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ABSTRACT

Robbiano classified term orders by using ordered systems of vectors. Unfortunately
his classification gives little information as to the intuitive “shape” of these spaces. We
seek to understand the structure of the spaces of term orders by introducing a topology
on them.

We first consider the space of term orders in the bivariate case. We convert weight vec-
tors into slopes and determine that rational slopes require the selection of a “tiebreaking”
term order while irrational slopes represent term orders by themselves. By placing an
order topology on this space of bivariate term orders, we show that this space has several
topological properties. All of these topological properties imply that the space of bivariate
term orders is homeomorphic to the Cantor set.

We then consider the spaces of term orders in the general case. We set up a description
of the space of term orders in n ≥ 2 variables as a subspace of a function space. When we
consider the topological properties of this view of the term order space on n ≥ 2 variables,
we find that it is homeomorphic to a compact subset of the Cantor set.

These topological descriptions yield important facts about the spaces of term orders
that are otherwise very difficult to see or prove. In particular the fact that the Gröbner
fan of an ideal has finitely many cones is implied by the compactness of the space of term
orders. This was shown previously, but the proof here is much simpler once the topological
description of the spaces of term orders is determined.

Finally some facts about the associated geometry are given. The realization of the
term order spaces as compact subspaces of Cantor sets leads one to believe certain things
about the Gröbner fan. We show the relations between the Gröbner fan and the Netwon
polytopes of elements of the reduced Gröbner bases.
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SECTION 1

INTRODUCTION

There are many reasons why one might like to construct a Gröbner basis. If one

wants to describe an ideal with a finite set of generators, determine if a polynomial lies in

a particular ideal, answer certain questions about radicals of ideals, give a set of generators

for a quotient ring that are amenable to computation, or just solve a system of polynomial

equations, a Gröbner basis will do the trick. But most ideals have the potential to have

several Gröbner bases. So, which one should we pick?

The choice of Gröbner basis is determined by a term order. Term orders are multiplica-

tive total orders which well order the monomials of polynomial rings. In this dissertation

we will give a better understanding of the spaces of these term orders. We would like

to choose which term order to use depending on what we deem most important in our

calculations.

Once we have chosen a term order, we can apply Buchberger’s algorithm to get a

Gröbner basis in that term order. This Gröbner basis is a set of generators which have

certain properties with respect to the term order we have chosen. Since we decided to value

one property in our ideal, this Gröbner basis is in some sense the “best” set of generators

with respect to that property. We can use this Gröbner basis for whichever calculations

we have wanted to perform.

A Gröbner fan is a geometric object which gives information about all of the different

Gröbner bases for a given ideal. (see [BS],[MR],[St]) Term orders that are in some sense

“close” to one another will yield the same Gröbner basis. When we put together all the

term orders that give the same Gröbner basis, we get a polyhedral cone of term orders.

The collection of all these cones of term orders is an algebraic fan which is called the

Gröbner fan.
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The Gröbner fan of an ideal has some interesting properties. For instance the definition

gives that the positive orthant must be contained in the support of the Gröbner fan. A

study of the Newton polytopes of polynomials and Minkowski sums of these objects has

shown a dualistic nature between polyhedral geometry of polynomials and Gröbner fans.

A look at Gröbner fans has caused us to study term orders more closely. In particular

we show that the space of term orders in n ≥ 2 variables is homeomorphic to a compact

subset of the Cantor set with the space of bivariate term orders actually being homeomor-

phic to the Cantor set itself. We use this result to show that the Gröbner fan of an ideal

has finitely many cones. Our classification also gives a heuristic answer to the n = 2 case

of one of the oldest questions in this area: “Is Lex the worst possible term order?” While

there had been computational evidence supporting this, we give heuristic reasons why this

question should be answered affirmatively when n = 2.

Through the use of our classification of term orders, we give an algorithm for deter-

mining the Gröbner fan of an ideal. We give reasons why computing adjacent Gröbner

bases in the Gröbner fan should be simpler than just wildly computing Gröbner bases for

random term orders. This demonstrates why the so-called Gröbner walk method may be

preferable to the FGLM method. We discuss the notion of a universal Gröbner basis and

how our Gröbner fan algorithm relates to that idea. We also raise several questions about

Gröbner bases.

Although the computation of a Gröbner basis answers many ideal-theoretic questions,

perhaps the most notable question this computation answers is the determination of solu-

tions to a polynomial system. Since polynomial systems occur in most of mathematics,

physics, and computer science, as well as in areas of biology, chemistry, and engineering,

the applications of this area of study are virtually limitless. Further investigation may

show relevance of Gröbner bases to yet more areas of study.
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SECTION 2

HISTORY

The history of these problems goes back to at least 1927. In [Mac] Macaulay intro-

duced the concept of multiplicative total orders for homogeneous ideals and proved that

the initial ideal of a homogeneous ideal is indeed an ideal.

In the 1940’s Wolfgang Gröbner studied what Hironaka called “standard bases” in the

mid 1960’s. Gröbner’s student Bruno Buchberger investigated these notions in much more

depth starting in the late 1960’s. Buchberger [B1] gave an equivalent condition for a set

of generators to be a standard basis. His definition of S-polynomials gave an algorithm for

computing standard bases. Buchberger also renamed the standard bases in honor of his

advisor, calling them Gröbner bases. Buchberger [B2] noted properties of Gröbner bases

and gave a treatment of the computational complexity of his algorithm for computing them

[B5].

In 1978 Kollreider [Ko] showed the importance of the choice of term order in the

reduction process and thus in the complexity of the Buchberger algorithm. In 1982 Mayr

and Meyer [MaMe] wrote about the complexity of the word problem, a problem closely

related to the computation of Gröbner bases.

In 1983 Lazard [L] looked at the problem of computing a Gröbner basis in a dif-

ferent light. Lazard noted the link between constructing Gröbner bases and the process of

Gaussian elimination.

Möller and Mora [MoMo] determined some upper and lower bounds on the degrees of

elements of Gröbner bases and published their work in 1984. Lorenzo Robbiano [R] gave

a classification of term orders in 1985. 1986 saw two important papers. Huynh [Hu] gave

superexponential lower bounds for computing Gröbner bases, showing just how computa-
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tionally complex the Buchberger algorithm is likely to be. And, Bayer and Morrison [BM]

injected some polyhedral geometry into this area by introducing the state polytope.

Bayer and Stillman [BS] wrote of refining division orders by using the reverse lex-

icographic term order, an order which much evidence seemed to show was the “best”

for computation. In that same year of 1987 Weipsfenning [W] introduced the idea of a

universal Gröbner basis. The next year brought more polyhedral geometry as Mora and

Robbiano [MR] defined the Gröbner fan of an ideal.

It was five years before the next big result was published. Faugère, Gianni, Lazard,

and Mora [FGLM] showed how one could compute Gröbner bases in any term order if

one has a Gröbner basis in some term order. Their process is polynomial in time and

only works for zero-dimensional ideals I ⊂ k[x1, . . . , xn]. (By zero-dimensional ideals we

mean ideals which have a finite number of solutions (a1, . . . , an) such that a1, . . . , an ∈ k̄n.

Geometrically, this means that the variety of I consists of a finite number of points over

the algebraic closure of the field k.)

Recently the idea of the “Gröbner walk” has been most studied. Collart, Kalkbrener,

and Mall [CKM] wrote of converting Gröbner bases from one term order to another using

the Gröbner walk in 1997. Kalkbrener [Ka] wrote another paper in 1999, showing that the

complexity of converting Gröbner bases from one term order to another is highly dependent

on a distance between those term orders in the Gröbner fan. In 2000 Tran [T] wrote a fast

algorithm for Gröbner basis conversion using the Gröbner walk.
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SECTION 3

TERM ORDERS

Reduction algorithms are used in many different mathematical applications, most

notably in division or Euclidean algorithms. One of the most important concepts for

these reduction algorithms is a concept of what constitutes smaller or larger elements. In

the case of integers, it is the familiar absolute value. With univariate polynomials the

comparison is in the degree of the polynomial. In multivariate polynomials the situation

is more complicated. So we must decide how to define a “size” of a polynomial. This will

lead us to our definition of a term order.

We note that people from many different areas of mathematics and computer science

study Gröbner basis problems. This leads to different terminologies and methods of proof

being used on these types of questions. We mostly follow the conventions of Cox, Little,

and O’Shea. [CLO1], [CLO2] We will note where we depart from their conventions or

methods.

Definition: Let k be a field, and consider the polynomial ring in n variables,

k[x1, . . . , xn]. Then a monomial is an element of k[x1, . . . , xn] of the form x1
α1x2

α2 · · ·xn
αn ,

where αi ≥ 0 ∀i. A term is an element of the form cx1
α1x2

α2 · · ·xn
αn , for c ∈ k and

αi ≥ 0 ∀i.
Definition: A term (or monomial) order Â is a relation on the monomials of

k[x1, . . . , xn] satisfying the following properties:

1. Â is a total order on the monomials, i.e. Â satisfies

(a) exactly one of m Â n,m ≺ n, or m = n holds for all monomials m, n

(b) m Â n and n Â p ⇒ m Â p

2. 1 ≺ m for all monomials m

3. if m1 ≺ m2, then nm1 ≺ nm2 for all monomials n
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Proposition: These conditions imply that Â is a well order.

proof: Suppose not. Then there exist monomials mi such that m1 Â m2 Â m3 Â . . .

(*). This defines a chain of ideals (m1) ⊂ (m1,m2) ⊂ . . . (**). But, (m1, . . . , mn) 6=
(m1, . . . , mn+1), or else mn+1 =

∑n
j=1 ujmj , with uj ∈ k[x1, . . . , xn]. When we expand

the uj as a linear combination of monomials, then each term in ujmj is divisible by some

mj . Then every ujmj on the right hand side of the equation is divisible by some mj for

1 ≤ j ≤ n. But mn+1 must appear as the monomial of a ujmj on the right hand side

of the equation. Hence mn+1 is divisible by some mj , 1 ≤ j ≤ n. Thus mn+1 º mj for

some j, 1 ≤ j ≤ n. This contradicts (*). So we return to the chain of ideals (**) to see

this is a strictly increasing chain of ideals in k[x1, . . . , xn]. This contradicts Hilbert Basis

Theorem. ¤

Some examples of term orders:

Definition: The lexicographic order (Lex) with x1 Â x2 Â . . . Â xn on the monomials

of k[x1, . . . , xn] is defined as follows: For α = (α1, . . . , αn) and β = (β1, . . . , βn), we define

xα ≺ xβ iff the first coordinates αi and βi in α and β from the left, which are different,

satisfy αi < βi.

Definition: The degree lexicographic order (DegLex) with x1 Â x2 Â . . . Â xn is as

follows: xα ≺ xβ iff
∑n

i=1 αi <
∑n

i=1 βi -OR-
∑n

i=1 αi =
∑n

i=1 βi and xα ≺ xβ with

respect to LEX with x1 Â x2 Â . . . Â xn.

Definition: The degree reverse lexicographic order (DegRevLex) with x1 Â x2 Â . . . Â
xn is as follows: xα ≺ xβ iff

∑n
i=1 αi <

∑n
i=1 βi -OR-

∑n
i=1 αi =

∑n
i=1 βi and the first

coordinates αi and βi from the right, which are different, satisfy αi > βi.

Examples:

In Lex with x Â y Â z, xy2 Â y3z4, xy2z3 ≺ x3y2, and xyz Â z3

In DegRevLex with x Â y Â z, xy2 ≺ y3z4, xy2z3 Â x3y2, and xyz Â z3

6



Definition: Let x1
α1 · · ·xn

αn = xα. Choose a monomial order Â on k[x1, . . . , xn].

For all f 6= 0, we write f = aαxα + aβxβ + . . . + aκxκ, with 0 6= aα ∈ k, and with

xα Â xβ Â . . . Â xκ. We define:

lm(f) = xα, the leading monomial of f

lc(f) = aα, the leading coefficient of f

lt(f) = aαxα = lc(f)lm(f), the leading term of f .

Also, lm(0) = lc(0) = lt(0) = 0.

Example:

Using Lex with x Â y, let f(x, y) = 3x2y3−8xy4 +2x. Then lm(f) = x2y3, lc(f) = 3,

and lt(f) = 3x2y3.

Sturmfels discusses another method for classifying term orders in [St]. To describe

term orders in k[x1, x2, . . . , xn], we can use a vector in Rn. But we must make a definition

before we may view the term orders via these weight vectors.

Definition: The exponent vector of a monomial xα1
1 xα2

2 · · ·xαn
n , where αi ≥ 0 ∀i, is the

nonnegative integer vector ev(xα1
1 xα2

2 · · ·xαn
n ) = (α1, α2, . . . , αn).

Definition: Now, take a nonzero vector with real entries (called a weight vector),

ω = (ω1, ω2, . . . , ωn) and an arbitrary term order Â on k[x1, x2, . . . , xn]. We define the

term order Âω on k[x1, x2, . . . , xn] for nonzero ω ≥ 0 by xα1
1 xα2

2 · · ·xαn
n = xαÂωxβ =

xβ1
1 xβ2

2 · · ·xβn
n if α · ω > β · ω or if α · ω = β · ω and xα Â xβ .

For the arbitrary case we must have that ω is nonnegative, i.e. it must be that

ωi ≥ 0 ∀i. For, take ω = (1,−1) and consider y2+1. Then (0, 0)·ω = 0 while (0, 2)·ω = −2,

which would give that 1 Â y2. This violates the second condition for a term order.

Choosing some distinctive set of polynomials, it may be the case that weight vectors can

have negative entries and still represent orders, (as we see below) but we disallow it in

general. Sturmfels actually allows a definition of this larger class of orders that may not

meet our definition of a term order for certain collections of monomials.
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Proposition : For a nonzero ω ≥ 0 and an arbitrary term order Â, Âω satisfies the

conditions of a term order.

proof: We will show that each of the three conditions hold.

