
THE METEOR-S FRAMEWORK FOR SEMANTIC WEB PROCESS COMPOSITION

by

KAARTHIK SIVASHANMUGAM

(Under the direction of Dr. John. A. Miller)

ABSTRACT

The Web services have been recognized to have the potential to revolutionize e-commerce.
The potential for businesses to be able to interact with each other on the fly is very appealing. To
date, however, the activity of creating Web processes using Web services has been handled
mostly at the syntactic level. Current composition standards focus on building the process based
on the interface description of the participating services. The limitation of a rigid approach is that
it does not allow businesses to dynamically change partners and services. We enhance the current
process composition techniques by using Semantic Process Templates to capture the semantic
requirements of the process. The semantic process templates can act as configurable modules for
common industry practices maintaining the semantics of the participating activities, control flow,
intermediate calculations, conditional branches and exposing it in a industry accepted interface.
The templates are instantiated to form executable processes according to the semantics of the
corresponding templates. The use of ontologies in template definition allows much richer
description of activity requirements and a more effective way of locating services to carry out the
activities in the executable Web process. During discovery of services we consider not only
functionality, but also the quality of the services. Our unique approach combines the expressive
power of the present Web service composition standards and the advantages of the semantic Web
techniques for template definition and service discovery. The prototype implementation of the
framework for building the templates and generating the processes is discussed.

INDEX WORDS: Web Service Composition, Semantic Web Processes, Semantic Web Service
Discovery, Semantic Process Templates

THE METEOR-S FRAMEWORK FOR SEMANTIC WEB PROCESS COMPOSITION

by

KAARTHIK SIVASHANMUGAM

B.E., Anna University, India, 2000

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2003

© 2003

Kaarthik Sivashanmugam

All Rights Reserved

THE METEOR-S FRAMEWORK FOR SEMANTIC WEB PROCESS COMPOSITION

by

KAARTHIK SIVASHANMUGAM

Approved.

Major Professor. John A. Miller

Committee. Hamid R. Arabnia
Amit P. Sheth

Electronic Version Approved.

Maureen Grasso
Dean of the Graduate School
The University of Georgia
August 2003

DEDICATION

To my father B. Sivashanmugam, mother P.N. Kamala and brother S. S. Dhandapani

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. John. A. Miller for his guidance, foresight, and his

assurance in difficult times. Dr. Miller has been very generous with his time and wisdom. I would

also like to thank Dr. Amit P. Sheth and Dr. Hamid R. Arabnia for their valuable suggestions and

being a part of my committee. Special thanks to my friends P. Giridhar, K. Ramesh Kumar and G.

Srikumar and for their support and encouragement. Finally, thanks to Kunal Verma and other

LSDIS student members for helping me in this work.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... v

CHAPTER

1 INTRODUCTION...1

2 FRAMEWORK FOR SEMANTIC WEB PROCESS COMPOSITION...........................4

 1. Introduction... 5

 2. Background Study... 7

 3. METEOR-S Web Service Composition Framework (MWSCF).................. 14

 4. Features of MWSCF ... 39

 5. Related Work .. 42

 6. Conclusions and Future Work .. 45

3 CONCLUSIONS...49

 REFERENCES..……....52

APPENDIX

 A GENERATED PROCESS…...……....62

 B INSTALLATION GUIDE…...……....70

 C USER GUIDE.....………….....................………..……....72

 D TESTING…………................…………...……....80

vi

CHAPTER 1

INTRODUCTION

There has been significant excitement over the promise of Web services. The existence of

standardized software components over the Internet that can be accessed, described and registered

using XML based protocols could lead to powerful applications spanning the Internet. From the

perspective of e-commerce, the idea of creating dynamic business processes on the fly (described

as “dynamic trading processes” in [1]), would allow corporations to enable full-scale business

process integration [2] further leveraging the power of the World Wide Web. There has been a

flurry of activity in the area of Web services and in ways to assemble these Web services to create

Web processes. Web Processes represent next generation technology for carrying out core

business activities, such as e-commerce and e-services, and are created from the composition of

Web Services [3] or other software components. Web processes encompass the ideas of both inter

and intra organizational workflow. While there has been significant progress in this area, there are

a number of factors that prevent the wide scale deployment of Web services and creation of Web

processes. The most inherent problems concern describing and discovering Web services. The

current solutions and standards take a structural approach to describing Web services using XML

based descriptions [4]. The main problem with this approach is that, it is not possible to explicitly

define the meaning intended by the Web service provider. "Formally self-described" [5, 6, 7, 8]

semantic Web services are a solution to semantically describe and discover Web services. Most

of the composition standards build on top of Web service description standards. Hence

semantically describing a service could result in composing a process whose individual

components are semantically described. When all the tasks involved in a Web process are

semantically described, we may call such process as Semantic Web Processes [9].

1

As part of the METEOR-S project at the Large Scale Distributed Information Systems

(LSDIS) Lab at the University of Georgia, we are using techniques from the semantic Web [10],

semantic Web services [11] and earlier research in workflow management as part of the

METEOR project [12, 13] to deal with the problems of semantic Web service description,

discovery and composition. In particular, the METEOR-S project associates semantics to Web

Services, covering input/output, functional/operational descriptions, execution and quality, and

exploits them in the entire Web process lifecycle encompassing semantic description/annotation,

discovery, composition and enactment (choreography and orchestration) of Web services. The

current emphasis of the METEOR-S project has been on semantic annotation of Web services

[14], semantic discovery infrastructure for Web services (MWSDI: METEOR-S Web Service

Discovery Infrastructure) [15] and semantic composition of Web services (MWSCF: METEOR-S

Web Service Composition Framework). This paper focuses on MWSCF.

MWSCF aims at using the power of Web services to allow corporations to create

processes that mirror today’s dynamic and ever-changing business needs. Corporations can

expose their application software as Web services so that other corporations can dynamically find

and invoke them. In order to precisely define a business or workflow process, several process

specification languages have been created. These standards are based on WSDL descriptions.

Most of these languages have focused on representing the semantics of user requirements, so that

partners and Web services can be dynamically discovered before the executable process is

created. We have defined Semantic Process Templates (SPTs), which allow us to semantically

define each activity involved in a process. With an SPT, a process can be generated that will have

a concrete Web service implementation for each activity preserving their semantics. The main

focus of this paper is one aspect – that of creating semantically enriched process templates, which

can be refined into concrete executable processes based on the users requirements. The most

challenging problem in creating a process template is to capture the semantics of the activities in

2

the process, so that relevant Web services can be bound to activities of the process. We extend

our previous efforts on semantic Web service description and discovery to describe the process

template and to discover relevant Web services and to generate the executable process based on

the discovered services. Using the approach stated and framework discussed in this paper,

semantic Web processes can be more effectively designed. This is a straightforward approach that

is compatible with present industry standards for Web services.

