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ABSTRACT 

This is an interdisciplinary study to examine Atlanta’s urban structure and urban space by 

integrating GIS and spatial analysis. This dissertation is comprised of three separated topics. 

First, in terms of urban structure, the urban land use/land cover structures from 1990 to 2000 are 

analyzed. In order to get classified land use/land cover images, remotely sensed imagery and 

remote sensing technology are also employed. The second topic is to analyze urban poverty by 

applying spatial regression models. Third, in terms of urban space, the spatial distributions of 

population, race, and income are analyzed. During the whole process, GIS techniques and spatial 

statistics cooperate with each other so that some conclusions are derived. Specifically, this 

dissertation (1) adopts a hybrid approach to classify land use/land cover in Atlanta metropolitan 

area; (2) based on classified images, uses spatial metrics and spatial statistics to test if Atlanta’s 

urban structure was more fragmented and had a random or quasi-random increase during the 

1990s; (3) utilizes a series of spatial regression models to identify the factors and their 

contributions to urban poverty; and (4) uses surface maps, spatial cumulative distribution 

function (SCDF), and Kolmogorov-Smirnov (K-S) test to investigate urban space in terms of the 

spatial distributions of total population, Whites, Blacks, Asians, and the median household 



income. The classified images show that urban growth of the Atlanta metropolitan area 

consumed large amount of vegetative lands since forest and grassland/pasture/cropland both 

decreases in areas.  Spatial metrics indicate the urban structure in the Atlanta metropolitan area 

was more fragmented during the 1990s. By Ripley’s K-function and spatial Poisson point 

process model, the argument of random or quasi-random urban growth is not supported. By 

making comparison with conventional multivariate regression model, the spatial regression 

models are found to have higher R2 and better incorporate spatial dependence. While the total 

population and whites were more unevenly distributed, blacks had a process of diverse 

distribution. SCDF of the median household income shows that the urban space of income was 

more polarized because low-income poor were more aggregated and the affluent are still 

segregated.   
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CHAPTER 1 

INTRODUCTION 

 

Research background 

The world has rapidly urbanized during the past decades while the share of urban 

population has increased from 5% in 1900 to nearly 50% in the early 21st century (Maktav et al., 

2005). The rapid development of urbanization across the world has challenged the urban 

planners and managers who need particularly the information on urban land uses/land cover, 

housing characteristics, population growth, etc. Under this circumstance, traditional collecting 

methods (censuses and analog maps) cannot meet the needs for urban management purposes. 

Meanwhile, up-to-date information is particularly needed for the rural-urban fringe since this 

area changes rapidly. Recent developments in geospatial technologies and analytic techniques 

have resulted in many applications of geographical information system (GIS) and spatial analysis 

in various fields, such as forestry, ecology, water, wildlife, and urban studies. 

Satellite images provide great data sources to monitor changes from continental to local 

scales. Urban remote sensing has the advantage that it supplies seamless, geographically 

extensive, and comprehensive built-up structures. As Longley (2002) noted, urban remote 

sensing is an important interdisciplinary field which measures and monitors the complexities of 

urban growth and change. 

With the advances of remote sensing and GIS technologies, new urban changes can be 

detected in a timely and consistent manner (Rogan and Chen, 2004). As an example, Chen 
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(2002) developed a way to use census data in remote sensing and GIS contexts to derive data 

sources for human geography. The integration of remote sensing and GIS has proceeded in the 

following three ways (Treitz and Rogan, 2003; Wilkinson, 1996): (1) GIS can use remotely 

sensed data as input data for spatial analysis; (2) GIS can supply ancillary data in order to 

improve remote sensing data analysis; and (3) GIS data and remote sensing data can be used 

simultaneously for modeling. 

Spatial data analysis deals with spatially referenced data and takes the spatial relationships 

or spatial interactions into account when data are analyzed. One of the reasons that spatial 

analysis has made rapid progress is the proliferation of digital data sources (Longley, 2000). 

Spatial statistics, especially geostatistics, has value for GIS analysis. Geostatistics can better 

understand the uncertainty and error in GIS-based spatial analysis, conduct interpolation and get 

estimates on error bounds, examine error propagation, and conduct data mining and spatial 

generalization (Burrough, 2001). Geostatistics has been applied in remote sensing data analysis 

on improving image classification, monitoring crop growth, conducting interpolation by kriging, 

designing optimal sampling schemes, and comparing two images with different spatial 

resolutions (Oliver et al., 2005). 

During the past decade, there were rapid developments in the fields of remote sensing, GIS, 

and spatial analysis. It is within this framework that this dissertation examines Atlanta’s urban 

structure and urban space by integrating GIS and spatial analysis. This is an interdisciplinary 

study which combines techniques from remote sensing, GIS, and spatial statistics into the 

application of urban studies. In particular, urban structure, urban poverty, and urban space, which 

are three of main topics in the field of urban geography, will be individually addressed in the 

following chapters.    



                                                                                                                                                    
                                                                                                                                                        3

                                                                                                                                        

Study area 

The Atlanta metropolitan area, in this dissertation, comprises 13 counties. Southern 

Fulton County makes up most of the city of Atlanta. The other 12 counties are distributed around 

Fulton County (Figure 1.1). The fact that the Atlanta metropolitan area contains more counties 

than many other metropolitan areas in the U.S. largely reflects suburban sprawl, the result of 

high population growth and the opportunity for development to continue to develop outward 

without encountering legal or geographical barriers (Hartshorn and Ihlanfeldt, 2000). 

Atlanta was the 13th largest metropolis in 1990 in the U.S. and has a relatively high share 

of blacks, which has averaged about 25% over the past 50 years. The figure was 29% in 2000 

(Tables 1.1 and 1.2). Meanwhile, whites and blacks together comprise more than 95% of the 

total population of this large metropolitan region. In the 2000 census, people had the choice of 

identifying with more than one race; thus in 2000 whites and blacks made up about 91% of the 

total population.  

Studies in racial segregation, especially between whites and blacks, have long been a 

focus of geography, demography, and social sciences in general (Alaba and Logan, 1991; Logan 

and Alba, 1993; McKinney and Schnare, 1989; Morrill, 1995; Stoll and Raphael, 2000). These 

studies argued that racial residential segregation accounted for differences in the quality of job 

search, suburbanization processes, and socioeconomic status. Spatial aggregation of whites and 

blacks in the Atlanta metropolitan area are obvious. Within the Atlanta metropolitan area, whites 

have generally settled in the northern suburbs and created an affluent sector in the northern part 

of the Atlanta metropolitan area. Meanwhile, blacks have formed generally poorer 

neighborhoods in many parts of southern Atlanta. 
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Figure 1.1    Study area: Atlanta metropolitan area 
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Table 1.1    The population in Atlanta MSA in 1990 and 2000 
 

 
 
 

 

 

 

 

 

 

 

 

 
Table 1.2    The percentage of whites and blacks in the total population (%) 

 1950 1960 1970 1980 1990 2000 
White 76.52 77.32 78.31 75.08 72.11 62.98 
Black 23.44 22.70 21.66 23.97 25.24 28.92 

  
 

 

 

 

 

  

 

 Total population Whites Blacks 
1990 2959950 2136169 746440 
2000 4112198 2589888 1189179 

Growth rate 38.9% 21.2% 59.3% 

Note: in 2000, the information of whites and blacks refers to one race of 
whites and Blacks 



 6

Data sources 

There are three types of data used in this dissertation, which includes (1) remotely sensed 

imagery; (2) digital orthophoto quarter quadrangles (DOQQs) and digital raster graphics 

(DRGs); (3) metropolitan, county, and census tract boundary files; and (4) demographic and 

socioeconomic data. 

Landsat TM and ETM+ images are the major data sources for land use/land cover 

classification. Landsat TM image in 1990 is from James Holt, a UGA alumnus of geography 

department. Dr. Lo kindly gave his Landsat ETM+ image in 2000 to make a comparison between 

two time spots. When Landsat images are processed, a Universal Transverse Mercator (UTM) 

map projection with GRS 1980, zone north 16 and is used for all digital data. 

DOQQs and DRGs are used for georeferencing and accuracy assessment. DOQQs have 

spatial resolution of 1 m and DRGs have a scale of 1:24,000. DOQQs were borrowed from 

Institute of Ecology, University of Georgia and DRGs were downloaded from Georgia 

Clearinghouse (www.gis.state.ga.us). In order to keep all digital data in the same projection 

system, DOQQs and DRGs are converted into a UTM GRS 1980 NAD 83 zone N16 projection 

system and mosaiced while some of them have different projection systems from UTM. 

In order to better depict the spatial distribution of population, race, and income variables, 

various boundary files at metropolitan, county, and census tract levels are downloaded from 

Georgia Clearinghouse (www.gis.state.ga.us). Again, the UTM projection system as above is 

imposed. 

When urban poverty and urban space are analyzed, demographic and socioeconomic data 

are used. These data are downloaded from U.S. Census Bureau. This dissertation uses census 

data in 1990 and 2000 censuses. Specifically, all of data come from Summary File 1 (SF1) 100-
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percent data and Summary File (SF3) sample data. By using ArcView and ArcGIS software, this 

nonspatial information is joined with digital boundary files. 

 

Research objectives 

The main objective of this dissertation is to use GIS together with remote sensing 

techniques and spatial analysis methods to study urban structure and urban space. Three separate 

topics will be addressed. The first topic includes: (1) adopting a hybrid approach to classify land 

use/land cover in Atlanta metropolitan area; (2) based on classified images, using spatial metrics 

and spatial statistics to test if Atlanta’s urban structure was more fragmented and had a random 

or quasi-random increase during the 1990s. Second topic is to utilize a series of spatial regression 

models to identify the factors and their contributions to urban poverty. The third topic is to use 

surface maps and spatial cumulative distribution function (SCDF) to investigate urban space in 

terms of the spatial distributions of total population, whites, blacks, Asians, and the median 

household income. 

This dissertation aims to make contributions in the following ways. First, by connecting 

geographical techniques and spatial analysis, this research brings the quantitative applications of 

spatial statistics in the field of urban geography, thus helping to better understand the theoretical 

and empirical issues in urban geography. Second, by addressing the arguments of post-

modernism on urban structure and urban space, which had been largely qualitative, this 

dissertation brings a way to prove/disprove the arguments quantitatively. Third, by introducing 

various quantitative analyses, this dissertation hopes to bring more advanced applications of 

various methods in urban studies, some of which have never been applied in this field. 
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Dissertation structure 

This dissertation has a total of seven chapters. Chapter 1 is an introduction on research 

background, study area, data, and objectives. Chapter 2 is a literature review on the applications 

of remote sensing, GIS, spatial statistics in urban studies. Chapter 3 is a case study of land 

use/land cover classification by a hybrid classification scheme for the Atlanta metropolitan area. 

Based on the results of Chapter 3, urban structure is analyzed in Chapter 4. Chapters 3 and 4 

together address the issue of Atlanta’s internal urban structure. Another two issues, urban 

poverty and urban space, are discussed in Chapters 5 and 6. Chapter 5 uses eight statistical 

models to explore the relationships between urban poverty rate and demographic and 

socioeconomic variables. In Chapter 5, the usefulness of spatial regression models is also 

discussed. Chapter 6 analyzes urban space by taking a look at the spatial distributions of 

population and income and explores the issue of urban polarization regarding race and income 

distributions. Chapter 7, which is the final chapter, is an overall summary and conclusion of this 

dissertation research.  

Chapters 3-6 have their own introduction, literature review, methodology explanation, 

and conclusions and discussions. Chapter 7 summarizes the results from each individual chapter 

and points out some possible ways for further studies. Followed by these chapters, a 

comprehensive bibliography of literature is listed. 
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CHAPTER 2 

GIS, REMOTE SENSING AND SPATIAL ANALYSIS FOR URBAN RESEARCH 

 

Introduction 

This review chapter consults four types of literature: (1) the use of remote sensing and  

geographic information systems (GIS) for urban analysis; (2) spatial statistics and spatial 

analysis for urban research; (3) the integration of GIS and spatial analysis for urban analysis; and 

(4) urban structure and urban space. While this chapter conducts a general literature review, in 

the following chapters, each has its owns literature review covering its specific topics.   

The literature on the uses of remote sensing and GIS for urban analysis outlines the 

current fields where remote sensing and GIS make contributions to the urban environment. The 

literature on spatial statistics and spatial analysis gives a general impression of how these spatial 

sciences are employed in urban analysis. The review section on the integration of GIS and spatial 

analysis for urban research shows current accomplishments in urban contexts when urban studies 

take advantage of both techniques and capabilities. The section of urban structure and urban 

space literature intends to depict some general arguments on urban structure and urban space 

from the Chicago School to the Los Angeles School. 

 

The use of remote sensing and GIS for urban analysis 

From the late 1960s, GIS has been used as the computer tools for handling spatial data 

(Burrough and McDonnell, 1998). Nowadays, GIS has become a multi-billion-dollar industry 
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and involved in data acquisition and dissemination, software development, and application 

(Goodchild and Haining, 2004). Since the first launch of Earth Resources Technology Satellite 

(ERTS) in 1972 and the availability of remotely sensed imagery, remote sensing and GIS has 

been closely used in the disciplines that study surface or near surface of the earth.  

With the availability of high-spatial resolution imagery, it is expected that remote sensing 

data will receive an increasing acceptance for urban analysis (Treitz and Rogan, 2003). Remote 

sensing analysis usually converts raw reflectance data into useful quantitative information. In the 

process of urban remote sensing applications, the following three aspects have to be considered 

(Maktav et al., 2005): geometric resolution which can separate objects spatially, the spectral and 

radiometric resolution which are useful for distinguishing objects thematically, and temporal 

resolution which is useful for getting consistent updated image materials. There are two 

problems which further bring challenges for urban remote sensing (Longley, 2002): (1) which 

scale is best for a certain study and how to solve the issue of modifiable areal unit problem 

(MAUP); and (2) the fuzzy definition of geographical phenomena which is hard to tell one object 

from another. As a result, the spatial structure is identified with greater uncertainty when 

classification is conducted on high spectral resolution imagery (Longley, 2002).  

When remote sensing data are taken as input data for GIS analysis, the spatial accuracy of 

the input data should be paid attention to. For example, when a thematic map is produced and 

further utilized for GIS analysis, the main sources of errors lie in boundary location, map 

geometry, and classification (Hord and Brooner, 1976). The errors can be compounded when 

overlay and other spatial analysis are conducted. Therefore, urban land surface classification 

brings an ultimate challenge to remote sensing due to the limitations of spectral data in the urban 

context, the quality of classifications, analysis methods, and modeling (Longley, 2002). In order 
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to timely monitor urban changes, research methods have been required to be (1) reported in a 

timely manner; (2) to deal with data at a range of spatial scales; and (3) to evaluate statistical 

inference by sensitivity analysis (Goodchild and Longley, 1999). In order to better classify urban 

land use/land cover, various classification schemes as well as contextual information have been 

utilized. For example, geostatistics can be used to measure image texture and structure (Pesaresi 

and Bianchin, 2001) and pattern recognition is utilized for very high spatial resolution imagery 

(Barr and Barnsley, 1998). 

Conventionally, GIS analyses are taken as exclusively deterministic and data are assumed 

to be exact (Burrough, 2001). At that time, the issue of data uncertainty and spatial-temporal 

variability were largely neglected in the context that market forces did not need to address these 

issues in many GIS applications (Burrough, 2001). Because GIS uses map layer and geometric 

transformations to represent schemes and conduct analysis, it has the drawbacks of temporal 

inflexibility and difficulty in handling overlapping features. Besides that, the fuzzy definition for 

relative or relational conceptualization of space poses another issue for the further development 

of GIS (Sui, 1998). The development of timely collecting and processing individual behavior 

data, together with the advancement of treating individuals at small geographic and temporal 

scales and new representation systems by internet GIS which facilitates the storage and 

dissemination of data, has brought great advantages for urban analysis in human dimensions 

(Longley, 2003). 

Current integration between GIS and urban analysis is largely technical. In order to 

achieve a seamless integration, space and time need to be conceptualized so that the integration 

can reflect the urban reality in an appropriate spatial-temporal framework in information society 

(Sui, 1998). GIS can contribute to better understanding class, consumption and citizenship by 
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differentiating between locations based on the identification of specific identities (Longley, 

2003). With the establishment of digital data infrastructure, GIS can become the media through 

which additional specialized information can be added into data. These high value-added data 

can be utilized as sensitive indicators for commercial activities. 

 

Spatial statistics and spatial analysis for urban analysis 

Spatial analysis is a subfield of regional science and geography that takes spatial 

properties, which vary with geographic locations, into consideration (Miller and Wentz, 2003). 

Spatial analysis is primarily quantitative. It was not until the late 1960s that the analysis of 

spatial data began a quick development (Goodchild and Haining, 2004). The book Statistics for 

Spatial Data (Cressie, 1991) provides a first overview of the whole field.  

Early spatial analysis mainly focused on testing spatial autocorrelation on regular lattices 

or irregular areal units. Since these data were largely observational, there were higher levels of 

uncertainty compared with experimental science, such as designed experimental data (Cressie, 

1984). Before spatial statistics entered into a stage of rapid development, spatial pattern 

(randomness, clustering, or regularity) and spatial autocorrelation were largely used which 

emphasized the global properties in spatial data. With the development of localized statistics, 

such as Anselin’s (1995) local indicators of spatial association (LISAs), the heterogeneity of 

spatial phenomena across the study area could be detected. By taking advantages of automated 

cartography and GIS, visualization for spatial data has been one of the dynamic areas in spatial 

analysis during the 1990s (Goodchild and Haining, 2004). 

Spatial statistical models can be classified into geostatistical models, lattice models, and 

spatial point processes (Cressie, 1991). The spatial dependence structure is determined by the 
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relative spatial locations between data points. As a result, errors in location may be compounded 

in spatial dependence structure, for example, which can further affect the attribute prediction by 

kriging. Geostatistics supplies a more robust way to detect data errors and outliers (Cressie, 

1984). A central aspect of geostatistics is its ability to differentiate different kinds of spatial 

variations by incorporating spatial autocovariance structure into modeling, which is often 

represented by (semi)variogram (Burrough, 2001). Geostatistical methods and tools can be 

effectively useful for constructing a surface model based on sample points, which takes into 

account the spatial variations in the data structure (Felgueiras et al., 1999). 

The spatial statistical models are used to test hypotheses so that the valid representations 

of reality can be derived. Spatial statistics often make the null hypothesis that spatial data or 

processes are stationary or homogeneous with the same mean and variance over the study area. 

However, in reality, this assumption is questionable. Besides that, spatial pattern is affected by 

size and shape of the study plot, which is known as edge effect. Fortunately, there are some 

corrections for edge effects specified to certain spatial statistical methods (Fortin et al., 2002). 

With the development of spatial statistics, the underlying variations of spatial data will be 

studied more thoroughly (Goodchild and Haining, 2004). 

Spatial regression models with spatially correlated errors and spatial regression models 

with spatially averaged predictor and/or response variables have been used when spatial 

dependence and variations are accounted for into regression models. Spatial regression analysis 

usually utilizes sparse spatial weights to denote spatial dependence and variations. Nowadays, 

these matrices are largely intrinsically symmetric (Banerjee et al., 2000). Because the 

incapability to discovering the true structure of spatial dependence, the spatial weights matrix are 

normally subjective and arbitrary (Getis and Aldstadt, 2004). 
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As the increase of spatial data resolution, it is expected that spatial aggregations will be 

more flexible and better spatial scale can be detected so that the problem can be solved more 

correctly. However, as in the fine spatial scale, the observation with each zone will decrease, 

which brings challenge to measuring spatial variation and conducting inference (Goodchild and 

Haining, 2004). The rapid growth of Bayesian analysis supplies a way to solve this issue. 

Bayesian methods have the advantage on small sample size data analysis where conventional 

maximum-likelihood estimation and inference cannot get good results (LeSage et al., 2004). For 

Bayesian spatial analysis, Markov Chain Monte Carlo (MCMC) simulation is popular for fitting 

and getting inference for spatial regression models, which conducts simulation for samples based 

on posterior distributions of model parameters (Goodchild and Haining, 2004). Cowles (2003) 

gave an example that the Bayesian geostatistical model, which incorporates spatial correlation, 

can be used for comparing different measurement systems. In this case study, MCMC is used to 

derive unknown parameters. 

