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ABSTRACT 

          Survival analysis is a very common method to model time-to-event data. In most studies, the 

probability of experiencing one event (such as failure or death) is investigated. Sometime, multiple events 

(competing risk events) are of interest. Competing risk events can be estimated crudely by separately 

modeling single events, but more complete models are necessary to perform complete competing risk 

modeling. In this thesis, a competing risk model is used to analyze P.unifilis (yellow-spotted Amazon 

River Turtle) nest survival based on data collected from 1910 nests observed in the Bolivian Amazon in 

2005 and 2006. Under this scenario, turtle nests experience risk from animals, floods and humans. The 

results from competing risk models are evaluated to show the risk event and risk period for turtle nests. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Survival Function and Hazard Function 
 
          Survival analysis involves the modeling of “time-to-event” data (Collett, 2003). An event 

can be death of patients, heart attacks, failure of system, etc.  Statisticians have expressed much 

interest in the distribution of “time-to-event”. There are several equivalent definitions of “time-

to- event”. Two definitions below are commonly used to specify the survival distribution. The 

first or most traditional method is the survival function itself, S(t) =P {T>t}. Here “t” is the 

generic time, “T” is a random variable denoting the time of the event, and “P” stands for 

probability . Thus, S(t) is the probability that a randomly selected individual will survive to time 

t or later (Cantor, 2003). A second, equivalent, method is to specify the hazard function (denoted 

by h(t)). The hazard function is defined to be the event rate between t and t+ , conditional on 

survival until time t. It is defined as h(t) = P [t

tΔ

0
lim
→Δt

≤T<t+ tΔ |T≥ t]. It can easily be shown that if 

the hazard function is known at all times t, then S(t) can be created. One advantage of using the 

hazard function, h(t), rather than the survival function, S(t), to compare distributions is that many 

survival functions look very similar over large ranges (S(0)=0 for all survival functions and 

S(t) for larger t for all distributions), so that direct comparison of S(t) is sometimes difficult. 

Comparison of hazard functions (or log-hazard functions) makes it more apparent as to what 

time periods are risker for different conditions. This is illustrated in Figures 1.1 and 1.2 (Chen 

and Wang, 2000), where the two survival functions (Figure 1.1) are very similar over time 

periods, but for which it can be seen (Figure 1.2) that subjects under treatment  have a higher risk 

before time 0.6, where those under placebo have lower initial risk, but higher risk after time 0.6. 

0→
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            Figure 1.1  Survival Function                                 Figure 1.2  Hazard Function 

 
1.2 Censoring 

          Censoring is a very common missing data problem in survival analysis. If the data are not 

censored, we know starting date and event date for all observations. When censoring occurs, we 

know the starting date, but we don’t know when events occur. Censoring includes both right 

censoring and left censoring, but only right censoring is applicable to this research. If the true 

date of event is after some last observed date, this is called right censoring. For example, when 

the starting date is known but subjects are lost to follow-up or when a subject has not 

experienced any event by the conclusion of the study, right censoring occurs (Klein & 

Moeschberger, 2003). Some examples of right censoring are shown in Figure 1.3 and Table 1.1. 

In Figure 1.4, “Duration” represents the “time-to-event”, while “IC” is the censoring indicator. 

Thus, those observations for which IC=0 (A, E) actually experienced the event of interest 

(symbol “X”). Those with IC=1 (B, C, D, F) are censored (symbol “O”). For Subjects B and D, 
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the censoring occurred because the trial ended after 12 months and subjects still had not 

experienced the event. For subjects C and E, the censoring occurred because the subjects 

dropped out after 6 and 9 months, respectively. During the observed months, the subjects didn’t 

experience the event but we don’t know what happened later. The key idea in survival analysis is 

to use all available information to estimate the survival distribution. Rather than discarding the 

censored observations because the actual event time is unknown, one uses any information which 

is available on survival during the period of observation. 

 
Figure 1.3  Right Censoring 

 
                                                   

Table 1.1  Right Censoring Table 
 

Subject  Duration IC 
F 3 0
E 6 1
D 8 1
C 3.5 1
B 12 1
A 5 0
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1.3 Model Types           

            There are two general kinds of models that can be used to model probability distributions 

for survival functions. One type is parametric survival models; the other is nonparametric 

survival models. Parametric models include exponential (a special case of Weibull), Weibull, 

log-normal, etc.  Nonparametric survival models include Kaplan-Meier, and many proportional 

hazard models, etc. Different models may be appropriate in different conditions. For our 

purposes, proportional hazards models appear to be appropriate. These are actually semi-

parametric models in that the baseline hazard function is nonparametric, but parametric modeling 

is uses to assess the effects of various other factors.  

           The Kaplan-Meier estimator uses the nonparametric maximum likelihood estimate 

method to calculate empirical survival curves. This method can take into account censored data. 

