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            Recent disease outbreaks linked to fresh produce attracted consumer’s attention regarding 

interventions that minimize microbiological risk at home. This study compared the efficacy of 

various washing technologies in reducing pathogens on lettuce, spinach and green onions. 

Trimmed samples were inoculated with Salmonella, Escherichia coli O157:H7 and Listeria 

monocytogenes and then subjected to the following procedures: (1) rinse for 15 seconds under 

running tap water, (2) immersion for 2 minutes in household chlorine bleach, Veggie Wash®, 

ozonated water and electrolyzed oxidizing (EO) water. Veggie Wash® provided the lowest 

antimicrobial effect, resulting in < 1 log reduction of the tested pathogens. Ozonated water 

produced significantly greater pathogen reduction on green onions, but was not able to further 

reduce pathogens on leafy vegetables as compared to water rinse. Chlorine based technologies 

(bleach and EO water) produced equal or greater pathogen reduction than other treatments, but 

exhibited minimal antimicrobial effect when tested on spinach.  
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CHAPTER 1 

INTRODUCTION 

 

            Foodborne illnesses associated with the consumption of fresh uncooked produce are on 

the rise. Fresh vegetables, primarily those of leafy nature, have been implicated as primary 

vectors for the transmission of foodborne disease worldwide (59). Lettuce and spinach are of 

primary concerns since they have been linked to several recent multi-state outbreaks (4, 41, 46, 

60, 66, 74, 76, 88, 134-135, 145, 149, 162, 188, 194), including the large spinach-E.coli 

O157:H7 outbreak in 2006 that led to at least 276 consumer illnesses and 3 deaths (41). The 

consumption of green onions has been associated with lower microbiological risks (121), but an 

increase has been reported, as evidenced by the recent Hepatitis A outbreak in USA associated 

with imported Mexico green onions (39). The leading pathogens of primary concern are 

norovirus, Salmonella, Escherichia coli and Listeria monocytogenes (72). 

            In light of the increasing disease outbreaks linked to vegetables, consumers need more 

practical information on interventions to minimize microbial hazard caused by pathogenic 

bacteria. Various food grade sanitizers including: sodium hypochlorite (19, 22, 61, 92), chlorine 

dioxide (79, 99, 111, 116, 118), hydrogen peroxide (115), and organic acids (6, 22) have been 

investigated for their antimicrobial potential. Although these antimicrobial methods are capable 

of reducing or inactivating pathogens on the surfaces of fruits and vegetables, their use at home 

is limited by the potential adverse effect on sensory and quality characteristics of foods and 

hazards associated with handling of these chemicals. 
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            Currently, water rinse is the most commonly used method for washing fresh produce at 

home, but immersing or rinsing with tap water has limited efficacy, typically reducing pathogens 

on lettuce by less than 1.5 log CFU/g (95, 109, 159, 182). In addition, the resulted water rinse 

solution was not able to destroy pathogen and therefore become a source of cross-contamination. 

Commercial produce wash products, such as Veggie Wash®, claim to be able to remove wax, dirt, 

soil, and pesticide residues, and claim to have greater antimicrobial effect than water. However, 

Kilonzo-Nthenge et al. (95) demonstrated that there is no significant difference between 

reduction of Listeria innocua on lettuce after 15 s rinse in running tap water (1.4 log CFU/g) and 

2 min immersion in Veggie Wash® followed by 15 s water rinse (1.7 log CFU/log).  

            Novel washing technologies, such as aqueous ozone, may be a promising alternative to 

chemical sanitizers or water wash, and are now commercially available at household level. 

Ozonated water was capable of killing a broad spectrum of microorganisms including many that 

are resistant to chlorine (65), and spontaneously decomposes to nontoxic product after washing 

treatments. Rodgers et al. reported that ozone at 3 ppm was more effective than chlorine dioxide 

(3 to 5 ppm), chlorinated trisodium phosphate (100 to 200 ppm), and peroxyacetic acid (80 ppm) 

at reducing populations of E. coli O157:H7 and L. monocytogenes (147). 

            More recently, a consumer-size generator for electrolyzed oxidizing (EO) water was 

introduced as a potent antimicrobial technology for food preparation at home. EO water is 

produced by electrolysis of a 0.1% sodium chloride solution and has characteristics of low pH 

(approximately 2.5), high oxidation-reduction potential (> 1,100 mV), and chlorine-based 

reactants (10 to 100 ppm) (92). The effect of EO water in reducing pathogenic microorganisms 

on fresh produce has been investigated. Izumi (81) reported that mesophilic aerobic 

microorganisms on fresh-cut produce (carrots, bell peppers, spinach, Japanese radish, and 
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potatoes) were reduced by 0.6 to 2.6 log CFU/g after treatment with EO water containing 20 ppm 

available chlorine. When EO water was compared with acidified chlorinated water for treating 

lettuce (139), no significant difference in pathogen reduction (2.41 and 2.65 log CFU per leaf) 

was found under equivalent pH (2.5), ORP (1,130 mV) and residual chlorine concentration (45 

ppm). In a separate study, EO water (pH 2.6, 30 ppm of available chlorine) showed a 

significantly higher bactericidal effect than did ozonated water (5 ppm ozone, pH 6.6), but was 

as effective as sodium hypochlorite solution (pH 9.3, 150 ppm of available chlorine) (105). 

            Most of the previous studies evaluating pathogen reduction by EO water were carried out 

in laboratory or industry scenarios. This study was conducted to evaluate application of washing 

technologies under simulated home washing conditions. The efficacy of water rinse, household 

chlorine bleach, Veggie Wash, ozonated water and electrolyzed oxidizing water were determined 

and compared for their ability to reduce populations of Salmonella, E. coli O157:H7 and L. 

monocytogenes inoculated on the surfaces of lettuce, spinach and green onions. Since the quality 

of incoming water may affect the efficacy of treatment solution, the performance of 

aforementioned washing technologies with different incoming water quality (pH and degree of 

hardness) was also identified prior to the comparative efficacy study.  
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CHAPTER 2 

LITERATURE REVIEW 

 

Consumption and Production of Fresh Produce 

            It is widely recognized that consumption of fresh produce is critical to a healthy diet.  

Fresh produce vary considerably in the nutritional content, but generally are good sources of 

vitamins, dietary minerals, fiber, as well as a great variety of other beneficial phytochemicals 

(177). Fruits and vegetables also add variety and pleasure to the diet mainly because of their 

pleasing colors, aromas, textures, and flavors.  

            Driven by these health benefits, consumer demand for fresh produce with improved 

quality and safety, increased variety and year-around availability has been on the rise (90). For 

example, human fruit and vegetable consumption increased by an average of 4.5% per annum 

between 1990 and 2004 worldwide (56). This increasing consumption provided the fresh 

produce industry with tremendous business opportunities. In the United Sates, the estimated total 

sales of fresh produce (fresh-cut and bulk) via retail and foodservice channels surpassed $81 

billion in 2002, up from $70.8 billion in 1997 and $34.6 billion in 1987 (44, 90).  

            Within the total fresh produce market, packaged and fresh-cut produce has become one of 

the fastest-growing segments over the past ten years (59). This burst is mainly due to the 

growing demand for convenience in food preparation and consumption. Compared to $3.3 billion 

in sales in 1994, fresh-cut fruit and vegetable sales have grown to approximately $12 billion per 

year in the North American foodservice and retail market and account for nearly 15% of all 
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produce sales within the past decade (34). Fresh-cut produce sales are even higher in Europe, and 

beginning to develop in Latin America and Asia as well (44). Therefore, it is anticipated that the 

consumption and thus the production of fresh produce will continue to increase in the future. 

 

Disease Outbreaks Linked to Fresh Produce 

Fresh Produce of Concern 

            As the fresh produce market continues to grow, there are new challenges that require 

attention, namely the microbiological hazard caused by foodborne pathogenic microorganisms. 

Fresh vegetables, primarily those of a leafy nature, have been linked to several large outbreaks 

(21, 59), and the characteristics of which have been described extensively by researchers. 

Herman et al. (72) analyzed data from the CDC foodborne disease outbreak surveillance system 

reported between 1973 and 2006. Of the 10,421 foodborne disease outbreaks reported, 4.8% 

outbreaks, 6.5% illness, and 4.0% deaths were associated with leafy greens. Higher incidence 

was documented when number of leafy greens-associated outbreaks was compared with the total 

fresh produce outbreaks during the period 1998–2005, accounting for 70% of the latter (59). 

            In consideration of large volumes of cultivation and production, complex and diverse 

post-harvest handling steps, and the economic impact to fresh produce industry, lettuce is 

probably the most important leafy vegetables of concern. Sivapalasingam et al. (2004) detailed 

that among 190 produce-associated outbreaks reported by 32 states in the U.S. from 1973 to 

1997, 25 of which were associated with lettuce causing 2,078 reported illnesses, 181 

hospitalizations, and six deaths (160). Lettuce (shredded, salad, iceberg, romaine) has been 

implicated in outbreaks of E. coli O157:H7 (4), Salmonella (160), Listeria monocytogenes (75), 

Campylobacter jejuni (37), Shigella sonnei (18, 47), Norovirus (160), Hepatitis A (36, 117, 149) 
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and Cyclospora (73). Spinach has drawn worldwide attention to its potential microbiological 

hazard through several severe outbreaks, such as the large E. coli O157:H7 outbreak in 2006 that 

led to at least 276 consumer illnesses and 3 deaths (41).             

            Green onions has been associated with lower risks of foodborne infectious diseases (78) 

and their production is relatively small compared to that of leafy vegetables (59), nevertheless, 

they are widely used as minor components of a meal and an increase has been observed in the 

frequency of outbreaks linked to this commodity. During the past decade, the consumption of 

green onions has been associated with Hepatitis A virus (39, 178), E. coli O157:H7 (27), 

Shigella flexneri 6A (169). 

            Microbiological safety issues associated with other vegetables and all varieties of fruits 

have also been recognized, a comprehensive review of which is yet beyond the scope of this 

review.  Further information is directed to the following sources: cabbage (154, 183), watercress 

(119), parsley (130), tomatoes (40, 68), cantaloupe (38, 128), berries (59), sprouted seeds (129), 

carrot (82, 87), celery (58, 186). 

 

Foodborne Microorganisms 

            Foodborne disease outbreaks related to fresh produce include cases of bacteria, viral 

pathogens, protozoan parasites and a variety of other foodborne pathogens (53). Among the 

greatest concerns of the bacterial pathogens are E.coli O157:H7, Salmonella and Listeria 

monocytogenes (122). In this section, the characteristics of these three bacteria were described 

and their incidence in fresh produce related outbreaks of foodborne disease was reviewed in 

greater details. 
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1. Salmonella spp. 

            The Salmonella genus consists of a large and diverse group of facultatively anaerobic 

gram-negative rod-shaped bacteria. Through the development of taxonomic systems based on 

biochemical traits and genomic relatedness, the following nomenclature is now widely accepted 

by academia: the genus Salmonella consists of two species (S. enterica and S. bongori), each of 

which includes several serovars (53). Optimum growth occurs at neutral pH and temperatures 

between 35 and 37oC, while a condition of pH < 3.8 and > 9.0, temperature < 7oC, or water 

activity < 0.94 results in complete inhibition of growth (84). A population of < 10 cells is 

sufficient to cause disease symptoms, primarily gastroenteritis followed by abdominal cramps 

and diarrhea (52).  

            Although natural reservoirs of Salmonella is the intestinal tract of birds, reptiles, 

amphibians and mammals, it has been identified as the leading cause of bacterial infection 

associated with fresh produce-related outbreaks, accounting for 48% of these bacterial-related 

infectious cases from 1973 to 1997 in the USA (160). Cantaloupe and tomatoes are among the 

most commonly identified produce commodities causing human Salmonellosis (20). Three high-

profile outbreaks of Salmonella serotype Poona during 2000 – 2002 was traced back to 

cantaloupe imported from Mexico, resulting in 58 cases of infection (38). More recently, two 

major tomato-related Salmonella outbreaks occurred in the USA, accounting for 23.2% of 

reported Salmonella cases in 2006 (42). 

