

GENETIC ALGORITHMS FOR STOCHASTIC CONTEXT-FREE GRAMMAR PARAMETER

ESTIMATION

by

KAAN TARIMAN

(Under the Direction of Liming Cai)

ABSTRACT

Stochastic grammar models for biological sequences have been extensively used in

secondary structure prediction and profiling for structural homology recognition. A pertinent issue

is, given training RNA sequences, how to estimate the stochastic parameters associated with the

rules in the grammar efficiently and accurately. In particular, the existing algorithms for parameter

estimation, such as Inside-Outside, have local maxima and time complexity problems.

We introduce a genetic algorithm method to solve the parameter estimation problem. Being

global optimization methods, genetic algorithms do not suffer from the locality problem and they

are scalable and flexible. The model uses an evaluation function that calculates the maximum

likelihood to generate a sequence given a parameter set of a grammar. Our experiments with the

implemented algorithm demonstrate its effectiveness in parameter estimation for specific grammar

models based on both simple RNA structures and tRNA sequences.

INDEX WORDS: genetic algorithms, stochastic context-free grammars, RNA secondary

structure prediction, parameter estimation.

GENETIC ALGORITHMS FOR STOCHASTIC CONTEXT-FREE GRAMMAR PARAMETER

ESTIMATION

by

KAAN TARIMAN

B.S in Computer Engineering, Bogazici University, Turkey, 2002

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of

the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2004

© 2004

Kaan Tariman

All Rights Reserved

GENETIC ALGORITHMS FOR STOCHASTIC CONTEXT-FREE GRAMMAR PARAMETER

ESTIMATION

by

KAAN TARIMAN

Major Professor: Liming Cai

Committee: Khaled Rasheed
Russell L. Malmberg

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May, 2004

This thesis is dedicated to my family

and Asli for their great emotional support.

 v

ACKNOWLEDGEMENTS

I would like to thank Assoc. Prof. Liming Cai, Assoc. Prof. Khaled Rasheed and Prof.

Russell Malmberg for serving on my advisory committee and their support. I would especially like

to thank my advisor, Prof. Cai, for his guidance, encouragement, support and inspiration. Many

thanks to our research group; I have learned a lot from my colleagues when I first joined the group.

I would like to thank all the group members for their help, especially to Jizhen Zhao, Yinglei Song

and Chunmei Liu, for helping me out with the systems they have developed for our group and

letting me use them.

 vi

TABLE OF CONTENTS
ACKNOWLEDGEMENTS... V
LIST OF FIGURES... VII
1. INTRODUCTION... 1
2. RNA FOLDING PROBLEM... 5

2.1. DEFINITIONS... 5
2.2. RNA SECONDARY STRUCTURES WITH PSEUDOKNOTS ... 9
2.3. SCFG APPROACH .. 10
2.4. INSIDE-OUTSIDE ALGORITHM.. 11
2.5. CYK ALGORITHM.. 14

3. EC METHODS IN BIOINFORMATICS .. 16
3.1. INTRODUCTION... 16
3.2. PROTEIN FOLDING PROBLEM (PFP)... 17
3.3. USING PARALLEL FAST MESSY GENETIC ALGORITHMS ... 24
3.4. RNA FOLDING PROBLEM... 26
3.5. EVOLVED NEURAL NETWORKS ... 30
3.6. CONCLUDING REMARKS .. 33

4. THE GENETIC ALGORITHM MODEL... 36
4.1. GENETIC ALGORITHM COMPONENTS .. 36
4.2. ENCODING.. 38
4.3. FITNESS FUNCTION .. 40
4.4. SELECTION AND REPLACEMENT METHODS... 41
4.5. GENETIC OPERATORS .. 42

5. EMPIRICAL AND THEORETICAL ANALYSIS .. 44
5.1. SIMPLE SEQUENCE ANALYSIS.. 44
5.2. COMPLEX SEQUENCE ANALYSIS ... 54
5.3. TERMINATION CONDITION... 56
5.4. GRAMMAR CONSTRUCTION ... 58
5.5. TIME ISSUES ... 60

6. CONCLUSION.. 63
6.1. CONCLUDING REMARKS .. 63
6.2. FUTURE DIRECTIONS.. 64

7. REFERENCES.. 67
APPENDIX A .. 71

 vii

LIST OF FIGURES

FIGURE 1 : BACILLUS SUBTILIS RNASE P RNA AND ITS USUAL DISPLAY OF SECONDARY STRUCTURES................................ 6
FIGURE 2 : S1 AND S2 HAVE THE SAME STRUCTURE BUT NOT S3.. 8
FIGURE 3 A PARSE TREE FOR S1 USING THE EXAMPLE GRAMMAR... 9
FIGURE 4 : CALCULATION OF),,(vjiα IN INSIDE ALGORITHM (DURBIN ET AL., 1998) .. 12

FIGURE 5 : CALCULATION OF ITERATION STEP IN OUTSIDE ALGORITHM (DURBIN ET AL., 1998) 13
FIGURE 6 : A CONFORMATION OF A CHAIN ON THE TWO-DIMENSIONAL LATTICE. (A-B) AN EXAMPLE OF A +90O ROTATION

MUTATION. NOTE -90O IS NOT SELF-AVOIDING. OTHER SIMPLE MUTATIONS ARE SHOWN IN (C-E). (FOGEL AND

CORNE 2003).. 19
FIGURE 7 : LOWEST ENERGY STATE OF A 64-RESIDUE CHAIN. BLACK BLOCKS ARE HYDROPHOBIC RESIDUES. KONIG AND

DANDEKAR (1999)... 20
FIGURE 8: (Θ,Φ) PAIR IN A SEQUENCE OF FOUR RESIDUES... 21
FIGURE 9: MEAN NUMBER OF GENERATIONS REQUIRED UNTIL CONVERGENCE. MEAN WAS CALCULATED OVER 20 RUNS.

ERROR BARS FOR DATA POINTS ARE SHOWN TOO. (SHAPIRO ET AL., 2001) .. 27
FIGURE 10: IMPROVEMENTS IN THERMODYNAMIC STABILITY AS A FUNCTION OF POPULATION SIZE FOR FODINGS OF POLIO

3 AND PSTVD. (SHAPIRO ET AL., 2001)... 28
FIGURE 11 : TABULAR REPRESENTATION FOR A SEQUENCE OF LENGTH N. ... 29
FIGURE 12 : THE GENERATION PROCESS IN A TYPICAL GA ITERATION ... 38
FIGURE 13 : OUTPUT FOR SIMPLE SEQUENCE W1 WITH A GENERAL GRAMMAR.. 46
FIGURE 14: COMPARISON OF THE ORIGINAL AND PREDICTED OUTPUT WHEN A GENERIC GRAMMAR MODEL IS USED. 47
FIGURE 15 : OUTPUT FOR SIMPLE SEQUENCE W1 WITH A SPECIFIC GRAMMAR.. 48
FIGURE 16 : OUTPUT FOR SIMPLE SEQUENCE W2 WITH S SPECIFIC GRAMMAR. ... 50
FIGURE 17 : COMPARISON CHART FOR GA AND EM ... 51
FIGURE 18 : A PART FROM THE OUTPUT OF CYK TRACEBACK.. 51
FIGURE 19 : OUTPUT FOR A TWO-STEM SEQUENCE WITH A GENERAL GRAMMAR. .. 53
FIGURE 20 : A) PREDICTED STRUCTURE B) ORIGINAL STRUCTURE.. 53
FIGURE 21 : TRNA GENERAL STRUCTURE ... 55
FIGURE 22 : ANNOTATION OUTPUT FOR ALA TRNA .. 56
FIGURE 23 : A) PREDICTED DERIVATION TREE OF ALA TRNA B) ORIGINAL DERIVATION TREE FOR THE SAME

MOLECULE.. 56
FIGURE 24: FITNESS VALUES CONVERGING THROUGH GENERATIONS... 57

 viii

FIGURE 25 : NUMBER OF GENERATIONS UNTIL GA CONVERGES... 58
FIGURE 26 : ACCURACY OF PREDICTION AS A FUNCTION OF POPULATION SIZE. ... 61

 1

1. INTRODUCTION

RNA (ribonucleic acid) secondary structure is similar to an alignment of nucleic acid

sequences, except that the sequence folds back on itself and forms complementary base pairs.

Many interesting RNAs conserve a secondary structure of base-pairing interactions more than

they conserve their sequence. This makes RNA sequence analysis complicated and difficult.

Simple RNA molecules are composed of four basic nucleotides (also known as bases),

namely Adenine (A), Cytosine (C), Guanine (G), and Uracil (U). Despite their biochemical

resemblance to DNAs, RNAs have very different biological functions due to their structures.

Unlike the double-stranded DNAs that form double helical structures, RNAs are usually single-

stranded molecules, and hence they fold by forming pairs of bases to produce stable structures

that minimize their energy level.

The complementary bases, C-G and A-U form stable base pairs with each other through

the creation of hydrogen bonds between donor and acceptor sites on the bases. These are called

``Watson-Crick (W-C)'' base pairs. In addition, we consider the weaker G-U wobble pair, where

the bases bond in a skewed fashion. All of these are called canonical base pairs. Other base pairs

may occur, some of which are stable. They are called non-canonical base pairs.

RNA secondary structure prediction problem is considered mainly from two different

approaches, thermodynamics and formal grammars. In the former, the problem of predicting the

optimal secondary structures of RNA sequences is to find, given some energy parameters, the

optimal way to pair up the bases of the input RNA so as to minimize the overall energy level of

the RNA. One of the first algorithms that solves a simple version of this problem is Zuker's

Algorithm (Zuker, 1989). Later, Rivas and Eddy proposed a new algorithm for a much wider

class of problems in this domain including pseudoknots (Rivas and Eddy, 1999).

The other approach to the prediction problem is grammatical models. Since RNA

sequences are not just linear sequences of ribonucleic acids randomly generated but sequences

intended to convey genetic information of specific biological functions (or meanings), it appears

quite reasonable to assume the existence of a certain kind of grammatical devices by which RNA

sequences can be generated and modeled.

 2

Therefore, in order to solve the prediction problems concerning biological structures

such as RNA secondary structures, protein secondary (or tertiary) structures, no matter what

structures they are, it may be of great importance to propose certain formal systems (grammars,

automata, etc.) to model those structures in an appropriate manner. This enables us to analyze the

biological properties of RNA, DNA or amino acid sequences in terms of formal language

theoretic concepts (Searl, 1993).

RNA secondary structure prediction has become an important problem in bio-

informatics while using stochastic context free grammars (SCFG) for modeling the structures has

become popular in the last decade since it was first proposed by Sakakibara et al. (1994). Under

this topic, one challenging problem is learning the grammar rules and probability distributions

associated with the set of rules. The Inside-Outside (IO) Algorithm is a well known estimator for

learning SCFG parameters from a training set (Lari & Young, 1990). This algorithm is an

implementation of the expectation maximization (EM) method for SCFG where satisfactory

parameters are obtained through an iterative re-estimation process.

The IO algorithm has two major problems. First, local maxima are much more of a

problem than in its counterpart, the forward-backward algorithm for Hidden Markov Models

(HMMs). Second, it is slow and has O(L3M3) time complexity, where L is the length of the

sequence and M is the number of non-terminals. In this paper we focus on how to solve these

two problems.

Here, we introduce a new approach for parameter estimation of such grammars based

on the idea of genetic algorithms (GA) (Holland, 1975), a non-deterministic optimization

procedure. Genetic Algorithms are derived from the concept of biological evolution using the

operations based on the survival of the fittest, recombination (crossover), mutation and selection

to mimic genetic processes. They have been applied in a wide variety of fields in science and

engineering (Goldberg, 1989; Holland, 1992) and they have been developed for RNA sequence

folding (Shapiro and Navetta, 1994; Shapiro and Wu, 1996, 1997; Shapiro et al., 2001). These

genetic algorithms and other evolutionary approaches have been focused on sequence analysis

and deriving stem-loop structures with minimal energies. In our approach we focus on estimating

parameters for grammatical modeling of those structures.

The idea for this approach comes from the fact that given an SCFG model, we can find

the likelihood of a sequence. Therefore GA can find the optimum parameter set in the search

 3

space by comparing them with the likelihood values. The fitness value is calculated by the Inside

Algorithm (Durbin et al., 1998) which gives the total probability to generate a given sequence

with the given SCFG.

GAs have many advantages over other search techniques in complex domains such as

the RNA folding problem. They tend to avoid being trapped in local optima and can handle both

discrete and continuous optimization variables such as in our case where the set of rules have

continuous parameters. The performance of a GA can be measured by how well it explores the

search space and at the same time how well it exploits the potential regions for optima. A good

GA explores the search space widely in the early generations and then starts exploiting the

optima until it converges to various optima as generations go. Our experiments with this

implementation demonstrate the accuracy and effectiveness of the GA approach in parameter

estimation for SCFG models in RNA folding problem.

Our new approach is very likely to find the global optimum through non-deterministic

optimization. The algorithm is simple, involving nothing more complex than copying strings,

swapping partial strings and doing basic arithmetic. The time complexity of the algorithm can be

found by multiplying the complexity of the fitness function by number of non-terminals since the

length of the genome is proportional to that number. This results in O(L3M2) time complexity

where M is the number of nonterminals and L is the length of the sequence. This is better than

inside-outside algorithm which has O(L3M3) complexity and the constants are scalable in our

case. The advantage of our framework also comes from its generality since the fitness function

can be changed to any grammatical probabilistic modeling system including pseudoknot

structures (Cai et al., 2003) or any other likelihood determination method.

As described in the literature (Goldberg, 1989), the original GAs used a fixed binary-

string representation (genotype) for the population of objects (referred to as individuals) that

evolved towards fitness. However, our GA for parameter estimation has a floating point number

string representation, storing the probabilities associated with the set of rules. The GA attempts

to find a good parameter set by randomly generating a collection of potential solutions and then

manipulating those solutions using genetic operators. Those operators use existing solutions to

produce new solutions. Each solution is assigned a fitness value which is the logarithm of the

total probability or likelihood to generate the given RNA sequence. The key idea is to select for

reproduction the solutions with higher fitness and apply the genetic operators to them to generate

 4

new individuals. The newly generated individuals may give better fitness values through

mutation and re-combination operations and evolve towards various optima possibly including

the global optimum. The process usually continues until an acceptable solution is found, usually

we bound the number of generations with certain value.

The individuals are initialized randomly. Each individual has the same number of genes

as the number of the rules in the grammar to be optimized. Since these values are probabilities

associated with the rules, a gene can only have a value from the range [0, 1]. Another constraint

for the values is that the sum of all probabilities associated with the same non-terminal on the left

hand side must be 1. Therefore our system repairs the individual after the mutation and re-

combination operations if the constraint does not hold.