The formula is S(t)= ∏ −

tt i

ii

i
n

dn
p

. When there is no censoring, ni is the number of survivors 

before time ti. With censoring, ni is the number of survivors before time ti minus the number of 

censored cases. di is the number of subjects experiencing an event in the i th time period (Kaplan 

and Meier, 1958). Because censoring subjects reduces the sample size of subjects at risk, 

censoring affects the shape of the survival curve. The more subjects are censored the less reliable 

the survival curve is. Table 1.2 and Figure 1.4 demonstrate  the steps needed to calculate the 

survival function using the Kaplan-Meier method for a particular data set. This simplified data 

set contains 6 survival times equal to 4, 5+,6, 8+, 9,12+, where “+” represents censored survival 

times. One can note that this survival function never falls to zero. This occurs for the Kaplan-

Meier estimator whenever any censored survival times are larger than the greatest observed 

event time. 
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Table 1.2  Examples of Kaplan-Meier Method Survival Function Calculations 

interval  
(Start-
end) 

# of risk 
at start 
point 

# of risk 
at end 
point 

#censored 
data 

# dead  
subjects

proportion  
survival 

cumulative  
survival 

[0—4) 6 6 0 0 6/6=1 1 

[4—6) 6 6 0 1 5/6=0.83 1*0.83=0.83 

[6—9) 5 4 1 1 3/4=0.75 0.83*0.75=0.623

[9—12) 3 2 1 1 1/2=0.5 0.623*0.5=0.31 

[12- up) 2 2 1 0 2/2=1 0.31*1=0.31 
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                    Figure 1.4  Plot of Kaplan-Meier Method Survival Function 
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           The proportional hazards model is sometimes called a semi-parametric model. 

Proportional hazards models consists of two parts: the nonparametric part is the hazard function,  

which describe how hazard (risk) changes over time, and the parametric part contains the effect 

parameters, which describe how hazard relates to other factors - such as the choice of treatment, 

age, gender. It can model and test many inferences about survival without making any specific 

assumptions about the form of the life distribution model (Cox, 1972). The conditional hazard 

function, given the covariate vector X i , is assumed to be of the form )exp(*)(),( 0 βii XthXth = , 

where, denotes the baseline hazard function. No particular distributional form is assumed 

for the baseline hazard for ; it is estimated nonparametrically.  If Xi = 0 then the hazard 

function for the th individual is the baseline hazard function. So at every value of t, the i th 

individual's hazard function is a constant proportion of the baseline hazard. The proportional 

hazards model has been widely used in survival analysis to estimate the effects of different 

covariates influencing the time to event data. This model puts minimal restrictions on the 

survival function itself, and allows one to more easily estimate the effect of treatment differences. 

)(0 th

)(0 th

i

Typically, one models the log-hazard function so that: ln(h( t,X i ))=ln(h (t))+X i0 β  and uses 

regression techniques to estimate the β’s ,with the log baseline hazard function playing the role 

of the intercept.  

           In some situations, we model a single type of time-to-event data (such as failure). But, in 

other cases, we are  interested in multiple types of events. In our case, we are interested in risk of 

animal predation, flooding, and human intervention on turtle nests. Independent competing risks 

models provide a method to analyze multiple independent events. There are several steps to construct 

competing risk models. For the first step, we can estimate a multiple event survival model by 

estimating all single events separately, with a single model for each competing risk. In order to 
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estimate a given event hazard, we treat the subject as censored if it does not experience the event 

of interest (Satagopan et al 2004). For the second step, we must calculate the survival function by 

accounting for the presence of competing risks. 
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CHAPTER 2 

DATA SET AND GENERAL PROBLEMS 

2.1 Data Description 

          All data used in this thesis were collected from a conservation project conducted by Ph.D 

student Alison Lipman and her major professor Dr. Ron Carroll of the UGA Ecology department. 

I helped to analyze part of this data as my project in the statistics consulting class STAT 8000 in 

the Summer 2007, supervised by Dr. Jaxk Reeves. In this thesis, I will concentrate on a particular 

aspect of this data set, the survival distribution for nests of P. unifilis turtles. 

        Allison’s conservation project focused on two declining species of South American River 

turtles:  P. unifilis (yellow-spotted Amazon river turtle) and P. expansa (giant South American 

river turtle) in Noel Kempff Mercado National Park (a World Heritage Site in Bolivia) for 2005 

and 2006. The primary concern of the project is whether humans’ activities affect the decline of 

the population of the two species. Although the larger turtle ( P.expansa) is of more ecological 

importance, there are relatively few nests of this type observations, so this thesis concentrates on 

the P.unifilis nests, for which more data is available. Human threat is one major factor for turtle 

population’s decline. During turtle nesting season, female turtles and eggs are a reliable and 

readily available source of protein for local people. Local people prefer turtle meats over other 

meats because turtles are easy to hunt, transport and maintain. Researchers categorized beaches 

into different types such as high human impact, low human impact and protected beaches 

according to effect of human activities. Approximately 3 beaches of each impact status type were 

selected on two major rivers (Itenez and Paragua) in the region, and each selected beach was 

staffed by researchers. Allison hired and trained local residents as research assistants to collect 
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all project data. There are several stages to collecting data. In the initial stage, research assistants 

visited beaches every night during turtle nesting season (August through October). When they 

spotted a turtle, assistants waited to see if she nested. If she nested, they would wait until she 

covered her nest and catch her before she returned to the water. The following variables were 

then recorded for each mother turtle caught: location (beach, river), nest date and other response 

variables related to the mother.  In the second stage, research assistants daily revisited all nests to 

see if any disturbances had occurred (Lipman, 2008). These disturbances could be due to several 

cases: Animal predation (A), Human poaching (H), Inundation by floods (I), or Natural hatching 

(N). Most often, on any particular day, there was no disturbance - the nest appeared just as it had 

when visited the previous day. However, if a disturbance was noted, the research assistant 

recorded the date of the disturbance and the type of event (A, H, I or N). Generally, once a nest 

event was recorded, it affected the entire nest, but there were a few cases where some eggs in the 

nests suffered another event, such as “I” followed two weeks later by “N”. This  occurred for 

only 161 out of the 1910 nests examined. When it did occur, we used the latter occurring event 

as the event of record. I analyzed much of  the data collected in 2005-2006 as part of my STAT 

8000 report. However, nest survival was examined only superficially in that report.  In this 

thesis, I will focus on survival analysis of P.Unifilis turtle nests under different disturbance risks.  