1. Take two monomials m 6= n. Then either ev(m) ·ω > ev(n) ·ω, ev(m) ·ω < ev(n) ·ω,

or ev(m) ·ω = ev(n) ·ω. In the first two cases, we have that mÂωn and m≺ωn respectively.

In the third case, the arbitrary term order Â implies that either m Â n or m ≺ n. In the

former case, mÂωn and in the latter m≺ωn.

2. Since nonnegative ω ≥ 0, a monomial m 6= 1 is such that ev(m) ∈ (Z≥0)n, so that

ev(m) · ω ≥ 0. If ev(m) · ω > 0, then mÂω0. If ev(m) · ω = 0, then the fact that Â is a

term order gives that mÂω1.

3. Suppose that m1Âωm2 for two monomials m1, m2. Then either ev(m1) · ω >

ev(m2) ·ω or ev(m1) ·ω = ev(m2) ·ω and m1 Â m2. Suppose that ev(m1) ·ω > ev(m2) ·ω.

Then (ev(nm1)) ·ω = (ev(n)ev(m1)) ·ω) = ev(n) ·ω + ev(m1) ·ω > ev(n) ·ω + ev(m2) ·ω =

(ev(n)ev(m2)) ·ω = (ev(nm2)) ·ω for all monomials n and thus nm1Âωnm2. Now suppose

that ev(m1) · ω = ev(m2) · ω. Then we have that m1 Â m2 in the term order Â. Since Â
is a term order, nm1 Â nm2 and thus nm1Âωnm2. ¤

We mention that orders Âω correspond to the previously mentioned examples of term

orders. Taking the vector ω = (1, 0) and any term order Â on k[x, y] gives that Âω is

identical to Lex order with x Â y. Now let α = (1, 1). If we let Â be Lex with x Â y, then

Âα is DegLex with x Â y. If, however, we let Â be Lex with y Â x, then Âα is DegLex

with y Â x.

Definition: Consider the same weight vector ω = (ω1, ω2, . . . , ωn) and a polynomial

f = c1x
a1 + c2x

a2 + . . . + cnxan , where ci 6= 0. Then the initial form of f with respect to

ω, inω(f) is the sum of the cix
ai such that ω ·ai is maximal. When the initial form inω(f)

is monomial, we may write ltω(f) for inω(f) as we did earlier in this section.

8



Examples: Let ω = (1, 1). Then inω(x2y + xy2 + x + y + 1) = x2y + xy2 and

inω(x3y + xy2 + xy + 1) = x3y. Now let α = (2, 1). inα(x + y2) = x + y2. Letting

β = (3,−1) gives inβ(x3y2 + x2y + x2 + x) = ltβ(x3y2 + x2y + x2 + x) = x3y2.

9



SECTION 4

GRÖBNER BASES FOR AN IDEAL

We have finally gotten to the point of being able to define our main object of study,

the Gröbner basis. After giving a definition of Gröbner basis, we will give another set of

conditions on an ideal that will be equivalent to this definition, show that Gröbner bases

exist for any ideal, and give properties of Gröbner bases. We then define the more useful

concept of the reduced Gröbner basis and give a process which will yield such a reduced

Gröbner basis. Here we follow the texts of Cox, Little, and O’Shea [CLO1], [CLO2] and

Sturmfels [St].

Definition: Given a term order Â on k[x1, . . . , xn], a set of nonzero polynomials

G = {g1, . . . , gt} contained in a nonzero ideal I is called a Gröbner basis for I with respect

to Â iff ∀f ∈ I such that f 6= 0, there exists i ∈ {1, . . . , t} such that lm(gi) | lm(f).

Examples: G1 = {x2 +5xy− 3y3, xy +7y3, y3} is a Gröbner basis for I1 = 〈x2, xy, y3〉
in Lex with x Â y order. Now let Â be Lex with x Â y and let g1 = x4 − x3y and

g2 = x2y2 − y4. G2 = {g1, g2} is not a Gröbner basis for I = 〈g1, g2〉. Notice that

f = xy5−y6 = y2g1−(x2 +xy−y2)g2 ∈ I. lm(g1) = x4, lm(g2) = x2y2, and lm(f) = xy5,

and thus lm(g1) - lm(f) and lm(g2) - lm(f). Since ∃f ∈ I with no lm(gi) | lm(f), {g1, g2}
is not a Gröbner basis for I.

Definition: In order to give an equivalent and sometimes more useful characteriza-

tion of a Gröbner basis, we need the following definition: for a given term order Â on

k[x1, . . . , xn] and a subset S of k[x1, . . . , xn], the leading monomial ideal of S is the ideal

LM(S) = 〈lm(s) : s ∈ S〉. We also define the following: for an ideal I, the initial ideal is

the ideal generated by all initial forms

inω(I) = 〈inω(f) : f ∈ I〉

10



These are not necessarily monomial ideals, but we can add extra hypotheses to assure that

they are.

Also, Sturmfels shows two results important for our purposes.

Proposition : If ω ≥ 0 and inω(I) is a monomial ideal, then inω(I) = inÂω
(I).

proof: Since the definition of Âω involves first testing dot products with ω, if inω(I)

is already monomial, the additional “tiebreaker” of Â is irrelevant.

Proposition : For any term order Â and any ideal I ⊂ k[x1, . . . , xn], there exists a

nonnegative integer vector ω ∈ Rn such that inω(I) = inÂ(I).

We will postpone this proof until after we have defined the concept of a reduced

Gröbner basis. The proposition is proved at the end of this section.

Definition: If ω is any real vector such that inω(I) = inÂ(I), then we call ω a term

order for I or we say that ω represents Â for I.

It is important to note that only certain weight vectors will define term orders for all

ideals I. In particular, only weight vectors with nonnegative entries can possibly define

term orders for all ideals. It should be noted that certain weight vectors having negative

components will represent term orders for some ideals and certain nonnegative weight

vectors do not give total orders. These are reasons why we must select the arbitrary term

order and define Âω (as seen in the previous section).

Example: We begin by returning to a previous example. Let I be the principal ideal

I = 〈x3y2 + x2y + x2 + x〉. Then β = (3,−1) is a term order for I. But, β would not be

a term order for J = 〈y2 + y〉, because (0, 1) · β = −1, while (0, 2) · β = −2. This means

that LM(J) = y, yet y | y2, so that (because of the definition of term order) y2 Â y and y

cannot be the leading term of our polynomial.

Proposition : Assume a term order Â on k[x1, . . . , xn] is specified. For G =

{g1, . . . , gt} and I = 〈g1, . . . , gt〉, G is a Gröbner basis for I iff LM(G) = LM(I). (We

will call this equivalent condition the second characterization of a Gröbner basis.)
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proof: Suppose the definition of Gröbner basis is satisfied. Then, clearly, LM(G) ⊆
LM(I). To show the reverse inclusion, it suffices to show that lm(f) ∈ LM(G) ∀f ∈ I,

since the lm(f)’s generate LM(I). But ∀f ∈ I such that f 6= 0, there exists i ∈ {1, . . . , t}
such that lm(gi) | lm(f). Thus LM(G) = LM(I).

Conversely, suppose G is such that LM(G) = LM(I). Now let f ∈ I. Then lm(f) ∈
LM(G), so lm(f) =

∑t
i=1 hilm(gi) for some hi ∈ k[x1, . . . , xn]. Expanding the right hand

side, every term is divisible by some lm(gi). So lm(f) is also divisible by some lm(gi). ¤

Examples: Here are some examples where it is fairly easy to check both characteri-

zations of Gröbner basis. First, consider G1 and I1 from the above example. In fact, it

is simple to show that any set of monomial generators for a monomial ideal is a Gröbner

basis in any term order. Second, note that principal ideals 〈f〉 have {f} as a Gröbner basis

in any term order. A more ad hoc example is G2 = {x − z3, y − z2} is a Gröbner basis

in Lex with x Â y Â z for I2 = 〈x − z3, y − z2〉. Now let Â be Lex with x Â y and let

f = x4 − x3y and g = x2y2 − y4. G3 = {f, g} is not a Gröbner basis for I = 〈f, g〉. Notice

that lm(f) = x4 and lm(g) = x2y2. But h = xy5 − y6 = y2f − (x2 + xy − y2)g ∈ I and

neither of lm(f) and lm(g) divide lm(h) = xy5, so that LM(I) 6= 〈x4, x2y2〉.
Proposition : If {g1, . . . , gt} is a Gröbner basis for I, then 〈g1, . . . , gt〉 = I.

proof: Clearly 〈g1, . . . , gt〉 ⊆ I, since gi ∈ I ∀i. Let f ∈ I. Then lm(f) ∈
〈lm(g1), . . . , lm(gt)〉, hence lm(f − ngk) < lm(f) for some gk and some term n. Since

f − ngk ∈ I, we get by recursiveness that f ∈ 〈g1, . . . , gt〉. ¤

Example: Let G1 = {x2, xy, y3}. Then G1 is a Gröbner basis for I1 = 〈x2 −
5xy, x3y, xy + 4y3, y3〉 in Lex with x Â y. But note that I1 = 〈x2, xy, y3〉. For a non-

monomial example, consider G2 = {x + z, y − z}. G2 is a Gröbner basis in Lex with

x Â y Â z for I2 = 〈x + y, x + z, y − z〉. But we may also write I2 = 〈x + z, y − z〉.
Now we head toward proving that Gröbner bases exist, which will also give an alter-

nate proof of the famous Hilbert Basis Theorem. It is notable that our proof will give a

constructive method for finding the basis.
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Definition : For ease of notation in the following proof, we define I : 〈a〉 = {r ∈ R :

ra ∈ I}.
Dickson’s Lemma : Every monomial ideal in k[x1, . . . , xn] is finitely generated.

proof: We induct on n. Since every ideal in k[x] is principal, the statement holds for

n = 1. Suppose it is true for n− 1 variables. Let I be a monomial ideal in k[x1, . . . , xn].

Let Jl = (I : 〈xn
l〉)∩k[x1, . . . , xn−1] = 〈Sl〉. Since Jl is an ideal in k[x1, . . . , xn−1], choose

Sl to be finite. Thus J0 ⊆ J1 ⊆ . . . . Then ∪Jl is an ideal J ∈ k[x1, . . . , xn−1] and thus

is finitely generated, J = 〈S〉. If m ∈ I is some monomial, then m = m′xn
k for some

m′ ∈ k[x1, . . . , xn−1] and some k. Since m′xn
k ∈ I, m′ ∈ I : 〈xn

k〉, so m ∈ 〈xn
kSk〉.

Hence S′ = S0 ∪ xnS1 ∪ xn
2S2 ∪ . . . ∪ xn

kSk is a finite generating set for I.¤

Theorem : Every nonzero ideal I ⊂ k[x1, . . . , xn] has a Gröbner basis.

proof: Dickson’s Lemma gives that LM(I) has a finite generating set. Write this

generating set as {lt(g1), . . . , lt(gt)} for g1, . . . , gt ∈ I. Let G = {g1, . . . , gt}. Then

LM(G) = LM(I).¤

Definition: A Gröbner basis G = {g1, . . . , gt} for an ideal I is called minimal if

∀i, lc(gi) = 1 and ∀i 6= j, lm(gi) does not divide lm(gj).

Given a Gröbner basis G = {g1, . . . , gt} for an ideal I, to obtain a minimal Gröbner

basis, we eliminate all gi for which ∃j 6= i such that lm(gj) divides lm(gi) and divide each

remaining gi by lc(gi).

Example: Returning to our previous example of I = 〈x2−5xy, x3y, xy+4y3, y3〉, since

xy | x3y, we will eliminate x3y. Thus, {x2− 5xy, xy + 4y3, y3} is a minimal Gröbner basis

for I.

Proposition : Given a fixed term order Â, if G = {g1, . . . , gt} and F = {f1, . . . , fs}
are minimal Gröbner bases for an ideal I, then s = t, and after renumbering, if necessary,

lt(fi) = lt(gi) ∀i = 1, . . . , t.

proof: Since f1 ∈ I and G a Gröbner basis for I, there exists i such that lm(gi) |
lm(f1). Assume i = 1. Now g1 ∈ I and since F is a Gröbner basis for I, there exists j
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such that lm(fj) | lm(g1). Thus lm(fj) | lm(f1) and we must have that j = 1 since F is a

minimal Gröbner basis. Hence lm(f1) = lm(g1).

Now, f2 ∈ I. The minimality of F and the fact that lm(f1) = lm(g1) give that i 6= 1.

After renumbering, if necessary, we get that lm(f2) = lm(g2). This process continues until

all fi, gj are used. So, s = t, and after renumbering, lm(gi) = lm(fi) ∀i = 1, . . . , t.¤

Example: Once again returning to our ideal I = 〈x2− 5xy, x3y, xy +4y3, y3〉, we note

that both G1 = {x2−5xy, xy +4y3, y3} and G2 = {x2, xy, y3} are minimal Gröbner bases,

because both satisfy the divisibility properties for a minimal Gröbner basis. Note that

both of the Gröbner bases have three elements and that the leading term of each element

of G1 matches the leading term of the corresponding element of G2.

Definition: Given f, g, h ∈ k[x1, . . . , xn] with g 6= 0, we say f reduces to h modulo g,

written f → h, iff lm(g) divides a nonzero term X that appears in f and h = f − X
lt(g)g.

Definition: Let f, h, f1, . . . , fs be polynomials in k[x1, . . . , xn], with fi 6= 0(1 ≤ i ≤ s).

Let F = {f1, . . . , fs}. We say that f reduces to h modulo F , denoted f→+h iff there exists

a sequence of indices i1, . . . , it ∈ {1, . . . , s} such that f → h1 → h2 → . . . → ht−1 → h.