Each generation is replaced with a specific percentage where most fir individuals are

kept for the next iteration. This replacement method is used in Steady-State GAs (our approach)

which converge faster than Generational GAs where the entire population is replaced by a new

generation. The recombination method is chosen as Heuristic Crossover, a recombination

process producing an offspring closer to the better parent. This is a greedy operator moving in

the search space in the direction of the parent with the greater fitness value. Our model uses

Gaussian Mutation which is a suitable method for any floating point number genotype as a

mutation operation. Selection for recombination process is done by Roulette Wheel Selection

where an individual has the chance to carry its genes through generations proportional to its

fitness value.

The layout of this thesis starts from introducing the problem domain where we explain

the RNA folding problem and the approaches used so far (Chapter 2). Then we conduct a survey

of evolutionary computation and its applications in similar problems in bioinformatics (Chapter

3). We finally introduce our GA system and its components (Chapter 4). The results of the

system, empirical and theoretical analysis with couple of example grammar and sequence

examples are shown in the next chapter (Chapter 5). Finally we make our concluding remarks

and future research suggestions for extending and modifying our work (Chapter 6).

 5

2. RNA FOLDING PROBLEM

2.1. Definitions

RNA is a single-stranded nucleic acid made up of 4 types of nucleotides; adenine,

uracil, cytosine and guanine. RNA is involved in the transcription of genetic information and

also several biochemical reactions.

2.1.1. RNA Terminology

The secondary structure of an RNA molecule is the collection of base pairs that occur

in its 3 dimensional structure. An RNA sequence can be represented as

nxxxxX ,...,,, 321=

where is called the ith (ribo)nucleotide. Each belongs to the set {A,C,G,U}. We

will refer to i as the ith base in the sequence. A secondary structure, or folding, on X is a set S of

ordered base pairs, written as i.j,

ix ix

nji ≤<≤1 satisfying:

1. j - i > 3

2. If i.j and i'.j' are 2 base pairs, (assuming without loss in generality that), then

either:

'ii ≤

(a) i = i' and j = j' (they are the same base pair),

(b) i < j < i' < j' (parallel stem-loop), or

(c) i < i' < j' < j (nested stem-loop).

(d) i < i' < j < j’ (pseudoknots)

 In Figure 1 : Bacillus subtilis RNase P RNA and its usual display of secondary

structures., an RNA with its secondary structures is indicated with labels. The letters within the

structure stand for:

 6

M : multi-loops

I : interior loops

B: bulge loops

H: hairpin loops (stem-loops)

Figure 1 : Bacillus subtilis RNase P RNA and its usual
display of secondary structures.

 7

2.1.2. Context Free Grammars

A general theory for modeling strings of symbols has been developed by computational

linguists. This theory is known as the Chomsky hierarchy of transformational grammars

(Chomsky, 1959). The theory was developed in an attempt to understand the structure of the

natural languages. They became important in theoretical computer science (Hopcroft & Ullman,

1979) because computer languages, unlike natural languages, can be precisely specified as

formal grammars.

A formal grammar consists of a finite set of symbols and a set of rewriting rules

βα → (also called productions) where α and β are both strings of symbols. There are two

kinds of symbols: abstract nonterminal symbols and terminal symbols that can appear in an

observed string. The left-hand side α contains at least one nonterminal, which in general is

transformed into a new string of terminals and/or nonterminals on the right-hand side of the

production. In modeling molecular structures terminals are a set of amino-acid or nucleotide

symbols.

 In the following examples, we use W to represent any nonterminal, a to represent any

terminal, α and γ to represent any string of nonterminals and/or terminals including the null

string, and β to represent any string of nonterminals and/or terminals not including the null

string.

Regular Grammars: Only production rules of the form or are allowed. aWW → aW →

Context-free Grammars : Any production rule of the form β→W is allowed. The left-hand

side of the production rule must consist of just one nonterminal but the right-hand side can be

any string.

Context-sensitive Grammars: Productions are of the form 2121 βαααα →W . The allowed

transformations of nonterminal W are dependent on its context 1α and 2α . It is provably

equivalent to require that the right-hand side contains at least as many symbols as the left-hand

side; context-sensitive grammar productions never shrink.

Unrestricted Grammars : Any production of the form γαα →21W is allowed.

Since we will be dealing with the context-free grammars, here we present the formal

definition of them:

 8

A context-free grammar (CFG) is defined by a quadruple),,,(SPNG Σ= , where N, is

an alphabet of nonterminal symbols, Σ is an alphabet of terminal symbols such that =Σ∩N Ø,

P is a finite set of production rules of the form α→W for NW ∈ and , and S is a

special nonterminal called the start symbol. The language generated by a CFG G is denoted

L(G).

*)(Σ∪∈ Nα

A stochastic context-free grammar (SCFG) G consists of a set of nonterminal symbols

N, a terminal alphabet , a set P of production rules with associated probabilities, and the start

symbol S. The associated probability for every production

Σ

α→W in P is denoted Pr(α→W),

and for every nonterminal, a probability distribution exists over the set of productions have the

same nonterminal on the left-hand side.

In bio-informatics, HMM approaches and other sequence alignment methods can also

be classified as the lowest type under the hierarchy explained above. On the other hand context-

free grammars permit additional rules that allow the grammar to create nested, long-distance pair

wise correlations between terminal symbols. Since RNA secondary structure conservation does

not imply sequence conservation, context-free grammars are suitable to model them. We can

have a better idea about the representation with the example below.

In Figure 2 (Durbin et al., 1998) , s1 and s2 can share same RNA secondary structure

although they have different sequences because they share the same pattern of base pairs (A-U

and C-G). s3, inherits its sequence from the first half of s2 and the second half of s1, cannot fold

into a similar structure.

Figure 2 : s1 and s2 have the same structure but not s3.

 9

Below there is a CFG given for the specific structure shown in Figure 2. Notice the rule

structures where the base pairing can be represented in a trivial way (Durbin et al., 1998).

.|
,|||
,,|||

,|||

3

33332

22221

1111

gcaagaaaW
auWcgWgcWuaWW
auWcgWgcWuaWW

auWcgWgcWuaWS

→
→
→
→

When a sequence is derived by the context-free grammar, the parse (or derivation) tree

can be represented by a planar graph since the pairing regions are either parallel or nested. Using

the example grammar and the sequence s1 we can draw the parse tree as follows (Figure 3 ,

Durbin et al., 1998).

Figure 3 A parse tree for s1 using the example grammar

2.2. RNA Secondary Structures with Pseudoknots

We have seen the secondary structure and the related terminologies in the previous

section. In this section we want to emphasize the importance of these structures.

RNA was once thought to be the passive intermediary messenger between DNA genes

and the protein translation machinery. These types of RNA are called coding RNA’s. However,

many non-coding RNA’s exist which adopt sophisticated three-dimensional structures, and some

even catalyze bio-chemical reactions. Proteins show similar properties in the sequence of the

 10

amino-acids namely the polypeptide chains. Modeling proteins is discussed in more detail in

Chapter 3.

When the parts of the RNA sequence spanned by two base pairs are neither disjoint, nor

have one contained in the other, the two base pairs form a pseudoknot. One reason that the RNA

secondary structure prediction community has been able to get away with ignoring pseudoknots

for nearly thirty years is that for known true RNA structures you can usually find a set of at least

95% of the base pairs that does not contain any pseudoknots; on the other hand, almost all RNA

structures contain one or more pseudoknots. Therefore one way to try to improve on prediction

accuracy would be to find a feasible way to include structures with pseudoknots. Our proposed

system can deal with this case without any difficulty unless there is a likelihood method dealing

with pseudoknots (i.e Parallel Communicating Grammar Systems proposed by Cai et al., 2003).

2.3. SCFG Approach

Once we decide to model the sequences by using stochastic context-free grammars, we

must also have algorithms to address the three basic problems:

i) The alignment problem: finding an optimal alignment of a sequence to a

parameterized stochastic grammar.

ii) The scoring problem: finding the probability of a sequence given a

parameterized stochastic grammar.

iii) The training problem: given a set of sequences, estimate optimal probability

parameters for an unparameterised stochastic grammar. In this paper we are

focusing on this problem.

The same problems are applicable for modeling with HMMs. Briefly, Viterbi algorithm

solves the alignment problem, forward pass of the forward-backward algorithms solves the

scoring problem and forward-backward algorithm is used in Baum-Welch expectation

maximization to address the training problem (Baum, 1972). Actually these dynamic

programming algorithms are analogous for stochastic context-free grammars. The analogy can

be formed for Inside and CYK algorithms with forward and Viterbi algorithms respectively.

 11

From Section 2.1.2 we have seen that context free grammars can have an unlimited

variety of symbol strings on the right-hand side of their production rules. To express a general

CFG parsing algorithm, it is very useful to adopt a restricted ‘normal form’. One such normal

form is Chomsky normal form. This normal form requires that all CFG production rules are of

the form or . It is very important to state that any CFG can be converted into

this normal form without changing the language it generates. The disadvantage of conversion

is having more non-terminals which results with more computation in any dynamic

programming approach. The advantage on the other hand is handling the algorithm in a simpler

way.

YZW → aW →

2.4. Inside-Outside Algorithm

This algorithm is basically a counter-part of the forward-backward algorithm for

HMMs calculating the probability (score) of a sequence given an SCFG. It is a recursive

dynamic programming algorithm however the computational complexity is substantially greater

than forward-backward.

The inside algorithm calculates the probabilities),,(vjiα of a parse sub-tree rooted at

non-terminal for sub-sequence for all i, j and v (Figure 4). The outside algorithm

calculates a probability

vW ji xx ,...

),,(vjiβ of a complete parse tree rooted at the start non-terminal for the

complete parse rooted at the start non-terminal for the sub-sequence rooted at non-

terminal for all i, j and v. The Expectation Maximization (EM) algorithm is based on iterative

optimization that will converge to parameter values at a local maximum of the likelihood

function. Here likelihood is the probability of data given the model, i.e., P(D|M) which is often

used to indicate how good the model predicts the data.

ji xx ,...

vW

 12

Figure 4 : Calculation of),,(vjiα in Inside Algorithm
(Durbin et al., 1998)

Inside Algorithm (Durbin et al., 1998) :

Initialization: (for i=1 to L, v=1 to M)

)(),,(iv xevii =α .

Iteration: (for i=1 to L, v=1 to M)

),(),,1(),,(),,(1

11
zytzjkykivji v

j

ik

M

z

M

y
+= ∑∑∑ −

===
ααα .

Termination:)1,,1()|(LxP αθ = .

Here the iteration step calculates the probability of the parse sub-tree rooted at non-

terminal for the sub-sequence from i to j is denoted byvW),,(vjiα . This value is calculated

recursively by summing the probabilities of parse sub-tree rooted at non-terminal and for

smaller sub-sequences i to k and k+1 to j, for all y, z and k, weighted by the probability

which is the probability associated with the rule .

yW zW

),(zytv YZV →

Outside Algorithm (Durbin et al., 1998):

Initialization: (for i=1 to L, v=1 to M)

 1)1,,1(=Lβ ;

 0),,1(=vLβ for v=2 to M.

Iteration: (for i=1 to L, j=L to i, v=1 to M)

).,(),,(),,1(),(),,(),1,(),,(
1,

1

1,
zvtykizkjvztyjkzikvji y

L

jkzyy
i

kzy
βαβαβ ∑∑∑∑ +=

−

=
++−=

Termination: for any i.)(),,()|(
1 iv

M

v
xeviixP βθ ∑ =

=

 13

Figure 5 : Calculation of iteration step in Outside
Algorithm (Durbin et al., 1998)

In Figure 5 the recursive calculation of),,(vjiβ , the probabilities of all parse trees

excluding sub-trees rooted at non-terminal for sub-sequence are illustrated. Figure 5

(1) corresponds to the first part of the outside iteration which combines the outside value for non-

terminal and subsequence

vW ji xx ,...

yW Ljk ,...,1,,...,1 + , the inside value for non-terminal filling in

the sub-sequence , and the probability Figure 5 (2) corresponds to the second

part of the outside iteration which combines the outside probability for non-terminal on the

excluded sub-sequence , the inside probability for non-terminal filling in the sub-

sequence , and the probability

zW

1,..., −ik).,(vzt y

yW

ki,..., zW

kj ,...,1+).,(zvt y

Inside-Outside Algorithm (Durbin et al., 1998):

The two algorithms explained above are combined to form the parameter re-estimation

algorithm which is a type of EM method. The α and β variables are combined in the following

equation to find the expected number of times that nonterminal v is used in a derivation:

∑∑
= =

=
L

i

L

ij
vjivji

xP
vc

1
),,(),,(

)|(
1)(βα
θ

.

If we expand the equation above to find the expected number of times that is

reached in the derivation tree and the rule → is used, we get:

vW

vW yW zW

 14

∑∑∑
−

= +=

−

=

+=→
1

1 1

1

),(),,(),,1(),,(
)|(

1)(
L

i
v

L

ij

j

ik
zytvjizjkyki

xP
yzvc βαα

θ
.

The re-estimation is calculated by the ratio of these two expected values. Therefore the

probability of the production rule in the SCFG is: vW → yW zW

∑∑

∑∑∑

= =

−

= +=

−

=

+
=

→
= L

i

L

ij

L

i
v

L

ij

j

ik
v

vjivji

zytvjizjkyki

vc
yzvczyt

1

1

1 1

1

),,(),,(

),(),,(),,1(),,(

)(
)(),(ˆ

βα

βαα
.

The probability parameter of other type of production rules in CNF such as a is

calculated by:

vW →

∑∑

∑

= =

==
→

= L

i

L

ij

axi
v

vjivji

aevii

vc
avcae i

1

|

),,(),,(

)(),,(

)(
)()(ˆ

βα

β
.

The re-estimation equations can be simply extended in order to use multiple

independent sequences other than only using a single observed sequence. The only extension is

to sum expected values over all sequences in the training set.

2.5. CYK Algorithm

The optimal derivation tree of a sequence can be found once we have the SCFG model.

This dynamic programming method namely Cocke-Younger-Kasami (CYK) algorithm is a

variant of the Inside Algorithm with max operations replacing the sums. In the below definition

),,(vjiγ represents the logarithm of the probability to generate the optimum parse tree rooted at v

generating the sequence ,…, . This value is denoted by ix jx)|ˆ,(log θπxP where π̂ is the most

probable parse tree. After we find the optimum tree we are using a traceback variable in order to

keep which rules we have gone through while generating the sequence. This variable is denoted

 15

by),,(vjiτ which includes triplet of numbers (y,z,k) representing the three-dimensional location

in the dynamic programming matrix. The algorithm is defined formally:

CYK Algorithm (Durbin et al., 1998):

Initialization: (for i=1 to L, v=1 to M)

).0,0,0(),,(

);(log),,(
=
=

vji
xevii iv

τ
γ

Iteration: (for i=1 to L, v=1 to M)

)}.,(log),,1(),,({maxarg),,(

)};,(log),,1(),,({maxmax),,(

1...),,,(

1...,

zytzjkykivji

zytzjkykivji

vjikkzy

vjikzy

+++=

+++=

−=

−=

γγτ

γγγ
.

