol. 81, pp. 2079-2090,

November 2008.

[12] S. Sohrabi, N. Prokoshyna, and S. McIlraith, "Web Service Composition Via the Customization

of Golog Programs with User Preferences," Conceptual Modeling: Foundations and Applications,

vol. 5600, pp. 319-334, 2009.

[13] D. McDermott, "Estimated-Regression Planning for Interactions with Web Services," in 6th

International Conference on AI Planning and Scheduling, Toulouse, France, pp. 204-211, April

2002.

[14] S. R. Ponnekanti and A. Fox, "SWORD: A Developer Toolkit for Web Service Composition," in

120

11th World Wide Web Conference, Honolulu, HI, USA, May 2002.

[15] D. Maruyama, I. Paik, and M. Shinozawa, "A Flexible and Dynamic Csp Solver for Web Service

Composition in the Semantic Web Environment," in Sixth IEEE International Conference on

Computer and Information Technology, Seoul, Korea, p. 43. September 2006.

[16] M. Trainotti, M. Pistore, F. Barbon, P. Bertoli, A. Marconi, P. Traverso, and G. Zacco, "ASTRO:

Supporting Web Service Development by Automated Composition, Monitoring and Verfication,"

in Proceedings of the 16th International Conference on Automated Planning and Scheduling

(Software Demonstration), The English Lake District, Cumbria, U.K. , pp. 28-31, June 2006.

[17] A. Marconi, M. Pistore, and P. Traverso, "Automated Composition of Web Services: The Astro

Approach," IEEE Data Engineering Bulletin, vol. 31, pp. 23-26, 2008.

[18] C. Kun, X. Jiuyun, and S. Reiff-Marganiec, "Markov-HTN Planning Approach to Enhance

Flexibility of Automatic Web Service Composition," in IEEE International Conference on Web

Services (ICWS), Los Angeles, CA, USA, pp. 9-16, July 2009.

[19] B. Yang and Z. Qin, "Semantic Web Service Composition Using Graphplan," in 4th IEEE

Conference on Industrial Electronics and Applications, Xi'an, China, pp. 459-63, 25-27 May

2009

[20] A. ten Teije, F. van Harmelen, and B. Wielinga, "Configuration of Web Services as Parametric

Design," Engineering Knowledge in the Age of the SemanticWeb, vol. 3257, pp. 321-336, 2004.

[21] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, "Basic Local Alignment Search Tool,"

Journal of Molecular Biology, vol. 215, pp. 403-410, October 1990.

[22] K. Verma, A. Sheth, S. Oundhakar, K. Sivashanmugam, and J. A. Miller, "Allowing the Use of

121

Multiple Ontologies for Discovery of Web Services in Federated Registry Environment,"

Department of Computer Science, University of Georgia, Athens, Georgia. Technical Report

#UGA-CS-LSDIS-TR-07-011, pp. 1-27, February 2007.

[23] S. Garlapati, "A Comparison of SAWSDL Based Semantic Web Service Discovery Algorithms,"

in Department of Computer Science Athens, GA, U.S.: University of Georgia, Master's Thesis,

August 2010.

[24] M. Klusch, B. Fries, and K. Sycara, "Automated Semantic Web Service Discovery with

OWLS-MX," in 5th International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS), Hakodate, Japan: ACM Press, pp. 915-922, April 2006.

[25] G. Kondrak, "N-Gram Similarity and Distance," in Twelfth International Conference on String

Processing and Information Retrieval (SPIRE), Buenos Aires, Argentina, pp. 115-126, November

2005.

[26] W. E. Winkler, "The State of Record Linkage and Current Research Problems," Technical Report,

Statistical Research Division, U.S. Census Bureau., 1999.

[27] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database Systems: The Complete Book: Prentice

Hall, 2001.

[28] S. Thompson, Type Theory and Functional Programming. Redwood City, CA: Addison Wesley

Longman Publishing Co., Inc., 1991.

[29] R. Moten, "The Need for Type Theory in Semantic Web Services," in 14th International World

Wide Web Conference (WWW), Chiba, Japan, May 2005.

[30] S. Jones, D. Vytiniotis, S. Weirich, and M. Shields, "Practical Type Inference for Arbitrary-Rank

122

Types," Journal of Functional Programming, vol. 17, pp. 1-82, January 2007.

[31] J. Mitchell, "Type Inference with Simple Subtypes," Journal of Functional Programming, vol. 1,

pp. 245-285, July 1991.

[32] M. Sulzmann, "A General Type Inference Framework for Hindley/Milner Style Systems," in 5th

International Symposium on Functional and Logic Programming, Tokyo, Japan, pp. 248-263,

March 2001.

[33] K. Hristova, T. Rothamel, Y. A. Liu, and S. D. Stoller, "Efficient Type Inference for Secure

Information Flow," in Workshop on Programming Languages and Analysis for Security, Ottawa,

Ontario, Canada, pp. 85-94, June 2006.

[34] T. Milo, D. Suciu, and V. Vianu, "Typechecking for XML Transformers," Journal of Computer

and System Sciences, vol. 66, pp. 66-97, February 2003.

[35] T. Milo and D. Suciu, "Type Inference for Queries on Semistructured Data," in Eighteenth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Philadelphia,

Pennsylvania, United States, pp. 215-226, May-June 1999.

[36] V. Simonet, "Type Inference with Structural Subtyping: A Faithful Formalization of an Efficient

Constraint Solver," Programming Languages and Systems, vol. 2895, pp. 283-302, November

2003.

[37] R. Hindley, "The Principal Type-Scheme of an Object in Combinatory Logic," Transactions of the

American Mathematical Society, vol. 146, pp. 29-60, December 1969.