Definition: A polynomial r is called reduced with respect to a set of polynomials

F = {f1, . . . , fs} if r = 0 or if no monomial that appears in r is divisible by any one of

the lm(fi), i = 1, . . . , s. In other words, r cannot be reduced modulo F .

Definition: If f→+r and r is reduced with respect to F , the r is called a remainder

for f with respect to F .

Example: Consider our minimal Gröbner basis G1 = {x2 − 5xy, xy + 4y3, y3} from

above. xy + 4y3 →+ xy, because y3 | 4y3, and xy + 4y3 − 4(y3) = xy.

Definition : A Gröbner basis G = {g1, . . . , gt} is called a reduced Gröbner basis if for

all i, lc(gi) = 1 and gi is reduced with respect to G \ {gi}. That is, for all i, no nonzero

term in gi is divisible by any lm(gj) for any j 6= i.

Proposition : Let G = {g1, . . . , gt} be a minimal Gröbner basis for the ideal I.

Consider the following reduction process:
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g1→+h1 where h1 is reduced with respect to H1 = {g2, . . . , gt}
g2→+h2 where h2 is reduced with respect to H2 = {h1, g3, . . . , gt}
g3→+h3 where h3 is reduced with respect to H3 = {h1, h2, g4, . . . , gt}
...

gt→+ht where ht is reduced with respect to Ht = {h1, . . . , ht−1}
Then H = {h1, . . . , ht} is a reduced Gröbner basis for I.

proof: Note that since G is minimal, we have lm(hi) = lm(gi) ∀i = 1, . . . , t. Hence, H

is a minimal Gröbner basis for I. Since the reduction of the gi by h1, . . . , hi−1, gi+1, . . . , gt

is done by eliminating terms of gi by using lm(h1), . . . , lm(hi−1), lm(gi+1), . . . , lm(gt) and

since lm(hj) = lm(gj) ∀j, H is a reduced Gröbner basis.¤

Example: We return to our familiar ideal I = 〈x2−5xy, x3y, xy+4y3, y3〉 and consider

the term order Â as Lex with x Â y. Then G1 = {x2−5xy, x3y, xy +4y3, y3} is a Gröbner

basis for I with respect to Â. But (as above), xy | x3y, so that we may remove x3y from

our list and give ourselves that G2 = {x2 − 5xy, xy + 4y3, y3} is a minimal Gröbner basis

for I with respect to Â. Still,

x2 − 5xy → x2 − 5xy + 5(xy + 4y3)

= x2 − 20y3

→ x2 − 20y3 + 20(y3)

= x2

and xy + 4y3 → xy + 4y3 − 4(y3) = xy so that we reduce to G3 = {x2, xy, y3}, which is a

reduced Gröbner basis for I with respect to Â.

Theorem(Buchberger): Fix a term order. Then every nonzero ideal I has a unique

reduced Gröbner basis with respect to that term order.

proof: First, we choose a term order Â. We have shown that every ideal has a Gröbner

basis with respect to Â. We have also given a procedure to convert a Gröbner basis to a

minimal Gröbner basis. The previous proposition has given us a method for converting a
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minimal Gröbner basis to a reduced Gröbner basis. We are only left to show uniqueness.

Since reduced Gröbner bases are minimal, we can use the result which states: Given a

fixed term order Â, if G = {g1, . . . , gt} and F = {f1, . . . , fs} are minimal Gröbner bases

for an ideal I, then s = t, and after renumbering, if necessary, lt(fi) = lt(gi) ∀i = 1, . . . , t.

Now assume that F 6= G, that is that there is some fj 6= gj . Since fj and gj are elements

of I, so is fj − gj . But lt(fj) = lt(gj) tells us that lm(fj − gj) ≺ lm(fj) = lm(gj). Since

F is a reduced Gröbner basis, there is no lm(fi) which divides a term of fj . And likewise

for gi, gj . Hence there can be no terms in fj − gj (as those terms would have had to have

been present in at least one of fj , gj to appear in the difference). Thus fj = gj for all j,

and F = G. ¤

We will now prove the proposition whose proof we omitted during the section. In

order to do this, we will need two results.

Farkas Lemma of Linear Programming : For a 6= 0, the inequality a0 · x ≤ 0 follows

from a1 · x ≤ 0, . . . an · x ≤ 0 iff ∃ nonnegative λ1, . . . , λn with
∑

λkak = a0.

Definition : The monomials which do not lie in LM(I) are the standard monomials.

Recall that G ⊂ I is a Gröbner basis for I if LM(I) is generated by {lm(g) : g ∈ G}.
The following proposition goes back at least as far as Macaulay.

Proposition : Fix a term order Â. The (images of the) standard monomials form a

k-vector space basis for the residue ring k[x1, . . . , xn]/I.

proof: We first show linear independence. Assume there is some relation f =
∑n

i=1 aimi ∈ I with monomials mi in the standard monomials and ai 6= 0, ai ∈ k. Then

we must have lm(f) ∈ LM(I). Since lm(f) must be one of the mi, which are all in the

set of standard monomials, this is a contradiction.

Now, suppose that the set of standard monomials does not span k[x1, . . . , xn]/I. From

the set of elements of k[x1, . . . , xn] not in I and not in the set of standard monomials,

choose f with minimal leading term. If lm(f) is in the set of standard monomials, subtract

it from f to get a smaller leading term, a contradiction. So, we may assume without loss

16



of generality that lm(f) ∈ LM(I). Now take an element g of I with lm(f) = lm(g). Then

lm(f − g) ≺ lm(f), so our choice of lm(f) was not minimal. Contradiction. ¤

Proposition : For any term order Â and any nonzero ideal I ⊂ k[x1, . . . , xn], there

exists a nonnegative integer vector ω ∈ Rn such that inω(I) = inÂ(I).

proof: Let G = {g1, . . . , gr} be the reduced Gröbner basis of I with respect to Â.

Let gi = ci0x
ai0 + ci1x

ai1 + · · · + cijx
aiji with inÂ(gi) = xai0 . Define CI,Â to be the set

of all nonnegative vectors ω ∈ Rn such that inω(gi) = xai0 for i = 1, . . . , r. Equivalently,

CI,Â = {ω ∈ Rn : ω · (ai0 − ail) > 0 ∀i = 1, . . . , r, ∀l = 1, . . . , ji}. We must show that

CI,Â 6= ∅. Suppose that CI,Â = ∅. By the Farkas Lemma of Linear Programming, there are

nonnegative integers λil with not all of these being zero, such that
∑r

i=1

∑ji

l=1 λil(ai0 −
ail) ≤ 0. Translating this via the multiplicative property of the term order gives that
∏r

i=1

∏ji

l=i(x
ai0)λil ¹ ∏r

i=1

∏ji

l=i(x
ail)λil . Yet the requirement that inÂ(gi) = xai0 gives

that xai0 Â xail , and this implies that
∏r

i=1

∏ji

l=i(x
ai0)λil Â ∏r

i=1

∏ji

l=i(x
ail)λil . This is a

contradiction, so CI,Â is a nonempty convex cone.

Now choose any ω ∈ CI,Â ∩ Zn. We must show that inω(I) = inÂ(I). inÂ(I) is

generated by monomials inÂ(gi) = inω(gi) = xai0 , so clearly inω(I) ⊇ inÂ(I). If this were

a strict containment, then it would remain strict when passing to the initial ideal with

respect to Â. Thus, it would mean that inÂ(I) ⊂ inÂω (I). This would contradict the fact

that the standard monomials form a k-vector space for the residue ring k[x1, . . . , xn]/I. ¤
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SECTION 5

COMPUTING GRÖBNER BASES THEORETICALLY

Now that we have shown that Gröbner bases exist, we give a way to compute them

for any ideal I. We must first define S-polynomials and give Buchberger’s criterion, which

is actually a third characterization of a Gröbner basis. From this criterion we derive

Buchberger’s algorithm for computing a Gröbner basis. We continue in our following of

[CLO1] for terminology and methods.

Definition : Let 0 6= f, g ∈ k[x1, . . . , xn]. Then the S-polynomial of f and g is defined

to be:

S(f, g) =
lcm(lm(f), lm(g))

lt(f)
f − lcm(lm(f), lm(g))

lt(g)
g

Example: For both of these examples, let Â be Lex with x Â y. Now let f = x3+x+1

and let g = y3 + y2 + 1. Then

S(f, g) = y3(x3 + x + 1)− x3(y3 + y2 + 1)

= −x3y2 − x3 + xy3 + y3

Now, let h = x2y + xy2 and let k = x3 + xy. Then

S(h, k) = x(x2y + xy2)− y(x3 + xy)

= x2y2 − xy2

Lemma: Let f1, . . . , fs ∈ k[x1, . . . , xn] be such that lm(fi) = X 6= 0 ∀i = 1, . . . , s.

Let f =
∑s

i=1 cifi, with ci ∈ k ∀i. If lm(f) < X, then f is a linear combination, with

coefficients in k, of S(fi, fj), 1 ≤ i < j ≤ s.

proof: Write fi = aiX+ lower terms, ai ∈ k. Then, by hypothesis,
∑s

i=1 ciai = 0,

since the ci ∈ k ∀i. Now, by definition, S(fi, fj) = 1
ai

fi− 1
aj

fj , since lm(fi) = lm(fj) = X.

Then,
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f =c1f1 + . . . + csfs

=c1a1(
1
a1

f1) + . . . + csas(
1
as

)fs

=c1a1(
1
a1

f1 − 1
a2

f2) + (c1a1 + c2a2)(
1
a2

f2 − 1
a3

f3) + . . .

+ (c1a1 + . . . + cs−1as−1)(
1

as−1
fs−1 − 1

as
fs) + (c1a1 + . . . + csas)

1
as

fs

=c1a1S(f1, f2) + (c1a1 + c2a2)S(f2, f3) + . . . + (c1a1 + . . . + cs−1as−1)S(fs−1, fs)

since c1a1 + . . . + csas = 0.¤

Example: Let f = x2y3 + 3xy2 − 4x, g = x2y3 − 8x2 + 2y + 3, and h = x2y3 + x2y2 +

xy2+xy+x+y. Now, consider the j = x2y2−8x2−5xy2+xy+9x+3y+3 ∈ 〈f, g, h, 〉. We

calculate S(f, g) = 3xy2+8x2−4x−2y−3, S(g, h) = −x2y2−8x2−xy2−xy−x+y+3, and

S(f, h) = −x2y2+2xy2−xy−5x−y. Then we can write j = 0·S(f, g)+S(g, h)−2·S(f, h).

Theorem : Let G = {g1, . . . , gt} be a set of nonzero polynomials in k[x1, . . . , xn].

Then G is a Gröbner basis for the ideal I = 〈G〉 iff ∀i 6= j, S(gi, gj)→+0.

proof: (⇒) If G = {g1, . . . , gt} is a Gröbner basis for I = 〈g1, . . . , gt〉, then

S(gi, gj)→+0 ∀i 6= j, since S(gi, gj) ∈ I.

(⇐) Now assume S(gi, gj)→+0 ∀i 6= j. Let f ∈ I. Write f =
∑t

i=1 higi with

X = max1≤i≤t(lm(hi)lm(gi)) least possible with respect to Â. If X = lm(f), we are

done. Otherwise, lm(f) < X. If we find another representation of f with smaller

X, this is a contradiction. Let T = {i : lm(hi)lm(gi) = X}. For i ∈ T , write

hi = ciXi+ lower terms. Set g =
∑

i∈T ciXigi. Then lm(Xigi) = X ∀i ∈ T ,

with lm(g) < X. By the previous lemma there exists dij ∈ k such that g =
∑

i,j∈S,i 6=j dijS(Xigi, Xjgj). And, X = lcm(lm(Xigi), lm(Xjgj)), so S(Xigi, Xjgj) =

X
lt(Xigi)

Xigi− X
lt(Xjgj)

Xjgj = X
lt(gi)

gi− X
lt(gj)

gj = X
lcm(lm(gi),lm(gj))

S(gi, gj). The hypothesis

implies S(gi, gj) → 0, and so S(Xigi, Xjgj) → 0. This gives S(Xigi, Xjgj) =
∑t

l=1 hijlgl,

where max1≤l≤t(lm(hijl)lm(gl)) = lm(S(Xigi, Xjgj)) < max(lm(Xigi), lm(Xjgj)) =

X. Substituting into g and then substituting g into f gives f =
∑t

i=1 h′igi, with

max1≤i≤t(lm(h′i), lm(gi)) < X. Contradiction.¤
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Example: Take Â to be Lex with x Â y and consider the ideal I = 〈xy3−y4, x4−x2y2〉.
Then

S(f, g) = x3(xy3 − y4)− y3(x4 − x2y2)

= −x3y4 + x2y5

→ −x3y4 + x2y5 + x2y(xy3 − y4)

= 0

Thus, {xy3 − y4, x4 − x2y2} is a Gröbner basis for I.

Buchberger’s Algorithm:

INPUT: F = {f1, . . . , fs} ⊆ k[x1, . . . , xn] with fi 6= 0 ∀i = 1, . . . , s.

OUTPUT: G = {g1, . . . , gt}, a Gröbner basis for 〈f1, . . . , fs〉
INITIALIZATION: G := F , Γ := {{fi, fj} : fi 6= fj ∈ G}
WHILE Γ 6= ∅ DO

choose any {f, g} ∈ Γ

Γ := Γ \ {f, g}
S(f, g)→+h, where h is reduced with respect to G

IF h 6= 0, THEN

Γ := Γ ∪ {{u, h} ∀u ∈ G}
G := G ∪ {h}
This is a familiar algorithm, stated for example in [CLO1, page 89].

