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ABSTRACT 

 In this thesis, we compare several methods to handle correlated data related to 

genome frequency copies. First, we used standard Poisson Regression to analyze the data. 

From the results, we find that there are several problems related to over-dispersion and 

under-dispersion. It is easy to handle over-dispersion using the ‘scale-adjustment’ method. 

However, remedying problems related to dependence caused by correlated Poisson data 

are not so easily handled.  We first created a statistic to help us test the null hypothesis 

that data are independent Poisson realizations vs. the alternative that they are positively 

associated. From this, we found that 225 base-pairs separation is the minimum cut-off 

distance needed to achieve approximate independence.  We also used results from this 

analysis to devise a formula which yields the approximate correlation coefficient (r) 

between counts which are separated by ‘b’ base-pairs. Finally, we use our method to 

weight observations, and find significant improvement compared to other methods. 
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CHAPTER 1 

INTRODUCTION 

1.1 THE WHEAT GENOME  

Bread wheat, Triticum aestivum L., is an allohexaploid that was formed by two 

spontaneous hybridization events.  The first event took place some 500,000 years ago 

between the A-genome species T. urartu and an unknown B-genome species to form 

tetraploid T. turgidum ssp. dicoccoides (AABB) (Huang et al. 2002).  The formation of 

hexaploid wheat occurred some 8,500 years ago through the hybridization of a cultivated 

tetraploid, T. turgidum ssp. dicoccum (AABB) with the D-genome species Ae. tauschii 

(Nesbitt & Samuel 1996).  As a result of the polyploidization, most genes are present in 

three copies on homoeologous chromosomes (McIntosh et al. 2003). 

 In recent years, great progress has been made in understanding the structure of the 

wheat genome. A physical map of the D genome of Ae. tauschii is near completion and 

physical mapping of individual chromosomes from hexaploid wheat is coordinated 

through the International Wheat Genome Sequencing Consortium (IWGSC; 

http://www.wheatgenome.org).  The ultimate goal of the IWGSC is to produce a full 

sequence assembly of the hexaploid genome.  Sequence analysis of 12 contigs from Ae. 

tauschii totaling 11.5 Mb and of 13 contigs from hexaploid wheat chromosome 3B 

totaling 18.2 Mb has provided insight into the organization of genes and repeats (Devos 

2010; Choulet et al. 2010; Massa et al. 2011). Sequencing and precise annotation of 192 

randomly selected BAC clones of hexaploid wheat has indicated that the wheat genome 

http://www.wheatgenome.org/
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contains around 110,000 ± 22,000 genes (JL Bennetzen and KM Devos, unpublished 

data).  The entire data set of wheat genes will become available later this year following 

the completion and annotation of (1) the 5X shotgun sequence of the hexaploid wheat 

variety Chinese Spring (CS) generated mainly on a Roche 454 platform by a UK 

consortium (http://www.cerealsdb.uk.net) and (2) the 50X shotgun sequences of the CS 

AABBDD genome and of the AA, AABB and DD progenitor genomes generated by a 

team at Cold Spring Harbor Laboratories (CSHL) using mainly Illumina paired-end 

sequencing. There are also more than 1,000,000 ESTs (http://www.n(cbi.nlm.nih.gov/) 

and some 8,500 putative full-length cDNAs (http://trifldb.psc.riken.jp/index.pl) available 

for wheat which, together with comparative information from other species, are valuable 

resources for annotation of the wheat genome.  The ESTs have been assembled into 

Unigenes (http://www.ncbi.nlm.nih.gov/UniGene/UGOrg.cgi?TAXID=4565) and in 

2004, an Affymetrix microarray was generated using information from GenBank T. 

aestivum Unigene Build #38, which included 414,006 ESTs and 1,767 mRNAs, and from 

available T. monococcum, T. turgidum and Ae. tauschii ESTs.  The microarray contains 

61,127 probe sets representing 55,052 transcripts distributed over all 21 wheat 

chromosomes.  A probe set consists of 11 25-mers that were designed mostly against 

regions in Unigene clusters that are conserved across the A, B, and D genomes.   

 The Affymetrix wheat gene chip has been used to study gene expression during 

wheat development, and in response to biotic and abiotic stresses (Crismani et al. 2006; 

Desmond et al. 2008; Schreiber et al. 2009; Winfield et al. 2009).  Because most of the 

probe sets on the Affymetrix gene chip have been designed against regions that are 

conserved between the A, B, and D genomes of wheat, the expression profiles obtained 

http://www.cerealsdb.uk.net/
http://www.n(cbi.nlm.nih.gov/
http://trifldb.psc.riken.jp/index.pl
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for an estimated 90% of the genes in those experiments are the sum of the expression 

profiles across the three wheat genomes (Schreiber et al. 2009).  Akhunova et al. 

extracted some information on homoeolog-specific expression from the Affymetrix gene 

chip by identifying intergenomic SNPs in the probe sets that differentiated the D genome 

from the AB genomes.  The limitations of this approach are that (1) not all three genomes 

can be differentiated; (2) for each genome-specific probe, expression can be measured 

only for the genome that has a perfect match; and (3) the expression measured for two 

different genomes by two different probes might be influenced by the location of each 

probe in the transcript (e.g. 5’ located probes might show lower apparent expression due 

to a 3’ transcript bias than 3’ probes).   

 

 

1.2 NON-HOMOEOLOGOUS GENE EXPRESSION IN WHEAT  

The first study of differential expression in A, B, and D homoeologs in hexaploid 

wheat was carried out by Mochida et al. ( 2004).  They selected 90 relatively abundant 

genes based on their prevalence in EST datasets and associated single nucleotide 

polymorphism (SNP) haplotypes with the A, B, and D homoeologs using nullisomic-

tetrasomic (NT) analysis in combination with pyro-sequencing.  NT lines lack one 

chromosome pair, and have an extra copy of a homoeologous chromosome pair.  Such 

lines exist for each of the 21 wheat chromosomes (Sears 1954) and can be used to 

allocate markers to chromosomes.  Relative expression in the A, B and D genomes was 

determined by assessing the number of ESTs with an A, B and D genome haplotype in a 

set of 116,232 ESTs generated from 10 tissues. Sixteen percent of the genes had similar 



4 
 

expression levels in the three wheat genomes, and the remaining 84% showed different 

expression of one homoeolog in at least one tissue. Of the genes with preferential 

expression, 17% were expressed in only two of the three genomes.   

Homoeologous gene silencing in wheat was also demonstrated by Bottley et al. ( 

2006).  A, B and D amplicons obtained within exons of 236 single-copy genes in seedling 

leaves and roots were separated by single strand conformation polymorphism (SSCP) gel 

electrophoresis and allocated to a genome by comparing the cDNA amplicon patterns 

with the gDNA patterns amplified from NT lines.  Absence of an amplification product 

from one of the three genomes was observed for 27% of the genes in leaves and 26% of 

the genes in root.  As in Mochida et al. ( 2004), there appeared to be no bias towards a 

specific genome.  If silencing occurred in the same tissue in multiple varieties, it was 

often the same homoeolog that was silenced (Bottley & Koebner 2008).  Overall patterns 

of silencing, however, appeared to be variety dependent and heritable (Bottley & 

Koebner 2008).   

            The effects of allopolyploidization per se were examined by hybridizing RNA 

isolated from seedling leaves from T. turgidum (AABB), Ae. tauschii (DD) and a 

corresponding synthetic hexaploid to a 17K 70-mer oligoarray (Pumphrey et al. 2009). 

The oligoarray contained 35,568 features representing 17,279 potentially unique wheat 

genes, and expression was measured globally, that is summed over the A and B genomes 

in case of the tetraploid T. turgidum and summed over the A, B, and D genomes in case 

of the synthetic hexaploid.  Approximately 78% of the transcripts showed differential 

expression between Ae. tauschii and T. turgidum.  This is considerably higher than 

expression differences observed between the diploid relatives Arabidopsis thaliana and 
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A. arenosa and might be attributed to the fact that T. turgidum itself is an allotetraploid 

that resulted from a merger between two diploid genomes some 500,000 years ago.  The 

number of genes that were expressed in a non-additive manner in the synthetic 

allohexaploid compared to the diploid and tetraploid parent was 16% (Pumphrey et al. 

2009).  A similar study including Ae. tauschii, an AABB synthetic tetraploid and an 

AABBDD synthetic hexaploid, was carried out by Akhunova et al. using intergenomic 

SNPs to distinguish expression of the D genome from that of the AB genomes.  Parental 

divergence was, again, found to be an important factor contributing to differential 

expression of the A, B, and D genomes.  The percentage of genes for which the A, B, and 

D genomes were expressed non-additively was 19%. 
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CHAPTER 2 

SPECIFIC PROBLEM 

2.1 THE OVERALL GOAL AND OBJECTIVES OF THE THESIS 

The overall goal of the research in this area is to understand the effects of 

polyploidization on the sub/neofunctionalization of homoeologous gene copies in 

hexaploid wheat and to identify the genetic and epigenetic factors that contribute to 

biased expression of gene homoeologs during all stages of the polyploidization process.  

From a statistical perspective, the goal is to use the data on copy number most efficiently 

to  test the  null hypothesis  that all three wheat homoeologs (A, B, D) are expressed at 

equal levels.  In even simpler terms, for each gene for which we have data, we wish to 

estimate the mean expression count level for each homeolog and to test whether these 

means are significantly different from one another.  

 

2.2 DESCRIPTION OF DATA 

To have the necessary statistical power to test for differential expression of 

homoeologs, at least two independent measurements of expression levels are needed for 

each gene. Unfortunately, with technology available and currently affordable, one can’t 

measure expression level exactly and must count copies in the amplification process in 

order to estimate expression level. This is an indirect measure, since the count depends on 

how many ‘fragments’ overlap sufficiently with probes designed to measure certain 
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signature sequences in each gene.  For the data set which is the focus of this thesis, a 

minimum of two and up to 14 sets of signature sequences were extracted for each of  61 

key genes in the wheat genome.  The number of signature sequences identified per gene 

correlated only weakly with transcript length (r=0.26, p=0.04), indicating that some 

genes have higher levels of intergenomic variation than others. The expression levels for 

each homoeolog were calculated (1) by averaging the coverage at each base of the 

signature sequence in the transcript assemblies and (2) by counting the number of perfect 

matches against the raw 454 reads. We used method (2) in performing our analyses. 

Figure 1 presents a schematic diagram of typical results. In that example (from the 

first of 61 key wheat genes analyzed as part of this research), there are 7 signature 

sequences contained in the gene, at locations which are 116, 140, …, 340 base pairs after 

the beginning of the gene. Signature sequences are short stretches (usually of length 25 

base pairs) of  nucleotide patterns that are known to occur frequently in the wheat 

genome. A probe to detect the signature sequence is run at each locus on each of the three 

homoeologs (A, B, D), and a count is made of the number of times the sequence is 

detected for each homoeolog at that point. From the data shown, it appears that the 

typical copy numbers for the three homoeologs in this gene are about {9, 13, 7}, 

respectively. One would like to perform a test to see if this variation is sufficient to 

conclude that copy number is unequal across the three homoeologs. If one assumes that 

the counts in each homoeolog are independent realizations from a homogeneous Poisson 

process, this is easy to do.  However, as we shall see, such assumptions are unrealistic, 

leading us to the fundamental statistical problem investigated in this thesis.  
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Figure 1   Schematic Diagram

 

At first, this seems to be a quite simple statistical exercise, but Figure 2 illustrates 

more clearly what happens within a homoeolog of a gene. The four ‘X’ at approximate 

positions 20, 140, 200, and 400 base pairs from the ‘left’ end of the gene represent 

signature sequence sites which are probed. The lettered sequences represent different 

fragments of the amplified and then shredded gene. The fragments are usually of similar, 

but certainly not identical lengths, and not all fragments are ‘hit’, even when they do 

contain the matching signature sequence. If a probe ‘hits’ a fragment, that means that the 

probe detected a sequence in that fragment which matched the signature sequence. In 

Figure 2, there are {9,8,8,6} hits, respectively for the four signature sites. From this, one 

might infer that the copy counts for sites in this homoeolog of the gene are distributed 

approximately as a Poisson random variable with mean = (9+8+8+6)/4 = 7.75. This sort 

of calculation might be appropriate if the counts at the sites were obtained independently 

of one another, as appears to be the case for the first and last of the four signature probes. 