[38] R. A. Milner, "Theory of Type Polymorphism in Programming," Journal of Computer and System

Sciences, vol. 17, pp. 348-375, 1978.

123

[39] Y. Leontiev, M. Özsu, and D. Szafron, "On Type Systems for Object-Oriented Database

Programming Languages," ACM Computing Surveys (CSUR), vol. 34, pp. 409-449, December

2002.

[40] C. Russo, "Types for Modules," Electronic Notes in Theoretical Computer Science, vol. 60, pp.

3-421, April 2004.

[41] H. Cai, S. Eisenbach, A. Shafarenko, and C. Grelck, "Extending the S-Net Type System," in

Æther-Morpheus Workshop from Reconfigurable to Self-Adaptive Computing (AMWAS), Paris,

France, October 2007.

[42] O. Agesen, "Concrete Type Inference: Delivering Object-Oriented Applications," in Department

of Computer Science Stanford, CA, USA: Stanford University, Ph.D. Dissertation, December

1995.

[43] J. Munkres, "Algorithms for the Assignment and Transportation Problems," Journal of the Society

for Industrial and Applied Mathematics, vol. 5, pp. 32-38, March 1957.

[44] Z. Wang, J. A. Miller, J. C. Kissinger, R. Wang, D. Brewer, and C. Aurrecoechea, "WS-BioZard:

A Wizard for Composing Bioinformatics Web Services," in IEEE International Workshop on

Scientific Workflows (SWF'08), in conjunction with IEEE International Conference on Services

Computing (SCC'08), Honolulu, Hawaii, 2008, pp. 437-444, Jul. 2008.

[45] P. V. Biron, K. Permanente, and A. Malhotra, "XML Schema

Datatypes," http://www.w3.org/TR/xmlschema-2, October 2004.

[46] J. L. Gross and J. Yellen, Graph Theory and Its Applications, Discrete Mathematics and Its

Applications (2nd Ed.). Boca Raton, FL: Chapman & Hall/CRC, 2006.

http://www.w3.org/TR/xmlschema-2�

124

[47] S. Fortune, J. Hopcroft, and J. Wyllie, "The Directed Subgraph Homeomorphism Problem,"

Theoretical Computer Science, vol. 10, pp. 111-121, February 1980.

[48] R. Y. Pinter, O. Rokhlenko, D. Tsur, and M. Ziv-Ukelson, "Approximate Labelled Subtree

Homeomorphism," Journal of Discrete Algorithms, vol. 6, pp. 480-496, September 2008.

[49] M. Fredman and R. Tarjan, "Fibonacci Heaps and Their Uses in Improved Network Optimization

Algorithms," Journal of the ACM (JACM), vol. 34, pp. 596-615, July 1987.

[50] C. Bourke, R. Tewari, and N. V. Vinodchandran, "Directed Planar Reachability Is in

Unambiguous Log-Space," ACM Transaction on Computational Theory, vol. 1, pp. 1-17,

February 2009.

[51] R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor, "Constraint Driven Web Service

Composition in METEOR-S," in IEEE International Conference on Services Computing, 2004.

(SCC), Shanghai, China, pp. 23 - 30, September 2004.

[52] V. Levenshtein, "Binary Codes Capable of Correcting Spurious Insertions and Deletions of

Ones," Problems of Information Transmission, vol. 1, pp. 8-17, January-March 1965.

[53] W. Cohen, P. Ravikumar, and S. Fienberg, "A Comparison of String Distance Metrics for

Name-Matching Tasks," in International Joint Conference on Artificial Intelligence (IJCAI),

Acapulco, Mexico, pp. 73-78, August 2003

[54] J. Piskorski, M. Sydow, and K. Wieloch, "Comparison of String Distance Metrics for

Lemmatisation of Named Entities in Polish," Human Language Technology. Challenges of the

Information Society, pp. 413-427, August 2009.

[55] D. Lin, "An Information-Theoretic Definition of Similarity," in 15th International Conference on

125

Machine Learning, Madison, Wisconsin, USA, pp. 296–304, July 1998.

[56] R. Rada, H. Mili, E. Bicknell, and M. Blettner, "Development and Application of a Metric on

Semantic Nets," IEEE Transactions on Systems Management and Cybernetics, vol. 1, pp. 17-30,

January 1989.

[57] P. Resnik, "Semantic Similarity in a Taxonomy: An Information-Based Measure and Its

Application to Problems of Ambiguity in Natural Language," Journal of Artificial Intelligence

Research, vol. 11, pp. 95-130, 1999.

[58] J. H. Lee, M. H. Kim, and Y. J. Lee, "Information Retrieval Based on Conceptual Distance in Is-a

Hierarchies," Journal of Documentation, vol. 49, pp. 188-207, June 1993.

[59] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, "Semantic Matching of Web Services

Capabilities," in 1st International Semantic Web Conference (ISWC), Las Vegas, Nevada, pp.

333-347, June 2003.

[60] Gonzales-Castillo, D. Trastour, and C. Bartolini, "Description Logics for Matchmaking of

Services," in Workshop on Application of Description Logics, Vienna, Austria, September 2001

[61] M. Klusch, P. Kapahnke, and I. Zinnikus, "Hybrid Adaptive Web Service Selection with

SAWSDL-Mx and WSDL Analyzer," in 6th Annual European Semantic Web Conference (ESWC

2009), Heraklion, Greece, pp. 550-564, May-June 2009.

[62] J. Cardoso, J. A. Miller, and S. Emaini, "Web Services Discovery Utilizing Semantically

Annotated WSDL," Reasoning Web 2008, Lecture Notes in Computer Science (LNCS), vol. 5224,

pp. 240-268, September 2008.

[63] Y. Charif-Djebbar and N. Sabouret, "Dynamic Web Service Selection and Composition: An

126

Approach Based on Agent Dialogues," in International Conference on Service-Oriented

Computing (ICSOC), pp. 515-521, December 2006.