Theorem : Given F = {f1, . . . , fs} with fi 6= 0 (1 ≤ i ≤ s), Buchberger’s algorithm

will produce a Gröbner basis for the ideal I = 〈f1, . . . , fs〉.
proof: That the algorithm terminates is assured by Dickson’s Lemma, since each

nonzero h that must be added to G gives another monomial lm(h), with lm(g1) - lm(h) for

any gi ∈ G, so that the ideal generated by the leading monomials strictly increases for each

nonzero reduced h which is added. Correctness is implied by Buchberger’s Theorem.¤
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Example: Let I = 〈f, g〉, where f = x4 − x3y and g = x2y2 − y4. Choose Lex with

x Â y as our term order Â. Then,

S(f, g) = y2(x4 − x3y)− x2(x2y2 − y4)

= x4y2 − x3y3 − x4y2 + x2y4

= x3y3 − x2y4

→ x3y3 − x2y4 − xy(g)

= −x2y4 + xy5

→ −x2y4 + xy5 + y2(g)

= xy5 − y6 = h

Now, we must add h to the set (putative Gröbner basis) G and add {f, h}, {g, h} to the

set Γ. We compute

S(f, h) = y5(x4 − x3y)− x3(xy5 − y6)

= x4y5 − x3y6

→ x4y5 − x3y6 − y5(f)

= 0

So now we compute

S(g, h) = y3(x2y2 − y4)− x(xy5 − y6)

= xy6 − y7

→ xy6 − y7 − y(h)

= 0

Thus, {f, g, h} is a Gröbner basis for I with respect to the Lex with x Â y term order.

We make two notes about computing that are of interest when one is practically

computing a Gröbner basis. We have seen neither result previously discussed. The first is
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the existence of a “linear translation invariance” property in Gröbner bases which allows

one to translate solution points to the origin (or to some other chosen point) to attempt

to reduce the heights of coefficients needed within the Buchberger algorithm.

Proposition : Suppose that I = 〈f1, . . . , ft〉 ⊂ k[x1, . . . , xn], and Ĩ = 〈f̃1, . . . , f̃t〉 ⊂
k[x1, . . . , xn], where f̃i = f(x1 − a1, x2 − a2, . . . , xn − an). Now let G = {g1, . . . , gs} be

a Gröbner basis for I with respect to some term order Â. Then G̃ = {g̃1, . . . , g̃s} is a

Gröbner basis for Ĩ with respect to Â.

proof: Take a polynomial f with leading term t = cx1
e1x2

e2 · · ·xn
en and perform the

translation. Then f̃ has term t̃ = c(x1− a1)e1(x2− a2)e2 · · · (xn− an)en which has leading

term t = cx1
e1x2

e2 · · ·xn
en , the same as t. This will also apply to the lower terms with

respect to Â. Thus lt(f̃) = lt(f) = t. Now, we must have elements of the Gröbner basis

being members of Ĩ. But the elements of G̃ are all members of Ĩ with the proper leading

terms. Hence G̃ is a Gröbner basis for Ĩ with respect to Â. ¤

Example: Consider the ideal I = 〈x2 + y, y2 + x〉. Let Â1 be Lex with x Â y and Â2

be DegRevLex with x Â y. Then the reduced Gröbner basis with respect to Â1 is G1 =

{y4 +y, x+y2}, and the reduced Gröbner basis with respect to Â2 is G2 = {x2 +y, y2 +x}.
Consider the translation x 7→ x+1, y 7→ y−4. Then Ĩ = 〈(x+1)2+(y−4), (y−4)2+(x+1)〉.
Computing the reduced Gröbner basis G̃1 with respect to Â1 gives G̃1 = {y4−16y3+96y2−
255y+252, x+y2−8y+17} = {(y−4)4+(y−4), (y−4)2+(x+1)}. And, likewise computing

G̃2 yields G̃2 = {y2 +x−8y +17, x2 +2x+y−3} = {(y−4)2 +(x+1), (x+1)2 +(y−4)}.
Our second result comes as a counterexample to an exercise in [CLO1, page 446,

problem 16] which is used to prove their Proposition 8 on pages 442-443. If the state-

ment they give in the exercise were true, one could decompose two-dimensional ideals into

primary factors and parallelize the Buchberger algorithm in ways that could reduce the

necessary computation significantly.

In the exercise, we are asked to show that LM(I) · LM(J) = LM(I · J). It is fairly

simple to see the forward inclusion. It is also fairly easy to show that the reverse inclusion
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is not true. Consider I = 〈x−1, y−1〉 and J = 〈x+1, y−1〉, and let Â be Lex with x Â y.

Then IJ = 〈x2 − 1, y − 1〉, so that LM(IJ) = 〈x2, y〉. But LM(I) = 〈x, y〉 = LM(J), and

thus LM(I)LM(J) = 〈x2, xy, y2〉, so that LM(IJ) 6= LM(I)LM(J).

Note that this mirrors one of the obstacles to generating sets for an ideal being Gröbner

bases for that ideal. The one problem that occurs in generating sets is cancellation of terms

in sums of the generators. Consider f = x2 + x + 1 and g = −x2. Then lt(f) = x2 and

lt(g) = −x2, so that lt(f) + lt(g) = 0. Yet, lt(f + g) = x, something that could not have

been predicted by only looking at the leading terms.
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SECTION 6

COMPUTING GRÖBNER BASES PRACTICALLY

There are many arguments about the computational complexity of constructing a

Gröbner basis, but each argument is either tangential to the Buchberger algorithm or

heuristic in nature. In this section we will report on the calculations, conjectures, and

results that appear in the literature and give some general ideas about the difficulties

encountered in computation of Gröbner bases.

For the following discussion, we make certain assumptions. Let F be a set of t poly-

nomials in k[x1, . . . , xn]. Assume that the maximum of the degrees of the elements of F

is d.

Hermann [He] gave bounds for the degrees of polynomials needed to express an element

of an ideal in terms of its generators in the early 1900’s. Her work was on an algebraic

construct similar to Gröbner bases that was termed Hermann bases. These bounds that

she found are often cited when the Buchberger algorithm is discussed. From the initial

set F , she showed that certain types of Hermann bases would have elements of maximal

degree d2 +d. In [Se] Seidenberg showed that a more general bound for all Hermann bases

was possible. Seidenberg showed that the maximal degree of the elements of Hermann

bases is always bounded by d4.

In 1978 Kollreider [Ko] pointed out the importance of choosing a term order in the

calculation of a Gröbner basis. In 1983 Buchberger [B5] gave ideas on the bounds of his

algorithm, particularly in the bivariate case. He reported bounds that both he and Lazard

had discovered over k[x, y]. In particular he proved Kollreider’s conjectures, showing that

a DegRevLex Gröbner basis would have elements of a reduced Gröbner basis of degree

≤ 2d− 1, while a general term order would yield elements of the reduced Gröbner basis of

degree ≤ d2. Buchberger also showed that the number of elements of a minimal Gröbner
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basis G in an arbitrary term order would be less than or equal to one more than the

minimum of the degrees of the elements of F , where F is a set of bivariate polynomials.

Finally, he showed that the Buchberger algorithm would terminate in fewer than 3
2 (|F |+

2 · (d + 2)2)4 steps in the bivariate case. He also showed that all of these bounds are tight.

Möller and Mora [MoMo] gave both upper and lower bounds for the degrees of certain

Gröbner bases in 1984.

Mayr and Meyer [MM] showed that calculating certain elements in answering the

uniform word problem for commutative semigroups involved doubly exponential growth.

The problem they approached is a special case of deciding the membership problem for

polynomial ideals given by bases.

Huynh [Hu] gave superexponential lower bounds for Gröbner bases in 1986 and Kalk-

brener [K] used that work to show that for all m, there exists a prime ideal P and two

reduced Gröbner bases for P , F and G such that |F | = O(m) and |G| ≥ 22m

. Kalkbrener

also showed that for homogeneous ideals I, we can relate the maximum degree of elements

in two reduced Gröbner bases. Let reduced Gröbner basis F of I have elements of maximal

degree d. Then for any other reduced Gröbner basis G of I, the degree of the elements of G

is less than ((n + 1)(d + 1) + 1)(n+1)2dim(I)+1
. Kalkbrener also showed that the situation is

better if F and G are in adjacent cones of the Gröbner fan. (Here there is no homogeneity

assumption on the ideal.) Once again, assume reduced Gröbner basis F has elements of

maximal degree d. Then elements of an adjacent Gröbner basis G has degrees less than

2 · d2 + (n + 1) · d, where n is the number of variables.

Most recently Tran [T] has explored the Gröbner walk through a Gröbner fan. Tran

uses the term Gröbner walk to describe a traversal through the Gröbner fan of an ideal

terminating in a specific cone of the Gröbner fan. (That target cone can have any dimen-

sion.) He defines the length w of the Gröbner walk as the number of different computations

of reduced Gröbner necessary to reach the target cone. The degree of polynomials in the
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reduced Gröbner basis of the target cone is bounded by 22w−1d2w

+ 22w+1
d(n + 1)(d +

1)2
w−2(n + 2)2

w+1−1, where d and n have the same definitions as above.

One can notice that there are several choices made in an implementation of the Buch-

berger algorithm. Any choice made can be a help or a hindrance to the efficiency of the

algorithm. The first choice that one must make is that of a term order. Another is the order

in which S-polynomials are computed. While we have seen no progress on the latter, there

has been some work on the former. In [FGLM] a polynomial time algorithm is given which

will convert a Gröbner basis for a zero-dimensional ideal in any term order into a Gröbner

basis for that same ideal in any other term order. Thus, calculating a Gröbner basis for

a zero-dimensional ideal in any one term order is essentially equivalent to calculating a

Gröbner basis in the desired term order.

The initial choice in the implementation of the Buchberger algorithm is that of a term

order. This first decision seems to play a vital role in the running time of the algorithm.

Many believe that in general the Lex-type orders are the worst possible. And, it is believed

that DegRevLex is generally the best term order for computation. Both of these assertions

are supported by much experimental evidence (see, for instance, [BS], [Ko], [MoMo]), and

we offer heuristic reasons that suggest why they should be true in Section 13. Still, these

characterizations are not universally true for all ideals but are generalizations over the

class of all ideals. There are numerous examples in which the Lex term order works most

efficiently (for instance, if the set of generators for the ideal is already a Gröbner basis in

Lex order). It is only on average that we think of Lex as a worst term order and DegRevLex

as a best term order, and we know of no results which predict when these ideas will be

upheld or contradicted in general.

The second choice which must be made in the Buchberger algorithm is the order

in which S-polynomials are computed. Computational evidence shows us that in general

there is a point in the Buchberger algorithm where there are “enough” elements to form

a Gröbner basis, that is there is a point where every element needed as a generator of
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LM(I) has appeared as a lt(gi), where gi is one of the elements of the set G which is

formed in Buchberger’s algorithm. After this every ensuing S-polynomial reduces to 0

and the algorithm terminates very quickly. If we could find a fastest path to the point of

having “enough” polynomials for the Gröbner basis, we could save a great deal of time

and computation. This quickest way would necessitate a proper ordering of S-polynomial

computations.

Not a great deal is known about the Buchberger algorithm. The choices of term order

and order of S-polynomial computation are important in the time of computation, as much

experimental evidence shows. Perhaps because of these choices, there is still no thorough

treatment of the complexity of the Buchberger algorithm.
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SECTION 7

IDEALS AND GEOMETRY

Consider a monomial ideal M = 〈xα1 , . . . , xαt〉 ⊂ k[x1, . . . , xn]. In this section we

will give a geometric description of ideals of this form. These geometric descriptions are

already reported in the literature, and [CLO1] is a source where one may find a brief

discussion of these descriptions.

Our goal is to have a geometric picture of all elements contained in M . First, we

plot the points which are described by the exponent vectors α1, . . . , αt. Now, for each αi,

shade the region defined by αi⊕ (R≥0)2. The lattice points contained in the union of all of

these shaded regions is identical to the elements of the monomial ideal M . Here we show

a geometric view of the monomial ideal M = 〈x2, y3〉:

Here is a view of N = 〈x4y, x2y2, xy3〉:

We will choose to look particularly at the two variable case. From Buchberger on,

many have chosen to look at ideals over a bivariate polynomial ring. There are many

reasons for this. The most obvious is that the case of two variables is the first of any

interest. For univariate polynomials there is only one choice of term order. Since term

orders are multiplicative, the leading term of a polynomial f is always the term having
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highest degree. We will show in the next section that there are uncountably many bivariate

term orders.

Also of importance in choosing the bivariate case is that many of the interesting

problems that occur in cases of more variables already surface with two variables. With

only two variables we have more of an opportunity to get a handle on situations which

become very complicated as the number of variables grows. This applies for geometric

reasons also. In the bivariate case we are dealing with Newton polygons. Anyone who

has attempted the jump from plane geometry to solid geometry knows of the increase in

difficulty of studying the latter subject. Studies of Newton polygons give us a chance to

see trends and extrapolate them to higher dimensional Newton polytopes.
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SECTION 8

CLASSIFYING AND TOPOLOGIZING Term(2)

Section 8 and section 9 are new approaches to a problem that some have already

investigated. In [R] Robbiano does classify term orders on n variables. This is the space

that we call Term(n). Our approach is a departure from the approach of Robbiano and

yields new results. An extensive literature search and correspondence with Little, O’Shea,

and Sturmfels all indicate that the work of the next two sections is all original.

In this section we will give a new “common sense” description of bivariate term orders

and show that this description will form some space Term(2). We will give this space a

natural order topology. We will then show that the space Term(2) is homeomorphic to

the Cantor set by the use of Term(2)’s topological properties. Finally we will give results

that follow from Term(2) being homeomorphic to the Cantor set.

Sturmfels gives a way to describe term orders using weight vectors and arbitrary term

orders as tiebreakers (see Section 3). A simpler method in the case of two variables is to

convert these weight vectors to slopes. Thus the weight vector (p, q) is converted to q
p ,

where p 6= 0 and the slope m represents the weight vector (1,m).