          The main purpose of my thesis is to determine the risk that a P.unifilis nest will experience 

from the time it is created due to various threats. The hoped-for event is Natural hatching (N), 

but competing events are nest destruction by Animals (A), Humans (H), or Inundation (I). To 

perform survival analysis, we need data on three key response variables: nest date, disturbance 

type, and event date. From these we can calculate duration from duration=event date-nest date. 

For convenience, we have decided to use 31-July-05 and 31-July-06 as “day zero” for 2005 and 
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2006, respectively. So the variables ‘nestdate’ and ‘eventdate’ used in my analyses are actually 

the number of days after July 31st. This is a natural scale to use, since the earliest nesting dates 

for P. unifilis are in early August. The latest event date observed in this dataset is December 20 

(day 142). This “zero” is for the “nestdate” or “eventdate” variables only – duration itself is 

measured in days from nest creation. 

 

2.2 Summary of Data 

          Researchers observed and recorded a total 2086 P. unifilis female turtles, 1113 and 937 

for 2005 and 2006, respectively.  Only 1007 and 903 turtles nested , as show in Table 2.1 below. 

In my thesis, I would like to use the all 1910 nests in my analyses. 

Table 2.1       Numbers of  P.Unifilis Nests for 2005 and 2006 

 2005 2006  
 P. unifilis  P. unifilis  Total 
Nested  1007 903 1910
Dug or 
walked 106 70 176
Total 1113 973 2086

 

          Because this conservation project is wild field research, there is much missing data. Some 

data are missing because the researcher couldn’t locate the nests. Others are missing because the 

researcher wasn’t able to record what happened to created nests. Table 2.2 shows how many 

nests have missing key responses and which key responses are missing. In that table, “Y” means 

that data are available, while “-” mean that data are missing. From Table 2.2, we see that 

although there were 1910 P. unifilis nests, only 1218 nests have all three response variables of 

primary interest (nest date, disturbance type, event date) recorded. This is only about 64% of the 
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total nests. If we omit the remaining 36% of the nests, we are losing much data and may have 

biased results. Thus, as explained in section 2.3, we will attempt an imputation to deal with cases 

where two of the three key variables are present and one is missing. These three patterns, 

representing 267, 93, 2 and nests, respectively, are noted by “*” in Table 2.2. If our imputation 

method is successful, this will allow us to use data from 1218+362=1580 nests, or about 83% of 

all nests.   

 
 
 

Table 2.2 Categories of Missing Data Patterns for Nests 
 

Nestdate Disturbance 
type 

Eventdate Number of 
nests 

Y Y Y 1218* 
Y Y - 267* 
- Y Y 93* 
Y - Y 2* 
Y - - 287 
- - Y 1 
- Y - 28 
- - - 14 
  Total  1910 

 

          Next, using the 1218 ‘complete information’ nests, I compute the mean and standard 

deviation (SD) of the three numeric responses variable to provide some information. The mean 

and standard deviation of nestdate, eventdate and duration are computed for both year 2005 and 

2006 and combined. From Table 2.3, Table 2.4 and Table 2.5, for the nestdate variable, in 2005, 

one observes that there is not much difference in means between the four disturbance classes. In 

2006, Animal, Human and Natural hatching have similar means to each other (and to 2005), 

around day 45 (September 14th), but the inundated nests were built significantly earlier (day 32, 
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around September 1). This is a somewhat curious result, since there is no obvious reason why 

earlier built nests should have higher inundation risks than later built nests. For eventdate, there 

is tremendous variation between the four disturbance categories, with the pattern  Y H  <  Y A < 

Y I  <  Y N   in both years, with observed sample means of 49, 65, 102 and 120, corresponding to 

September 18, October 4, November 10, and November 28, respectively. One also notes that the 

variation in eventdate for Animal is much larger than for Human and Inundation, which are not 

nearly as stable as for Natural hatching. That is, turtles tend to hatch within 2 weeks of 

November 28th, no matter when nests are created. The duration data follows from the nestdate 

and eventdate results, since duration=eventdate-nestdate. The most striking result is that Human 

poaching, if it occurs, will likely occur within the first two weeks after the nest is created. If the 

nest can survive two weeks, it is much less likely to suffer Human poaching than during the first 

two weeks. Animal predation risk is also much higher earlier than later, but not as extremely 

concentrated as Human poaching risk. Inundation and Natural hatching tend to occur at larger 

durations, although as previously noted, they seem to occur more because of “time of year” than 

duration. Since floods happen at particular season times, inundations tend to happen relatively 

later than human and animal destruction. If nothing happens to a nest, it can hatch successfully 

and this tends to occur about November 28 (day 120) in 2005 and 2006. 