3

CHAPTER 2

FRAMEWORK FOR SEMANTIC WEB PROCESS COMPOSITION i

i Kaarthik Sivashanmugam, John A. Miller, Amit P. Sheth, Kunal Verma. Submitted to International
Journal of Electronic Commerce

4

1. Introduction

There has been significant excitement over the promise of Web services. The existence of

standardized software components over the Internet that can be accessed, described and registered

using XML based protocols could lead to powerful applications spanning the Internet. From the

perspective of e-commerce, the idea of creating dynamic business processes on the fly (described

as “dynamic trading processes” in [1]), would allow corporations to enable full-scale business

process integration [2] further leveraging the power of the World Wide Web. There has been a

flurry of activity in the area of Web services and in ways to assemble these Web services to create

Web processes. Web Processes represent next generation technology for carrying out core

business activities, such as e-commerce and e-services, and are created from the composition of

Web Services [3] or other software components. Web processes encompass the ideas of both inter

and intra organizational workflow. While there has been significant progress in this area, there are

a number of factors that prevent the wide scale deployment of Web services and creation of Web

processes. The most inherent problems concern describing and discovering Web services. The

current solutions and standards take a structural approach to describing Web services using XML

based descriptions [4]. The main problem with this approach is that, it is not possible to explicitly

define the meaning intended by the Web service provider. "Formally self-described" [5, 6, 7, 8]

semantic Web services are a solution to semantically describe and discover Web services. Most

of the composition standards build on top of Web service description standards. Hence

semantically describing a service could result in composing a process whose individual

components are semantically described. When all the tasks involved in a Web process are

semantically described, we may call such process as Semantic Web Processes (SWP) [9].

As part of the METEOR-S project at the Large Scale Distributed Information Systems

(LSDIS) Lab at the University of Georgia, we are using techniques from the semantic Web [10],

5

semantic Web services [11] and earlier research in workflow management as part of the

METEOR project [12, 13] to deal with the problems of semantic Web service description,

discovery and composition. In particular, the METEOR-S project associates semantics to Web

Services, covering input/output, functional/operational descriptions, execution and quality, and

exploits them in the entire Web process lifecycle encompassing semantic description/annotation,

discovery, composition and enactment (choreography and orchestration) of Web services. The

current emphasis of the METEOR-S project has been on semantic annotation of Web services

[14], semantic discovery infrastructure for Web services (MWSDI: METEOR-S Web Service

Discovery Infrastructure) [15] and semantic composition of Web services (MWSCF: METEOR-S

Web Service Composition Framework). This paper focuses on MWSCF.

MWSCF aims at using the power of Web services to allow corporations to create

processes that mirror today’s dynamic and ever-changing business needs. Corporations can

expose their application software as Web services so that other corporations can dynamically find

and invoke them. In order to precisely define a business or workflow process, several process

specification languages have been created. These standards are based on WSDL descriptions.

Most of these languages have focused on representing the semantics of user requirements, so that

partners and Web services can be dynamically discovered before the executable process is

created. We have defined Semantic Process Templates (SPTs), which allow us to semantically

define each activity involved in a process. With an SPT, a process can be generated that will have

a concrete Web service implementation for each activity preserving their semantics. The main

focus of this paper is one aspect – that of creating semantically enriched process templates, which

can be refined into concrete executable processes based on the users requirements. The most

challenging problem in creating a process template is to capture the semantic capabilities of

activities in the process, so that relevant Web services can be bound to activities of the process.

We extend our previous efforts on semantic Web service description and discovery to describe

6

the process template and to discover relevant Web services and to generate the executable process

based on the discovered services. Using the approach stated and framework discussed in this

paper, semantic Web processes can be more effectively designed. This is a straightforward

approach that is compatible with present industry standards for Web services.

The key features and contributions of this paper are the following:

• A comprehensive framework for composition of SWPs

• Using process templates to store semantics of each activity in an SWP, and

• Process generation and dynamic discovery of services based on semantics of each

activity in the SWP during process generation.

The rest of the paper is organized as follows. Section 2 discusses three of the most popular

composition standards. We also present a sample of a typical Web process that will be used for

illustrative purposes. Section 3 presents a detailed discussion of the components making up our

composition framework. It also briefly summarizes the steps involved in composing a semantic

Web process. Key features of MWSCF are highlighted in section 4. Section 5 discusses related

work. Conclusions and future work are presented in section 6.

2. Background study

In this section, we first present an overview of the present composition standards. Later, we

provide a sample Web process and explain the implementation with respect to each of the

presented composition standards.

7

2.1. Overview of Present Standards for Process Specification

To enable enterprise application integration (EAI) and business process integration within and

across organizations, the importance of the languages for Web service composition has increased.

So have the number of proposals for the Web service composition standards proposed by

different vendors, organizations and consortia. These standards propose XML based open

standards for assembling a number of Web services to form a business process. The standards that

are currently being considered for building processes using Web service composition include

(among others) BPEL4WS [16], BPML [17] and DAML-S [5]. In spite of the fact that all of these

standards aim to solve the problems related to process description, they differ in many aspects.

Comparing these standards requires an in-depth study of application scenarios of the composed

processes and the support of these standards for each of the scenarios. [18] compares these

standards using a framework with a set of patterns that are representative of the recurring

situations found in different workflow management systems and in the context of enterprise

application integration. Comparison based on other criteria is available in [19, 20, 21, 22, 23, 24,

25]. The following sub-sections provide an overview of three major proposed standards;

interested readers are referred to the above comparative studies for further information.

2.1.1 BPEL4WS

The Business Process Execution Language for Web Services {BPEL4WS) [16] is a language to

specify business processes and business interaction protocols. It superseded XLANG [26] and

WSFL [27] as a standard for Web services flow specification. The model and XML-based

grammar provided by BPEL define the interactions between a process and its partners using Web

services interfaces. BPEL also defines the states and logic of coordination between these

interactions and systematic ways of dealing with exceptional conditions. The business interaction

protocols are called abstract processes. They are used to specify public and visible message

exchange between different parties involved in a business protocol, but they do not reveal the

8

internal behavior or the implementation of the involved parties. The executable processes on the

other hand are like workflow descriptions represented using basic and structured activities

specifying a pattern of execution of Web services. The process model defined by BPEL is based

on the WSDL service description model. The services (described as partners in BPEL) that are

invoked by the process and the services that invoke the process are represented using their WSDL

description. An executable process can be a Web service by itself and the interface of that process

can be represented using WSDL.

2.1.2 BPML

The Business Process Modeling Language (BPML) [17] is based on an abstract model and

grammar for expressing abstract and executable business processes. Using BPML, enterprise

processes, complex Web services and multi-party collaborations can be defined. A process in

BPML is a composition of activities that perform specific functions. The process directs the

execution of these activities. It can also be a part of another composition by defining it as a part of

a parent process or by invoking it from another process. Each activity (both simple and complex)

in the process has a context, which defines common behavior for all activities executing in that

context. Hence a process can be defined as a type of complex activity that defines its own context

for execution. The BPML specification defines 17 activity types, and three process types. The

different process types are nested processes which are defined to execute within a specific context

and whose definitions are a part of context definition, exception processes to handle exceptional

conditions in executing a parent process and compensation processes to provide compensation

logic for their parent processes. Each process definition may specify any of the three ways of

instantiating a process: in response to an input message, in response to a raised signal, or invoked

from an activity. BPML specifications support importing and referencing service definitions

given in WSDL. It also suggests standardizing BPML documents by using RDF for semantic

9

meta-data, XHTML and the Dublin Core metadata to improve human readability and application

processability.