[64] S. Dustdar and W. Schreiner, "A Survey on Web Service Composition," International Journal of

Web and Grid Services, vol. 1, pp. 1-30, August 2005.

[65] R. Cheng, S. Su, F. Yang, and Y. Li, "Using Case-Based Reasoning to Support Web Service

Composition," in International Conference on Computational Science (ICCS), University of

Reading, UK, pp. 87-94, May 2006.

[66] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaegar, M. Jones, E. Lee, J. Tao, and Y. Zhao,

"Scientific Workflow Management and the Kepler System," Concurrency and Computation, vol.

18, pp. 1039-1065, August 2006.

[67] C. Lushbough, M. Bergman, C. Lawrence, D. Jennewein, and V. Brendel, "BioExtract Server - an

Integrated Workflow-Enabling System to Access and Analyze Heterogeneous, Distributed

Biomolecular Data," IEEE/ACM Transactions on Computational Biology and Bioinformatics vol.

7, pp. 12-24, January 2010.

[68] N. Ukey, R. Niyogi, A. Milani, and K. Singh, "A Bidirectional Heuristic Search Technique for

Web Service Composition," in 11th International Conference on Computational Science and Its

Applications (ICCSA), Santander, Spain, pp. 309-320, June 2010.

[69] Y. Yujie and C. Haopeng, "A Rule-Based Web Service Composition Approach," in Sixth

International Conference on Autonomic and Autonomous Systems (ICAS), Cancun, Mexico, pp.

150-155, March 2010.

[70] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, "HTN Planning for Web Service Composition

127

Using Shop2," Journal of Web Semantics, vol. 1, pp. 377-396, October 2004.

[71] J. Zhang, S. Zhang, J. Cao, and Y. Mou, "Improved HTN Planning Approach for Service

Composition," in IEEE International Conference on Service Computing, Shanghai, China, pp.

609-612, September 2004.

[72] J. Rao, P. Küngas, and M. Matskin, "Composition of Semantic Web Services Using Linear Logic

Theorem Proving," Information Systems, vol. 31, pp. 340-360, June-July 2006.

[73] R. Ragab Hassen, L. Nourine, and F. Toumani, "Protocol-Based Web Service Composition," in

6th International Conference on Service Oriented Computing (ICSOC), Sydney, Austrialia, pp.

38-53, December 2008.

[74] E. Sirin, B. Parsia, and J. Hendler, "Template-Based Composition of Semantic Web Services," in

AAAI Fall Symposium on Agents and the Semantic Web, Virginia, USA, pp. 85-92, November

2005.

[75] Z. Zhang, F. Hong, and H. Xiao, "A Colored Petri Net-Based Model for Web Service

Composition," Journal of Shanghai University (English Edition), vol. 12, pp. 323-329, January

2008.

[76] X. Yi and K. Kochut, "A CP-Nets-Based Design and Verification Framework for Web Services

Composition," in IEEE International Conference on Web Services (ICWS), San Diego, California,

pp. 756-760, July 2004.

[77] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, "Dynamic Workflow Composition: Using

Markov Decision Processes," International Journal of Web Service Research, vol. 2, pp. 1-17,

2005.

128

[78] S. Izza, L. Vincent, and P. Burlat, "Exploiting Semantic Web Services in Achieving Flexible

Application Integration in the Microelectronics Field," Computers in industry, vol. 59, no. 7, pp.

722-740, September 2008.

[79] N. Lebreton, C. Blanchet, D. Claro, J. Chabalier, A. Burgun, and O. Dameron, "Verification of

Parameters Semantic Compatibility for Semi-Automatic Web Service Composition: A Generic

Case Study," in International Conference on Information Integration and Web-based Applications

& Services (iiWAS), Paris, France, November 2010.

[80] A. Gao, D. Yang, and S. Tang, "Web Service Composition Based on Message Schema Analysis,"

Advances in Databases: Concepts, Systems and Applications, vol. 4443, pp. 918-923, August

2007.

[81] A. Maaradji, H. Hacid, J. Daigremont, and N. Crespi, "Social Composer: A Social-Aware Mashup

Creation Environment," in ACM Conference on Computer Supported Cooperative Work (CSCW),

Savannah, Georgia, USA, pp. 549-550, February 2010.

[82] X. Fan, C. Jiang, and X. Fang, "An Efficient Approach to Web Service Selection," in

International Conference on Web Information Systems and Mining (WISM), Amsterdam,

Netherlands, pp. 271-280, June 2009.

[83] I. B. Arpinar, R. Zhang, B. Aleman-Meza, and A. Maduko, "Ontology-Driven Web Services

Composition Platform," Information Systems and E-Business Management, vol. 3, pp. 175-199,

June 2005.

[84] M. Naeem, R. Heckel, and F. Orejas, "Semi-Automated Service Composition Using Visual

Contracts," in International Conference on Frontiers of Information Technology (FIT),

129

Abbottabad, Pakistan, pp. 1-6, December 2009.

[85] M. Xu, J. Chen, Y. Peng, X. Mei, and C. Liu, "A Dynamic Semantic Association-Based Web

Service Composition Method," in IEEE/WIC/ACM International Conference on Web Intelligence,

Hong Kong, pp. 666-672, December 2006.

[86] D. Michael, P. Rachel, and W. Mark, "Semi-Automatic Web Service Composition for the Life

Sciences Using the Biomoby Semantic Web Framework," Journal of Biomedical Informatics, vol.

41, pp. 837-847, Oct 2008.

[87] E. Sirin, B. Parsia, and J. Hendler, "Filtering and Selecting Semantic Web Services with

Interactive Composition Techniques," IEEE Intelligent Systems, vol. 19, pp. 42-49, July-August

2004.