Termination:).1,,1()|ˆ,(log LxP γθπ =

Once the CYK algorithm finds the optimum derivation value for the given sequence, a

traceback algorithm is called in order to recover the best alignment and determine the derivation

tree. This algorithm is defined using the stack data structures:

CYK Traceback Algorithm (Durbin et al., 1998):

Initialization:

 Push (1,L,1) on the stack.

Iteration :

 Pop(i,j,v).

 (y,z,k) =),,(vjiτ .

If),,(vjiτ =(0,0,0) (implying i=j), attach xi as the child of v.

Else : attach y,z to parse tree as children of v.

Push(k+1, j,z).

Push(i,k,y).

 16

3. EC METHODS IN BIOINFORMATICS

3.1. Introduction

Biological sequence analysis is a highly sophisticated field which is sometimes

regarded as a sub-field of bio-informatics. The field is highly related to both biology and

computer science. The researchers are trying to employ different aspects of these two sciences in

order to understand the biological sequences, the structures formed within them, the special

regions and the bio-chemical functions related to them. Sequence analysis can be divided into

two groups with respect to the type of sequence: The first is DNA analysis where the problem is

to find a specific sub-sequence associated with a specific purpose. The second is RNA and

protein analysis where the main purpose is to find the 3-dimensional structures they form when

they are folding. In this chapter we will be focusing mostly on RNA and protein folding problem

approached by evolutionary computation methods.

The fundamental principles underlying evolutionary computation can best be

summarized by nineteenth century naturalist Charles Darwin, who was fascinated by the origin

of the many complex forms of life existing in nature. In his introduction to The Origin of

Species, Darwin (1859) made the following observation:

“As many more individuals of each species are born than can possibly survive; and as,

consequently, there is a frequently recurring struggle for existence, it follows that any being, if it

varies however slightly in any manner profitable to itself, under the complex and sometimes

varying conditions of life, will have a better chance of surviving, and thus be naturally selected.

From the strong principle of inheritance, any selected variety will tend to propagate its new and

modified form.”

To adapt these principles to problem solving, one can construct an evolutionary

simulation in which the individuals represent alternative solutions to the target problem. The

frequently recurring struggle for existence that Darwin observed in nature is inherent in our

model due to the limited computer resources we can devote to our simulation. This is expressed

 17

both in restrictions on the number of alternative problem solutions we store in computer

memory, and the computational resources available for evaluating these solutions. Variation

between individuals is a result of making random changes to the population of evolving

solutions, and from recombining pieces of old solutions to produce new solutions. Darwin's

process of natural selection can be modeled by imposing a selection distribution on the

population of solutions such that the better ones have a higher probability of being recombined

into new solutions and thereby preserving the attributes that made them viable. Alternatively, we

can use this selection distribution to ensure that the poorer solutions have a higher probability of

being replaced by new solutions. To determine how good a particular solution is, the

evolutionary algorithm applies the solution to the target problem within the context of a domain

model and evaluates its fitness through the use of appropriate metrics. This forms the main

principle underlying evolutionary computation (EC).

In this chapter we conduct a brief survey primarily restricted to work performed on how

evolutionary algorithms (EA) have been employed in the field of bioinformatics in the past

decade (Clark and Westhead, 1996 has a similar one for the other decade).

3.2. Protein Folding Problem (PFP)

Organisms contain thousands of different types of proteins that are responsible for

transporting small molecules (e.g hemoglobin transports oxygen in the bloodstream), catalyzing

biological functions, providing structure to collagen and skin, regulating hormones, and many

other functions. Each protein is a sequence of amino acids of 20 different types, bound into linear

chains that adopt a specific folded three-dimensional shape. Each shape provides valuable clues

to the protein’s function. Indeed, this information is essential to the design of the new drugs

capable of combating disease. Non-coding RNA sequences (unlike messenger RNA’s that are

used to encode amino acids, not including secondary structures) also display this kind of shape

and structures as in proteins folding onto themselves.

Regrettably, predicting the shape of a protein is a difficult, expensive task, which

explains why relatively few proteins have been categorized in this regard. Virtual protein

 18

models, created on computer systems, may provide a cost-effective solution to the problem,

trying to predict the structure of a protein only given the sequence of amino acids. This is a

combinatorial optimization problem, which has exponential number of potential solutions. The

analogy can again be formed for RNA’s where the problem is the structure prediction given the

sequence of nitrogenous based nucleotides: adenine (A), guanine (G), thymine (T) and cytosine

(C).

The primary structure of a protein’s polypeptide chain is its sequence of amino acids.

Different regions of this sequence tend to form regular, characteristic shapes called secondary

structures. The three main categories of secondary structures are the α -helix β -strand or β -

sheet, and loops that connect the helices and strands. Some studies suggest that certain residues

appear more often in helices than in strands, which implies a correlation between amino-acid

sequence and the shape. It seems that this correlation is not completely understood. An aggregate

of all these localized secondary structures forms the tertiary structure which is really important

in a protein’s function. Tertiary structures can also be combined as subunits to form a larger

quaternary structure. For the RNA case the secondary structures are the main interest. In fact the

way we approach the problem does not depend on the structure level since we can view each

sub-unit as a primary structure and recursively apply the same models on those structures.

Protein conformation and stability is influenced by a number of factors that include

hydrogen bonds and hydrophobic effects (Socci et al., 1994). The amino acid chain transforms to

very distinctive three dimensional structures because of those factors and this process is called

protein folding. The function of a protein is tied to its structure, so being able to quickly specify a

structure from its amino acid sequence is of significant interest.

Unfortunately, finding those structures remains elusive due to the astronomical number

of possible conformations. The complexity can be found by comparing another problem, finding

the lowest energy conformation of simple atomic clusters in which the entities are far less

complex. This simpler problem is shown to be NP-hard by Greenwood (1999). X-ray

crystallography (XC) and nuclear magnetic resonance (NMR) are two methods that can be used

to determine the structure, but both methods are time consuming; only a small percentage of

proteins have been studied using those methods.

In this section we will summarize three different sub-problems in protein folding and

their solutions by evolutionary algorithms.

 19

3.2.1. Minimalist Models

This approach tries to predict the fold without using the structure information from any

other protein for comparison. They try to explore an energy hyper surface for a minimal energy

conformation, which is believed to correspond to the native state. Here again, the hyper surface

is very big and the search process is complicated. In order to reduce this effect the researchers

are using minimalist models where the shape of the chain is restricted to form a self-avoiding

walk on a square lattice (Figure 6).

Figure 6 : A conformation of a chain on the two-
dimensional lattice. (a-b) an example of a +90o rotation
mutation. Note -90o is not self-avoiding. Other simple
mutations are shown in (c-e). (Fogel and Corne 2003)

Konig and Dandekar (1999) described a genetic algorithm that uses a systematic

crossover operator to search for low-energy conformations of two dimensional primitive models.

The operator begins with choosing a parent with a biased probability and then tests each possible

crossover point, the two best individuals are selected for the next generation.

 20

The diversity in the population is also checked in this GA framework. After every ten

generations, newly created individuals are tested to see if they differ from every individual of the

parents’ population and discarded if not. Fitness was measured by a simple energy function: Add

-1 for each pair of unconnected hydrophobic residues that reside at non-diagonal neighboring

lattice points. For example, if residues 10-15 in Figure 6 are hydrophobic, this conformation

would have an energy of -2 because of the interaction of residue pairs (10,13) and (10,15). The

resultant structure will have those hydrophobic residues in the interior side since the lowest

energy conformation will have a core in the middle formed by hydrophobic residues (Figure 7).

This approach can be generalized to a three-dimensional cubic lattice that can predict secondary

structures since with the two-dimensional one we can only predict the hydrophobic core.

Figure 7 : Lowest energy state of a 64-residue chain.
Black blocks are hydrophobic residues. Konig and
Dandekar (1999)

Gunn (1997) has used a genetic algorithm with off-lattice models , in which the

residues are not required to occupy fixed, equally spaced sites and the side chain is modeled

using the dihedral angles where two angle values specify the relation between the residues. The

GA was using an encoding of those angle pairs as bit strings, where those restricted pairs were

assigned from a dihedral library. The fitness was measured in terms of root mean square

deviation from a structure determined by XC or NMR methods.

 21

A more complicated model is introduced by Sun et al. (1999) where they used a GA to

predict protein structures in a 210-type lattice model. In this model, each residue is at fixed

distance l from the next residue in the sequence. The position of a residue from its neighbor in

three-dimensional space is restricted to 0, ± a, ± 2a in each axis. Hence 5al = . This results in

24 possible neighbors for each residue. Actually only two angles θ andΦ , are needed to place a

residue relative to the three previous residues in the sequence (Figure 8). The fixed distance

between residues and the restricted placement of neighboring residues yield only 11 valid θ

values and 30 valid Φ values.

Figure 8: (θ,) pair in a sequence of four residues Φ

The encoding for GA is the angle pairs. The initialization is done randomly. The

standard mutation and crossover operators are used to create the offspring. The model predicted

the structure of cytochrome protein to within an r.m.s. deviation of 7.5 Å, which is somewhat

high, considering that only the backbone was modeled.

3.2.2. Homology Based Modeling

The use of the known structure for a homologous protein can be used to predict the

structure of another one. Indeed, as the number of known structures increases, the probability of

resolving the conformation of other unsolved proteins will increase.

 22

Wilson et al. (1993) listed the three major aspects in homology-based modeling:

1) Amino acid sequence alignment

2) Generation of loop conformations when necessary

3) Side chain conformation prediction

The side-chain conformation problem is the most crucial subproblem that must be

solved the whole problem is solved. All proteins are identical if we ignore the side chains.

Therefore it is the side chain packing that determines feasible conformations.

Despite the extreme importance of side chain packing problem, we could not find much

interest from Evolutionary Computation community to solve this problem. Most homology

modeling using genetic algorithms are used for sequence alignments (Notredame et al., 1998).

However Desjarlais and Handel (1995) used a GA to search for low-energy hydrophobic core

sequences and structures. In their approach, each core position was allocated a set of bits within a

binary string, and the bit values encoded a specific residue type and set of torsion angles as

specified in the library. Here the torsion angles mean the rotation angle between the side chain

and the Cα carbon. Therefore the input is a list of residue/torsion possibilities for the string

location corresponding to the core position. In the GA, reproduction is performed by using

standard one point crossover and bit flip mutations. An inversion operator was added to establish

genetic linkage between pairs of bits. This GA was later used by Ghirlanda et al. (1998) in a

small peptide chain modeling in which an evolution strategy (ES) is used.

Ghirlanda et al. constructed an ES predictor that used the polypeptide model with all

backbone atoms represented including Cβ atom (a carbon atom inside side chain directly bonded

with Cα atom). In this model the energy is measured by the r.m.s deviation from a known crystal

structure.

The genotype in this ES predictor is an integer array, which describes the torsion angles

of each residue. The survival of the individuals is determined by (µ+λt)-ES strategy where at

generation t, µ parents produce λt offspring and parents compete as equals with offspring

survival. Reproduction on the other hand is handled differently. Each parent may generate up to

200 offspring, however decision on the low-fit offspring is done immediately. This results with

parents having different number of offspring. Here λt and λs are not necessarily equal if t≠s.

That’s how it differs from the conventional (µ+λ)-ES strategy. After reproduction, the truncation

selection chooses µ parents for the next generation.

 23

New structures in the ES are generated by stochastic modification of selected residue

torsion angles. Mutation is the only reproduction operator because in their research they have

noticed that recombination has less impact since the structures are more compact. Mutation is

performed over randomly positioned set of k consecutive residues (i.e k=3). The r.m.s deviation

from the crystal structure, which defines the fitness function, is computed only over a window of

consecutive residues including the ones that are mutated. The window size w is a parameter that

was expanded until it equals the full length of the polypeptide chain.

They have tested the ES predictor with a protein which has 61 residues. This protein

contains one α-helix and four β-strands. Each generation manipulated a population size µ=200

with λt = 200 (maximum value). The initial window size was w=5. The predictor consistently

found conformation with a r.m.s deviation of approximately 1.8 Å. Normally it is said the

prediction is “correct” if the deviation is less than 1 Å in which Ghirlanda et al. believe with a

final relaxation they can reduce the deviation under that level.

3.2.3. Docking Models

In this approach the researchers are trying to predict how two organic molecules will

energetically and physically bind together. One molecule, called receptor contains “pockets” that

form binding sites for the second molecule, which is called ligand. Any solution must therefore

describe both the shape of the receptor and the ligand, as well as their affinity. The importance of

this approach can be understood by the drug design approach. Drug designers attempt to

determine the particular drug that best binds to a protein pocket. Here if we try to do an

exhaustive search it will be impossible to solve the problem. For example AIDS virus depends

on the HIV protease enzyme. If one could find a small molecule that would permanently bind to

the active site in the protease, the function of that enzyme would be prevented.

Docking approach is used by Morris et al. (1998) in conjunction with an elitist GA.

They used the software package AutoDock 3.0 to attain the energy composition.

The genotype was composed of a string of real-valued genes: three Cartesian

coordinates for the ligand translation; four variables defining quaternion (a vector defining an

 24

axis of rotation and rotation angle) specifying the ligand orientation, one number for each ligand

torsion.

As for genetic operators it seems they have used two point crossover and a mutation

operator which adds a Cauchy-distributed random variable to the single gene. Mutation was no

longer needed to accomplish local search but was used for jumping in the search space, for

exploration. They used both generational and steady-state GA’s in their experiments. The fitness

was measured by an empirical free energy function:

soltorelechbondvdW GGGGGG ∆+∆+∆+∆+∆=∆

where is the van der Waals dispersion/repulsion energy, vdWG∆ hbondG∆ is the hydrogen

bonding energy, is the electrostatic energy, elecG∆ torG∆ is the restriction of internal rotors and

global rotation and translation, and
sol

G∆ models desolvation upon binding and the hydrophobic

effects.

In their experiments Morris et al. compared simulated annealing, a generational GA and

a steady-state GA where the steady-state GA found the lowest energy and the lowest r.m.s.

deviation from the crystal structure.

3.3. Using Parallel Fast Messy Genetic Algorithms

The solution of PFP determines the three-dimensional structures of proteins given only

their amino acid sequence. The interest in this problem originates from the Human Genome

Project and the huge amount of genetic information gained so far. Currently more than 50,000

proteins are known with their amino acid sequences and with the completion of the Human

Genome Project all of them will be known. At that point we will need to have efficient and

general protein folding predictors to conform the structures.