±

Table 2.3 Summary Statistics for Complete-Data Response Variables 2005 

  Nest Date      Event Date        Duration 
Nests Disturbance  Mean  SD Mean  SD Mean  SD 

311 Animal 47.66 17.27 56.92 31.44 9.26 29.82
53 Human 40.68 20.69 44.89 23.36 4.21 13.84
22 Inundation 47.26 17.75 118.47 14.99 71.22 21.13

151 Natural hatching 43.60 14.83 120.18 11.34 76.59 15.64
     537 Total    45.79    17.15     75.47   37.63    29.68 37.55

 

  ‐ 12 ‐



 

Table 2.4 Summary Statistics for Complete-Data Response Variables 2006 

  Nest Date      Event Date        Duration 
Nests Disturbance  Mean  SD Mean  SD Mean  SD 

198 Animal 46.92 12.76 78.67 27.62 31.74 25.54
70 Human 43.57 13.16 52.96 18.10 9.39 12.79
91 Inundation 32.13 9.98 98.24 14.44 66.09 14.45

322 Natural hatching 44.43 11.37 119.86 7.31 75.43 7.23
     681 Total 43.43 12.64 98.12 29.17 54.69 29.05

 

               

 

Table 2.5 Summary Statistics for Complete-Data Response Variables Combined 2005-2006 

  Nest Date      Event Date        Duration 
Nests Disturbance  Mean  SD Mean  SD Mean  SD 

509 Animal 47.37 15.66 65.38 31.81 17.29 26.06
123 Human 42.33 16.80 49.48 20.93 7.15 13.44
113 Inundation 35.20 13.28 102.32 16.63 67.12 16.04
473 Natural hatching 44.16 12.56 119.97 8.79 75.80 10.66

   1218 Total 44.47 14.84 88.13 35.01 43.67 35.31
           

           Histograms of nestdate, eventdate and duration can also give us some information about 

the distribution of these variables. From Figure 2.1, we find that nestdate is distributed relatively 

evenly through nesting seasons. The histograms of eventdate (Figure 2.2) and duration (Figure 

2.3) confirm the fact that Animal and Human disturbances tend to happen very early compared to 

Inundation and Natural hatching type, with Human poaching occurring, on average, even earlier 

than Animal predation.  
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                 Figure 2.1    Histogram of Nestdate vs Disturbance Types 2005-2006 
 
 
 

                     
Figure 2.2   Histogram of Eventdate vs Disturbance Types 2005-2006 
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Figure 2.3   Histogram of Duration vs Disturbance Types 2005-2006 

 

            Scatterplots of the data for 2005 and 2006 are presented below (Figure 2.4 and Figure 

2.5).We plot the 1218 complete response variable data for both 2005 and 2006 in separate plots. 

The event types are color coded: Animal=Green, Human=Blue, Inundation=Black, and Natural 

hatching=Pink. The X-axis is nestdate and the Y-axis is duration. The four diagonal lines in the 

scatter plot from lowest to highest represent event dates: September 1, October 1, November 1 

and December 1 for each year. From Natural hatched nests, we observe something very 

interesting. Turtles tend to hatch at a particular time of the year, no matter when the eggs are laid. 

Baby turtles tend to wait for rain, and then all come out at the same time, around November 

28 2 weeks. This is quite different from humans, where the natural gestation period is about 

280 days, no matter what time of year a baby is conceived. Of course, the duration results here 

are a bit skewed in that “nest date” is not conception date. In actuality, all P.unifilis eggs are 

±
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fertilized around the same time of year and have about the same time from conception until 

hatching. The variability in duration noted above is due to the fact that most eggs will hatch 

around the same time (November 28) no matter whether the mother turtle deposits them on the 

beaches early (August) or later (October). 
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Figure 2.4  Scatterplot of Durations vs Nestdate for 2005 
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Figure 2.5 Scatterplot for Duration vs Nestdate 2006                         
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2.3 Imputation of Missing Data 

           From Table 2.2, we see that 1218 out of 1910 nests have all three response variables of 

primary interest (nest date, disturbance type, event date) recorded. This is only about 64% of the 

total nests. If we omit the remaining 36% of nests, we are losing a lot of data and may have 

biased results. Thus, we will attempt an imputation to deal with cases where two of the three key 

variables are present and one is missing. If our imputation method is successful, this will allow 

us to use 1218+362=1580 nests, or about 83% of all nests.  There is a subset of 267 nests for 

which we know only nestdate and disturbance type. In order to use these observations in an 

analysis, we must construct a model to estimate duration from these two available response 

variables. For another subset of 93 nests, we must use disturbance type and eventdate to estimate 

duration. Because the observed duration data are sometimes skewed, we should find an 

appropriate transformation to make these data approximately normally distributed. According to 

different disturbance types, different transformation methods are used. From examining the plots 

in Figures 2.1 to 2.3, we see that the distributions of duration times for both Inundation and 

Natural hatching distributions are roughly mound-shaped, so there is no particular need for 

transformation. However, the distributions for both Animal predation and Human looting are 

extremely skewed with many zeroes and small durations, but with long right-hand tails. In both 

cases, it appears that the true distribution is a zero-inflated process, which could be modeled as a 

mixture of a point-mass at zero and a skewed distribution. So, in both cases, we use a logistic 

model to estimate the probability that a “0” was recorded, and we then model the non-zero 

portion of the data by applying a general linear model to the square-root of duration (Animal) 

and log(duration) (Human). The general form of the imputation models used when nestdate or 

eventdate were missing is summarized in Table 2.6. Table 2.7 shows the number of imputations 
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performed for each of the 8 cases shown in Tables 2.6. For the two cases where Disturbance type 

was missing, but nest date and event data were known, we inputed the missing event to  be “N” 

based on the information available. 