However, for the two middle sites, the identical observed counts of ‘8’ are much more 

than a coincidence; the two probes hit the same fragments 6 times. Even the first and 
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second sites, which are more separated than the middle two, share hits on two of the same 

fragments, so the ‘9’ and ‘8’ observed there are not quite independent counts. 

Unfortunately, because of limitations in how the data are collected, there is no way to 

know if counts at different sites include overlapping fragments. The crux of the problem 

in this thesis is to determine both how to estimate the true Poisson intensity parameter in 

such cases, and how to quantify the uncertainty in these estimates. Solving the latter 

problem allows us to make valid inferences concerning the hypothesis of equality of 

intensity across the three homeologs of a gene, the primary question of genetic interest. 

 

Figure 2    Refined Schematic of Copy Counts Within a Homoeolog 

 

 

 

2.3 NAIVE METHOD OF ANALYSIS 

This method of analysis includes all expression counts and assumes that all the 

expression counts within a specific gene of a specific homeolog are independent of one 

another . Because of this independence assumption, we use the average of the expression 
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counts as estimates of the mean expression counts for specific genes and homoeologs.   

That is, at the most naïve level, for each of the 61 genes examined, we simply compared 

the mean counts over the several observations taken on each of the three (A, B, D) 

homoeologs and used Poisson regression techniques to test the null hypothesis that the 

three homoeologs had the same mean expression level. A slightly more sophisticated 

analysis controlled for site location (since all measurements along a specific homoeolog 

were taken at the same signature sequence sites), and there has been some suggestion in 

the literature that certain sites, especially those in G-C rich areas may tend to have larger 

counts than others. For the most part, however, effects due to location were either 

insignificant or not nearly as significant as effects due to homoeolog. The effects due to 

homoeolog were not at all consistent from gene-to-gene, as can be seen from the output 

in Table A1 of the Appendix. For each of the 61 genes, Table A1 displays the number of 

signature sequence sites (#SSNs), the Deviance statistic from the Chi-Squared test, and 

the two-tailed P-values for testing that the A-B, A-D, and B-D homoeologs had different 

intensities. In some cases, there were no significant differences between the mean counts 

in the three homoeologs, while, in others, all sorts of different orders appeared.   

 To perform these naïve Poisson regression analyses, we used PROC GENMOD of 

SAS version 9.3.  Upon more careful examination of the results, we find that there are 

several potential violations of model assumption: (1) over-dispersion; (2) dependence 

within a gene; (3) dependence across homoeologs. 

 For a one-parameter exponential family (such as the Poisson), over-dispersion is a 

situation which occurs when the mean estimated from the data gives rise to a theoretical 

standard deviation estimate which is too small compared to the observed standard 
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deviation. It is a not uncommon problem encountered in Poisson regression, and is 

frequently ‘handled’ by employing a scale multiplier to adjust standard errors for this 

extra variability. (Within PROC GENMOD, this is most frequently done via the 

SCALE=D or SCALE=P options, or occasionally by generalizing the Poisson to a 

Negative Binomial distribution.)  While there is some evidence of over-dispersion in the 

homoeolog data from the 61 genes, a much more common occurrence is not that the data 

are over-dispersed, but that they are under-dispersed. That is, although the theoretical 

standard deviation of a Poisson distribution is equal to the square root of the theoretical 

mean, there are many more gene-homoeologs sets for which the sample SD is exceeded 

by the square-root of the sample mean ( SD << √ ̅    than  by the converse  (SD >> √  ̅̅ ̅. 

Although it is relatively easy to handle over-dispersion by using the scale statement in 

PROC GENMOD, such an approach is not recommended for under-dispersion. The 

reason for this is that over-dispersion typically occurs in cases where the independence 

assumption still seems tenable – the data are just more spread out relative to the sample 

mean than they should be under Poisson assumptions. For under-dispersion, on the other 

hand, the main culprit is positive dependence – successive observations tend to be more 

similar to one another than they should under independence assumptions. This can be 

seen to occur often in the gene data set of Appendix A – there is much too little variation 

across the values in the same homoeolog for many of the genes, especially when the 

signature sequence sites are relatively close to one another.  However, how to handle the 

difficulties related to this dependence is not easy.             
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CHAPTER 3 

APPROACHES 

3.1 CREATING A STATISTIC TO TEST INDEPENCE          

We want to find a statistic which can test whether the observations (counts) 

within the same homoeolog behave like realizations from an independent Poisson 

distribution. For a random variable X following a Poisson distribution with intensity 

parameter λ , the probability density function is given by:  

 (   
  

  
   , x=0, 1, 2, … with mean and variance both equal to λ. Thus, it would be 

natural to examine the ratio of the sample variance to the sample mean (
  

 ̅
) as a statistic 

to measure relative dispersion, with ratios much greater than 1.0 indicating over-

dispersion, and ratios much less than 1.0 indicating under-dispersion. A question of 

interest is what function of the above ratio is most useful for measuring significance.  We 

tried estimators of the form Zn= an × [f(
  

 ̅
)-f(1)] in an attempt to find an (an, f ) pair which 

would have approximately  a standard normal distribution even for small values of n , 

such as those which are common in our dataset (2 ≤ n ≤ 7 are typical for the dataset in 

question). After some trial and error, we found that an= n and f (x) = x
1/4

 behave 

reasonably well for a range of λ (0.5 ≤ λ ≤ 20). That is, we hoped  that the statistic  

Z = n [√
 

√ ̅
  ] can be reasonably approximated by a standard normal distribution.  
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We used simulations to test this assumption. We simulated different sets of 

independent Poisson distributed random variables for different sizes (n) and different 

intensities (λ). The sizes ranged from 2 to 7, and λ ranged from 0.5 to 20 in increments of 

0.5. We simulated 999 times for each combination of n and λ. For each run, the statistic 

Z=n [√
 

√ ̅
  ] was calculated. In the rare case that  ̅= 0, we set Z= -n, the minimum 

value which is achieved whenever s=0. Then, for each set of 999 simulations, we 

calculated the mean, standard deviation and different percentiles (1%, 5%, 10%, 25%, 

50%, 75%, 90%, 95%, and 99%) for Z. These results are displayed in Tables A2 (n=2) to 

A7 (n=7) in the Appendix. From these results, we can see that the hoped for convergence 

to Standard Normal percentiles didn’t quite occur. The standard deviation of the Z-

statistic, as n increases, appears to be approaching 1, but there is a consistent bias in the 

mean. Of course, one can use the empirical thresholds shown in the tables (for the given 

values of n and λ) to obtain approximate P-values, but it would probably be better to 

search for a simple bias-correcting function bn, such that Zn= n × [f(
  

 ̅
)-f(1)- bn] has 

approximately mean zero and standard deviation one, with the approximation improving 

both as λ and n increase.  

The Z-statistic defined above seems to work quite well in the upper tail, but it is 

not really needed in that range, as there are many statistics (notably the Likelihood 

Deviance or the Pearson Deviance statistics) that are quite effective at detecting over-

dispersion. Similarly, as the sample size, n, becomes large, many statistics will yield 

approximately normal distributions (under the null hypothesis of i.i.d. Poisson 

observations). However, we are really more concerned with cases which don’t fall in 

either of the ‘good’ categories; we want to detect under-dispersion when the sample size 
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is small. As the results in Tables A2-A7 show, this is hard to do for small n, such as 2, or 

3, especially when λ is small. Since a Poisson random variable can assume only integer 

values, it is hard to determine whether a sample such as {1,1,1} with n=3 is a chance 

occurrence from a Poisson with true λ near 1, or 3 highly dependent realizations of a 

single Poisson event. Thus, one observes that the statistic’s lower bound (Z= -n) is often 

achieved by chance from independent Poisson samples when n=2 or n=3, but this 

becomes much rarer as n increases, and, even for n=3 or n=4 is not common unless the 

true λ is fairly small.    

Thus, we can use the created Z-statistic (but preferably a bias-corrected version) to 

examine ostensibly Poisson distributed data for dependence. That is, for a given sample 

of n counts from a homoeolog of a wheat gene, we obtain the copy counts {X1, X2, …, Xn} 

at the n key signature sites, and calculate the sample mean (x) and standard deviation (s) 

of these counts. We use these values to calculate the statistic Z=  [√
 

√ ̅
  ] (or a bias-

corrected version) and check the statistic’s percentile in the distribution. Roughly 

speaking, if the calculated statistic is in the (-1.96, 1.96) range, we suppose that the data 

for this homoeolog of the gene can be treated as if they were independent realizations 

from a constant-mean Poisson process. If the calculated statistic is in the (-n, -1.96) range, 

we treat the data for that homoeolog as if it is under-dispersed, while if the calculated 

statistic is in the (1.96, ∞) range, we treat the data for that homoeolog as if it is over-

dispersed. While a separate Z-statistic can be calculated for each of the 3 homoeologs 

within the same gene, it wouldn’t make too much sense for the dependence pattern to 

depend on homoeolog, so the average of the three Z-statistics for a gene is probably the 

best overall measure of dependence. If approximate independence can be assumed, we 
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proceed with the standard Poisson regression analyses. Similarly, if over-dispersion 

appears to have occurred, we can adjust for it in standard ways.  

The most challenging aspect, and what has motivated this research, is how to proceed 

when the Z-statistic indicates under-dispersion. Since under-dispersion in this context is 

likely caused by taking measurements at signature sequence sites which are ‘too close’ to 

one another, one possibility would be to delete some of the interior counts (assuming n is 

large enough to do this) in the hope that the remaining counts would behave more 

‘independently’. Another possibility would be to use all the counts, but to weight them in 

some way such that highly dependent values don’t have adverse effects on resulting 

inferences. The statistical pros and cons of each of these approaches are discussed later in 

this thesis. 

 

3.2 ESTIMATING CORRELATION COEFFICIENT AMONG DATA 

Another useful tool   in testing for independence of counts  is to estimate the 

correlation coefficient (r) between counts which are separated by a certain distance (in 

base pairs) . The correlation coefficient, r, for a pair of random variables {Y1, Y2 } is a 

quantity related to the covariance and is defined as: 

  
   (      

    
 

As we know, 0 ≤ |r| ≤1. A value of r = 0 implies zero covariance and no correlation. And 

with the |r| increasing, the correlation is more significant. If |r| = 1, this implies a perfect 

correlation, where Y1 and Y2 can be perfectly predicted from one another. In the context 
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of this problem, we can examine all n-choose-2 pairs of counts within the same 

homoeolog of the same gene in the wheat genome to try to measure ‘r’ for that pair. 