Other than predicting the structures of naturally occurring proteins, some researchers

are concerned with promoting fast protein design which is sometimes referred as inverse protein

folding problem. Like in the work of Chan and Dill (1993) and Lengauer (1993), there are

applications of pharmaceuticals with fewer side effects, proteins with energy conversion and

 25

storage capabilities (like in photosynthesis). In this section we will refer to those types of

polymer of amino acids using the term polypeptide and refer to the naturally occurring ones as

protein.

In this section, we will briefly go over the work done with fast messy genetic

algorithms especially the case they are used in identifying three-dimensional structures of

arbitrary polypeptides in arbitrary environments.

Genetic algorithms have an underlying principle that says: “Small pieces of solution

that exhibit above-average performance can be combined to create larger pieces of above-

average quality, which can themselves be recombined into larger pieces, and so forth”. This

principle is characterized by the building block hypothesis (Holland, 1975). This hypothesis is

one of the most hotly debated topics in GA literature, and proposed to be the motivation behind

messy genetic algorithm (mGA).

Simple GAs suffer from the fact that the pieces that form the building blocks must be

put next to each other explicitly in the genotype or else they are more likely to be disrupted by

crossover. This problem is magnified when competing schemata (schemata with different values

at similar defining positions) define locally optimal solutions. Deception occurs when the

expected number of copies of locally optimal building blocks is greater than that of globally

optimal ones.

Messy GAs are designed to deal with these problems by encoding the string position

(locus) along with its value (allele). This gives an mGA the ability to search for the true building

blocks of the problem and “create tighter linkage for those genes than a fixed position encoding

allows” (Goldberg et al., 1989).

Messy GAs have similar genetic operators as the simple GAs however tournament

selection has been used instead of roulette wheel or rank-based selection. This operator also

controls the number of positions in common among individuals in order to decide for them to

compete. Crossover is replaced by a cut-and-slice operator which divides the string and appends

those parts to each other to form a longer string. Goldberg does not mention the mutation

operator in their mGA implementations. The initialization is done by a complex method (rather

than random) with eliminating the useless blocks to keep the above-average building blocks

(primordial phase).

 26

Fast mGAs (fmGA) are mGA variants designed to reduce the complexity of the

initialization phase and thus the overall algorithm time and space complexity (Goldberg et al.

1993).

In their work in U.S Air Force Academy, Michaud et al. (2001) is using a parallelized

fmGA to search for the minimum energy conformation of a polypeptide chain (Met-Enkephalin).

In their representation there are 24 dihedral-angles represented by 10 bits each. This results with

a search-space of 102424 ≈ 1.767 * 1072 conformations. They have stated that even moving to a

slightly larger protein such as Polyalinine14 results in a search space of nearly 102456 ≈ 3.77 *

10168 conformations.

Applying the fmGA, they seem not to be satisfied with the results with a pure genetic

algorithm since they decided to use a gradient-based minimization algorithm in order to perform

local search.

They have also conducted experiments to determine the effects of seeding the initial

population with three different methods; (1) members that have some secondary structure (α -

helix andβ -sheet), (2) with locally optimized population members, or (3) with a combination of

these two. The experiments included various percentages of the population to be initialized with

those methods and using the Met-Enkephalin protein which contains no secondary structure and

Polyalinine which has a perfect α -helix secondary structure.

The hybrid seeding (option 3) method converge toward better averages than do the

other method tested, but the results are not clear cut. Adding optimized solutions into the initial

population often resulted in the algorithm eventually converging to a local optimum. However

both the first two methods mentioned allow the fmGA to be the dominating factor in finding

better solutions.

3.4. RNA Folding Problem

Similar to PFP, the goal of RNA folding is to fold an RNA sequence into a biologically

functional structure that is stable with an optimal or suboptimal free energy. The non-

deterministic GA has been adapted to folding RNA sequences and, in addition, has incorporated

 27

the ability to form simple pseudoknots in a natural way. In their GA, Shapiro et al. (2001) create

a large population of RNA structures and they distribute those to an extensive number of

processors such that each processor holds one RNA structure. All RNA structures are evolved in

parallel, one generation at a time through a three-step procedure consisting of the three basic

operators: selection, mutation and crossover, using the stems generated from a given RNA

sequence. Minimal free energy is used as fitness function to improve the population.

Selection operation is done from the set of nine structures including the structure on the

processor itself and the eight-neighbor processors. This choice of parents is made by using a

ranked rule biased towards structures with better fitness values.

Figure 9 depicts the efficiency of the algorithm where the average number of

generations until convergence of the population seems to increase with population size.

Figure 9: Mean number of generations required until

convergence. Mean was calculated over 20 runs. Error
bars for data points are shown too. (Shapiro et al., 2001)

Another important aspect of the ability to vary the size of the GA population is the

accuracy and fitness of the solutions as a function of that population size. Although it is known

that biologically active structural configurations at times do not constitute a global minimum

energy structure, biological evidence supports the theory that the change in energy for the

formation of the correct structure of a particular sequence will usually lie in within the minimum

10% of all possible values of energy (G∆) for structures compatible with that sequence. In fact,

many current approaches to RNA structure prediction are based entirely on determining an

 28

ensemble of possible structures with free energy nearest to the calculated minimum. Thus, it is

reasonable to compare thermodynamic fitness of solutions generated at each population when

analyzing the performance of the algorithm. Figure 10 indicates that increasing the population of

the GA increases the efficacy of the algorithm in locating a highly thermodynamically fit

structure.

Figure 10: Improvements in thermodynamic stability as a

function of population size for fodings of polio 3 and
PSTVd. (Shapiro et al., 2001)

RNA folding problem is also approached from another approach where the sequences

are modeled with a stochastic context free grammar (SCFG) deriving them. This enables us to

analyze the biological properties of RNA, DNA or amino acid sequences in terms of formal

language theoretic concepts (Searl, 1993). Our work is also using this approach where we are

trying to re-estimate the parameters of the grammar using a steady-state genetic algorithm.

Genetic algorithm estimation for SCFG parameters is proposed by Sakakibara and

Kondo (1999) where they are not only focusing the bioinformatics domain but they are

investigating more theoretically. However we find it necessary to briefly explain what they did in

this section.

 29

Sakakibara and Kondo (1999) propose a genetic algorithm based learning of context-

free grammars from a finite sample of positive and negative data. They are indicating the main

two problems in grammar learning: determining the grammatical structure (topology) and

identifying nonterminals in the grammar. Their method uses a representation which is similar to

the table used in the optimum parsing algorithm (i.e Cocke-Younger-Kasami , CYK). By

employing this representation method, the problem of learning context-free grammars from

examples can be reduced to the partitioning problem of nonterminals. After this step they use

genetic algorithms for solving the partitioning problem. Note that there are exponentially many

grammars that can generate the given positive example. Thus the hypothesis space of context-

free grammars is very large to search a correct context-free grammar consistent with the given

examples. Sakakibara, (1992) has also shown that if information on the grammatical structure of

the unknown context-free grammar to be learned is available for the learning algorithm, there

exists an efficient algorithm for learning the grammar from only positive examples.

They have created a tabular representation of the grammars and used it for the

individuals in the genetic algorithms so that each grammar is evaluated with its topology. In

Figure 11 the tabular representation of a sequence w of length n is shown. This triangular table

not only defines a grammar that generates w but also all possible grammatical structures on w.

Figure 11 : Tabular representation for a sequence of
length n.

The algorithm for learning the CFGs is designed as follows: Given positive examples

the tabular representation is formed. Distinct nonterminals are merged to be consistent with the

given positive and negative examples and minimize the number of nonterminals in the grammar.

 30

Then the GA is used to solve the partitioning problem for the set of

nonterminals }1,11,1|{ ,, jkinjniX kji <≤+−≤≤≤≤ . This problem contains the problem of

finding minimum-state finite automata consistent with the given examples and hence it is HP-

hard. Therefore, it is reasonable to use the genetic algorithm for solving the computationally hard

problem of partitioning nonterminals. The encoding in the GA represents the partitions and the

fitness function tries to find a CFG consistent with both of the given positive and negative

examples. Especially, the penalty for a CFG which accepts any negative example is huge, it

discards all those individual. Among the CFGs consistent with all examples, they follow

“Occam’s Razor” to choose the best ones which contains minimal number of nonterminals. The

paper is also a good reference for future work in theoretical part of grammatical approaches since

it is dealing with an efficient representation of grammars.

3.5. Evolved Neural Networks

We found various papers in the literature using artificial neural networks (ANN) for

RNA and protein folding problems (Qian N, Sejnowski T J, 1988; Riis S K, Krogh A,1996; Cuff

J. A and Barton G.J, 1999). Since we are investigating EA methods, in this section we will focus

on neural network models that are optimized and evolved by EA.

However, the evolved neural networks have not been used much in our domain of

folding problem. The domain we will consider will be much like a pattern recognition problem,

identification of coding regions in DNA sequences.

The DNA sequence information is gained in a very high rate, however they are not

being deciphered and annotated as fast. In these sequences there are mainly two regions so-called

coding (exons) and non-coding (introns) regions. Coding regions are known to result in RNA

and protein products and identifying them is very significant for biologists. In a newly sequences

DNA the major interest is identifying the potential exons which will be referred as genes in the

genome.

 31

In the literature two general approaches are used. In the first one, the rules or criteria

are defined to form exons and the sequences that do not meet specified criteria are eliminated

after applying those algorithms such as GeneID (Guigo et al., 1992). In the second approach, an

ANN or hidden Markov model (HMM) is used to calculate a set of weighted statistics and

determine a composite score, which is used to identify possible exons. These scoring algorithms

are used by GRAIL (Uberbacher and Mural, 1991), GRAIL2 (Uberbacher, 1995) and

GeneParser (Snyder and Stormo, 1995) frameworks.

The purely rule-based algorithms can generate false negatives simply because ther is

insufficient knowledge used in generating the rules. This suggests that a non-rule-based approach

for gene identification through machine learning may prove to be a more effective method.

Optimizing ANNs through simulated evolution not only offers a superior search for

appropriate network parameters, but the evolution can also be used to adjust the network’s

topology simultaneously. By mutating both the network topology and its associated weights, a

very fast search can be made for a robust design. This approach does not restrict the network

with one topology and then trying to search for best weights. Evolving ANNs can be gone over

by the paper by Yao (1999). The self-design process is almost automatic; unlike the traditional

ANN paradigms that require the active participation of the user as part of the learning algorithm,

an evolutionary ANN can adapt to unexpected feature inputs being more robust than the

traditional approach and is very capable of machine learning.

Porto et al. (1995) had compared EC with back propagation and simulated annealing in

the domain of training a fixed network topology to classify active sonar returns. The results

indicated that stochastic search techniques such as annealing and evolution consistently

outperform back propagation and they are suitable for parallel processing computers too. The

procedure of EA in this approach is efficient because it can use the entire current population of

networks as initial solutions to classify each new data. There is no need to restart the search

procedure when new data is seen, in contrast with many classic search algorithms such as

dynamic programming.

Landavanzo et al., (2002) has demonstrated that EA has generated superior results

when used to train ANNs for the DNA exon identification problem. In their framework, a

population of complete networks is selected at random. A network is represented by the number

of hidden layers, the number of nodes in each of these layers, the weighted connections between

 32

all nodes in a feed-forward or other design, and all the bias terms for each node. There are

bounds selected for the size of the network based on the available memory and architecture of

the system. The input and output layers are fixed since the input is the sequence and the output is

determined by the number of classes to classify. Each of the parent networks is evaluated on the

sample data. A typical objective function is the mean square error between the target output and

the actual output summed over all output nodes. Offspring networks are created from those

parent networks through random mutation. Simultaneous variation is applied to the number of

layers and nodes, and to the values for the associated parameters (e.g. weights and biases of a

multilayer perceptron). A probability distribution is used to determine the likelihood of selecting

combinations of these variations. This probability distribution can be preselected by the operator

or can be made to evolve along with the network, providing for nearly completely autonomous

evolution. (Fogel, 2000). Their evolved ANN model is constructed with these parameters which

are capable of identifying coding and noncoding regions. It takes a DNA sequence as input and

produces a feature table that describes the location and structure of the patterns making up any

genes present in the sequence.

The advantages of using ANNs for gene identification include:

1) It is possible to combine different input information about DNA sequences.

2) These various inputs are combined in an unbiased manner.

3) The system may be robust to input noise (sequencing errors) because of the

redundancy in information and partially independent nature of the input data.

The research presented here suggests that the best-evolved artificial neural network

performed better than GRAIL considering guanine and cytosine percentage. In some cases, the

evolved ANN performed at a sensitivity double that of GRAIL. In terms of exons overlapped, on

average the evolved ANN was capable of outperforming GRAIL when the sequences were

biased toward a high guanine and cytosine percentage.

The training set used for the ANN consisted of an equal number of coding and

noncoding nucleotides. In reality, it has been estimated that only 2% of human DNA is coding

and the remainder is noncoding. Use of an equal proportion of the two classes for training may

have biased the evolved ANN to become artificially sensitive to coding data and less capable of

classifying noncoding data. As a result, it classified the majority of coding nucleotides correctly

 33

(true positives), and often classified noncoding nucleotides incorrectly as coding (false

positives). This approach led to a conservative estimate of coding regions with a low probability

of completely missing a coding region. This will also lead the user of the ANN to omit the

mislabeled exons entirely from further analysis. When the algorithm does predict an exon, it will

have a high probability of correct classification.

3.6. Concluding Remarks

The EA applications used in secondary structure prediction have resulted in the

development of sound algorithms for finding the optimal conformations of a given sequence.

However, there are still many difficulties inherent in finding these optimal conformations for

large proteins because of limitations on computational speed and the high dimensionality of the

problem. The fmGAs have proved to be an interesting and effective technique. Combining this

with other methods should provide more effective and efficient approaches than we currently

have for predicting secondary structure. For example, the incorporation of secondary structure or

peptide backbone information into elements of various genetic algorithms may yield improved

results for proteins. Moreover, enabling EAs to conduct additional localized searches generally

results in a significant improvement in the fitness of the best solution found, especially with

steady-state approaches.

Note that similar EA techniques involving energy minimization can also be applied to

the protein sequencing, protein docking and RNA folding problems. However in RNA folding

problem, the encoding will be different from dihedral or torsion angles, instead we will be using

the hydrogen bonds and pairing energies in order to conduct the search.

After we have gone through all these EA techniques we would like to suggest some

directions in research that can be pursued in hopes of identifying conformations and secondary

structures in a more effective manner.

 34

1) Integrate manual adjustments for a biologist skilled at pattern recognition. The

application would let him or her to move the evolving solution away from a local

optimal or to further explore a promising part of the search space.