[88] J. Kim, M. Spraragen, and Y. Gil, "An Intelligent Assistant for Interactive Workflow

Composition," in Ninth international conference on Intelligent User Interface (IUI), Funchal,

Madeira Island, Portugal, pp. 125-131, January 2004.

[89] K. L. Myers, W. M. Tyson, M. J. Wolverton, P. A. Jarvis, T. J. Lee, and M. desJardins, "PASSAT:

A User-Centric Planning Framework," in Third International NASA Workshop on Planning and

Scheduling for Space, Houston, TX, USA, October 2002.

[90] E. Chinthaka, J. Ekanayake, D. Leake, and B. Plale, "CBR Based Workflow Composition

Assistant," in Congress on Services, Los Angeles, California, USA pp. 352-355, July 2009.

[91] S. Lajmi, C. Ghedira, and K. Ghedira, "CBR Method for Web Service Composition," Advanced

Internet Based Systems and Applications. Second International Conference on Signal-Image

Technology and Internet-Based Systems (SITIS 2006, Hammamet, Tunisia), Revised Selected

130

Papers, pp. 314-26, 2009.

[92] F. Hakimpour, D. Sell, L. Cabral, J. Domingue, and E. Motta, "Semantic Web Service

Composition in IRS-III: The Structured Approach," in 7th International IEEE Conference on

E-Commerce Technology (CEC), Technische Universität München, Germany, pp. 484-487, July

2005.

131

APPENDIX A

SAWSDL ANNOTATIONS FOR WSDL2.0

Table A.1. Allowable SAWSDL annotations for WSDL 2.0

Annotation
Tag

modelReference

lifting
SchemaMapping

lowering
SchemaMapping

<interface> Yes No No
<operation> Yes No No
<element> Yes Yes Yes
<complexType> Yes Yes Yes
<simpleType> Yes Yes Yes
<attribute> Yes No No
<fault> Yes No No

132

APPENDIX B

RANKINGS OF CANDIDATE WEB SERVICES

Table B.1 Rankings from the first evaluator

Web service Operation 1 2 3 4 5 6

WU-BLAST
http://www.ebi.a
c.uk/Tools/webs
ervices/wsdl/WS
WUBlast.wsdl

1. blastp 25 21 25 6 45 46
2. blastn 26 22 26 7 46 47
3. getOutput 2 34 33 31 36 36
4. getXML 3 35 34 32 37 37
5. runWUBlast 23 19 23 4 43 44
6. getIds 1 40 35 33 38 39
7. checkStatus 4 36 37 34 39 40
8. poll 6 37 38 35 40 41
9. getResults 5 38 36 36 41 42
10. getMatrices 8 8 7 11 5 3
11. getPrograms 9 9 8 12 6 4
12. getDatabases 10 10 9 13 7 5
13. getSort 11 11 10 14 8 6
14. getStats 12 12 11 15 9 7
15. getXmlFormats 13 13 12 16 10 8
16. getSensitivity 14 14 13 17 11 9
17. getFilters 15 15 14 18 12 10
18. polljob 7 39 39 37 42 43
19. doWUBlast 24 20 24 5 44 45

WSDbfetch
http://www.ebi.a
c.uk/ws/services
/WSDbfetchDoc
lit?wsdl

20. fetchBatch 32 3 1 49 47 48
21. fetchData 33 2 2 50 48 49
22. getDatabaseInfo 34 24 18 26 22 20
23. getDatabaseInfoList 16 4 6 19 13 11
24. getDbFormats 35 25 19 27 23 21
25. getFormatInfo 36 26 20 28 24 22
26. getFormatStyles 37 27 21 29 25 23
27. getStyleInfo 38 28 22 30 26 24

http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�

133

28. getSupportedDBs 17 5 3 20 14 12
29. getSupportedFormats 18 6 4 21 15 13
30. getSupportedStyles 19 7 5 22 16 14

ClustalW2
http://www.ebi.a
c.uk/Tools/servi
ces/soap/clustal
w2?wsdl

31. getParameters 20 16 15 8 4 2
32. getParameterDetails 39 29 28 23 19 17
33. run 40 32 31 1 27 33
34. getStatus 41 42 40 40 2 25
35. getResultTypes 42 42 41 38 3 26
36. getResult 43 43 42 39 1 27

WSConverter
WSConverter.ws
dl

37. array2string 44 1 49 47 49 50
38. base64toString 45 44 50 48 50 1

tcoffee
http://www.ebi.a
c.uk/Tools/servi
ces/soap/tcoffee
?wsdl

39. getParameters 21 17 16 9 17 15
40. getParameterDetails 46 30 29 24 20 18
41. run 47 33 32 2 31 34
42. getStatus 48 45 43 43 28 27
43. getResultTypes 49 46 44 41 29 28
44. getResult 50 47 45 42 30 29

ncbiblast
http://www.ebi.a
c.uk/Tools/servi
ces/soap/ncbibla
st?wsdl

45. getParameters 22 18 17 10 18 16
46. getParameterDetails 31 31 30 25 21 19
47. run 27 23 27 3 35 35
48. getStatus 28 48 46 46 32 30
49. getResultTypes 29 49 47 44 33 31
50. getResult 30 50 48 45 34 32