Thus, we will approximate the correlations between the differences of any pair of 

expression counts and their corresponding positions for our 61-gene data set. To do so, 

we first calculated the difference between any pair of expression counts (Count1 and 

Count2) and the difference (in base-pair units) between their corresponding positions, and 

named the difference of counts as ‘Diff’, and the difference in positions as ‘Lgap’. Then, 

we let Denorm= 
    

√             
  and plotted Denorm against Lgap (Figure 3). The 

variable Denorm, assuming the two counts arise from independent Poisson distributions 

with common intensity (λ), has a mean of zero and standard deviation of near one, and is 

closely related to Kruskal’s G-statistic used in measuring association in 2×2 tables. 

Asymptotically (as λ becomes large) , under the above assumptions, ‘Denorm’ will 

follow a Standard Normal distribution, but that fact is  of marginal relevance here. 

Figure 3.  Denorm vs. Lgap
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The plot in Figure 3 displays all N=2007 pairs of denorm statistics that could be 

calculated from the data set. There are 61 genes, each with 3 homeologs, and each of 

these has n-choose-2 pairs of counts that could be examined. The median n for the 61 

genes is n=5, which would yield 1830 pairs, but the exact total is slightly greater, so that 

N=2007. In the figure, ‘denorm’ is plotted on the Y-axis, while ‘Lgap’ (the distance in 

base-pairs between the sites at which the two counts were made) is plotted on the X-axis. 

(The three homeologs are shown via the plotting symbols (1=A, 2=B, 3=D), but no 

interesting differences between the homoeologs is observed there.)  If the count pairs 

were independent realizations from a common Poisson distribution, one would expect the 

denorm statistics to be distributed somewhat similarly to a N(0,1) random variable. From 

this plot, we can see that this is not the case at all. For small values of Lgap, the denorm 

statistics are much too tightly clustered around zero. As Lgap increases, the distribution 

appears to stabilize, but it appears to have a standard deviation much greater than 1.  This 

threshold distance at which stabilization appears to occur for Lgap is in the 200-300 

base-pairs region, but we need to measure it more accurately. 

To obtain a more  accurate estimate of the threshold  distance, we divided Lgap 

into 20 levels (from level a [0-24 bp gap] to level t [> 1000 bp]) and calculated the 

number of observations (N), 25% percentile, 50% percentile, 75% percentile, mean and 

standard deviation (SD) of Denorm for each of the 20 levels . This information is shown 

in Table 1 below. Ideally, the SD should rise from near zero when the gap is small and 

then level off at 1.00 once the gap-distance such that independence can be claimed is 

achieved. While there does appear to be a leveling off after Lgap=225 base-pairs, the SD 
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for larger gaps seems to be much greater than 1.0, indicating that over-dispersion is 

confounded with under-dispersion for these data 

Thus, in Table 2, we divided the data into 10 levels (from level a to level j) and 

re-calculated everything as in Table 1. Moreover, we calculated 

   ̂  √
∑     

  
   

∑   
 
   

 

from which we obtained M ≈ 1.438 as the average over-dispersion factor after the Lgap 

has increased enough for independence to be viable. This agrees well with the observed 

SD of level j, 1.451, reinforcing the idea that gap=225 base pairs is the minimum distance 

at which independence is viable. This also suggest that we need to deflate the denorm 

statistic (since over-dispersion as well as under-dispersion are present), so that SD=1.0  is 

achieved at a 225 base-pair gap. Thus, we deflate the calculated SDs by using the  

deflated  standard deviation,         
  

 
 = SD/1.438, as shown in the last column of 

Table 2. 

 

Table 1      Summary of Denorm Based on 20 Levels 

level Lgap N 25%-ile 50%-ile 75%-ile Mean SD 

a 0-24 42 0 0 0.243 0.113 0.223 

b 25-49 168 -0.192 0 0.268 0.055 0.422 

c 50-74 138 -0.277 0 0.302 0.036 0.551 

d 75-99 102 -0.333 0 0.343 0.070 0.701 

e 100-124 132 -0.483 0 0.474 -0.038 0.817 
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f 125-149 93 -0.707 0 0.480 -0.127 1.031 

g 150-174 93 -0.277 0.229 0.775 0.260 0.952 

h 175-199 72 -0.895 0 0.556 -0.040 1.156 

i 200-224 96 -0.832 -0.085 0.631 -0.081 1.251 

j 225-249 69 -0.632 0.277 0.928 0.138 1.171 

k 250-274 60 -0.971 0 1.304 0.137 1.525 

l 275-300 87 -0.775 0.169 1.134 0.131 1.404 

m 301-400 183 -0.943 0.000 0.775 -0.060 1.376 

n 401-500 189 -1.213 -0.277 0.775 -0.134 1.503 

o 501-600 138 -1 -0.209 1.029 0.029 1.527 

p 601-700 111 -1.177 -0.378 0.707 -0.196 1.447 

q 701-800 72 -1.283 -0.340 0.5 -0.187 1.285 

r 801-900 54 -0.781 0.449 1.441 0.428 1.567 

s 901-1000 36 -0.447 1.093 1.843 0.756 1.617 

t >1000 42 -0.180 0.962 1.540 0.624 1.320 

TOTAL  2007      

 

            

 

Table 2       Summary of Denorm Based on 10 Levels 

level lgap N 

25%-

ile 

50%-

ile 

75%-

ile Mean SD def SD 

a 0-24 42 0 0 0.243  0.113  0.223  0.155  
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b 25-49 168 -0.192  0 0.268  0.055  0.422  0.294  

c 50-74 138 -0.277  0 0.302  0.036  0.551  0.383  

d 75-99 102 -0.333  0 0.343  0.070  0.701  0.488  

e 100-124 132 -0.483  0 0.474  -0.038  0.817  0.568  

f 125-149 93 -0.707  0 0.480  -0.127  1.031  0.717  

g 150-174 93 -0.277  0.229  0.775  0.260  0.952  0.662  

h 175-199 72 -0.895  0  0.556  -0.040  1.156  0.804  

i 200-224 96 -0.832  -0.085  0.631  -0.081  1.251  0.870  

j >224 1041 -1  0  1  0.037  1.451  1.009  

 

 Thus, for all the Denorm values, we renormalized by calculating the statistic 

W=Denorm/M and plotted the W against Lgap. This plot is shown in Figure 4.  

 

Figure 4    W vs. Lgap 
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              From Figure 4, we can find there are some outliers whose W values are over 2.5. 

We should find very few observations whose W value are larger than 2.5, so we delete 

these observations (only for the purpose of finding a correlation function, not for real data 

analysis). As a result, we identified the 15 outliers which are listed in Table 3. 

           After deleting theses outliers from the data, we again divided Lgap into 20 levels 

(from level a to level t) and 10 levels (from level a to j) respectively, and calculated the 

number of observations (N), 25% percentile, 50% percentile, 75% percentile, mean and 

standard deviation (SD) of Denorm for each level (Table 4, Table 5). Moreover, we re-

calculated M (≈ 1.373), def SD, and W to get the final results shown in Table 5. Then, 

we re-plotted W against Lgap (Figure 4). 

 

 

Table 3    List of Outliers 

geneid ssid Lgap diff denorm Level w 

11 1 144 -55 -3.823 F -2.659 

11 1 206 -53 -3.702 I -2.575 

17 1 286 20 3.922 J 2.728 

17 1 323 21 4.041 J 2.811 

17 2 468 23 3.888 J 2.704 

17 2 520 25 4.352 J 3.027 

17 2 580 25 4.352 J 3.027 

17 3 257 -20 -3.922 J -2.728 
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17 3 294 -24 -4.382 J -3.048 

17 3 468 -26 -4.596 J -3.197 

17 3 520 -20 -3.922 J -2.728 

33 2 971 36 4.243 J 2.951 

33 2 1004 35 4.154 J 2.889 

57 3 469 25 3.647 J 2.536 

57 3 500 26 3.833 J 2.666 

 

          Table 4     Summary of Denorm Based on 20 Levels after Deleting the Outliers 

level lgap N 25%-ile 50%-ile 75%-ile Mean SD 

a 0-24 42 0 0 0.243 0.113 0.223 

b 25-49 168 -0.192 0 0.268 0.055 0.422 

c 50-74 138 -0.277 0 0.302 0.036 0.551 

d 75-99 102 -0.333 0 0.343 0.070 0.701 

e 100-124 132 -0.483 0 0.474 -0.038 0.817 

f 125-149 93 -0.707 0 0.480 -0.127 1.031 

g 150-174 93 -0.277 0.229 0.775 0.260 0.952 

h 175-199 72 -0.895 0 0.556 -0.040 1.156 

i 200-224 96 -0.832 -0.085 0.631 -0.081 1.251 

j 225-249 69 -0.632 0.277 0.928 0.138 1.171 

k 250-274 60 -0.971 0 1.304 0.137 1.525 
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l 275-300 87 -0.775 0.169 1.134 0.131 1.404 

m 301-400 183 -0.943 0.000 0.775 -0.060 1.376 

n 401-500 189 -1.213 -0.277 0.775 -0.134 1.503 

o 501-600 138 -1 -0.209 1.029 0.029 1.527 

p 601-700 111 -1.177 -0.378 0.707 -0.196 1.447 

q 701-800 72 -1.283 -0.340 0.5 -0.187 1.285 

r 801-900 54 -0.781 0.449 1.441 0.428 1.567 

s 901-1000 36 -0.447 1.093 1.843 0.756 1.617 

t >1000 42 -0.180 0.962 1.540 0.624 1.320 

 

  

Table 5     Summary of Denorm Based on 10 Levels after Deleting the Outliers 

level lgap N 

25%-

ile 

50%-

ile 

75%-

ile Mean SD def SD 

a 0-24 42 0 0 0.243 0.113 0.223 0.162 

b 25-49 168 -0.192 0 0.268 0.055 0.422 0.308 

c 50-74 138 -0.277 0 0.302 0.036 0.551 0.401 

d 75-99 102 -0.333 0 0.343 0.070 0.701 0.511 

e 100-124 132 -0.483 0 0.474 -0.038 0.817 0.595 

f 125-149 92 -0.681 0 0.487 -0.087 0.961 0.700 

g 150-174 93 -0.277 0.229 0.775 0.260 0.952 0.693 
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h 175-199 72 -0.895 0 0.556 -0.040 1.156 0.842 

i 200-224 95 -0.832 0 0.632 -0.043 1.200 0.874 

j >224 1028 -1 0 0.982 0.018 1.386 1.009 

 

 

Figure 5        W vs. Lgap after Deleting the Outliers 

 

According to results of Table 5 and Figure 5, we can see that from level ‘a’ to 

level ‘i’ the correlation of the data increases with the distance between positions 

increasing. However, we estimate that when distances are larger than 225 bp, the distance 

will not affect the Difference of expression counts. That is, when the distances between 

two signature sites are more than 225 bp apart, the expression counts appear to behave as 

if they are independent Poisson realizations (with an over-dispersion factor of about 1.37). 

This threshold distance leads us to the relatively simple piecewise linear estimate of the 

correlation coefficient (r) between (  ,    ), the counts at any two points: 
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This reasonably closely approximates  the relationship between r and Lgap shown in 

Figure 5. Note that this simple piecewise linear  approximation for r may be useful for an 

individual pair (  ,    ) of counts, but might not be consistent for a triplet (  ,   ,   ) of 

counts, especially as Lgap becomes large. For example, if (  ,   ,   ) were arranged 

sequentially such that the distance between the first two and the distance between the last 

two was about 112 bp, then the correlation between the first two would be about .40, as 

would that between the second and third, but the distance between the first and third 

would lead to a correlation of approximately zero, and not .16, which would be expected 

on theoretical grounds. 