2. Escherichia coli O157:H7 

            E. coli O157:H7, a gram-negative, rod-shaped, facultative anaerobic bacterium, is the 

most predominant serotype of the Enterohemorrhagic E. coli that causes several life-threatening 
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infections such as hemorrhagic colitis, hemolytic uremic syndrome, and thrombocytopenic 

purpura at low dose (53). Leafy vegetables, particularly lettuce and spinach have been 

extensively reported in several large outbreaks of E. coli O157:H7 infection in the United States 

(54). Due to its presence in animal manures and slurries, E. coli O157:H7 may contaminate fresh 

produce via livestock’s entry into field, or improperly composted manure applied as fertilizer. 

For example, E. coli O157:H7-related infectious cases in Montana in 1995 were identified on 

lettuce that was grown downhill from a cattle pasture (184). 

3. Listeria monocytogenes 

            Listeria monocytogenes, a gram-positive, rod-shaped bacterium, belongs to one of six 

species in the genus Listeria and consists of 13 serotypes of which more than 90% of human 

isolates belong to three serotypes: 1/2a, 1/2b, and 4b (53). L. monocytogenes is a typical 

pathogen of concern because it is widely distributed and can persist under diverse stress 

conditions including low pH, relatively high sodium chloride (NaCl) concentrations and low 

temperature (2 to 4oC) (83). Success of survival of the pathogen in food and food-related 

environments presents a major public health concern. Listeriosis is a rare but potentially lethal 

infection in immunocompromised individuals due to the severity of the disease (abortion, 

meningitis, septiemia) and a high case fatality rate (approximately 20 – 30%) (53).        

            Although food commodities from which L. monocytogenes has been isolated are 

predominantly raw and ready-to-eat meat products (70), it has also been identified in outbreaks 

of fresh produce items such as lettuce (12, 23), cabbage (71, 143), bean sprouts (12). Due to its 

nature of being a soil bacterium, L. monocytogenes was more prevalent on sprouted seeds or 

other root vegetables than high-grow leafy vegetables (45). An investigation in Malaysia in 1994 

revealed that 85% of bean sprouts and 22% of leafy vegetable samples were positive for L. 
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monocytogenes. Similarly, Thunberg et al. (2002) tested a range of fresh produce and only 

isolated L. monocytogenes from potatoes (50%) and field cress (18%) purchased at farmers’ 

markets (171). 

 

Ecology of Pathogens in Fresh Produce 

            To prevent microbial contamination of fresh produce, we must first be able to answer 

some fundamental questions: how do human pathogens make their way into fresh produce? What 

environmental conditions make their survival and multiplication possible? In this section, these 

questions were addressed and a comprehensive picture of bacterial contamination of produce was 

offered.  

 

Sources of Contamination 

            Contamination of raw fruits and vegetables with human pathogens can occur during 

production, harvest, processing, transport, retail and foodservice, and in the home kitchen (Table 

1). When in field, animal feces have shown to be the primary source of contamination (127, 184). 

In postharvest operations, microbiological risks rise up from concern came from considerable 

contacts between fresh produce and workers, poorly sanitized tools and equipment surfaces and 

contaminated water for washing or cooling. After introduction, pathogens are able to infiltrate 

and well established within produce long before sanitizers are applied. 

            Poor hygiene practice of plant workers has been proposed to be a significant source of 

contamination (48). One investigation showed that an outbreak of Hepatitis A virus was traced 

back to an infected food handler shredding lettuce by hand (117). Poorly cleaned and maintained 

equipment may also serve as reservoirs of contamination and provide ideal site for biofilm 
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formation which protects them from being removed or inactivated (163). Water is used widely 

for harvesting (maintaining hydration), cleaning (produce, equipment and surfaces), transport, 

cooling and packing. If wash water was contaminated via workers or facility surfaces, it may 

represent a problem of cross-contamination. Although chlorine and other wash water 

disinfectants are used by industry to prevent this problem, bacterial pathogens such as L. 

monocytogenes, have been detected in unchlorinated wash water (143). 

 

 

TABLE 1. Routes of contamination on fresh produce a  

Sources of Contamination Reference 

Pre-Harvest 
Soil 
Irrigation water 
Improperly composted manure used as fertilizer 
Wild and domestic animals 

(21, 49, 91, 127, 155, 164, 
166) 

Harvest & Processing  
Harvesting equipment 
transport bins, conveyor belts, crates  
Sorting, packing, cutting and further-processing equipment 
Wash and rinse water 
Cooling Medium (ice or water) 
Field and factory workers 

(29, 49, 59, 64, 83, 85-86, 
122, 165) 

Storage and Distribution 
Transport vehicles 
Improper storage environments 
Improper display conditions 
Improper consumer handling  
Cross contamination by other foods in storage, preparation and 
display areas 

(2, 85, 137) 

a Adapted from (174) 
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Survival and Proliferation of Pathogens on Produce 

            Prior to harvest, bacteria must be able to cope with a range of environmental stresses that 

are subject to intense fluctuations, including ultraviolet radiation, desiccation, osmotic stress and 

temperature (13, 54). In response, bacteria localize and aggregate at sites that provide more 

nutrient availability to support bacterial growth, such as the base of trichromes, substomatal 

cavities and cracks in veins and cuticles (125-126). But generally, pathogens will not proliferate 

on the uninjured outer surface of fresh fruits or vegetables, mainly due to lack of nutrients and 

water which are protected and retained by the plant's natural barriers (cell walls and wax layers).  

            Postharvest operations differ from in-farm environments in that these postharvest 

activities would cause high extent of mechanical injuries to produce tissues via cutting, 

shredding, dicing or peeling. Bacteria seem to attach preferentially at cut surfaces (114, 156, 168) 

or in punctures or cracks (33) that release nutrients essential for their proliferation, although 

attachment to intact surfaces (pores, indentations or other natural irregularities) has also been 

reported (156). As cells start to grow, newly formed cells produce microcolonies and biofilms 

embedded in a polysaccharide polymer matrix that protect cells from bactericidal agents and 

retain water and nutrients for microbial reproduction (13, 35, 43, 57, 105, 127). Once the bacteria 

have colonized these niches, they are very difficult to kill or remove by washing treatments (43, 

152). 

            Internalization of bacterial cells into the produce tissues during postharvest has been 

recently recognized (16-17, 31). When the water used for processing is colder than the 

commodity, the resulting negative temperature differential causes the contraction of the tissue 

which can draw human pathogens though pores, channels, or damaged/cut surface (151). Besides 

the improper temperature maintenance, vacuum cooling has also been found to provide a 
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significant opportunity for pathogen internalization. A mechanism for this phenomenon was 

proposed, suggesting that the strong pressures of vacuum cooling possibly disturb the structure 

of the lettuce tissue, such as the stomata, and thus create openings for pathogen internalization 

(113).  

            Subsequent growth of human pathogens during storage and distribution depends on 

several factors, such as temperature, relative humidity, nutrient availability and competition with 

indigenous microflora (54). Among the most significant concerns is temperature abuse since 

pathogens with low infectious dose may amplify under refrigeration conditions to a population 

that was sufficient to trigger infection (23). Growth of L. monocytogenes at 3–5°C in refrigerated 

fresh-cut packaged leafy vegetables has been demonstrated (131).   

 

Home Washing Methods for Fresh Produce 

            Although fresh produce industry implemented intensive sanitizing interventions to 

minimize levels of contamination, recent disease outbreaks emphasized the importance of 

consumer handling of fresh produce at home (63). In this section, several conventional and novel 

washing technologies for washing fresh produce are discussed, with respect to their mode of 

action, efficacy against human pathogens, advantages and limitations. 

 

Consumer Attitudes toward Washing Produce 

            Studies of consumer behavior indicate they may not wash produce adequately because 

they believe produce is pre-washed thoroughly or because the rind or skin is not consumed (112). 

Similarly, consumers do not properly clean their hands, food preparation surfaces and knives 

before and during food preparation (11, 30). Some population groups are more likely to practice 
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unsafe produce handling practices, namely people over 45 years, women, non-college graduates, 

lower-income households (10, 112, 190).  

            Consumers use different washing procedure to reduce the microbiological risk associated 

with their foods, such as peeling, rubbing with hands, scrubbing with a brush, and washing under 

running tap water (112). Among the most commonly used methods is rinsing under running 

water, however the efficacy of which has shown to be limited. Kilonzo-Nthenge et al. (95) 

demonstrated that a 1.4 log CFU/g Listeria innocua reduction on lettuce was obtained by running 

tap water for 15 s. Some consumers (approximately 20 percent) immerse produce in water (112), 

nevertheless, it resulted in a lower microbial reduction than that achieved by running tap water 

rinse, typically less than 1 log CFU/g (109, 159, 182). 

 

Household Chlorine Bleach 

            Sodium hypochlorite (NaClO), the active compound in household bleach, is the most 

common chlorine based derivatives for washing fresh produce, with free chlorine concentration 

of 50 – 200 ppm frequently being used in industry (43). When hypochlorites are in the aqueous 

form, it is the resulting hypochlorous acid (HOCl) that has the most biocidal activity (133) as 

shown below. HClO may further dissociate to produce hydrogen ion (H+) and hypochlorite ion 

(ClO-) when pH increases above 8 (26). 

NaClO + H2O → HOCl + NaOH 

HOCl → H+ + ClO- 

            Several mechanisms of how HOCl destroys microorganisms have been elucidated. 

Hypochlorous acid is generally considered to be a highly destructive, nonselective oxidant which 

reacts with a variety of subcellular compounds and inhibits essential cytoplasmic metabolic 
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processes (8-9, 123). Inhibition of glucose oxidation has been proposed to be a major factor, as 

evidenced by the observation that HClO oxidizes the sulfhydryl groups of certain vital enzymes 

important in carbohydrate metabolism (101). Other mechanisms of bactericidal action of HClO 

include: post-translational modification of protein (191), oxidative damage to amino acids (80), 

depletion of adenine nucleotides (15), inhibition of DNA replication (148), and chromosomal 

aberration (120). 

            The antimicrobial activity of hypochlorite depends on the amount of hypochlorous acid 

formed. This, in turn, depends on the pH of the water, the amount of organic material in the 

water and, to some degree, the temperature of the water (26). The optimum pH of hypochlorite 

solution used for disinfection was observed at 6.0 – 7.5 (133). With proper pH control, 

hypochlorite solution is effective in preventing cross-contamination through wash solutions 

during processing and to retard spoilage.  

            However, extensive studies showed that chlorine has limited efficacy for killing or 

removing pathogens that were within the produce, resulting in only 1- to 2-log reduction in 

bacterial population (5, 19, 28, 50, 61-62, 109, 153, 187, 195-196) depending on treatment 

conditions. Organic material in chlorine solution has the most significant detrimental effect on 

the capacity of chlorine in reducing pathogens. It was found that damaged tissues of shredded 

produce may release juices that contain organic matter. Beuchat et al. (22) reported the highest 

reductions in free chlorine concentration in solutions used to treat shredded lettuce as compared 

to treatment of unshredded lettuce pieces. Rodgers et al. (147) confirmed this phenomenon by 

the comparison of whole and shredded produce: L .monocytogenes and E. coli O157:H7 were not 

detectable on whole apples and lettuce after treatment with 100 ppm chlorine for 5 min, while 1 

log CFU/g of these pathogens remained on sliced apples and shredded lettuce.  
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            The efficacy of chlorine treatments was also affected by the type of produce, namely the 

characteristics of the produce surface (63). Micro-niches (cracks, crevices and cut tissues) that 

pathogens tend to hide and colonize, as well as hydrophobic nature of the waxy cuticle of much 

fresh produce prevent contact of chlorine solutions with microorganisms on the produce, which 

made subsequent proliferation of pathogens during storage possible. 

     

Electrolyzed Oxidizing Water 

            Electrolyzed oxidizing (EO) water is a special case of chlorination (81) in that the 

antimicrobially active compound is generated directly in the water. Application of EO water in 

food sanitation is a relatively new concept (158) but has received attention from both consumers 

and industry. Major advantages of using EO Water over sodium hypochlorite are: (1) it has 

demonstrated a greater effectiveness than most commonly used washing technologies against 

food borne pathogens on a variety of food commodities (80), (2) there is no need for handling or 

storage of potentially dangerous sodium hypochlorite in liquid or solid form since it is produced 

by simple electrolysis using pure water and table salt with no added chemicals (97), (3) it leaves 

less residual chlorine than does hypochlorite solution and thus may potentially be more 

environment- and operator-friendly (7).  