Table B.2 Rankings from the second evaluator

Web service Operation 1 2 3 4 5 6

WU-BLAST
http://www.ebi.a
c.uk/Tools/webs
ervices/wsdl/WS
WUBlast.wsdl

1. blastp 19 22 42 49 16 34
2. blastn 18 21 43 48 17 35
3. getOutput 17 20 44 46 15 30
4. getXML 16 3 45 47 15 29
5. runWUBlast 49 49 49 45 13 36
6. getIds 1 48 41 44 18 28
7. checkStatus 2 23 47 29 12 33
8. poll 4 47 32 30 45 2
9. getResults 3 2 46 26 11 18
10. getMatrices 48 46 38 27 47 26
11. getPrograms 5 8 39 28 48 25

http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�

134

12. getDatabases 6 13 40 18 49 24
13. getSort 7 4 33 19 44 19
14. getStats 8 5 34 20 43 20
15. getXmlFormats 9 7 35 21 42 23
16. getSensitivity 10 6 36 22 41 22
17. getFilters 11 24 37 25 46 21
18. polljob 15 42 50 24 10 27
19. doWUBlast 50 50 48 23 50 37

WSDbfetch
http://www.ebi.a
c.uk/ws/services
/WSDbfetchDoc
lit?wsdl

20. fetchBatch 21 9 1 7 19 31
21. fetchData 22 10 2 8 20 32
22. getDatabaseInfo 23 12 3 12 22 9
23. getDatabaseInfoList 24 11 5 11 21 10
24. getDbFormats 26 37 6 9 25 15
25. getFormatInfo 29 35 16 13 23 11
26. getFormatStyles 28 40 17 15 27 13
27. getStyleInfo 30 36 20 14 24 12
28. getSupportedDBs 25 39 14 16 26 17
29. getSupportedFormats 27 38 18 10 28 16
30. getSupportedStyles 31 41 19 17 29 14

ClustalW2
http://www.ebi.a
c.uk/Tools/servi
ces/soap/clustal
w2?wsdl

31. getParameters 32 14 7 21 30 3
32. getParameterDetails 33 17 8 3 31 4
33. run 12 35 21 1 36 38
34. getStatus 38 25 22 33 7 41
35. getResultTypes 44 26 27 36 2 43
36. getResult 41 29 13 37 1 47

WSConverter
WSConverter.ws
dl

37. array2string 20 1 30 42 39 50
38. base64toString 47 34 31 43 40 1

tcoffee
http://www.ebi.a
c.uk/Tools/servi
ces/soap/tcoffee
?wsdl

39. getParameters 34 15 9 4 32 5
40. getParameterDetails 35 18 10 5 33 6
41. run 13 33 23 31 37 39
42. getStatus 39 26 24 34 9 42
43. getResultTypes 45 30 28 38 4 45
44. getResult 42 27 4 39 3 48

ncbiblast
http://www.ebi.a
c.uk/Tools/servi
ces/soap/ncbibla
st?wsdl

45. getParameters 36 16 11 6 34 7
46. getParameterDetails 37 19 12 7 35 8
47. run 14 32 25 32 38 40
48. getStatus 40 27 26 35 8 43
49. getResultTypes 46 31 29 40 6 46
50. getResult 43 28 15 41 5 49

http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�

135

Table B.3 Rankings from the third evaluator

Web service Operation 1 2 3 4 5 6

WU-BLAST
http://www.ebi.a
c.uk/Tools/webs
ervices/wsdl/WS
WUBlast.wsdl

1. blastp 20 29 49 31 48 32
2. blastn 19 34 50 32 49 33
3. getOutput 5 35 23 30 24 18
4. getXML 6 36 24 29 23 17
5. runWUBlast 7 30 19 25 19 14
6. getIds 1 31 21 26 20 15
7. checkStatus 8 33 36 28 22 19
8. poll 4 32 20 27 21 20
9. getResults 2 37 25 33 25 21
10. getMatrices 9 38 26 34 26 22
11. getPrograms 10 39 27 35 27 23
12. getDatabases 11 40 28 36 28 24
13. getSort 12 41 29 37 29 25
14. getStats 13 42 30 38 30 26
15. getXmlFormats 14 43 31 39 31 27
16. getSensitivity 15 44 32 40 32 28
17. getFilters 16 45 33 41 33 29
18. polljob 17 46 34 42 34 30
19. doWUBlast 18 47 35 43 35 31

WSDbfetch
http://www.ebi.a
c.uk/ws/services
/WSDbfetchDoc
lit?wsdl

20. fetchBatch 21 2 1 44 37 34
21. fetchData 22 3 8 1 38 35
22. getDatabaseInfo 23 4 9 2 39 36
23. getDatabaseInfoList 24 15 10 3 40 37
24. getDbFormats 25 16 11 4 41 38
25. getFormatInfo 25 17 12 5 42 39
26. getFormatStyles 27 18 13 6 43 40
27. getStyleInfo 28 19 14 7 44 41
28. getSupportedDBs 29 20 15 8 45 42
29. getSupportedFormats 30 21 16 9 46 43
30. getSupportedStyles 31 22 17 10 47 44

ClustalW2
http://www.ebi.a
c.uk/Tools/servi
ces/soap/clustal
w2?wsdl

31. getParameters 35 6 5 45 5 9
32. getParameterDetails 36 7 7 14 4 10
33. run 32 5 2 11 50 8
34. getStatus 37 8 6 16 3 11
35. getResultTypes 38 9 7 15 2 12

http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSWUBlast.wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/ws/services/WSDbfetchDoclit?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/clustalw2?wsdl�

136

36. getResult 33 10 3 12 1 13
WSConverter
WSConverter.ws
dl

37. array2string 3 1 22 27 21 16
38. base64toString 34 11 4 13 6 1

tcoffee
http://www.ebi.a
c.uk/Tools/servi
ces/soap/tcoffee
?wsdl

39. getParameters 41 48 39 21 9 3
40. getParameterDetails 42 49 40 22 10 4
41. run 39 12 37 17 7 2
42. getStatus 43 15 41 18 11 5
43. getResultTypes 44 14 42 19 12 6
44. getResult 40 13 38 20 8 7

ncbiblast
http://www.ebi.a
c.uk/Tools/servi
ces/soap/ncbibla
st?wsdl

45. getParameters 47 23 45 46 18 45
46. getParameterDetails 48 24 46 47 17 46
47. run 45 25 43 23 13 47
48. getStatus 49 26 47 25 15 48
49. getResultTypes 50 27 48 26 16 49
50. getResult 46 28 44 24 14 50

http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/tcoffee?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast?wsdl�

137

APPENDIX C

STATISTICAL DATA FROM EVALUATIONS

Table C.1. Degree of overlap of request 1 for evaluation I

 human1 human2 human3 leaf struct path random
Top 5 0.8 0.8 0.8 0.4 0.6 0.2 0

Top 10 0.8 0.8 0.7 0.5 0.7 0.5 0
Top 15 0.933333 0.8 0.8 0.466667 0.6 0.466667 0.066667
Top 20 0.85 0.85 0.9 0.45 0.7 0.35 0.2

Table C.2. Degree of overlap of request 2 for evaluation I

 human1 human2 human3 leaf struct path random
Top 5 0.8 0.2 0.6 0 0 0.2 0

Top 10 0.5 0.5 0.6 0 0.3 0.4 0
Top 15 0.733333 0.8 0.466667 0.2 0.533333 0.533333 0.066667
Top 20 0.75 0.75 0.45 0.25 0.5 0.6 0.2

Table C.3. Degree of overlap of request 3 for evaluation I

 human1 human2 human3 leaf struct path random
Top 5 0.4 0.8 0.4 0 0.4 0.4 0

Top 10 0.6 0.7 0.6 0.2 0.2 0.2 0
Top 15 0.466667 0.6 0.866667 0.266667 0.133333 0.4 0.066667
Top 20 0.7 0.8 0.8 0.4 0.45 0.45 0.2

Table C.4. Degree of overlap of request 4 for evaluation I

 human1 human2 human3 leaf struct path random
Top 5 0.2 0.4 0.6 0.2 0 0.2 0

Top 10 0.2 0.5 0.7 0.3 0.2 0.2 0
Top 15 0.266667 0.733333 0.733333 0.4 0.2 0.2 0.066667
Top 20 0.5 0.85 0.65 0.4 0.25 0.25 0.2

138

Table C.5. Degree of overlap of request 5 for evaluation I
 human1 human2 human3 leaf struct path random

Top 5 0.8 0.6 0.8 0.2 0.2 0.4 0
Top 10 0.4 0.8 0.6 0.5 0.5 0.5 0
Top 15 0.266667 0.666667 0.8 0.466667 0.466667 0.466667 0.066667
Top 20 0.45 0.65 0.8 0.45 0.5 0.5 0.2

Table C.6. Degree of overlap of request 6 for evaluation I

 human1 human2 human3 leaf struct path random
Top 5 0.4 0.8 0.6 0.4 0.2 0.2 0

Top 10 0.7 0.5 0.5 0.4 0.3 0.3 0
Top 15 0.8 0.466667 0.333333 0.266667 0.266667 0.533333 0.066667
Top 20 0.9 0.7 0.3 0.2 0.3 0.6 0.2

Table C.7. Average degree of overlap of all six requests for evaluation I

 human1 human2 human3 leaf struct path random
Top 5 0.566667 0.6 0.633333 0.2 0.233333 0.266667 0

Top 10 0.533333 0.633333 0.616667 0.316667 0.366667 0.35 0
Top 15 0.577778 0.677778 0.666667 0.344444 0.366667 0.433333 0.066667
Top 20 0.691667 0.766667 0.65 0.358333 0.45 0.458333 0.2

Table C.8. Degree of overlap of request 1 for evaluation II

Top5 Top10 Top15 Top20

human1 0.8 0.8 0.933333 0.85
human2 0.8 0.8 0.8 0.85
human3 0.8 0.7 0.8 0.9

case0 0.2 0.6 0.8 0.85
case1 0.2 0.5 0.4 0.4
case2 0.2 0.5 0.466667 0.35
case3 0.8 0.5 0.466667 0.4
case4 0.2 0.6 0.466667 0.35
case5 0.2 0.5 0.466667 0.35
case6 0.4 0.7 0.8 0.8
case7 0.8 0.6 0.466667 0.65
case8 0.8 0.5 0.466667 0.6
case9 0.8 0.9 0.8 0.75
case10 0.8 0.6 0.466667 0.65
case11 0.8 0.5 0.466667 0.5

139

Table C.9. Degree of overlap of request 2 for evaluation II

Top5 Top10 Top15 Top20

human1 0.8 0.5 0.733333 0.75
human2 0.2 0.5 0.8 0.75
human3 0.6 0.6 0.466667 0.45

case0 0 0 0.333333 0.45
case1 0 0.3 0.666667 0.6
case2 0 0.3 0.6 0.55
case3 0.2 0.1 0.066667 0.3
case4 0.2 0.3 0.666667 0.6
case5 0.2 0.3 0.533333 0.6
case6 0 0.1 0.4 0.6
case7 0 0.3 0.666667 0.65
case8 0 0.3 0.6 0.6
case9 0.2 0.3 0.6 0.7
case10 0.2 0.3 0.666667 0.7
case11 0.2 0.3 0.6 0.65

Table C.10. Degree of overlap of request 3 for evaluation II

Top5 Top10 Top15 Top20

human1 0.4 0.6 0.466667 0.7
human2 0.8 0.7 0.6 0.8
human3 0.4 0.6 0.866667 0.8

case0 0 0 0 0.15
case1 0.2 0.1 0.4 0.55
case2 0 0.1 0.133333 0.3
case3 0.4 0.2 0.2 0.3
case4 0.4 0.2 0.4 0.55
case5 0.4 0.3 0.333333 0.35
case6 0 0 0 0.35
case7 0 0.3 0.333333 0.45
case8 0.2 0.3 0.266667 0.45
case9 0.2 0.1 0.266667 0.55
case10 0.2 0.3 0.333333 0.45
case11 0.4 0.3 0.266667 0.45