Table 2.6   Model Forms Used for Imputations 
 

Disturbance 
Using nestdate to  
estimate duration     (n=267) 

Using eventdate to  
estimate duration     (n=93) 

Animal 
Zero inflated process and 
GLM on Sqrt(duration) 

Zero inflated process and 
GLM on Sqrt(duration) 

Human 
Zero inflated process and 
GLM on log(duration) 

Zero inflated process and 
GLM on log(duration) 

Inundation GLM on duration GLM on duration 

Natural Hatching GLM on duration GLM on duration 
 

Table 2.7  Numbers of Imputations Performed by Disturbance and Missing Classes 
 

Disturbance Data having complete 
Response Variables 

Eventdate to be 
estimated 

Nestdate to be 
estimated 

Animal 509 122 10 

Human 123 18 1 

Inundation 113 103 6 

Natural Hatching 473 24 76 

Total 1218 267 93 

 

Imputation Models 

          For both animal and human distributions, I modeled the probability of a “0” by a logistic 

model using River, Human Impact, Year, and  nestdate (or eventdate, as appropriate) as predictor 

variables. For Inundation, Natural hatching and the non-zero portion of the Animal and Human 
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data, I used general linear models applied to the appropriately transformed durations. In all cases, 

I began with a full model which included Year, nestdate (eventdate) and their interactions, River, 

and Human Impact (HI). I then used parsimonious procedures to reduce the complexity of the 

models so that only statistically significant (at α =0.05) parameters were retained. Table 2.8 

displays the parameter estimates for the four logistic models used to predict the probability of a 

“0” duration for human and animal distributions. Tables 2.9 and 2.10 display the parameter 

estimates for the GLM models for imputation from nestdate or eventdate, respectively. In Tables 

2.8-2.10, I used different initials to indicate different level of variables. For river, IRI represents 

river Itenez, with river Paragua used as the baseline. For human impact, IHL represents Lower 

human impact beaches, IHH represents High human impact beaches and Protected beaches are 

the baseline. For year, IY5 represents the year 2005 and the year 2006 is the baseline. 

 
Table 2.8  Logistic Model Parameter Estimators for P(zero) for Animal and Human Risks 

 
 Prodictor Models 

Animal Nestdate ln(P/Q)=-1.55+1.83*IY5+0.023*nestdate +1.44*IHH-0.67*IHL 

Animal Eventdate ln(P/Q=   2.74+1.68*IY5-0.05*eventdate +1.14*IHH-0.40*IHL  

Human Nestdate ln(P/Q)=-3.52+2.46*IY5+0.072*nestdate                                    +1.31*IRI   

Human Eventdate ln(P/Q)=  1.28+2.11*IY5 -0.036*eventdate                                  
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Table 2.9  GLM Model Parameter Estimates Using Nestdate 
 

Disturbance  R2 Typical 
RMSE 
 

Response  intercept   Nestdate   IHH     IHL     IRI      IY5 

Animal 0.05 28.07 Sqrt(duration) 8.69      -0.083                                       (2005) 
Sqrt(duration) 5.20       0.002                                        (2006) 
 

Human 0.47 6.13 Log (duration) 7.92     -0.065    -2.40                 -2.12                  
 

Inundation 0.80 67.72 Duration       112.63      -0.84      1.09   21.96   -29.42  15.42 

Natural 
Hatching 

0.56 75.8 Duration       111.30      -0.78    -1.83     3.20     -2.63  (2005) 
Duration         97.39      -0.50    -1.83     3.20     -2.63  (2006) 
 

 

 
Table 2-10  GLM Model Parameter Estimates Using Eventdate 

 
Disturbance  R2 Typical 

RMSE 
 

Response  intercept  Eventtdate   IHH     IHL     IRI      IY5 

Animal 0.89 9.33 Sqrt(duration) -2.24     0.092       -0.95  -0.64    0.98 
Human 0.44 6.31 Log (duration) -0.26                                                          0.93 

Inundation 0.53 67.72 Duration          90.47     -0.24                              13.6    (2005) 
Duration         -29.84      0.85                              13.6    (2006) 

Natural 
Hatching 

0.38 75.8 Duration          -9.89       0.69      -6.81  -6.24   15.14    (2005) 
 Duration          49.02       0.19      -6.81  -6.24   15.14    (2006) 
 

 

Results of Imputation 

          Using the models shown in Tables 2.9-2.10, we imputed durations for the 362 observations 

noted in Table 2.7. The equations themselves allow us to predict an expected value. We then 

added random terms from the appropriate binomial (logistic) or normal (GLM) model, back-

transformed (if necessary) and rounded the results to the nearest integer. We checked to make 

sure the results obtained were possible (i.e. no negative duration or imputed nestdates before the 
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hatching season, etc ). It should be noted that the results which we obtained are random, so that 

slightly different results could have been obtained if different random values had been generated 

by the imputation simulations. One could perform multiple imputations if one was concerned 

about this, but since we simply wished to augment our date set with reasonable values so that  

complete survival analysis  could be completed, we have performed only what is known as a 

single imputation method. As a check, we calculated the summary statistics for nestdate, 

eventdate, and duration by disturbance type for 2005, 2006 and combined for the augmented data 

set, as shown in Tables 2.11, 2.12, and 2.13 respectively. These can be compared with the 

original (complete response variable data set, n=1218) summary for these variables shown in 

Tables 2.3-2.5, respectively, to see that the imputation seems reasonable. Other verifications can 

be seen from Figures 2.6 to 2.8, where the original data are shown in black and the imputed data 

are shown in red. The final result is that we now have an augmented data set of 1580 

observations with ‘complete’ records with respect to nestdate, eventdate and disturbance type, 

and we use these to perform the survival analyses of Chapter 3. 