We will consider two term orders Â1, Â2 to be distinct if there exist two monomials

m,n such that m Â1 n while n Â2 m.

We start with a couple of propositions about irrational slopes.

Proposition: A positive irrational m gives a term order.

proof: Let ωm = (1,m) with m irrational, and choose an arbitrary term order Â. Now

we can compare any two exponent vectors e1 = (a1, b1) and e2 = (a2, b2) using Âm. But

since m is irrational, a1 + b1m 6= a2 + b2m unless a1 = a2 and b1 = b2. Hence the Â is

irrelevant, and ωm represents a term order for any ideal I. ¤

Proposition: Distinct irrationals give different term orders.
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proof: Take m1 6= m2, two positive irrational numbers. Then there exists a rational p
q

such that, without loss of generality, m1 < p
q < m2. Now consider the ideal 〈f〉 = 〈xp+yq〉.

{f} is a reduced Gröbner basis in any term order (since the ideal is principal). But

ltm1(f) = xp and ltm2(f) = yq. Hence m1 and m2 represent distinct term orders. ¤

So irrational numbers give term orders with no need for a “tiebreaking” term order.

This is not the case with rational numbers. Consider q = s
r , where r and s are positive

integers. Then the polynomial f = xs + yr has a tie between the two potential leading

terms. Here a tiebreaking term order is needed. But, since we are in two variables, it is a

simple choice. We can choose our term order as either Lex with x Â y or Lex with y Â x.

Keeping track of these term orders becomes cumbersome, so we use the convention that

q− represents the term order defined by q with the tiebreaker of Lex with x Â y and q+

represents the term order defined by q with the tiebreaker of Lex with y Â x.

Proposition: q+ and q− give distinct term orders.

proof: Let q = s
r and consider 〈f〉 = 〈xs + yr〉. ltq+(f) = yr, while ltq−(f) = xs. ¤

Proposition: Distinct rationals q1, q2 give different term orders.

proof: Choose q1 < q2. Then there exists s
r such that q1 < s

r < q2. Consider

f = xs + yr. ltq1−(f) = ltq1+(f) = xs and ltq2−(f) = ltq2+(f) = yr. ¤

Proposition: Any positive irrational m gives a term order distinct from q−, q+ for any

q ∈ Q.

proof: Choose an irrational m. Then between m and any q, there exists a rational s
r .

Without loss of generality, let q < s
r < m. Now let f = xs + yr. Then ltq+(f) = ltq−(f) =

xs, but ltm(f) = yr. ¤

In general q+ and q− are considered for positive rational numbers. There are two

exceptions. For the term order described by slope 0, we need only consider the case of 0+.

For the term order described by slope ∞, we need only deal with ∞−. (Slope 0 amounts

to taking a dot product with the vector (1, 0), so that weight is given to the x component

of the exponent vector, but no weight is given to the y component. Thus, sorting has
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already been done on the x components of the exponent vectors and we only have need

for a tiebreaker to sort on y components of the exponent vectors. Slope ∞ corresponds to

dot product with a vector (0, 1), so a symmetric argument applies.) This leads us to the

following:

Theorem: The set of term orders on k[x, y] is in bijection with the elements of the set

Term(2) = {0+,∞−, q+, q−,m}, for q ranging over the positive rationals and m ranging

over the positive irrationals.

proof: The previous five propositions have shown the reverse inclusion. Now, take an

arbitrary term order Â. We compute the set Λ(Â) = {m ∈ Q : ltÂ(xs + yr) = yr, where

m = s
r} for Â. Take the least upper bound of the elements of Λ(Â), and call it l. If l /∈ Q,

we set m = l. If l ∈ Q, suppose l = r
s , and there are two cases. If l ∈ Λ(Â), then m = l+.

If l /∈ Λ(Â),m = l−. Hence Â has a representative in Term(2). ¤

This classification agrees with the classification of Robbiano in [R, Theorem 5] for the

case n = 2, although Robbiano did not seek topological descriptions of his classifications.

Now we seek to determine the kind of space that these term orders form. We will

endow Term(2) with an order topology and use the following:

FACT: Any compact, perfect, totally disconnected metric space is homeomorphic to

the Cantor set. [HY, page 100, Corollary 2-98]

We introduce one simple notion, that q+ is the immediate successor of q−, and this

leads to an order topology on the set of term orders.

Lemma 1: Term(2) is metrizable.

We use the Urysohn Lemma to show this. Urysohn states that any regular space with

a countable basis is metrizable.

sublemma a : Term(2) is regular

proof: Fact: Let X be a topological space. Let one-point sets in X be closed. Then X

is regular iff given a point x ∈ X, and a neighborhood U of x, there exists a neighborhood

V of x such that V ⊂ U . [M, 196: Lemma 4.2.1(a)]
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Take x ∈ Term(2) and U open such that x ∈ U . Now, x ∈ (a+, b−) ⊆ U for some

basic open set (a+, b−). But there exists an a0, b0 ∈ Q with a < a0 < x < b0 < b. Now let

V = (a0
−, b0

+). Then x ∈ V and V = [a0
−, b0

+] ⊂ (a, b) ⊆ U . Hence Term(2) is regular.

¤

sublemma b: Term(2) has a countable basis.

proof: The set

B = {{(q−, r−)∪(q−, r+)∪(q+, r−)∪(q+, r−), , q < r ∈ Q ranges over Q }∪{(0+, r−)∪
(0+, r+) , r ranges over Q} ∪{(q+,∞−)∪(q−,∞−), q ranges over Q }} is a countable basis

for Term(2). ¤

Thus Term(2) is metrizable.

For the next lemma, we will need the following:

FACT: Let X be a simply ordered set having the least upper bound property. In the

order topology, each closed interval in X is compact. [M, p. 173, Theorem 6.1]

Lemma 2: Every closed interval in Term(2) is compact.

proof: Consider the mapping π : Term(2) → R̂ (where R̂ denotes the extended real

numbers) defined by π(m) = m for m irrational, π(q+) = π(q−) = q for q ∈ Q, and

π(∞−) = ∞ and take a bounded set A ⊆ Term(2). The set π(A) is bounded and since

R̂ has the least upper bound property, π(A) must have a least upper bound. Call this

number l. Then there are two cases. If l /∈ Q, set l = lub(A). Otherwise, l ∈ Q, and

there are two cases again. If l+ /∈ A, set l− = lub(A). If l+ ∈ A, then l+ = lub(A). Thus,

Term(2) has the least upper bound property. Since Term(2) is simply ordered, the fact

gives that every closed interval in Term(2) is compact. ¤

Corollary: Term(2) is compact.

proof: [0+,∞−] = Term(2) is a closed interval in Term(2). ¤

Lemma 3: Term(2) is perfect.

proof: Let x ∈ Term(2), and suppose x is represented by Â. Then x = lim(Λ(Â)), as

previously defined in the classification theorem. ¤
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Lemma 4: Term(2) is totally disconnected.

proof: Suppose (a, b) is connected, where a < b. So long as there exists q ∈ Q,

q ∈ (a, b), we have A = (a, q−] and B = [q+, b), so that (a, b) is not connected. Hence

there exist no connected sets that consist of more than a singleton point, since there is a

q ∈ Q in each larger interval. ¤

This gives us:

Theorem: Term(2) is homeomorphic to the Cantor set.

This classification will lead to a natural approach to some of the recent results of Mora

and Robbiano in the bivariate case [MR, Lemma 2.6]. This natural approach is shown in

the corollary in section 9 and in the bivariate Gröbner fan algorithm in section 11.

There are specific links between the Cantor set and the set Term(2) that should be

noted here. We offer thanks to Will Kazez for the ideas behind the following insight.

Take the set Term(2) and add on a closed interval [q−, q+] for every rational q. Call

this space A. Then Term(2) sits inside A in the same way that the Cantor set C sits

inside R. In the familiar process of forming the Cantor set, we delete “middle thirds”

intervals. In the process of gleaning Term(2) from A, the deletions take place at those

closed intervals [q−, q+].

Rod Canfield has asked whether or not the isomorphism between the set of bivariate

term orders and the “middle thirds” Cantor set is order preserving. It appears that this

is the case as the gaps between q− and q+ occur at each of the disconnection points

formed when the “middle thirds” are removed from the real line in the “usual” Cantor set

construction, but we have not checked all of the details.
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SECTION 9

TOPOLOGIZING Term(n)

There is a very natural topology on the space Term(n) of term orders on the polyno-

mial ring k[x1, . . . , xn]. [St] and [MR] give variants of the following idea but do not extend

the idea to introduce a topology on Term(n).

A great deal of thanks goes to Robert Rumely and Mitch Rothstein. Rumely suggested

that a topology on Term(n) might be approached by the Robbiano classification. Rothstein

shared many important ideas about Robbiano’s paper which were helpful in the formulation

of this section. Our wholehearted gratitude is extended to these two.

Definition : Given a nonzero ideal I ⊂ k[x1, . . . , xn], let UI [t] := {t′ ∈ Term(n) :

LMt(I) = LMt′(I)}.
Proposition : The UI [t] are a basis of open sets for a topology on Term(n).

proof: Let M = 〈m1, . . . , ms〉 be a monomial ideal, where each mi is a monomial and

no mi divides an mj for i 6= j. Then G = {m1, . . . ,ms} is a reduced Gröbner basis with

respect to every t ∈ Term(n).

Now suppose t ∈ UI [t1] ∩ UJ [t2]. Then t ∈ UI+J [t] ⊂ UI [t1] ∩ UJ [t2]. ¤

Our main result is that with this topology, for any n ≥ 2, Term(n) is homeomorphic

to a compact subset of the Cantor set. To attain this result, as in [R], we start our analysis

with a larger set of orders on monomials.

Definition : We define Total(n) to be the collection of all total orders on the exponent

vectors of the monomials of k[x1, . . . , xn] which satisfy an additivity property, i.e. Total(n)

consists of all those relations t on (Z≥0)n which satisfy the following three conditions:

(trichotomy) exactly one of a t b, b t a, or a = b holds

(transitivity) if a t b and b t c, then a t c

(additivity) if a t b, then (a + c) t (b + c) for all c ∈ (Z≥0)n
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(One may think of t as analogous to Â of section 3.)

Note that two elements t1, t2 ∈ Total(n) are distinct if there are a, b ∈ (Z≥0)n with

a 6= b such that a t1 b and b t2 a.

Definition : We view Term(n) as the collection of relations of Total(n) also having the

following property on the exponent vectors of the monomials of k[x1, . . . , xn]: (positivity

of the standard basis) ei t 0 for the standard basis vectors ei. (Note that positivity of the

standard basis will imply that a t 0 for all a ∈ (Z≥0)n, a 6= 0 by the previous additivity

property.)

Note that Term(n) ⊆ Total(n), since Term(n) are the elements of Total(n) which

satisfy further restrictions, and the elements of Term(n) correspond exactly to term orders

in the sense of section 3.

Definition : We define Qn∗ to be the set of nonzero rational vectors and let F =

{±1}Qn∗
, the set of all functions from Qn∗ to {±1}.

In following the tradition of Robbiano [R], we extend the relations on (Z≥0)n \ {~0}
to rational vectors. In Lemma 1 of [R], it is shown that there is a unique extension of

Total(n) on (Z≥0)n \ {~0} to Qn∗.

We have often asked whether a t b, where a 6= b in (Z≥0)n. An equivalent question is

whether (a−b) t 0. Note that now a−b ∈ Zn and a−b 6= 0. Now we construct a collection

of functions as follows:

φ : Total(n) −→ F

by

t 7→ ft

where ft(c) = 1 if qc = (a− b) for some q ∈ Q>0 and a, b ∈ Zn
≥0 with a t b and ft(c) = −1

otherwise.
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Lemma : φ is injective.

proof : Suppose t1, t2 are distinct in Total(n). Then ∃a, b ∈ (Z≥0)n such that a t1 b

and b t2 a. Let c = a − b. Then ft1(c) = 1. For, let q = 1 in the above definition of

ft(c). And we claim that ft2(c) = −1. Suppose q(a − b) = a′ − b′ for q = r
s ∈ Q>0 and

a′, b′ ∈ Z≥0
n. Consider s(a′ − b′) = sq(a − b) = r(a − b). Since b t2 a, the additivity

property gives that 2b t2 2a, . . . , rb t2 ra. If we assume that a′ t2 b′, then additivity gives

that sa′ t2 sb′ or equivalently that ra t2 rb, which is a contradiction. Thus, ft2(c) = −1.

¤

We will endowQn∗ with the discrete topology. We also give {±1} the discrete topology.

Now we consider the topology of pointwise convergence in order to give us a topology on

F (and thus on Total(n) and Term(n)). Given x ∈ Qn∗ and open U ⊆ {±1}, S(x,U) =

{ft : ft(x) ∈ U} is a subbasis for a topology on F . ([M, page 280])

We can also view F as the product space of copies of the discrete space {±1} indexed

by Qn∗. (see [M, 280-281]) Because {±1} is compact, the Tychonoff Theorem implies that

F = {±1}Qn∗
is compact.

We will use a fact from Munkres to prove the following lemma. [M, page 287, Theorem

5.3]: Let X be locally compact Hausdorff; let C(X, Y ) have the compact-open topology.

Then the map eval : X × C(X,Y ) −→ Y defined by the equation eval(x, f) = f(x) is

continuous. (Here, C(X,Y ) is the space of continuous function from X to Y ).

Lemma : eval : Qn∗ × F −→ {±1} is continuous.

proof: Note that F = C(Qn∗,±1) because any function f : Qn∗ −→ {±1} is con-

tinuous since Qn∗ has the discrete topology. The topology on Qn∗ is discrete and thus

Hausdorff. Qn∗ with the discrete topology is locally compact since every singleton set is

both open and compact. The discrete topology on Qn∗ implies that compact subsets of

Qn∗ are finite. Thus the compact-open topology is identical to the point-open topology.