            Electrolyzed oxidizing water, along with electrolyzed reducing (ER) water, is generated 

by electrochemical disassociation of diluted salt solution (0.1% of NaCl) between anode and 

cathode electrodes separated by a membrane within an electrolytic chamber (Figure 1). Solution 

collected from the anode side are EO water, which posses at least three antimicrobial properties, 

including low pH (approximately 2.5), high oxidation-reduction potential (ORP) (> 1,100 mV), 

and chlorine-based reactants (10 to 100 ppm) (139). 
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FIGURE 1. Principle of acidic electrolyzed water: process flow of apparatus and chemical 

reaction during electrolysis (adapted from Huang 2008) (80) 

 

 

            Since EO water has the same active antimicrobial compound as that of chlorine bleach, 

namely hypochlorous acid (HClO), its superior in efficacy over hypochlorite is most likely 

attributed to low pH and high ORP value. While low pH drives the chlorine equilibrium in water 

to form more HClO, it also sensitized the outer membrane to the entry of HClO into the 

intercellular space of bacterial cells (80). The high ORP of EO water interrupts the electron flow 

in bacterial cells, thus causing disruption of metabolic fluxes and ATP production (124). 

However, agreement on the role of ORP in killing microorganisms is not made by scientists. 

Kim et al. (96) suggested that ORP of EO water might be the primary factor responsible for the 
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bactericidal effect, while Koseki et al. (105) contracts this study by the observation that the 

higher ORP of ozonated water did not show higher disinfectant effect than lower ORP of EO 

water. 

            The efficacy of electrolyzed oxidizing water for reducing or inactivating microorganisms 

has been investigated on a wide variety of fresh produce commodities including lettuce (51, 67, 

92, 103-105, 107-108, 139-140, 180, 192), spinach (67, 81, 140), tomato (1, 14), cucumber (106), 

strawberries (106), bell pepper (81), cilantro (185), carrot (81), and Japanese radish (81).  

            The results of electrolyzed water treatments have been mixed. Venkitanarayanan et al. 

(181) conducted pure culture studies to investigate the efficacy of EO water for inactivating E. 

coli O157:H7, Salmonella enteritidis, and L. monocytogenes incubated at different times and 

temperatures. They demonstrated that an exposure time of 5 min reduced the populations of all 

three pathogens in the treatment samples by approximately 7 log CFU/ml at 4oC. Similarly, a 

reduction of ≥  7 log CFU/ml in the levels of the three pathogens occurred in the treatment 

samples incubated for 1 min at 45oC or for 2 min at 35oC.  

            Although EO water provides a great inactivation for pure culture scenario, its efficacy is 

reduced when EO water is evaluated on food commodities. Izumi (81) reported that mesophilic 

aerobic microorganisms on fresh-cut produce (carrots, bell peppers, spinach, Japanese radish, 

and potatoes) were reduced by 0.6 to 2.6 log CFU/g after treatment with EO water containing 20 

ppm available chlorine. Later, EO water was compared with acidified chlorinated water for 

treating lettuce (139). No significant difference (P > 0.05) in pathogen reduction (2.41 and 2.65 

log CFU per leaf) was found between EO water and treatment using chlorinated water of 

equivalent pH (2.5), ORP (1,130 mV) and residual chlorine concentration (45 ppm) for 3 min. 

Similarly, EO water (pH 2.6, 30 ppm of available chlorine) showed a significantly higher 
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bactericidal effect than did ozonated water (5 ppm ozone, pH 6.6), but as effective as sodium 

hypochlorite solution (pH 9.3, 150 ppm of available chlorine) (105). Unfortunately, higher 

chlorine concentration (300 ppm) would not be able to offer further bacterial reduction (192). 

Possible explanations for the reduced efficacy of EO water on foods have been previously 

discussed in the “household bleach” part, including microbial internationalization to 

microstructures in foods which protected pathogens from sanitation, and the release of organic 

matters from cut tissues.  

            Increased biocidal activity can be achieved by using EO water in combination with other 

antimicrobial technologies, such as electrolyzed reducing (ER) water or ultrasonication. Koseki 

et al. (106) showed that treatment of 5 min ER water + 5 min EO water had at least 2 log CFU of 

aerobic mesophiles per cucumber greater reduction than only immersion in EO water (30 ppm 

free chlorine), ozonated water (5 ppm ozone) or sodium hypochlorite solution (150 ppm free 

chlorine) for 10 min. This result is in agreement with their previous findings (105), indicating 

that ER water provides additional microbicidal effect to EO water treatment alone. Similarly, 

Kim et al. (97) found that application of EO water in conjunction with ultrasonication enhanced 

the bactericidal effectiveness of EO water by 80%.  

            However, there are several issues limiting the acceptance of EO water by consumers: (1) 

since electrolyzed water is chlorine-based antimicrobial agent with low pH, future research is 

required to determine the impact of EO water on food sensory quality, and human health at home 

situation, (2) the bactericidal activity of EO water is reduced due to chlorine loss over time (105), 

(3) more importantly, the initial purchase of EO machine may be costly as compared to 

commonly used washing methods at home, although the operational expenses are minimal (7). 
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Ozonated Water 

            Ozonated water is a promising agent to control pathogenic microorganisms on foods (65, 

98). Ozone was first introduced as a chemical disinfectant in drinking water and municipal 

wastewater (172), however, it was not until 2001 that ozone was approved by U.S. Food and 

Drug Administration (FDA) as antimicrobial agent for direct contact with foods, including raw 

and minimally processed fruits and vegetables (173). 

            Ozone is generated by passing a stream of oxygen through a high voltage field called 

corona discharge, where oxygen is recombined to form the triatomic ozone molecule (93). Ozone 

is a blue gas at room temperature with pungent odor (77). Ozone in the aqueous form is 

relatively unstable and spontaneously decomposes to oxygen. The half-life of aqueous ozone 

ranges from 2-4 min (pH 7.0 and 25oC) (189) to 165 min (20oC) (100), but is generally 20 to 30 

min (93). Ozone, directly as molecular ozone or indirectly as ozone-derived free radicals 

(.OH, .O2
-, and HO.

3), is able to oxidize a variety of organic and inorganic substances.  

            Temperature and pH influence its stability, and in turn, affect the biocidal activity of 

ozone. Generally, increasing temperature results in greater destruction of microorganisms and on 

the contrary, less solubility and stability of ozone in aqueous solutions, but these two factors 

diminish one another within the temperature range of 0 – 30°C (93). Stability of ozone in water 

was the greatest at pH 5.0, and decreases as pH increases (93). 

            Ozone is a more powerful oxidant and destroys a broad-spectrum of microorganisms, 

including many that are resistant to chlorine-based treatment (65). The mode of ozone action has 

been shown to be a complex process (93). The bacterial cell surface is suggested to be the 

primary target of ozone activity (146). Ozone attacks components of the bacterial cell wall, 

including proteins, unsaturated lipids and respiratory enzymes in the outer membrane, and 
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peptidoglycans in cell envelopes. Damage to the cell wall by oxidative action of ozone would 

ultimately lead to lysis of the targeted cell. Once ozone has penetrated into the cytoplasm, it 

oxidizes enzymes and nucleic acids, and proteins in spore coats (93). Several studies have 

observed that gram-positive bacteria were more resistant than were gram-negative bacteria to 

ozone treatment (110, 146, 161).         

            Evaluation of ozone as an effective antimicrobial agent has been carried out targeted at 

both pure culture and complex systems, such as fresh produce. In a model system, ozone at 3 

ppm was more effective than chlorine dioxide (3 to 5 ppm), chlorinated trisodium phosphate 

(100 to 200 ppm), and peroxyacetic acid (80 ppm) at reducing populations of E. coli O157:H7 

and L. monocytogenes (147). In a separate study (102), exposure for 5 min to 1 ppm of ozone 

provided a similar reduction in the population of Cryptosporidium parvum oocysts (90%) as that 

achieved by 80-ppm chlorine treatment for 90 min.  

            When tested on food commodities, mixed results were obtained. In a study evaluating the 

use of aqueous ozone for reduction of E. coli O157:H7 on apples, a reduction of 1.5 – 3.7 log 

CFU/g was obtained, depending on the location of the pathogen on the fruit surface and the 

degree of attachment (3). But generally, ozonated water reduces bacterial populations in produce 

by no greater than 3 log CFU/g (122). Koseki et al. (105) demonstrated that washing with 

ozonated water (5 ppm ozone) for 10 min reduced levels of aerobic bacteria on the surfaces of 

lettuce by only 1.5 log. Recent researches (61) observed a even lower reduction (0.6 to 0.8 log) 

in aerobic plate count following a 10 min ozone treatment (2.5, 5.0, and 7.5 ppm) on shredded 

lettuce. This limited efficacy may be attributed to the release of readily oxidizable organic 

matters from cut leaf tissue which may react rapidly with ozone. Inactivation studies on 

cucumbers showed that ozone was less effective than acidic electrolyzed water at reducing levels 
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of coliforms and aerobic mesophiles (106). Combinations of ozone with other antimicrobial 

treatments are capable of increasing its efficacy, and a comprehensive review on this topic is 

directed to: sonication and high-speed stirring (98), pulsed electric field (136, 176) and advanced 

oxidation processes (93). 

            In conclusion, ozone is a potent chlorine replacement for reducing microbiological safety 

risk associated with fresh produce. It is effective in reducing a broad spectrum of 

microorganisms at relatively low concentrations. It also decomposes to oxygen rapidly and 

therefore leaves no harmful residues, or carcinogenic by-products. However, some serious 

drawbacks of ozone for home use are obvious: (1) ozonation is more complex than other 

disinfection technologies, and the cost of treatment is relatively high, being both capital- and 

power-intensive, (2) the instability of gaseous and aqueous ozone discourages the prior 

generation and storage of ozone for later application. Elimination of these problems is essential 

for a broad application of this promising technology. 

 

Commercial Produce Wash Solutions 

            Consumer demand for more user friendly, less toxic alternative washing technologies has 

led the industry to develop a number of novel fresh produce wash products. Although none are 

currently approved by FDA as antimicrobial agents, there are some that have shown to be 

effective at both removing soil and applied fruit waxes and capable of removing bacteria from 

the surface of produce. Examples are Fit® Fruit and Vegetable Wash (HealthPro Brands, Inc., 

Procter & Gamble, Cincinnati, OH), Veggie Wash® (Refill Beaumont Products, Inc., Kennesaw, 

GA), and SunSmile® Fruit & Vegetable Rinse (Sunrider International, Torrance, CA). Each 

appears to provide a benefit to eating quality and to reduce food safety concerns. Ingredients are 
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all generally recognized as safe (GRAS), typically plant extracts that have antimicrobial activity 

and surfactant-like properties for cleaning. 

            Fit® Antibacterial Produce Wash is an alkaline (pH 11.1) surfactant solution composed of 

water, oleic acid, glycerol, ethanol, potassium hydroxide, sodium bicarbonate, citric acid, and 

distilled grapefruit oil (25). The surfactant ingredients in FIT® (grapefruit oil and oleic acid) act 

as wetting agents designed to dissolve hydrophobic wax, dirt, and pesticides that may harboring 

microorganisms and thus remove them from the surface of fresh produce. Microorganisms in the 

removed dirt are further destroyed by antimicrobial components of FIT® solution, namely citric 

acid.  

            Veggie Wash® is a fruit and vegetable wash made with sodium citrate derived from 

organic citrus fruits that may exert an antibacterial effect and surfactant properties. Similarly, the 

active ingredients in SunSmile™ Fruit and Vegetable Rinse include: benzoin extract, an 

antiseptic preservative, and decyl polyglucose, a biodegradable cleansing agent derived from 

corn and coconut. 

            Information on the effectiveness of these products against foodborne pathogens is limited. 

In a study comparing the efficacy of FIT® with chlorine rinse for microbial reduction, FIT® was 

approximately as effective as 200 and 20,000 ppm chlorine in reducing levels of Salmonella and 

E. coli O157:H7 on alfalfa seeds (25). Burnett et al. (32) investigated the effectiveness of a 0.5% 

(wt/vol) FIT® solution and reported only 1.51 log CFU per lettuce piece reduction of L. 

monocytogenes. More recently, Park et al. (142) undertook a study to evaluate liquid and 

powdered FIT® in a commercial fresh pack potato operation and in laboratory tests to determine 

its effectiveness against various foodborne pathogens, aerobic plate count, yeasts, and molds. 

The authors found that FIT® prepared with flume water showed significantly greater reductions (> 



23 
 

6.0 to 6.4 log CFU/g) in populations of all organisms than treatments consisting of water or 9 

ppm ClO2 (0.7 to 1.4 CFU/g). 