Fortin et al. (2002) listed some functions that spatial statistics often use: nearest neighbor 

distance, Ripley’s K function, blocked quadrant variance, join-count statistics, spatial 

autocorrelation coefficient, empirical and theoretical variogram, and Mantel test. There are some 

advances in software for spatial analysis. GeoDa by Anselin et al. (2006) is a free software which 

conducts the exploratory spatial data analysis and spatial regression analysis. Another software, 

SANET by Okabe et al. (2006), mainly focuses on network spatial analysis. S/S-plus and R are 

popular software packages for spatial data analysis. Especially, R is more and more popular as it 

is a free software under the terms of the Free Software Foundation’s GNU General Public 

License in source code form (Bivand, 2006). Berman and Turner (1992) illustrates that GLIM, 
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which is a traditional statistical package for non-spatial data analysis, can be used on Poisson 

process in space by using Dirichlet tessellations or Delaunay triangulations. 

The concept of fractal dimension has changed the way we conduct research on cities (Sui, 

1997). By taking the city as a physical structure which has an irregular or fragmented shape at 

different scales of measurement, city can be understood as a filling process over a two-

dimensional space of connected points, lines, and polygons (Batty and Longley, 1994). In this 

way, cities are fractal in form and have a potential of infinite complexities.   

 

The integration of GIS and spatial analysis for urban analysis 

Both spatial analysis and GIS use the same geographic representation model; that is, they 

both use Euclidean space to construct their models. In the Euclidean model, geographic objects 

are represented as points, lines, and polygons, or as an intensity field/surface (Miller and Wentz, 

2003). A lot of studies have been conducted to set up the bridge between GIS and spatial analysis 

(Fotheringham, 1991; Goodchild, 1992).  

The development of geographic information science (GIScience) gets benefits from the 

development in GIS and the field of spatial data analysis (Goodchild and Haining, 2004). GIS 

can improve our technical capability to handle spatially referenced data and conceptualize and 

represent geographic reality in points, lines and polygons in the Euclidean space. GIS has values 

for spatial statistics in that GIS can act as spatial database, conduct geometric registration, supply 

exploratory spatial data analysis, examine spatial context, incorporate external information, and 

present the analysis results (Burrough, 2001). 

With the development of object-oriented approach in GIS data modeling and component-

based approach in aggregating reusable software components, the integration of GIS with other 
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forms of software, especially statistical software, has been accelerated (Goodchild and Haining, 

2004). During recent years, the capability of representing variation in space-time and in three 

dimensions has been improved in GIS. These features supply a solid basis for spatial data 

analysis, such as transformation, projection change and resampling, spatial analysis, and 

visualization. Besides that, the scripting languages and other third part programming language, 

such as Visual Basic for Applications, can greatly enhance the capability of GIS applications in 

more specialized contexts (Goodchild and Haining, 2004). 

From the 1980s, the integration of GIS and spatial analysis in urban research has been 

developed quickly as more urban models were advanced to improve the analysis capabilities 

within GIS environment (Sui, 1998). The integration can conduct from data inventory and 

management to modeling and simulation. Sui (1994, 1998) identified four ways of integration 

between GIS and spatial analysis/modeling: the stand-alone module, macro programming, loose 

coupling, and full integration approaches. This integration greatly enhances the quantitative 

capabilities in urban analysis, which sets up a bridge between theory and practice (Sui, 1994). 

However, there are fundamental issues in spatial analysis when it is integrated with GIS: MAUP, 

spatial autocorrelation, and edge effects (Sui, 1997).  

GIS applications in urban research have become more and more focused on setting up 

integrated databases, developing appropriate methods for urban analysis, and conducting 

simulations for fine-scale urban geographies (Longley, 2003). For example, Sui and Hugill 

(2002) used GIS-based Getis-Ord’s G-statistic to conduct spatial analysis on neighborhood 

effects on voting by measuring spatial clustering of similar values.  

What is needed now in urban research is a timely analysis exploring the increasingly 

heterogeneous structure of contemporary cities and the ways in which they make changes 



 17

(Longley, 2003). Today there are great improvement on depicting and examining the relationship 

between the built form and urban socio-economic functions and urban settlement hierarchies 

(Longley, 2003). More progress is expected when disaggregated small-area socio-economic data 

of urban systems are linked with digital data, such as built form. 

 

Urban structure and urban space 

Urban structure and urban space have been research topics for a long time since scholars 

were first interested in how cities grow and why certain spaces, such as rich and poor, evolved. 

the Chicago School has three famous urban structure models which have influenced urban 

geography development for more than half century. These three models are concentric zone 

model by Burgess (1925), sector model by Hoyt (1937), and multiple nuclei model by Harris and 

Ullman (1945).  

Classical urban theory by the Chicago School has been challenged by the Los Angeles 

School in the last two decades. According to the Los Angeles School, postmodern city has a 

complete different trend in political, economic, and sociocultural life (Dear and Flusty, 1998). 

Regarding urban structure, the postmodern city should be a decentered and decentralized society 

which is due to flexible and disorganized capitalist accumulation. As a result, urban structure is 

fragmented yet constrained by the underlying economic principles. At the same time, the 

metropolis has a random or quasi-random growth where the development of one urban parcel has 

no relationship with the others (Dear and Flusty, 1998). This opinion is significantly different 

from the earlier Chicago School’s center-driven urban development. 

Poulsen and Johnston (2002) summarized three interrelated concepts which are important 

to contemporary urban analysis. First, the classical Chicago School’s urbanism and urban theory, 



 18

which are classical modernist visions of the industrial society, have been replaced by the 

postmodern Los Angeles School. Second, other modern urbanism has been superceded by 

postmodern urbanism. Third, Miami, instead of Los Angeles, should be taken as a paradigmatic 

model of postindustrial city.   

Qualitative methods, such as in-depth interview, participant observation, and more and 

more discursive and representational analyses, are more and more used in contemporary urban 

geography to study urban structure and urban space. The problem of these qualitative methods is 

that the researchers seldom outline how they used these methods and the relationship of these 

qualitative methods to the theoretical tracks (Lees, 2003). This obscurity on research methods 

has brought obstacles for the formation and development of the Los Angeles School and 

indicated its fundamental weakness.  

Postindustrial society refers to the socioeconomic environment of the contemporary age 

where the economy is service-based, and class structure is bifurcated into low- and high-end 

classes with different types of occupations. The working class declines in size and significance 

and the middle class gains more importance (Baum et al., 2002). Poulsen and Johnson (2002), 

based on the results on four cities (Los Angeles, Miami, Chicago, and New York), concluded 

that a modern-postmodern differentiation is more complex than a simple binary division. 

However, the examples of postmodern cities, in this case Los Angeles and Miami, have more 

degrees of heterogeneity than modern cities, in this case, Chicago and New York.  

Income inequality in the United States has increased over the decades (Silver and Bures, 

1997). However, the causes of this increasing difference are still under questions. The hypothesis 

from demographic and supply-side effects cannot explain the reality that income inequality 

persists within demographic categories, although increasing immigration and the number of 
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female-headed families make contributions to the increased inequality. Meanwhile, the 

hypothesis from demand-side effects cannot explain the reality that income inequality has been 

increasing for all industries, although industrial restructuring has been proved to be partially 

influential. Other explanations include the declining unionization, economic globalization, 

technological innovation, and employment instability (Silver and Bures, 1997).    

Sui (1999) argues that the issues talked by postmodern urban theory are not new 

regarding the world-city hypothesis, the dual-city theory, and the edge-city model. Instead, 

compared with the Chicago School which has had a long lasting influence on our understanding 

of how cities work, postmodernism has not formed a shared methodological procedures to 

validate and replicate its arguments. 

There are still gaps to measure, model, and understand the syntax of urban space and the 

configuration of urban economic and social life (Longley, 2002). There exist some problems 

regarding urban models (Sui, 1998). First, as most of urban modeling sets assumptions based on 

industrial cities with targets of controlling land use and emphasizing the transportation lines, the 

informational cities have different urban forms and processes which cannot be fully taken into 

account in the conventional models. With the enhancement of measurement capability on what is 

going on in urban areas, urban theory will be developed and improved (Longley, 2000). 

 

Conclusions 

At the present day, there is an increasing variety of applications of remote sensing and 

GIS for quick monitoring urban changes (Maktav et al., 2005). Technology advancement allows 

greater capabilities in examining the increased complexness in urban environment. Better 
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conception and understanding of urban systems can be achieved by the integration of remote 

sensing, GIS and spatial analysis (Longley, 2002). 

There remains more room for the applications of GIS and spatial analysis in urban 

structure and urban space. With the availability of rich and disaggregated data, new skills and 

techniques are needed to better investigate the heterogeneity and uncertainty in the data sets 

(Longley, 2003). However, the integration of GIS, spatial analysis, and urban analysis is largely 

technology-driven without adequate justification for the validity of the models and sensitivity 

analysis for the results. This drawback should be taken into consideration in the process of 

integrating GIS and spatial analysis in urban studies. 

With the new form of urban development in postindustrial society, the informational 

cities should call for new models which incorporate multi-dimensional concepts of space and 

time and embody the urban complexness (Sui, 1998). As GIS and spatial analysis have much to 

give to each other, the integration between the two is expected to develop a new partnership with 

urban geography in the coming years.   
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CHAPTER 3 

A HYBRID APPROACH FOR LAND USE/LAND COVER CLASSIFICATION 

 

Introduction 

Urbanization, as a world-wide phenomenon, brings more and more population and 

activities into urban areas. Large number of migrants together with rapid increase of built-up 

areas make urban land an interesting and constant topic for many fields. As discussed by Wilson 

et al. (2003), urban growth has three categories: infill, expansion, and outlying urban growth. 

Compared with urban growth, urban sprawl is somewhat negative (Wilson et al., 2003) and 

elusive (Galster et al., 2001). Urban land use/land cover patterns change rapidly in the process of 

urban growth. Atlanta, as the largest metropolitan area in southeast U.S. has continuously 

changed its physical landscape as well as its socio-economic appearance during past decades 

(Yang and Lo, and 2002). 

It is important to better understand the process and characteristics of urban changes since 

urban areas are human’s big habitats (Weber et al., 2005). In order to better depict urban 

landscape evolutions, the integration of remote sensing and geographic information systems 

(GIS) has been widely employed and largely accepted as a powerful and effective tool. Remote 

sensing techniques facilitate the collection of multispectral, multiresolution, and multitemporal 

data and convert them into valuable information and sources for understanding and monitoring 

urban land use/land cover changes, especially for a large study area. Meanwhile, the 

development of GIScience and GIS technology provides a flexible and favorable environment 
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for entering, analyzing, and displaying digital data, which are a benefit to urban analysis (e.g., 

Phinn et al., 2002; Weng, 2001). Moreover, for time-series information extraction on urban 

growth, spatial information and remotely sensed data are particularly useful when urban land 

use/land cover is of interest. 

This chapter presents a time-series analysis using remotely sensed data to identify urban 

land use/land cover changes over a decade (from 1990 to 2000) in the Atlanta metropolitan area. 

This topic is of interest because the derived land use/land cover change information will be 

further used for urban structure analysis in chapter 4. Specifically, a hybrid image processing 

approach, which integrates unsupervised, supervised, and spectral mixture analysis (SMA) 

classification methods, will be used to extract information of six types of land use/land cover 

classes. 

This chapter is organized as follows. The next section is a literature review on the use of 

remote sensing and GIS on urban analysis and image processing techniques. Then the sections 

on methods and results explain the classification scheme and present classification results. The 

section of conclusions and discussions is the last part of this chapter. 

 

Literature review 

Monitoring and mapping urban land use/land cover changes have been research topics for 

a long time (e.g. Madhavan et al., 2001; Martin and Howarth, 1989; Ridd, 1995; Thomas et al., 

1987; Welch and Ehlers, 1987). Researchers focus on different aspects of urban analysis based 

on the integration of remote sensing and GIS in the following ways: (1) generating accurate 

urban land use/land cover maps (Clapham, 2003; Dong and Leblon, 2004; Treitz and Rogan, 

2003; Zha et al., 2003); (2) developing new approaches (Erol and Akdeniz, 2005; Goovaerts et 
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al., 2005; Song, 2005; Tompkins et al., 1997; Wu, 2004); or (3) discussing the (dis)advantages of 

certain techniques (Chang and Heinz, 2000; Dennison et al., 2004; Gilabert et al., 2000; Guindon 

et al., 2004; Ju et al., 2005; Rashed et al., 2005; Treitz and Rogan, 2003; Weber and Puissant, 

2003).  

Since the launch of the first Earth Resources Technology Satellite ( ERTS) in 1972, 

remotely sensed data have been a useful and flexible source for detecting and monitoring 

changes in many fields, such as environmental protection, urban analysis, and policy formation. 

With the improvement of image processing techniques, especially together with GIS 

technologies, the usefulness and flexibility of remotely sensed data have received increasing 

acceptance, especially after the new generation of high-spatial resolution data (Treitz and Rogan, 

2003). Two problems are closely related to remote sensing applications in urban analysis: the 

heterogeneity of urban area and inconsistent registration of image layers (Clapham 2003; Herold 

et al., 2004). Small (2005) found that urban reflectance is extremely variable at different spatial 

scale. The variability of urban reflectance can cause misclassification between urban and other 

land cover classes (Small, 2003). 

There are a series of traditional image-analysis techniques: single-band analysis, color 

composite generation, band-to-band ratioing and vegetation indices, principal component 

analysis (PCA), and classification (Campbell, 1996; Schweik and Green, 1999). Of these, 

classification is one of the most commonly used techniques for remotely sensed imagery (Adams 

et al., 1995).  

Conventional classification methods, including supervised and unsupervised 

classifications, are largely based on pixel-by-pixel classifiers. Computer-assisted image 

classification methods rely heavily upon brightness and spectral characteristics with limited use 
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of image spatial content. Accordingly, classifiers advocated by this method generally work well 

in spectrally homogeneous areas, such as forests, but not in highly heterogeneous regions, such 

as urban landscapes (Yang and Lo, 2002). Additionally, these pixel-by-pixel classifiers generally 

have difficulty in producing satisfactory classification results when image spatial resolution 

increases (Casals-Carrasco et al., 2000). This situation is particularly serious for urban land use. 

New methods and procedures for classification have been developed and used in many studies. 

They include the support of classification by fuzzy set theory, neural network, geostatistics, and 

spectral mixture analysis (SMA).  

The central idea of fuzzy set theory is that human understanding is imperfect and the 

phenomena in nature rarely fit perfectly the categories into which they are traditionally placed by 

Boolean logic (Brown, 1998). In image processing, fuzzy logic, unlike Boolean logic, admits and 

assigns partial membership values to objects and pixels when full memberships (0 or 1) are not 

applicable. As a result, the output can be taken as a series of probability surfaces representing the 

probability of membership to a specified class. Another technique is neural network, which is a 

complex mathematical structure with automaton characteristics (Tapiador and Casanova, 2003). 

Typical neural nets have three elements: an input layer consists of the source data; an output 

layer consists of the classes; and one or more hidden layers which are trained by 

backpropagation algorithm. This classification system involves huge computational cost. 

Furthermore, it is difficult to sharpen the network once it has been designed, which requires 

previous experience and knowledge of the mathematical basis of the network (Tapiador et al., 

2003). Texture classification uses the spatial autocorrelation of digital numbers (DNs), which are 

calculated as variogram, to improve the classification accuracy (Chica-Olmo and Abarca-

Hernandez, 2000). When texture classification is conducted, a new layer of texture information is 
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usually computed and used as an image filter with the aim of increasing the accuracy of 

classification. Based on texture information, a number of techniques, such as the supervised 

maximum likelihood estimation algorithm and neural networks, can be used to classify pixels. 

Similarly, there is segment-based classification, for example, eCognition package (Definiens 

Imaging, 2004), which uses a bottom-up region merging technique where each pixel is originally 

classified as a segment and adjacent objects are merged based on certain rules. 

Spectral mixture analysis (SMA) is commonly used in image analysis in recent years, 

which recognizes that a single pixel is typically made up of a number of varied spectral types 

(i.e., urban, water, soil, vegetation). Therefore, each image pixel is decomposed into several 

fractions of endmembers, which represent the varied spectral types, and the percentage of spectra 

for each spectral type/endmember in a single pixel is measured (Lobell et al., 2002; Small, 

2005). Since endmember fractions are easier to interpret than DNs, the image interpretation 

based on these fractions is more intuitive (Adams et al., 1995; Collado et al., 2002). This method 

is especially suitable for hyperspectral image analysis (Gross and Schott, 1998). The key to SMA 

is the selection of endmembers (Lu and Weng, 2004; Song, 2005). Due to high heterogeneity of 

urban landscape, three or more endmembers are usually selected for urban analysis (Garcia-Haro 

et al., 1999; Meer and Jong, 2000; Roberts et al., 1998; Small, 2004; Theseira et al., 2003). SMA 

makes it possible to identify the subpixel components which facilitates a follow-up classification 

(Lu and Weng, 2004; Schweik and Green, 1999). However, a widely accepted limitation of SMA 

is that this technique uses linear unmixing of pixel reflectance and cannot incorporate non-linear 

mixing (Dennison and Roberts, 2003).  

Because many of these enhanced techniques are highly demanding in terms of technical 

sophistication and expertise, their application to large-scale mapping and urban growth analysis 
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remain largely experimental. In practice, researchers select an appropriate singular classification 

method or hybrid schemes based on their projects’ requirements. Information from ancillary data 

sources has been widely shown to aid discrimination of classes that are difficult to classify using 

remotely sensed data. Newly developed methods, such as the use of landscape metrics for 

extracting spatial structure (Herold et al., 2002), have also been tested and improved. 

Nevertheless, further efforts will certainly be needed to solve practical problems in a productive 

environment. 

Change detection is another important technique when land use/land cover changes are 

concerned, which is usually done to compare two or more images covering the same study area 

(Kaufmann and Seto, 2001). Jansen and Gregorio (2002) point out that land use/cover change 

detection aims to recognize two types of changes. One is the conversion from one land cover 

category to another, e.g. from urban to forest. The other is the modification within one category, 

e.g. from ordinary cultivated area to irrigated cultivated area. While conversion refers to an 

evident change, modifications are much less apparent and require greater details. When the 

categories for describing land use/cover are broader and fewer, there are fewer conversions from 

one class to another. Numerous change detection techniques are available which achieve 

different levels of success in monitoring land use/cover changes. Most of them are semi-

automated because analysts still have to manually carry out many image processes such as image 

registration, threshold tuning, and change delineation (Dal and Khorram, 1999). This makes 

semi-automated techniques time-consuming, inconsistent, and difficult to apply to large-scale 

information systems, such as the International Earth Observing System. 

The conventional change-detection techniques can be divided into two broad categories 

(Dal and Khorram, 1999): (1) change mask development (CMD), where only changes and non-
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changes are detected and no categorical change information can be directly derived; and (2) 

categorical change extraction (CCE) where complete categorical changes are extracted. In the 

CMD category, changed and non-changed areas are delimitated by a preset threshold and the 

amount of change is a function of the threshold value (Dal and Khorram, 1999). The threshold 

has to be tuned and determined by experiments. This kind of technique cannot directly identify 

the nature of the changes. This category includes image differencing, image ratioing, image 

regression, normalized difference vegetation index (NDVI), Tasseled Cap Transformation, and 

multidate principal component analysis (PCA). As for CCE techniques, the explicit categorical 

changes can be detected directly based on the spectral reflectance of the data. There are mainly 

three techniques in this category: change vector analysis, post-classification comparison, and 

direct multidate classification (Dal and Khorram, 1999).  