2.1.3 DAML-S

The DAML-based Web Service Ontology (DAML-S) [5] is an initiative to provide an ontology

markup language expressive enough to semantically represent capabilities and properties of Web

services. DAML-S is based on DAML+OIL and the aim is to discover, invoke, compose, and

monitor Web services. It defines an upper ontology appropriate for declaring and describing

services by using a set of basic classes and properties. In DAML-S, each service can be viewed as

a Process and its Process Model is used to control the interactions with the service. Using the

Process Ontology’s sub-ontologies, Process Ontology and Process Control Ontology, it aims to

capture the details of the Web service operation. The Process Ontology describes the inputs,

outputs, preconditions, effects, and component sub-processes of the service. Process Control

Ontology is used to monitor the execution of a service. However, the current version of DAML-S

does not define the Process Control Ontology. DAML-S also categorizes three types of

processes. The first type is an atomic process, which do not have any sub-processes and can be

executed in a single step. The second type is a simple process, which is not invocable as it is used

as an abstraction for representing an atomic or composite process. A composite process is the

third type, which is decomposable into sub-processes. A composite process uses several control

constructs to specify how inputs are accepted and how outputs are returned.

There is a need to compare and analyze the features of these languages in detail to frame

a single and powerful and interoperable standard for composing processes. Web processes should

be dynamic and flexible enough to adapt to the changes in demands from customers or market

forces. To meet this requirement, BPEL and BPML, abstract the service references in the process

from actual service implementations. This helps in selecting a correct service implementation for

10

each activity during process deployment (deployment-time binding) or execution (execution-time

binding). However, the present composition standards like BPEL and BPML are lacking in an

important aspect, semantically representing the activity components of a process. BPML only

suggests adding semantics to the process description.

We handle this problem by capturing semantics of the involved activities in the process

template. These semantic descriptions are not bound to Web service implementations. Before

deployment of the process, the services that satisfy the semantic requirements are discovered and

bound to the activities in the process template. Using the interfaces and message types supported

by the services, an executable process is generated which is used for deployment. Any process

management system will demand a powerful discovery algorithm integrated into the process

management system. This demand becomes critical when the size and the number of services

available in the Web are taken into consideration. Our approach supports precise semantics based

discovery of Web services. The following section details a sample business process. Composition

of this process using our framework is discussed in the subsequent sections.

2.2 Sample Web Process

Let us consider an example for a typical Web process in the e-business domain, an electronic toy

manufacturer processing a distributor's order. The manufacturer hosts an application

(getOrderPriceAndDeliveryDate) where the distributor can query for the price and date of

delivery by specifying an order. The manufacturer, upon receiving the order details, processes the

order and returns the details that the distributor is querying for. Based on the details returned by

the application, the distributor can place the actual order (placeOrder) keeping the returned

details as the agreement between the manufacturer and the distributor. The applications,

getOrderPriceAndDeliveryDate and placeOrder, have several intermediate steps, which are to be

carried out by services within and outside the Manufacturer’s organization. For brevity, we have

11

considered only the getOrderPriceAndDeliveryDate application in our example. In the

getOrderPriceAndDeliveryDate application, when the distributor places an order, the

manufacturer checks the inventory to verify if it has enough goods to satisfy the order. In case

there is enough stock then the manufacturer contacts its delivery partner for a date of delivery and

its agreement database or accounts department to fix a price for the order. Based on the price

returned by the delivery partner and the fix price methods, the price for the order is finalized.

Then, the delivery date and the finalized price are returned to the distributor. In the other case,

when there is not enough stock in the inventory, the manufacturer contacts its supplier partner for

the required components. Then the manufacturer contacts its delivery partner to arrange for

delivery of components to its manufacturing site and later to deliver the products to the

distributor. The price and delivery date are returned to the distributor. The following figure

depicts this process in detail.

Figure 1: Sample Web Processii (getOrderPriceAndDeliveryDate)

This above-mentioned procedure for order processing can be implemented as an SWP.

This process may span across several organizations. In this example, the process design will

ii I, O respectively represent inputs and outputs of each acivity. Rec and Rep are the inputs to be received
by the process and output produced by the process

12

happen in the Manufacturer’s organization. When the process is statically composed as a

workflow, then the supplier partner and delivery partner services are decided before hand and

integrated in the process along with manufacturer’s intra organizational services such as fix price,

assembly line, inventory, etc. Due to the dynamic nature of the business, hard coding the business

logic and participating services may not be efficient. This process should be able to be integrated

with any potential delivery partner or supplier partner. The present standards support this kind of

design, but they impose a restriction on the interface provided by these potential partners. In

BPEL, it is assumed that if a service needs to be a part of a process instance, then it should

provide the interface specified by the WSDL’s port typeiii construct in the process definition. We

attempt to solve this problem by specifying the process using templates during process design.

Such templates are independent of the service description and process definition standards. Hence

any service that satisfy the semantic requirements of the activity can be used to carry out that

activity in the process. Before execution, the process templates are used to instantiate an

executable process in any of the process definition standards and executed accordingly.

The idea of customizable processes and using process templates has been discussed

earlier in [1]. It proposes three architectures/modalities for managing inter-organizational

business processes. One of the architectures envisions Process Portal hosted by an enterprise or

an organization for its customers. It manages a variety of customizable processes in which a

subscribing company or a trading partner might do an individual activity. The second architecture

is the Process Vortex for specialized markets where interactions are controlled by some third

party. The business processes in the process vortex are designed to incorporate different trading

models and they are available as templates that can be used to customize processes. The Dynamic

Trading Process architecture defined as the third architecture is a virtual market place for

different products spanning across multiple industries. In this architecture, processes can be

iii PortType construct in WSDL is used to group operations

13

constructed based on customer's needs. It supports flexible and dynamic trading processes that are

composed upon requests from customers and are based on the QoS requirements specified by the

customer. The framework discussed in our present work can be used to design processes in any of

these modalities. In our system, the processes can be defined using semantic templates and the

users of the process or provider of the process can customize and generate executable process.

The next section explains the METEOR-S composition framework and demonstrates how

it can be used to design the getOrderPriceAndDeliveryDate SWP.

3. METEOR-S Web Service Composition Framework (MWSCF)

This section describes the MWSCF. There are four major components in MWSCF: the Process

Builder, the Discovery Infrastructure (MWSDI), XML repositories and the Process Execution

Engine. The process designer constitutes a builder and a process generator. It provides a graphical

user interface to design/open process templates and provides a process generator, which uses

MWSDI and data in XML repositories to convert the template into an executable process. The

METEOR-S Web Service Discovery Infrastructure (MWSDI) is used to access a community of

Web service registries and semantically search for Web services. The generated executable

process is then executed using a process execution engine. The XML repositories in the

architecture are used to store ontologies, activity templates and process templates. The details of

each of these components are discussed in the following sections. Figure 2 shows the overall

architecture of MWSCF.