            Kilonzo-Nthenge et al. (95) investigated microbial reduction on fresh produce achieved 

by several home washing methods, including Veggie Wash®. There was no significant difference 

(P < 0.05) among reduction of Listeria innocua on lettuce after (1) 15 s rinse in running tap 

water (1.4 log CFU/g), (2) 2 min immersion in tap water + 15 s rinse (1.8 log CFU/g), (3) 2 min 

immersion in vinegar + 15 s water rinse (1.9 CFU/g), (4) 2 min immersion in Veggie Wash + 15 

s water rinse (1.7 log CFU/log). They also found that Veggie Wash had a significantly greater 

effect in reducing L. innocua in tomatoes, but not in apples, broccoli, and lettuce, partly due to 

the differences in surface morphology and properties of these produce. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

Test Cultures 

            Five strains each of Salmonella, E. coli O157:H7, and Listeria monocytogenes were used 

to create a cocktail inoculum of each target pathogen (Table 2). Bacterial strains were available 

as frozen stock (- 80oC) using MicrobankTM Bacterial and Fungal Preservation System (Product 

Code PL.160, Pro-Lab Diagnostics Inc., Austin, Texas, USA).   

 

 

TABLE 2. List of test cultures of Salmonella, E. coli O157:H7 and Listeria monocytogenes 

Strain Reference Source 
S. Baildon  Human feces, tomatoes-associated outbreak 
S. Montevideo G4639 Patient in a tomato-associated outbreak 
S. Poona 01A3923 Cantaloupe-associated outbreak 
S. Stanley H1256 Alfalfa sprout-associated outbreak 
S. typhimurium DT104 H3380 Clinical human isolate 
E. coli O157:H7 H-1730 Human feces, lettuce-associated outbreak 
E. coli O157:H7 F-4546 Human feces, alfalfa sprout-associated outbreak 
E. coli O157:H7 #994 Salami isolate 
E. coli O157:H7 SEA 13B88 Apple juice 
E. coli O157:H7 CDC658 Human feces, cantaloupe-associated outbreak 
L. monocytogenes LCDC 81-861 Cabbage outbreak 
L. monocytogenes G3982 Clinical isolate-Jalisco cheese outbreak 
L. monocytogenes Scott A Human feces, milk-associated outbreak 
L. monocytogenes LM254 Drain of chicken processing plant 
L. monocytogenes LM311 Raw chicken product 
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Preliminary Studies 

Preparation of Antibiotic-resistant Strains 

            Antibiotic-adapted strains were used as inoculum to minimize interference of colony 

development by naturally occurring microorganisms on produce and to facilitate detection of 

inoculated pathogens on recovery media. Rifampicin is a widely used antibiotic to induce 

resistant mutants and was obtained as crystalline powder from SIGMA-ALDRICH (Prod. No. 

R3501-5G). It was prepared as stock solutions by dissolving 75 mg of rifampicin in 1 ml of 

dimethylsulfoxide (DMSO; SIGMA-ALDRICH, Inc., St. Louis, MO, USA) to obtain a final 

concentration of 75 mg/ml. Due to its light-sensitivity (89), stock solution of rifampicin was 

stored in 3.0-ml polypropylene low temperature freezer vials (VWR International, LLC, West 

Chester, PA, USA), wrapped in aluminum foil and kept at - 20oC for long-term preservation. For 

a working solution, the rifampicin was thawed completely and added aseptically to the prepared, 

cooled (50oC) medium prior to use. Rifampicin-containing media were then poured into Petri 

dishes, held 1 day at 22oC, and then at 7oC for up to 7 days before use. 

            Rifampicin-resistant strains were prepared by challenging wild-type cultures in 10 ml of 

BactoTM Tryptic Soy Broth (TSB; Becton, Dickinson and Company Sparks, MD, USA) 

supplemented with 100 μg/ml of rifampicin (TSB-R100). Once the cultures were adapted to 100 

μg/ml of rifampicin, the overnight adapted cultures were plated for isolation onto BactoTM 

Tryptic Soy Agar (TSA; Becton, Dickinson and Company Sparks) supplemented with 100 μg/ml 

of rifampicin (TSA-R100) and confirmed by streaking onto respective selective medium 

containing the same concentration of rifampicin. After 24 h incubation, one typical colony from 

the selective plate was transferred to TSB-R100 for overnight incubation, followed by storing at 

- 80oC for long term results. 
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Growth Curve Characteristics    

            Growth rate study for both mutants and wild-type organisms was performed to confirm 

that the rifampicin resistant strain had similar growth characteristics as the parent strain. The 

cells were subjected to two successive loop transfers into glass tubes containing 10 ml of TSB 

(TSB-R100 for mutants), followed by a final transfer of 0.25 ml overnight culture into 25 ml of 

TSB. For growth curve determination, growing culture was collected for sampling at certain time 

points until cells enter stationary phase. At each sampling, 1 ml of culture was transferred to a 

disposable polystyrene cuvette with capacity of 1.5 ml (Fisher Scientific Inc., USA) and the 

absorbance was read at 600 nm using a DU530 UV-VIS life science spectrophotometer. A graph 

of optical density (OD) of cells versus time was prepared to characterize growth curve for each 

mutated strain. 

 

Antibiotic Dependency   

            To ensure that the strains had not developed dependence on the antibiotics, 24 h culture 

of mutant was streaked onto two sets of enumeration agar: (1) rifampicin-free media (TSA and 

selective medium), (2) rifampicin-containing media (TSA-R and selective medium with 

rifampicin). The wild-type strain was also streaked on the same agars for control. 

 

Acquisition of Produce 

            Produce selected for experiments consisted of romaine lettuce (Lactuca sativa var. 

longifolia, Publix® Romaine Hearts), spinach (Spinacia oleracea, Publix® Fresh & Tender 

Spinach, triple washed), and green onions (Allium fistulosum). They were purchased at a local 

grocery store, transported without refrigeration (18 - 20oC) for 30 minutes and then stored 
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immediately at 4oC for a 1 day before use in experiments. All produce obtained were free from 

visual defects such as bruises, cuts or abrasions. 

            For each bag of produce purchased, background microflora was determined by 

homogenizing 1 piece of cut sample (lettuce: 4.5 × 4.0 cm, spinach: 6.0 × 4.5 cm, green onion: 

7.0 cm) with 50 ml sterile 0.1% peptone water (PW) for 2 min. Serial dilutions (1:10) of each 

homogenized sample were made in the same diluent and surface spread (in duplicate) on 

BactoTM Plate Count Agar (PCA; Becton, Dickinson and Company Sparks).  

 

Preparation of Treatment Solutions 

Feed Water 

            Hard water (200 ppm total hardness) was prepared by mixing calcium carbonate (CaCO3; 

J.T.Baker) and magnesium carbonate (MgCO3; Basic Hydrate, Fisher Scientific) with a 3:1 ratio 

in deionized water (DW) (150.0 mg CaCO3 + 50.0 mg MgCO3/L DW). Hard water was prepared 

at least two days before use and covered with aluminum foil in beakers. DW was used to 

simulate soft water (0 ppm total hardness). The pH of feed solution was adjusted using white 

distilled vinegar (5% acidity, Publix® White Vinegar) or 0.1 N Sodium Hydroxide (NaOH; 

Pellets, 98.6%, J.T.Baker). Temperature of the feed water was maintained at approximately 15oC 

using Traceable® Memory/Waterproof Thermometer (Cat. No. 4373, Control Company, TX, 

USA).   

            In order to optimize the performance of each treatment solution, the influence of pH and 

hardness on the efficacy of each treatment solution was compared on lettuce inoculated with the 

Salmonella cocktail (Table 3). The water pH and hardness combination that provided the greatest 

microbial reduction was selected for preparing each treatment solution. 
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TABLE 3. Combinations of pH and water hardness used for evaluating the effect of water 
properties on the efficacy of various produce washing technologies in reducing Salmonella 
 

Washing Technologies Water Properties 

Chlorine bleach Hardness (0 and 200 ppm) at pH 9.44 ± 0.22 

Veggie Wash Hardness (0 and 200 ppm) at pH 9.56 ± 0.07 

Ozonated water hardness (0 and 200 ppm) and pH (5 and 8) 

Electrolyzed oxidizing water Hardness (0 and 200 ppm) at pH 2.81 ± 0.06 

  

 

Household Chlorine Bleach 

            Clorox® household bleach (Clorox Co., Oakland, CA, USA) containing 6.0% Sodium 

hypochlorite was used as the chlorine solution. Working solutions were prepared by diluting 0.60 

ml of household bleach with 499.5 ml of feed water to obtain solution with free chlorine level of 

about 75 ppm. The pH and oxidation-reduction potential (ORP) value of chlorine solution were 

measured in duplicate by an Orion 3-Star Plus Benchtop pH/mV Meter (Thermo Scientific, 

Beverly, MA, USA), using pH and ORP electrodes (Epoxy Sure-Flow Combination Redox/ORP 

Electrodes), respectively. Free chlorine levels were verified by Iodine-Chlorine Kit #101 (Ecolab 

Center, St. Paul, MN, USA). 

 

Veggie Wash® Solution 

            Veggie Wash® (Refill Beaumont Products, Inc., Kennesaw, GA, USA) is a fruit and 

vegetable wash made with organic citrus and obtained as 32 oz. soaker bottle. Working solutions 

were prepared by dilution of Veggie Wash with DW (Ratio of Veggie Wash to DW ~ 1:64), 
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corresponding to a concentration of 1.6% (95). The pH and ORP value were measured in both 

fresh-prepared Veggie Wash and wash solution (after treatment) as described above. 

 

Ozonated Water 

            Ozonated water was generated using the Lotus Sanitizing System (Model LSR 100, 

Tersano Int., Buffalo, NY, USA) with multi-purpose bowl and lid attachments. According to 

manufacturer’s instruction, the multi-purpose bowl was filled with sufficient water to cover the 

fruits and vegetables, and then processed to complete ozonation cycle indicated by 100% on the 

display. After the ozonation was completed, the produce items were left in the bowl attachment 

for an extra 2 min for antimicrobial treatment. For each experiment, several batches (at least 

three batches) were processed until the pH and ORP of the ozonated water were relatively stable. 

Ozone level was determined by the Indigo Colorimeter Method using AccuVac Ampuls (Hach 

Co., Loveland, CO) of high range ozone (0 - 1.5 mg/L ozone) and a Hach Colorimeter (Model 

DR/890). 

 

Electrolyzed Oxidizing Water 

            Electrolyzed oxidizing (EO) water was generated using a Bion-Tech generator (BTM-

3000, Bion-Tech Co., Ltd. Seoul, South Korea). One measure spoon (approximately 0.85 g) of 

Sodium Chloride (NaCl; Kroger® table salt) and 2-L DW were added into each chamber. After 

20 min generation, a 2-L portion of EO water was collected from the anode outlet and used 

within 1 h of preparation. Samples of EO water were taken at the beginning and at the end of 

each experiment to evaluate the pH and ORP value as described above. 
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Experimental Design 

            A flow chart of experimental design of this study is provided in the appendix. Each test 

case (organism × produce × treatment) was replicated three times with three treatment samples, 

one positive control (inoculated but untreated) and one negative control sample (uninoculated 

and untreated) per replicate. Bacterial log reductions in infectivity by each solution were 

determined by subtracting the populations of bacteria in the treatment samples from the 

population in the positive control samples.   

  

Preparation of Inoculum 

            Five-strain mixture of each pathogen was used as inocula. Each variant strain was 

transferred to TSB-R100 using loop inocula at two successive 24-h intervals and then collected 

by centrifugation (6,500 rpm, 21oC, 15 min; Beckman Coulter Allegra 21R Refrigerated High 

speed Table Top Centrifuge). The resulting pellet was washed once in 10 ml of 0.1% PW to 

remove nutrients or metabolites that would react with sanitizers, followed by resuspending in the 

same volume of PW to achieve a population of ~ 9 log CFU/ml. 

            During the day of experiment, equal volumes (2 ml each) of each culture suspension of 

the target pathogens were combined to obtain a 10 ml inoculum containing approximately 9 log 

CFU/ml and equal populations of each strain. The inoculum was diluted (1:4) in PW, maintained 

at 22 + 2oC and inoculated onto produce within 1 h of preparation as described below. 