  

 

3.3 DISCARDING SOME NEAR-BY DATA  

From the previous section, we have estimated that the minimum threshold  distance 

necessary to assume independence between counts  is 225 bp. Thus, one correct (but 

rather crude) solution to our problem is to discard those data points which are separated 

by a distance less than 225 bp. For example, for the gene 1, there are 7 positions 

originally (116, 144, 180, 212, 235, 302, 340). Thus, using the rule above, if we delete 

the data which are in the 5 middle positions: (144, 180, 212, 235, 302) and use only the 
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counts at the first (116) and last (340) positions, we will have approximately independent 

observations. This method suffers from two major drawbacks. First, for 25 of the 61 

genes, there are not any pairs which are measured at distances more than 225 bp from one 

another, so no tests at all for mean equality of counts of {A, B, D} could be obtained for 

these genes. Secondly, for most genes, there are many non-unique ways to discard genes 

so as to remove those that are not separated enough, so depending upon which sites’ 

counts are removed, different conclusions could be drawn. 

After using (a particular application of) this method to reduce the original dataset 

(analyzed by naïve Poisson regression in Table A1) to observations which were separated 

by at least 225 base pairs, we again performed a Poisson Regression (with over-

dispersion factors as necessary) to analyze the remaining data. In general, we found that 

the deviance statistic for over-dispersion became larger than before and significant 

differences were harder to find. This is a conservative method, so any significant results 

found by this method are probably ‘real’. Nonetheless, the increase in untestable genes 

and the increase in the deviance statistics implies that we are losing much valuable 

information under this plan.  Hence, directly discarding dependent data (i.e. counts 

obtained from signature sequences within 225 bp of one another) is not a recommended 

method for analyzing such data. 

 

3.4 USING ALL DATA VIA WEIGHTING 

Because discarding some dependent data could result in serious loss of 

information, we will now concentrate on procedures which use all the data.  Thus, in this 

section, we search for an optimal weighting of the correlated counts. 



27 
 

First, to motivate our method, we consider a simple case where n=3. In this case, 

there are three positions (a, b, and c) such that a < b < c. At each position, there is a 

corresponding expression count (X1 or X2 or X3). The three variables X1, X2, and X3 are 

assumed to follow the Poisson distribution with mean λ.  In this case, if X1, X2 and X3 are 

independent, we can easily find the estimated mean ( ̂) is equal to (X1+X2+X3)/3 and Var 

( ̂) =  ̂ /3. However, we want to find a general weighting which will give a minimum 

variance unbiased estimate of λ, even if the data are correlated. Without loss of generality, 

we can assume that the weights are non-negative and sum to 1. Also, we assume that we 

have a model which accurately estimates correlations from gap distance, so that (b-a), (c-

a), and (c-b) determine          and,    , respectively. So, we have: 

                     ̂ =   X1 +   X2 +   X3 = ∑   
 
      . 

                       Var ( ̂) = Var (∑   
 
     ) 

                        = Var (  X1) + Var (  X2) + Var (  X3) + 2 Cov (  X1,                

                               X2) + 2 Cov (  X1,   X3) +2 Cov (  X2,    X3) 

                         =   
2
 Var (X1) +   

2
 Var (X2) + w3

2
 Var (X3) + 2  ×   ×   

                              Cov (X1, X2)  + 2  ×w3 × Cov (X1, X3) + 2  ×   ×  

                              Cov (X2, X3) 

                                      =   
2
 Var (X1) +   

2
 Var (X2) +   

2
 Var (X3) + 2  ×   ×   

                                  × σx1 × σx2+ 2  ×   ×    × σx1 × σx3 + 2  ×   ×    × 

                              σx2 × σx3 

                                       =   
2
 λ+   

2
 λ + w3

2
 λ+ 2 λ   ×   ×    + 2 λ    × 

                             (1-  -   ) ×     + 2 λ w2 × (1-  - w2) ×     



28 
 

                                      = λ [  
2
 +   

2
 +   

2
 + 2   ×  ×    + 2   × (1-  -   ) ×  

                                 + 2    × (1-  -   ) ×    ] 

 

Now, our purpose is to find the values of w1, w2 and w3 which can minimize the 

Var ( ̂). So, we let L= Var ( ̂) and took the derivative of Var ( ̂) by w1 and w2 

respectively. This yielded: 
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   one obtains the equation pair below. 
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which reduces to:  

[
 (                   

              (      
]   [

  

  
] = [

     

     
] 

 

This equation does lead to the expected estimators in common situations. For 

example, if all correlations are zero (all counts independent of one another), then all 

weights are 1/3. If the distribution is symmetric, so that        , then      , and the 
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weights on the outer boundary points increase from 1/3 each when the points are well 

separated to ½ each when the        =1.0. (This is true if one assumes an 

autoregressive correlation structure, so that        
 . This is not, strictly speaking, the 

correlation structure which is imposed by the linear function shown in Figure 4, however.) 

In general, we need to find matrix equations similar to the above for the general 

case. We assume there are k variables in this case, and find that the weights must satisfy. 

 

A    [

  

 
    

] = [

      

 
        

] 

 

Here, A is a matrix, with entries      = 2(1-     ),       = (1+    -    -    ). 

        We use several special cases to verify our formula about weighting. In all 3 cases, 

n=4, and we must consistently specify the 6 pair-wise distances. For example, in the first 

case, demonstrated in Table 6, the observations on geneid 2000 are taken at 4 points  

{0, 115, 230, 345} which are equidistant from left and right neighbors, while the second 

case, shown in Table 8, has the 4 points at {0, 200, 300, 500}, and the third, shown in 

Table 10, has them at {0, 500, 600, 1100}. The ‘optimal weighting’ (to minimize the 

variance of the estimator (Var ( ̂)) for these situations, assuming the true correlations as a 

function of lgap are as given in Section 3.2, are shown in Tables 6, 9, and 11, respectively. 

 

Table 6       Case 1 

Pair(i,j) Pos(i) Pos(j) Lgap r 
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(1,2) 0 115 115 0.446 

(2,3) 115 230 115 0.446 

(1,3) 0 230 230 0 

(3,4) 230 345 115 0.446 

(2,4) 115 345 230 0 

(1,4) 0 345 345 0 

 

 

Table 7        Weighting Results of Case 1 

Position Weight 

1 0.3106 

2 0.1894 

3 0.1894 

4 0.3106 

 

 

Table 8     Case 2 

Pair(i,j) Pos(i) Pos(j) Lgap r 

(1,2) 0 200 200 0.246 

(2,3) 200 300 100 0.496 

(1,3) 0 300 300 0 
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(3,4) 300 500 200 0.246 

(2,4) 200 500 300 0 

(1,4) 0 500 500 0 

 

 

Table 9      Weighting Results of Case 2 

Position Weight 

1 0.2993 

2 0.2007 

3 0.2007 

4 0.2993 

 

 

Table 10      Case 3 

Pair(i,j) Pos(i) Pos(j) Lgap r 

(1,2) 0 500 500 0 

(2,3) 500 600 100 0.496 

(1,3) 0 600 600 0 

(3,4) 600 1100 500 0 

(2,4) 500 1100 600 0 

(1,4) 0 1100 1100 0 
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Table 11     Weighting Results of Case 3 

Position Weight 

1 0.2959 

2 0.2041 

3 0.2041 

4 0.2959 

 

According to the results for the special cases above when n=4, we could conclude 

that if the two inner positions are very close relative to the outer positions  (i.e. distance 

between the outer two positions is much greater than 225 bp, but inner positions are very 

close), we can approximately weight the data as shown  in Figure 6. 

 

Figure 6       Idealized Weights by Position 

 

While the schematic above illustrates that a reasonable weighting will be put on the count 

values by the Var ( ̂)  minimization calculations, it also illustrates two flaws with this 

method of approach. First, it assumes that correlations can be accurately estimated from 

distance by some function similar to that which we estimated in section 3.2. As noted at 

the end of that section, this becomes problematic when there are adjacent pairs which are  

intermediately correlated with each other. A more serious problem is that finding the 
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optimal weights to minimize Var ( ̂)  does not really solve our major problem. It will 

give a slightly more precise estimator of  ̂ than will the simple average, but in most cases, 

the overall point estimates will be very similar. What is more important than the optimal 

weighting is the equivalent sample size. For example, in the schematic example shown in 

Figure 7,  it is clear that the two middle counts (which are probably identical) should be 

averaged together and counted as one, so that the n=4 in this case would have an effective 

sample size of n=3.  

If one could calculate these effective sample sizes from the optimal weightings, 

then the hypothesis testing problem would be easily solved, since one could adjust the 

naïve tests (using all data as if it were independent) both for mean estimates for the three 

homoeologs in a gene (by choosing the weights which minimize Var ( ̂)), but, more 

importantly, for effective sample size. This latter factor is much more important in 

making correct inferences, as the naïve method has much smaller standard errors than are 

correct. Fortunately, this is very easy, as effective sample size (for the optimally weighted 

procedure) is simply given by  n_eff = ( ̂)/ Var ( ̂).  Table 12 below displays how the 

effective sample sizes for the three estimators (naïve, conservative, and weighted) behave 

for the 61 wheat geneome genes of this study. As expected, the effective sample size of 

the weighted method falls between the other two, although frequently much closer to 

conservative than to naïve, because of the high degree of dependence in this data set. In 

general, the procedure could be quite useful for using all of the data in an automated way. 
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Table 12      List of Effective Sample Sizes by Three Methods for 61 Genes 

geneid deviance naïve Conservative weighted 

1 0.0595 7 1 2.00 
2 0.2801 4 1 1.63 
3 1.1418 5 3 3.25 
4 0.8252 9 5 6.05 
5 1.6368 3 2 2.13 
6 0.0115 2 1 1.17 
7 0.3135 3 1 1.19 
8 0.0145 2 1 1.13 
9 0.7733 5 2 2.15 

10 0.6558 12 4 4.76 
11 3.5811 5 2 2.88 
12 1.88 5 2 2.94 
13 1.4158 2 2 3.08 
14 0.0969 2 1 1.86 
15 0 2 1 1.23 
16 6.0397 3 2 2.40 
17 6.3875 6 3 3.49 
18 2.3729 3 2 2.11 
19 1.1781 4 2 2.60 
20 4.3829 2 2 2.00 
21 0.0765 4 1 1.66 
22 1.3996 3 2 2.56 
23 1.3334 6 2 2.52 
24 2.0056 10 4 5.08 
25 0.1194 2 1 1.66 
26 1.4808 5 2 2.94 
27 1.9557 3 2 2.00 
28 0.1337 3 1 1.51 
29 1.9692 14 4 5.38 
30 1.7472 4 2 2.49 
31 4.393 2 2 2.00 
32 2.7021 3 3 3.00 
33 4.3779 4 2 2.54 
34 0.3046 3 1 1.86 
35 0.1565 2 1 1.25 
36 1.6177 2 2 2.00 
37 0.0115 2 1 1.32 
38 1.2504 2 1 1.40 
39 0.6908 2 1 1.53 
40 0.4812 5 3 3.10 
41 1.0504 3 2 2.31 
42 0.0372 2 1 1.12 
43 0.3987 6 2 2.76 
44 1.6129 8 3 4.44 
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45 1.6802 5 2 2.65 
46 0.0292 2 1 1.19 
47 0.5469 9 3 4.09 
48 0.2974 2 1 1.29 
49 0.1214 2 1 1.56 
50 0.8844 4 2 2.51 
51 0.7573 5 2 2.92 
52 0.3351 6 3 3.44 
53 1.1689 2 1 1.97 
54 1.5758 6 2 2.70 
55 0.0956 2 1 1.18 
56 0.0898 4 1 1.48 
57 2.3151 12 4 5.90 
58 0.2014 2 1 1.48 
59 1.4419 5 2 3.10 
60 0.1262 3 1 1.31 
61 0.8986 2 1 1.26 
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CHAPTER 4 

CONCLUSION 

 In this thesis, we compare several methods to handle correlated Poisson count 

data. First, we attempted a naive method to analyze data, that is, we directly used 

standard Poisson regression (correcting for over-dispersion)  to analyze the data, and to 

test the null hypothesis (of equality of intensity parameter over the A, B, and D 

homoeologs) separately for each gene in the wheat data set. Examining the results, we 

find that there are several problems: (1) over-dispersion; (2) dependence within a gene; (3) 

dependence across homoeologs. The over-dispersion difficulty is easily handled by 

standard methods, but under-dispersion caused by dependent counts within the same 

homoeolog is more challenging.  