Hence by the above fact from [M], eval is continuous. ¤

Proposition : Φ = φ(Total(n)) is closed in F .
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proof : For d, e ∈ Qn∗ with d + e 6= 0, let C(d, e) = {f ∈ F : iff(d) =

f(e), then f(d) = f(e) = f(d + e)}. For γ ∈ Qn∗, let O(γ) = {f ∈ F : f(−γ) = −f(γ)}.
First we claim that Φ = ∩d,e∈Qn∗,d+e 6=0C(d, e) ∩ (∩γ∈Qn∗O(γ)).

First, take an f such that ∩d,e∈Qn∗,d+e 6=0C(d, e) ∩ (∩γ∈Qn∗O(γ)). Define, ∀a, b ∈
(Z≥0)n with a 6= b, a t b ⇔ f(a−b) = 1. Trichotomy holds, as either f(a−b) = 1 and thus

a t b or else f(a− b) = −1. Since f ∈ O(γ) for γ = a− b, f(a− b) = −1 ⇒ f(b− a) = 1

and thus b t a. Next, transitivity holds. Suppose that a t b and b t c. Then f(a − b) =

f(b−c) = 1. Letting d = a−b and e = b−c, either we get f((a−b)+(b−c)) = f(a−c) = 1,

and thus a t c because f ∈ C(d, e) for d = a − b, e = b − c or we get that d + e = 0. If

d+e = 0, then d = −e. Letting γ = e gives that f(d) = f(−e) = −f(e) because f ∈ O(γ).

But this is impossible because f(d) = f(e). Finally, additivity holds. Suppose a t b. Then

f(a− b) = 1 = f((a + c)− (b + c)) for any c ∈ (Z≥0)n. Hence (a + c) t (b + c) for any c.

Now, take an f ∈ Φ, i.e. f = ft for t ∈ Total(n). First, suppose that f(d) = f(e) = 1

for d, e ∈ Qn∗, d+e 6= 0. Take q ∈ Q>0 so that both qd, qe ∈ Zn∗. Then ∃b ∈ (Z≥0)n, b 6= 0

such that a = b−qd and c = b+qe are both in (Z≥0)n. Now b t a since f(a− b) = f(qd) =

f(d) = −1 and f ∈ O(γ) ∀γ and c t b since f(b−c) = f(qe) = f(e) = −1 and f ∈ O(γ) ∀γ.

Therefore, c t 1 by transitivity of t. Hence −1 = f(a − c) = f(qd + qe) = f(q(d + e)) =

f(d + e), and f ∈ C(d, e).

Now suppose that f(d) = f(e) = −1 for d, e ∈ Qn∗, d + e 6= 0. Take q ∈ Q>0 so

that both qd, qe ∈ Zn∗. Then ∃b ∈ (Z≥0)n, b 6= 0 such that a = b + qd and c = b − qe

are both in (Z≥0)n. Now a t b since f(a − b) = f(qd) = f(d) = 1 and b t c since

f(b − c) = f(qe) = f(e) = 1. Therefore, a t c by transitivity of t. Hence 1 = f(a − c) =

f(qd + qe) = f(q(d + e)) = f(d + e), and f ∈ C(d, e).

Now suppose that f(γ) = 1. Then there exist a, b ∈ (Z≥0)n such that qγ = a− b for

q ∈ Q>0 and a t b. Now, q(−γ) = b − a. Since a t b, it cannot be the case that b t a by

trichotomy. Hence f(−γ) = −1, and f ∈ O(γ).

Next we show that the sets C(d, e) and O(γ) are closed in F .
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Lemma : C(d, e) is a closed subset of F .

proof : Note that

B(d, e) := {f : f(d) =f(e) = 1, f(d + e) = −1} ∪ {f : f(d) = f(e) = −1, f(d + e) = 1}

=(evald
−1(1) ∩ evale

−1(1) ∩ eval−1
d+e(−1))

∪ (evald
−1(−1) ∩ evale

−1(−1) ∩ eval−1
d+e(1))

is the complement of C(d, e). Note that both sets in the first union are open, as they are

the intersection of three open sets. Each set in each intersection is open because {1} and

{−1} are open sets of {±1} and evald, evale, and evald+e are all continuous functions.

Thus B(d, e) is open. Hence its complement C(d, e) is closed. ¤

Lemma : O(γ) is a closed subset of F .

proof : Let O+(γ) = {f ∈ F : f(γ) = 1, f(−γ) = −1} and let O−(γ) = {f ∈ F :

f(γ) = −1, f(−γ) = 1}. Then O(γ) = O+(γ) ∩ O−(γ). Now O+(γ) = evalγ
−1(1) ∩

eval−γ
−1(−1), and both of evalγ

−1(1) and evalγ
−1(−1) are closed in F by continuity of

eval and since {1} and {−1} are closed in {±1}. Thus, O+(γ) is closed. Likewise, O−(γ)

is closed so that O(γ) is closed. ¤

By the lemmas, Φ is closed in F , and the proposition is proved. ¤

Now consider Term(n) ⊆ Total(n). Recall that Term(n) consists of those elements

of Total(n) which satisfy the further constraint of positivity of the standard basis.

We will now show that positivity of the basis is a closed condition. Then P =

φ(Term(n)) is a closed subset of the compact space Φ, so that P is a compact space.

Lemma : Positivity of the basis is a closed condition.

proof: Let Di := {ft ∈ F : ft(ei) = 1}, and define D1, D2, . . . , Dn. Di = eval−1
ei

(1)

is closed since {1} is a closed set. Hence D1 ∩D2 ∩ . . . Dn is closed, and positivity of the

basis is a closed condition. ¤

Thus, P is a compact space. (†)
We will need the following proposition, which is analogous to a result in [St, page 12].
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Proposition: For a given nonzero ideal I and a given term order t, assume G =

{g1, . . . , gs} is the reduced Gröbner basis for I with respect to t. Then UI [t] = {t′ ∈
Term(n) : lmt(gi) = lmt′(gi) ∀i}.

proof : Assume G = {g1, . . . , gs} is the reduced Gröbner basis for I with respect to

t. By the second characterization of a Gröbner basis, LMt(I) = LMt(G). Now take the

reduced Gröbner basis for I with repect to t′ and call it G′ = {g′1, . . . , g′r}. By the second

characterization of a Gröbner basis and the fact that t′ ∈ UI [t], LMt(G) = LMt(I) =

LMt′(I) = LMt′(G′). Since LMt(G) and LMt′(G′) are equal as monomial ideals, they must

have the same elements. Since both are reduced Gröbner bases, there are no extraneous

elements in either set so that r = s, and after renumbering if necessary ltt(gi) = ltt′(g′i)

for each i. As defined in section 4, the reduction process yields a unique answer and

is only dependent on the leading monomials. Hence we must have that gi = g′i for all

i = 1, . . . , r = s. LMt(I) = 〈lmt(g1), . . . , lmt(gs)〉 = 〈lmt′(g1), . . . , lmt′(gs)〉 = LMt′(I).

Thus UI [t] = {t′ ∈ Term(n) : lmt(gi) = lmt′(gi) ∀i}. ¤

Proposition : The topology on Term(n) defined by the UI [t] (call this description T )

and the topology on Term(n) as a subspace P of the function space F are identical.

proof: Take a basic open set U = UI [t] ∈ T . UI [t] = {t′ ∈ Term(n) : lmt(g) =

lmt′(g) ∀g ∈ G}, where G = {g1, . . . , gs} is the reduced Gröbner basis with respect to t.

We map UI [t] by φ onto A = ∩a{ft : ft(a) = 1}, where a runs over the elements bi − cij

with bi = lmt(gi) and cij runs over the terms of gi which are not bi. Since G is a reduced

Gröbner basis, it is finite. Hence this intersection is finite. So A is a finite intersection of

subbasis elements for P and hence is a basic open subset of P .

Now take S a subbasic open set of P . Then S is defined by a collection of ft such

that a t 0 for some a ∈ Qn∗. But if we let I = 〈xa + 1〉 if a ∈ (Z≥0)n \ {~0}, then {xa + 1}
is a reduced Gröbner basis for I. If a has negative entries −ai, then we will form a vector

ã = ai in the entries where a has a negative entry, and is 0 in all other entries. Now
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consider the ideal I = 〈xa+ã + xã〉. S is defined by those t which make {xa+ã + xã} a

reduced Gröbner basis for I, which is a basic open set of T . ¤

We will now show that Term(n) is homeomorphic to a subset of the Cantor set in

a manner like we showed that Term(2) is homeomorphic to the Cantor set. Alternately,

one could check that F = {±1}Qn∗
is homeomorphic to the Cantor set. Since P ⊂ F , P

is homeomorphic to a subset of the Cantor set.

Lemma 1 : Term(n) is compact.

This was shown previously (†) in this section.

Lemma 2 : Term(n) is metrizable.

proof: {±1} is metrizable, and products of metrizable spaces are metrizable. ([M,page

126]) Thus, {±1}Qn∗
is metrizable. Term(n) is a subspace of {±1}Qn∗

, and subspaces of

metrizable spaces are metrizable. Thus Term(n) is metrizable. ¤

Lemma 3 : Term(n) is totally disconnected.

proof: Take a minimal connected set U ⊆ P . Since P is a subspace of a product

space, there exists some factor of U which consists of the entire space {±1}. Say that

this occurs in the ith factor. Then Ui
+ = U restricted to 1 in the ith factor and Ui

− = U

restricted to −1 in the ith factor is a separation of U by open sets. Thus Term(n) is totally

disconnected. ¤

Theorem : Term(n) is homeomorphic to a subset of the Cantor set.

proof : ([HY, page 100, Corollary 2-99]) states that a compact, totally disconnected

metric space is homeomorphic to a subset of the Cantor set. By the previous three lemmas,

we have that Term(n) with the given topology is a compact, metrizable, totally discon-

nected so that Term(n) with the given topology is homeomorphic to a subset of the Cantor

set. ¤

Corollary: The set of leading monomial ideals for a fixed nonzero ideal I is finite.

proof: Given the nonzero ideal I ⊂ k[x1, . . . , xn], consider the open cover of Term(n)

formed by the sets UI [t]. Term(n) is a compact space, so there exists a finite subcover of
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this cover. Since the UI [t] are either disjoint or equal, the number of distinct UI [t] must

be finite. And hence the number of leading monomial ideals of I is finite. ¤

We are presently unable to say whether Term(n) with the given topology is perfect,

although we conjecture that it is. If Term(n) with the given topology is perfect, then

Term(n) is homeomorphic to the Cantor set. ([HY, page 100, Corollary 2-98])

In [R] Robbiano gives a classification of term orders on the monomials of k[x1, . . . , xn].

Robbiano describes such a term order by a system of s orthogonal vectors v1, . . . , vs ∈ Rn,

where 1 ≤ s ≤ n. He calls the number s the type of the term order. For each of the n

entries, the first nonzero appearance of a number in that entry must be positive, and every

positive multiple cv of a vector v is considered equivalent to v. Robbiano also defines the

number di as the dimension of the R- subvectorspace spanned by the Q-linear combinations

of the entries of vi. This definition allows an easy statement of the final condition on the

s vectors: d1 + d2 + . . . + ds = n. Robbiano proves that this collection of ordered sets of

vectors classifies the term orders on k[x1, . . . , xn].

The following is our conjecture that Term(n) with our given topology is perfect and

reasons why we believe this should be true.

Definition : Recall that a space X is perfect if every p ∈ X is a limit point of X. We

will use the following

Lemma : {p} is not open in X ⇒ p is a limit point of X.

proof : Let U ⊂ X be any open neighborhood of p. Then {p} not open implies that

{p} ⊂ U and {p} 6= U . So U contains a point p′ of X such that p 6= p′. Thus p is a limit

point of X. ¤

Conjecture : Term(n) is perfect.

sketch: Suppose that t ∈ Term(n) is such that {t} is an open set of Term(n). If {t} is

open, then it must be a finite intersection of basis elements {t} = UI1 [t]∩UI2 [t]∩. . .∩UIm [t].

Then t is the only element of Term(n) which meets all of the finitely many conditions

aij t bijk, where aij = ev(lm(gij)), where gij = the jth polynomial of the reduced Gröbner
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basis for Ui with respect to t and bijk runs over the terms of gij which are not aij .

And, of course, t must satisfy the implications necessitated by the trichotomy, additivity,

transitivity, and positivity of basis conditions.

Now assume that t is such that t has type 1. Then UI1 [t] ∩ UI2 [t] ∩ . . . ∩ UIm
[t] also

contains a t′ 6= t of type 1, because the relations implied by aij t bij (and the trichotomy,

additivity, transitivity, and positivity conditions) are all rational relations.

It is our belief, that with induction or a certain amount of convex geometry, one

should be able to show that the term orders of Robbiano type s ≥ 2 should be able to be

perturbed in a similar manner to the term orders of Robbiano type 2.

Then one would have that {t} ⊂ UI1 [t]∩UI2 [t]∩ . . .∩UIm [t], but {t} 6= UI1 [t]∩UI2 [t]∩
. . . ∩ UIm [t].

And then lemmas 1-3 plus the proved conjecture would imply the following:

Conjecture : For n ≥ 2, Term(n) is homeomorphic to the Cantor set.
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SECTION 10

POLYHEDRAL GEOMETRY

Although Gröbner bases appear to be very algebraic in nature, there is a good deal

of geometry associated with them. In this section we will build the necessary prerequisites

so that we can show the link between computational algebra and polyhedral geometry.

A good source for information on polyhedral geometry and its relation to Gröbner

bases is [St]. Much of this section is derived from Sturmfels’s discussions in that text.