140

Table C.11. Degree of overlap of request 4 for evaluation II

Top5 Top10 Top15 Top20

human1 0.2 0.2 0.266667 0.5
human2 0.4 0.5 0.733333 0.85
human3 0.6 0.7 0.733333 0.65

case0 0 0 0 0.15
case1 0 0 0.2 0.5
case2 0.2 0.2 0.266667 0.35
case3 0.2 0.1 0.2 0.5
case4 0 0 0.133333 0.5
case5 0.2 0.2 0.266667 0.35
case6 0 0 0 0.3
case7 0 0.1 0.266667 0.4
case8 0.4 0.2 0.133333 0.3
case9 0.2 0.1 0.266667 0.5
case10 0 0.1 0.2 0.4
case11 0.4 0.2 0.133333 0.35

Table C.12. Degree of overlap of request 5 for evaluation II

Top5 Top10 Top15 Top20

human1 0.8 0.4 0.266667 0.45
human2 0.6 0.8 0.666667 0.65
human3 0.8 0.6 0.8 0.8

case0 0 0 0.066667 0.2
case1 0.2 0.4 0.466667 0.45
case2 0.2 0.5 0.533333 0.6
case3 0 0.4 0.6 0.6
case4 0.2 0.4 0.533333 0.6
case5 0.2 0.4 0.466667 0.6
case6 0 0 0.066667 0.25
case7 0.2 0.2 0.266667 0.5
case8 0.2 0.2 0.266667 0.55
case9 0.2 0.3 0.266667 0.3
case10 0.2 0.3 0.266667 0.5
case11 0.2 0.3 0.266667 0.55

141

Table C.13. Degree of overlap of request 6 for evaluation II

Top5 Top10 Top15 Top20

human1 0.4 0.7 0.8 0.9
human2 0.8 0.5 0.466667 0.7
human3 0.6 0.5 0.333333 0.3

case0 0 0.1 0.466667 0.45
case1 0.2 0.5 0.6 0.65
case2 0.2 0.3 0.466667 0.6
case3 0.2 0.1 0.133333 0.35
case4 0.2 0.5 0.6 0.7
case5 0.2 0.3 0.466667 0.55
case6 0 0.3 0.533333 0.55
case7 0.2 0.5 0.733333 0.75
case8 0.2 0.5 0.6 0.55
case9 0.2 0.3 0.533333 0.6
case10 0.2 0.5 0.733333 0.75
case11 0.2 0.5 0.6 0.5

Table C.14. Average degree of overlap of all six requests for evaluation II

Top5 Top10 Top15 Top20

Avg.
top5&10

Rank avg.
top5&10

human1 0.566667 0.533333 0.577778 0.691667 0.55
human2 0.6 0.633333 0.677778 0.766667 0.616667
human3 0.633333 0.616667 0.666667 0.65 0.625

case0 0.033333 0.116667 0.277778 0.375 0.075 12
case1 0.133333 0.3 0.455556 0.525 0.216667 10
case2 0.133333 0.316667 0.411111 0.458333 0.225 9
case3 0.3 0.233333 0.277778 0.408333 0.266667 6
case4 0.2 0.333333 0.466667 0.55 0.266667 6
case5 0.233333 0.333333 0.422222 0.466667 0.283333 5
case6 0.066667 0.183333 0.3 0.475 0.125 11
case7 0.2 0.333333 0.455556 0.566667 0.266667 6
case8 0.3 0.333333 0.388889 0.508333 0.316667 2
case9 0.3 0.333333 0.455556 0.566667 0.316667 2
case10 0.266667 0.35 0.444444 0.575 0.308334 4
case11 0.366667 0.35 0.388889 0.5 0.358334 1

142

Table C.15. Degree of overlap of request 1 for evaluation III

human1 human2 human3 forward bi-directional random

Top5 0.8 0.8 0.8 0.2 0.2 0
Top10 0.8 0.8 0.7 0.5 0.4 0
Top15 0.933333 0.8 0.8 0.466667 0.466667 0.066667
Top20 0.85 0.85 0.9 0.35 0.35 0.2

Table C.16. Degree of overlap of request 2 for evaluation III

human1 human2 human3 forward bi-directional random

Top5 0.8 0.2 0.6 0.2 0.2 0
Top10 0.5 0.5 0.6 0.3 0.3 0
Top15 0.733333 0.8 0.466667 0.533333 0.666667 0.066667
Top20 0.75 0.75 0.45 0.6 0.55 0.2

Table C.17. Degree of overlap of request 3 for evaluation III

human1 human2 human3 forward bi-directional random

Top5 0.4 0.8 0.4 0.4 0.4 0
Top10 0.6 0.7 0.6 0.3 0.3 0
Top15 0.466667 0.6 0.866667 0.333333 0.266667 0.066667
Top20 0.7 0.8 0.8 0.35 0.4 0.2

Table C.18. Degree of overlap of request 4 for evaluation III

human1 human2 human3 forward bi-directional random

Top5 0.2 0.4 0.6 0.2 0.2 0
Top10 0.2 0.5 0.7 0.2 0.2 0
Top15 0.266667 0.733333 0.733333 0.266667 0.333333 0.066667
Top20 0.5 0.85 0.65 0.35 0.35 0.2

Table C.19. Degree of overlap of request 5 for evaluation III

human1 human2 human3 forward bi-directional random

Top5 0.8 0.6 0.8 0.2 0 0
Top10 0.4 0.8 0.6 0.4 0.4 0
Top15 0.266667 0.666667 0.8 0.466667 0.6 0.066667
Top20 0.45 0.65 0.8 0.6 0.7 0.2