Researchers have developed some other change-detection techniques in order to better 

conduct their studies. Mask detection is the combination of pixel-by-pixel comparison and post-

classification comparison (Pilon et al., 1988). This method can identify changes with higher 

accuracy, but it cannot exclude the misclassification within the change-detected areas, since it 

still uses conventional classification methods. A principal component analysis (PCA) of stacked 

multi-temporal images method is proposed by Li and Yeh (1998) to improve the accuracy of 

land use change detection. This procedure is opposite to the post-classification comparison 

method, which traditionally carries out land use classification for each image before change 

detection. The econometric change detection technique uses time series and panel techniques to 

identify the date of change for individual pixels (Kaufmann and Seto, 2001). The econometric 

technique is designed to identify the date of change from a time series of images, but many of 

statistical underlying assumptions, such as normality, may be inconsistent with the data collected 
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by image sensors (Kaufmann and Seto, 2001). A neural-network-based land use/cover change-

detection system considers both architectural and parameter selections (Dal and Khorram, 1999). 

This technique has the following advantages (Dal and Khorram, 1999): (1) providing complete 

categorical “from-to” changes; (2) not requiring statistical distribution; (3) easily incorporating 

additional information by adding input nodes; and (4) using two-date images simultaneously and 

free from accumulative errors, unlike the post-classification comparison.  

Although these methods have been successful in monitoring changes for a myriad of 

applications, there is no consensus as to a ‘best’ change detection approach (Seto et al., 2002). 

The type of change detection method employed will largely depend on temporal and spatial 

resolutions of the data, time and computing constraints, and type of application (Weber et al., 

2005).  

 

Study area, imagery, and reference data 

Atlanta metropolitan area is the largest metropolis in the southeast part of the U.S. 13 

counties in Atlanta metropolitan area are studies in this chapter (Figure 3.1), which include: 

Cherokee, Clayton, Cobb, Coweta, Dekalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, 

Paulding, and Rockdale. These 13 counties can be incorporated into one Landsat scene (180 km 

*170 km), which supplies great convenience without the procedures of image fusion and 

enhancement when two or more image scenes are needed.  

During the past 25 years, Atlanta has been one of the fastest growing metropolitan areas 

in the U.S. and becomes the largest commercial, industrial, and transportation center of the 

southeastern part of U.S. (Yang and Lo, 2002). Meanwhile, urban built-up areas have expanded 

quickly and consumed large areas of agricultural and forest land. 
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Table 3.1 lists the basic characteristics of images used in this chapter. In order to analyze 

urban growth change, 1990 and 2000 Landsat images were used in this study. These two images 

are both in September, which supply a good source of comparison between two dates. Only six 

bands were used in each year; that is, bands 1-5 and 7 for 1990 and 2000. 

Reference data have several categories. First, the reference images are digital orthophoto 

quarter quadrangles (DOQQs), where 1993 DOQQs are black-n-white and 1999 DOQQs are 

color-infrared. Second, digital raster graphics (DRGs) in 1:24,000 were downloaded from 

Georgia GIS Clearinghouse (www.gis.state.ga.us). DRGs are used for the selection of ground 

control points (GCPs) for geometric registration of the Landsat images. Third, the boundary files 

for Atlanta metropolitan area are downloaded from U.S. Census of Bureau, which are used for 

better locating and interpreting the results. 

 

Methodology 

This section introduces the procedure used for image processing. Figure 3.2 shows the 

flow chart for land use/land cover change analysis.   

Geometric registration 

Accurate registration of images for change detection is vitally important (Treitz and 

Rogan, 2003). The precision requirement in the guidelines and specifications for image-to-image 

registration was 0.3 pixel in both directions (Ji et al., 2001). Two images are georeferenced to a 

Universal Transverse Mercator (UTM) map projection with GRS 1980, zone north 16 and 

NAD83. Ten ground control points (GCPs) are selected for each images with the root mean 

square error (RMSE) at less than a third of a pixel for each registration process. The images are  
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Figure 3.1    Study area: Atlanta metropolitan area 
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Table 3.1    Characteristics of Landsat imagery used for classification 
 

Date 09/25/1990 09/28/2000 09/28/2000 
Type of imagery TM ETM+ ETM+ 
Landsat number 5 7 7 

Spatial resolution (m) 30 30 30 
Path # 19 19 19 
Row # 036-037 036 037 

Scene location Center-shifted North Atlanta South Atlanta 
 

 

 

 

 

Table 3.2    Land use/land cover classification key (Source: Yang, 2000) 

 
 
 

No. Classes Definitions
1 Low-

density 
urban

Areas with a mixture of 40 to 80 percent constructed materials (e.g. asphalt, 
concrete, etc.) and 20 to 60 percent vegetation of cover, including most of 
single/multiple family housing units, row houses, and public rental housing estates as 
well as local 

2 High-
density 
urban

Areas with a mixture of 80 to 100 percent constructed materials and/or less than 20 
percent vegetation of cover, including industrial buildings with large open roofs as 
well as large open infrastructure (e.g. airports, parking lots, multilane interstate/s

3 Grassland
/pasture/cr
opland

Areas dominated by grasses, herbaceous vegetation, and crops, including golf 
courses, airport grasses, industrials site grasses, lawns, city parks, lands planted for 
livestock grazing or the production of seed or hay crops, and planted and cultivated 
land

4 Forest Areas characterized by tree cover including coniferous, deciduous, and mixed 
forests, with tree canopy accounting for 75 to 100 percent of cover.

5 Water All areas of open water, typically with 85 percent or greater cover of water, 
including streams, rivers, lakes, and reservoirs.

6 Barren Areas characterized by sparse vegetative covers, with little or no green vegetation 
cover (less than 25 percent of cover), including bare rocks, sand, clay, quarries, 
strips mines, gravel pits, cultivated land without crops, and forest clearcuts.
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resampled to 30m*30m pixels using a nearest neighbor resampling algorithm with a third-order 

polynomial. 

 

Radiometric calibration 

The DNs of two Landsat images were converted to normalized exo-atmospheric 

reflectance measures. The first step is to convert DNs to at-sensor spectral radiance by using the 

following equation (Markham and Barker, 1987): 
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where Lλ is spectral radiance at the sensor’s aperture in W/(m2·sr·µm); Qcal is quantized 

calibrated pixel value in DNs; Qcalmin is the minimum quantized calibrated pixel value (DN=0) 

corresponding to LMINλ; Qcalmax is the maximum quantized calibrated pixel value (DN=255) 

corresponding to LMAXλ; LMINλ is spectral radiance that is scaled to Qcalmin in W/(m2·sr·µm); 

and LMAXλ is spectral radiance that is scaled to Qcalmax in W/(m2·sr·µm).   

The next step is to convert at-sensor spectral radiance to planetary or exoatmospheric 

reflectance since this step can reduce between-scene variability by normalizing solar irradiance 

(Chander and Markham, 2003):  

 

 

where ρP is unitless planetary reflectance; Lλ is spectral radiance at the sensor’s aperture; d is 

earth-sun distance in astronomical units; ESUNλ is mean solar exoatmospheric irradiances; and θs 

is solar zenith angle in degrees. 
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The calibration parameters were obtained from Clander and Markham (2003) and image 

data header for Landsat-5 image in 1990. Meanwhile, from the manual by Landsat Project 

Science Office (1999) and image data header the calibration parameters for Landsat-7 image in 

2000 can be derived. Here the atmospheric conditions within each image were assumed to be 

homogeneous so that no atmospheric corrections were carried for these two images. 

After radiometric normalization, the area containing the Atlanta metropolitan area with 

13 counties were masked out by using boundary files. In this way, only 13 counties are used for 

classification and change detection. 

 

Image classification 

This chapter uses a hybrid classification scheme which contains unsupervised 

classification, supervised classification, SMA, and then unsupervised classification again (Figure 

3.2). Table 3.2 defines the classification keys used in this classification process. Six types of land 

use/land cover are identified: low-density urban, high-density urban, grassland/pasture/cropland, 

forest, water, and barren which is consistent with the work by Yang (2000) and Lo and Yang 

(2000). 

 

First-round unsupervised classification 

ISODATA (iterative self-organizing data analysis) classification was first used to identify 

clusters of spectrally similar pixels in each image. This process uses ENVI software which has 

the feature that can automatically identify the ideal number of classes based on the parameters 

for convergence criteria. In this step of image processing, the parameters are set as the following: 

change threshold is 0, minimum class distance is 0, maximum class standard deviation is 1, and  
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Figure 3.2    The flow chart of classification scheme 
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the number of classes has a range from 5 to 70. Based on these parameters for ISODATA, 37 

classes were identified for 1990 image and 32 classes were formed for 2000 image. Based on 

these initial classification results, cluster labeling was conducted so that these classes were 

assigned to one of the six types of land use/land cover. 

 

Supervised classification 

Based on the results of unsupervised classification, area of interest (AOI) for each class 

was delineated. Supervised classification was then performed on the radiometrically-calibrated 

images for 1990 and 2000 respectively. During this process, a threshold was set so that when the 

pixel has a spectral distance from AOI greater than the cut-off value is set to be unclassified. In 

this research, a threshold value was set to 1. In this way, the resultant image contains the pixels 

having class type and the pixels having not been classified.  

A mask was generated so that the unclassified pixels were covered in mask layer. A 

image that contains only unclassified pixels was further generated for 1990 and 2000 images 

(Figures 3.3 and 3.4). Those unclassified pixels are generally heterogeneous in nature so that 

traditional classification procedures cannot do well. In order to better classify these mixed 

spectral pixels, SMA method was used for linear unmixing of spectral signatures. 

 

SMA method 

SMA has the capability to identify subpixel measures so that a pixel can be composed by 

percentages of endmembers (Schweik and Green, 1999). Generally, the linear spectral mixture 

model for each pixel has the following form (Wu and Murray, 2003): 

bbi

N

i
ib eRfR += ∑

=
,

1
 (3.3) 
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Figure 3.3    The unclassified pixels after first-round unsupervised and 
supervised classification procedures, 1990 
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Figure 3.4    The unclassified pixels after first-round unsupervised and 
supervised classification procedures, 2000 
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where Rb is the reflectance for each band b, N is the number of endmembers, fi is the fraction of 

endmember i, Ri,b is the reflectance of endmember i in band b, and eb is the unmodeled residual.  

In equation (3.3), fi, i=1,2,…,N are parameters to be estimated for each pixel. In reality, fi 

should meet the following conditions: 

01
1

≥=∑
=

i

N

i
i fandf  

In this way, the linear unmixing procedure is called constrained SMA. As stated in 

literature review section, the selection of endmembers is a critical part of SMA. Usually, there 

are three possible ways to determine endmembers (Schweik and Green, 1999): using 

spectrometer to collect known spectra from field or laboratory, borrowing known spectra from 

previous SMA work, or picking spectrally pure or extreme pixels from images being analyzed. In 

practice, the third method is usually taken.  

In order to identify pure pixels and determine endmembers, scatter plot of feature space is 

a popular way. First, the image is transformed by principal component analysis (PCA) or 

minimum noise fraction (MNF) so that the highly correlated image bands are transformed into 

orthogonal bands. These uncorrelated bands are plotted into feature space and endmembers are 

selected based on pure pixels. In this chapter, MNF transformation was performed which has 

three steps (ENVI, 2000; Wu and Murray, 2003) ). First, a principal component transformation is 

performed to diagonalize the noise covariance matrix. Second, the noise covariance matrix is 

converted into an identity matrix by scaling the transformed dataset. Third, principal component 

analysis is conducted again on noise-whitened data.    

Based on MNF transformation for each image, the first four MNF components were used 

for SMA and the last two were discarded since they contain high proportion of noise contents. 

From the scatter plots of MNF components, four endmembers were individually selected for 

(3.4) 
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1990 and 2000 images and DOQQs were geographically linked for displaying. These four 

endmembers can be identified as vegetation (such as dense grass and cover crops), shade (such 

as clear and deep water), impervious surfaces (such as building roofs and roads), and soils 

(including dry soil and dark soil). The reflectance spectra for four endmembers in each image are 

plotted as Figures 3.5 and 3.6. 

After endmembers were identified, the fraction of endmembers for each pixel can be 

computed by least squares techniques in order to minimize the error term eb based on equations 

(3.3) and (3.4). Model fitness is usually assessed by the residual term eb of the RMS over all 

image bands (Wu and Murray, 2003): 

2
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Figures 3.7 and 3.8 show the residuals for 1990 and 2000 images after SMA procedure. 

The histogram distributions of RMS errors indicates that the residuals are generally small. Hence 

this procedure is acceptable for further image classification. 

 

Second-round unsupervised classification  

The generated fraction images for 1990 and 2000, where each fraction image has four 

layers (each layer denotes the fraction of one endmember), were further classified by 

unsupervised classification. ISODATA was used in the same way as the first round unsupervised 

classification. In this way, the unclassified pixels as a result of above supervised classification 

were assigned a land use/land cover type. 

 

(3.5) 
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Figure 3.5    Endmember reflectance spectra for 1990 image 
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Figure 3.6    Endmember reflectance spectra for 2000 image 
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Figure 3.7    The RMS errors after SMA procedure for 1990 image: (a) the spatial 
distribution of RMS errors, and (b) the histogram distribution of RMS errors 
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Figure 3.8    The RMS errors after SMA procedure for 2000 image: (a) the spatial 
distribution of RMS errors, and (b) the histogram distribution of RMS errors 
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The next step was to overlay the results from supervised classification and second-round 

unsupervised classification. The resultant classification maps were the final products of land 

use/land cover classification for 1990 and 2000 Atlanta metropolitan area. 

 

Accuracy assessment 

In order to assess accuracy of classification, a stratified random sampling method was 

applied. For estimating classification accuracy, a minimum of 50 samples for each land use/land 

cover type should be selected (Wu and Murray, 2003). A total of 420 samples were selected for 

each image. As DOQQs, which were taken as reference images, did not have complete coverage 

on the Atlanta metropolitan area, only 408 sample points were valid for 1990 image. Meanwhile, 

420 sample points were all valid for 2000 image. 

 

Results and conclusions 

Tables 3.3, 3.4, 3.5, and 3.6 show the accuracy assessment results for classification. For 

1990 image, the overall classification accuracy is 86.27% and overall Kappa is 0.834. For 2000 

image, the overall classification accuracy is 87.38% and overall Kappa is 0.848. These statistics 

are generally acceptable for Landsat image classification.  

Figures 3.9 and 3.10 show the classification maps for 1990 and 2000 Atlanta 

metropolitan area. Clearly, there was an expansion of urban land cover areas. Tables 3.7 and 3.8 

have the summary of land use/land cover changes during the 1990s. Of six types of land use/land 

cover, low-density urban, high-density urban, water, and barren all had increases in areas, while 
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Table 3.3    Confusion matrix and accuracy assessment for 1990 imagery 

 
 
 
 

 

 

 

 
Table 3.4    Kappa statistics for 1990 image classification 

LULC class 1 2 3 4 5 6 Overall 
Kappa 0.786 0.813 0.787 0.921 0.886 0.801 0.834 

 
 

 

 

 

 

1 2 3 4 5 6 Row total User’s accuracy (%)
1 54 3 3 4 0 2 66 81.82
2 4 53 0 3 2 1 63 84.13
3 1 1 56 10 0 0 68 82.35
4 2 1 1 80 0 1 85 94.12
5 0 0 2 4 56 0 62 90.32
6 0 2 7 1 1 53 64 82.81

Column total 61 60 69 102 59 57 408
Producer’s 

accuracy (%)
88.52 88.33 81.16 78.43 94.92 92.98

Classified 
image

Reference image

Number of pixels correctly classified = 352
Overall classification accuracy = 86.27%
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Table 3.5    Confusion matrix and accuracy assessment for 2000 imagery 

 
 
 
 
 
 
 

 
 
 
 

Table 3.6    Kappa statistics for 2000 image classification 

 
 
 
 
 

 

 

 

LULC Class 1 2 3 4 5 6 Overall 
Kappa 0.808 0.760 0.841 0.938 0.946 0.786 0.848 

1 2 3 4 5 6 Row total User’s accuracy (%)
1 57 1 3 6 1 0 68 83.82
2 5 53 3 4 0 2 67 79.10
3 3 0 59 4 0 2 68 86.76
4 1 0 2 83 1 0 87 95.40
5 0 0 0 3 62 0 65 95.38
6 0 1 4 7 0 53 65 81.54

Column total 66 55 71 107 64 57 420
Producer’s 

accuracy (%)
86.36 96.36 83.10 77.57 96.88 92.98

Classified image Reference image

Number of pixels correctly classified = 367
Overall classification accuracy = 87.38%
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Figure 3.9    Land use/land cover, metropolitan Atlanta, 1990 



 48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10    Land use/land cover, metropolitan Atlanta, 2000 
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Table 3.7    LULC statistics at metropolitan Atlanta 

 
 
 
 
 

 

 

 

 

 

 

Class 1990 2000
Sq. miles 296.89 392.82

% of total land 7.36 9.74
Sq. miles 136.96 231.76

% of total land 3.39 5.75
Sq. miles 549.63 461.37

% of total land 13.63 11.44
Sq. miles 2941.83 2823.17

% of total land 72.97 70.02
Sq. miles 62.45 78.15

% of total land 1.55 1.94
Sq. miles 43.91 44.66

% of total lan 1.09 1.11

Grass/pasture/crop

Forest

Water

Barren

Low-density urban

High-density urban
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Table 3.8    Changes in LULC, 1990-2000 

 
 
 
 

 

 

 

 

 

 

Class Change
Sq. miles 95.93
% change 32.31
Sq. miles 94.80
% change 69.22
Sq. miles -88.26
% change -16.06
Sq. miles -118.66
% change -4.03
Sq. miles 15.70
% change 25.14
Sq. miles 0.75
% change 1.71

Water

Barren

Low-density urban

High-density urban

Grass/pasture/crop

Forest
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Figure 3.11    Low-density urban land use/land cover in 1990 and 2000 
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Figure 3.12    High-density urban land use/land cover in 1990 and 2000 
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Figure 3.13    Urban land use/land cover in 1990 and 2000 
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grassland/pasture/cropland and forest had decreases. Clearly, the urban growth of Atlanta 

metropolitan area consumed large amount of vegetative lands.  

In terms of absolute area with a unit of sq. miles, forest had the largest amount of 

decrease during the decade, followed by grassland/pasture/cropland. Even at this circumstance, 

forest was still the land cover type that had the largest percentage over the Atlanta metropolitan 

area although its share decreased sharply during the 1990s. Urban land cover had the second 

largest occupation in the Atlanta metropolitan area, a total of 10.75% in 1990 and 15.49% in 

2000. Followed that, grassland/pasture/cropland had a decrease in percentage from 13.63% to 

11.44%. Compared with urban and vegetative land cover, water and barren land had very small 

weights (1~2%) in overall metropolitan area and they did not have much change during the 

1990s. 

 

Discussions 

This chapter uses a hybrid classification scheme to analyze land use/land cover for the 

Atlanta metropolitan area from 1990 and 2000. The results will be further used in the analysis of 

urban structure in chapter 4. Specifically, SMA method was introduced and applied in the image 

classification process. Together with unsupervised and supervised classification methods, land 

use/land cover maps were derived. According to accuracy assessment, the results were 

acceptable. However, as introduced in the methodology section, a cut-off value was used for 

supervised classification in order to mark those heterogeneous pixels, and the selection of 

threshold value is highly subjective. Different values were tried and intermediate results were 

evaluated in order to get a good cut-off value. In this way, the subjectivity can be reduced, but 

there is still possibility to get a better threshold. 
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SMA was used in this research for spectral unmixing of heterogeneous pixels and derived 

acceptable results. This proves that SMA is an effective approach for characterizing mixed 

feature areas, such as metropolitan area, although SMA has been largely used for vegetation 

analysis. During this process, the selection of endmembers is the key, which often involves a 

iterative process; that is, first selecting endmembers, deriving fraction images, evaluating the 

results, refining endmembers, and further testing their capabilities for representing heterogeneous 

landscape. 