14

Figure 2: Web Service Composition Framework

3.1 METEOR-S Web Service Discovery Infrastructure (MWSDI)

Web services are advertised in registries. The initial focus of Universal Description, Discovery

and Integration [28] specifications was geared towards working with a Universal Business

Registry (UBR), which is a master directory for all publicly available Web services. However, the

new version of the UDDI specification [29] recognizes the need for existence of multiple

registries and the need for interactions among them. A large number of registry/repository

implementations for electronic commerce, each focusing on registering services of interest to

respective sponsoring groups, are also anticipated. Hence, the challenge of dealing with hundreds

of registries (if not thousands) during service publication and discovery becomes critical.

Searching for a particular Web service would be very difficult in an environment consisting of

hundreds of registries. This search would involve locating the correct registry in the first place

and then locating the appropriate service within that registry.

15

Finding the right services would be easier if the registries were categorized based on

domains with each registry maintaining only the Web services pertaining to that domain. If the

registries are specialized like this, search for services in that domain can be carried out in a

relevant registry. In addition, adding semantics to the domain-registry association will help in

efficiently locating the right registries based on query requirements. In MWSDI, we use a

specialized ontology called the Registries Ontology, which maintains relationships between all

domains in MWSDI, and associates registries to them (see [15] for details).

Improving service discovery also involves adding semantics to the Web service

descriptions and registering these descriptions in the registries. Adding semantics to Web service

descriptions can be achieved by using ontologies that support shared vocabularies and domain

models for use in the service description. Using domain specific ontologies, the semantics

implied by structures in service descriptions, which are known only to the writer of the

description (provider of web service), can be made explicit. Hence, while searching for a Web

service, we can refer to relevant domain specific ontologies to enable semantic matching of

services. MWSDI provides support for this kind of matching by relating both Web service

descriptions and user requirements to ontologies. It also provides an infrastructure for accessing

multiple registries. The registries are provided by different registry operators and they may

support their own domain specific ontologies for their registries. The registries may also want to

offer their own version of semantic publication and matching algorithms. Along with that, each

operator may also provide value added services for the registry users.

We have implemented MWSDI to demonstrate this scalable infrastructure of Web service

registries for semantic publication and discovery of services. It is implemented as a P2P network

of UDDI registries. The MWSDI prototype system allows different registries to register in a P2P

network and categorize registries based on domains. These registries in turn support domain

16

specific ontologies and provide value added services for performing registry operations. MWSDI

supports semantic publication of services. The inputs and outputs of the services are semantically

annotated and these annotations are captured in UDDI. To perform semantic discovery according

to the original implementation, the users can annotate the inputs and outputs of the service

requirements and the discovery process in a UDDI will result in the services that match these

semantic requirements. This discovery algorithm has been extended later in [14] that also

supports annotating each operation in a WSDL file with a concept in functional ontology along

with the annotation of preconditions and effects of that operation. Hence during discovery the

service requirements are semantically annotated by associating it with concepts in ontologies that

represent operation, inputs, outputs, preconditions and effects of the service. The discovery

mechanism supported in MWSCF is based on all these kinds of annotations in addition to input

and output semantics. Using the MWSDI with the semantic publication and discovery algorithms

can significantly improve upon the current standards in Web service registration and discovery.

MWSDI provides the flexibility to search for Web services based on ontologies. The user when

designing a process may specify the discovery details of an activity by using the registry ontology

(discussed in [15]). MWSDI architecture has been implemented on a cluster of SUN workstations

as peer-to-peer network using the JXTA [30] framework. Xindice [31], a native XML database

that comes with JWSDP [32] is used for implementing UDDI registries in MWSDI. UDDI4J [33]

is used for accessing UDDI registries during publication and discovery.

3.2 Process Builder

The process Builder implemented in Java has a designer that assists in composing semantic Web

processes. WSDL4J [34] has been used for processing WSDL files. The Jena tool kit has been

used to building and processing ontologies. The builder supports three different approaches to

specify an activity. Each activity in the process can be specified using a

17

• Web service implementation,

• Web service interface, or

• Semantic activity template.

3.2.1 Specifying an Activity using a Web Service

Static composition of a process is done by specifying activities using concrete Web service

implementations. This type of composition is discussed in one of our previous projects called

SCET [35]. MWSCF allows linking an activity to a WSDL file and a relevant operation in it. For

example, in the process discussed in section 2.2, the process designer knows the details of the

intra organizational services like checkInventory, fixPrice, etc. These services can be used to

carry out respective activities in a process. The process designer can link the activities to a WSDL

file and an operation in it. Even if the service interface or implementation changes, as long as the

URL of the WSDL and the name of the operation do not change, MWSCF can associate the

activity with that operation. During process generation, the portType and message details are

extracted from the WSDL and used in the generated executable process.

3.2.2 Specifying an Activity using a Web Service Interface

An activity can also be specified using a Web service interface. If an activity is linked to a Web

service interface, during process generation, a concrete service that implements the interface

could be used to carry out the activity. Only the services that implement the interface are

discovered. Discovering services that implement interfaces has been suggested in [36]. UDDI is a

registry and not a repository and hence it does not allow publishing the interface definitions.

Popular or industry specific interfaces can be published in UDDI using tModels that will have

references to the interface definitions. All the services that implement that interface will indicate

the conformance to that interface by binding the tModel using binding template constructs in

UDDI. During discovery process, the tModel that represent an interface, can be used and all the

18

services that implement this interface can be discovered. In MWSCF, during the creation of

process templates, process designer can specify activities using Web service interfaces. During

process generation a service can be selected from the list of services that implement the interface.

The portType and message details of the implementing services are retrieved and used during

process generation. In MWSCF, these interfaces are stored in a XML repository. The interfaces in

the interface repository are identified using the same id as that of the tModels in UDDI that

represent each of these interfaces. The user while designing a process can browse (shown in

figure 3) through these interfaces and select an interface and an operation in the interface to link

to an activity. The identifier (same as tModel id) of the interface is used during a UDDI search to

retrieve services that implement the interface.

Figure 3: Browser to Web Service Interfaces

The user in addition to specifying the interface and an operation also specifies the

discovery details and QoS requirements for that activity. The discovery details are the details

19

based on which UDDI registries can be queried. For example, the UDDI supports searching for

services based on name of the business or services (keywords, wildcard character and qualifiers),

categorization (in taxonomies), characterization (technical fingerprint), etc. These details in

addition to the interface details are used during discovery of Web services for an activity. In

another example, if a tModel representing a technical fingerprint is specified in the discovery

details of an activity, then a tModelBag is constructed using this tModel and the tModel that

represents the interface. The constructed tModelBag is used during service search. The MWSDI

specific details can also be represented in this. The discovery details are given in an XML

representation of the API supported by UDDI specifications.

The QoS requirements may also be given in an XML file. The QoS details are used in

ranking the discovered services. The process designer can use this ranking to select an

appropriate service to carry out an activity. The details are given in section 3.2.7. If there is a

standard interface for the Delivery service discussed in sample web process in section 2.2, it can

be cached in the XML repository. Then during the process template design, the activity for

delivery service can be specified using that interface.

3.2.3 Specifying an Activity using a Semantic Activity Template

In the third approach, the requirements for an activity are given using its semantic characteristics.