2) Change the termination criteria so that EAs execute until no better energy

minimized solution is found. Consequently, a subpopulation can be randomized

and added to the current population and the search process can be continued.

3) Use real values instead of binary values (e.g. in our work) in order to prevent the

disruption of building blocks.

4) Group the various energy functions according to their models for interactions of

all atoms in a sequence. After this, a multi-objective EA can be applied to the

problem comparing different groups of energy functions. These multi-objective

fitness functions would allow the EA to be expanded to perform additional tasks

such as detecting the secondary structure.

5) Find the optimal EA parameter settings to obtain better results for different

sequences. Use these settings when determining building block size in fmGA. For

ES and EP approaches, try various mutation operator parameters, population size,

the use of (µ+λ) versus (µ,λ), etc.

6) Add pattern recognition algorithms (such as neural networks) for determining

secondary structure based on known folding structures and their locations with

respect to the protein chain (homology). Current techniques used to identify

secondary structure a priori have resulted with nearly 75% success.

7) If there are several subfunctions for fitness function, use only a few of them in

initial search; as the search proceeds, add more subfunctions to the evaluation

process. On the other hand using not adequate fitness functions can result with

exploration in unpromising parts of the search space.

8) Use parallel processing both for population calculations and the energy-fitness

function models.

9) Use GAs to adjust the topology and the weights of an artificial neural network

which can be used for any kind of prediction problem such as DNA coding region

identification, RNA classification, phylogeny problems etc.

 35

10) Consider the grammatical approach in modeling sequences since they are more

powerful in database search and homology prediction. GAs can be used to find

the topology of the grammar or parameter estimation like in our work.

 36

4. THE GENETIC ALGORITHM MODEL

4.1. Genetic Algorithm Components

Genetic Algorithms are a family of computational models inspired by evolution. These

algorithms encode a potential solution to a specific problem on a simple chromosome-like data

structure and apply recombination operators to these structures so as to preserve critical

information. Genetic algorithms are often viewed as function optimizers although the range of

problems to which genetic algorithms have been applied is quite broad.

An implementation of a genetic algorithm begins with a population of (typically

random) chromosomes. One then evaluates these structures and allocates reproductive

opportunities in such a way that those chromosomes which represent a better solution to the

target problem are given more chances to “reproduce” than those chromosomes which are poorer

solutions. The “goodness” of a solution is typically defined with respect to the current

population.

This particular description of a genetic algorithm is intentionally abstract because in

some sense the term genetic algorithm has two meanings. In a strict interpretation, genetic

algorithm refers to a model introduced and investigated by John Holland (Holland, 1975). It is

still the case that most of the existing theory for genetic algorithms applies either solely or

primarily to the model introduced by Holland as well as variations on what are referred to as the

canonical genetic algorithm. Recent theoretical advances in modeling genetic algorithms also

apply primarily to the canonical genetic algorithm.

In a broader usage of the term, a genetic algorithm is any population-based model that

uses selection and recombination operators to generate new sample points in a search space.

Many genetic algorithm models have been introduced by researchers largely working from an

experimental perspective. Many of these researchers are application oriented and are typically

interested in genetic algorithms as optimization tools.

 37

Usually only two main components of most genetic algorithms are problem dependent:

the problem encoding and the evaluation function.

Consider a parameter optimization problem where we must optimize a set of variables

either to maximize some objective function such as profit or to minimize cost or some measure

of error. We might view such a problem as a black box with a series of control dials representing

different parameters; the only output of the black box is a value returned by an evaluation

function indicating how well a particular combination of parameter settings solves the

optimization problem. The goal is to set the parameters () so as to optimize

(minimize or maximize) some objective function

MXXX ,...,, 21

).,...,,(21 MXXXF

Most users of genetic algorithms typically are concerned with problems that are

nonlinear. This also often implies that it is not possible to treat each parameter as an independent

variable which can be solved in isolation from the other variables. There are interactions such

that the combined effects of the parameters must be considered in order to maximize or minimize

the output of the black box. In the genetic algorithm community the interaction between

variables is sometimes referred to as epistasis.

The first step in the implementation of any genetic algorithm is to generate an initial

population. In the canonical genetic algorithm each member of this population will be a binary

string of length L which corresponds to the problem encoding. Each string is sometimes referred

to as a “genotype” (Holland, 1975) or alternatively, a “chromosome” (Schaffer, 1987). In most

cases the initial population is generated randomly. After creating an initial population, each

string is then evaluated and assigned a “fitness” value.

The notion of evaluation and fitness are sometimes used interchangeably. However, it

is useful to distinguish between the evaluation function and the fitness function used by a genetic

algorithm. The evaluation function or objective function provides a measure of performance with

respect to a particular set of parameters. The fitness function transforms that measure of

performance into an allocation of reproductive opportunities. The evaluation of a string

representing a set of parameters is independent of the evaluation of any other string. The fitness

of that string, however, is always defined with respect to other members of the current

population.

In the canonical genetic algorithm, fitness is defined by where is the evaluation

associated with string i and f is the average evaluation of all the strings in the population. Fitness

ff i / if

 38

can also be assigned based on a string’s rank in the population (Baker, 1985; Whitley, 1989) or

by sampling methods, such as tournament selection (Goldberg, 1990).

It is helpful to view the execution of the genetic algorithm as a two stage process. It

starts with the current population. Selection is applied to the current population to create an

intermediate population. Then recombination and mutation are applied to the intermediate

population to create the next population. The process of going from the current population to the

next population constitutes one generation in the execution of a genetic algorithm (Figure 12).

Goldberg (1989) refers to this basic implementation as a Simple Genetic Algorithm (SGA).

 Selection Recombination

Individual 1 Individual 1 Offspring 1

Individual 2 Individual 2 Offspring 2

Individual 3 Individual 2 Offspring 3

Individual 4 Individual 4 Offspring 4

 … …

 …

Individual pop_size … Offspring pop_size
Current Generation t Intermediate Generation t Next Generation t+1

Figure 12 : The generation process in a typical GA
iteration

4.2. Encoding

The encoding of a possible solution is called genotype. In our proposed system the

genotype consists of the probability parameters associated with the rules in the grammar. The

floating point numbers from the range [0,1] are used. The length of the genotype depends on the

number of rules in the given grammar structure. The phenotype is a possible solution in a given

genotype. A possible genotype in our system can be the parameter set indicated inside curly

braces for the following SCFG:

 39

<S> : <baseA> <S-and-baseA> {0.054261}
 | <baseA> <S-and-baseC> {0.054726}
 | <baseA> <S-and-baseG> {0.031067}
 | <baseA> <S-and-baseU> {0.025713}
 | <baseC> <S-and-baseA> {0.051464}
 | <baseC> <S-and-baseC> {0.048842}
 | <baseC> <S-and-baseG> {0.032937}
 | <baseC> <S-and-baseU> {0.043907}
 | <baseG> <S-and-baseA> {0.043119}
 | <baseG> <S-and-baseC> {0.009975}
 | <baseG> <S-and-baseG> {0.033629}
 | <baseG> <S-and-baseU> {0.064802}
 | <baseU> <S-and-baseA> {0.056856}
 | <baseU> <S-and-baseC> {0.074478}
 | <baseU> <S-and-baseG> {0.098345}
 | <baseU> <S-and-baseU> {0.030334}
 | <base> <S> {0.009047}
 | <S> <base> {0.003038}
 | <S> <S> {0.046698}
 | A {0.072100}
 | C {0.081618}
 | G {0.017935}
 | U {0.015111};
<S-and-baseA> : <S> <baseA> {1.000000};
<S-and-baseC> : <S> <baseC> {1.000000};
<S-and-baseG> : <S> <baseG> {1.000000};
<S-and-baseU> : <S> <baseU> {1.000000};
<baseA> : A {1.000000};
<baseC> : C {1.000000};
<baseG> : G {1.000000};
<baseU> : U {1.000000};
<base> : A {0.194008}
 | C {0.226079}
 | G {0.230061}
 | U {0.349853};

The grammar rules need to follow the property that the sum of probabilities must be 1

for the rules that have the same nonterminal on the left hand side. The phenotype needs to be

repaired after every mutation or recombination process to conform this property. This procedure

adds to our program extra linear time in the number of rules. The procedure can be explained as:

)(
)()(

,
YZXP

YZXPYZXP

ZY
→

→
=→′
∑

where is the repaired value for the probability associated with the rule

. The procedure simply normalizes the parameter according to the sum of the

probabilities associated with the rules with the same left-hand-side nonterminal.

)(YZXP →′

YZX →

 40

4.3. Fitness Function

The fitness function is a way to describe the dynamics of genotype frequencies in

populations of reproducing individuals. The fitness function measures the (potential for)

reproductive success of any individual in a given environment. In our system the fitness function

measures the likelihood of the grammar parameters to generate some given sequences. Here the

system can be adjusted to a set of sequences by simply adding the likelihood values together in

order to achieve a more general result. By using this approach the parameters can be adjusted to

a general structure where we can predict unseen secondary structures with the same grammar.

This approach can also be seen as profiling where we try not only to find the structure of a

sequence but also construct a generic structure template for a family of RNA sequences.

We have chosen the Inside Algorithm described in Section 2.4, to evaluate an

individual since this algorithm gives the total probability to generate the sequence with the given

parameter set. The values coming from this evaluation function are then transformed to fitness

values. Here we are using linear scaling which creates fitness values for each individual in a

linear proportion of their evaluation function results, the returning value from the Inside

Algorithm.

In building up our system we have used several fitness function schemes slightly

different from each other. Initially we have used the CYK algorithm that finds the optimal

probability to derive a sequence from a given grammar. This algorithm is also a dynamic

programming approach similar to Inside Algorithm, however it is finding the maximum

probability among different derivation trees instead of summing them (Section 2.5). The results

we get from this approach are not reliable enough since the parameter set is not guaranteed to

conform to the other sequences sharing similar structures (structural homology). GA can

converge to a parameter set where the CYK result would be optimum but the model would not fit

to other sequences. In addition the parameter set could be adjusted in a way that the non-

canonical base pairs have higher probabilities to attain a high derivation probability although it

would not be a realistic model conflicting with the biological rules creating RNA sequences.

Therefore Inside Algorithm is working better for the objective function.

http://www.iscid.org/encyclopedia/Genotype
http://www.iscid.org/encyclopedia/Measure

 41

Next, we have used single sequence to train the GA. In this approach the system has

converged to parameter sets satisfying the training sequence. Homology search on the other hand

would give biased results since the output grammar is only evaluated on one sequence.

Finally we have decided to use a set of sequences evaluated by Inside Algorithm. The

fitness value is calculated by adding up the output values coming from the objective function

executed on each sequence.

4.4. Selection and Replacement Methods

Selection is a genetic operator that chooses a chromosome from the current

generation’s population for inclusion in the next generation’s population. Before making it into

the next generation’s population, selected chromosomes may undergo crossover and / or

mutation (depending upon the probability of crossover and mutation) in which case the offspring

chromosome(s) are actually the ones that make it into the next generation’s population. Currently

we are using Roulette Wheel Selection. This is a selection operator for which the chance of a

chromosome getting selected is proportional to its fitness (or rank). This is where the concept of

survival of the fittest comes into play.

Use of this method nevertheless gives rise to two types of problems: A super-individual

being too often selected, the whole population tends to converge towards its genome. The

diversity of the genetic pool becomes too reduced to allow the genetic algorithm to progress. In

addition, with the progression of the genetic algorithm, the differences between fitness are

reduced. The best ones then get quite the same selection probability as the others and the genetic

algorithm stops progressing.

In order to solve these problems, it's necessary to transform the fitness values using

suitable scaling schemes. Apply a linear transformation to each fitness (i.e.) is the

most common scaling technique. If the fitness scores can have negative values, then linear

scaling would not work correctly, this is the case in our system. To overcome this problem we

have used the trivial technique- adding a constant value to the fitness values in order to convert

them positive since all of the fitness values are originally negative. Since this constant value can

bfaf +=′ .

http://www.nd.com/products/genetic/crossover.htm
http://www.nd.com/products/genetic/mutation.htm

 42

not be determined in some cases, we have also used a more sophisticated scaling suitable for

negative fitness values which is called Sigma Truncation. This method scales based on the

variation from the population average and truncates arbitrarily at 0. The mapping from objective

to fitness score for each individual is given by the equation where is the

average fitness, σ is the population standard deviation and c is a reasonable multiple of sigma

(usually 1 ≤ c ≤3).

).ˆ(' σcfff −−= f̂

Since we are using Steady State Genetic Algorithms schema in our system, replacement

strategy also plays an important role. A constant percentage of the population is replaced with

the offspring while others are copied directly to the next population. The worst individuals are

replaced with the given replacement percentage.

4.5. Genetic Operators

The function of genetic operators is to cause chromosomes created during reproduction

to differ from those of their parents. They must be able to create configurations of genes that

were never existent before and that are likely to perform well.

When genetic operators are used with reproduction plans, the result is a surprisingly

sophisticated set of adaptive plans. The two most commonly used genetic operators are mutation

and crossover. Briefly mutation operator causes movements in the search space, in addition it

restores the lost data. In some EAs especially the case of Evolutionary Strategies (ES) mutation

is the only genetic operator, where it modifies a solution with random some changes in the

phenotype. Crossover on the other hand aims to combine the above-average building blocks and

tries to form the schemata that lead to the optimal solution.

 43

4.5.1. Heuristic Crossover

The heuristic crossover (Wright, 1991) is a recombination operator that assumes the

better solution vector exists in the direction of the better parent vector. The movement in the

search space has a bias towards the better parent. We are choosing a random number from a

uniform distribution such as . Using two parameter vectors, x and y, we compute z =

p.(x - y) + x. If z satisfies all constraints, we use it as an offspring. Otherwise we choose another

p value and repeat this process until a preset maximum number of trials has been reached. If

there are no feasible individuals coming out of the crossover, we set z equal to the better of x and

y. In this fashion we produce two z vectors namely two children out of two parents.

)1,0(~ Up

4.5.2. Gaussian Mutation

Gaussian mutation adds a random value from a Gaussian distribution to each element

of an individual’s vector to create a new offspring. The random number from the probability

density function shown below is chosen.

22 2/)(

22
1)(σµ

πσ
−−= xexf

where µ is the location parameter and σ is the scale parameter.