   As a first approach, we created a ‘Z-Statistic’ based on the ratio of the sample 

variance to the sample mean in order to test whether the counts are independent.  While 

this method could detect severe dependence, it lacked  power, especially for small values 

of n, the number of signature sites within a gene. So, next, we tried to determine a   

threshold separation distance such that counts within this distance would not both be used. 

We found that using 225 base pairs as the minimum gap-distance would yield counts 

within a homoeolog which were approximately statistically independent of one another, 

so that standard Poisson regression results would hold.  However, when these results 

were applied to the data set, it caused 25 of the 61 genes to be untestable and caused 

serious loss of power in others. 
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   Next, we estimated the correlation (r) between counts of pairs of observations as a 

function of the gap (in bp) between the pairs. We did this indirectly, by comparing the 

standard deviation of the Denorm= 
    

√             
  statistic to 1.00, as discussed in 

Section 3.2. This allows us to use all data points, rather than disallowing those within 225 

bp of one another. In Section 3.4, we show that the set of weights {  } which minimizes  

Var ( ̂) = Var (∑   
 
     ) is completely determined by the correlation structure, and that 

the effective sample size from using the weighted estimator is given by ( ̂)/ Var ( ̂).  

Using the estimators of (r) derived in Section 3.2 as if they are exact in the effective 

sample size estimator, we find, not surprisingly, that the effective sample size under the 

optimal weighting always lies between that of of the naïve estimator (n) and the 

conservative estimator, although in many cases not much different than that given by the 

conservative estimator. This weighted method can be used for any gene data set of the 

type discussed in the thesis, although it will be most useful in cases that are mid-way 

between total independence and high dependence due to overlap of fragments.  
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APPENDIX 

Table A1 – Results of Naïve Poisson Regression Analyses 

GeneID #SSNs Deviance P A-B P A-D P B-D 

1 7 0.0595 0.0258 0.108 0.0002 

2 4 0.2801 0.7181 0.0246 0.0097 

3 5 1.1418 0.4099 0.6118 0.7505 

4 9 0.8252 0.1034 0.9045 0.1312 

5 3 1.6368 <.0001 <.0001 0.1193 

6 2 0.0115 0.6702 0.0101 0.0037 

7 3 0.3135 0.0001 <.0001 0.4551 

8 2 0.0145 0.0677 0.4513 0.2649 

9 5 0.7733 0.0154 <.0001 <.0001 

10 12 0.6558 0.8912 0.0001 0.0002 

11 5 3.5811 <.0001 0.1071 <.0001 

12 5 1.88 0.0009 <.0001 0.4212 

13 2 1.4158 0.7596 0.067 0.0328 

14 2 0.0969 0.6952 0.0136 0.0052 

15 2 0 0.1618 0.0285 0.3744 

16 3 6.0397 0.8273 0.0105 0.0187 

17 6 6.3875 0.2709 0.0015 <.0001 

18 3 2.3729 0.6233 <.0001 <.0001 

19 4 1.1781 <.0001 0.0066 <.0001 

20 2 4.3829 0.3996 <.0001 <.0001 

21 4 0.0765 0.0056 0.065 0.3407 

22 3 1.3996 0.0049 0.0003 0.4113 

23 6 1.3334 <.0001 <.0001 0.0002 

24 10 2.0056 <.0001 0.9334 <.0001 

25 2 0.1194 0.3996 0.4346 0.1112 

26 5 1.4808 <.0001 <.0001 <.0001 

27 3 1.9557 0.0042 <.0001 0.0312 

28 3 0.1337 0.0003 0.0108 0.183 

29 14 1.9692 0.3877 <.0001 <.0001 

30 4 1.7472 0.9207 0.3453 0.2972 

31 2 4.393 0.0653 0.0824 0.0007 

32 3 2.7021 0.3179 0.0556 0.3549 

33 4 4.3779 0.1476 0.0335 0.4942 

34 3 0.3046 0.009 0.1486 <.0001 

35 2 0.1565 0.0221 0.003 0.2917 

36 2 1.6177 0.0479 0.0129 0.5878 
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37 2 0.0115 0.3862 0.3186 0.8946 

38 2 1.2504 0.0002 0.0233 0.1093 

39 2 0.6908 <.0001 <.0001 0.02 

40 5 0.4812 <.0001 <.0001 0.0231 

41 3 1.0504 0.2401 0.2781 0.0265 

42 2 0.0372 0.739 0.0283 0.0138 

43 6 0.3987 0.0032 0.4618 0.0249 

44 8 1.6129 0.0015 0.0134 0.4636 

45 5 1.6802 0.135 0.0007 <.0001 

46 2 0.0292 0.5558 0.6804 0.319 

47 9 0.5469 0.0003 0.0079 0.3258 

48 2 0.2974 0.1239 0.0002 0.0121 

49 2 0.1214 1 0.7682 0.7682 

50 4 0.8844 <.0001 0.1254 0.0012 

51 5 0.7573 1 0.6328 0.6328 

52 6 0.3351 0.3946 0.2617 0.7855 

53 2 1.1689 0.0163 0.2304 0.2061 

54 6 1.5758 <.0001 0.0002 <.0001 

55 2 0.0956 0.109 0.02 0.4164 

56 4 0.0898 <.0001 <.0001 0.0657 

57 12 2.3151 <.0001 0.4326 <.0001 

58 2 0.2014 0.0074 0.0083 <.0001 

59 5 1.4419 0.0174 <.0001 <.0001 

60 3 0.1262 0.3973 0.0535 0.2658 

61 2 0.8986 <.0001 <.0001 1 
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Table A2 - Distribution of Z-statistic (n=2) 

λ n mean sd P1 P5 P10 P25 P50 P75 P90 P95 P99 

0.5 2 -0.9035 1.0268 -2 -2 -2 -2 -0.48033 0 0.3784 0.3784 0.6321 

1 2 -0.5966 0.9847 -2 -2 -2 -2 0 0 0.3784 0.6321 0.8284 

1.5 2 -0.4922 0.9314 -2 -2 -2 -0.7704 -0.1928 0.1297 0.5558 0.6321 0.8284 

2 2 -0.4715 0.9130 -2 -2 -2 -0.7704 -0.1928 0.3166 0.5558 0.6321 0.9907 

2.5 2 -0.4252 0.8605 -2 -2 -2 -0.7704 -0.3182 0.3166 0.5558 0.7494 0.9907 

3 2 -0.4447 0.8628 -2 -2 -2 -0.7704 -0.3182 0.1297 0.6321 0.7494 1.0551 

3.5 2 -0.3881 0.7996 -2 -2 -2 -0.7704 -0.3182 0.1297 0.5558 0.7549 1.1302 

4 2 -0.4139 0.8267 -2 -2 -2 -0.7704 -0.3182 0.1491 0.5558 0.7494 1.0551 

4.5 2 -0.3841 0.8438 -2 -2 -2 -0.8453 -0.3182 0.2494 0.5820 0.7867 1.1811 

5 2 -0.4149 0.7983 -2 -2 -2 -0.8453 -0.3182 0.1297 0.5558 0.7549 1.0551 

5.5 2 -0.4131 0.7988 -2 -2 -2 -0.9018 -0.4095 0.1491 0.5820 0.7549 1.1598 

6 2 -0.4062 0.8251 -2 -2 -2 -0.9018 -0.3182 0.1491 0.5820 0.8284 1.1811 

6.5 2 -0.4302 0.8026 -2 -2 -2 -0.9018 -0.3818 0.1420 0.5326 0.7549 1.1598 

7 2 -0.4160 0.7881 -2 -2 -2 -0.9467 -0.3818 0.1491 0.5326 0.7549 1.1772 

7.5 2 -0.3809 0.7617 -2 -2 -1.0657 -0.9018 -0.3408 0.1297 0.6060 0.8284 1.1598 

8 2 -0.4353 0.7681 -2 -2 -2 -0.9467 -0.3408 0.1420 0.4719 0.6750 0.9907 

8.5 2 -0.3573 0.7684 -2 -2 -1.0867 -0.9018 -0.2940 0.1491 0.6060 0.8028 1.2761 

9 2 -0.4177 0.7776 -2 -2 -1.1382 -0.9837 -0.3818 0.1420 0.5345 0.7464 1.1811 

9.5 2 -0.3739 0.7437 -2 -2 -1.1056 -0.9018 -0.3408 0.1420 0.5326 0.7494 1.2667 

10 2 -0.3970 0.7747 -2 -2 -1.1382 -0.9837 -0.3818 0.1420 0.5345 0.8284 1.2928 

10.5 2 -0.3644 0.7551 -2 -2 -1.1226 -0.9467 -0.3408 0.1420 0.5345 0.8574 1.1772 

11 2 -0.3775 0.7445 -2 -2 -1.1226 -0.7704 -0.3818 0.1420 0.6060 0.8008 1.1623 

11.5 2 -0.4082 0.7532 -2 -2 -1.1382 -1.0150 -0.3818 0.1297 0.5051 0.7464 1.2532 

12 2 -0.3814 0.7313 -2 -2 -1.1382 -0.7914 -0.3435 0.1297 0.5345 0.6833 1.2249 

12.5 2 -0.3509 0.7469 -2 -2 -1.1382 -0.7914 -0.3435 0.1695 0.5855 0.8574 1.2761 

13 2 -0.3585 0.7413 -2 -2 -1.1524 -0.7914 -0.3182 0.1964 0.5558 0.7676 1.0682 

13.5 2 -0.3536 0.7315 -2 -2 -1.1382 -0.7914 -0.3182 0.1695 0.5558 0.7398 1.1463 

14 2 -0.4135 0.7505 -2 -2 -1.1655 -0.8287 -0.3889 0.1297 0.5428 0.7494 1.0561 
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14.5 2 -0.3624 0.7479 -2 -2 -1.1655 -0.8108 -0.3182 0.1455 0.5855 0.8284 1.3130 