In the previous approach (section 3.2.2), the activity is specified using an interface, meaning that

an operation in the interface to carry out the activity and the data type (complex or simple) for

input and output of the activity is stated as the activity requirements. When the activity is

specified using a semantic activity template, the activity requirements given as the semantics of

the IO along with the operational semantics of the activity are specified. The functional semantics

of an activity, its IO, its preconditions and effects are represented using ontological concepts. The

services that conform to these semantic characteristics are discovered and ranked. The users can

20

select a service from the list of discovered services. This approach of specifying the activities

assumes that all services are semantically annotated by which each operation in a WSDL file, its

inputs, and outputs are mapped to ontological constructs in addition to having additional tags for

preconditions and effects of the operations. With this methodology, capabilities of each operation

in a WSDL file can be captured. These semantic details in a WSDL file could be published in a

UDDI. Hence given a set of requirements based on these semantic details, the services that match

these requirements could be more precisely found. A detailed discussion is presented in [14]. The

data types of input and output are optional and could be used as a weighted component by the

match algorithm. As in the previous approach, the discovery details and QoS requirements could

be specified for the semantic activity template too. These discovery details are combined with the

semantic requirements and search is performed within a registry. The QoS requirements may be

used to rank the resulting services. The following figure shows the user interface window to

specify an activity using semantic activity template.

Figure 4: Semantic Activity Template Specification Interface

21

 In our example discussed in section 2.2, the activity for Delivery Service can be specified

as a semantic template. The input and output of the activity can be represented using a standard

vocabulary or ontology. A domain ontology for the domain Cargo Services could be used for this

requirement annotation. Our work like most other work in semantic Web research is based on rich

framework for ontology engineering and re-use. The Cargo Services ontology may encompass

concepts like Air Cargo Services, Cargo Insurance, Maritime Cargo Services, Rail Cargo

Services, Trucking (taken from Yahoo directories). Hence using such ontology, the semantics of

an activity are specified. During service discovery, the service implementations that used this

ontology and annotated their descriptions will be semantically compared with the requirements

and ranked.

3.2.4 Process Composition

When composing a generic process template the user gives the list of activities and control flow

constructs to link the activities. After finalizing the template, the user can save the template for

future use or can find service implementations for each activity in the template. Though the

templates could be used during run-time to find services for each activity, at present MWSCF

only support deployment time binding. This is because the initial implementation of MWSCF

uses an engine that supports deployment time binding. Though the builder supports different

approaches to design, the focus of this work is on the third approach where the process is

composed by defining each activity using semantic templates. When all the activities in a process

template are specified using semantic templates then it is called a semantic process template.

3.2.5 Semantic Process Template

The semantic process template is a collection of activities, which can be linked using control flow

constructs. A sample process template in XML format is shown in figures 5 and 6.

22

The process templates in MWSCF have BPEL-like syntax. For representing control flow

the template, uses the BPEL constructs. First step in template creation is to create a WSDL that

represents the description for the desired process is generated using a WSDL editor. This WSDL

is then linked to the process template. The template can be explained as follows:

• Process-template is the root element that will enclose the entire template definition. It

has different attributes that represent different ontologies or other name spaces.

• The control constructs (like <sequence>, <flow>, <switch> etc.) are used to

represent control flow in the template. They do not need translation and they are used

as it is during the process generation phase.

• In the example discussed in section 2.2, the inputs and outputs of the respective

activities Receive Order Details and Return Details are represented as messages in

the WSDL file (shown in section 3.4) of the process. The receive and reply constructs

in the template are linked to the WSDL description (process-wsdl-operation) and an

operation in the description that the process designer creates. The messages that are

to be received and returned by the process are also captured in that WSDL file. They

will be translated to containersiv in the executable process.

iv called Variable is BPEL version 1.1

23

Figure 5: Sample Process Template Listing 1

24

Figure 6: Sample Process Template Listing 2

25

• The invoke-activity elements in the process template are translated into corresponding

invoke elements in the generated processes. The invoke-activity elements in the

template are of three types:

1. ServiceImpl, if the activity is specified using a concrete implementation,

2. WSInterface, if the activity is specified using a Web service interface,

and

3. SemanticTemplate, if the activity is specified using a semantic activity

template.

Based on the discoveryv (semantic-spec, discovery-URL, tModel id, discovery-spec)

and QoS (qos-spec) criteria given for each of the activities, the relevant services to

carry out each activity are discovered and selected (discussed in section 3.2.6). The

invoke elements in executable process will have other details like portType,

operation, input and output containers, etc. that are extracted from the WSDL

description of the service that is selected to carry out the activity.

• Input and output container details of the invoke elements in the executable processes

are generated from the data flow details provided by the user (shown in figure 11).

• The business protocol data (like inventory-availability) that are used in process

control (like conditional statements) need not be explicitly assigned in the process

template. Instead, during process generation, the user can map output from any of the

participating service to that variable. These details are translated into <assign> and

<copy> tags in the final generated executable process.

• Other details given by the user for discovery (semantic-spec, discovery-spec and qos-

spec) and ranking (ranking-details) for activities during process design are also

present in the process template under the criteria element. The discovery-spec

v ServiceImpl type does not need discovery as wsdl-URL and the operation-name to invoke are given in the
template itself

26

element in the template (figure 6) refers to a XML representation of the API used to

query for services that are categorized using geo3166-2 taxonomy. Since it is given

in conjunction with an activity of type WSInterface, when finding Web services for

the activity DeliveryPartnerService, all the services that implement the interface and

categorized using the taxonomy are discovered and ranked. The semantic-spec

element is used to give the semantics of the activity. qos-spec is used to specify the

QoS criteria of the activities. The ranking-weights element is used to assign weights

to rank the discovered services. Detailed discussion on discovery and ranking is

given in the following section.

3.2.6 Service Ranking and Selection

Service selection is a crucial aspect of composition. Hence the discovery algorithms in our system

are supplemented with a good ranking scheme. The service selection is based on the discovery

details for the activity provided by the user. The user could specify the discovery URL for each

activity. This discovery URL could point to a market place registry, a private enterprise registry, a

domain registry, or a Universal Business Registry. The service discovery will be carried out in

that registry. Registry selection can also be based on the registries ontology as proposed in

MWSDI. Since discovery could result in a large number of candidate services, we have

implemented a ranking mechanism that will help the process composer to select an appropriate

service. The ranking of services for each activity can be based on the semantic matching of

activity requirements with the service specifications and on the satisfiability of service in terms of

QoS requirements of the activity. Our approach requires that each service registered with UDDI

is linked to a semantically annotated WSDL description and that the WSDL descriptions are

linked to WSEL [27] (Web Service Endpoint Language) files that have the QoS details of all the

operations in the service. WSEL is an XML format for the description of non-operational and

behavioral characteristics of service endpoints, like quality-of-service or security properties. This

27

specification is under development and at present no specification exists for this language. WSFL

[27] specification envisions the need for this language and suggests using it in conjunction with

an activity to describe endpoint properties and enable better matchmaking. We have taken this

idea and linked each WSDL file to a WSEL file, which has the QoS specifications of the

operations in the WSDL file.

If the activity is specified as a semantic activity template then the overall ranking of a

service is the weighted arithmetic mean of the two dimensions. The first dimension is based on

the Semantic Matching. The second dimension is the QoS criteria matching. Semantic matching

can be considered in ranking only if the activity is specified semantically. However, the QoS

based ranking can be done for both interface and semantics based specification of an activity.