Even the classification maps are generally acceptable, when they were further used in 

other analysis, the error can be propagated. However, for large area, such as Atlanta metropolitan 

area, Landsat image is usually a good source since it has medium spatial resolution and wide 

coverage compared with other sources with high spatial resolution and narrow coverage. These 

classification errors should be taken into consideration when the results are used for further 

analysis.  
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CHAPTER 4 

TEST ON POST-MODERNISM TREND FOR ATLANTA’S URBAN STRUCTURE 

 

Introduction 

Local level applications, such as urban growth and land use changes, have more and more 

used remotely sensed images (Herold, 2001). This satellite remote sensing has the advantages of 

global coverage, short cycle, and low cost compared with field survey and visual interpretation 

of aerial photographs (Zhang et al., 2003). With the generation of high spatial and spectral 

resolution, satellite imagery has been more and more used in urban applications. 

Urban internal structure is an interesting topic where the classical Chicago School posed 

several models on which many researches have been done to justify their applicability. With the 

shift to a service producing economy, polarization of the labor market into low- and high-wage 

sectors, and decentralization of jobs away from the central city, urban landscape has changed a 

lot across the U.S. cities. As a result, postmodern urbanism focuses on globalization, polarization, 

fragmentation, cultural hybrids, and cybercities, which can also be identified as the Los Angeles 

School (Dear and Flusty, 1998). Regarding urban structure, postmodern urbanism argues that 

urbanization is taking place on a quasi-random process, which overrides the traditional 

Chicago School’s point that center-driven agglomeration economies control and guide urban 

development (Dear and Flusty, 1998). However, as far as urban land use is concerned, no 

empirical study has been conducted to quantitatively prove or disprove this argument.  
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This chapter takes advantages of remote sensing and GIS techniques, as well as spatial 

statistics, to study Atlanta’s urban internal structure from 1990 to 2000. Specifically, the land 

use/land cover classification results from chapter 3 are used in this chapter for the study area 

and data sources, several spatial metrics as well as statistical models of spatial point pattern 

and process will be used to test the fragmentation and random increase of urban growth in 

Atlanta metropolitan area. 

This chapter is organized as follows. The next section is a literature review on urban 

structure, techniques of spatial metrics and spatial point pattern. Then the methodology part 

will introduce the methods used for urban analysis, which is followed by results section. The 

conclusions and discussions comprise the last section of this chapter.   

 

Urban structure, spatial metrics, and spatial point process 

Over time there have been constant efforts by constructing models to understand how 

cities grow and evolve as they do and why certain areas are richer than others. For a long time 

there were three recognized models which exerted overwhelming influence on urban structure 

(Figure 4.1): concentric zone model by Burgess (1925), sector model by Hoyt (1937), and 

multiple nuclei model by Harris and Ullman (1945).  

The Chicago School, based on especially empirical studies of Chicago, makes an analogy 

between the social development of the city and the evolution of the natural habitat among plants 

and animals through the process of biological invasion and succession. This Chicago School 

perspective focuses on the physical form of city and emphasizes human adjustment to the 

ecological conditions of urban life. In this way, the city can be taken as a social organism with 

distinct parts as a result of internal processes—competition, domination, invasion, and 
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succession. During a process of expansion, succession, and “centralized decentralization” in the 

growth of the city, economic activities and the division of labor result in occupational 

differentiation and further produce a differentiation of community mentalities and social distance 

(Zorbaugh, 1929). Burgess’ concentric model (1925) (Figure 4.1a), based on Chicago, attempted 

to identify the outward expansion of the city in terms of socio-economic groupings of its 

inhabitants. There are five concentric rings. As people move out from the center, land use 

changes as distance from the center increases: central business district (CBD), wholesale, light 

manufacturing, low class housing, medium class housing, and high class housing. 

Chicago School researchers in 1960s were also characterized as Chicago II, as they 

did not rely explicitly on those ecological analogies. Instead, Chicago II featured a belief 

that the processes of an economic reading of cities are useful to discover the general 

processes of urban evolution, which is largely a systematic quantitative approach (Shearmur 

and Charron, 2004). However, Chicago II researchers, like their predecessors, insist that 

urban form is a consequence of a variety of different types of competition. The 

transformation is taking place by way of various processes such as the bidding for land, 

religious and cultural similarities, and socioeconomic clustering. Spatial models were 

developed in order to better incorporate and explore urban data (Shearmur and Charron, 

2004). Unlike Burgess’s concentric zone theory seen from an ecological perspective where cities 

continuously grow outwardly in concentric circles and the zone development is a result from 

competition for best locations, Hoyt (1937), taking the neoclassical economic perspective, 

thought urban development resulted from individual, rational, and economic pursuit for 

maximum economic benefits. While the classical Chicago School emphasized social competition 

for better locations and niches where people enjoy more similar interests, attitudes, and behavior, 
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economic competition in a neoclassical economic perspective is to look for the minimum cost 

and maximum returns. As a result, Hoyt’s sector model outlines that cities grow in sectors where 

each sector has different economic activities, and these sectors result from the effect of 

communication lines (Figure 4.1b). The high-rent areas are the most accessible along the main 

routes of transportation and mainly located on the periphery of the city, while low-rent sectors 

extend from the center to the periphery where the transportation is not very accessible. 

According to Hoyt (1937), the entire city can be taken as a circle and various neighborhoods are 

thought as sectors radiating out from one center. 

When more urbanization takes place, Harris and Ullman (1945), also in neoclassical 

economic perspective, argued that cities should have more than one center (Figure 4.1c). Various 

activities look for their effective, desirable, and financially feasible locations for maximum 

revenue and similar activities located around minicenters within the large city. It incorporates the 

influence from the increasing suburbanization and the resulting outlying of population, business, 

and commercial hubs (Yeates, 1998). Meanwhile, it depicts the process that similar 

socioeconomic and cultural groups tend to cluster (Shearmur and Charron, 2004). The localized 

activities perform a specialized function for a large area and this concentration continuously 

grows until high labor cost and congestion counterbalance the concentrating forces. Therefore, 

the spatial distribution of these districts is more complex than that of monocentric city. 

The above three models have most widespread influence on urban structure. There is 

another one, called urban realm model, developed by Vance in 1964. Later, Hartshorn and 

Muller (1989) summarized a suburban downtown model based on Atlanta’s realization. In this 

model, single-centered metropolis is diversified into various sets of independent realms, where 

specialized goods and services are supplied by their own suburban mini-centers. As a result, the  
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(a) 

(b) 

(c) 

1-High rent residential 
2-Intermediate rent residential 
3- Low rent residential  
4-Education and recreation  
5-Transportation  
6-Industrial 
7-Core  

Sector Model –Hoyt (1939) 

Concentric Zone Model—Burgess (1925) 

1- Central business district    
2- Zone of transition   
3- Zone of independent  
     workingmen’s homes  
4- Zone of better residences   
5- Commuter’s zone 

1-CBD 
2-Whole sale, light manufacturing; 
3-Low-class residential 
4-Medium-class residential 
5-High-class residential 
6-Heavy manufacturing 
7-Outlying business district 
8-Residential suburb 
9-Industrial suburb; 

Multiple nuclei model  
—Harris and Ullman (1945) 

Figure 4.1    Classical urban structure models 
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metropolis can be taken as a composite of various small realms, where the small components are 

self-sufficient and independent of each other.  

The Chicago School and its successors had a consistent influence on urban research in the 

20th century. The models of concentric zone, sector, and multiple nuclei of urban structure and 

their combinations influenced the factorial ecologies of intraurban structure, land-use models, 

urban scale economies and diseconomies, and urban designs (Dear and Flusty, 1998). During the 

past two decades, however, the Chicago School has been constantly challenged by the emerging 

Los Angeles School. While Chicago School holds the opinions that urban growth, control, and 

segregation begin in the (sub)center and emanate outward to form a series of concentrating 

forces, Los Angeles School argues that the prototypical post-modern city is less a tightly-linked, 

monocentric organism than a series of scattered processes that are overriding the traditional order 

of urban growth (Hackworth, 2005). 

Postmodern urbanists think the contemporary city is a kind of new urban forms with 

fragmented, partitioned, less legible than previous urban forms (Beauregard and Haila, 2000). 

According to Dear (2003) and Dear and Flusty (1998), city evolves into a highly decentralized 

and chaotic entity, where global and local forces are fused, where social polarization is expanded, 

and where the periphery controls the urban core. Postmodernism permits the coexistence of dual 

or multiple representations, the combination of styles in architecture, and the multiplicity of 

landscapes as a result of plurality of cultures (Jackson, 1989). Based on the assumption that the 

built environment is a result and mediator of social relations, Knox (1991) argued that the new 

urban landscapes, which are derived from and interlinked with the economic restructuring and a 

philosophical, cultural and attitudinal shift from modernism to postmodernism, indicate the 

emergence of postmodern metropolis, such as Los Angeles. During this process, the production, 
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consumption, and postmodern architecture give postmodern metropolis distinct characteristics 

from the modern cities. Dear (1996) examined the intentionality during the process of land use 

planning. He argues that the traditional practices are no longer suitable as they are defunct and 

irretrievable and they should be replaced by new legitimacies and intentionalities for postmodern 

cities. However, Beauregard and Haila (2000) objected to the notion that the postmodern city has 

replaced the modern city even though there are some changes to support the postmodern 

spatiality. Instead, there is only a more complex pattern mixed with historical trends and new 

forces, which is not completely distinct from previous forms. 

Dear (2000) argued that the classical Chicago model is more and more being 

challenged by the Los Angeles School. Meanwhile, Miami and Los Angeles have been 

recognized as the paradigmatic models of postmodern cities (Poulsen and Johnston, 2002). As 

Lees (2003) identified that the new urban geography, which is largely concerned with the 

topics of social-spatial behaviors of ethnic groups in the postindustrial city, has mainly been 

explored in qualitative approaches, although this exploration, unlike the Chicago School, 

lacks shared methodological commitments to fieldwork, first-hand observation and 

ethnography. The criticism includes, for example, that Dear and Flusty got their conclusions 

just based on exaggeration of the power of academic interpretation which lacks more direct 

evidence. Another example is that Soja (2000) interpreted the city life by academic accounts, 

poems and secondary materials instead of through ethnographic research that defined the 

Chicago School. However, as a conclusion, Lees (2003) listed several advantages of an 

ethnographic approach for postmodern urban research: better understanding of the complexity 

of human life, dealing with cultural richness and complexity, and believing the socially 
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constructed nature of phenomena and the key role of language during the interpretation 

process.  

The post-modern urbanism arguments by the Los Angeles School have brought a number 

of challenges to urban geographers, especially on opinion of changing urban forms. According to 

the Los Angeles School, one of the most exciting aspects of the postmodern condition is the idea 

that the city has a radical break from past trend in political, economic, and socio-cultural life 

(Dear and Flusty, 1998). Postmodern urbanists focus not only on a specific city but also on the 

general urban processes, like restructuring through deindustrialization and reindustrialization, the 

birth of the information economy, and the decline of nation-states. As a result of increasingly 

flexible and disorganized capitalist accumulation, Los Angeles, as an exemplar of postmodern 

city, becomes a decentered and decentralized metropolis. Accordingly, urban structure is a 

complicated quilt and fragmented as well as constrained by the underlying economic rationality 

(Soja, 1989). Urban growth takes place on a quasi-random process; that is, the selection of urban 

development on one urban parcel is a random or quasi-random process. The development of this 

parcel is disjointed with the status of another parcel. In this way, the traditional center-driven 

urban development is not valid any more (Dear and Flusty, 1998).  

The majority of postmodern arguments are based on detailed empirical knowledge of Los 

Angeles, rather than derived from tested hypotheses (Johnston et al., 2006). Regarding urban 

spatial growth, there are few quantitative studies so far to test if the trend of postmodernism, i.e., 

the fragmentation and randomness of urban growth, is (un)applicable in typical post-modern 

(Los Angeles and Miami) and modern (Chicago) cities. The possible reasons are due to the lack 

of sufficient data and appropriate technologies. This chapter aims to test the underlying 

hypothesis of the postmodern city, namely the fragmentation and randomness of urban growth 
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within the context of Atlanta metropolitan area. Some spatial matrices and spatial statistics are 

going to be used in order to do some empirical studies. While talking about Atlanta, the first 

question coming up in one’s mind is whether Atlanta is a good case to study postmodern trend. 

While I admit that Atlanta is not a typical postmodern city by any means, it can be taken as a 

modern city to at least (dis)prove that the postmodern arguments are (un)applicable in Atlanta 

setting. The main reason I use Atlanta to do this case study is the data availability, namely I 

directly use the classified image results from chapter 3 as the urban land use/land cover and 

urban growth in 1990 and during the 1990s.  

There are debates around the topics of what is sprawl, how to measure it, which type of 

land should be incorporated (Cutsinger et al., 2005; Ewing, 1997; Wolman et al., 2005). 

Generally, urban sprawl refers to the phenomenon or process which has characteristics of low-

density development, segregated land uses, leapfrogging development, automobile-dependent 

development, employment deconcentration, homogeneous residential areas regarding race, 

ethnicity, and class (Heim, 2001; Johnston et al., 2003; Lopez and Hynes. 2003). Several 

scholars suggested that sprawl can be measured from various dimensions: density, concentration, 

nuclearity, proximity (Galster et al., 2001; Wolman, et al., 2005). However, Tsai (2005) pointed 

out that there are still gaps in the definitions of compactness and sprawl in a quantitative way. 

This chapter, however, does not measure sprawl in those dimensions. Instead, the land use/land 

cover maps derived from chapter 3 are taken as data sources, of which low-density urban and 

high-density urban are combined to denote urban land use in 1990 and 2000. By making 

comparison between these two dates, urban growth is measured by subtracting urban areas 

between two thematic images (Figures 3.9 and 3.10). In this way, urban growth incorporates 

low-density development around previous urban areas, segregated urban land uses, and leapfrog 
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development. Figures 3.11, 3.12, and 3.13 depict the distributions of low-density urban, high-

density urban, and the total urban increase from 1990 to 2000. 

Spatial metrics, also called landscape metrics, are quantitative indices to describe 

landscape structure and pattern (Herold, 2001). Spatial metrics, which are commonly used in 

landscape ecology, have been applied to quantify structure and pattern, estimate landscape 

complexity, and perform texture analysis of satellite images (Herold et al., 2005; Parrinello and 

Vaughan, 2002).  

The development of spatial metrics is derived from information theory measures and 

fractal geometry (Herold, 2001). The calculation of spatial metric is based on a thematic map 

which shows spatial patches classified as different categories (Herold et al., 2003), where patch 

is defined as a homogeneous region for a landscape, such as urban area (Herold et al., 2005). 

Patch-based land metrics, which include, but are not limited to, patch density, mean patch size, 

mean patch shape index, fractal dimension, contagion, and lacunarity, are often used to measure 

landscape complexness and fragmentation (Zeng and Wu, 2005).   

As remote sensing can supply a good data source for large-area landscape study, the 

combination of remote sensing and landscape metrics has been a growing interest for many 

researchers (Herold et al., 2005). However, there are some problems existing in the application 

of spatial metrics. First, the input data from remote sensing analysis into spatial metrics have the 

issues of accuracy and scale. The data accuracy (which includes the definition of the classes and 

classification accuracy) and scale (which includes spatial and spectral resolution) directly affect 

landscape heterogeneity. Second, as there are many spatial metric indices, how to select the best 

ones is an issue when landscape is studied from different perspectives. When comparison among 

various subdivisions of a study area is conducted, how to define spatial domain is another issue 
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(Herold et al., 2005). Spatial discrimination and regional subdivision of urban space can be very 

different when different spatial domains are applied. 

A spatial point process is defined as any stochastic model that generates a countable set 

of points in the plane (Ripley, 1977). A particular realization of such a process is called a spatial 

point pattern, which can also be understood as a set of data consisting of n locations in an 

essentially planar region A (Rowlingson and Diggle, 1993). In recent years, spatial statistical 

methodology has made big advances. Intensity, nearest-neighbor distribution function, the 

Ripley's K-function, and L-function are usually ways to describe spatial point process (Fajardo 

and Alaback, 2005; Haase, 1995; Podur et al., 2003; Walter, 2005). Several software packages 

have been developed and used for spatial point pattern analysis. Some notable R packages are 

available for analyzing spatial point data, which include the spatstat package by Baddeley and 

Turner (2005), the splancs package by Rowlingson et al. (2006), and the ptproc package by Peng 

(2003). Besides, SpPack is developed by Perry (2004) to study spatial point pattern using Visual 

Basic for Applications (VBA) programming language. Voroni diagrams and Delaunay 

tessellations are employed by Chiu (2003) to examine the dependence between spatial points. 

Complete spatial randomness (CSR) is often assumed for the quantitative description of a 

spatial pattern. A formal definition of CSR is that the events in A constitute a partial realization 

of a homogeneous Poisson process, which incorporates a fixed constant as intensity function 

(Diggle, 2003). There are a lot of applications which use statistics to identify spatial association, 

which takes into account the relative locations of observations (Leung et al., 2003). Moran’s I 

and Geary’s c are the most commonly used indices for the patterns of spatial association within 

one dataset. While Moran’s I and Geary’s c use Gaussian approximation under the assumption of 

first-order homogeneity, which in reality is often not true (Couteron et al., 2003), Kabos and 
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Csillag (2002) advanced a new method and algorithm that deal with first-order heterogeneity by 

using S-plus programming code. 

 

Methodology 

In this chapter, three types of statistics are used to measure Atlanta’s urban structure. 

Spatial metrics, specifically fractal dimension and contagion index, are used to measure 

fragmentation of urban structure. Ripley’s K-function and spatial point process model are used to 

measure if Atlanta’s urban growth from 1990 to 2000 is random or not. 

Spatial metrics 

Derived from the work of O'Neill et al (1988), some spatial metrics were developed 

(Herold et al., 2002). Of them, the contagion and fractal dimension are used in this chapter. The 

contagion index, which is a pixel-based metric, measures the extent to which landscape elements 

are aggregated or clumped (O’Neill et al., 1988).  Contagion has a range of 0 to 100. Higher 

values of contagion indicate landscapes having a few large and contiguous patches, whereas 

lower values characterize landscapes with many small patches. The more heterogeneous the 

urbanized area becomes, the lower the contagion index. The contagion index is computed by the 

random and conditional probabilities that a pixel of patch class i is adjacent to another patch 

class k (Herold et al., 2002): 
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where m is the number of patch types (land use/land cover types in this dissertation), pi is the 

proportion of the landscape occupied by patch type i, and gik is the number of adjacencies (joins) 

between pixels of patch types i and k. 

Fractal dimension is available for the analysis of the fractal structure of urban forms 

(Myint, 2003). Generally, fractal dimension for an urbanized area is between 1 and 2 (Longley 

and Mesev, 1997 and 2002). The urban fractal growth is taken as a space filling process—the 

process of urbanized areas filling the city map coverage (Shen, 2002). Meanwhile, the fractal 

dimension of urbanized areas is an indicator of the complexity or dispersion of urban form. A 

higher value of fractal dimension indicates a more complex or fragmented urban form (Read and 

Lam, 2002). 

There are several types of definitions for calculating fractal dimension (Batty and 

Longley, 1988; Parrinello and Vaughan, 2002). This chapter describes the complexity and the 

fragmentation of a patch by a perimeter-area proportion. The fractal dimension can be applied as 

a derived metric called area-weighted mean patch fractal dimension (AWMPED) (Herold et al., 

2002): 

 

where m is the number of patch types (classes), n is the number of patches of a class, pij is the 

perimeter of patch ij, aij is the area of patch ij, A is the total landscape area. The area weighted 

mean patch fractal dimension (AWMPFD) measures the fragmentation of each built-up patch, 

which is different from contagion index. Meanwhile, AWMPED averages the fractal dimensions 

of all patches by weighting larger land cover patches. This improves the measure of class patch 
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fragmentation because the structure of smaller patches is often determined more by image pixel 

size than by characteristics of natural or manmade features found in the landscape.  

 

Testing for spatial association 

In this section, two types of spatial statistics are used to test spatial association between 

1990 urban land cover and the increase during the 1990s. First, Ripley’s K-function and the 

derived L-function are employed to test spatial independence between two datasets. Then, 

inhomogeneous point process model will be used to test the conditional spatial association 

between these two datasets. In both cases, R software is used, although the two tests use different 

packages: the former uses SPLANCS package while the latter uses SPATSTAT package. 