The random number from [-1,1] is added to the current value of the gene which is

chosen by the mutation probability preset by the program. The Gaussian mutation tends not to

change the values drastically so that we aim to preserve the gene distribution in most cases to

avoid destructive effect of mutation. The mutation probability is decreased gradually as the

generations go since the solutions are expected to be converging to optima and we do not want to

jump to other areas in the search space.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm

 44

5. EMPIRICAL AND THEORETICAL ANALYSIS

5.1. Simple Sequence Analysis

In our experimentation we have started with artificially generated or parts of real

sequences with simple secondary structures. We wanted to test the system with two different

grammar models, a general one and a more specific one. The results are better with a specific

grammar describing the secondary structure with more restrictions. The population replacement

parameter is set to 0.6, mutation probability is 0.005 and the crossover probability is 0.9 if not

indicated otherwise. These parameters are set to the most commonly used values. Since we are

using heuristic crossover as the only operator, we are compensating the greediness of the

recombination by applying a relatively small replacement rate.

The procedure of the experiments can be summarized as:

1) Create a sequence set for training

2) Create a grammar topology

3) Estimate SCFG parameters with GA model

4) Predict the optimum secondary structure using the output grammar by CYK

algorithm

5) Analyze time, accuracy and derivation probability

5.1.1. Basic Structure (one stem)

Below output is from the case where the grammar in general allows every kind of

secondary structure with parallel and nested stems. The output grammar is given as input to the

CYK optimum derivation prediction and the stem of the sequence is predicted to be longer than

expected (Figure 13). When the parameters are observed carefully, the rules which represent the

 45

Watson-Crick pairs have higher probability than the other rules which is an expected result. In

this experiment there is only one training sequence used as training. Note that the more

sequences we have, the more accurate prediction we will get for the unknown data. The incorrect

prediction results from the fact that training does not distinguish any pair, any stem or loop

structure. The example is trying to estimate parameters of a grammar that has 35 rules and thus

has an encoding scheme of 35 alleles. Looking more closely to the RNA sequence of length 19

(w1), the original annotation has a stem of length 7 and a loop of length 5 (Figure 14). After GA

found the best grammar fitting the sequence, the stem is predicted to be longer by the CYK

algorithm. Notice that there is another Watson-Crick pair (A-U) inside the loop and the output

grammar has combined it with the existing stem. This result is inevitable considering the fitness

of this grammar since it gives the optimum parameter set in which the case extending the stem

with a payoff for a non-canonical pair.

 46

Figure 13 : Output for simple sequence w1 with a
general grammar.

 47

Figure 14: Comparison of the original and predicted
output when a generic grammar model is used.

In Figure 15 the output using a more specific grammar for the same sequence (w1) is

shown. The grammar is constructed to permit only this kind of structure and the accuracy with

this grammar topology is 100%.

 48

Figure 15 : Output for simple sequence w1 with a
specific grammar.

 49

In another experiment, our system is tested with another basic stem-loop structured

sequence (w2) with the grammar allowing this conformation. The grammar has 52 rules this time

and the sequence is a partial tRNA sequence having a stem of length 5 and a loop of length 7 this

time. The output of the program is indicated in Figure 16. Like the previous example, the

conformation is found precisely.

 50

Figure 16 : Output for simple sequence w2 with s
specific grammar.

 51

The EM estimation for w2 and the same grammar structure has found the secondary

structure correctly but with a lower probability and in longer time. It has shown that our

framework can outperform the other approach both by the means of time and accuracy. The

summary of this experiment is shown in the chart in Figure 17.

 GA Estimation EM Estimation

CYK Probability in logarithm -23.754328 -27.068858

Time spent 20.539 40.173

Figure 17 : Comparison chart for GA and EM

In Figure 18, a part from the derivation output from the CYK traceback is shown. For

the sequence and the estimated grammar we can show the derivation tree by our program. In this

notation each step of recursion is shown between sections divided by asterisks. The first line a

section indicates the rule used for that subsequence, the second line indicates the logarithm of the

probability to generate that subsequence and the last line shows the subsequence with its

locations in the whole.

Figure 18 : A part from the output of CYK traceback

 52

5.1.2. Basic Structure (two stems)

We have tested our system with the general grammar again but this time with a

sequence which includes two stems. In this type of structure since the grammar has only one

nonterminal for generating the stem (i.e <S>), the parameters will have a tendency to converge to

the values where the grammar can produce both stems. However if the length of the stems are

different the parameters will lead to an average length of a stem that can result with an incorrect

prediction of the structure. In the example below, we are using a sequence which has two stems

having nearly the same lengths. The output is shown in Figure 19. As expected, the system

predicts the structure correctly but with 95% accuracy since the non-canonical pair A-G is added

to the stem (Figure 20).

 53

Figure 19 : Output for a two-stem sequence with a
general grammar.

Figure 20 : a) Predicted structure b) Original structure

 54

5.2. Complex Sequence Analysis

In order to test our system with real data we have selected to work on tRNA sequence

data, a molecule whose structure has been highly studied and is well known.

tRNA is the information adapter molecule for the organisms. It is the direct interface

between amino-acid sequence of a protein and the information in mRNA. Therefore it decodes

the information in DNA. There are more than 20 different tRNA molecules known based on the

amino acid they carry. All tRNA's from all organisms have a similar structure, indeed a human

tRNA can function in yeast cells. Typically there are 4 stems and 3 loops in a tRNA molecule

(Figure 21). The part which is called variable loop differs in length in many organisms but in fact

it is not a loop structure, just a strand between to stems.

Our GA model is used to predict the structures of the tRNA sequences especially Ala-

tRNA from the Homo sapiens genome with a training set of other 7 tRNAs. These molecules are

known with their structures found by tRNAscan-SE application (Lowe & Eddy, 1997).

tRNAscan is a successful prediction program which had given conforming results with known

structures found with X-ray and NMR experiments. We have used a grammar topology with 219

rules which can be applied to any type of tRNA structure. Our program has given 94% accuracy

in the structure prediction with population size 100 and 200 generations. The majority of the

errors are false positives where the predicted structure has longer stems. This problem results

from the fact that non-canonical pairs can have higher probabilities then expected since the

contribution of those rules are determined by the rest of the rules having the same nonterminal on

the left hand side. If those rules are not used frequently to form the stems or the loops, these non-

canonical pairing rules can be rewarded by a small amount of probability. In fact, in a random

search algorithm such as GAs this can be an expected result.

http://www.genetics.wustl.edu/eddy/tRNAscan-SE/

 55

Figure 21 : tRNA general structure

The output annotation is indicated below. In Figure 22 and 23 the derivation trees of the

prediction and the correct structure is shown by the output of our program and a diagram

respectively. Notice the shifted stem (indicated by B-b) and the longer stem (indicated by D-d)

which are the 4 erroneous predicted nucleotides. Here the error comes from the result we have

encountered in the simple example too which is estimating the probability of a non-canonical

pair more than it should be. Both of the incorrect regions include this pair and in the grammar the

reason can be observed with a slightly larger probability assigned to the corresponding rule.

 56

Figure 22 : Annotation output for Ala tRNA

Figure 23 : a) predicted derivation tree of Ala tRNA
b) original derivation tree for the same molecule

5.3. Termination Condition

The running time of our system depends highly on the termination condition which is

based on the number of generations that GA evolves. Determining the generation of convergence

can be done by observing the average fitness and the fitness of the best individual for certain

generations. The example below is taken from the evolution of a grammar topology with 56 rules

which predicts a stem-loop structure. The population size is 100. In Figure 24, you can observe

the convergence after the 60th generation when the best individual is attained and the average

fitness of the population stops fluctuations.

 57

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of Generations

Fi
tn

es
s

Sc
or

e

Best Fitness
Average Fitness

Figure 24: Fitness values converging through
generations

Once convergence is observed the GA can run several times with the optimized number

of generations with more training sequences simply adding their fitness values. Similarly for a

grammar with similar topology, having close number of nonterminals and rules, GA can run with

the optimized value to save running time for the other evolutions.

In Figure 25 the number of generations needed for convergence is shown as a function

of population size. It is evident that number of generations until convergence increases by the

population size both for simple and real sequences. The convergence in these experiments is

determined by the generation where best individual is get and also observing minor changes after

we attain the best individual. The Ala tRNA results are not shown for population sizes bigger

than 350 because the running time is longer than the EM method for those high constant values.

 58

Number of generations until convergence

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200

Population

G
en

er
at

io
ns

Simple sequence
Ala tRNA

Figure 25 : Number of generations until GA converges

5.4. Grammar Construction

The construction of the context-free grammar which will be used to model the

secondary structure or a consensus structure is independent from the evolution of its parameters.

The grammar puts a lot of restrictions on the structure space that it models with its topology.

Creating a generic grammar is not a solution to cover all possible derivations or conformations

because the parameter set may converge to values that are actually average values for certain

stem-loop structures. For instance if there are nested stems with lengths m and n in an RNA

sequence, instead of having different rules for those stems, the generic grammar will have the

parameters set with a tendency to create a single stem which has a length of (m+n)/2 nucleotides.

 59

More formally, if the sum of probabilities associated with the rules generating terminals with the

same nonterminal on the left-hand side is p , then the rules with the same non-terminal on the

left-hand side and some other nonterminals on the right-hand side will have an aggregate

probability of (1-p). Statistically the average length of the subsequence rooted at this nonterminal

will be 1/(1-p).

 Constructing a grammar can be approached differently according to the problem

domain. If we know the structure of the group of sequences and we are trying to find their

consensus structure, there are systematic ways to generate the grammar starting form the start

symbol and then for each region (stem or loop) creating new nonterminals and combining them

at the right-hand side of the rules. Therefore once we know the structure we can generate the

grammar following the regions. Note that there are infinitely many grammars that can model the

same group of sequences. Being more specific or more general depends on the amount of

flexibility you want to have when you are searching for the consensus structure.

In the second problem domain where we do not know the consensus structure and we

are trying to predict the secondary structure, the grammar would be constructed with a more

general topology. In such a case, one GA would not be sufficient enough to be sure that the

prediction is correct. Therefore out of several runs, the most similar predictions should be

considered as the output since GA would have converged to a parameter set where the

conformation has an optima but the prediction is not the most accurate one. This case can occur

especially the population size and the number of generations are not set carefully. The similarity

between the predictions can be determined by a scoring schema and the voting method can

decide which prediction and which parameter set is the optimum one.

 60

5.5. Time Issues

5.5.1. Running Time

The time complexity of our system is governed by the fitness function to find the total

probability of derivation of the given sequence by Inside Algorithm. When compared to the

efficient EM estimation algorithm (O(L3M3)), the complexity of our system (O(L3M2)), has a

difference by a factor of number of nonterminals. Here L is the length of the sequence and M is

the number of nonterminals. Note that for genetic algorithms it is nearly impossible to estimate

the time complexity precisely since the constants we assume are closely related to the problem

and they are subject to change. The time complexity however is not enough to make the running

time comparison since the constant values differ for both algorithms. In our system, the constant

values which are the population size and the number of generations can be changed in order to

attain an optimum running time. When we compare the simple sequence prediction where both

algorithms have 100% accuracy, our system has outperformed the EM program by the ratio of

approximately 2/3. A complex structure analysis can not be compared because the space

complexity of the EM algorithm was too high to run it on our test machine. On the other hand,

note that the EM program using was originally designed for considering pseudoknot cases too

and the grammar handling module is more complex than ours.

As we have mentioned in section 5.3 selecting the termination condition affects the

running time. In addition population size should be selected to cover the search space as much as

possible but we should avoid a need for a larger number of generations. The population size is

selected depending on the size of the grammar and since there is no definite rule for selecting it

we have done experiments comparing the accuracy percentage in the prediction in order to

decide the correct size (Figure 26). The number of generations in these experiments is adjusted to

observe convergence in GA.

 61

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

Population Size

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

Simple stem-loop
Ala-tRNA

Figure 26 : Accuracy of prediction as a function of
population size.

5.5.2. Optimizing the Inside Algorithm

We have investigated possible speed-up methods for the Inside Algorithm. The idea

can be applied to CYK and other dynamic programming approaches that uses SCFG too. The

motivation comes from the fact that the three-dimensional matrix where we store sub-solutions

has some cells that do not need to be computed. This invalidity comes from the fact that the

grammar is under constraint to generate certain subsequences. Therefore we can apply a

preprocessing phase in order to filter out the invalid cells in the matrix.

Suppose is the rule with the start symbol on the left-hand side. When we

fill the matrix we are calculating every subsequence that can be rooted at although we know

the only subsequence that can generate is the whole sequence. Similarly we can determine the

baSS 10 →

0S

0S

 62

ranges for each non-terminal by looking at the rules and eliminate the invalid cells to save

computation time.

Moreover the grammar structure and the probability distribution suggest us to take

advantage of heuristics about the average length of a loop. We have mentioned this property in

Section 5.4. Assume there is a rule with associated probability p, generating a recursive loop

such as . Since the other rules that have the same nonterminal on the left-hand side

has the probability q=1-p, the loop generation probability is derived as:

}{paSS →

1
1

2121 1
1

1)...1(.. +
+

−=
−
−

=++++=++++ n
n

nn p
p

pqpppqqpqpqpq

By using the heuristics to bound this value to a threshold we can estimate n, the length

of the loop from this formula. Therefore the valid cells can only be calculated for some range

around the average length of the loop.

The tests done with the speed-up method resulted in ½ running time for the CYK

algorithm which includes computing only the ¼ of the all possible cells in the matrix. With the

speed-up of the Inside Algorithm our system will benefit with the same ratio of time gain too.

 63

6. CONCLUSION

6.1. Concluding Remarks

In this thesis, the use of genetic algorithms in stochastic context free grammar

parameter estimation is presented. The estimation is used in the domain of bioinformatics

specifically RNA secondary structure prediction. Our results show that using a randomized

search technique such as genetic algorithms is more flexible, scalable and efficient in terms of

time and memory compared to the other best known technique with EM algorithm. On the other

hand there is a trade off for accuracy in prediction, especially for complex structures.

The issue here is deciding the trade-off between time and accuracy. For complex

structures we need to design complex grammars which results in large sized genotype in the GA.

Since there are more parameters the convergence needs more generations and the population size

is increased in that manner too. The flexibility can be an advantage in this case. If a near optimal

solution can be enough for the researcher, the GA can be run for a shorter time and the best

individual seen throughout the generations can be used to apply the prediction algorithm without

reaching convergence. In fact this is the case where homologous sequence search is done. In that

case time is a more significant issue than accuracy over a certain percentage. Our results show

that we can fulfill those requirements to find near optimal solutions in the search space.

GAs can be used for any optimization problem such as ours which is to find the optimal

secondary structure. The EM solution for the same problem has a tendency to fall to local optima

since it starts with a single initial parameter set and iterate over those values. Since the GA starts

the search aiming to cover the whole search space it is always more likely to find the global

optimum.

Convergence is another aspect in a GA where the termination condition should be

determined carefully. In our experiments for a certain size of a grammar, we have observed the

number of generations where GA converges and then reduced the number of generations around

that amount so that for other training data we can have an optimum running time for estimation.