Matching semantics is done against the operations, inputs, outputs, preconditions and effects of

the activity requirements with the service details.

Figure 7: Formula for Calculating Semantic Matching Value

The semantic matching ranking is based on the weights assigned by the user to the

individual parts of the requirements. The user can assign the weights for each of the parts in the

activity requirement namely operations, inputs, outputs, preconditions and effects. The assigned

weights are normalized before calculation (at least one weight must be non-zero). During

28

discovery the semantic criteria of the activity are matched against the semantic details of the

services registered in UDDI. The weights corresponding to the matched semantics are used to

rank the services. The formula to calculate the ranking value for semantic matching is given in

figure 7.

Let us consider a sample calculation using the semantic specifications of

QuerySupplierPartner given in the template in figure 6. The semantic requirements of that

activity are given in semantic-spec element named semantic-1. It specifies that the candidate Web

services for that activity should have an operation that conforms to the concept

getOrderDetailsForOrderToyParts in the ontology represented by name space LSDIS-

FunctionalOnt and takes two inputs and produces two outputs. It also specifies the semantics of

the inputs and outputs using ontological constructs. From these specifications it can be

understood that one of the inputs of the QuerySupplierPartner should conform to the OrderCount

concept (class) in the LSDIS-OrderPlacement ontology. The template refers to four different

ontologies, namely, LSDIS-ToyManufacturing, LSDIS-OrderPlacement, LSDIS-FunctionalOnt,

LSDIS-CargoServices that are published in UDDI and identified by a tModel id. The same

tModel id is used to index the ontologies in the ontology repository.

For QuerySupplierPartner, the inputs are annotated as LSDIS-

ToyManufacturing:ToyIdentifier and LSDIS-OrderPlacement:OrderCount. Similarly the outputs

and operation are also annotated. So the user can assign weights to inputs, outputs and operations.

The semantics of preconditions and effects are not specified in the semantic requirement

specification of QuerySupplierPartner and hence weights are also not assigned for the

precondition and effects. In this case the weights are assigned only to three parts (i=3) operations,

inputs and outputs. The weights assigned in the template are 30, 20 and 50 respectively. If there is

29

an operation in a WSDL file that takes two inputs and produces two outputs with the following

semantics:

1. The functionality of the operation is mapped to LSDIS-

FunctionalOnt:getDetailsForOrderToyParts. The functional semantics of the service

exactly matches with the functional semantics of the activity. Hence the semantic

matching value M1 is 1.

2. One of the inputs is annotated using LSDIS-ToyManufacturing:ToyIdentifier and the

other using LSDIS-OrderPlacement:OrderCount. In this case the input semantics of

the service exactly match to the inputs semantics of the activity. The semantic

matching value M2 is 1.

3. One of the outputs is annotated with LSDIS-CargoServices:PickupDate and the other

output is annotated with LSDIS-CargoServices:PickupLocationDetails which is a

concept in the ontology that is 2 levels up in the hierarchy created by subClassOf

relationships. One of the outputs match exactly and the other output does not match

exactly. For non-exact matches the semantic matching value is calculated using a

linear function that decides the semantic matching value based on the subClassOf

hierarchy. The final semantic matching value M3 is the average of semantic matching

values of the two outputs. In the example the value of M3 is (1+0.8)/2 = 0.9. The

subClassOf hierarchy and linear function used is this implementation can be extended

with a better function that can be used to characterize two concepts separated in an

ontology by a number of named relationship properties.

4. The value of MS is (1 * 50 + 1 * 30 + 0.9 * 20) / (50+30+20) = 0.98.

The next dimension in ranking is based on the QoS requirements of each activity. Each

activity can be linked to requirements specification that defines the QoS parameters of that

30

activity regardless of the different design approaches discussed in section 3.2. For simplicity of

discussion, our present work considers five different QoS parameters, which are the subset of

QoS details that we have identified in one of our previous work [37]. The different QoS

specification parts used in ranking are:

• Task Delay Time

• Task Process Time

• Task Realization Cost

• Task Reliability Measure

In addition to QoS the WSEL file can also support representing boundary valuesvi and

possible values for the input and output parameters of each operation. Our present discovery

method does not take boundary values into consideration. The following figure shows a sample

WSEL file.

Figure 8: Sample WSEL Details of a Service

When specifying activity in a process the designer can link a QoS requirement

specification to it. The QoS requirements are specified with qualifiers. A sample QoS

vi For example if a service 'TakeOrder' has an operation that takes order for some product X and if the
maximum order that it can take is for 1000, it can specify that the value for the input parameter
"numberOfProducts" should be less than 1000. Also if the input takes any enumerated value set it could be
specified in the WSEL file. These details help users in properly selecting appropriate services.

31

requirements specification is shown in the template in figure 6 under qos-spec element. Each of

the QoS parameter in the requirements description is given a weight. For every service that is

discovered, the QoS compatibility is checked and using the weight for each QoS parameter the

ranking is calculated. The formula for calculating QoS matching of an activity is shown below:

Figure 9: Formula for Calculating QoS Matching Value

Considering the sample template and the activity named QuerySupplierPartner in it, the

qos-spec indicates that there is only one QoS requirement and that delay-time for the activity

should be less than 90 milliseconds. The QoS matching value of the candidate services are

calculated using a matching function. If for a service the matching value is 0.9 then the value of

MQ is calculated as (0.9 * 25) / 25 = 0.9

After calculating the ranking values (MS and MQ) for the Semantic Matching and QoS

dimensions, weights assigned by the user for each of these dimensions are used to calculate the

overall ranking. The overall ranking value is the weighted arithmetic mean of the ranking values

in each dimension. In the example activity QuerySupplierPartner, the weights for Semantic

matching and QoS matching are respectively 75 and 25. The overall ranking value is hence

32

calculated as (0.98 * 75 + 0.9 * 25) / (75 + 25) = 0.96. The services are ranked based on the

calculated value and the process designer can select one from the list of services (see figure 10):

Figure 10: Service Ranking Display Window for an Activity

3.2.7 Process Generation

After designing the template, the process designer can generate an executable process. This

involves finding services pertinent to each activity in the process, retrieving their WSDL file, and

extracting relevant information to generate the process. The discovery of services is done for each

activity independent of other activities. The builder helps in finding Web services for each

activity in the process. The user can then link services to incorporate data flow in the process. For

this purpose, after obtaining data link requirements between two services, the process generator

assists the user in establishing explicit data flow link between output parameters of one service to

the input parameters of the other.

33

The interface in MWSCF that assists in establishing data flow is shown in the figure 11.

If the process creator wants to specify the data flow link between two activities, the respective

Web service descriptions can be fed to the interface that can be used to establish the data flow in

the process. The process creator has to explicitly state the mapping between output parameters of

one service to the input parameters of the other.

Figure 11: Interface to Establish Data Flow

The port type data extracted from the WSDL of the process (created by process creator),

the data flow requirements obtained from the user and the control flow constructs in the templates

are used to generate an executable process. The WSDL descriptions of the participating Web

services are also retrieved. These WSDL files will be used during deployment time for binding.