 

Table 2.11  Summary Statistics for Augmented-Data Response Variables 2005 
 

  Nestdate      Eventdate        Duration 
Nests Disturbance  Mean  SD Mean  SD Mean  SD 
     430 Animal    47.52    17.00     54.95  24.27     7.43   20.4 
       72 Human    42.61    18.77     47.40  23.26 4.79   15.60 
       96 Inundation    50.28    14.18   122.06    9.86   72.03   13.47 
     174 Natural hatching    44.47    14.52   121.07  11.30   76.60   15.37 
     772 Total    46.77    16.45     77.81  38.66   31.04   37.47 
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Table 2.12  Summary Statistics for Augmented-Data Response Variables 2006 

  Nest Date      Event Date        Duration 
Nests Disturbance Mean  SD Mean  SD Mean  SD 
     211 Animal    47.14   13.89     79.17  27.76    32.03    26.22 
       70 Human    43.57   13.16     52.96  18.10      9.39    12.79 
     126 Inundation    35.17   11.60   101.48  15.51    66.31    15.10 
     401 Natural hatching    45.37   13.20   120.17    8.39    74.80      8.11 
     808 Total    43.61   13.14   100.98  28.45    57.37    28.16 

 

 
Table 2.13  Summary Statistics for Augmented-Data Response Variables 2005-2006 

  Nest Date      Event Date        Duration 
Nests Disturbance Mean  SD Mean  SD Mean  SD 
     641 Animal   47.39   16.03     67.95  28.64    16.52   26.48 
     142 Human   43.08   16.19     53.84  25.47      6.37   12.74 
     222 Inundation   41.70   14.79   109.55  16.24    67.85   14.38 
     575 Natural hatching   45.10   13.60   120.44    9.36    75.34   10.83 
   1580 Total   45.15   14.93     89.66  35.75    44.50   35.56 

 
 

 
                                      Figure 2.6  Plot of Duration vs Eventdate for Augmented Data 
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Figure 2.7  Plot of  Duration vs Nestdate for Augmented Data 

 
 
 

 
Figure 2.8  Plot of  Eventdate vs Nestdate for Augmented Data 
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CHAPTER 3 

ANALYSIS 

3.1 Combined Events Analysis 

          For the 1580 nests for which complete or imputed complete results are available, we can 

create various empirical survival curves using the Kaplan-Meier procedure. The only difficulty is 

in deciding what an “event” is. If we use the most general definition, that any of the four 

outcomes (A, H, I or N) is an event, it is quite easy to calculate the Kaplan-Meier survival 

function, and, indeed, there is no censoring to deal with since all 1580 nests experienced exactly 

one of the events. This K-M survival function is shown in Figure 3.1. Note the very steep 

mortality near duration zero (entirely due to Animal predation and Human poaching), the 

relatively flat portion from duration 15 to duration 55 (when Animal predation is the most 

common risk), and the precipitous drop from duration=55 to duration=120, where both 

Inundation and Natural hatching tend to occur. Of course, one can’t see separate risks from 

Figure 3.1, since all events are treated the same. We will return to this topic in section 3.2.   

         In addition to not controlling for the different types of risk, the Kaplan-Meier survival 

function is a function of duration only. However, we know that risk might depend on other 

factors. So, we considered a proportional hazards model for overall risk, where the class 

variables which we controlled for were River (Itenez, Paragua), Human Impact (High, Low, 

Protected), Year (2005, 2006), and the continuous covariate was nestdate. The results of this 

analysis, using indicators IRI (Itenez indicator), IHH (High Human Impact indicator), IHL (Low 

Human Impact indicator), and IY5 (year 2005 indicator) are shown in Table 3.1. From this 

output, we can see that the Itenez River is slightly, but significantly, less risky than the Paragua 

River, that there is no significant Year effect, that High Human Impact beaches are significantly 
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more risky than Low or Protected beaches (which are about equally risky), and that ‘events’ tend 

to happen more quickly as nestdate becomes later. All of these statements are true when one 

considers all types of nest disturbances to be ‘events’, but are actually quite misleading in the 

aggregate. More useful competing risk analyses are presented in the next section of this thesis.    

 

 
Figure 3.1  K-M Survival Curve for Combined Data  

 
 

 

Table 3.1  Parameter Estimators from Proportional Hazards Model for Combined Events 
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3.2 Separate Events Analyses 

           If one considered each event separately, regarding all other events as “censored”, one will 

obtain the survival curves shown in Figures 3.2, 3.3, 3.4, and 3.5, for A, H, I, and N, respectively. 

Note that all of these except for N fail to fall to zero, since the largest event time is less than the 

largest censored time. These graphs have very different shapes from each other and from the 

combined survival function in Figure 3.1, since the risk as a function of duration is very different 

for these four types of events. Table 3.2 summarizes this disparity somewhat succinctly, where 

the table entries are the durations in days at which the indicated survival percentiles are achieved. 