 

Ripley’s K-function 

Ripley’s K-function (1977) is usually used for testing spatial pattern of univariate 

variable or determining bivariate spatial association between two variables. Ripley’s K-function 

is a second-order analysis of point patterns; that is, the variance of all point-to-point distances is 

used for the calculation of density functions (Haase, 1995). Specifically, theoretical K-function 

can be written as the follows: 

K(t) = (1/λ)E[number of points within distance t of an arbitrary point]        (4.3) 

where λ is the intensity of the process. The unbiased estimator of K(t) is given by (Ripley, 1976, 

1981): 
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where n is the number of points, A is the area, wij is a weighing factor for correcting edge effects, 

uij is the distance between points i and j, It(uij ≤ t)=1 if uij ≤ t, or 0 otherwise. 

For the case with bivariate variables, the theoretical K-function (Equation (4.3)) measures 

the cross-covariance density of the bivariate point process (Diggle, 2003) and therefore reflects 

spatial interaction between two point datasets.   

       K12(t ) = (1/λ1)E[number of type 1 points within distance t of arbitrary type 2 point] 

                   = (1/λ2)E[number of type 2 points within distance t of arbitrary type 1 point] 

where λ1 and λ2 are the intensities of the point processes. The unbiased estimator for bivariate K-

function are given by (Ripley, 1977 and 1981) 
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where n1 and n2 are the numbers of points of types 1 and 2 respectively, other parameters have 

the same meanings as Equation (4.4). 

After Ripley’s K-function is calculated, L-function is usually derived which is a 

linearized version of Ripley’s K-function. L-function has the following form (Bessag, 1977): 

ttKtL −= π/)(ˆ)(ˆ  

where t is distance. L-function scales K-function’s variance to facilitate the test against the null 

hypothesis of complete spatial randomness for univariate variable or spatial independence for 

bivariate variables. Under null hypothesis, L-function has an expectation of zero for any value of 

t.  

(4.6) 

(4.7) 

(4.8) 

(4.5) 
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In practice, confidence intervals, which is also named as confidence envelopes, for K-

function and L-function are derived from simulations (Fajardo and Alaback, 2005). If empirical 

K(t) and L(t) fall between confidence envelopes, the null hypothesis is not rejected. Otherwise, 

the spatial pattern is not random (i.e., clumped or regular) for univariate variable or is not 

spatially independent between two variables. 

 

Models of spatial point processes 

There are previous studies on the conditional spatial association of one point process on 

another spatial process or distribution (Berman, 1986; Berman and Diggle, 1989; Foxall and 

Baddeley, 2002). The SPATSTAT package for R software provides data structures and functions 

for fitting a variety of spatial statistical models via maximum pseudolikelihood function 

(Baddeley and Turner, 2000).  

The spatial distribution of urban growth in Atlanta metropolitan area is modeled as a 

realization of an inhomogeneous Poisson process with some intensity function. The 

inhomogeneous Poisson process is a flexible model in that its intensity can be modeled as a 

function of spatial variables, another stochastic process, or its spatial coordinates (Rathbun and 

Cressie, 1994). While the null hypothesis is that the urban growth is a homogeneous Poisson 

process with a constant intensity, the alternative hypothesis is that urban growth is an 

inhomogeneous Poisson process with an intensity that depends on distance to the nearest urban 

land cover in 1990. 

For the spatial Poisson point process model, the following assumption is made: let G 

(1990 urban landcover) denote the geometric structure on a planar region, the point process X 

(urban increase from 1990 and 2000) is conditionally Poisson given G, with intensity function 
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)),(()(| GuduGX ρλ =  

where d(u,G) denotes the shortest distance from the point u to the nearest G, and ρ is an 

unknown function. 

The following hypotheses are made to construct models: 
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where d is the distance from a point u to the nearest point in G, β1,β2, and α are parameters to be 

estimated. Under the assumption that the points, given the 1990 urban landcover, is a realization 

of an inhomogeneous Poisson processes, the likelihood ratio test can be used to test if the null 

hypothesis can be rejected or not rejected. 

 After the intensity for each point of urban growth is calculated, the inhomogeneous K-

function is calculated based on formulas by Baddeley et al. (2000). Compared with conventional 

K-function with a constant intensity within a process and theoretical K-function under CSR 

process, the inhomogeneous K-function can inform if there is positive association between the 

urban growth, conditioned on the lineaments (Baddeley and Turner, 2006).  

 

Results 

The study area is the Atlanta metropolitan area as noted in chapter 3. The data sources for 

spatial metrics and spatial statistics are the thematic maps from chapter 3 (Figures 3.11, 3.12, 

3.13). Non-urban types of land covers are combined so that only urban (which includes low-

density urban, high-density urban, and total urban) and non-urban areas are derived from 

remotely sensed images. A public domain spatial metrics program, FRAGSTATS, which was  
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developed in the mid-1990s and has been improved in the latest version 3, supplies a convenient 

way to calculate fractal dimension and AWMPFD (McGarigal et al., 2003). 

Figures 4.2 and 4.3 show the results for spatial metrics. From 1990 to 2000, contagion 

indices for low-density urban, high-density urban, urban, and total metropolitan area decrease at 

various degrees (Figure 4.2), which indicates that these four types of land covers all had a 

fragmentation process during the 1990s. Meanwhile, the area-weighted mean patch fractal 

dimensions (Figure 4.3) all increase for these four types of land covers. The indices of 

AWMPED support the conclusion that Atlanta’s urban landscapes were more fragmented from 

1990 to 2000. This conclusion is not surprising since, in the process of urban growth, land 

use/cover are more differentiated according to economic rationality.  

The total urban area has a very large size of data, which is a total of 1,834,256 nonzero 

pixels of urban areas in 2000 image (which is converted from the classified images in chapter 3) 

when spatial resolution is 30m. Because of the limitation of computer memory and the rather 

slow speed to process such a large dataset, a spatial resolution of 120m is selected and the 

classified image is resampled by nearest neighbor method. As a result, there are 78,062 pixels of 

urban area in 1990 image and 114,832 pixels of urban area in 2000 image. Of 2000 image, there 

are 36,770 pixels of urban growth from 1990 to 2000. 

When Ripley’s K-function and L-function are used for spatial pattern analysis, the results 

are usually presented as graphs with the Khat or Lhat plotted against the independent variable t 

(distance) (Haase, 1995). If the sample statistics Khat and/or Lhat fall into the simulation 

envelopes, the two datasets are spatially independent. Likewise, if Khat and Lhat lie above the 

upper limit of the confidence envelope, there exist positive relationship; and there is negative 

relationship if Khat and Lhat lie below the lower limit of the simulation envelope. Figures 4.4 
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Figure 4.4    Estimated bivariate K12hat and simulation envelopes 
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Figure 4.5    Estimated bivariate L12hat and simulation envelopes 
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and 4.5 show the results for Khat and Lhat. The solid lines in both graphs lie a little bit above the 

upper limit of confidence envelope (dashed line), which indicates that these two datasets are 

significantly positive related at the level of 0.01. In other words, urban growth during the 1990s 

was not spatially independent of urban area in 1990. 

Based on the null and alternative hypotheses, spatial (in)homogeneous Poisson processes 

are constructed for testing the conditional spatial association between 1990 urban land cover and 

urban growth in the 1990s. This model uses the log pseudolikelihood ratio to test if null 

hypothesis is rejected. Under null hypothesis, the uniform intensity λ(u)=3.521e-6. For alternative 

hypothesis, λ(u)=-9.596*exp(-0.0168*d). The log pseudolikelihood ratio test gets a  

                   Deviance=80622                   p-value < 0.001 

which indicates that null hypothesis is rejected and urban growth during the 1990s was 

inhomogeneous and dependent on the distance from 1990 urban pixels. 

Figure 4.6 depicts three types of K functions under different scenarios. Of which, the 

inhomogeneous K function is calculated by alternative hypothesis, conventional K function is 

determined by null hypothesis, and the theoretical K function under CSR is also given in order to 

made comparison. Since inhomogeneous K function lines falls far above two lines, a positive 

association between the urban growth pixels, conditioned on the 1990 urban pixels, is suggested. 

That means, the urban growth in 1990s not only depended on the distance from 1990 urban 

pixels, but also has positive association within itself. 

 

Conclusions and discussions  

This chapter uses data derived from remote sensing imagery to analyze urban structure. 

Since the Chicago School has for a long time influenced how we model cities and their internal  
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Figure 4.6   Inhomogeneous K function, conventional K function with uniform 
intensity, and theoretical K function under CSR. 
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structures and growth, previous studies on urban structure are largely concerned with the 

classical models by the Chicago School and its successors. Postmodern urbanism, by contrast, 

argues that the metropolis is more fragmented and has a random or quasi-random growth. 

However, this argument has not been tested quantitatively. 

Spatial metrics and spatial statistics are used to analyze the changes in urban land 

use/land cover structure. Spatial metrics prove that Atlanta was more fragmented in 2000 than 

1990, which proves the argument by post-modernism. Ripley’s K-function and spatial Poisson 

point process model, however, reject the argument that urban growth is random or quasi-random, 

as these tests indicate that there are positive association between 1990 urban area and urban 

growth during the 1990s. 

The bifurcated results from quantitative analyses in this chapter indicates that it is not 

self-evident that post-modern urbanism is applicable or inapplicable. To be intuitive, as any 

society evolves, it is expected that urban forms will be complicated. Thus, more fragmented 

urban use is not unique to post-modern cities. It is highly possible that modern cities have more 

fragmented urban functions when they enter into a highly competitive society. 

However, the above results cannot be taken as the opinion that Atlanta does not have any 

feature of a postmodern city. First, a postmodern city has multi-dimension magnifications 

regarding the economic, social, cultural, and physical aspects. Other aspects should also be 

examined before this conclusion can be derived. Second, the methodology used in this chapter 

needs to be tested for other exemplar cities, especially Los Angeles, Miami, and Chicago. Based 

on the comparisons among these typical cities for post-modern and Chicago urbanisms, a better 

conclusion may be derived on the applicability of this methodology. Third, the data used for this 

analysis have intrinsic errors since the classification only has an approximately 85% overall 



 

 

80

accuracy. With image data mosaic, this error can be compounded. In order to get a robust 

conclusion, the tests should be conducted repeatedly on different scales and different resolutions. 

That is, MAUP should be taken into consideration when the conclusions are reached. Finally, as 

spatial statistics are growing quickly to better model reality, with the advancement of more 

powerful models, some further investigation can address this question more thoroughly. 

Although post-modernism largely uses qualitative methods to conduct research, its argument 

need to be proved or disproved quantitatively to some degree. 
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CHAPTER 5 

EXPLORING ATLANTA’S URBAN POVERTY BY SPATIAL REGRESSION MODELS 

 

Introduction 

Since Wilson’s (1987) The Truly Disadvantaged, the growth of urban poverty 

concentration has been largely investigated (Cooke, 1998; Greene, 1991 and 1994; Hughes, 1990; 

Jargowsky, 1996, and 1997; Kasarda, 1993; Krivo et al., 1998; Massey and Denton 1993; Wilson, 

1991 and 1996). One central question in urban poverty research concerns the persistence of the 

concentration of urban poverty----the causal relationships among poverty, segregation, and 

inequality. Many studies have used statistical models to explore the relationships among these 

factors (Jargowsky, 1996; Levernier, 2003; Levernier et al., 2000; Massey and Fischer, 2000). 

The majority of these studies treat urban poverty nonspatially in their multivariate statistical 

analyses; that is, no spatial effects are taken into consideration when they do ordinary least 

square (OLS) estimates. Generally, multivariate statistical models of spatial data assume spatial 

stationarity; that is, the causal relationship between independent and dependent variables do not 

vary over space. However, in reality, this assumption may not be appropriate since it is self-

evident that spatial phenomena are not distributed evenly. There are known spatial dependence 

and heterogeneity among various spatial landscapes. This research investigates spatial 

nonstationarity in multivariate statistical models of urban poverty by using spatial econometrics. 

While conventional OLS regression produces a global predictive model, spatially-referenced 

econometric models can better account for spatial variations in model parameter estimates. 
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In this chapter, the causal relationships among poverty, demographic, and socio-

economic variables are investigated. The primary purpose of this chapter is to understand the 

causes of poverty in the Atlanta metropolitan area. This analysis has two objectives. The first is 

to enhance statistical methodology in the analysis of urban poverty. Since spatial data analysis 

often differs from the non-spatial statistical analysis, issues of methodology can be a major 

concern of urban poverty study.  The second objective is to identify those variables that affect 

poverty rate and determine the strength of the influences. Particularly, the effects from 

demographic and socio-economic variables at the census tract level for the Atlanta metropolitan 

area will be investigated. 

In the pages that follow, I first conduct a literature review on theoretical and empirical 

explanations of urban poverty. Then the data and study area are introduced. Analytically, I first 

use exploratory spatial data analyses to investigate some possible variables, then OLS model is 

employed to estimate poverty rate using demographic and socio-economic variables. Following 

the conventional multivariate regression, several spatial econometric models will be used to get 

coefficients when local contexts are incorporated. The section of conclusions and discussions is 

the final part of this chapter.  

 

Urban poverty: theoretical and empirical evidences 

A majority of previous research defined high-poverty neighborhoods based on a fixed 

cutoff, for example, the percentage of persons who live in families with income below the 

federal poverty line----40% has largely been used (Quillian, 1999). According to the official 

definition, a poverty threshold is set based on a family’s annual before-tax money income which 

excludes non-cash benefits such as public housing, Medicaid, and food stamps (Weber et al., 
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2005). Different-sized families have different thresholds. These poverty lines are adjusted 

annually by incorporating inflation, however, these figures have not been changed much during 

past decades (Weber et al., 2005).  

This poverty definition has been criticized for a long time (Bishop et al., 1999; Brady, 

2003; O’Boyle, 1999; Weber et al., 2005).  O’Boyle (1999) pointed out four aspects of flawed 

poverty definition: the way how physical needs are defined and measured, the non-

comprehensive definition of income for poor person or family, the inappropriateness of standard 

poverty line for different living-cost area, and insensitiveness of official standard poverty 

threshold for some people over others. Accordingly, Brady (2003) thought that ideal poverty 

measures should incorporate historical variation, use relative measures instead of absolute 

values, take poverty as social exclusion, measure the influence of taxes, transfers, and state 

benefits, and figure out the depth and inequality among the poor. With these criticisms, a number 

of new indices have been employed, for example, Sen index of poverty by Bishop et al., (1999), 

the Interval, Ordinal, and Sum of Ordinals by Brady (2003), and Foster-Greer-Thorbecke index 

by Cushing and Zheng (2000) and Jolliffe (2003). 

Although this standard poverty statistic is widely criticized, it still retains widespread 

attention for the consistency of long-time use (Bishop et al., 1999; Quillian, 1999; Strait, 2000). 

Jargowsky and Bane (1991) checked visual appearances of neighborhoods with various poverty 

percentages. They made the conclusion that the neighborhoods with more than 40% poverty rates 

seem to be more dilapidated and more distressed than others. 

Poverty is distributed unevenly across American landscape. Generally, this unevenness 

has four dimensions (Levernier, 2003; Weber et al, 2005). First, the areas with poverty rate of 

20% or more concentrate in the South, particularly the Black Belt and Mississippi Delta, 



 84

Appalachia, the lower Rio Grande Valley, and Indian Reservation areas in the Southwest and 

Great Plains. Second, poverty rates vary greatly. Usually lowest poverty rates can be found in the 

suburbs which are the fringe areas of large metropolises, whereas highest areas can be found in 

remote rural areas which are not adjacent to metropolitan areas. Third, rural areas tend to have 

high poverty rate and persistent poverty. Furthermore, less populous and more remotely-accessed 

counties tend to have persistent poverty. 

The causes of poverty have long been an interesting topic for researchers in the fields of 

demography, sociology, geography, political science, and economics.  A number of explanations 

have been suggested for the cause and persistence of poverty. Three explanations for the causes 

of high-level poverty predominate in the field (Quillian, 1999): the flight of middle-class black 

from mixed-income neighborhoods, racial segregation between Blacks and Whites, and spatial 

mismatches between inner-city residents and job locations.  

In Wilson’s (1987) The Truly Disadvantaged, one of the key reasons that cause the high-

poverty neighborhoods is the flight of middle-classes residents from mixed-income 

neighborhoods to suburban areas, particularly, white-majority neighborhoods. The resultant 

landscape is that the disadvantaged poor blacks are more and more concentrated. Accompanying 

this flight, the demographic structure of poverty neighborhoods has been more and more 

prominent for the persistence of poverty, like the increased number of families headed by 

females (Blank and Hanratty, 1992; Wilson, 1987), and negative neighborhood effects associated 

with inner cities (Levernier et al., 2000.). This argument has been proved by Gramlich et al. 

(1992), Greene (1991), Jargowsky (1997), and Jargowsky and Bane (1991). However, this 

argument is also challenged by the theory of residential racial segregation.  
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Denton and Massey (1988) found that the residential segregation level for blacks with 

high-level socio-economic status does not differ much from blacks with low-level socio-

economic status. Instead, African-Americans tend to live in predominately black neighborhoods 

after they abandoned the black poor in the inner city (Quillian, 1999). Massey and Denton (1993) 

insisted that racial segregation is the main cause of extremely poor neighborhoods by examining 

the racial disparities in the population of high-poverty neighborhoods. However, as Quillian 

(1999) pointed out, this racial segregation is important to understand the existence of high 

poverty in inner cities, it cannot explain the phenomenon that the number of poor neighborhoods 

over time has been increased while racial segregation has decreased over time (Farley and Frey, 

1994; Jakubs, 1986).  

The next explanation focuses on economic changes and its influence on poverty rates. 

Wilson (1987) emphasized that the increases of the number of high-poverty neighborhoods is a 

result from economic change which worsened the employment and earning prospects of blacks 

in the inner city. Particularly, the structural transformation of the U.S. economy from goods 

production to a service and information economy with a differentiated labor market which 

generates greater demands for high- and low-level skilled workers. As a result, the previous 

high-paying and unionized manufacturing jobs are lost in inner cities. The high-salary, non-

unionized jobs are created for professionals and elites in central cities. Meanwhile, the number of 

inner-city factory jobs has declined and the wages and employment rates of inner-city residents 

decreased. This economic transformation bifurcated the middle class and income inequality 

expanded and poverty deepened. Sassen (1991) argued that the post-industrial economy, which 

leads to increasing income inequality, has a spatial stratification. This bifurcation of middle class 

is most prominent in large cities which are oriented toward the global economy. As a result, the 
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residential segregation, class segregation, and the concentration of poor are more prominent in 

these global cities (John, 2002).  

Wilson (1996) argued that the demand-side economic factors are the fundamental cause 

of increasing urban poverty, which includes the loss of manufacturing jobs, the shift in labor 

demand towards high-skilled occupations, and the decline of unions. Meanwhile, the supply-side 

low-skilled labor, which results from immigration and increased female labor force participation, 

have been responsible for low-paid wages (Topel, 1994). Accordingly, two hypotheses have 

been used for explanation of high-poverty neighborhoods. The spatial mismatch hypothesis, 

originally proposed by Kain (1968), argues that high unemployment rates among inner-city 

blacks are derived from the shift of jobs from urban central cities to suburban areas. The 

deindustrialization hypothesis emphasizes the decline of the inner-city factory employment 

opportunities. Massey and Denton (1993) found that, because of racial residential segregation, 

the inner-city blacks have a worse environment for job seeking. However, this argument is 

difficult to test given the non-availability of longitudinal data that can emphasize the influence 

from spatial mismatch and deindustrialization on the unemployment rate of inner-city residents. 

That is, this research needs the longitudinal data which can differentiate the employment changes 

based on demand-side job changes or resulting from class-selective migration (Quillian 1999). 