Definition : A polyhedron P is a finite intersection of closed half-spaces in Rn. We

may write P = {x ∈ Rn : A · x ≤ b}, where A is a matrix with n columns and b is a

constant. If b = 0, then there are vectors u1, u2, . . . , um ∈ Rn such that P is the positive

convex hull of those vectors, P = {λ1u1 + · · · + λmum : λi ≥ 0 ∀i}. A polyhedron of

this form is called a polyhedral cone or simply a cone. A compact polyhedron is called

a polytope. A polytope Q can be realized as the convex hull of a finite set of points, i.e.

Q = {λ1v1 + · · ·+ λmvm : λi ≥ 0 ∀i, ∑λi = 1}.

Below we give examples of polyhedra, cones, and polytopes. Both of these figures are

polyhedra. This first figure is a cone:

This figure is a polytope.

Definition : Let P be a polyhedron in Rn and ω ∈ Rn. Then the face of P with respect

to ω , is defined as faceω(P ) = {u ∈ P : ω · u ≥ ω · v ∀v ∈ P}. The dimension of a face
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F of a polyhedron P is the dimension of its affine span. Faces of dimension 0 are called

vertices, and faces of dimension 1 are called edges. Note that if ω = 0, then face0(P ) = P .

We will need an operation of addition on polytopes. Minkowski addition of polytopes

is defined by P1 + P2 = {p1 + p2 : p1 ∈ P1, p2 ∈ P2}. An important fact about Minkowski

sums is that

Proposition:faceω(P1 + P2) = faceω(P1) + faceω(P2).

proof: By definition of Minkowski sum, a point u ∈ P1+P2 must have form u = u1+u2,

where u1 ∈ P1 and u2 ∈ P2. Now, without loss of generality, suppose u1 /∈ faceω(P1), so

that there exists a p1 ∈ P1 such that p1·ω > u1·ω. Then (u1+u2)·ω < (p1+u2)·ω ∀u2 ∈ P2.

Hence u1 +u2 /∈ faceω for any u2 ∈ P2. So if u1 +u2 = u ∈ faceω(P1 +P2), we must have

that u1 ∈ faceω(P1). By symmetry u2 ∈ faceω(P2). ¤

Note, then, that a vertex v of P1 + P2 must be a unique sum of vertices p1 of P1 and

p2 of P2. Below, we see the Minkowski sum of two polytopes. The third polytope is the

sum of the first two.

Definition : A polyhedral fan or simply a fan ∆ is a finite collection of polyhedral

cones in Rn such that if P ∈ ∆ and F is a face of P , then F ∈ ∆ and for every two cones

P1, P2 ∈ ∆, the intersection P1 ∩ P2 is a face of both P1 and P2. The support of a fan ∆,

| ∆ |, is the union of the cones which comprise the fan ∆. ∆ is called a complete fan if

| ∆ |= Rn.
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Here we see a polyhedral fan:

This polyhedral fan is a complete fan:
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SECTION 11

THE GRÖBNER FAN OF AN IDEAL

Now we make the relation between polyhedral geometry and computational algebra

that was promised in the beginning of the last section. Once again, Sturmfels [St] adds

much to this discussion.

Definition : The Newton polytope of a polynomial f =
∑m

i=1 cix
ai , ci 6= 0, New(f) , is

the polytope formed as the convex hull of points represented by the exponent vectors ai.

Here we can see examples of Newton polytopes of some different polynomials. This

Newton polytope is New(f), where f = x3y3 − 8x3 + 4xy2 + 7y4.

This Newton polytope is New(g), where g = 2x− y + 1.

Lemma : New(f · g) = New(f) + New(g), where the sum is to be interpreted as a

Minkowski sum.

The proof of this statement would take us far afield. We refer the reader to [St, page

11, Lemma 2.2] for the proof. We see this result in action as follows. Let f = 2x − y + 1

and let g = xy +x+ y. Then f · g = 2x2y−xy2 +2x2 +2xy− y2 +x+ y. This first picture

us New(f).
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The second picture here is New(g).

This final picture is New(f) + New(g), which we notice is identical to New(f · g).

Definition : Now fix an ideal I ⊂ k[x1, . . . , xn]. Two weight vectors ω and ω′ are

called equivalent with respect to I if and only if inω(I) = inω′(I).

Definition : For a given ideal I, we define C[ω] to be the equivalence class of weight

vectors that contains the initial ideal represented by the weight vector ω. Equivalently,

C[ω] = {ω′ : inω′(I) = inω(I)}.
Proposition : Each equivalence class C[ω] of weight vectors is a relatively open convex

polyhedral cone. (By relatively open, we mean that the cone is open in its linear span.)

We will omit this proof and refer the reader to [St, page 12, Proposition 2.3].

Definition : The Gröbner fan of an ideal I, GF (I) , is the set of closed cones C[ω] for

all ω = (ω1, ω2, . . . , ωn) ∈ Rn which have a representative in the first (positive) orthant,

that is GF (I) consists of all C[ω] which have a representative such that ωi ≥ 0 ∀i.
Proposition : The Gröbner fan GF(I) is a polyhedral fan.

proof: [St, page 13, Proposition 2.4]

One such Gröbner fan is GF (I) for I = 〈x3y − 2x2y2 + x, 3x4 − y〉.

Now that we have defined the Gröbner fan, we present an algorithm for constructing

the Gröbner fan of an ideal. Most important in this algorithm is finding the boundary

between two cones of the fan. We will determine these boundaries by using exponent
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vectors to find the proper boundary weight vectors, as is indicated in the following propo-

sition in [St, page 12]: If G = {g1, . . . , gs} is the reduced Gröbner basis for an ideal

I ⊆ k[x1, . . . , xn] with respect to ω, then C[ω] = {ω′ : inω′(gi) = inω(gi) ∀i = 1, . . . , s}.

Take an ideal I and choose an arbitrary Â. Compute the reduced Gröbner basis of I

with respect to Â and call it G. Say G = {g1, g2, . . . , gs}. For each gi, consider the system

of inequalities formed as ai−bij > 0, where ai = lmÂ(gi) and where bij runs over all of the

terms of gi which are not equal to ai = lmÂ(gi). Form the corresponding system for each

i = 1, . . . , s. Now solve all of the systems simultaneously. The cone which solves all of the

inequalities simultaneously is the cone C[ω] around the weight vector which represents Â
in the sense of the chapter 3 definition.

Example: Let I = 〈x3 − y, x2y − y2〉 and take ω = (2, 5). We compute the reduced

Gröbner basis with respect to ω, G = {x3 − y, y2 − x2y}. The first polynomial gives that

slopes less than 3 occur in this cone of the Gröbner fan, while the second tells us that

slopes greater than 2 are in this cone. This gives a cone in the plane that looks like the

following:

We note that Mora and Robbiano give an algorithm that appears to produce the

Gröbner region of an ideal in [MR]. (The Gröbner region of an ideal I is the support of

GF (I), |GF (I)|.) A slight addition to their algorithm should produce the Gröbner fan

of an ideal, but the algorithm given here may be the first written procedure for finding

a Gröbner fan for an ideal. A perusal of [MR] shows that our procedure is quite distinct

from the algorithm given there.

Gröbner fan procedure

Calculate a reduced Gröbner basis with respect to some term order Â using the Buch-

berger algorithm.
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Use the discussion above to calculate the boundaries of the cone which contains Â.

While there are regions of the positive orthant not yet filled by some cone of the

Gröbner fan, choose a term order (or, equivalently, a weight vector) in an unfilled portion

of that first orthant. Use the Buchberger algorithm to find a reduced Gröbner basis. Now

calculate the boundaries of the cone containing that term order.

When the first orthant is filled, you have the Gröbner fan of the ideal. The first

orthant will fill in finitely many steps because of the result in section 9 that there are

finitely many leading monomial ideals (and thus finitely many reduced Gröbner bases) for

a given ideal. It will be correct by construction.

In the bivariate case we can give a precise algorithm.

Bivariate Gröbner fan algorithm

INPUT: An ideal I = 〈f1, . . . , fs〉

OUTPUT: The Gröbner fan of the ideal, GF (I).

INITIALIZATION: m = 0, GF (I) = ∅

WHILE: m ≥ 0, m 6= ∞

compute the reduced Gröbner basis of I with respect to m+, Gm+ = {gm1, gm2, . . . , gmt}

calculate n, k ∈ Q, where n ≤ m < k and n is the largest rational less than or equal

to m and k is the smallest rational greater than m such that ∃gmi, gmj (not necessarily

distinct) such that ink(gmi) and inn(gmj) are nonmonomial

GF (I) := GF (I)∪ the cone from slope n to slope k

m := k

Theorem : Given an ideal I = 〈f1, . . . , fs〉, the bivariate Gröbner fan algorithm

produces the Gröbner fan of the ideal, GF (I).

proof : The algorithm terminates because GF (I) has only finitely many cones, as

shown in section 9 and [MR]. The algorithm produces the correct Gröbner fan by con-

struction. ¤

50



Example: Consider the previous ideal I = 〈x3 − y, x2y − y2〉. The reduced Gröbner

basis for I with respect to the term order 0+ (Lex with x Â y) is G1 = {y3 − y2, xy2 −
y2, x3− y, x2y− y2}. The first polynomial gives us that slopes greater than 0 are in C[0+].

The second tells us that slopes less than ∞ are in C[0+]. The third gives that slopes less

than 3 occur in C[0+], while the final polynomial gives that slopes less than 2 are in C[0+].

Taking the intersection of all of these inequalities tells us that C[0+] spans the portion of

the first quadrant from slope 0 to slope 2. So, we compute the reduced Gröbner basis of

I with respect to 2+ and call it G2. G2 = {x3 − y, y2 − x2y}. The first polynomial in

G2 tells us that slopes in C[2+] are less than 3, while the second polynomial reaffirms the

boundary of 2 with the first cone. Computing the reduced Gröbner basis with respect to

3+ yields G3 = {y − x3, x6 − x5}. The first polynomial of G3 reaffirms the boundary with

the cone of G2, while the second gives a final boundary of ∞−. See the picture below:

If we apply our comment from the end of section 9, we may be able to expand the

Gröbner fan algorithm to Term(n) by introducing an explicit order on the elements of

Term(n). Our imposed order now tells us with which term order we should start and, in

the same way as in the bivariate Gröbner fan algorithm, where to proceed from there. In

this way we may be able to move from having a general Gröbner fan procedure to having

an actual Gröbner fan algorithm.

The computation of a Gröbner fan begs several questions. We will ask some of those

questions and give partial answers to a number of them.

For the first question, we start at the beginning. When does the Gröbner fan have

precisely one top-dimensional cone? The most obvious answer is when I = 〈xα1 , . . . , xαt〉
is a monomial ideal. Another case is in a certain class of ideals which have the property

that there is only one term that can possibly be the leading term of each polynomial. This
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happens when the lower order terms of each polynomial are divisors of the leading term

of that same polynomial. (There is a geometric analogue of this situation for the bivariate

case, and we will look at it in section 13.) A specific example of this case involves when

the ideal consists of several univariate polynomials. If I = 〈f1(x1), . . . , fk(xk)〉, then the

Gröbner fan also has exactly one top-dimensional cone because each lower degree term in

a given polynomial must divide the leading term.

So we look at the other end of the spectrum. How many top-dimensional cones can

a Gröbner fan have? The answer turns out to be arbitrarily (finitely) many, and we can

show that using a principal bivariate ideal. Let t(n) denote the nth triangular number and

consider the ideal I = 〈xt(n) + xt(n)−1y + xt(n)−3y2 + . . . + yn〉. This ideal has n + 1 top-

dimensional cones in the Gröbner fan, with boundary vectors having slopes 1, 2, . . . , n+1.

From slope m = 0 to 1, lmm(I) = xt(n); from slope m = 1 to 2, lmm(I) = xt(n)−1y; and,

in general, from slope m = k to k + 1, lmm(I) = xt(n)−kyk.
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SECTION 12

UNIVERSAL GRÖBNER BASES AND GRÖBNER WALKS

The concept of a universal Gröbner basis was introduced by Weipsfenning [W] in 1987.

Definition : A finite subset G ⊂ I is a universal Gröbner basis if G is a Gröbner basis

of I with respect to all term orders Â simultaneously.

We recall the following definition and proposition that were given in section 4.

Definition : The monomials which do not lie in LM(I) are the standard monomials.

Recall that G ⊂ I is a Gröbner basis for I if LM(I) is generated by {lm(g) : g ∈ G}. The

following proposition goes back at least as far as Macaulay.

Proposition : Fix a term order Â. The (images of the) standard monomials form a

k-vector space basis for the residue ring k[x1, . . . , xn]/I.

proof: We first show linear independence. Assume there is some relation f =
∑n

i=1 aimi ∈ I with monomials mi in the standard monomials and ai 6= 0, ai ∈ k. Then

we must have lm(f) ∈ LM(I). Since lm(f) must be one of the mi, which are all in the

set of standard monomials, this is a contradiction.