Note that because of heavy relative censoring, neither the ‘A’ nor the ‘H’ survival function ever 

falls below 0.25; ‘H’ never even falls to 0.75. 

 

Table 3.2  Comparison of Percentiles of K-M  S(t) for Different Risks 
 

Type Events Censored S(t)=0.9 S(t)=0.75 S(t)=0.5 S(t)=0.25 S(t)=0.1 

A 641 939 0 2 92 --- ---

H 142 1438 78 --- --- --- ---

I 222 1358 69 80 93 --- ---

N 575 1005 66 74 77 87 96

All 1580 0 0 1 59 76 85
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Figure 3.2   Survival Curve for Animal Risk 

 
 

 
Figure 3.3   Survival Curve for Human Risk 
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Figure 3.4  Survival Curve for Inundation risk 

 
 

 

 
Figure 3.5  Survival Curve for Natural Hatching Risk 
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          Figures 3.2 to 3.5 display the separate Kaplan-Merier survival functions for the four 

different disturbance types when each risk is considered separately.  For these analyses, a nest 

which succumbed to a risk other than that of interest was considered censored, as exemplified by 

the survival function for (A) shown in Figure 3.2. Of course, what we really want is a combined 

S(t) displaying cumulative survival and failure due to various causes. This is displayed, in 

survival function form, in Figure 3.6. There, at any time t, the S(t) (black) curve displays the 

proportion of turtle nests which had not yet succumbed to any disturbance as of time t, while the 

Green, Yellow, Blue, and Red curves represent the cumulative proportion which had succumbed 

to A, H, I, and N, respectively. Of course, the black curve falls from 1 to 0 over the duration 

pictured, with the eventual height of the succumbing curves reflecting the overall probability of 

succumbing to each disturbance,  agreeing with  Table 3.2 (42% A, 39% N, 10% H, 9% I). This 

involves no particular statistical modeling. It is just a restatement of what is observed in the data, 

where duration and disturbance type are the only variables accounted for. In the next section, we 

will examine more sophistical competing risk models. 
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               Figure 3.6  Total Survival Function and Accumulative Risk Rate 

 

3.3 Competing Risk Models 

           The Kaplan-Meier method above provided us many useful statistical inferences. But, 

Kaplan-Meier is a descriptive procedure, which considers duration as the only salient variable. It 

doesn’t evaluate the effects of covariates. If covariates are important in determining time to event, 

we must use other models such as the Cox proportional hazards model to analyze the data. Cox  

proportional hazards models allow us to include additional covariates (such as starting time, 

gender, age, etc). For this research, we wonder if River, Year, Human Impact and nestdate have 

any effect on nests’ survival time for different events. I start with a full additive model including 

River (IRI represents  Itenez; Paragua is the base line), Human Impact ( IHL represents Lower 

human impact, IHH represents High human impact; Protected is the base line), Year (IY5 
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represents 2005; 2006 is the baseline), and nestdate. The parameter estimates for different 

models are presented in Table 3.3. In Table 3.3, “*” means the parameter is not significant and it 

can be dropped later. 

 

Table 3.3  Full Additive Proportional Hazards Models for Separate and Combined Risks 
 

 Nests -2 log L IRI IHH IHL IY5 Nestdate 
Animal 641 8666 -1.23 0.76 0.66  0.87 -0.0001* 
Human 142 1562 0.66 5.99 1.14* -0.19*     0.001* 
Inundation 222 2550 2.19 0.16* -1.23 -0.37     0.063 
Natural  575 6119 0.56 0.19* -0.44 -0.10     0.081 
Total 1580 19763 -0.25 1.21 0.13 -0.03*     0.025 

 

          I dropped the insignificant parameters and built new models to fit the data. These final 

models are shown in Table 3.4. 

 

Table 3.4  Final Proportional Hazards Model for Four Separate Risks 

Risk    Final Model 

Animal log h(t)= log h0A(t) -1.20*IRI+0.76*IHH+0.66*IHL+ 0.87*IY5 

Human log h(t)= log h0H(t) +0.66*IRI+5.25*IHH 

Inundation log h(t)= log h0I(t) +2.24*IRI-1.29*IHL-0.35*IY5+0.064*nestdate 

Natural 
hatching  

log h(t)= log h0N(t) +0.59*IRI-0.48*IHL-1.02*IY5+0.085*nestdate 

 

          The final models tell us which covariates have significant effects on the survival function 

of time-to-event models. The high human impact beaches, not surprisingly, are very hazardous 

with respect to Human poaching. The protected beaches seem to guard against both Animal 
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predation and Human poaching, but have little effect on risks due to Inundation and Natural 

hatching. Inundation and Natural hatching risks are directly related to nestdate. The later the 

nests were built, the higher the chance the nests would experience Inundation and Natural 

hatching events. Inundation events are also highly related to river - the nests built in the Itenez 

river have a much higher chance to experience Inundation.  

             The models shown in Table 3.4 provide evidence of the relative effects of the covariates 

on different types of risks. However, much is masked in the h (t) functions, which are not at all 

the same for the different risks. In Figure 3.7 is displayed the plot of log(-log(S(t))) vs  

log(duration) for the separate risks (A=Green, H=Blue, I=Red, N=Black ) under the baseline 

condition (Paragua River, Protected beach, 2006), with nestdate set at its median value (day 45). 