 64

The flexibility of this framework can be extended for prediction of RNA secondary

structures with pseudoknots, protein folding modeling with grammatical approaches, homology

and database search for biological sequences. Further directions are discussed in the next section.

In addition, the domain can be shifted to other grammatical modeling problems other than bio-

informatics where only the fitness function would need to be changed in the entire framework.

6.2. Future Directions

The GA for stochastic grammar estimation can be improved in various ways in order to

accomplish faster estimation and more accurate prediction. In each paragraph we will discuss a

possible EC approach for the same problem domain.

Firstly, the termination condition can be satisfied dynamically where the GA can decide

when to stop the generation process. Since GAs explore the search space first and then exploit

the optima regions, the convergence can be detected by observing the best individual in the

population for every generation. The termination can be determined by taking the average of the

best individuals (or the average fitness of the population) for a certain window size among the

generations. If there is no significant change in the fitness values for those individuals, that

concludes that GA is exploiting the optimum solution and there is no need iterate more. Again

the accuracy-time trade-off decision will be left to the user namely the molecular biology

researcher who would know the domain of the application.

Secondly, the grammar topology can be designed in a more systematic way so that it

can cover all the instances in the training set and be as specific as possible. By this way, the

solution to the problem of finding the class of a given sequence would not result with false

positives. Since the conserved structure percentage is higher than the non-conserved parts in a

group of sequences giving a false negative result has a lower probability in this case. Therefore

grammar construction should be as specific as possible however it should contain every possible

secondary structure and would be in optimized size in order to keep the genotype as short as

possible.

 65

Secondary structure prediction is not the only problem which can be solved with the

grammatical approaches. Homology finding and database search are also important issues in the

field. Suppose we have a family of related RNA’s , e.g. transfer RNAs or group I catalytic

introns, which share a common consensus secondary structure as well as some primary sequence,

and we want to search a sequence database for homologous RNAs. The SCFG based covariance

models (CM) which are counterparts of profile HMM’s in HMM modeling, specify a repetitive

tree-like SCFG architecture suited for modeling consensus RNA secondary structures (Eddy &

Durbin, 1994; Sakakibara et. al., 1994). Using CM is a powerful tool to find the consensus

structures given a family of sequences. In addition the same model can be used for classification

purposes where we are trying to find which family a sequence belongs to. The grammar

parameter estimation is a crucial process in this model too. Our framework is also suitable for

CM because other than converging to the global optima, after a certain number of generations the

parameter set will be conforming the training set that can be used to model the generic grammar.

This grammar will represent the consensus structure. In addition the fitness value will indicate

the amount of homology (i.e. in percentage) of the given sequence with the consensus

represented by the grammar.

Stochastic context-free grammars are capable of representing most of the secondary

structures for RNA sequences however they are incapable of representing pseudoknots. Cai et.

al. (2003) have presented the parallel communicating grammatical systems to include structures

with pseudoknots with a basic extension to SCFG modeling. Our fitness function can be

modified to calculate the maximum likelihood with this approach so that our prediction can

include pseudoknots too.

Fast messy GAs can be used for the same problem domain. Our work uses the heuristic

crossover where the building block hypothesis is not working like the way it is applied in

conventional recombination operators. Since fast messy GAs use the locus and allele information

they can take the advantage of grouping rules with the same non-terminal on the left hand side.

Moreover, the rules which have common non-terminals on the right hand side can be grouped as

a subgroup too. The fmGA can generate the building blocks where some rule groups would

result with above-average fitness values and they can be preserved.

Another future research can be using genetic programming (Koza, 1992) where instead

of solving a problem, and instead of building an evolution program to solve the problem, the

 66

evolution will search the space of possible programs for the best grammar. In genetic

programming the hierarchically structured computer programs are evolved from the hyperspace

of valid programs. These programs can be viewed as a space of rooted trees. From a grammatical

way the trees can represent the derivation trees of biological sequences. In this case we will be

creating the most fit derivation tree for a specific sequence. This tree will be consisting of rules

used to form that sequence and the frequency of each rule can determine its probability

parameter for the output estimation.

 67

7. REFERENCES

Baker, J.E. (1985). Adaptive Selection Methods for Genetic Algorithms. In J. J. Grefenstette,
editor, Proceedings of an International Conference on Genetic Algorithms and Their
Applications, pages 100-111, Hillsdale, New Jersey.

Baum, L. (1972). An inequality and associated maximization technique in statistical estimation
for probabilistic functions of Markov processes. Inequalities, 3:1-8.

Cai, L., Malmberg, R.L. and Wu, Y. (2003). Stochastic modeling of RNA pseudoknotted
structures: a grammatical approach. Proceedings of ISMB'03 and Bioinformatics 19(s1) i66-i73.

Clark, David E. and Westhead, David R. (1996). Evolutionary algorithms in computer-aided
molecular design. Journal of Computer-Aided Molecular Design, 10(4):337—358.

Cuff, J.A. & Barton, G.J., (1999). Evaluation and improvement of multiple sequence methods for
protein secondary structure prediction. Proteins, v.4, pp. 508-519.

Desjarlais, J. R. and Handel T. M. (1995) . De Novo Design of the Hydrophobic Cores of
Proteins . Protein Science 4, 2006-2018.

Durbin, R., Eddy, S., Krogh, A, & Mitchison, G. (1998) . Biological Sequence Analysis,
Cambridge University Press, Cambridge.

Eddy, S.R. and Durbin, R.(1994). Introduces the use of stochastic context free grammar methods
for RNA sequence/structure analysis .Nucl Acids Res. 22:2079-2088.

Eddy, S.R. & Rivas, E. (1999). A Dynamic Programming Algorithm for RNA Structure
Prediction including Pseudoknots, J. Mol. Biol., 285:2053-2068.

Fogel, D. B. (2000). Evolutionary Computation, Toward a New Philosophy of Machine
Intelligence, 2 ed .IEEE Press.

Fogel, D. B., Corne D.W. (2003). Evolutionary Computation in Bioinformatics. Morgan
Kaufmann.

Ghirlanda, G., Lear, J.D., Lombardi, A. and DeGrado, W.F. (1998). From synthetic coiled coils
to functional proteins: automated design of a receptor for the Calmodulin-binding domain of
calcineurin. J. Mol. Biol., 281, 379-391.

Goldberg, D.E. (1990). A note on Boltzmann tournament selection for genetic algorithms and
populationoriented simulated annealing, Complex Sys. 4, 445-460.

 68

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA,

Goldberg, D.E., Deb, K., Kargupta, H. and Harik, G. (1993). Rapid accurate optimization of
difficult problems using fast messy genetic algorithms. In S. Forrest, editor, Proc. 5th Int'l
Conference on Genetic Algorithms, pages 56-64.

Greenwood, G. (1999). Revisiting the Complexity of Finding Globally Minimum Energy
Configurations in Atomic Clusters. Zeitschrift für Physikalische Chemie Vol. 211, 105-114.

Guigo R., Knudsen S., Drake N., and Smith T. (1992). Prediction of gene structure. J. Mol. Biol.
226, 141-157.

Holland,J. (1975). Adaption in natural and artificial systems, The University of Michigan Press.

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with
applications in biology, control and artificial intelligence, Complex adaptive systems, MIT Press,
Cambridge, MA.

Konig R, Dandekar T. (1999). Improving genetic algorithms for protein folding simulations by
systematic crossover. Biosystems., 50(1):17-25.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection, Cambridge, MA, USA: MIT Press.

Landavazo, D.G., Fogel, G.B., and Fogel, D.B.. (2002). Quantitative Structure-Activity
Relationships by Evolved Neural Networks for the Inhibition of Dihydrofolate Reductase by
Pyrimidines. BioSystems, Vol. 65:1, pp. 37-47.

Lari, K. and Young, S. J. (1990). The estimation of stochastic context-free grammars using the
Inside-Outside algorithm. Computer Speech and Language, 4:35-56.

Lowe, T. and Eddy, S.R. (1997). tRNAscan-SE: a Program For Improved Detection of Transfer
RNA genes in Genomic Sequence Nucl. Acids Res., 25:955-964.

Michaud, S. R., Zydallis, J. B., Strong, D.M. and Lamont, G. B. (2001) Load Balancing Search
Algorithms on a Heterogeneous Cluster of PCs. IN Tenth SIAM conference on Parallel
Processing for Scientific Computing-pp01, Portsmouth, Virginia.

Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J.
(1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free
energy function. J. Comput. Chem., 19(14):1639--1662, (Goldberg et al., 1989)

N. Chomsky. (1959). On certain formal properties of grammars. Information and Control,
2(2):137—167.

ftp://ftp.genetics.wustl.edu/pub/eddy/papers/tRNAscan-SE-paper.ps.tar
ftp://ftp.genetics.wustl.edu/pub/eddy/papers/tRNAscan-SE-paper.ps.tar

 69

Notredame,C. Holm,L. and Higgins,D.G. (1998) . COFFEE: an objective function for multiple
sequence alignments. Bioinformatics, 5, 407-422.

Porto, V. W., Fogel, D. B. and Fogel, L. J. (1995). Alternative Neural Network Training
Methods, IEEE Expert, volume 10, no.4, pp. 16-22.

Qian N, Sejnowski T J. (1988). Predicting the secondary structure of globular proteins using
neural network models. Journal of Molecular Biology, 202, 865-884.

Qian, N. and Sejnowski, T. J. (1988). Predicting the secondary structure of globular proteins
using neural network models. J. Mol. Biol., 202:865-884.

Riis S K, Krogh A. (1996). Improved prediction of protein secondary structure using structured
neural networks and multiple sequence alignments. Journal of Computational Biology, 3, 163-
183.

Ripley B D (1996): Pattern Recognition and Neural Networks, Cambridge University Press.

Rost B, Sander C (1993). Prediction of protein secondary structure at better than 70% accuracy.
Journal of Molecular Biology, 232, 584-599.

Sakakibara, Y. (1992). "Efficient Learning of Context-Free Grammars from Positive Structural
Examples", Information and Computation 97, p23-60.

Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjolander, K., Underwood, R. C. and
Haussler, D. (1994) . Stochastic Context-Free Grammars for tRNA Modeling, Nucleic Acid Res.
22, 5112-5120.

Sakakibara, Y., Kondo, M. (1999). Ga-based Learning of Context-free Grammars Using Tabular
Representations. Proceedings of 16th International Conference on Machine Learning (ICML-
99). 354-360.

Schaffer, D. (1987). Some effects of selection procedures on hyperplane sampling by genetic
algorithms. Genetic Algorithms and Simulated Annealing, chapter 7, pages 89--103. Morgan
Kauffmann Publishers, Inc., Los Altos, California.

Searls, D.B. (1993). The Computational Linguistics of Biological Sequences. In L. Hunter,
editor, Artificial Intelligence and Molecular Biology, pages 47-120. AAAI Press.

Shapiro, B.A. and Navetta, J. (1994). A massively parallel genetic algorithm for RNA secondary
structure prediction. The Journal of Supercomputing, Volume 8, pp. 195-207.

Shapiro, B.A. and Wu, J-C. (1997). Predicting RNA H-type pseudoknots with the massively
parallel genetic algorithm. CABIOS, 13(4): 459-471.

 70

Shapiro, B.A. and Wu, J-C.(1996). An annealing mutation operator in the genetic algorithms for
RNA folding. CABIOS, 12(3): 171-180.

Shapiro, B.A. and Wu, J-C., Bengali, D., and Potts, M. (2001). The massively parallel genetic
algorithm for RNA folding: MIMD implementation and population variation. Bioinformatics
17(2): 137-148.

Snyder,E.E. and Stormo,G.D. (1995) . Identification of protein coding regions in genomic DNA.
J. Mol. Biol. 248, 1--18.

Socci,N., Bialek, W., and Onuchic, J.N. (1994). Properties and origins of protein secondary
structure. Phys Rev E 49, 3400-3443.

Sun, Z., Xia, X., Guo, Q. and Xu, D. (1999). Protein Structure Prediction in a 210-type
Orthogonal Lattice Model: Parameter Optimization in the Genetic Algorithm using Orthogonal
Array. J. Protein Chemistry , 18, 39-46.

Uberbacher, E. C., Xu, Y. and Mural R. J. (1995). Discovering and Understanding Genes in
Human DNA Sequence Using GRAIL. Computer Methods for Macromolecular Sequence
Analysis. September 1995.

Whitley, D. (1989). The genitor algorithm and selection pressure. In Schaffer, J. D., editor,
Proceedings of the Third International Conference on Genetic Algorithms, pages 116--121.
Phillips Laboratories, Morgan Kaufmann Publishers, Inc.

Wilson, C., Gregoret, L. and Agard, D. (1993). Modeling side-chain conformation for
homologous proteins using an energy-based rotamer search. J. Mol. Biol., 229:996-1006.

Wright, A. (1991). Genetic Algorithms for Real Parameter Optimization. Foundations of Genetic
Algorithms 1, G.J.E. Rawlin (Ed.), (Morgan Kaufmann, San Mateo), p.205 - 218.

Yao X. (1999). Evolving Artificial Neural Networks. Proceedings of the IEEE, 87, pp. 1423-
1447.