Now, suppose that the set of standard monomials does not span k[x1, . . . , xn]/I. From

the set of elements of k[x1, . . . , xn] not in I and not in the set of standard monomials,

choose f with minimal leading term. If lm(f) is in the set of standard monomials, subtract

it from f to get a smaller leading term, a contradiction. So, we may assume without loss

of generality that lm(f) ∈ LM(I). Now take an element g of I with lm(f) = lm(g). Then

lm(f − g) ≺ lm(f), so our choice of lm(f) was not minimal. Contradiction. ¤

Arguments similar to the following can be found in [MR] and [St]. We note that this

result was proved in a new way in section 9 as an application of the topology on Term(n)

and will be proved for the bivariate case in a geometric way in section 13.
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Theorem : Every ideal I ⊂ k[x1, . . . , xn] has only finitely many distinct leading

monomial ideals.

proof: Suppose I has an infinite set L0 of leading monomial ideals. Choose a nonzero

f1 ∈ I. f1 is a polynomial, so it has only finitely many terms. Each term of f1 is in some

element of L0, so there exists a monomial m1 of f1 such that L1 := {M ∈ L0 : m1 ∈ M}
is infinite. 〈m1〉 is strictly contained in some leading monomial ideal of I, so the previous

proposition implies that the monomials lying outside of 〈m1〉 are k-linearly dependent

mod I. So, there exists a nonzero f2 ∈ I such that none of its terms are in 〈m1〉. f2 is

a polynomial, so it has only finitely many terms. So there is a monomial m2 of f2 such

that L2 = {M ∈ L1 : m2 ∈ M} is infinite. Now, 〈m1, m2〉 is strictly contained in a leading

monomial ideal of I, so the previous proposition implies that the monomials lying outside

of 〈m1,m2〉 are k-linearly dependent mod I. We will continue the constructions to get a

strictly increasing chain of monomial ideals 〈m1〉 ⊂ 〈m1,m2〉 ⊂ 〈m1,m2,m3〉 ⊂ . . . . Since

k[x1, . . . , xn] is noetherian, this is a contradiction. ¤

Corollary : Every ideal I ⊂ k[x1, . . . , xn] possesses a (finite) universal Gröbner basis

G.

proof: The previous theorem shows that there are only finitely many leading monomial

ideals. Each leading monomial ideal lifts to a unique reduced Gröbner basis because the

reduction process for polynomials is only dependent upon leading terms, as seen in section

4. The union of all of the elements of these reduced Gröbner bases gives a universal

Gröbner basis. ¤

Given our Gröbner fan algorithm, we can now find a universal Gröbner basis for any

given ideal I. First, perform the Gröbner fan algorithm. Now, take the reduced Gröbner

basis from each cone. The union of all of the elements from all of these Gröbner bases is

a universal Gröbner basis.
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Example: We return to the Gröbner fan example where I = 〈x3 − y, x2y − y2〉. We

computed that

G1 = {y3 − y2, xy2 − y2, x3 − y, x2y − y2}

G2 = {x3 − y, y2 − x2y}

G3 = {y − x3, x6 − x5}

were the only three Gröbner bases for I. Thus U = {y3−y2, xy2−y2, x3−y, x2y−y2, x6−x5}
is a universal Gröbner basis for I. (We formed this universal Gröbner basis by taking the

union of the elements of the three Gröbner bases and discarding extra copies of repeated

elements.)

This algorithm leads us to investigate some questions. We know that a principal

ideal with lower order terms dividing the leading terms gives us a one-generator universal

Gröbner basis. Are there two-generator universal Gröbner bases? Can we classify all of

them? One such two generator universal Gröbner basis is the case of I = 〈f(x), g(y)〉.
For I, G = {f(x), g(y)} is a Gröbner basis in any term order. But are there others? It is

our conjecture that there are none of finite codimension. (For instance, any two generator

monomial ideal M such that neither generator evenly divides the other will itself be a

universal Gröbner basis for the ideal M .)

Concept : A Gröbner walk is an approach for a calculation of a Gröbner basis into

several smaller calculations following a path in the Gröbner fan of an ideal. A Gröbner

walk is an attempt to parallelize some computations and to take advantage of computa-

tionally “better” term orders for certain ideals. There are not strict requirements on a

Gröbner walk, but for the sake of computational efficiency, one would not want to revisit

a cone one had already visited. [CKM], [K], and [T] discuss using a Gröbner walk for

such computational efficiency. An intelligent Gröbner walk should provide computational

benefits due to some coincidences in adjacent cones of the Gröbner fan, which we see as

follows:
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As we cross over boundary vectors of the Gröbner fan there are changes that must

occur. The reason we cross a boundary is that the leading terms must have changed in

at least some of the elements. Since the Buchberger algorithm involves the computation

of S-polynomials, and S-polynomials are defined by leading terms of polynomials, there

is the potential for certain polynomials to occur in one cone of the Gröbner fan but not

to appear in other cones of the Gröbner fan. Likewise, some elements may occur in more

than one cone.

Definition : We call an element that occurs in two adjacent cones an unchanging

element across the boundary, and an element that occurs in only one of the two cones is a

changing element. The unchanging part U of the reduced Gröbner bases across a boundary

consists of the unchanging elements, while the changing part C of reduced Gröbner bases

across a boundary consists of the changing elements. These notions play a large role

in the efficacy of Gröbner walks as an alternate way of computing adjacent cones of the

Gröbner fan, but they need to be studied in more depth. We have found no mention of these

concepts in the literature. The closest investigation is that of Tran in [T], who gave certain

conditions one wants to avoid in making one’s Gröbner walk through a Gröbner fan of an

ideal. Basically, Tran suggests that one should be certain not to choose certain cones of the

Gröbner fan as destination or even intermediate points of one’s Gröbner walk. Tran states

that one should never choose a cone of the Gröbner fan that has dimension less than the

top dimension possible. That is, if one wants to form an efficient Gröbner walk for an ideal

in k[x1, . . . , xn], one should make certain that each cone one visits in the Gröbner walk

has dimension n. If one chooses a cone of smaller dimension, the computation balloons,

since one encounters an initial ideal which is nonmonomial. (In fact, many computational

algebra systems would not know how to treat such a case. Others, such as Macaulay2,

have built-in tiebreaking term orders which forces one into a top-dimensional cone.)

Example: We return to the example of this section and use I = 〈x3 − y, x2y − y2〉.
The first cone of the Gröbner fan has reduced Gröbner basis G1 = {y3− y2, xy2− y2, x3−
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y, x2y − y2}, while the second cone has reduced Gröbner basis G2 = {x3 − y, y2 − x2y}.
The unchanging part across this boundary is U = {x3 − y, y2 − x2y}, while the changing

part C = {y3 − y2, xy2 − y2}.
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SECTION 13

GRÖBNER FANS AND SOME GEOMETRY

The Gröbner fan has some interesting geometric properties. First, we recall that the

boundaries of cones in the Gröbner fan are determined by inequalities which are derived

from using the exponent vectors of terms of polynomials in reduced Gröbner bases as

coefficients. Then we recall that a Newton polytope of a polynomial is the polytope

formed as the convex hull of points which are the exponent vectors of terms of reduced

Gröbner bases. This implies an orthogonal relation between these two objects.

We describe this relationship. For the sake of simplicity, let I = 〈f〉 be a principal

ideal in k[x, y]. Choosing any arbitrary term order gives that G = {f} is the reduced

Gröbner basis with respect to that term order. Now we draw the Newton polygon of f ,

New(f). Recall that New(f) is obtained by taking the convex hull of the exponent vectors

xα that appear with nonzero coefficient in f .

Definition : We say that α is a leading vertex of a Newton polygon New(f) if α+(R≥0)2

∩New(f) = α. An edge of a Newton polygon New(f) is an extremal edge if at least one

of its vertices is a leading vertex of New(f).

Now, the boundary vectors of cones of the Gröbner fan are orthogonal to the extremal

edges of the Newton polygon. For, the Newton polygon is defined as the convex hull of

exponent vectors of a polynomial. We determine the boundaries between top-dimensional

cones of a Gröbner fan by finding the weight vector where the leading term of the polyno-

mial would change from one term to another. This boundary is the place where the initial

form ideal is nonmonomial, where the exponent vectors of two monomials both maximize a

linear functional. The vector which defines that linear functional is the boundary between

two top-dimensional cones of GF (〈f〉). It must be an edge of the Newton polygon, since

the edge of a Newton polygon is the set of points which maximizes a linear functional. It
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is an extremal edge because the leading vertex must have the potential to be a leading

monomial of f . These vertices are those that do not divide another monomial present in

f , precisely the set of leading vertices.

Here we see a geometric representation of the standard monomials of an ideal. This

picture is of the standard monomials of the ideal I = 〈x2, y3〉.

In the case of principal ideals in k[x, y], the above discussion allows us great latitude

in constructing Gröbner fans. If we want to choose an ideal which has only one two-

dimensional cone in its Gröbner fan, we can pick any nonzero polynomial f whose Newton

polygon has one leading vertex (the edges emanating from it will have nonnegative slope).

And, if we want to choose an ideal having n two-dimensional cones in its Gröbner fan, we

choose a polynomial f whose Newton polygon has exactly n leading vertices.

There is another relationship that should be noted. Let I be an ideal of finite codimen-

sion c. Then the dimension of the set of standard monomials, dim(k[x1,... ,xn]
I ), is precisely

c. Returning to our geometric description of monomial ideals in section 9, we see that the

unshaded areas of our graph correspond to the standard monomials of the ideal I. (Note

that the union of the graph of the leading monomial ideal of an ideal and the graph of the

standard monomials of that same ideal yields the entire positive orthant.)

We note that this corresponds to a so-called Young diagram of the partition of the

integer c. This will give us a necessary condition for a set of generators to be a Gröbner

basis. If G = {g1, . . . , gt} is to be a Gröbner basis in any term order, then the monomial

ideal M = 〈lm(g1), . . . , lm(gt)〉 must have standard monomials which represent a valid

partition of the integer c in the sense of the Young diagrams.

Of course this relationship gives a simple geometric argument for the theorem at the

end of section 9. We restate that theorem and then give this alternate proof.
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Theorem: In the bivariate case, the set of leading monomial ideals for a fixed ideal I

is finite.

proof: First, suppose that I has finite codimension c. Then any reduced Gröbner

basis will have a Young diagram which represents a partition of c. Each Young diagram

gives a unique reduced Gröbner basis by the uniqueness of remainders in the reduction

process. There are finitely many partitions of any integer c, so there are finitely many

reduced Gröbner bases.

Now, suppose that I has infinite codimension. Then I = 〈f〉·J where f is the greatest

common divisor of all the elements of I (or more simply, f is the gcd of a set of generators

for I) and J has finite codimension. By the above, there are finitely many reduced Gröbner

bases for J . Since f is a polynomial, there are finitely many choices for lt(f). There are

finitely many combinations of these two, so there exist finitely many reduced Gröbner

bases for I. ¤

This relationship has a further application. Certain pieces of computational evidence

have shown that Lex is in general a bad choice of term order while in general DegRevLex

is the best choice. This is heuristically borne out by the above discussion. During the

reduction process, there is a space of terms to which a given monomial m can be reduced.

These are precisely the monomials smaller than m. And the monomials smaller than m are

determined by the term order. Using Lex gives an unbounded space of smaller monomials

in general, as seen here:

Using DegRevLex, on the other hand, gives the smallest possible bounded space.
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These relationships once again have to do with the orthogonal property that term orders

and Newton polytopes possess.
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SECTION 14

FURTHER QUESTIONS

We have raised many questions that are either partially answered or have not been

investigated at all. In this section we will try to compile many of those questions.

Although there are many questions about computing a Gröbner basis, we start with

more fundamental questions. Given a polynomial g, can we give a criterion which will

show that g is an element of some reduced Gröbner basis G for a given ideal I? Or can

we show when a given g will not be an element of any reduced Gröbner basis for an ideal

I? Further, can we show that a set of polynomials G = {g1, . . . , gt} is not a Gröbner

basis for I for any term order? Some obvious partial results come from the Buchberger

S-polynomial definition, but a thorough treatment of this question has not been given.

In section 5 we discuss the Buchberger algorithm for computing a reduced Gröbner

basis. Many questions come from this algorithm. What are good (or bad) classes of

problems for Gröbner basis methods? How do we make an intelligent choice of term order

for a particular ideal and a particular set of generators? In what order should we calculate

S-polynomials? Can we give a thorough treatment of the complexity of the Buchberger

algorithm? Is there a link between the Buchberger algorithm and the simplex algorithm?

Our analysis of term orders (sections 8 and 9) leaves several questions unanswered.

First, what are further applications of this classification? Are there unexplored implications

of the space Term(2) being homeomorphic to the Cantor set? Are there further results

implied because the space Term(n) is homeomorphic to a compact subset of the Cantor

set? Is Term(n) actually perfect and thus homeomorphic to the Cantor set?

The Gröbner fan (section 11) is also not completely understood. When does the

Gröbner fan have one cone? When does it have two cones? Do the sizes of cones in the fan
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imply anything about the computational complexity or the “sizes” of elements in certain

Gröbner bases?

Universal Gröbner bases (section 12) were defined 1987. So there are many unanswered

questions about them. Are there two-generator universal Gröbner bases other than for

I = 〈f(x), g(y)〉? Is there a criterion analogous to the Buchberger criterion which will tell

us when a set of generators is a universal Gröbner basis?

The Gröbner walk (section 13) is very recent, appearing only as late as 1997. So we

would like to know if there are Gröbner walks of minimal size. Are there Gröbner walks

involving minimal computation? If there are, can we determine how to choose such a

Gröbner walk a priori?

In section 11 we discuss the relation between sets of standard monomials and Young

diagrams of partitions of an integer. We wonder if there is any significance to which Young

diagrams appear or do not appear for a given ideal. Do certain Young diagrams imply

that a Gröbner basis calculation for a particular cone of the Gröbner fan is more efficient

or less efficient?

Canfield’s question is also important. Certainly there is not an a priori order on

Term(n). But, if we inject the usual order upon the “middle thirds” Cantor set and then

use the isomorphism between Term(n) and a compact subset of this Cantor set, we may

be able to impose an order on Term(n).

Finally we ask a more existential question. Now that we have spent so much time

studying Gröbner bases, (and so many software packages have applied Gröbner basis

methods to ideal-theoretic questions) is there a more efficient method for the computa-

tions we want to perform? Others have mentioned (but no great study has been attempted

on) resultants, polynomial remainder sequences, resolvents, and characteristic sets. Might

Gröbner basis methods in conjunction with one or more of these other methods yield more

efficient algorithms?
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