15 2 -0.4086 0.7634 -2 -2 -1.1891 -0.8608 -0.3435 0.0933 0.5558 0.7842 1.2249 

15.5 2 -0.4184 0.7558 -2 -2 -1.1891 -0.8753 -0.4095 0.0933 0.5428 0.7494 1.2928 

16 2 -0.3862 0.7415 -2 -2 -1.1777 -0.8287 -0.3435 0.1455 0.5428 0.7676 1.1975 

16.5 2 -0.3372 0.7348 -2 -2 -1.1777 -0.8287 -0.3435 0.2078 0.6544 0.8497 1.2249 

17 2 -0.3464 0.7398 -2 -2 -1.1777 -0.8287 -0.3182 0.1755 0.5855 0.8284 1.1838 

17.5 2 -0.3761 0.7485 -2 -2 -1.1997 -0.8453 -0.3670 0.1455 0.5820 0.8497 1.1846 

18 2 -0.3845 0.7202 -2 -2 -1.1997 -0.8453 -0.3670 0.1174 0.5034 0.7549 1.1846 

18.5 2 -0.3743 0.7671 -2 -2 -1.2096 -0.8608 -0.3670 0.1964 0.5820 0.8112 1.3331 

19 2 -0.3502 0.7386 -2 -2 -1.2096 -0.8453 -0.3182 0.1755 0.6054 0.7842 1.1407 

19.5 2 -0.3775 0.7331 -2 -2 -1.2096 -0.8608 -0.3889 0.1297 0.5611 0.8112 1.1407 

20 2 -0.3818 0.7300 -2 -2 -1.2096 -0.8608 -0.3435 0.1455 0.5149 0.7272 1.1168 
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Table A3 - Distribution of Z-statistic (n=3) 

λ n mean sd P1 P5 P10 P25 P50 P75 P90 P95 P99 

0.5 3 -0.7087 1.2741 -3 -3 -3 -0.8787 0 0 0.5676 0.5676 0.9482 

1 3 -0.3538 0.9917 -3 -3 -1.1556 -0.4773 0 0 0.5676 0.8095 1.2426 

1.5 3 -0.3083 0.9295 -3 -3 -1.1556 -0.8787 0 0.32005 0.5676 0.9482 1.2426 

2 3 -0.2685 0.8620 -3 -1.4201 -1.1556 -0.7205 0 0.32005 0.5676 0.8095 1.2426 

2.5 3 -0.2720 0.8453 -3 -1.3527 -1.2162 -0.7657 -0.1628 0.3200 0.7078 0.8870 1.2183 

3 3 -0.2814 0.8679 -3 -1.4491 -1.2162 -0.7205 -0.2082 0.3200 0.7078 0.8966 1.3520 

3.5 3 -0.2536 0.8245 -3 -1.4201 -1.3130 -0.7205 -0.1946 0.3200 0.7078 0.9482 1.2183 

4 3 -0.3153 0.8416 -3 -1.4491 -1.3527 -0.7657 -0.2559 0.2633 0.7078 0.9482 1.3284 

4.5 3 -0.3028 0.7789 -3 -1.5 -1.3130 -0.8067 -0.2559 0.2237 0.6742 0.8411 1.2183 

5 3 -0.2799 0.8124 -3 -1.5226 -1.3527 -0.7469 -0.2082 0.2986 0.6887 0.9089 1.2426 

5.5 3 -0.3089 0.8036 -3 -1.5631 -1.4201 -0.8067 -0.2892 0.2380 0.6835 0.9482 1.4129 

6 3 -0.2806 0.7812 -3 -1.5226 -1.3130 -0.7718 -0.2715 0.2633 0.6742 0.9674 1.4093 

6.5 3 -0.2810 0.7840 -3 -1.5814 -1.2162 -0.7469 -0.2602 0.2633 0.6649 0.9482 1.2862 

7 3 -0.3221 0.7947 -3 -1.6148 -1.3130 -0.7718 -0.3063 0.1945 0.6887 0.9180 1.4093 

7.5 3 -0.3149 0.7919 -3 -1.5814 -1.2162 -0.8067 -0.2715 0.1945 0.6438 0.9216 1.4264 

8 3 -0.3168 0.7624 -1.7836 -1.6301 -1.2679 -0.7798 -0.3167 0.2131 0.6649 0.9193 1.3520 

8.5 3 -0.2731 0.7863 -3 -1.6301 -1.2162 -0.7798 -0.2559 0.2633 0.7242 0.9646 1.3815 

9 3 -0.2637 0.7449 -1.7576 -1.6148 -1.2162 -0.7718 -0.2559 0.2633 0.6771 0.9631 1.3140 

9.5 3 -0.3194 0.8019 -3 -1.6584 -1.3130 -0.8320 -0.2559 0.2237 0.6565 0.8958 1.3200 

10 3 -0.1973 0.7725 -1.7836 -1.6148 -1.2162 -0.7205 -0.1827 0.3638 0.8010 0.9631 1.5069 

10.5 3 -0.3028 0.7803 -3 -1.6584 -1.2912 -0.8320 -0.2559 0.2300 0.7039 0.8958 1.3977 

11 3 -0.3008 0.7580 -1.8071 -1.6958 -1.3130 -0.7798 -0.2772 0.2165 0.6343 0.8870 1.3583 

11.5 3 -0.2757 0.7784 -3 -1.4756 -1.2798 -0.7469 -0.2728 0.2300 0.6986 0.9900 1.4216 

12 3 -0.2704 0.7658 -1.8352 -1.5 -1.2679 -0.7755 -0.2559 0.2380 0.6617 0.9754 1.5211 

12.5 3 -0.2703 0.7601 -1.8352 -1.4756 -1.2798 -0.7755 -0.2559 0.2553 0.7206 0.9303 1.3310 

13 3 -0.3011 0.7977 -1.8828 -1.7576 -1.3527 -0.8442 -0.2559 0.2633 0.7078 0.9042 1.5009 

13.5 3 -0.2778 0.7890 -1.8661 -1.7072 -1.3234 -0.7882 -0.2635 0.2557 0.7280 1.0183 1.3749 

14 3 -0.2653 0.7893 -1.8828 -1.4756 -1.2679 -0.7798 -0.2831 0.2870 0.7637 1.0511 1.4078 
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14.5 3 -0.2653 0.7744 -1.8718 -1.5435 -1.3234 -0.7882 -0.2175 0.2946 0.7280 0.9162 1.4529 

15 3 -0.2786 0.7797 -1.8828 -1.5226 -1.3432 -0.8127 -0.2356 0.2633 0.7021 0.9557 1.3301 

15.5 3 -0.2840 0.7393 -1.8718 -1.5 -1.2318 -0.7968 -0.2515 0.2337 0.6343 0.8738 1.3694 

16 3 -0.3026 0.7920 -3 -1.5435 -1.2912 -0.7968 -0.2964 0.2568 0.6638 0.9370 1.3623 

16.5 3 -0.3136 0.7662 -1.9175 -1.8071 -1.4201 -0.7755 -0.2515 0.2110 0.6327 0.8313 1.3668 

17 3 -0.3124 0.7670 -1.9309 -1.5814 -1.3007 -0.8244 -0.2635 0.2277 0.6455 0.9036 1.3171 

17.5 3 -0.2907 0.7713 -1.9265 -1.5435 -1.2814 -0.7763 -0.2515 0.2553 0.6796 0.8885 1.3061 

18 3 -0.2666 0.7480 -1.9175 -1.5226 -1.2162 -0.7679 -0.2439 0.2695 0.6835 0.8781 1.2998 

18.5 3 -0.2654 0.7608 -1.9393 -1.5226 -1.2318 -0.7588 -0.2559 0.3021 0.6438 0.9280 1.4093 

19 3 -0.2671 0.7846 -1.9309 -1.5631 -1.3964 -0.8067 -0.2281 0.2957 0.6981 1.0155 1.3472 

19.5 3 -0.2619 0.7644 -1.9514 -1.5435 -1.2393 -0.7679 -0.2344 0.2568 0.7242 0.9719 1.4054 

20 3 -0.2978 0.7804 -1.9553 -1.6148 -1.2748 -0.8351 -0.2715 0.2271 0.6917 0.9686 1.4398 
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Table A4 - Distribution of Z-statistic (n=4) 

λ n mean sd P1 P5 P10 P25 P50 P75 P90 P95 P99 

0.5 4 -0.6278 1.4368 -4 -4 -4 -0.3856 0 0 0.7568 0.7568 1.2643 

1 4 -0.3254 0.9692 -4 -1.5408 -1.2536 -0.3856 -0.2984 0.2058 0.7568 0.7568 1.2643 

1.5 4 -0.2608 0.9037 -4 -1.5408 -1.3250 -0.5971 -0.2984 0.2435 0.7568 0.9437 1.5766 

2 4 -0.2411 0.8536 -4 -1.5829 -1.3250 -0.8043 -0.2984 0.2983 0.7568 1.0016 1.5351 

2.5 4 -0.2386 0.9085 -4 -1.6906 -1.2741 -0.8043 -0.1512 0.2983 0.8633 1.0639 1.5351 

3 4 -0.2171 0.8405 -2.0841 -1.7779 -1.2536 -0.7340 -0.1670 0.4019 0.8313 1.0016 1.5579 

3.5 4 -0.2231 0.8058 -1.9675 -1.5829 -1.2536 -0.7340 -0.1957 0.2983 0.7568 1.0464 1.5766 

4 4 -0.2929 0.8202 -2.0301 -1.6906 -1.3488 -0.8189 -0.2436 0.2681 0.7568 1.0188 1.4950 

4.5 4 -0.2723 0.8441 -2.0841 -1.5829 -1.4143 -0.8750 -0.2314 0.2824 0.7672 1.0765 1.6305 

5 4 -0.2426 0.8064 -2.0841 -1.5246 -1.2741 -0.7756 -0.2058 0.2866 0.7672 1.0574 1.4400 

5.5 4 -0.2225 0.8162 -2.2111 -1.6148 -1.3488 -0.7636 -0.1535 0.3568 0.7960 1.0016 1.4950 

6 4 -0.2576 0.8237 -2.2111 -1.5829 -1.3575 -0.8189 -0.2329 0.3663 0.7568 1.0221 1.4804 

6.5 4 -0.2864 0.8231 -2.2111 -1.6906 -1.3880 -0.8189 -0.2436 0.2883 0.7568 1.0653 1.4796 

7 4 -0.2389 0.8395 -2.2200 -1.6906 -1.3525 -0.8144 -0.1853 0.3778 0.7960 1.0188 1.5034 

7.5 4 -0.2141 0.7984 -2.2452 -1.5246 -1.2536 -0.8001 -0.1895 0.3639 0.7960 1.0838 1.6223 

8 4 -0.2484 0.7853 -2.2111 -1.6542 -1.3108 -0.7583 -0.2283 0.2725 0.7167 1.0574 1.7130 

8.5 4 -0.1980 0.8264 -2.3311 -1.6148 -1.2536 -0.7498 -0.1656 0.3731 0.8655 1.1280 1.5465 

9 4 -0.2880 0.8548 -2.3311 -1.6906 -1.3382 -0.8795 -0.2436 0.2914 0.7925 1.0574 1.7338 

9.5 4 -0.2546 0.8565 -2.3048 -1.7216 -1.3382 -0.8282 -0.2436 0.3434 0.8382 1.1403 1.6751 

10 4 -0.2543 0.8262 -2.3311 -1.7216 -1.3880 -0.7718 -0.2246 0.2983 0.7568 1.0703 1.5410 

10.5 4 -0.2472 0.8317 -2.3495 -1.6398 -1.3382 -0.8353 -0.1987 0.2983 0.8028 1.0952 1.6456 

11 4 -0.2583 0.8382 -2.3555 -1.6906 -1.3250 -0.8162 -0.2170 0.3333 0.7754 1.0601 1.5465 

11.5 4 -0.2064 0.8128 -2.3836 -1.5829 -1.2536 -0.7340 -0.1827 0.3667 0.7914 1.0694 1.5914 