The next explanation is somewhat hybrid. Massey and Fischer (2000) reexamined the 

causes of urban poverty and found that the interaction between economic restructuring and racial 

segregation is responsible for the concentrated urban poverty. As for segregation, Jargowsky 

(1996) pointed out that racial residential segregation is more influential than economic 

segregation by social class. His research found that neighborhoods are more heterogeneous along 

income than along the racial component. The interaction between racial segregation and the 
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shifts of U.S. economic structure had different degrees of influence on the concentration of urban 

poverty. Before 1970, segregation played a predominate role. By 1990, however, economic 

restructuring had a larger effect on high-poverty neighborhoods (Massey and Fischer, 2000). 

Likewise, Freeman (2003) found that economic growth diminishes poverty, but the process is 

sensitive to the time period, the econometric circumstance, and the demographic characteristics. 

While the poverty rate has long been sensitive to the unemployment rate, its influence on the 

decline of poverty rates has decreased in recent decades (Freeman, 2003). 

Weber et al. (2005) classifies quantitative research on poverty into two groups: 

community and contextual studies based on the research goals, data structure, and methodology. 

From Weber et al., (2005), community studies explore the relationship between aggregated 

poverty and demographic and economic structure within a community, for example, using 

county-level poverty rate and county demographic and economic characteristics. By contrast, 

contextual studies explain the relationship between individual poverty status and individual 

demographic variables and community social and economic structures, for example, using 

individual-level poverty data to explain the influence from individual educational attainment and 

neighborhood social-economic characteristics.  

Levernier (2003) points out that the geographic differences of poverty rates may be 

caused by differential influence of particular causal factors, That is, for example, economic 

change may have different effects on poverty rate changes for residents living in central cities, 

suburbs, and rural areas. Thus, the causal relationship varies from place to place; that is, there is 

spatial nonstationarity. Mennis and Jordan (2005) thought there are two possible reasons for 

spatial nonstationarity. First, the multivariate regression models have missing variables which 

have global effects on poverty distribution. The other reason is nonstationary local contexts 
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which generate locally-specific influence on poverty, like spatial clustering. Since spatial 

correlation and spatial dependence exist for poverty distribution, it violates the assumption that 

the phenomenon is independent and identically distributed (IID), where OLS analysis usually 

makes this assumption. Upon this issue, some spatial econometric models have sought ways to 

account for spatial dependence so that unbiased estimates of coefficients for the effects of local 

contextual influence can be derived (Weber et al., 2005). 

Besides the problem of spatial dependence and spatial autocorrelation, another issue is 

the ecological fallacy (Weber et al, 2005). The conclusions based on individual-level data may 

not be extended for area-level inferences. For the aggregated data, like county or census tract 

level, the modifiable areal unit problem (MAUP) needs particular attention; that is, the 

conclusions based on a spatial aggregated level should be cautiously applied to another 

aggregated scale (Martin, 1996).  

 

Data and study area 

This research uses the same definition of high-poverty neighborhood as the majority of 

other studies: a census tract in which the poverty rate equals or exceeds 40%. Of which, poverty 

is defined based on standard definition by U.S. Census of Bureau. Although this definition has 

long been criticized, the consistency of this usage can help with the comparison of previous 

researches.  

To investigate the causal relationships between concentrated urban poverty and 

demographic and socio-economic factors, the census tract level data from 2000 census are used. 

The variables are listed in Table 5.1. Many studies have been done on this topic by using similar 

variables (Jargowsky, 1996; Levernier, 2003; Levernier et al., 2000; Massey and Fischer, 2000). 
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Since different places have various place-specific characteristics, the causality of poverty 

may also be place-specific. For example, one area with a high poverty rate may largely be due to 

its demographic characteristics, while others may be attributed to the lack of economic 

opportunity. From the theory of racial segregation, high-level poverty results from racial 

residential segregation. The index of dissimilarity is usually used to denote the magnitude of 

racial residential segregation. In this chapter, I compute the index of dissimilarity by using 

census block data for each census tract. The index of dissimilarity is measured as the following 

expression (Massey and Denton, 1989):  

 

 

where ti and pi are the total population and the proportion of blacks in census block i, T and P are 

the population size and the proportion of blacks in the whole census tract, which is subdivided 

into n blocks. This dissimilarity index varies between 0 and 1. The higher the index is, the 

greater the racial residential segregation is.  

Based on literature review, some variables are incorporated into regression models in 

order to check their influence on poverty simultaneously. Poverty neighborhoods are expected to 

have high percentage of minority persons, which may be due to discrimination or racial 

preferences in hiring (Levernier et al., 2000). Since female-led families usually have lower 

income than others, this demographic characteristic should be expected to have a positive effect 

on poverty rate. Similarly, low educational attainment and employment in primary and secondary 

industries tend to generate poverty. Likewise, the neighborhoods having good social economic 

characteristics (like high employment rate, less migration) tend to have lower poverty rates.  
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This chapter still uses the Atlanta metropolitan area as the study area, which has 13 

counties. In 2000, these 13 counties had a total of 589 census tracts (figure 3.1). These counties 

correspond to the ten counties comprising the Atlanta Regional Commission with the addition of 

Coweta, Forsyth, and Paulding Counties.  This definition of Atlanta metropolitan area is 

somewhat different from the version that was defined by U.S. Census of Bureau, which has a 

total of 20 counties for the Atlanta metropolitan area in 2000. However, since chapter 1 uses 

these counties as study area and in order to keep consistency, I continue use these 13 counties as 

study area. These counties represent the major Atlanta metropolitan area. 

 

Methodology 

Exploratory spatial data analysis 

As a first step in the analysis, exploratory spatial data analysis is conducted in order to 

describe and visualize spatial distributions of poverty rates as well as some variables. This step 

can discover patterns of spatial association and clusters, as well as spatial heterogeneity 

(Dall’erba, 2005). Specifically, choropleth maps are used first for spatial distribution 

visualization regarding poverty rates, demographic and socio-economic variables.  

The next exploratory spatial data analysis will focus on the creation of the spatial weight 

matrix. Spatial statistics concern the data with points in some Euclidean space, usually R2 or R3 

(Chang, 2004). Usually statistical analysis of spatial data is conducted from three perspectives: 

geostatistical data, point data, and lattice data (Cressie, 1991). Geostatistical data refer to 

continuous field, such as surface data. Point data refer to locations of individual events, such as 

the distribution of trees within a plot. The lattice data refer to the data structure where the units 

of observation are composed by discrete locations, which are either associated with a regular 
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lattice or grid structure, like pixel-based raster image, or with an irregular lattice or polygon 

structure, like census tract polygons. This chapter uses lattice data models for spatial analysis. 

For lattice data, the predominated characteristics are spatial association or spatial dependence 

between values at different locations and the systematic variations of phenomena by location or 

spatial heterogeneity among values with different locations (Anselin, 1993). 

The presence of spatial dependence and spatial heterogeneity violates the properties of 

standard multivariate regression analysis. Therefore, specialized diagnostic tests and estimation 

methods are needed. Of which, spatial weight matrix is usually employed into spatial statistical 

models. The underlying principle of spatial statistical analysis is the first law of geography 

(Tobler, 1979) where the values at close-by locations tend to be more correlated than values at 

locations that are far apart. Based on this law, the spatial clustering of spatial phenomena 

generates a loss of information compared with independent observations. One critical question 

for defining spatial weights matrix is to decide neighborhoods which are close by a given data 

point and influential. Nowadays, the selection of neighborhoods is largely subjective and 

arbitrary. There are several ways to set spatial weights. Getis and Aldstadt (2004) gave a 

comparison of some contiguity-based, distance-based, semivariance-based, and local statistic-

based matrices. There is no consensus which type of spatial weights is more applicable and in 

which way spatial weights matrix is more appropriate for a specific dataset.  

In this research, an inverse distance weights matrix will be used which defines weights 

based on inverse distance from a point. In order to find influential neighbors, a cut-off distance 

threshold needs to be set. For every census tract, if another census tract has a distance d from this 

given census tract (which is calculated as the distance between two centroids) less than the 

threshold, the spatial weight for this pair of census tracts is 1/d. 
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In order to decide the threshold distance, the semivarigram model is employed. 

Semivariograms can be calculated as (Cressie, 1991): 

                   

where xi  is the location of census tract centroid, which is the coordinates of census tract centroid, 

h is a vector of distance, Z(xi) is the data value of poverty rate at location xi, and N is the number 

of data pairs for a certain distance of h units.  

 There are 6 general models for fitting spatial characteristics (Cressie, 1991): linear, 

spherical, exponential, rational quadratic, wave, and power semivariogram models. 

Semivariogram for poverty distribution is modeled by these models in turns and exponential 

model is found to be applicable for this set of data. Exponential semivariogram model is 

calculated by the following function (Cressie, 1991): 
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where h is the lag distance, C0 is the nugget effect, C is equal to (sill – C0), and a is the range. 

Four parameters, namely range, sill, nugget, and spatial dependence (calculated as C/sill) are 

used to depict the spatial characteristics of poverty rate. Range is the distance beyond which 

there are no spatial effects. In the following section, spatial weights are defined within the range; 

that is, only the pairs within the range are considered to have spatial dependence. Sill is the total 

degree of spatial variation for spatial phenomena. Nugget is the nearest variability of the 

attribute. Theoretically, nugget is equal to zero. However, nugget may present the close distance 

continuity of one attribute, or result from sampling errors, in which cases, nugget may not equal 

0.  Spatial dependence reflects the strength of spatial autocorrelation within the range. 
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The next part of exploratory spatial data analysis is about Moran’s I index and Moran’s 

scatterplot. In order to capture the global spatial autocorrelation of poverty rate in the Atlanta 

metropolitan area, Moran’s I is computed as follows: 
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where Wij* is row-standarded spatial weights, xi and xj are poverty rates for census tracts i and j 

respectively, n is the total number of census tracts, i.e., 589. In order to test if the global Moran’s 

I is statistically significant, 999 permutations are run to get inference. Theoretically, the expected 

I should be (Anselin, 1995): 
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If the empirical I is larger than E(I), there is positive spatial autocorrelation for the 

poverty rate. Likewise, smaller I indicates a negative spatial autocorrelation.   

Moran scatterplot, on the other hand, expresses the poverty rate for each census tract on 

horizontal axis against the standard spatial weighted average which is the average poverty rates 

of defined neighborhoods (also called spatial lag) on vertical axis (Dall’erba, 2005). Moran 

scatterplot can be divided into four quadrants which indicate four types of local spatial 

autocorrelation between a census tract and its neighbors. Of which, quadrant I (the upper right 

corner) indicates census tracts have high poverty rates and surrounded by high poverty-rate 

neighbors; quadrant II (the upper left corner) indicates census tracts have low poverty rates and 

surrounded by high poverty-rate neighbors; quadrants III (the lower left corner) indicates census 

tracts have low poverty rates and surrounded by low poverty-rate neighbors; and quadrants IV 

(5.4) 
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(the lower right corner) indicates census tracts have high poverty rates but surrounded by low 

poverty-rate neighbors (Anselin, 1999).  

 

Spatial statistical modeling 

In order to make comparisons between conventional multivariate regression and spatial 

statistical regression, OLS is first conducted.  
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where dependent variable Y is poverty rate at census tract level, and the independent variables 

indicated in matrix form X are defined as Table 5.1. The analysis has a total number of 

observations of 589, which is large enough to make inferences. 

There are two different approaches to incorporate spatial effect into regression models 

(Gamerman and Moreira, 2004): one is to use spatial variations for coefficient estimates, the 

other is to directly incorporate spatial dependence structure, i.e. spatial weights matrix, into 

regression models. In this chapter, spatial regression models will use the second approach.  

Several spatial statistical models will be introduced and applied with the data explained 

above. Specifically, the spatial autoregressive-regressive model, the spatial autoregressive error 

model, the spatial Durbin model, and the general spatial model are used. Based on the results of 

spatial statistical models as well as conventional regression model, best model for fitting the data 

in this case can be selected based on Akaike information criteria (AIC) which penalizes models 

with additional parameters among spatial models and R2 between OLS and spatial models. Since 

all spatial models will use the same data and same set of variables, log-likelihood index can 

generate the same results for selecting best model since  

                   AIC=-2*log-likelihood+2p 

(5.5) 
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 Table 5.1    Descriptions of variables used for analysis 

 

 
 

 

 

 

 

 

 

 

Dependent variable 
Poverty Percent of persons who live in poor families in 1999 
Variables for demographic characteristics 
Black-poverty The percentage of blacks in census tract which has poverty rate 

less than 40%
Female Percent of families that are headed by a female, with no husband 
Move Percent of persons who were not in the same counties 5 years ago 
Young-old Percent of persons who are under 5 or over 65 years old 
Variables for socio-economic characteristics 
Unemploy Percent of persons who are 16 years or older and unemployed 
Income Median household income 
Non-tertiary Percent of persons who are employed in mining, construction, and 

f i i d iEducation Percent of no more than 12 years of educational attainment 
Dissimilarity The index of dissimilarity 
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where p is the number of independent variables. The selection criterion is that the smaller AIC 

the model is better. Hence, among these models, the best model should have the largest log-

likelihood index. 

The spatial autoregressive-regressive model includes both first-order spatial 

autoregressive model and traditional regression model, which has the following form (Anselin, 

1988): 
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where Y is an 589*1 vector indicating poverty rates for census tract level, X is 589*11 matrix 

which contains a 1 vector (a vector composed of all 1’s, which indicates intercept for regression 

analysis) and 10 independent variables, and W is row-sum standarded weights matrix. The 

parameter ρ is a coefficient on the spatially lagged dependent variable, i.e. WY. The parameter 

vector β reflects the influence from independent variables X on dependent variable Y. ε is a 

normally distributed error term. Since spatially lagged dependent variable is incorporated into 

this model, the spatial autocorrelation is explained by this way.  

The next model is termed as spatial autoregressive error model, where the disturbances 

have spatial dependence (Anselin, 1988):  
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where Y, X, β, W, and ε are defined as above. Spatial autoregressive error model puts spatial 

autocorrelation into disturbance vector u and λ is a coefficient on the spatially correlated errors. 

Spatial autocorrelation is explained by a first-order spatial autoregressive model. Finally, the 

error term ε is assumed to be normally distributed. The difference between spatial 

(5.6) 

(5.7) 
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autoregressive-regressive model and spatial autoregressive error model lies that the former takes 

autoregressive analysis on Y directly, while the latter works on disturbance term u. 

With reference to Durbin’s time series model, a spatial Durbin model is introduced 

(Anselin, 1988): 
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where WX indicates the explanatory variables constructed as average from neighboring census 

tracts, other parameters are the same as the above models.  

The general spatial model includes both the spatial lag term and a spatially correlated 

disturbance term, which can be summarized as (Anselin, 1988): 
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where W1 and W2 are two spatial weights matrices, they can be equal or unequal, other 

parameters are used in the same way as above. 

In sum, five models (OLS model, spatial autoregressive-regressive model, spatial 

autoregressive error model, spatial Durbin model, and general spatial model) will be tested in 

order to find relationships among poverty rate and explanatory variables. Meanwhile, spatial 

statistical models are conducted in order to get more accurate coefficients for parameters 

compared with conventional multivariate regression analysis. Since the general spatial model has 

two spatial weights matrices, which can be same or different, in order to derive as many as 

possible of testing results, the four combinations of spatial weights matrices are used, i.e., the 

permutations between the spatial weights matrix itself and the square of the spatial weight matrix 

are used for four patterns of the general spatial model. 

(5.8) 

(5.9) 
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Unemployment rate
0 - 6.08
6.08 - 15.77
15.77 - 37.62
37.62 - 89.72

% less 12 years education
0 - 10.4
10.4 - 21.8
21.8 - 37.6
37.6 - 66.7

% non-tertiary employment
0 - 11.75
11.75 - 17.75
17.75 - 25.81
25.81 - 45.93

% poverty
0 - 8.7
8.7 - 20.7
20.7 - 39
39 - 75.7

% Blacks
0.1 - 17.7
17.7 - 41.7
41.7 - 73.7
73.7 - 99.3

% female-head families
1.3 - 10
10 - 19.1
19.1 - 33.9
33.9 - 73.6

% not in the same county
0 - 23.26
23.26 - 35.21
35.21 - 50.5
50.5 - 78.24

Median household income ($)
4705 - 34630
34631 - 57458
57459 - 87938
87939 - 163474

Figure 5.1    Variables used in the analysis 
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Table 5.2    Exponential semivariogram model for poverty rate 
 

Nugget Sill Range Spatial dependence 
138.06 191.76 10.55 0.28 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2    Exponential semivariogram fitting for poverty rate 
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Results 

Exploratory spatial data analysis 

Choropleth map is a traditional way to express spatial distribution. Figure 5.1 shows the 

distributions of 8 variables used in the later regression models. Generally, these variables are 

clustered in space by taking an eye examination. Poverty rates are higher in central city, lower in 

near suburbs, and a little bit higher again in outer suburbs which may be due to the fact that rural 

areas tend to have high percentage of poor people in their demographic structures. By direct 

comparison, poverty rate seems to be clearly positively related to blacks percentage, percent of 

female-headed families, unemployment rate, and lower educational attainment. Meanwhile, 

poverty rate is negatively related to mean household income, and percentage in primary and 

secondary industries. The relation between poverty rate and the percentage of moves beyond the 

county level seems to be unclear. 

In order to better understand the spatial characteristics of poverty rate, empirical 

semivariogram is calculated based on equation (5.3) and the exponential semivariogram model is 

fitted. Table 5.2 lists the parameters for exponential model and figure 5.2 plots the 

semivariogram against distance. From Table 5.2, spatial autocorrelation for poverty rate has a 

range of 10.55 km, which is used later for cut-off threshold when spatial weights matrix is 

constructed. A bigger sill generally indicates greater spatial variation of poverty rate. Moreover, 

spatial dependence as calculated as (sill-nugget)/sill, which measures strength of spatial effect on 

poverty rate, has a value of 0.28. Since there is no other model fitted for comparison, I cannot get 

a conclusion as to how big the magnitude of spatial dependence is.   

Based on threshold distance, a set of neighbors can be found for each census tract. An 

inverse-distance spatial weights matrix is constructed which can be displayed as figure 5.3. For  
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Figure 5.3    Spatial weights matrix based on inverse distance 
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#  o f n e ig h b o rs
0
1  -  4 0
41  - 9 0
91  - 1 3 6

Figure 5.4    Number of neighbors for spatial weights matrix 
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589 census tracts, there are a total of 31132 neighbors within 10.55km, which is 8.97% of all 

pairs (589*589). Of which, two census tracts 1500 and 3200 have the largest number of 

neighbors, i.e., within 10.55 km there are 136 census tracts around each of them. At the same 

time, four census tracts 10400, 90200, 120100, and 120400 have no neighbor within 10.55 km. 

From figure 5.4, the census tracts having the largest number of neighbors locate in the central 

city and have small areas. Compared with small areas, large areas near the boundaries tend to 

have fewer neighbors. 

By employing equation (5.4), global Moran’s I is calculated. For poverty rate, the global 

Moran’s I is 0.7035. With 999 random simulations which generate simulated Moran’s I with 

mean –0.0021 and standard deviation 0.0266, the empirical global Moran’s I for poverty rate has 

a p-value of 0.001. This small p-value indicates that poverty rate is highly correlated. 

Figures 5.5 and 5.6 show the distribution of Moran’s I for each census tract and its 

association with neighbor’s Moran’s I. Census tracts located in quadrants I and III refer to 

positive spatial autocorrelation, the spatial clusterings of similar values, whereas quadrants II 

and IV represent negative spatial autocorrelation, the spatial clusterings of dissimilar values 

(Figure 5.5). Quadrants I and III indicate that these poor census tracts are surrounded by poor 

census tracts, and rich are surrounded by rich. By contrast, quadrants II and IV indicate negative 

association, i.e., poor census tracts are surrounded by rich, and rich are surrounded by poor. 