This is the best graphical means by which to gauge the relative risks of the various events at 

different durations, although the log-scale for duration complicates comprehension.  From this 

plot, we can see that Animal risk is much higher than Human risk by an almost constant amount 

(in log-scale) for all durations. Inundation and Natural Hatching risks are basically non-existent 

before log-duration=3.3 (which corresponds to 30 days after nesting, or day 75 for this baseline), 

at which time both Natural hatching and Inundation risks begin to increase sharply, overtaking 

Animal risks by duration 55 (day =99). Figures 3.8, 3.9, 3.10, and 3.11 show similar plots, where 

one baseline characteristic at a time is changed from those shown in Figure 3.7. In Figure 3.8, the 

river is changed from Paragua to Itenez, in Figure 3.9, beach is changed from Protected to High 

human impact, in Figure 3.10, year is changed from 2006 to 2005, and in Figure 3.11, nestdate is 

changed from 45 (September 14th) to 65 (October 4th).  

0

          In Figure 3.8, where River is changed from Paragua to Itenez, the plots are similar to those  

in 3.7, but now Inundation risk increases faster than Natural hatching risk over the region from 
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duration 33 to 55 and risk from Animals is decreased. Figure 3.9, for High Human Impact 

beaches, is strikingly different from the previous two figures in that Human risk is nearly the 

same as Animal risk during the early stages, although by duration 40, both Inundation and 

Natural Hatching pass these. From Figure 3.10, where Year is changed from 2006 to 2005, we 

observe a pattern similar to that observed in Figure 3.8, but the Animal risk is even worse 

elevated. Finally, in Figure 3.11, where nestdate is changed from 45 to 65, we see that there is no 

effect on Animal or Human risks (which are unaffected by nestdate), but that the risks for 

Inundation and Natural hatching become much larger than in the baseline graph of Figure 3.7. 

This makes sense, because if the nesting date becomes later, the time for flooding and Natural 

hatching becomes nearer, increasing their relative risks.  

  

 
Figure 3.7  lls vs log(duration) for Beaches of Paragua, Protected, 2006  
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Figure 3.8  lls vs log(duration)  for Beaches of Itenez, Protected, 2006  

 

 
Figure 3.9  lls vs log(duration)  for Beaches of Paragua, High human impact, 2006  

  ‐ 35 ‐



 
Figure 3.10  lls vs log(duration)  for Beaches of Paragua, Protected, 2005  

 

 

Figure 3.11  lls vs log(duration)  for Baseline Beaches, Nestdate=65 
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CHAPTER 4 

CONCLUSION 

          Survival analysis (also called time-to-event analysis) is a very useful technique to compare 

the risks for events. It uses tables and plots to explain survival functions for time-to-event data. 

In my thesis, the competing events are disturbances of nests by Animal, Human, Inundation and 

Natural hatching, respectively. Using simple survival analysis, I initially treated the four risks 

separately. Separate survival analyses provide  insight into the shape of the survival function for 

each risk. Kaplan–Meier is a very simple but valuable method for estimating the survival curve. 

It is recommended that we look at the Kaplan-Meier curves for separate risks before we examine 

more complex models. Figures 3.2- 3.6 show plots of the cumulative survival and failure 

function. The X-axis is duration (time to effect); the Y-axis is cumulative survival or failure. The 

cumulative survival function at time t is the probability of survival to that time. These plots show 

that animal and human disturbance happen very early. There are about 10%, and 28% of nests 

disturbed by animal and human by the duration 10 days, respectively. From Figure 3.3, we see 

that less than 10% of all nests are disturbed by humans, and in addition, if a nest survives two 

weeks without being poached by humans, there is a 95% chance that it will not ever be poached 

by humans. On the other hand, nests disturbed by Inundation and Natural hatching tend to occur 

at later durations. None of the 1580 observed nests experienced a flood or natural hatching event 

before durations of 41 and 30 days, respectively, so the proportional hazards models can not 

assign any risk to this time period for these disturbance types.  

          A competing risks model is a model for multiple types of events for a given subject, where 

the subject is observed until it experiences the first event. We are interested in the probability of 

experiencing an event by a given time considering different covariates. In this thesis, we are 
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interested in Animal predation, Human poaching, Inundation, and Natural Hatching risks 

controlling for River, Human Impact status,Year, and nestdate covariates. We found that Animal 

risk is always higher than Human risk, except at the Higher Human Impact beaches, for which 

the Human risk is almost the same as the Animal risk. Animal risk and Human risk happen very 

early, starting from duration 0. On the other hand, Inundation risk and Natural Hatching risk 

happen significantly later; there is no Inundation risk or Natural Hatching risk before duration 30 

days. However, as shown in section 3.3, after duration 40 days or so, the Inundation and Natural 

Hatching risk increase sharply, overtaking Animal risks by duration 55 days. One overall 

conclusion is: once a nest is created, it has higher chance to be disturbed by animals than humans 

at the early stage (before duration 30 days), except at High Human Impact beaches. After 

duration 40 days, the Inundation and Natural Hatching risks increase sharply, surpassing Animal 

risk by duration 55 days, with Natural Hatching becoming increasingly more likely as duration 

increases. Of the major predictor class variables examined (River, Year, Human Impact status), 

year had very little effect, river had some effect on Inundation risk (with Itenez being riskier than 

Paragua), while higher level of Human Impact status seriously increases the risk of Human 

poaching. The nestdate covariate had a small positive effect  in increasing the risk of Inundation 

and Natural Hatching. 
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