12 4 -0.2437 0.8215 -2.4380 -1.6290 -1.3540 -0.7718 -0.2314 0.2932 0.7568 1.0524 1.6118 

12.5 4 -0.2200 0.8284 -2.0580 -1.6398 -1.2589 -0.7804 -0.2242 0.3395 0.8903 1.1254 1.6902 

13 4 -0.2434 0.8396 -2.3495 -1.6290 -1.3250 -0.8162 -0.2314 0.2983 0.8169 1.1787 1.7022 

13.5 4 -0.2484 0.8131 -2.1314 -1.5829 -1.3095 -0.7995 -0.2398 0.2923 0.8145 1.0757 1.5947 

14 4 -0.2606 0.8285 -2.1634 -1.6290 -1.3760 -0.7935 -0.2487 0.2819 0.8560 1.1233 1.5481 
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14.5 4 -0.2500 0.8187 -2.1634 -1.5829 -1.3095 -0.8189 -0.2490 0.3309 0.8015 1.0728 1.4747 

15 4 -0.2985 0.8378 -2.5140 -1.7095 -1.3760 -0.8189 -0.2658 0.2594 0.7568 1.0204 1.6226 

15.5 4 -0.2146 0.8380 -2.0353 -1.6574 -1.3023 -0.7636 -0.1947 0.3555 0.8737 1.1622 1.5822 

16 4 -0.2468 0.8277 -2.1634 -1.6906 -1.3760 -0.8020 -0.1996 0.3278 0.7849 1.0101 1.5957 

16.5 4 -0.2697 0.8071 -2.0965 -1.6298 -1.3326 -0.8252 -0.2658 0.2766 0.7776 1.0506 1.4373 

17 4 -0.2442 0.8111 -2.0965 -1.5829 -1.3311 -0.7995 -0.2043 0.3412 0.7568 1.0607 1.5381 

17.5 4 -0.3106 0.8180 -2.2688 -1.7046 -1.3880 -0.8628 -0.2940 0.2406 0.7109 0.9546 1.6121 

18 4 -0.2351 0.8461 -2.1314 -1.7294 -1.3382 -0.8043 -0.1866 0.3337 0.8501 1.1392 1.7149 

18.5 4 -0.2788 0.8148 -2.1634 -1.6574 -1.3760 -0.8628 -0.2378 0.2983 0.7690 1.0008 1.5070 

19 4 -0.2489 0.8473 -2.2200 -1.6457 -1.3382 -0.8709 -0.2137 0.3764 0.8063 1.1167 1.6347 

19.5 4 -0.2752 0.8111 -2.2688 -1.6761 -1.3311 -0.8043 -0.2837 0.2947 0.7711 1.0155 1.5782 

20 4 -0.2652 0.8256 -2.1833 -1.7216 -1.3964 -0.7940 -0.2281 0.2953 0.7765 1.0204 1.5823 
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Table A5- Distribution of Z-statistic (n=5) 

λ n mean sd P1 P5 P10 P25 P50 P75 P90 P95 P99 

0.5 5 -0.5499 1.5255 -5 -5 -1.4645 -0.7955 -0.1642 0 0.6607 0.9460 1.5804 

1 5 -0.1882 0.8845 -5 -1.5981 -1.0516 -0.7955 -0.1642 0.3728 0.9460 1.0368 1.6192 

1.5 5 -0.2312 0.8525 -2.0859 -1.5981 -1.2448 -0.7955 -0.1642 0.3728 0.7735 1.0368 1.6192 

2 5 -0.2577 0.8988 -2.2545 -1.8053 -1.4645 -0.7955 -0.2529 0.3023 0.8181 1.0952 1.7134 

2.5 5 -0.2612 0.9050 -2.3136 -1.8053 -1.4645 -0.7955 -0.2079 0.3608 0.7847 1.0993 1.6192 

3 5 -0.1876 0.8320 -2.2749 -1.5294 -1.2448 -0.7463 -0.1642 0.3728 0.8336 1.1237 1.7134 

3.5 5 -0.1965 0.8981 -2.4450 -1.5805 -1.2761 -0.7485 -0.2079 0.4143 0.9460 1.1892 1.8659 

4 5 -0.2208 0.8789 -2.4151 -1.7243 -1.3444 -0.7955 -0.2079 0.3728 0.8990 1.1638 1.8245 

4.5 5 -0.2131 0.9046 -2.4450 -1.7243 -1.4645 -0.7955 -0.2103 0.4347 0.9460 1.2872 1.7195 

5 5 -0.2427 0.8973 -2.1883 -1.8053 -1.4645 -0.7955 -0.2151 0.3914 0.8831 1.1797 1.6756 

5.5 5 -0.2490 0.8725 -2.4151 -1.7350 -1.3544 -0.7955 -0.2332 0.3426 0.8831 1.1575 1.7680 

6 5 -0.2426 0.8958 -2.4450 -1.6563 -1.3819 -0.8588 -0.2158 0.3242 0.8922 1.2475 1.8166 

6.5 5 -0.2614 0.9109 -2.6913 -1.8639 -1.4977 -0.7955 -0.2103 0.3575 0.8181 1.1575 1.7869 

7 5 -0.2394 0.8910 -2.3446 -1.6852 -1.3831 -0.8505 -0.2228 0.3948 0.8703 1.1416 1.8389 

7.5 5 -0.2509 0.8957 -2.3136 -1.8053 -1.4645 -0.8391 -0.2291 0.3690 0.8831 1.1797 1.7165 

8 5 -0.2611 0.8808 -2.3136 -1.7732 -1.3819 -0.7955 -0.2529 0.3177 0.8685 1.1696 1.7372 

8.5 5 -0.2385 0.8739 -2.2387 -1.6563 -1.3701 -0.8588 -0.2291 0.3638 0.9112 1.1907 1.6215 

9 5 -0.1958 0.8955 -2.2973 -1.7732 -1.3588 -0.7955 -0.1865 0.4419 0.9730 1.2341 1.7134 

9.5 5 -0.2506 0.8791 -2.3740 -1.7098 -1.4015 -0.8505 -0.2273 0.4112 0.8584 1.1174 1.5857 

10 5 -0.2475 0.9190 -2.4772 -1.8482 -1.4953 -0.8805 -0.2176 0.3728 0.9207 1.2352 1.7949 

10.5 5 -0.1948 0.8693 -2.3793 -1.7732 -1.3256 -0.7754 -0.1509 0.4251 0.8667 1.1346 1.6052 

11 5 -0.2687 0.9228 -2.4151 -1.8053 -1.5019 -0.8892 -0.2179 0.3541 0.8732 1.2133 1.8516 

11.5 5 -0.2189 0.8893 -2.4409 -1.7187 -1.3918 -0.7810 -0.1862 0.3852 0.9100 1.2006 1.7479 

12 5 -0.2704 0.8980 -2.3446 -1.8053 -1.4953 -0.8750 -0.2463 0.3583 0.9100 1.1732 1.6942 

12.5 5 -0.2321 0.8930 -2.3136 -1.7318 -1.3984 -0.8316 -0.2012 0.3678 0.9120 1.2711 1.6657 

13 5 -0.2554 0.8941 -2.4801 -1.7936 -1.4322 -0.8391 -0.2021 0.3493 0.8880 1.1237 1.6004 

13.5 5 -0.1683 0.8972 -2.3136 -1.6889 -1.3588 -0.7810 -0.1208 0.4128 1.0368 1.3000 1.8159 

14 5 -0.1772 0.8984 -2.4801 -1.7318 -1.4021 -0.7535 -0.1545 0.4605 0.9043 1.2551 1.8016 
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14.5 5 -0.2197 0.9003 -2.3496 -1.7497 -1.3749 -0.8224 -0.1877 0.4083 0.9132 1.2011 1.7574 

15 5 -0.2417 0.8788 -2.4377 -1.7323 -1.3469 -0.7955 -0.2486 0.3329 0.8444 1.2175 1.7860 

15.5 5 -0.1889 0.9012 -2.3136 -1.7853 -1.4136 -0.7955 -0.1492 0.4549 0.9460 1.2617 1.7613 

16 5 -0.2089 0.8946 -2.3915 -1.7455 -1.3304 -0.8242 -0.2191 0.4375 0.9246 1.1865 1.8389 

16.5 5 -0.2867 0.9225 -2.4522 -1.8856 -1.4852 -0.9087 -0.2992 0.3993 0.8893 1.2114 1.7450 

17 5 -0.2171 0.9181 -2.5809 -1.7623 -1.3867 -0.7955 -0.2323 0.4199 0.9460 1.2994 1.7840 

17.5 5 -0.2448 0.9046 -2.4303 -1.6872 -1.3654 -0.8628 -0.2818 0.3710 0.9503 1.2406 1.8078 

18 5 -0.2248 0.9306 -2.3752 -1.7623 -1.4916 -0.8450 -0.2135 0.4688 0.9645 1.2538 1.8501 

18.5 5 -0.2135 0.8942 -2.5459 -1.7462 -1.3325 -0.7955 -0.2079 0.3874 0.9053 1.2799 1.7006 

19 5 -0.1786 0.8889 -2.4291 -1.6822 -1.2996 -0.7413 -0.1522 0.4409 0.9460 1.2439 1.8516 

19.5 5 -0.2266 0.8981 -2.3698 -1.7243 -1.3701 -0.8502 -0.2103 0.4143 0.9310 1.2320 1.7327 

20 5 -0.2181 0.8783 -2.1621 -1.7907 -1.4158 -0.7853 -0.1970 0.3967 0.8726 1.1847 1.7099 
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Table A6 - Distribution of Z-statistic (n=6) 

λ n mean sd P1 P5 P10 P25 P50 P75 P90 P95 P99 

0.5 6 -0.4153 1.4443 -6 -6 -1.2284 -0.5515 -0.3256 0 0.7481 1.1352 1.7614 

1 6 -0.1934 0.9886 -6 -1.5262 -1.2284 -0.7193 -0.2756 0.3653 0.7899 1.2399 1.6976 

1.5 6 -0.2010 0.9705 -2.5114 -1.9876 -1.2284 -0.7193 -0.2756 0.3653 0.9846 1.3073 1.9226 

2 6 -0.1984 0.9508 -2.3743 -1.7574 -1.4144 -0.8872 -0.1887 0.4794 0.9772 1.3073 1.8964 

2.5 6 -0.2450 0.9456 -2.5114 -1.7574 -1.5262 -0.8726 -0.2985 0.4261 0.9498 1.2513 1.8522 

3 6 -0.2000 0.9898 -2.6260 -1.9876 -1.5076 -0.8726 -0.1238 0.4721 1.0132 1.3620 2.0249 

3.5 6 -0.2201 0.9204 -2.3743 -1.6971 -1.4593 -0.8330 -0.2186 0.4243 0.9672 1.3468 1.8359 

4 6 -0.2195 0.9848 -2.8090 -1.8359 -1.4593 -0.8145 -0.1793 0.4261 1.0107 1.3468 1.9789 

4.5 6 -0.2196 0.9383 -2.4891 -1.8359 -1.5076 -0.8177 -0.1685 0.4204 0.9220 1.2802 1.9338 

5 6 -0.2032 0.9508 -2.3564 -1.7204 -1.4001 -0.8425 -0.1887 0.4204 1.0198 1.3073 2.0289 

5.5 6 -0.2403 0.9632 -2.6503 -1.8514 -1.4873 -0.8781 -0.2048 0.4284 0.9793 1.2570 1.8724 