Figure 5.6 is a linked map which shows the spatial distribution of these positive or negative 

associations, where the color has the same indication as that used in Figure 5.5. It is rather clear 

that central city is a place for higher concentration of poverty and suburbs are areas with lower 

poverty rates. Between them, there are some sporadic distributions of negative associations for 

poverty rates. 
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Spatial statistical modeling 

Tables 5.3 and 5.4 list key features and fitted coefficients for OLS and spatial models. 

General spatial model (equation (5.9)) can have different specifications by setting different W1 

and W2. In this chapter, inverse distance spatial weights matrix (which is called W) and W2 

(which equals to W*W) make four permutations and are applied into equation (5.9).  

From table 5.3, all spatial models have larger R2 than OLS model, which indicates that 

spatial models here can generally fit better for spatially-correlated poverty rate. Among seven 

spatial models, the best model can be selected based on larger log-likelihood and larger R2. 

Meanwhile, the significance levels of ρ and λ should also be taken into consideration since they 

indicate if spatial-effect coefficients are significant or not. Based on these criteria, the best model 

seems to be the general spatial model with W1=W2=W and R2 of 0.8766 and significant ρ and λ.  

Table 5.4 shows the estimated coefficients for these eight models. Generally, the higher 

percentages of black percentage in non-highly-poor census tract, female-headed families, 

movers, kids and elders, unemployment rate, and bad educational attainment contribute to higher 

poverty rates. Likewise, higher household income and bigger percent of employment in primary 

and secondary industries indicate a lower poverty rate. Meanwhile, higher magnitude of racial 

residential segregation corresponds a higher level of poverty rate. However, in some models, 

dissimilarity index does not have a significant influence, which may be due to the fact that there 

are correlations among the independent variables, i.e., percentage of blacks, female-headed 

families, percentage of young kids and elder people, income, and low education attainment. The 

best model, which is selected as the general spatial model (W, W) has an insignificant coefficient 

for racial residential segregation. 
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Figure 5.6    The distribution of Moran index 
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Table 5.3    Some key statistics for the fitted models 

Note: * means significant at 0.1 level, ** means significant at 0.01 level, ***means significant at 
0.001 level. 

 
 
 
 

 

 

 

 

 

 

 

 

 R2 Log-
likelihood ρ λ 

OLS model 0.8524    
Spatial autoregressive-regressive model 0.8574 -1529.67 0.2870***  

Spatial autoregressive error model 0.8766 -1519.68  0.7680*** 
Spatial Durbin model 0.8920 -1464.22 -0.1850  

General spatial model (W2,W) 0.8767 -1182.36 0.0044 0.7740*** 
General spatial model (W, W2) 0.8706 -1186.23 0.3290*** 0.6840*** 
General spatial model (W2, W2) 0.8565 -1213.36 -0.0450 0.5950*** 
General spatial model (W, W) 0.8766 -1177.14 0.2030*** 0.6380*** 
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Table 5.4    The fitted coefficients for models 

Note: * means significant at 0.1 level, ** means significant at 0.01 level, ***means significant at 0.001 level. 
 
 

 

Intercept

% Black 
at non-
poor 
tracts 

Female 

Move 
from 

another 
county 

Young-
old 

Unem-
ployed Income 

Non-
tertiary- 
employ-

ment 
 

Low-
educa-

tion 

Dissi-
milar-

ity 

OLS model -13.77 
*** 

0.4119 
*** 

0.1027 
** 

0.0637 
** 

0.0789 
* 

0.4869 
*** 

-0.000029 
* 

-0.2345 
*** 

0.3006 
*** 2.91 *

Spatial 
autoregressive-
regressive model 

-19.50 
*** 

0.3584 
*** 

0.0836 
** 

0.1120 
*** 

0.1986 
*** 

0.4289 
*** 

-0.000011 
*** 

-0.1218 
** 

0.2342 
*** 2.02 *

Spatial autoregressive 
error model 

-16.91 
*** 

0.3073 
*** 

0.2090 
*** 

0.0897 
*** 

0.1499 
** 

0.3728 
*** 

-0.000046 
*** 

-0.1214 
** 

0.2309 
*** 1.69 

Spatial Durbin model -20.94 
*** 

0.2780 
*** 

0.2528 
*** 

0.1026 
*** 

0.1930 
*** 

0.3362 
*** 

-0.000044 
** -0.0535 0.1909 

*** 1.34 

General spatial model 
(W2,W) 

-16.96 
*** 

0.3070 
*** 

0.2090 
*** 

0.0898 
*** 

0.1506 
** 

0.3724 
*** 

-0.000046 
*** 

-0.1206 
** 

0.2306 
*** 1.69 

General spatial model  
(W, W2) 

-18.06 
*** 

0.3441 
*** 

0.1017 
** 

0.1013 
*** 

0.1965 
*** 

0.4164 
*** 

-0.000025 
*** 

-0.1398 
*** 

0.2348 
*** 1.76 

General spatial model  
(W2, W2) 

-13.21 
*** 

0.3958 
*** 

0.1087 
*** 

0.0550 
** 

0.0954 
* 

0.4789 
*** 

-0.000042 
*** 

-0.2315 
*** 

0.2958 
*** 2.46 *

General spatial model  
(W, W) 

-17.99 
*** 

0.3120 
*** 

0.1826 
*** 

0.1043 
*** 

0.1768 
*** 

0.3698 
*** 

-0.000037 
*** 

-0.1162 
** 

0.2259 
*** 1.73 
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(a) 

(b) 

Figure 5.7    Predicted values and residuals for general spatial model (W,W). 
(a) the predicted vs. actual poverty rate; and (b) residuals 
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The estimated coefficients (Table 5.4) have some differences among them, although the 

difference may not be huge. Spatial models can be used to better incorporate local dependence 

when parameters are estimated. Therefore, the errors tend to have less variations across space. 

Figure 5.7 shows predicted values and residuals for the general spatial model (W,W). Generally, 

this model fits well, especially for the first 300 observations. However, the residuals have bigger 

variations for the later 200 observations, which may be due to local variations not incorporated 

well into model fitting process.  

 

Conclusions and discussions 

This chapter uses exploratory spatial data analysis and spatial statistical modeling to 

analyze Atlanta’s poverty rate. Choropleth map is first used to depict the spatial distribution of 

variables in the models. By applying semivariogram model to set threshold for selecting 

neighbors, an inverse distance spatial weights matrix is constructed. Moran’s I and Moran 

scatterplot are used to test the existence of spatial autocorrelation and disclose the spatial positive 

(or negative) association of poverty rate across Atlanta metropolitan area. Central city is found to 

be the location for high poverty rate and positive association with its neighbors. As a 

comparison, suburban areas tend to concentrate no-poor people. 

OLS model and seven spatial models are used to fit the causal relationship among 

poverty rates and demographic and socio-economic variables. The estimated coefficients indicate 

that all of these models generally agree with each other as far as the influence direction (the 

positive or negative sign of coefficients) is concerned. However, since spatial models can catch 

some degree of spatial dependence, they generate better R2 than OLS model. Among spatial 

models, a general spatial model which takes the spatial lag and spatially correlated disturbance 
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into consideration at the same time is found to be the best model. However, here at no means we 

should think that these demographic and socio-economic variables directly result in poverty. 

Instead, the statistical models just show that there are causal relationships among these variables.  

Spatial weights matrix is used for fitting spatial models. There are many kinds of spatial 

weights matrix in academia and none of them has been definitely proved better than others. The 

selection of spatial weights matrix is largely subjective and arbitrary. If a different spatial 

weights matrix is constructed for this dataset, the results may be different, but I do not expect a 

large change on estimated coefficients since the coefficients among OLS and spatial models do 

not change much in this example. Using spatial model can better take spatial dependence and 

spatial variation into consideration when spatial phenomena are at issue.  

Furthermore, since this chapter only uses census tract as the study scale and the results 

may have MAUP, it is somewhat questionable when the results are directly applied to other 

scales, such as county and census block levels. The applicability of various spatial regression 

models can be further tested in other scales. 
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CHAPTER 6 

A DIFFERENT URBAN SPACE?----EXAMINIMG SPATIAL DISTRIBUTIONS OF 

POPULATION, RACE, AND INCOME IN THE 1990S 

 

Introduction 

The geographic concentration of affluence and poverty throughout the world is a product 

of (sub)urbanization, rising income inequality, and increasing racial segregation, according to 

Massey (1996). This produces a radical change in the geographic basis of human society. The 

urban demographic landscape in most major North American cities has become racially and 

ethnically diversified (Fong and Shibuya, 2005). In 1900, whites had 88% of the total population 

in the U.S. while blacks had approximately 12%. Asian and other ethnic groups had less than 

1%. However, in 2000, only 75% of the total population were whites while blacks still has the 

same level at 12%. Other racial and ethnic groups had about 13% which had the largest increase 

among ethnic groups. The racial and ethnic diversity is sufficiently demonstrated in large 

American cities, especially the ten largest cities (Grieco and Cassidy 2001; McKinnon 2001). 

This diversified demographic composition attracts researchers’ attention on urban structures and 

processes (Fong and Shibuya, 2005).  

During the 20th century, the urban internal distribution of population underwent 

enormous changes. These changes in urban settings can be mainly attributed to three factors 

(Price-Spratlen and Guest, 2002): the economic shifts in local and extralocal contexts, the 

personal preference of centrally located residential settlements, and the development of 
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transportation networks. As a result, the outward population redistribution generates an increase 

of population share in the suburbs and a corresponding decrease of population share in the 

neighborhoods located in central cities. Furthermore, the issue of race was often related to the 

patterns of population redistribution as whites moved into metropolitan periphery areas and 

African-American neighborhoods having social disorders had different degrees of population 

loss (Price-Spratlen and Guest, 2002). 

The measurement of spatial patterns has attracted much attention in academia as well as 

public policy designers (Johnston et al., 2003). Clusters of high poverty have made the 

disadvantaged individuals suffer more. Although the relationships between population 

redistribution and racial composition and income levels are known for a long time, there is little 

research that tests the difference statistically between overall spatial distributions in different 

years. To address this issue, this chapter compares quantitatively the spatial distributions of 

income and population for the Atlanta metropolitan area in 1990 and 2000.  

This chapter is organized as follows. The next section is a literature review on urban 

space, mainly racial distribution and income disparities, in American metropolitan landscapes. 

Then data and methodology are introduced, followed by results section. The last section is 

conclusions and discussions.  

 

Racial distribution, income disparities, and urban space 

The contemporary American metropolitan areas are generally heterogeneous in terms of 

income levels, ethnic backgrounds, general life experiences, and built environment. When urban 

space is studied, especially racial segregation and income disparities are concerned, the census 

tract has been commonly taken as the neighborhood unit for quantitative studies. With 2500 to 
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8000 residents, the census tract is usually taken as homogeneous from indigenous experiences of 

the social and geographic landscapes (Pattillo, 2005). 

Place and race have been identified as the determinants of opportunity structure in 

metropolitan area (Squires and Kubrin, 2005). Location can determine the quality of life and 

accessibility in the metropolitan America. Neighborhood influences educational resources, 

contacts, and benefits, which in turn affect people’s opportunity structure, although individual 

intelligence and human capital are also important. The interactions among place, race and 

privilege are embodied by three social forces (Squires and Kubrin, 2005): sprawl, concentrated 

poverty, and segregation. Sprawl means the general process of urban outward expansion, low-

density development of housing and commercial activities, as well as fiscal disparities among 

fragmented land parcels. During this process, the difference among income levels between 

central city and suburbs has been enlarged (Squires and Kubrin, 2005). Racial composition, as a 

result, also changes while racial segregation becomes a persistent feature in metropolitan areas 

although this pattern, measured by the index of dissimilarity, has decreased during the 1990s 

(Iceland et al., 2002). Furthermore, racial residential segregation has been taken as a connection 

with racial disparities in individual characteristics and neighborhood environment. As a result, 

residential segregation has negative effects on personal outcomes, such as health, school 

dropping out, and teenage pregnancy (Harding, 2003; Subramanian et al., 2005). Meanwhile, the 

spatial distribution of suburban ethnic businesses indicates ethnic retention and ethnic 

socialization (Fong et al., 2005).    

Traditionally, racial composition at areal level has been measured by two major ways 

(Price-Spratlen and Guest, 2002). The first is to measure invasion, namely transitional in-

migration, which shows significant number of people move into the area. The other is to measure 
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succession which indicates that the in-migration group gradually dominates in the population 

composition in the neighborhoods. There are four theories concerning the relationship between 

population change and racial distribution. 

Urban neighborhood life cycle theory by Hoover and Vernon (1962) aims to better 

understand the relationship between race and neighborhood population changes and argues that 

neighborhoods initially develop from a low density, and gradually increase their intensity 

through a regular sequence of land use change as they age. The land use change includes 

residential development in land use, subdivision of housing structure, and growing crowd of 

residential units. As the cycle takes place, population decreases in the neighborhood because the 

community is no longer desirable for residences. Accordingly, commercial activities begin to 

participate in neighborhood development and gradually dominate in land use (Price-Spratlen and 

Guest, 2002). In later stages of the life cycle, individuals with disadvantaged economic status 

and racial minorities tend to dominate in the neighborhood. Social status theory, from another 

perspective, explains the relationship between race and population change. African-American 

neighborhoods are concentrated with poverty and other forms of economic distress, which makes 

these low-status areas less attractive as places to live (Price-Spratlen and Guest, 2002). 

Consequently, these low-status areas are disproportionately undesirable for population 

relocation. The racial composition of low-status areas continues to be dominated by African-

Americans with low economic class. The compression model suggests that because white 

neighborhoods are generally not friendly to potential African-American residents within the 

context of the metropolitan housing market, the African-American in-movement has to be 

accommodated in existing African-American neighborhoods thus bringing in a growing 

population (Price-Spratlen and Guest, 2002). Generally, the compression model was largely 
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applied for the time periods before 1960s. The decompression model, as a comparison, has more 

influence on recent population distribution. This model posits that whites move outward for 

better housing opportunities and leave the abandoned older neighborhoods to in-moving African 

Americans, which brings the changes in racial composition and population distribution (Price-

Spratlen and Guest, 2002). At the same time, African Americans with better socioeconomic 

status have opportunities to live in suburbs on a segregated basis through housing market 

guidance.  

Iceland et al. (2005) found that residential patterns of African Americans across various 

socioeconomic groups still have persistent differences from non-Hispanic whites after a 

comprehensive view of economic and residential segregation for African Americans in U.S. 

metropolitan areas. According to Iceland et al. (2005), race has a dominant influence on 

prevailing residential patterns, while class is a secondary factor for this pattern. Their study 

supports spatial assimilation models in that the segregation level will decrease when 

socioeconomic status improves (Iceland et al., 2005). As some African Americans gained 

professional associations and are labeled as middle class, there are five areas which attract 

attention in the academic literature: racial and class segregation, the comparison between white 

and black middle-class neighborhoods, neighborhood racial preferences, black suburbanization, 

and the return of middle- and upper-class blacks to poor black neighborhoods (Pattillo, 2005). 

Denton and Massey (1988) concluded that blacks were highly segregated from whites in 

the 1970s, although the dissimilarity index shows a slightly decrease. Meanwhile, blacks are also 

highly isolated from whites in the 1980s, although the racial segregation has declined slowly 

during the 1980s. The segregation between Hispanics and whites increased from 1970 to 1990 in 

30 metropolitan areas with the largest Hispanic populations (Massey, 2001). Meanwhile, for 
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Asians, the dissimilarity index from whites decreased during the 1970s and later had an 

increasing trend in the 1990s (Fischer, 2003). There are five theories to explain the black-white 

residential segregation (Dawkins, 2004; Farley and Frey, 1994; Quillian, 2002): (1) the 

difference in affordability between whites and blacks due to household income differences; (2) 

different tastes for housing services and contextual demographic characteristics; (3) different 

accessibility to housing information; (4) racial prejudice which precludes the possibility to live in 

mixed racial neighborhoods; and (5) housing market discrimination which guides the location 

choices for blacks.  

Branton and Jones (2005) found that the relationship between racial diversity and 

attitudes is conditioned on people’s socioeconomic context. Crowder and South (2005) arrived at 

the conclusion that blacks and whites share more and more similarities in the moving rates 

between poor and nonpoor neighborhoods, which is largely driven by individual socioeconomic 

status and the shifting ecological conditions of metropolitan areas. However, during this process, 

race still remains a prominent factor in determining the possibility of residing or entering poor or 

non-poor neighborhoods, while class does not have significant influences (Crowder and South, 

2005). One form of discrimination in the housing market is steering, where blacks are 

discriminated in the steering and lending market (Galster and Godfrey, 2005; Holloway, 1998). 

Krivo and Kaufman (2004) concluded that blacks and Hispanics receive less benefit from 

mortgage and housing characteristics than do whites which is a part of broader social and 

institutional processes of racial-ethnic stratification. As a result, this stratification gives whites an 

advantage over other racial groups. 

Regardless of how income inequality is measured and whether household income or 

family income is investigated, inequality within the metropolitan context has risen (Madden, 
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1996; Silver and Bures, 1997). The extent of income poverty and the number of census tracts in 

extreme poverty have increased from 1970 to 1990 (Wilson, 1987), while at the same time the 

concentration of affluence grew more rapidly (Danziger, 1996). Fischer et al. (2004) found that 

the segregation for blacks decreased consistently from 1960 largely because neighborhoods were 

more integrated. At the same time, the class segregation based on income has been increasing 

which is largely due to the high clustering of the affluent (Sims, 1999). Moreover, the blacks 

with various socioeconomic statuses were highly segregated from non-Hispanic whites (Massey 

and Denton, 1988). At the same time, the affluent become more isolated than the poor which 

means that the affluent are more likely to live exclusively with other affluent households 

(Fischer, 2003). Earls (2000) concluded that a new set of demographic and geographical 

changes, which results in increasing gentrification in metropolitan areas, supply an additional 

contemporary explanation on urban poverty after his empirical study on Chicago.   

As commonly understood, low-density development in the suburbanization process 

creates socioeconomic inequalities and racial and income segregation due to the fact that whites 

move away from central cities. Pendall and Carruthers (2003) found that fast urban growth in 

suburban areas was accompanied with less income segregation than those patterns found in 

moderately-dense urban forms. This phenomenon is due to the fact that the competition over 

individual sites in low-density regions is less fierce than that in high or growing density. 

Accordingly, there are fewer forces on sorting urban and suburban neighborhoods by class, and 

the low-density larger neighborhoods tend to share space with residents with lower-level 

socioeconomic status (Pendall and Carruthers, 2003). On the other hand, the very high-density 

metropolitan areas also had a process of less income segregation than moderately dense 



 119

metropolitan areas. However, the income segregation level increased in those moderately dense 

metropolitan areas (Pendall and Carruthers, 2003). 

The quantitative methods commonly used are dissimilarity index, the isolation index, and 

the entropy index when residential and class segregations are studied (Fischer, 2003; Iceland et 

al., 2005). Fischer et al. (2004) used the Theil index, where segregation can be decomposed into 

contributions arising from regional, metropolitan, city, place, and census tract levels. Now, the 

package STARS by Rey and Janikas (2006) can directly compute Theil index. When spatial 

concentration is studied, Johnston et al. (2003) found the threshold profiles give more of the 

geography than a single index. 

None of above measures can test if the overall spatial distributions of income and 

population have statistically changed over time. To the best of my knowledge, no prior research 

considers the question that if the changes in spatial distributions of income, population, and race 

are statistically different from previous years. This chapter aims to address this question.  

 

Data and methodology 

This chapter uses data from U.S. Census of Bureau. Specifically, total population, whites, 

blacks, Asians, and the median household income at the census tract level in 1990 and 2000 are 

used. These data can be directly downloaded from the website of the U.S. Census Bureau 

(www.census.gov). After downloading, these attribute data were added into attribute tables of 

census tract boundary files, which was also downloaded from the U.S. Census of Bureau. 

Representing data on an analog or digital map is the usual way in geographic analysis 

(Gluhih and Portnov, 2004). Traditional methods include symbols of varying size and color, 

clusters of data, contours, and charts. Population representation in GIS is usually done to 
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construct digital boundary data for a set of zones, and tabular attributes of those zones store 

population characteristics (Martin, 1996). By these methods, the quantitative measures, such as 

counts, ratios, and ranks, can be represented on maps. GIS can be a great helper to urban studies 

which in part supplies a good means for representation: for example, Gluhih and Portnov (2004) 

developed a way of coordinate transformation to represent inter-urban disparities by bringing 

closer the locations with high values and moving away the places with low values. 