Populations in the individual cultures and the five-strain cocktail were determined by serial 

dilution in 0.1% PW and plating on TSA-R100. Plates were incubated at 37oC for 24 h before 

colonies are counted. 
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Inoculation of Produce 

            On the day of each experiment, the original package of produce was taken out of the 4oC 

refrigerator and allowed to equilibrate to room temperature for a period of 30 minutes. Two 

serving sizes of each produce (170 g of lettuce, 170 g of spinach, 50 g of green onions) were 

used for washing treatments. 

 

Inoculation of Lettuce 

            The outer 3 or 4 damaged or green wrapper leaves and core of the lettuce head were 

aseptically removed and discarded. The remaining inner leaves were weighed and rinsed under 

running DW for 15 seconds to remove any dirt, and subjected to a ratchet salad spinner 

(Progressive International® Corp, Kent, WA, USA) for 30 seconds to remove residual DW. 

Leaves for inoculation and microbiological analysis were trimmed into pieces (ca. 4.5 cm × 4.0 

cm) using sterile carbon steel surgical blades (REF 4-121, miltex®, Inc., York, PA, USA), while 

the rest of leaves were kept intact.   

            The trimmed leaves were then placed on sterile aluminum foil with the abaxial side 

facing up in a biosafety hood. Each mixed-strain cocktail prepared as described earlier was 

inoculated onto the abaxial surface of each leaf by placing 50 μl at 10 locations with a 

micropipettor (139). Each uninoculated control was treated in a similar manner but used sterile 

0.1% PW as the inoculum. To allow attachment of bacteria to the leaf surfaces, inoculated 

samples were air-dried in a class II biosafety hood with a constant laminar flow at 22 + 2oC for 1 

h before use in washing treatment.   
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Inoculation of Spinach and Green Onions 

            The same procedure described above was used for preparation and inoculation of spinach 

leaves and green onions, with the following modifications: 1) individual intact spinach leaves 

with good quality (ca. 6.0 cm × 4.5 cm) were picked directly from the package, trimmed to 

remove stalks, inoculated with test pathogen and marked by a red dye (Testors® 1103 Enamel 

Paint Red 1/4 oz) to distinguish themselves from the rest of the leaves during treatment. 2)  

Roots and peels of green onions were removed and the remaining hollow upper green tissues 

were then trimmed for inoculation (ca. 7.0 cm long). 

 

Treatment of Produce 

            Two serving sizes of leaves (including inoculated leaves) were treated by washing 

solutions (ratio of produce to treatment solution ~ 1:12, g/ml) as follows: (1) rinse under running 

tap water at 2 L/min for 15 seconds, (2) immersion for 2 minutes in chlorine bleach, Veggie 

Wash, ozonated water and EO water. 

            On termination of treatment, the leaves were transferred individually into 710 ml Whirl-

Pak® filter bags (product No. B01348WA; Nasco, Fort Atkinson, WI) containing 50 ml of 

neutralizing solution, while their respective residual wash solutions (25 ml) were combined with 

50 ml of neutralizing solution for microbiological analysis. The formulation of the neutralizing 

solution in this study was developed based on three active reducing agents of Dey-Engley Broth, 

which are sodium thioglycolate (1g/L DW; Sat. T0632, ≥ 96.5%, SIGM A), sodium thiosulfate 

(6g/L DW; concentration 0.04 M, 98.5%, ACROS ORGANICS) and sodium bisulfite (2.5g/L 

DW; ACROS ORGANICS). 

 



33 
 

Microbiological Analysis 

            In this study, both produce homogenate (untreated and treated produce) and residual 

wash solution were evaluated for their microbial content. The Whirl-Pak® bags containing 

lettuce or spinach samples were macerated by hand for 1 min, while green onions were shaken 

for 1 min to avoid the disruption of cells and the release of natural antimicrobials inherent in 

green onions.  Undiluted homogenates were surface-plated in quadruplicate (0.25 ml) and also 

serially (1:10) diluted in 0.1% PW and plated in duplicate (0.1 ml) on TSA-R100 using an 

automated spiral plater (Spiral Biotech Autoplate® 4000, Spiral Biotech, MD, USA).   

            The Whirl-Pak® bags containing residual wash solutions were shaken for 1 min. 

Homogenates were serially diluted and plated as described above. Resulting plates were 

incubated at 37oC for 24 h before counting presumptive colonies. If low numbers of pathogen 

were anticipated, 1 ml of each mixture solution was inoculated into 20 ml of TSB for enrichment 

(24 hr at 37oC). 

            Presumptive colonies of each pathogen were randomly selected (10 to 20 colonies per 

treatment) and confirmed by streaking onto appropriate selective agars. These selective media 

include: Xylose Lysine Desoxycholate agar with 100 μg/ml of rifampicin (XLD-R100, pH 7.4 + 

0.2) for Salmonella, BBLTM MacConkey II Agar with Sorbitol supplemented with 100 μg/ml of 

rifampicin (SMAC-R100, pH 7.1 + 0.2) for E. coli O157:H7 and DIFCOTM Listeria selective 

agar base with 100 μg/ml of rifampicin (OX-R100, pH 7.2 + 0.2) for Listeria monocytogenes. 

All media were incubated at 37oC for 24 hours before enumeration of colony types typical for the 

respective pathogen. 
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Statistical Analysis 

            Bacterial reduction data (CFU/sample) were analyzed after log transformation. Data were 

pooled from the three replicate experiments to obtain a set of 9 observations for each test case. 

Values for the mean log and standard deviation of each set of bacterial counts were calculated on the 

assumption of a lognormal distribution of microorganisms. Significant differences among means 

were determined by the least-square-means method using SAS Software Release 9.13 (SAS Institute 

Inc., Cary, NC), and reported at a significant level of α = 0.05. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

            This study consisted of three phases of research. The first phase consisted of 

determination of background microbial populations on vegetables, preparation and 

characterization of rifampicin resistant strains, and selection of enumeration media for 

microbiological analysis. The first phase was designed to provide consistent inocula, thereby 

reducing variability in later studies. The second phase was aimed at determining the influence of 

physical properties of water (hardness and pH) on the efficacy of treatment technologies, using 

lettuce and rifampicin resistant Salmonella as test model. Water physical property combinations 

achieving the greatest Salmonella reduction were selected for preparing each washing solutions 

in subsequent experiments. The third phase compared efficacies of various home washing 

technologies at reducing pathogenic bacteria on the surfaces of lettuce, spinach and green onions. 

 

Preliminary Studies 

Indigenous Microbial Flora on Produce 

            Prior to analysis of microbial reduction for inoculated samples, it is important to 

determine levels of background microflora present in untreated (uninoculated) products. High 

numbers of indigenous microflora may interfere with the efficacy of treatment solutions against 

artificially contaminated pathogens, thus selection of leaf samples with similar microbiological 

quality is necessary to produce comparable data. 
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            Spinach. As shown in Table 4, the aerobic plate count (APC) of the spinach samples 

examined was around 6.61 log CFU/g, with a range of 4.31 to 9.85 log CFU/g. These data are 

consistent with the results of a 2007 survey in which 100 bagged spinach and lettuce mixes were 

found to have a mean total bacterial count of 7.0 log CFU/g (179).  

            Lettuce. Aerobic microbial population on the romaine head lettuce was 9.89 log CFU/g, 

with a range of 6.67 to 18.1 log CFU/g. These data were in general agreement with previous 

investigation by Ruiz et al. (150), in which levels of aerobic bacteria were found to range from 2 

to > 8 log CFU/g on both field and retail samples of lettuce (enumerated on plate count agar after 

incubation at 37oC for 48 h). 

            Green Onion. A population of 7.09 to 12.18 log CFU/g was noted for green onion, with 

an average aerobic microbial count of 10.28 log CFU/g. This number is found to be significantly 

higher than that of a previous investigation in which total bacteria on green onions ranged from 5 

– 6 log CFU/g (193). The slightly higher APC levels for romaine lettuce and green onions 

indicate that these two produce are generally retailed with less processing and washing steps as 

compared to “triple washed” ready-to-eat vegetables such as spinach. 

            In general, our data are consistent with those of other studies that examined microbial 

levels on fresh produce items, indicating that the microbial load can be highly variable and may 

depend on the produce type and whether or not postharvest processing treatments are performed 

prior to retail. This implication necessitates the development of bacterial strain markers for 

facilitating differentiation of vegetable-colonizing bacteria from the inoculums applied in 

experimental studies. 
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Growth Curve Characteristics 

            To eliminate interference of the background microflora in the enumeration of the 

inoculated pathogens, the strains used in this study were marked with resistance to rifampicin. 

No colonies were observed when uninoculated fresh produce samples were plated onto TSA-

R100. However, when uninoculated produce samples were plated onto agar containing 20 μg/ml 

or 50 μg/ml of rifampicin, colonies were observed, especially when the background populations 

were high (data not shown). Therefore, bacterial strains resistant to 100 μg/ml of rifampicin were 

developed and used in all further studies. 

            Once a marker is obtained, it is critical to assess the impact of marker introduction on 

growth rate of the corresponding cells. Growth curves were prepared for both wild type and 

rifampicin resistant variants of five strains each for Salmonella (Figures 2-6), E. coli O157:H7 

(Figures 7-11) and Listeria monocytogenes (Figures 12-16). The growth of rifampicin resistant 

strains of all pathogens was similar to that of the parent strains in TSB-R100 at 37 °C. We 

concluded that the introduction of the rifampicin-resistance mutation had no significant impact 

on bacterial growth rate.  

 

Selection of Enumeration Media 

            The growth characteristics of wild and resistant strains of all test pathogens were 

compared after 24-h incubation in TSB-R100 by plating onto two sets of media: TSA with and 

without 100 μg/ml of rifampicin, and the corresponding selective agar with and without 100 

μg/ml of rifampicin. Microbial populations of 24-h cultures recovered on these four types of agar 

are summarized for Salmonella (Figures 17-21), E. coli O157:H7 (Figures 22-26), and L. 

monocytogenes (Figures 27-31). Wild-type and resistant variants of all microorganisms 
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developed a similar number of colonies (~ 9 log CFU/ml) (P > 0.05) as well as similar cell 

morphologies and sizes (data not shown) on non-selective agar (TSA) and selective agar. These 

observations confirmed the aforementioned results that the impact of antibiotic resistance 

biomarker on cell physiology is minimal in term of growth rate characteristics.  

            For all three types of test microorganisms, an equal population of rifampicin resistant 

mutants (P > 0.05) was recovered on TSA-R100 and TSA. It is thus concluded that mutated 

strains had not developed dependence on rifampicin at the targeted concentration.             

            Colony development on TSA-R100 and Selective-R100 agar was also compared. Overall, 

TSA-R100 performed better than rifampicin containing selective agar for supporting colony 

development for all test strains. This phenomenon was particularly evident when comparing the 

number of Salmonella and E. coli O157:H7 recovered on TSA-R100 and their relevant selective 

agar, XLD-R100 and SMAC-R100. These findings are in general agreement with that observed 

by Beuchat et al. (24). This indicates that some of the cells were not able to resuscitate in the 

presence of selective chemicals in selective agar and that direct plating of these cells onto 

selective agar may overestimate the microbial reduction. Therefore, TSA-R100 was selected for 

enumeration of cells in all further studies. 

 

The Influence of Water Physical Property on Microbial Reduction 

            Although extensive studies have been conducted on the efficacy of various washing 

treatments, little information is available on the performance of treatment technologies with 

variable physical properties of water (such as pH and water hardness). Hardness refers to the 

amount of dissolved calcium, magnesium and other divalent and trivalent metallic elements in 

the water. Water hardness may be classified as follows: soft (0-60 ppm of calcium carbonate), 
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moderately hard (60-120 ppm of calcium carbonate), hard (120-180 ppm of calcium carbonate), 

and very hard (> 180 ppm of calcium carbonate) (69). Hardness of tap water can differ from state 

to state, and even area to area within the state depending upon the source and type of treatment. 

Texas, New Mexico, Kansas, Arizona, and southern California have relatively hard water (175). 

Harper et al. (69) found that hardness of some Ohio water supplies ranges from 10 – 385 ppm. 

            Hard water may present a major problem by reducing effectiveness and by forming 

surface deposits. In this study, the effect of hardness on the efficacy of treatment solution in 

killing or removing Salmonella was illustrated in Table 5. It was observed that hardness had no 

significant effect on the efficacy of chlorine bleach, ozonated water and EO water (P > 0.05). 