During the process generation phase the process WSDL filevii is updated with the service link

vii WSDL file describing the process. It is designed by the process designer. It has the details of the inputs,
outputs and operations of the process

34

details. A sample executable BPEL process that is generated from the template shown in section

3.2.5 can be found in the appendix.

3.3 XML Repositories

In MWSCF, we have a pool of XML repositories that are used for managing (storing, searching

and reusing/sharing) the following

• Ontologies which are used during annotation of services and annotation of

semantic activity requirements,

• Semantic process templates which can be opened and edited using the process

designer during process design, and

• Activity/service interfaces.

All data (ontologies, interface definitions and process templates) are based on XML and

since they are meant for sharing and re-use, using XML repositories will be of much help in this

regard. The ontologies in the repositories are identified using the tModelId of the published

tModels that represent these ontologies. In another XML repository, the process templates are

categorized and stored. The categorization (taxonomy or ontology) is stored in the same XML

repository as that of the process templates. Each category in the categorization has an identifier.

The XML repository for storing process templates has different collections based on these

identifiers and the process template is categorized by storing the template in a particular

collection that represents a category. There is also an interface repository that stores the WSDL

interface definitions that can be browsed and selected to link to an activity during the process

design. Using these repositories during process design, service discovery or process generation

35

gives the user a powerful environment to compose a process. Xindice is used for implementing

these XML repositories.

3.4 Execution Engine

The generated executable process can be executed in any respective execution engine. As the

work to develop our own execution engine is underway, at present MWSCF has been

implemented and tested using BPWS4J orchestration server. Deploying a process in BPWS4J

[38] engine requires a BPEL file containing the process definition, a WSDL descriptionviii for the

process and the other WSDL descriptions of the web services that a part of the process. The

WSDL descriptions of the participating services are needed for deployment time binding. Using

the WSDL files of the participating services and other details, an in-memory model [39] of the

process is created. Since the present release of BPWS4J does not allow deploying a process

without a BPEL file, we have used the BPWS4J printer class to write the in-memory model of the

process into a BPEL file. This file is then validated using the tool validator that comes with

BPWS4J. Once it is validated, it is deployed in the BPWS4J engine and it can be invoked like any

other Web service.

3.5. Summary of Steps in Semantic Process Composition

This section summarizes how Semantic Web Processes are designed, composed and executed.

1. The WSDL description for the desired process is generated using a WSDL editor. In

the example discussed in section 2.2, the activities Receive Order Details and Return

Details will be represented in the WSDL file of the process. The process template

viii created by the process composer (shown in Figure 14)

36

will be linked to this file. The process template shown in section 3.2.5 is linked to

this file and the operation getOrderPriceAndDeliveryDate. This WSDL file can be

annotated and published as a Web service.

Figure 12: Process WSDL

2. A process template is created or opened in the process designer.

37

3. Activities are added to the template and control flow constructs are added to the

templates (if needed).

4. Each activity is semantically annotated and two XML files representing discovery

details and QoS specifications are linked to them.

5. Services are discovered (using discovery criteria), ranked (using semantic matching

and QoS criteria) and selected for each activity.

6. Data flows between services are established.

7. The executable process is generated by the process generator using the WSDL of the

process, the process template and the WSDL files of the participating services.

8. The process is validated, deployed and it is ready for invocation.

Figure 13: Steps in Semantic Web Process Composition

 The above-mentioned steps considered only specifying the activities using Semantic

templates. However, any type of activity specification technique discussed in section 3.2 is

38

allowed. Figure 13 shows different phases in the semantic Web process composition. In step 1

(design phase), the figure shows only designing a process using Semantic Activity Templates.

Other approaches (specifying an activity using a Web service interface or a concrete Web service

implementation) are not shown. Steps 2 and 3 depict that for each activity a service is to be

selected and the data flow is established if needed. These steps are done repeatedly until all the

activities are bound to a Web service implementation and data flow is established. After this, the

actual executable process is generated.

4. Features of MWSCF

The increasing pressure from the market and competitors force the companies to always strive for

efficiency and improvement in their processes. This creates the need for an environment that

helps building, analyzing and executing processes that are integrated deeply into the business

itself. This environment has to provide interactive features for building processes based on

business requirements and application semantics. As a step towards this aim, we have completed

an initial prototype implementation of the framework as described in section 3 that has the

following features:

4.1 Semantically Enriched Service and Process Descriptions

This framework supports building processes using activities that are semantically described. This

helps in building the overall process, preserving the semantics of each activity. Each activity will

be achieved using a Web service. Binding a service to an activity may not be easy considering the

number of services that will be available in the future and their heterogeneity. Present standards

like BPEL and BPML provide limited forms of dynamic binding. These standards include

portType descriptions in the process definitions. Hence, for an activity, only the services that

implement the portType can be used. This type of hard coded binding is not always suitable for

39

ever-changing e-business applications. Using semantic descriptions not only helps in efficiently

finding relevant Web services to execute each activity, it also helps in reasoning about them.

Using semantic templates optimized flow or process execution could be calculated and QoS

trade-off analysis could be done.

4.2 Configurable Processes

MWSCF provides an architecture where the processes are represented using templates, which are

not bound to concrete service implementations. This feature is present in almost all process

modeling languages. Our designer tool, in addition, allows users to build a process template and

configure each activity in the process template to build an executable process according to the

requirements. Using the builder, users can open an existing process template and configure

activities in that process. This improves the usability of generic processes for different situations

and, in addition, it also enables personalization of the processes based on the configuration

parameters. This will help in the success of new business models like outsourcing of Web

processes. Off-the-shelf ready-made template can be bought and used instead of building it from

the scratch. Common processes can be made available for rent/lease using value added service

features like easy configuration, friendly interface for configuration, etc. For example, let us

consider a typical composite Web service example "Conference Booking". This is a Web process

by itself as it involves several activities like booking travel tickets, booking hotel, registering for

the conference, etc. An organization that specializes in this type of business can create an abstract

Web process template. The clients of the organization can use this template to feed in parameters

like QoS of each activity, ranking and discovery details, etc. to build the actual process. The

organization can then execute this configured process in its own service execution engine and

return the results back to user. Considering another example, in intra-enterprise process that takes

an order and delivers some product to the customer. Depending on the price that the customer is

willing to pay for the delivery service QoS parameters of the task that is involved in product

40

delivery can be configured so that the execution engine selects a relevant service that handles the

product delivery order satisfying the required QoS criteria.

Comprehensive Framework for Web Service Composition

The MWSCF provides a comprehensive framework for Web Service composition. The MWSCA

extends full life-cycle support for achieving semantic Web processes by providing an

infrastructure to assist a user starting from service publication and discovery (MWSDI) to

designing a process (Process Designer) and executing it (Execution Engine). The designer

interface that we have developed as a part of MWSCF provides to easy-to-use interface. Using

the built-in powerful discovery technique in the process builder, users can effectively compose a

process. The framework provides interfaces where users can view the ranking of services and

select the services that are appropriate for their requirements. A unique aspect of the framework is

that it automatically retrieves the WSDL files for deployment and extracts information from them

to generate the process. The generated executable process will preserve the semantics specified in

the process template. All these user interfaces and features implemented, as a part of MWSCF

will help in rapid and efficient development of Web processes.