6 6 -0.2225 0.9474 -2.5114 -1.8257 -1.4545 -0.8603 -0.2048 0.4365 0.9793 1.3073 1.7614 

6.5 6 -0.2775 0.9218 -2.4860 -1.8378 -1.4410 -0.9049 -0.2843 0.3729 0.8743 1.1940 1.7614 

7 6 -0.1824 0.9338 -2.5824 -1.7382 -1.3850 -0.7790 -0.1520 0.4589 1.0132 1.3403 1.9152 

7.5 6 -0.1915 0.9473 -2.5114 -1.8248 -1.3850 -0.8096 -0.1435 0.4675 0.9580 1.3714 2.0165 

8 6 -0.2575 0.9602 -2.5809 -1.8652 -1.5262 -0.9049 -0.2423 0.4067 0.9711 1.3073 1.9762 

8.5 6 -0.2115 0.9555 -2.5114 -1.8744 -1.4410 -0.8603 -0.1900 0.4662 1.0007 1.2851 2.1137 

9 6 -0.2753 0.9474 -2.5114 -1.8744 -1.4545 -0.9049 -0.2985 0.3781 0.9359 1.3022 1.8863 

9.5 6 -0.2068 0.9733 -2.5 -1.8805 -1.4574 -0.8641 -0.2033 0.4558 1.0542 1.3890 2.0664 

10 6 -0.2204 0.9373 -2.7418 -1.8164 -1.4324 -0.8177 -0.1793 0.4610 0.9498 1.2713 1.7671 

10.5 6 -0.1430 0.9161 -2.4242 -1.6884 -1.3268 -0.7598 -0.0914 0.4710 1.0235 1.3309 1.7976 

11 6 -0.2320 0.9254 -2.4512 -1.8953 -1.4745 -0.8429 -0.1483 0.4067 0.9168 1.2774 1.7456 

11.5 6 -0.1494 0.9405 -2.3453 -1.7574 -1.3985 -0.7833 -0.1452 0.5092 1.0769 1.3324 1.9556 

12 6 -0.2203 0.9647 -2.4686 -1.8993 -1.4937 -0.8573 -0.2206 0.4578 1.0257 1.3439 2.0206 

12.5 6 -0.2244 0.9596 -2.5944 -1.8212 -1.4873 -0.8603 -0.2109 0.4197 1.0074 1.3453 1.9540 

13 6 -0.2179 0.9335 -2.4512 -1.8396 -1.4363 -0.8498 -0.1764 0.4230 0.9708 1.3422 1.7447 

13.5 6 -0.2502 0.9218 -2.4766 -1.7419 -1.4049 -0.9021 -0.2487 0.4050 0.9095 1.2506 1.8016 

14 6 -0.1629 0.9606 -2.4948 -1.7738 -1.4001 -0.8221 -0.1475 0.5199 1.0688 1.3890 2.0249 
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14.5 6 -0.1711 0.9696 -2.4498 -1.7644 -1.4457 -0.8316 -0.1865 0.5265 1.0594 1.3680 1.9593 

15 6 -0.2629 1.0035 -2.7535 -1.9876 -1.6422 -0.9392 -0.2165 0.4736 0.9498 1.3215 1.8735 

15.5 6 -0.2391 0.9528 -2.6561 -1.9223 -1.5307 -0.8316 -0.2037 0.4162 0.9539 1.2426 1.8556 

16 6 -0.2180 0.9689 -2.4498 -1.8396 -1.4925 -0.8433 -0.1916 0.4430 1.0632 1.3680 1.8907 

16.5 6 -0.2364 0.9777 -2.6561 -1.8765 -1.5379 -0.9138 -0.1793 0.4569 0.9592 1.3073 1.8761 

17 6 -0.1643 0.9944 -2.5629 -1.7574 -1.4790 -0.8433 -0.1495 0.5380 1.1073 1.4574 2.1720 

17.5 6 -0.1749 0.9533 -2.3855 -1.8124 -1.3754 -0.8498 -0.1545 0.5084 1.0741 1.3664 1.9106 

18 6 -0.2310 0.9688 -2.6016 -1.9512 -1.5189 -0.8433 -0.1676 0.4179 0.9804 1.2706 1.8989 

18.5 6 -0.2462 0.9628 -2.5359 -1.8816 -1.4545 -0.9049 -0.2459 0.4332 0.9345 1.3039 1.9447 

19 6 -0.2629 0.9901 -2.7640 -1.9876 -1.5379 -0.9209 -0.2172 0.4009 0.9725 1.3073 1.8261 

19.5 6 -0.2818 0.9479 -2.7763 -1.9876 -1.4812 -0.8637 -0.2201 0.3913 0.8463 1.1413 1.7126 

20 6 -0.2784 0.9876 -2.7358 -1.8884 -1.5468 -0.9489 -0.2659 0.4336 1.0003 1.2792 1.8475 
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Table A7 - Distribution of Z-statistic (n=7) 

λ n mean sd P1 P5 P10 P25 P50 P75 P90 P95 P99 

0.5 7 -0.3515 1.5074 -7 -1.6812 -1.1137 -0.6748 -0.3119 0.1415 0.9535 1.3244 2.1260 

1 7 -0.1843 0.9343 -2.5274 -1.6812 -1.3206 -0.6748 -0.0993 0.4625 1.0319 1.3244 1.8183 

1.5 7 -0.2477 0.9898 -2.7267 -1.6812 -1.4543 -0.8001 -0.1506 0.4625 0.9535 1.3244 1.8312 

2 7 -0.2084 1.0040 -2.7267 -2.0188 -1.4606 -0.8001 -0.1506 0.4625 1.0405 1.3773 2.0300 

2.5 7 -0.2251 0.9941 -2.5274 -2.0188 -1.5121 -0.9566 -0.2031 0.4905 0.9865 1.3868 2.2125 

3 7 -0.1801 0.9680 -2.5274 -1.8929 -1.5121 -0.7645 -0.1935 0.5057 1.0829 1.3589 1.8142 

3.5 7 -0.1273 0.9913 -2.5274 -1.8681 -1.4331 -0.7645 -0.1444 0.5220 1.1453 1.4763 2.1370 

4 7 -0.2092 0.9685 -2.4833 -1.9181 -1.5222 -0.8614 -0.1796 0.5038 1.0424 1.3244 1.9077 

4.5 7 -0.2488 0.9868 -2.6160 -1.9269 -1.5569 -0.9099 -0.2031 0.4233 0.9688 1.2808 2.0195 

5 7 -0.1964 0.9856 -2.4027 -1.8605 -1.4623 -0.8392 -0.2031 0.4775 1.0482 1.4530 2.0897 

5.5 7 -0.2772 0.9832 -2.7701 -1.8605 -1.5569 -0.9099 -0.3041 0.4293 0.9656 1.2883 1.8662 

6 7 -0.2359 1.0154 -2.7589 -1.9829 -1.5765 -0.9226 -0.2031 0.4856 1.0118 1.3627 2.0655 

6.5 7 -0.2297 0.9957 -2.3476 -1.8430 -1.5946 -0.9266 -0.1913 0.4407 1.0319 1.4236 2.1073 

7 7 -0.1888 0.9796 -2.4027 -1.8430 -1.4382 -0.8825 -0.1560 0.4551 1.0228 1.4218 2.0715 

7.5 7 -0.2676 1.0168 -2.6965 -1.9697 -1.6317 -1.0107 -0.2256 0.4317 1.0108 1.3521 2.0353 

8 7 -0.2540 1.0192 -2.6572 -1.9697 -1.5870 -0.9566 -0.2298 0.4456 1.0755 1.3906 1.9452 

8.5 7 -0.2355 1.0307 -2.7701 -1.9697 -1.5392 -0.9185 -0.2479 0.4153 1.1353 1.4236 2.0873 

9 7 -0.2051 1.0038 -2.6253 -1.9217 -1.5109 -0.8852 -0.1820 0.5137 1.0829 1.4098 2.0279 

9.5 7 -0.2962 1.0264 -2.9444 -2.0907 -1.5974 -0.9363 -0.3164 0.3753 0.9999 1.3580 2.0966 

10 7 -0.2599 0.9966 -2.7701 -1.9181 -1.5529 -0.9363 -0.2247 0.4745 0.9535 1.2408 1.9539 

10.5 7 -0.1879 1.0334 -2.8662 -1.9221 -1.4360 -0.8392 -0.1648 0.5045 1.0999 1.4335 1.9452 

11 7 -0.2093 0.9946 -2.4630 -1.8237 -1.4722 -0.9335 -0.1946 0.4918 1.0569 1.3399 2.0939 

11.5 7 -0.1767 1.0298 -2.6508 -1.8853 -1.5131 -0.8854 -0.1274 0.5562 1.1058 1.4946 1.9999 

12 7 -0.2337 0.9856 -2.7188 -1.9313 -1.5131 -0.8409 -0.1684 0.4030 0.9220 1.3324 1.9655 

12.5 7 -0.1951 1.0054 -2.4630 -1.8797 -1.5131 -0.9156 -0.1946 0.5009 1.1167 1.4599 1.9804 

13 7 -0.2511 1.0039 -2.6926 -1.9697 -1.5541 -0.9208 -0.2376 0.4476 0.9887 1.3618 2.1301 

13.5 7 -0.2267 1.0040 -2.8012 -1.8987 -1.4833 -0.8971 -0.2460 0.5029 1.0829 1.3607 1.9143 

14 7 -0.2136 1.0279 -2.7240 -1.9524 -1.6388 -0.9349 -0.1895 0.5407 1.0420 1.4175 2.0622 
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14.5 7 -0.2211 1.0184 -2.7545 -1.9995 -1.5450 -0.8971 -0.2011 0.4667 1.0342 1.3305 2.1804 

15 7 -0.1894 1.0152 -2.5442 -1.9138 -1.5345 -0.9139 -0.1576 0.5468 1.0698 1.3321 2.2447 

15.5 7 -0.1908 1.0210 -2.6088 -1.9697 -1.5682 -0.8574 -0.1262 0.5177 1.0702 1.4443 2.0418 

16 7 -0.2323 0.9996 -2.5947 -1.8840 -1.4838 -0.9024 -0.2404 0.4225 1.0860 1.4426 2.1829 

16.5 7 -0.2336 0.9972 -2.4585 -1.9055 -1.4970 -0.8873 -0.2277 0.3730 1.0493 1.5066 2.1231 

17 7 -0.2582 0.9905 -2.7559 -1.9877 -1.5322 -0.8737 -0.2259 0.3893 0.9380 1.3244 2.0914 

17.5 7 -0.2536 0.9958 -2.5985 -1.9555 -1.5860 -0.9471 -0.2130 0.4424 0.9840 1.2670 1.9802 

18 7 -0.1875 1.0018 -2.5874 -1.8911 -1.5127 -0.8155 -0.1495 0.4658 1.0562 1.4084 2.1969 

18.5 7 -0.1703 1.0055 -2.6506 -1.8789 -1.4477 -0.8737 -0.1495 0.5714 1.0939 1.3780 1.9503 

19 7 -0.2372 1.0276 -2.7737 -1.9292 -1.5802 -0.9471 -0.1861 0.4984 1.0618 1.3144 1.9154 

19.5 7 -0.2172 0.9825 -2.801 -1.8773 -1.5140 -0.8591 -0.1705 0.4234 1.0088 1.3841 2.0669 

20 7 -0.2328 1.0302 -2.8539 -1.9298 -1.5429 -0.9091 -0.2017 0.4302 1.0450 1.4554 2.2335 

 

 

 