These results confirmed previous observation that chlorine is less affected by water hardness, 

while pH has a much greater influence on the antimicrobial activity of chlorine-based agents (26). 

Shere (157) evaluated sodium hypochlorite solution (5 ppm available chlorine) at 0 and 400 ppm 

hardness at 20oC. A complete kill of bacteria was observed at the two examined levels of 

hardness, indicating that raising the hardness from 0 to 400 ppm did not reduce the bactericidal 

activity of hypochlorite solution. Water hardness significantly affected Veggie Wash 

effectiveness against Salmonella (P < 0.05), but the differences of bacterial reduction associated 

with the change in hardness were relatively small (0.25 log CFU/inoculated cut leaf). It is likely 

that sodium citrate, the main microbicidal and surface-active component of Veggie Wash, may 

react with calcium and magnesium ions by sequestering these ions, thus diminishing the 

effectiveness of this produce wash product against Salmonella.  

            The effect of pH on the reduction of Salmonella by ozonated water was also investigated 

(Table 5). Treatment with ozonated water at pH 5.0 reduced Salmonella by 1.45 (0 ppm of 

hardness) or 1.49 (200 ppm of hardness) log CFU/inoculated cut leaf, while reductions of 0.83 
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and 0.99 log CFU/inoculated cut leaf were achieved at pH 8.0 using washing solutions with 0 

ppm and 200 ppm of hardness, respectively. This result demonstrated that antimicrobial efficacy 

of ozonated water is greater at low pH (5.0) than at high pH values (8.0). Similarly, Khadre et al. 

(93) revealed that the stability of ozone in water was the greatest when pH was 5.0, and 

decreased as pH increased. It has been proposed that the low pH of aqueous ozone solution 

sensitizes the bacterial outer membrane to the entry of molecular ozone which is the main 

inactivator of microorganisms at acidic condition (93). 

            In summary, treatment solution with 0 ppm of hardness seems to provide an equal or 

greater efficacy than hard water (200 ppm) against artificially inoculated Salmonella on lettuce. 

In the case of ozonated water, low pH (5.0) also contributes to a greater bactericidal activity. 

Therefore, we concluded that no pre-adjustment of water hardness be used for the washing 

technologies in future studies, except that the pH of feed water for ozone generation should pre-

adjust to level of 5.0 in order to achieve a greater biocidal activity. 

 

Comparative Efficacies of Various Washing Technologies 

Physicochemical Properties of Treatment Solutions 

            The properties (pH, ORP, and free chlorine concentration) of fresh prepared treatment 

solutions (tap water, chlorine bleach, Veggie Wash, ozonated water and EO water) tested in this 

study are summarized in Table 6. After treatment, the corresponding residual wash solutions 

except for tap water and Veggie Wash were also analyzed to identify the changes in pH, ORP 

and free chlorine level, and are presented in Tables 7 - 15.  

            In most test cases, the ORP and pH of bleach, ozonated water and EO water after 

treatment were not significantly different from the initial values measured before test produce (P > 
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0.05). The exception was washing spinach with ozonated water which resulted a significant 

decrease in ORP (ORP values decreased from 1040 mV to 969 mV, 847 mV, 537 mV for 

Salmonella, E. coli O157:H7 and Listeria monocytogenes, respectively) and an increase in pH 

(pH increased from 5.02 to 5.54, 5.32, 5.51 for Salmonella, E. coli O157:H7 and Listeria 

monocytogenes, respectively) after treatment (P < 0.05). The free chlorine concentrations of 

chlorine bleach and EO water decreased by 2 – 11 ppm and 1 – 13 ppm from initial levels of 74 

ppm (bleach) and 18 ppm (EO water), respectively. 

 

Pathogen Reduction on the Surface of Lettuce 

            Data on the populations of rifampicin resistant Salmonella, E. coli O157:H7 and Listeria 

monocytogenes recovered from the surface of the romaine lettuce leaf after applying different 

washing treatments are presented in Tables 7 - 9. Pathogens were not detected on uninoculated 

lettuce leaves. The initial populations of bacteria recovered from the surface of inoculated lettuce 

after 1 h of air drying were 7.09 log CFU/cut leaf of Salmonella, 7.03 log CFU/cut leaf of E. coli 

O157:H7 and 7.09 log CFU/cut leaf of L. monocytogenes, respectively. Statistical analysis 

indicated that the initial counts of the inoculum were not significantly different among different 

types of pathogens (P > 0.05). 

            All washing treatments produced a significant reduction in bacterial counts (P < 0.05). 

Immersing lettuce in Veggie Wash for 2 min provided the lowest antimicrobial effect on lettuce 

inoculated with the tested pathogens, resulting in reductions of < 1 log CFU/inoculated cut leaf. 

Little previous research has been done on the efficacy of Veggie Wash in reducing pathogenic 

bacteria on lettuce. Kilonzo-Nthenge et al. (95) reported a reduction of 1.73 log CFU/g achieved 

by immersion for 2 min in Veggie Wash solution followed by 15 s water rinse. The surfactant-
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like property and weak antimicrobial activity of the sodium citrate in Veggie Wash makes it a 

good candidate for removing soil and dirt rather than killing pathogens.  

            Treatment with 15 s running tap water had a moderate effect in removing three tested 

pathogens, resulting in reductions of 1.5 to 1.7 log CFU/inoculated cut leaf. The same rinsing 

procedure was tested by Kilonzo-Nthenge (95), who demonstrated that a bacterial reduction of 

1.41 log CFU/g was obtained by rinsing lettuce leaves under running tap water for 15 s. 

Immersion into stationary water was also utilized for washing lettuce, but only reduced initial 

bacterial populations by an average of 1 log CFU or less on fresh produce surface (81, 140, 167).             

            Treatment with ozonated water was equally effective compared to rinse with running tap 

water (P > 0.05), resulting in bacterial reductions of 1.36 to 1.85 log CFU/inoculated cut leaf. 

This is in general agreement with previous observations that ozonated water reduces bacterial 

populations in fresh produce by no greater than 3 log CFU/g (122). Koseki et al. (105) 

demonstrated that washing with ozonated water (5 ppm ozone) for 10 min reduced levels of 

aerobic bacteria on the surfaces of inoculated lettuce by only 1.5 log CFU unit.  

            Use of 75 ppm chlorine bleach to wash lettuce for 2 min was more effective in reducing 

levels of E. coli O157:H7 (reduction of 2.34 log CFU/inoculated cut leaf) and L. monocytogenes 

(reduction of 2.16 log CFU/inoculated cut leaf) compared to either a 15 s tap water rinse or 

immersion in ozonated water for 2 min (P < 0.05). These results agree with a previous 

experiments by Behrsing et al. (19), showing that E. coli cells were reduced by approximately 

1.9 – 2.8 log CFU/g following immersion of lettuce leaves into hypochlorite solutions (50 pm or 

greater chlorine) for 30 s or greater. However, there was no significant difference in efficacy 

between chlorine bleach and water rinse in decreasing Salmonella on lettuce (P > 0.05). These 

results confirmed previous studies demonstrating that the effect of chlorine based antimicrobials 
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for washing fresh produce was minimal (5, 81). In our study, chlorine bleach was not adjusted to 

acidic condition, and therefore may result in a reduced effectiveness against Salmonella on 

lettuce.             

            Immersing lettuce in EO water for 2 min produced equal or greater pathogen reduction 

than chlorine bleach, resulting in reductions of 2.55 to 3.72 log CFU/inoculated cut leaf, and in 

turn, exhibited the greatest efficacy among all washing treatments tested (P < 0.05). In this study, 

its superior efficacy over chlorine bleach may be mainly because of the highly acidic pH and the 

presence of other oxidants such as hydrogen peroxide and hydroxyl radical in EO water in 

addition to hypochlorous acid (139). However, extensive studies have reported that EO water 

posses similar bactericidal activity to that of chlorinated water especially when chlorine is 

acidified from pH 9 to 4.5 – 5.0 (105, 139), since the hypochlorous acid is the major contributor 

to their antimicrobial activity (167). Park and Kim et al. (139) compared the efficacy of EO 

water and acidified chlorinated water and found no significant difference in pathogen reduction 

(2.41 and 2.65 log CFU per leaf) between EO water and treatment using chlorinated water of 

equivalent pH (2.5), ORP (1,130 mV) and residual chlorine concentration (45 ppm) for 3 min.  

             

Pathogen Reduction on the Surface of Spinach 

            Results of the efficacy of various washing technologies in removing or killing Salmonella, 

E. coli O157:H7 and L. monocytogenes on spinach are summarized in Tables 10 - 12. The mean 

populations of Salmonella, E. coli O157:H7 and L. monocytogenes recovered on spinach after 1 

h of drying were 7.13, 7.26 and 6.94 log CFU/inoculated cut leaf. None of these tested pathogens 

was recovered in the deionized water and uninoculated samples used in the experiments, which 

implied that viable pathogens recovered after cleaning was entirely attributed to the inoculation. 
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           All washing treatments produced a significant decrease in pathogen count as compared to 

the initial population (P < 0.05) except that Veggie Wash was unable to produce a significant 

reduction of L. monocytogenes on the surface of spinach. Immersing spinach in Veggie Wash for 

2 min exhibited the lowest bacterial reduction of approximately 0.5 log CFU/inoculated cut leaf 

among all other treatments, and was therefore relatively ineffective at reducing pathogens on 

spinach leaves (P < 0.05).  

            Immersing spinach leaves in ozonated water for 2 min produced no difference (P > 0.05) 

in pathogen reductions from immersion in Veggie Wash, resulting in 0.3 to 1.0 log 

CFU/inoculated cut leaf of reduction. In contrast, tests on tomatoes showed much higher 

reductions of Salmonella, E. coli O157:H7 and L. monocytogenes using the same ozone 

generator, ranging from 3.43 to 5.28 log CFU/tomato (170). This result confirmed the product 

statement that this model of ozone generator is better suitable for decontaminating whole 

produce rather than cut items. It is speculated that the efficacy of the ozone depends on the 

placement of the produce items in the device. When whole produce were placed in the machine, 

there are spaces between each item so that the active ozone generated at the bottom is able to 

spread in the solution. In the case of leafy vegetables, however, chopped leaves tend to overlap 

each other and collect at the bottom of the device so that active ozone is absorbed by the bottom 

leaves and there is less reactive species left to interact with the inoculated leaves added to the top. 

            A 15-s rinse under running tap water was more effective in killing three tested pathogens 

on spinach than both Veggie Wash and ozonated water, exhibiting bacterial reductions of ~ 1 log 

CFU/inoculated cut leaf (P < 0.05); however, the difference between three pathogens was not 

significant (P > 0.05). A ~ 1 log reduction is consistent with reductions demonstrated by other 

researchers. Park et al. (140) observed a < 1.0 log reduction when inoculated spinach leaves were 
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immersed in deionized water (22 + 2oC) for 15s up to 5 min, followed by agitating for < 3 s. The 

reduction was attributed to physical wash-off of inoculated cells on the spinach surface. 

            75 ppm chlorine bleach was similarly effective in killing Salmonella and E. coli O157:H7 

as rinsing with running tap water (P > 0.05), resulting in 1.1 – 1.6 log CFU/inoculated cut leaf. A 

greater reduction of L. monocytogenes was obtained by chlorine treatment than with water rinse 

(P < 0.05), however, the difference in their efficacy was less than 0.6 log CFU/inoculated cut leaf. 

Similar bacterial reduction was observed when all three pathogens were challenged to treatment 

by immersion in EO water for 2 min, in which reductions of 1.0 – 1.6 log CFU/inoculated cut 

leaf were obtained. These results were consistent with Izumi’s research, which showed that 

acidic electrolyzed water (20 ppm available chlorine) treatment reduced the microbial load by 

0.7 to 1.1 logs in trimmed spinach leaves (81). Similarly, Rahman et al. (144) reported that the 

neutral and acidic electrolyzed water treatment reduced the microbial load in the spinach leaves 

by 1.93 and 1.94 log cfu/g, respectively.  

 

Pathogen Reduction on the Surface of Green Onion 

            The initial analysis of the green onions that were not inoculated revealed the absence of 

rifampicin resistant Salmonella, E. coli O157:H7 and L. monocytogenes. Green onion samples 

were inoculated with 7.20 log CFU/cut sample of Salmonella, 7.09 log CFU/cut sample of E. 

coli O157:H7, and 7.11 log CFU/cut sample of L. monocytogenes, respectively. Tables 13 - 15 

show surviving cells of Salmonella, E. coli O157:H7 and L. monocytogenes from inoculated 

green onions after treatment with various solutions tested in this study. 