3-dimensional display simulates spatial reality and allows the viewers to quickly grasp 

the changes in geographical reality.  Surface modeling supplies a good way to depict the spatial 

distribution of geographical information. The isometric distribution of the age structure by 

Coulson (1968) was the first illustration that used this method in population studies. Modern GIS 

software, such as Arc/Info and Surfer, have made surface modeling easier than ever. Surfaces are 

three-dimensional shaded renderings of a grid file, which provides an impressive visual 

interpretation of data. The geographic coordinates of the label point of census tract define x and y 

axes in the model: the demographic and income variables provide information for z axis. This 

process can be accomplished automatically in Surfer software. Meanwhile, the BLANK function 

in Surfer can cut off the margin outside the study area, and the base map of county boundaries 

can overlay with the surface map, which makes the resulting map more readable. This chapter 

uses a series of surface maps to display the distribution of demographic and economic variables 

over the Atlanta metropolitan area.  

Corresponding to cumulative distribution function (CDF) for univariate variable, a spatial 

cumulative distribution function (SCDF) has been developed and some derived variations are 

also employed to study spatial distributions (Banerjee et al., 2004; Short et al., 2005; Wong, 
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2001; Zhu et al., 2002). The SCDF is a CDF constructed for a defined geographical region given 

a specific areal sampling size (Wong, 2001). SCDF is defined as (Banerjee et al., 2004): 

∫=≤∈=
D w dssZ
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wsXDswF )(1))(:Pr()(  

where X(s) is the variable under investigation, X(s), s∈D is a spatial process, w is a threshold 

value, D is the total area, Zw(s)=1 if X(s)≤w, and 0 otherwise. When SCDF is computed, w is set 

to a series of threshold values so that F(w) is a random function which increases from 0 to 1 and 

is right-continuous. 

Equation (6.1) is easily understood but difficult to compute in reality. When data in areal 

unit level are studied, the following equation is used to calculate SCDF (Banerjee et al., 2004): 
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where Bj are disjoint with union D, D is the total area, X(Bj), j=1,…J is observation at areal Bj 

(for example, the total population in census tract j), J is the total number of census tracts, 

Zw(Bj)=1 if X(Bj) )≤w, and 0 otherwise. 

The Kolmogorov-Smirnov (K-S) test is usually used to measure if an empirical 

distribution is consistent with null hypothesis, or to compare two distributions to see if they are 

different (Loudin and Miettinen, 2003). The K-S test is a nonparametric test, which does not 

require explicit distributional assumptions about the underlying processes and independent of 

the shapes of the underlying distributions (Loudin and Miettinen, 2003; Rao and Goldsman, 

1998). The test uses the maximum distance d between the cumulative distribution functions as 

a measure of their similarity: it is necessary to consult K-S table with degrees of freedom to 

determine p-value, which in reality can be further used to explain if the difference between two 

distributions is statistically significant. SAS is used to calculate the SCDF and K-S test 

(6.1) 

(6.2) 
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statistics and S-plus software is utilized to plot the SCDF, as it generates better-looking graphs 

than SAS. 

 

Results 

Since there are some changes on the boundaries of census tracts between census 1990 and 

2000, some tracts in 2000 are merged to match with those in 1990. Moreover, a few census tracts 

in 1990 are merged or reclassified so that the tract boundaries are consistent with those in 2000. 

As a result, there are total of 436 common census tracts for conducting the mapping comparison 

in 1990 and 2000. 

Figures 6.1, 6.2, 6.3, 6.4, 6.5 are surface maps of total population, whites, blacks, Asians, 

and the median household income in the Atlanta metropolitan area in 1990 and 2000. Generally, 

there are large numbers of total population and whites in the suburbs, large numbers of blacks 

locate in the central city, while Asians have residences in the northeastern part of the Atlanta 

metropolitan area near the central city. From 1990 to 2000, there were clear movements for total 

population and whites. Generally, total population and whites had migrations to northeastern and 

northwestern directions. By contrast, blacks also had some out-moving process, but the 

movement was from the central city to western part of the Atlanta metropolitan area. Asians, at 

the same time, mainly moved toward the northeastern part of Atlanta. As for the median 

household income, there were some summits in the southern part of the Atlanta metropolitan 

area in 2000 comprared with 1990.   

In order to test if the spatial distributions of population and income between 1990 and 

2000 had a significant difference, SCDF is used and K-S test is conducted. Because the numbers 

of total population, whites, blacks, and Asians as well as the values of the median household  
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Figure 6.1    The surface maps of the total population in Atlanta metropolitan 
area in (a) 1990 and (b) 2000 
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Figure 6.2    The surface maps of whites in Atlanta metropolitan area in (a) 1990 
and (b) 2000 
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Figure 6.3    The surface maps of blacks in Atlanta metropolitan area in (a) 1990 
and (b) 2000 
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Figure 6.4    The surface maps of Asians in Atlanta metropolitan area in (a) 1990 
and (b) 2000 
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Figure 6.5    The surface maps of the median household income in Atlanta 
metropolitan area in (a) 1990 and (b) 2000 
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Table 6.1    The minimum and maximum values of population and income across all census 
tracts in Atlanta metropolitan area 

 
 

 

 

 

 

 

 

 

 

 Minimum Maximum Range 
1990 162 17,724 17,562 Total population (persons) 2000 18 38,742 38,724 
1990 2 16,763 16,761 Whites (persons) 2000 11 30,856 30,845 
1990 0 12,409 12,409 Blacks (persons) 2000 6 17,101 17,105 
1990 0 1,145 1,145 Asians (persons) 2000 0 5,443 5,443 
1990 4,999 150,001 145,002 The median household income ($) 2000 4,705 379,410 374,705 
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income had large ranges across all of census tracts in 1990 and 2000 (Table 6.1), in order to 

better make comparison between two years, the scaled values are used for population and income 

variables. The values of population and income variables for each year are first multiplied by 100 

then divided by the maximum values in their corresponding years. For example, suppose a 

census tract had a total population x in 1990, then the scaled value of total population for this 

census tract in 1990 is (x*100/17724), another example, if a census tract had a median household 

income y in 2000, then the scaled median household income for this census tract is 

(y*100/379410). By this way, all variables are converted into values having a range from 0 to 

100. 

When SCDF is computed, the threshold value w in equation (6.2) is set to have a range 

from 0 to 100, which is corresponding to the scaled values of population and income variables. 

Specifically, w changes from 0 to 100 with a step of 2.5. For each w, the SCDF can be computed. 

After all threshold values are examined, the SCDF is plotted as figures 6.6, 6.7, 6.8, 6.9, and 

6.10. 

For SCDF plot, a slope of 45 degree indicates the even distribution over all land parcels. 

All of the SCDF plots are skewed to the left, which indicates that the population and income over 

Atlanta metropolitan area are unevenly distributed and agglomerated. Moreover, compared with 

total population and whites, the distributions of blacks and Asians were more unevenly 

distributed as their SCDFs have bigger shifts to the left. The SCDF plots of total population and 

whites (Figures 6.6 and 6.7) in 2000 both shift to the left with steeper slopes than those in 1990, 

which means that total population and whites generally occupied low-density urban parcels and 

were more aggregated in 2000 than 1990. However, blacks had a process of more even  
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Figure 6.6    Spatial CDF for total population in 1990 and 2000 
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Figure 6.7    Spatial CDF for whites in 1990 and 2000 
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Figure 6.8    Spatial CDF for blacks in 1990 and 2000 



 133

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w

Fh
at

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1990
2000

Figure 6.9    Spatial CDF for Asian in 1990 and 2000 
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Figure 6.10    Spatial CDF for the median household income in 1990 and 2000
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Table 6.2    The K-S test for spatial distributions of population, race, and income 
 

 Maximum difference d p-value 
Total population 0.2885 <0.001 

Whites 0.2606 <0.001 
Blacks 0.2555 <0.001 
Asians 0.0575 0.4304 

The median household income 0.4404 <0.001 
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distribution during the 1990s as the SCDF in 2000 had a right shift compared with 1990. Asians, 

as they are always highly aggregated, had a little trend to concentrate in some areas during the 

1990s. The median household income, however, indicates a different story. For low-income 

households, which had their income less than 30% of the maximum median household income 

across the Atlanta metropolitan area, were more aggregated in 2000 than 1990. Meanwhile, those 

households having 30%-65% of maximum median household income were more diversely 

distributed in 2000 than in 1990. In both years, the affluent were constantly highly aggregated. 

Table 6.2 shows the K-S test statistics and the associated p-values. For total population, 

Whites, Blacks, and the median household income, the spatial distributions in 2000 all were 

statistically different from their corresponding distributions in 1990 as the p-values are less than 

0.001. Asians, however, did not change their spatial distribution much as its associated p-value is 

much bigger than 0.1. 

   

Conclusions and discussions 

This chapter presents a case study of population, race, and income distributions and their 

changes within the Atlanta metropolitan area for 1990 and 2000. During the 1990s, the process 

of suburbanization and relocation has changed Atlanta’s urban space and the spatial distributions 

of total population, whites, blacks, and the median household income all had a statistically 

different presence in 2000 than in 1990. The spatial distributions of total population and whites 

were more aggregated in the 1990s, while blacks had an inverse process. Asians, by comparison, 

did not change much in their spatial distributions during the 1990s. The spatial distribution of the 

median household income indicates the urban space of income distribution had been more 

polarized as poor people were more agglomerated and the affluent still highly segregated. It is 
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possible, from another perspective, to look at the ethnical distribution and changes based on the 

division of Latino and Hispanic lines. That is, instead of using whites, blacks, Asians divisions, 

the racial and ethnical distribution can be studied by exploring the spatial variability of 

Latino/Hispanic and non-Latino/Hispanic ethnicities. 

High-income whites and low-income blacks both live in the central city of the Atlanta 

metropolitan area, although whites are dominant to the north and blacks to the south (Hartshorn 

and Ihlanfeldt, 2000). For high-income whites, living in the central city saves commuting time 

and cost; most use private schools for their children’s education. Low-income blacks continue to 

be concentrated within the central city because of racial discrimination in the suburban housing 

market and access to less expensive public housing in the central city, as well as accessibility to 

public transportation. 

This chapter gets the conclusions based on data at the census tract level. The issue of 

ecological fallacy is still present because successive aggregation of regionalized variables tends 

to increase correlations. Another issue is the use of SCDF. As there are other forms to compute 

SCDF, especially several derivations, more tests are needed to confirm the conclusions in this 

chapter. 

In this chapter, surface models and SCDF are used to examine the spatial distributions of 

population, race, and income variables. This study can be further explored to study the polarized 

city in contemporary society, which may supply more empirical proofs or disputes for the 

arguments of postmodern urbanism. As more quantitative techniques are used together with GIS 

and spatial analysis, a detailed description of urban space is possible which can supply a good 

complementariness for qualitative study in urban geography studies.  
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CHAPTER 7 

CONCLUSIONS AND DISCUSSIONS 

 

This dissertation research aims to integrate GIS and spatial analysis to analyze Atlanta’s 

urban structure and urban space. Three separated topics are addressed. First, in terms of urban 

structure, the urban land use/land cover structures from 1990 to 2000 are analyzed. In order to 

get classified land use/land cover images, remotely sensed imagery and remote sensing 

technology are also employed. The classified urban images are used as source data and analyzed 

by statistical procedures in order to empirically test postmodernism arguments. In terms of urban 

space, urban poverty and the spatial distributions of population, race, and income are analyzed 

respectively by analyzing U.S. census data. During the whole process, GIS techniques and 

spatial statistics cooperate with each other so that some conclusions are derived. 

  As defined by Sui (1998), there are four different approaches to integrate GIS and 

spatial analysis: embedding GIS functions into spatial analysis packages, embedding spatial 

analysis functions into GIS packages, loose-coupling, and tight coupling. While the first two are 

easily understood at the first glance, the latter two need to be explained. Loose-coupling 

integration refers to the approach which involves separate GIS package and statistical package. 

When data need transferring between different interfaces, ASCII, binary data, or spreadsheet 

formats are usually used. Tight-coupling integration refers to the approach which embeds certain 

spatial analysis functions with GIS software package via either GIS macro or conventional 

programming. However, such programming languages are usually not enough for sophisticated 
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models. In this dissertation, the integration is loose coupling, according to above definitions. 

After database has been constructed within GIS packages, it is converted into statistical packages 

such as SAS, S-plus, or R. After statistical models are fitted, sometimes the results are converted 

into GIS packages again for visualization. 

 Chapter 3 uses a mixed classification scheme to classify land use/land cover in the 

Atlanta metropolitan area. During the classification process, unsupervised, supervised, and 

spectral mixture analysis (SMA) are used in turn in order to better discriminate objects from 

spectral information. Six types of land use/land cover are defined and classified: low-density 

urban, high-density urban, grassland/pasture/cropland, forest, water, and barren land. The hybrid 

approach generates classified images with overall accuracy greater than 85%. The classified 

images show that urban growth of the Atlanta metropolitan area consumed large amount of 

vegetative land since forest and grassland/pasture/cropland both decreases in areas.   

Chapter 4 aims to test statistically the postmodernism argument on urban structure. 

Postmodern urbanism, which labels itself radically different from Chicago School, argues that 

postmodern city is more decentered and decentralized with the increasing flexible and 

disorganized capitalist accumulation. As far as urban structure is concerned, postmodernism 

thinks that urban land use is fragmented but at the same time is partially constrained by the 

underlying economic rationality. Meanwhile, urban growth has characteristics of random or 

quasi-random increase. The classified images from Chapter 3 are used to test this argument. 

While spatial metrics are used to test fragmentation, statistical models of spatial point pattern and 

process are used to test random or quasi-random increase. The statistics of contagion index and 

area-weighted mean patch fractal dimension (AWMPED) both indicate the urban structure was 

more fragmented during the 1990s. While Ripley’s K-function and spatial point process models 
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indicates that the argument of random or quasi-random urban growth in the Atlanta metropolitan 

area is not supported. In order to better quantitatively test the post-modern argument regarding 

urban increase and urban development, more empirical studies are needed for other North 

America or worldwide cities 

Chapter 5 analyzes urban poverty by taking into account spatial dependence and spatial 

variation of poverty distribution. Since traditional multivariate regression models neglect spatial 

dependence within the data, the results cannot incorporate the influence from spatial variations. 

This chapter has two sections of analyses: exploratory spatial data analysis and spatial regression 

modeling. In the section on exploratory spatial data analysis, urban poverty is found to be 

spatially dependent. With the help of semivariogram which calculates the range of spatial 

dependence, a spatial weights matrix is constructed based on inverse distance. Moran scatterplot 

shows the poor people tend to live in the central city surrounded by poor people, while nonpoor 

reside in suburbs largely surrounded by non-poor. There are a few census tracts scatted over the 

Atlanta metropolitan area which are poor/non-poor but surrounded by non-poor/poor. By 

incorporating a spatial weights matrix into regression analysis, the spatial autoregressive-

regressive model, the spatial autoregressive error model, the spatial Durbin model, and the 

general spatial model are used to explore the relationship between urban poverty and 

demographic and socioeconomic variables. By making comparison with conventional 

multivariate regression model, the general spatial model is found to have higher R2 and to better 

incorporate spatial dependence. Poverty rate is positively related with the percentage of blacks 

living in non-highly-poor census tract, the percentage of female-headed families, movers, 

unemployment rate, and bad educational attainment. Racial residential segregation, which is 

denoted by dissimilarity index, is found to be insignificant in the selected best model. 
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Regarding the issue if the spatial distributions of population, race, and income had 

statistically significant changes, spatial cumulative distribution function (SCDF) and 

Kolmogorov-Smirnov (K-S) test are used in chapter 6. By surface models of the total population, 

whites, blacks, and Asians for 1990 and 2000, the total population and whites were found to 

move north, blacks moved west, and Asians moved northeast. The surface models of the median 

household income shows there were big increase of income in some parts of southern Atlanta. 

SCDF and K-S test show that the spatial distributions of the total population, whites, blacks, and 

the median household income were statistically different from 1990 to 2000. However, where 

Asians were found, they did not have much difference in their spatial distributions. While the 

total population and whites were more unevenly distributed, blacks had a process of diverse 

distribution. SCDF of the median household income shows that the urban space of income was 

more polarized because low-income poor were more aggregated and the affluent are still 

segregated.   

There are several issues which need more consideration or further investigations. First, 

the modifiable areal unit problem (MAUP) affects the applicability of results from census tract 

level to other scales. In order to better justify urban structure and urban space, it is expected to 

use other scales as well to investigate the urban changes. It has no consensus on which scale is 

the best for a specific topic on urban structure and urban space, while at the same time the 

researches are constrained by the availability of data. With the increasing data sources of high-

resolution imagery data as well as other detailed socioeconomic data, the topics on urban 

structure and urban space can be studied more thoroughly.  

Second, the results from data analysis may contain errors. The analysis of urban structure 

is based on classified images from Chapter 3. As there are errors existing within the classified 
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images, the errors can be compounded in the later analyses. When data are converted from one 

interface to another in order to integrate GIS and spatial analysis, the error can be created during 

this process. Furthermore, because of the limitation of computer’s memory, only resampled 

images with resolution of 120 m are used. A different result may be possible if a different 

resolution or spatial scale is used for the same analysis. There are still possibilities that the errors 

exist in census data, which are used in the analyses of urban poverty and the spatial distributions 

of population, race, and income. Although the existence of data errors is the reality, the data used 

in this dissertation are generally acceptable for the topics of urban structure and urban space. 

Third, regarding urban theory on urban structure and urban space, Atlanta is found to 

have a more fragmented urban form and have a more polarized income space. These findings 

support the arguments of postmodern urbanism. However, as a city is multi-dimensional on 

demographic, economic, political, social, and cultural perspectives, the results from this 

dissertation cannot derive the opinion that Atlanta has a trend of postmodern city. Instead, the 

spatial point process shows that the random urban growth in Atlanta is not applicable as the 

model shows that the urban increase tends to depend on the distance from the existing urban area 

and the positive correlation within itself. More empirical studies are needed to quantitatively test 

the various arguments of postmodern urban theory, especially for the typical cities: Los Angeles 

and Miami.  

Fourth, urban space can be studied in more details. This dissertation only considers one 

race at a time when spatial distribution of racial residence is analyzed. In future, the research, 

which can take several races into consideration at the same time and incorporate their interactive 

relationships, is needed. Moreover, the polarized urban space regarding the combined race and 
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income factors, such as white affluent and black poor, is possible to give more hints on the 

contemporary metropolitan area.  

This dissertation can derive the following conclusions at the technological, theoretical, 

and application levels. At the technological level, several spatial statistical techniques and 

models are integrated with GIS packages via loose-coupling approach. This integration 

demonstrates that the integration of GIS and spatial analysis can help address issues which are 

impossible to be accomplished when a single package is used. Meanwhile, the capabilities of 

GIS and spatial analysis are enhanced when new developments of technologies in their own 

fields are incorporated into the integration process.  

At the theoretical level, the arguments by postmodernism on urban structure and urban 

space are examined. Although there are evidences for postmodern urbanism (fragmentation and 

polarization), the contradictory outcome between the reality of Atlanta’s status as a mixed 

industrial/postindustrial city and the statistical results lead us to reconsider the question if there is 

a postmodern society. Nowadays, postmodern urbanism largely uses qualitative approaches to 

support its arguments. This dissertation, in part, supplies a quantitative approach to test its 

arguments. 

At the application level, several spatial statistical methods are introduced for studying 

urban environment. These methods can be further applied to other contexts. In some cases, these 

methods can be modified so that the derivations can be better applied into various scenarios. This 

dissertation is a case study on urban structure and urban space. The comparisons among different 

cities with different economic, social, and cultural backgrounds will be more intuitive to better 

understand the contemporary world. 
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