143

Table C.20. Average degree of overlap of all requests for evaluation III

human1 human2 human3 forward bi-directional random

Top5 0.6 0.56 0.64 0.24 0.2 0
Top10 0.5 0.66 0.64 0.34 0.32 0
Top15 0.533333 0.72 0.733333 0.413333 0.466667 0.066667
Top20 0.65 0.78 0.72 0.45 0.47 0.2

Table C.21. Time (sec) comparison of three data mediation algorithms

leaf structure path

req1 21.092 44.336 136.376
req2 30.851 78.758 155.756
req3 30.42 202.691 210.086
req4 31.014 213.55 213.751
req5 19.922 122.149 180.889
req6 30 210.835 217.247
Avg. 27.2165 145.3865 185.6842

Table C.22. Time (sec) comparison of different annotation cases

req1 req2 req3 req4 req5 req6 Avg.

case0 0.016 0 0 0.016 0 0 0.0064
case1 0.844 0.937 0.733 0.905 0.906 0.89 0.869167
case2 136.376 155.756 210.086 213.751 180.889 217.247 185.6842
case3 7.143 7.846 7.785 8.252 6.974 7.769 7.628167
case4 38.876 44.273 41.138 43.977 42.963 43.213 42.40667
case5 136.376 155.756 210.086 213.751 180.889 217.247 185.6842
case6 1.671 1.186 1.359 1.625 1.858 2.157 1.642667
case7 1.547 2.251 2.61 2.375 2.578 2.921 2.380333
case8 136.637 162.857 213.202 221.172 183.457 220.825 189.6917
case9 8.049 9.585 9.647 10.028 9.028 10.638 9.495833

case10 40.174 43.745 42.007 44.487 40.706 44.043 42.527
case11 161.365 190.981 242.862 254.291 208.74 251.548 218.2978

Table C.23. Time (sec) comparison of forward and bi-directional suggestion algorithms

forward bi-directional

req1 136.376 297.768
req2 155.756 653.924
req3 210.086 7359.175
req4 213.751 1175.48
req5 180.889 545.954
Avg. 179.3716 2006.46

	4wang_rui_201105_phd.pdf
	(Under the Direction of Eileen T. Kraemer and John A. Miller)
	ABSTRACT
	This dissertation presents a semi-automatic Web service composition approach, which works by ranking all the candidate Web service operations and suggesting service operations to a human designer during the process of Web service composition. The rank...
	rui wang
	doctor OF philosophy
	ATHENS, GEORGIA
	rui wang
	Maureen Grasso
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	Page
	LIST OF TABLES
	Page
	LIST OF FIGURES
	Page

	dissertation47
	CHAPTER 1
	INTRODUCTION
	1.1. Web Services
	1.2. Ontology
	1.3. Semantic Web Services
	1.4. Web Service Composition and Research Motivation
	1.4.1. Composition Issues
	1.4.2. Automation of WSC

	1.5. Structure of This Dissertation

	Chapter 2
	MOTIVATING SCENARIO
	Chapter 3
	SERVICE SUGGESTIONS
	3.1. Forward Suggestion
	3.2. Backward Suggestion
	3.3. Bi-directional Suggestion

	Chapter 4
	DATA MEDIATION
	4.1. Type Theory
	4.2. Graph Model of Input / Output Types
	4.3. Leaf-based Data Mediation Approach
	4.3.1. A Typed Representation for Leaf-based Data Mediation

	4.4. Structure-based Data Mediation
	4.4.1. Sub-graph Homeomorphism
	4.4.2. Algorithm for Structure-based Data Mediation

	4.5. Path-based Data Mediation
	4.5.1. A Typed Representation for Path-based Data Mediation

	Chapter 5
	FORMAL SERVICE SPECIFICATION
	5.1. Precondition and Effects

	Chapter 6
	SIMILARITY MEASURES
	6.1. Syntactic Similarity (synSim)
	6.2. Semantic Similarity
	6.2.1. Concept Similarity (conSim)
	6.2.1.1. Concept Syntactic Similarity (conSynSim)
	6.2.1.2. Concept Coverage Similarity (conCvrgSim)
	6.2.1.3. Concept Property Similarity (conPropSim)
	6.2.1.3.1. Property Similarity (propSim)

	Chapter 7
	ARCHITECTURE AND IMPLEMENTATION
	7.1. System Architecture
	7.2. System Components
	7.2.1. Service Suggestion Engine
	7.2.2. Data Mediation Engine
	7.2.3. Knowledge Base Management System (KBMS)
	7.2.4. Parsers
	7.2.5. Similarity Measures

	Chapter 8
	EVALUATION
	8.1. Evaluation Settings
	8.2. Evaluation Measure
	8.3. Evaluation I
	8.3.1. Hypotheses
	8.3.2. Results
	8.3.3 Findings

	8.4. Evaluation II
	8.4.1. Hypotheses
	8.4.2. Results
	8.4.3. Findings

	8.5. Evaluation III
	8.5.1. Hypotheses
	8.5.2. Results
	8.5.3. Findings

	Chapter 9
	RELATED WORK
	9.1. Manual Approach with GUI Designer
	9.2. Automatic Approach
	9.3. Semi-automatic Approach

	Chapter 10
	CONCLUSIONS AND FUTURE WORK
	10.1. Conclusions
	10.2. Future Work

	BIBLIOGRAPHY

	appendix5
	APPENDIX A
	SAWSDL ANNOTATIONS FOR WSDL2.0
	Appendix B
	Rankings of candidate WEB SERVICEs
	Appendix C
	Statistical data From evaluations