            Generally, we observed a ~ 1 log pathogen reduction when inoculated green onions were 

treated by rinsing with running tap water, while a slightly higher reduction (1.5 log 
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CFU/inoculated cut sample) was achieved for E. coli O157:H7. These results indicate a higher 

bacterial reduction than that achieved by Martínez-Téllez et al. (121) who demonstrated that 

green onions washed with sterile water only reduced 0.65 log CFU/g of Salmonella. Since dip-

inoculation method (produce was dipped into a bacterial suspension) was applied in their study, 

the discrepancy between results of two studies is likely attributed to different degree of bacterial 

attachment and internationalization. Dip-inoculation allows microorganisms to preferentially 

attach to inaccessible sites and further penetrate into hydrophobic pockets, folds or cracks on the 

surface of vegetables (159) which protect the cells from being washed off.  

            Use of Veggie Wash did not provide further significant reduction of three pathogens as 

compared to water rinse treatment, resulting in 0.7 – 1.1 log CFU/inoculated cut sample. It is 

likely that Veggie Wash just removed the inoculated cells physically from the surface of green 

onions since it contains compounds with weak antimicrobial activity, namely citric acid. Both 75 

ppm chlorine bleach and ozonated water showed a more effective pathogen removal on the 

inoculated green onions as compared to treatment by running tap water, nevertheless, no 

significant difference in efficacy was observed between these two treatments (P > 0.05), 

achieving bacterial reductions ranging from 2.2 – 2.8 log CFU/inoculated cut sample. Martínez-

Téllez et al. (121) reported less bacterial reduction by chlorine treatment (200 – 250 ppm), 

resulting in reduction of Salmonella by 1.36–1.74 log CFU/g. Again, this may be due to bacterial 

attachment and infiltration resulting from the dip-inoculation method, as evidenced by a recent 

study (unpublished data) by Durak et al. (55) where chlorine (200 ppm) were able to decrease 

populations of E. coli O157:H7 by 0.9 log CFU/g for dip-inoculated green onions whereas the 

same treatment resulted in a 4.4 log reduction for spot-inoculated samples. 
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            EO water exhibited the greatest efficacy against three pathogens on inoculated green 

onions among all washing treatments, reducing levels of Salmonella, E. coli O157:H7 and L. 

monocytogenes by 2.5, 3.1 and 3.6 log CFU/inoculated cut sample, respectively. These results 

are in agreement with previous research that treating with EO water (pH 2.06, free chlorine 37.5 

ppm) reduced levels of E. coli O157:H7 on green onions by 4.45 and > 5.82 log CFU/g after 1 

min and 3 min, respectively (141). The slightly lower pathogen reduction observed in this study 

may be due to the higher pH (2.8) and lower free chlorine level (18 ppm) of the EO water tested. 

 

Microbial Populations in Wash Solutions 

            The microbial populations in the residual wash solutions represent the number removed 

from the treated produce and thus, potentially available to cross-contaminate other produce or 

food preparation surfaces in home-use situations. In this study, no Salmonella, E. coli O157:H7 

and Listeria monocytogenes was detected by either direct plating (detection limit: 3 CFU/ml) or 

enrichment (detection limit: 0.3 CFU/ml) in the wash solutions of chlorine bleach, ozonated 

water and EO water, which demonstrated that these three washing technologies were able to 

prevent the potential of cross-contamination. An exception was the ozone treatment of spinach, 

in which 2 out of 6 treatment solution samples were positive for Salmonella and L. 

monocytogenes by enrichment, while the presence of E. coli O157:H7 was identified in 3 out of 

6 enrichment samples. This exception confirmed our previous observation that aqueous ozone 

was particularly ineffective at reducing pathogens on spinach leaves. Similarly, Veggie Wash 

was unable to destroy the remaining microorganisms in the solution, as evidenced by the 

bacterial population of 3.8 – 4.6 log CFU/ml, 3.8 – 4.4 log CFU/ml, 4.8 – 5.4 log CFU/ml in 

treatment solutions after being used to wash lettuce, spinach and green onions, respectively.  
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Comparison of Reductions among Produce and Pathogens 

            In the current study, differences in the level of pathogen reduction were observed among 

produce types. For example, pathogen levels on lettuce and green onions were significantly 

reduced by 0.5 - 3.7 log CFU/inoculated cut sample upon exposure to all treatments, whereas 

only 0.3 – 1.6 log CFU/inoculated cut sample of pathogen reduction was observed on spinach. 

The efficacy of washing treatments may be influenced by morphological properties of the leaf 

tissues, which differ among various produce types (19, 95). The smooth surface of lettuce and 

green onion is protected by a relatively thick waxy cuticle with hydrophobic properties that 

repels water and possibly loose bacterial adhesion to its surface, while the abaxial side of spinach 

surface seems to be rougher and may differ in microstructure (such as cuticle thickness), which 

may allow greater depth of bacterial penetration. However, high-definition microscopy 

techniques are required to provide direct evidence on bacterial behavior within spinach leaves.  

            The differences in pathogen reduction among produce types may also be attributed to the 

amount of organic material in treatment solutions. Organic matter potentially react with free 

available chlorine and thus may reduce washing effectiveness (138). In the present study, free 

chlorine concentration decreased significantly after treatment in both chlorine bleach (75 ppm to 

63 – 72 ppm) and EO water (18 ppm to 5 – 17 ppm). This phenomenon is more evident in the 

case of spinach than lettuce and green onions. It is thus hypothesized that spinach released more 

organic materials including antioxidants (such as phenolic compounds) from the cut surfaces, 

thus diminishing the bactericidal activity of chlorine-bearing treatments (94). 

            Previous researches indicate that pathogens differ in their susceptibilities to antimicrobial 

agents, as well as their interaction with produce items (such as bacterial attachment) (122, 168). 

Our results showed that L. monocytogenes was reduced more readily than were Salmonella and 
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E.coli O157:H7 to most antimicrobial agents tested including chlorine bleach, ozonated water 

and EO water, except that L .monocytogenes on lettuce was more resistant to EO water treatment 

than were other two gram-negative pathogens. These observations are in agreement with 

previous findings that gram-negative bacteria seem to be more resistant to biocides (98, 132) 

except for ozone treatment in which gram-positive bacteria were more resistant than were gram-

negative ones (110, 161). However, these mixed results must be interpreted with caution, as the 

present study differs from previous researches in that pathogen reductions were determined on 

the surface of fresh produce instead of pure culture suspension.   
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TABLE 4. Aerobic plate counts of romaine lettuce, spinach and green onions stored under 4oC within 24 h of purchase  
 

Product No. of 
samples 

Weight 
(g/cut leaf sample) 

Length 
(cm/cut leaf sample) 

Width 
(cm/cut leaf sample) 

Aerobic plate counts 
(log CFU/g) 

Mean Range Mean Range Mean Range Mean Range 

Lettuce 10 0.47 0.30 – 0.55 4.4 4.1 – 4.7 3.8 3.5 – 4.0 9.89 6.67 – 18.1 

Spinach 11 0.71 0.55 – 0.90 5.9 5.2 – 6.5 4.5 4.2 – 4.9 6.61 4.31 – 9.85 

Green Onions 11 0.61 0.45 – 0.85 6.8 6.3 – 7.2 1.0 0.8 – 1.3 10.28 7.09 – 12.18 
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TABLE 5. The influence of water hardness and pH on the efficacy of treatment solutions in killing Salmonella 
 

 Reduction (log CFU/inoculated cut leaf) a  

Treatments Water hardness (0 ppm) Water hardness (200 ppm) pH 

Veggie Wash 0.96 A 0.71 B 9.56 ± 0.07 

Bleach 1.78 A 1.86 A 9.44 ± 0.22 

EO Water 3.72 A 3.47 A 2.81 ± 0.06 

Ozone 1.45 A  1.49 A 5 

 0.83 A 0.99 A 8 
 

a Mean values within a row followed by different letter are significantly different (p < 0.05); inoculum levels were ca. 7 log 
CFU/inoculated cut leaf.  
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TABLE 6. Physicochemical properties of washing solutions before treatment 
 

Treatment Solutions ORP (mV) pH Free chlorine concentration (ppm) 

Tap Water 554 ± 29 7.40 ± 0.19 1 – 2 

Chlorine Bleach 639 ± 14 9.44 ± 0.22 74 ± 2 

Veggie Wash NA a 9.56 ± 0.07 NA a 

Ozonated Water 1040 ± 12 5.02 ± 0.07 0.67 ± 0.05 mg O3/L of water 

EO Water 1109 ± 4 2.81 ± 0.06 18 ± 3 
 

a NA, not analyzed 
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Table 7. Population of Salmonella recovered from lettuce leaves and wash solutions after treatment 
 

 Mean Salmonella population  Properties of Treatment Solution e 
(After Treatment)  On lettuce (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH Free Chlorine 

(ppm) 

None 7.09 A       

Tap 5.51 CD 1.58 NA c  NA NA NA 

Bleach 5.04 D 2.05  
< 0.3 d  615 ± 6  9.52 ± 0.01 70 ± 2 

Veggie Wash 6.13 B 0.96 3.84  NA NA NA 

Ozone 5.64 BC 1.45 < 0.3  1040 ± 6 5.13 ± 0.08 NA 

EO Water 3.37 E 3.72 < 0.3  1103 ± 3 2.80 ± 0.01 17 ± 1 
 

a The average size of inoculated cut sample is 4.4 cm × 3.8 cm 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
b NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e Sample size: n = 3 
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Table 8. Population of E. coli O157:H7 recovered from lettuce leaves and wash solutions after treatment  
 

 Mean E. coli O157:H7 population  Properties of Treatment Solution e 
(After Treatment)  On lettuce (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH Free Chlorine 

(ppm) 

None 7.03 A       

Tap 5.34 C 1.69 NA c  NA NA NA 

Bleach 4.69 D 2.34 < 0.3 d  626 ± 7 9.28 ± 0.04 70 ± 1 

Veggie Wash 6.15 B 0.88 4.35  NA NA NA 

Ozone 5.67 BC 1.36 < 0.3  1015 ± 7 5.27 ± 0.02 NA 

EO Water 3.60 E 3.43 < 0.3  1098 ± 4 2.8 ± 0.07 13 ± 1 
 

a The average size of inoculated cut sample is is 4.4 cm × 3.8 cm by average 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
c NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e Sample size: n = 3 
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Table 9. Population of Listeria monocytogenes recovered from lettuce leaves and wash solutions after treatment 
 

 Mean Listeria monocytogenes population  Properties of Treatment Solution e 
(After Treatment)  On lettuce (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH Free Chlorine 

(ppm) 

None 7.09 A       

Tap 5.60 C 1.49 NA c  NA NA NA 

Bleach 4.93 DE 2.16 < 0.3 d  620 ± 4 9.31 ± 0.03 72 ± 1 

Veggie Wash 6.57 B 0.52 4.61  NA NA NA 

Ozone 5.24 CD 1.85 < 0.3  985 ± 10 5.19 ± 0.09 NA 

EO Water 4.54 E 2.55 < 0.3  1089 ± 4 2.81 ± 0.03 13 ± 1 
 

a The average size of inoculated cut sample is 4.4 cm × 3.8 cm 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
c NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e Sample size: n = 3 
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Table 10. Population of Salmonella recovered from spinach leaves and wash solutions after treatment 
 

 Mean Salmonella population  Properties of Treatment Solution f 
(After Treatment)  On spinach (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH Free Chlorine 

(ppm) 

None 7.13 A       

Tap 6.12 C 1.01 NA c  NA NA NA 

Bleach 6.04 CD 1.09 < 0.3 d  616 ± 6 9.29 ± 0.05 70 ± 2 

Veggie Wash 6.59 B 0.54 4.27  NA NA NA 

Ozone 6.80 B 0.33 2/6 e  969 ± 11 5.54 ± 0.19 NA 

EO Water 5.81 D 1.32 < 0.3  1103 ± 3 2.87 ± 0.03 8 ± 1 
 

a The average size of inoculated cut sample is 5.9 cm × 4.5 cm 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
c NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e 2 out of 6 samples were positive for Salmonella by enrichment 
f Sample size: n = 3 
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Table 11. Population of E. coli O157:H7 recovered from spinach leaves and wash solutions after treatment 
 