Zuker, M. (1989). On Finding All Suboptimal Foldings of an RNA Molecule, Science, 244:48-
52.

http://www.princeton.edu/~wbialek/our_papers/socci+al_94.pdf
http://www.princeton.edu/~wbialek/our_papers/socci+al_94.pdf

 71

APPENDIX A

Source Code – GA Driverx

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <time.h>
#include <ga/ga.h> // we're going to use the steady state GA
#include <ga/GARealGenome.h>
#include <ga/GARealGenome.C>

using namespace std;

#define POPSIZE 50 //population size in GA
#define NGEN 50 //number of generations in the evolution
#define PMUT 0.005 //mutation probability
#define PCROSS 0.9 //crossover probability
#define NREP 0.6 //Replacement percentage
#define MAXRULES 50 //Maximum number of rules in the given grammar
#define MAXNONTERMINALS 30 //maximum number of nonterminals in the given
grammar
#define MAXRNALENGTH 200 //maximum lenght of the RNA sequence
#define MINIMUM -10000 //minimum value to initialize the matrix
#define MAXLINE 80 //max characters in a line to read input
#define MAXBASENAME 20 //maximum characters for a base name
#define MAXHEURISTICTRY 30 //maximum trials for heuristic crossover

float Objective(GAGenome &); // This is the declaration of our obj function.
//structure holding chomsky first type rules
struct strule1 {

 int lhs;
 char rhs;
 float prob;
 int rulenum;
};
//structure holding chomsky second type rules
struct strule2 {

 int lhs;
 int rhs1;
 int rhs2;
 float prob;
 int rulenum;
};
//structure for CYK traceback
struct sttrack {
 int rule;
 int k;
};

struct stfindprob {

 72

 int rule;
 float prob;
};

char names[MAXRULES][MAXBASENAME]; //first part are nonterminals second part
are terminals
strule1 rules1[MAXRULES]; //Chomsky in form X-> t
strule2 rules2[MAXRULES]; //Chomsky in form X-> YZ

/* DP DATA STRUCTURES*/

float M[MAXNONTERMINALS][MAXRNALENGTH][MAXRNALENGTH];
sttrack S[MAXNONTERMINALS][MAXRNALENGTH][MAXRNALENGTH];

char rna[MAXRNALENGTH]="";
char rnapaired[MAXRNALENGTH]="";
int rnalength=0;
int numsecondtype=0;
int numfirsttype=0;
int numrules=0;
int numnonterminals=0;
char rnafilename[MAXLINE]="seq.txt";
char gramfilename[MAXLINE]="scfg.txt";
char *outfilename= "out.txt";
FILE *outfile;
char *rnaoutfilename= "ann.txt";
FILE *rnaoutfile;

int nonterminalindex[MAXNONTERMINALS]; //used in GA Reparing to hold the
index value for each nonterminal-rhs should sum to 1

int findnonterminal(char *token) //takes nonterminal string returns its
number
{
 int i=0;
 while (strcmp(names[i],token))
 i++;
 return i;

}

int findterminal(char a) //takes terminal character returns its number if it
can not find adds it
{
 int i=numnonterminals;

 if (a>='A' && a<='Z')
 a = a + ('a'-'A');

 while (names[i][0]>='a' && names[i][0]<='z')
 {
 if (names[i][0]==a)
 return i;
 i++;
 }

 73

 names[i][0]=a;
 names[i][1]='\0';

 return i;

}

void readfiles() //reads the sequence and grammar files
{

 FILE *rnafile, *gramfile;
 char readrna[MAXRNALENGTH];
 char *token;
 char line[MAXLINE];
 char seps[] = " ;{},\t\n";

 int index=0;
 int lhs;
 int rhs1;
 int rhs2;
 float prob;
 int cnrule1=0;
 int cnrule2=0;
 int cnrules=0;
 //int cnnonterminals=0;

 if((rnafile = fopen(rnafilename, "r")) == NULL)
 printf("The file 'rna' was not opened\n");
 else
 printf("The file 'rna' has opened\n");

 fscanf(rnafile, "%s", readrna);

 rnalength= strlen(readrna);

 for (int i=0; i<rnalength;i++)
 {
 if (readrna[i]<='Z')
 readrna[i] = readrna[i] + ('a'-'A');
 }

 strcpy(rna,readrna);

 if(fclose(rnafile))
 printf("The file 'rna' was not closed\n");
 //****************GRAMMAR FILE******

 if((gramfile = fopen(gramfilename, "r")) == NULL)
 printf("The file 'grammar' was not opened\n");
 else
 printf("The file 'grammar' has opened\n");

 74

 while (fgets(line,MAXLINE, gramfile))
 {

 token = strtok(line, seps);

 if (token[0]=='<')
 {

 strcpy(names[numnonterminals],token);
 nonterminalindex[numnonterminals]=index;
 numnonterminals++;
 }
 index++;

 }
 nonterminalindex[numnonterminals]=index;
 rewind(gramfile);

 while (fgets(line,MAXLINE, gramfile))
 {
 cnrules++;

 token = strtok(line, seps);
 if (token[0]=='<')
 {
 lhs= findnonterminal(token);
 token = strtok(NULL, seps); //read '|'
 }

 while(token != NULL)
 {
 token = strtok(NULL, seps);

 if (token[0]>='A' && token[0]<='a')
 {
 rhs1= findterminal(token[0]);
 token = strtok(NULL, seps);
 prob= atof(token);
 rules1[cnrule1].lhs=lhs;
 rules1[cnrule1].rhs=rhs1;
 rules1[cnrule1].prob=prob;
 rules1[cnrule1].rulenum=cnrules-1;
 cnrule1++;
 }
 else

 {
 rhs1= findnonterminal(token);
 token = strtok(NULL, seps);
 rhs2= findnonterminal(token);
 rules2[cnrule2].lhs=lhs;
 rules2[cnrule2].rhs1=rhs1;
 rules2[cnrule2].rhs2=rhs2;
 rules2[cnrule2].rulenum=cnrules-1;

 75

 token = strtok(NULL, seps);
 prob= atof(token);
 rules2[cnrule2].prob=prob;

 cnrule2++;

 }

 token = strtok(NULL, seps);
 }
 }

 numrules=cnrules;
 numfirsttype=cnrule1;
 numsecondtype=cnrule2;

 if(fclose(gramfile))
 printf("The file 'grammar' was not closed\n");

}

stfindprob findprob(int i,int j,int l,int k)
//The total probability of ith nonterminal to create rna[j..k] and
rna[k+1..l] for every rule which has i on lhs.

{
 int a=0;
 int X=i;
 int Y=0;
 int Z=0;
 stfindprob result;
 float curprob=MINIMUM;
 int maxrule=0;
 float maxprob=0;

 for (a=0; a<numsecondtype; a++)
 if (rules2[a].lhs==i)
 {
 Y=rules2[a].rhs1;
 Z=rules2[a].rhs2;

 curprob= M[Y][j][k]*M[Z][k+1][l]*rules2[a].prob;
 maxprob += curprob;

 }
 result.prob=maxprob;
 result.rule=maxrule;
 return result;

}

int findbaserule(int nonterminal,char a) //returns the number of rule which
is nonterminal-->a
{

 76

 int i=0;
 for (i=0;i<numfirsttype;i++)
 if ((names[rules1[i].rhs][0] == a)&&
(rules1[i].lhs==nonterminal))
 {
 return i;

 }

 return 0;

}

float findbaseprob(int nonterminal,char a) //returns the probability of a
rule nonterminal-->a
{

 int i=0;
 float prob=0.0;
 for (i=0;i<numfirsttype;i++)
 if ((names[rules1[i].rhs][0] == a)&&
(rules1[i].lhs==nonterminal))
 {
 prob = rules1[i].prob;
 return prob;

 }

 return MINIMUM; //not reached normally

}

void initialize()
{
 int i=0;
 int j=0;
 int l=0;
 //X->A diagonal is computed for base rules the other values are minimum
value
 for (i=0; i<numnonterminals;i++)
 for (j=0; j<rnalength; j++)
 for (l=j; l<rnalength; l++)
 if (l==j)
 {
 M[i][j][l]= findbaseprob(i,rna[j]);
 S[i][j][l].rule= findbaserule(i,rna[j]);
 }
 else M[i][j][l] = 0;

}

 77

void printRNA(int i, int j) //prints RNA sequence from i to j
{
 fprintf(outfile,"RNA[%d..%d]",i,j);
 for (i;i<=j;i++)
 fprintf(outfile,"%c",rna[i]);

}

//this is the Inside algorithm

float
Objective(GAGenome& g) {
 GARealGenome& genome = (GARealGenome&)g;

 int i=0;
 int j=0;
 int k=0;
 int l=0;
 int m=0;

 float maxprob=0;
 stfindprob curstruct;
 float sum=0;
 float score=0;
 float factor=0;
 float temp;

 //REPAIRING INDIVIDUAL************************************

 for (i=0; i<numnonterminals; i++)
 {
 for (j=nonterminalindex[i]; j<nonterminalindex[i+1]; j++)
 {
 sum+=genome.gene(j);

 }

 factor = (float)1/sum;

 for (j=nonterminalindex[i]; j<nonterminalindex[i+1]; j++)
 {
 temp= genome.gene(j);
 genome.gene(j, temp*factor) ;
 }

 sum=0;

 }

 //COPYING INDIVIDUAL TO THE CURRENT GRAMMAR STRUCTURE
 for (i=0; i<numrules; i++)
 {
 for (j=0;j<numfirsttype;j++)
 if (rules1[j].rulenum==i)

 78

 rules1[j].prob= genome.gene(i);
 for (j=0;j<numsecondtype;j++)
 if (rules2[j].rulenum==i)
 rules2[j].prob= genome.gene(i);

 }

 initialize();

 //MATRIX COMPUTATION

 for (m=1;m<rnalength;m++) //m is the difference between row and column
 {
 for (i=0;i<numnonterminals;i++) //nonterminal slice
 for (j=0;j+m<rnalength;j++) //row
 {
 //Update for Inside: Comment out parts were from CYK
 for (k=j;k<j+m;k++) //trying to find j+m'th column
trying each k inbetween
 {

 curstruct = findprob(i,j,j+m,k);
 maxprob += curstruct.prob;

 }

 M[i][j][j+m]=maxprob;

 maxprob=0;

 }
 }

 //printf("Inside result for current individual:%f\n",M[0][0][rnalength-
1]);

 score = (float) M[0][0][rnalength-1];
 return score;
}

/*
Offspring1 = BestParent + r * (BestParent - WorstParent)
Offspring2 = BestParent

 It is possible that Offspring1 will not be feasible.
 This can happen if r is chosen such that one or more of
 its genes fall outside of the allowable upper or lower bounds.
 For this reason, heuristic crossover has a user settable parameter
(MAXHEURISTICTRY)
 for the number of times to try and find an r that results in a feasible
chromosome.

 79

 If a feasible chromosome is not produced after n tries, the WorstParent is
returned
 as Offspring1.

*/
int
HeuristicCrossover(const GAGenome& g1, const GAGenome& g2, GAGenome*
c1,GAGenome* c2)
{
 GARealGenome& mom = (GARealGenome&)g1;
 GARealGenome& dad = (GARealGenome&)g2;
 GARealGenome& sis = (GARealGenome&)*c1;
 GARealGenome& bro = (GARealGenome&)*c2;
 GARealGenome& best = mom;
 GARealGenome& worst = dad;
 int counter=0;
 int feasable=0;
 float r = GARandomFloat();
 float newvalue;

 if (mom.evaluate()<dad.evaluate())
 {
 best = mom;
 worst = dad;
 }
 else
 {

 best = dad;
 worst = mom;
 }

 sis= best;

 while (counter<MAXHEURISTICTRY)
 {
 feasable=1;
 for (int i=0; i<numrules; i++)
 {
 newvalue= best.gene(i) + r * (best.gene(i) -
worst.gene(i));
 if (newvalue>=0 && newvalue<=1)
 bro.gene(i, newvalue);
 else {
 feasable=0;
 break;
 }
 }

 if (feasable)
 return 1;
 r = GARandomFloat();

 counter++;
 }

 80

 if (!feasable)
 bro = worst;
 printf("No feasable offspring from heuristic crossover\n");

 return 1;
}

void main(int argc, char **argv)
{
 int i=0;
 int j=0;
 int k=0;
 int l=0;
 int m=0;
 char a;
 float maxprob=MINIMUM;

 int maxk=MINIMUM;

 float sumprob=0;

 int popsize = POPSIZE;
 int ngen = NGEN;
 float nrep = NREP;
 float pmut = PMUT;
 float pcross = PCROSS;
 clock_t start, finish;

// cout<<"Enter RNA file name:"<<endl;
// cin>>rnafilename;

// cout<<"Enter grammar file name:"<<endl;
// cin>>gramfilename;

 printf("The file names are hardcoded...\n");

 readfiles();
 printf("The length of the gene is %d\n",numrules);

 for(int ii=1; ii<argc; ii++) {
 if(strcmp(argv[ii++],"seed") == 0) {
 GARandomSeed((unsigned int)atoi(argv[ii]));
 }
 }

// Declare variables for the GA parameters and set them to some default
values.
// Now create the GA and run it. First we create a genome of the type that
// we want to use in the GA. The ga doesn't operate on this genome in the
// optimization - it just uses it to clone a population of genomes.

 81

 GARealAlleleSet alleles(0, 1);
 GARealGenome genome(numrules, alleles, Objective);

 genome.crossover(HeuristicCrossover);
 //genome.crossover(GARealBlendCrossover);
// Now that we have the genome, we create the genetic algorithm and set
// its parameters - number of generations, mutation probability, and
crossover
// probability. And finally we tell it to evolve itself.

 GAParameterList params;
 GASteadyStateGA::registerDefaultParameters(params);
 params.set(gaNpopulationSize, popsize); // population size
 params.set(gaNpCrossover, pcross); // probability of crossover
 params.set(gaNpMutation, pmut); // probability of mutation
 params.set(gaNnGenerations, ngen); // number of generations
 params.set(gaNpReplacement, nrep); // how much of pop to replace each
gen
 params.set(gaNscoreFrequency, 10); // how often to record scores
 params.set(gaNflushFrequency, 10); // how often to dump scores to file
 params.set(gaNscoreFilename, "rnaga.dat");

 GASteadyStateGA ga(genome);
 ga.parameters(params);
 printf("\nGA has started......\n");

 start = clock();
 ga.evolve();
 finish = clock();

 double duration = (double)(finish - start) / CLOCKS_PER_SEC;

 genome = ga.statistics().bestIndividual();
 //COPYING INDIVIDUAL TO THE CURRENT GRAMMAR STRUCTURE

 for (i=0; i<numrules; i++)
 {
 for (j=0;j<numfirsttype;j++)
 if (rules1[j].rulenum==i)
 rules1[j].prob= genome.gene(i);
 for (j=0;j<numsecondtype;j++)
 if (rules2[j].rulenum==i)
 rules2[j].prob= genome.gene(i);

 }

 //CREATING OUTPUT FILE
 outfile = fopen(outfilename, "w");

 fprintf(outfile,"rna %s\n",rna);
 fprintf(outfile,"Popsize:%d Ngenerations:%d replacement:%f mutation
prob:%f cross.prob:%f\n",popsize,ngen,nrep,pmut,pcross);

 82

 fprintf(outfile,"FIRST TYPE \n");
 for (i=0;i<numfirsttype;i++)
 {
 k=rules1[i].lhs;
 l=rules1[i].rhs;
 fprintf(outfile,"%s\t|%s
{%f}\n",names[k],names[l],rules1[i].prob);
 }

 fprintf(outfile,"SECOND TYPE \n");
 for (i=0;i<numsecondtype;i++)
 {
 k=rules2[i].lhs;
 l=rules2[i].rhs1;
 m=rules2[i].rhs2;
 fprintf(outfile,"%s\t|%s %s
{%f}\n",names[k],names[l],names[m],rules2[i].prob);
 }

 printf("\nBest Individual is: \n");
 for (i=0; i<numrules; i++)
 {
 printf("%d)%f\n",i+1,genome.gene(i));

 }

 maxprob = genome.evaluate();
 printf("Max prob in log is: %f\n\n",maxprob);
 fprintf(outfile,"\nInside prob in log is: %f\n\n",maxprob);
 fprintf(outfile, "It took %2.3f seconds to run the GA\n", duration);

 fclose(outfile);

 printf("GA FINISHED...\n");
 cin>>a;

}

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	APPENDIX A