 Mean E. coli O157:H7 population  Properties of Treatment Solution f  
(After Treatment)  On spinach (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH Free Chlorine 

(ppm) 

None 7.26 A       

Tap 6.18 C 1.08 NA c  NA NA NA 

Bleach 6.12 C 1.14 < 0.3 d  641 ± 6 9.08 ± 0.06 66 ± 1 

Veggie Wash 6.73 B 0.53 4.44  NA NA NA 

Ozone 6.66 B 0.60 3/6 e  847 ± 125 5.32 ± 0.02 NA 

EO Water 6.28 BC 0.98 < 0.3  1066 ± 13 2.86 ± 0.05 6 ± 1 
 

a The average size of inoculated cut sample is 5.9 cm × 4.5 cm 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
c NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e 3 out of 6 samples were positive for E. coli O157:H7 by enrichment 
f Sample size: n = 3 
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Table 12. Population of Listeria monocytogenes recovered from spinach leaves and wash solutions after treatment 
 

 Mean Listeria monocytogenes population  Properties of Treatment Solution f 
(After Treatment)  On spinach (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH Free Chlorine 

(ppm) 

None 6.94 A       

Tap 5.92 C 1.02 NA c  NA NA NA 

Bleach 5.36 D 1.58 < 0.3 d  611 ± 4 9.23 ± 0.07 63 ± 1 

Veggie Wash 6.47 AB 0.47 4.10  NA NA NA 

Ozone 5.96 BC 0.98 2/6 e  569 ± 49 5.51 ± 0.05 NA 

EO Water 5.34 D 1.6 < 0.3  1036 ± 9 2.86 ± 0.02 5 ± 1 
 

a The average size of inoculated cut sample is 5.9 cm × 4.5 cm 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
c NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e 2 out of 6 samples were positive for L. monocytogenes by enrichment 
f Sample size: n = 3 
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Table 13. Population of Salmonella recovered from green onions and wash solutions after treatment 
 

 Mean Salmonella population  Properties of Treatment Solution e  
(After Treatment)  On green onion (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH 

Free 
Chlorine 

(ppm) 

None 7.20 A       

Tap 6.19 B 1.01 NA c  NA NA NA 

Bleach 4.90 C 2.30 < 0.3 d  636 ± 17 9.3 ± 0.02 70 ± 1 

Veggie Wash 6.12 B 1.08 4.81  NA NA NA 

Ozone 4.81 C 2.39 < 0.3  1037 ± 3 4.94 ± 0.03 NA 

EO Water 4.68 C 2.52 < 0.3  1105 ± 4 2.83 ± 0.01 14 ± 1 
 

a The average length of inoculated cut green onion sample is 6.8 cm 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
c NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e Sample size: n = 3 
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Table 14. Population of E. coli O157:H7 recovered from green onions and wash solutions after treatment 
 

 Mean E. coli O157:H7 population  Properties of Treatment Solution e  
(After Treatment)  On green onion (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH 

Free 
Chlorine 

(ppm) 

None 7.09 A       

Tap 5.64 B 1.45 NA b  NA NA NA 

Bleach 4.91 C 2.18 < 0.3 c  633 ± 1 9.21 ± 0.09 72 ± 0 

Veggie Wash 5.92 B 1.17 5.16  NA NA NA 

Ozone 4.51 C 2.58 < 0.3  1018 ± 6 4.96 ± 0.04 NA 

EO Water 3.99 D 3.10 < 0.3  1099 ± 3 2.78 ± 0.03 10 ± 1 
 

a The average length of inoculated cut green onion sample is 6.8 cm 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
c NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e Sample size: n = 3 
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Table 15. Population of Listeria monocytogenes recovered from green onions and wash solutions after treatment 
 

 Mean Listeria monocytogenes population  Properties of Treatment Solution e  
(After Treatment)  On green onion (log CFU/inoculated cut sample a)   

Treatment Recovered b Reduction In solutions 
(log CFU/ml)  ORP (mV) pH 

Free 
Chlorine 

(ppm) 

None 7.11 A       

Tap 6.13 B 0.98 NA b  NA NA NA 

Bleach 4.33 C 2.78 < 0.3 c  650 ± 5 8.92 ± 0.15 64 ± 1 

Veggie Wash 6.39 B 0.72 5.35  NA NA NA 

Ozone 4.59 C 2.52 < 0.3  997 ± 8 4.89 ± 0.03 NA 

EO Water 3.52 D 3.59 < 0.3  1065 ± 5 2.95 ± 0.04 7 ± 1 
 

a The average length of inoculated cut green onion sample is 6.8 cm 
b Mean values within a column followed by different letter are significantly different (p < 0.05).  
c NA, not analyzed 
d ND, not detected by direct plating (3 CFU/ml detection limit) or enrichment (0.3 CFU/ml detection limit) 
e Sample size: n = 3 
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FIGURE 2. Growth curves of the parent strain of Salmonella Baildon (▲) and its rifampicin 
resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
 
 
 
 
 

 

FIGURE 3. Growth curves of the parent strain of Salmonella Montevideo G4639 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
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FIGURE 4. Growth curves of the parent strain of Salmonella Poona 01A3923 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
 
 
 
 
 

 

FIGURE 5. Growth curves of the parent strain of Salmonella Stanley H1256 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
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FIGURE 6. Growth curves of the parent strain of Salmonella Typhimurium (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
 
 
 
 
 

 

FIGURE 7. Growth curves of the parent strain of E. coli O157:H7 H1730 (▲) and its rifampicin 
resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
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FIGURE 8. Growth curves of the parent strain of E. coli O157:H7 F4546 (▲) and its rifampicin 
resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
 
 
 
 
 

 

FIGURE 9. Growth curves of the parent strain of E. coli O157:H7 #994 (▲) and its rifampicin 
resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
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FIGURE 10. Growth curves of the parent strain of E. coli O157:H7 SEA 13B88 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
 
 
 
 
 

 

FIGURE 11. Growth curves of the parent strain of E. coli O157:H7 CDC658 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
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FIGURE 12. Growth curves of the parent strain of L. monocytogenes LCDC 81-861 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
 
 
 
 
 

 

FIGURE 13. Growth curves of the parent strain of L. monocytogenes G3982 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
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FIGURE 14. Growth curves of the parent strain of L. monocytogenes Scott A (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
 
 
 
 
 

 

FIGURE 15. Growth curves of the parent strain of L. monocytogenes LM 254 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
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FIGURE 16. Growth curves of the parent strain of L. monocytogenes LM 311 (▲) and its 
rifampicin resistant derivative (■) when incubated at 37 °C in TSB and TSB-R100 respectively. 
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FIGURE 17. Colony development on TSA, TSA-R, XLD and XLD-R by wild-type (■) and 
rifampicin resistant strains (□) of Salmonella Baildon after 24-h incubation in TSB-R100 
 
 
 

 

FIGURE 18. Colony development on TSA, TSA-R, XLD and XLD-R by wild-type (■) and 
rifampicin resistant strains (□) of Salmonella Montevideo after 24-h incubation in TSB-R100  
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FIGURE 19. Colony development on TSA, TSA-R, XLD and XLD-R by wild-type (■) and 
rifampicin resistant strains (□) of Salmonella Poona after 24-h incubation in TSB-R100  
 
 
 

 

FIGURE 20. Colony development on TSA, TSA-R, XLD and XLD-R by wild-type (■) and 
rifampicin resistant strains (□) of Salmonella Stanley after 24-h incubation in TSB-R100  
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FIGURE 21. Colony development on TSA, TSA-R, XLD and XLD-R by wild-type (■) and 
rifampicin resistant strains (□) of Salmonella typhimurium after 24-h incubation in TSB-R100 
 
  
 

 

FIGURE 22. Colony development on TSA, TSA-R, SMAC and SMAC-R by wild-type (■) and 
rifampicin resistant strains (□) of E. coli O157:H7 H-1730 after 24-h incubation in TSB-R100 
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FIGURE 23. Colony development on TSA, TSA-R, SMAC and SMAC-R by wild-type (■) and 
rifampicin resistant strains (□) of E. coli O157:H7 F-4546 after 24-h incubation in TSB-R100 
 
 
 

 

FIGURE 24. Colony development on TSA, TSA-R, SMAC and SMAC-R by wild-type (■) and 
rifampicin resistant strains (□) of E. coli O157:H7 #994 after 24-h incubation in TSB-R100 
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FIGURE 25. Colony development on TSA, TSA-R, SMAC and SMAC-R by wild-type (■) and 
rifampicin resistant strains (□) of E. coli O157:H7 SEA13B88 after 24-h incubation in TSB-
R100 
 
 
 

 

FIGURE 26. Colony development on TSA, TSA-R, SMAC and SMAC-R by wild-type (■) and 
rifampicin resistant strains (□) of E. coli O157:H7 CDC658 after 24-h incubation in TSB-R100 
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FIGURE 27. Colony development on TSA, TSA-R, OX and OX-R by wild-type (■) and 
rifampicin resistant strains (□) of L. monocytogenes LCDC 81-861 after 24-h incubation in TSB-
R100 
 
 
 

 

FIGURE 28. Colony development on TSA, TSA-R, OX and OX-R by wild-type (■) and 
rifampicin resistant strains (□) of L. monocytogenes G3982 after 24-h incubation in TSB-R100 
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FIGURE 29. Colony development on TSA, TSA-R, OX and OX-R by wild-type (■) and 
rifampicin resistant strains (□) of L. monocytogenes Scott A after 24-h incubation in TSB-R100 
 
 
 

 

FIGURE 30. Colony development on TSA, TSA-R, OX and OX-R by wild-type (■) and 
rifampicin resistant strains (□) of L. monocytogenes LM254 after 24-h incubation in TSB-R100 
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FIGURE 31. Colony development on TSA, TSA-R, OX and OX-R by wild-type (■) and 
rifampicin resistant strains (□) of L. monocytogenes LM311 after 24-h incubation in TSB-R100 
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CHAPTER 5 

CONCLUSIONS AND IMPLICATIONS 

 

            Wash solutions prepared with soft water (0 ppm hardness) was equivalent or more 

effective than those prepared with hard water (200 ppm hardness) in killing Salmonella on 

lettuce. Generally, the effectiveness of washing technologies used in this study decreased in the 

following order: EO water ≥ chlorine bleach ≥ ozonated water ≥ tap water ≥ Veggie Wash.  

            Treatment of leafy green vegetables and green onions with either running tap water or 

Veggie Wash was not effective in reducing populations of pathogenic bacteria from the produce 

surface, having found to cause a typical reduction of less than 1.5 log.  

            Household chlorine bleach, at concentrations currently permitted for being used in the 

fresh produce industry (approximately 75 ppm free chlorine), was able to reduce pathogens by 

1.1 – 2.8 log on all three produce tested. However, it is not recommended for home use since 

consumers may have problems obtaining proper concentrations and handling the concentrated 

form of chlorine solution.  

            Ozonated water, a powerful antimicrobial agent, has yet shown to be ineffective for 

washing leafy green vegetables due to the particularly non-uniform distribution of active ozone 

in the aqueous solution, resulting in similar pathogen reduction as compared to water rinse. 

Nevertheless, its superior efficacy for washing green onions and whole fruits, along with its 

nontoxic nature due to the absence of harmful residue, made it a candidate technology suitable 

for home use.            
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            In most test cases involving lettuce and green onions, electrolyzed oxidizing water (pH 

2.8, free chlorine concentration 18 ppm) was the most effective washing technology, producing 

pathogen reductions of 2.5 – 3.7 log. EO water can be easily prepared from tap water and table 

salt without addition of hazardous chemicals, resulting in lower levels of free chlorine than 

household bleach. From these considerations, it may be a suitable washing technology for use at 

home. However, its acceptance by consumers would be limited due to the high initial capital cost. 

More importantly, when tested on fresh-cut produce (such as spinach) it is not able to obtain 

significantly further microbial reduction than those achieved by chlorine or water rinse (P > 

0.05), resulting in only 1.0 – 1.6 log reduction of test pathogens. 

           Overall, this study highlighted the potential application of various home washing 

technologies to alleviate the risks of bacterial infections associated with consumption of leafy 

greens and green onions. Results obtained also provided the consumers with scientific evidence 

to make their own decision regarding the selection of antimicrobial methods for home use.  
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