Adaptability to any Process Specification Standard

The present implementation of MWSCF allows constructing process template with BPEL-like

syntax. However, the generated executable process can be made independent of BPEL syntax.

The process generator is implemented as a separate module independent of other modules in the

MWSCF. Hence a pluggable process generator module can replace the existing module that

generates BPEL process. If the new process generator module is able to generate executable

processes in other specifications based on the template, then it can be used in the framework to

41

generate a process following a different standard. In fact, the best case is when these modules co-

exist to help the user generate processes in any standard.

5. Related Work

There have been few research efforts and commercial tools to automate business processes to

dynamically compose Web services and to use semantic Web techniques in Web service

composition. In this section, we will discuss the related work that deals with Web service

composition and other research efforts that are related to our work.

The main focus of our paper is creating semantic process templates. There are a few

papers that discuss process templates. For example, [40] discusses reusable process skeletons that

implement some conversational logic. It argues that the notion of process templates and service

libraries would help to speed up and ease the development of processes that incorporate B2B

capability. In our work, we have discussed creating templates and storing them in a repository. To

ease the discovery and usage of these templates we have categorized them. Taxonomies of

processes have been discussed in [41]. It discusses classifying process instances depending on

their characteristics, such as outcome of the process instance, duration of execution, etc. Our

work discusses classifying the process templates based on their semantic capabilities.

There are several systems that help in Web service composition. [42] discusses a platform

where Web services are declaratively composed and executed in a peer-to-peer environment. It

does not perform dynamic discovery. The user has to discover services and then define

composition using state-chart diagrams. Then the composition can be executed in a P2P fashion

with the help of peer software components coordinators for each constituent Web service. [43]

discusses a case based reasoning mechanism for discovery of services to form a composite Web

42

service. The participating services are selected based on the relationships between the services

and the constraints involved. eFlow [44] is another system that allows composing, customizing

and deploying e-services. The process is modeled as a graph that defines the control and data

flow. The nodes represent services in the process. A node could be either an ordinary node which

is statically bound to a service or it could be a generic node which is specified with a

configuration parameter and a list of services out of which one is bound to the node during run

time. They have the notion of process templates and categorizing them in a hierarchy. eFlow also

supports dynamic discovery technique using a mediator and the associated rules. Unlike our

system neither the discovery mechanism nor the process templates in these systems is semantic.

The fundamental assumption in our work of annotating process definition with ontologies

is that the candidate services are semantically described and discovered. The need for semantics

in service description has been discussed in quite a few of previous publications [5, 14, 45, 46].

DAML-S is a popular initiative in this direction to describe service capabilities using ontologies.

A DAML-S based prototype for semi-automatic composition of services has been discussed in

[47]. It provides a composer that will aid the user to select services for each activity in the

composition and to create flow specifications to link them. Upon selecting a service, the services

that can produce output that could be fed as the input of the selected service are listed after

filtering based on profile descriptions. The user can manually select the service that he wants to

fit in at a particular activity. After selecting all the services, the system generates a composite

process in DAML-S. The execution is done by calling each service separately and passing the

results between services according the flow specifications. Step-by-step composition of Web

services using DAML-S descriptions has also been discussed in one of our previous papers [48].

It discusses using ontologies to solve the problems in discovery of Web services and to resolve

the structural and semantic heterogeneity among these services. The discovery methodology and

the set of algorithms discussed in this related work supports discovery of services based on

43

functional requirements and operational metrics. Though all of these related work attempt to

solve the same problem (semantic discovery and composition) as that our work, the approach is

different. Our work, instead of DAML-S, is based on the industry standards for Web services

namely WSDL, UDDI and BPEL4WS. Our work does not discuss sequential composition where

the service for an activity in the process is decided before deciding for the next activity. In our

work, the entire composition can be defined as a template of semantically annotated activities,

and the discovery of services for the activities need not be sequential.

We believe that our composition methodology is better than other present frameworks,

because the richness needed in representing services and data in the e-business domain is

captured well using ontologies. The use of ontologies to aggregate the products, services,

processes and practices within the industry to realize successful net markets has been discussed in

[49]. It argues that elements of commerce and relationships between them are used to model

market places and identifies ontologies as the means to do that. It states that ontological

engineering is the prime requisite for information and services aggregation. It encourages

developing and using domain/industry specific ontologies. Representing the products and services

using ontologies will help to understand them from the different viewpoints and roles with in that

domain/industry. Another related work [50] discusses developing a Universal Business Language.

UBL aims to define Business Information Entities at a semantic level. It is something similar to

an ontology with a few restrictions [51]. Like ontologies, UBL is aimed to model the real world

focusing on a domain (business) to enable semantic interoperability. Our paper discusses using

standard vocabularies/ontologies to markup process templates for better interoperability and

process generation. [52] identifies semantics as one of the important aspect that B2B protocol

standards aims to standardize. It also lists business content or vocabulary as one of the facets of

semantics in B2B standards. In another related work, [53] states that interoperating services need

to agree upon vocabularies, document formats and conversation definitions. They add that, in

44

addition to this, agreement has to be there between various horizontal and vertical industry

segments to use the standard vocabularies and conversations. [8] proposes Web Services

Modeling Framework (WSMF) to enable flexible and scalable e-commerce using Web Services.

It discusses a conceptual model for developing, describing and composing Web services. It

advocates using semantic Web techniques to deal with the problems of heterogeneity and

scalability in e-commerce. It also discusses different types and approaches for scalable mediation

between trading partners in e-commerce. We realize the importance of the mediation mechanism

to deal with inherent heterogeneity in an open and flexible environment. This itself is a separate

research direction. Hence we have deferred that for future work. However, our work reiterates the

need for using semantics both in service description and process description to help make the

vision of universal interoperability in e-business a reality.

6. Conclusions and Future Work

Web services have created a major wave in the IT industry. Several standards are being proposed,

consortia have been created and academic research has increased rapidly. The obvious reasons are

the immense power of Web services with regards to e-business and the commercial value behind

them. The Web services are indeed useful for easier, faster integration, good in terms of return of

investment (ROI), establishing friction free markets, rapid value added assembly of services, etc.

However, some of the inherent problems of e-business like scalability and semantic

interoperability are not solved by the service-oriented architecture provided by Web services. The

convergence of ideas, findings, and results from various initiatives like ebXML, Semantic Web

and Web services can bring about better solutions.

Our work is on applying Semantic Web techniques to design e-business processes.

Applying [54] Semantic Web findings to Web services technologies and use them for e-business

45

could revolutionize the existing business models and the way they are carried out. This idea has

received much attention and support both from academia and industry. For example, [55]

addresses these problems with a framework that aims to align concepts known from the Semantic

Web and the ebXML initiative and [56] discusses using Web services for implementing business

processes and the need for Business Process Management to use Web services for dynamic e-

businesses.

Using Semantic Process Templates in MWSCF provides following advantages:

• It helps in rapid process composition. The discovery of services can be

performed later and can be delegated to the system.

• It is not necessary to build a process from scratch. Templates can be configured

and reused.

• Process design is flexible as it is independent of web service portTypes. The

change in partner interface without change in the semantics of the interface does

not affect the process template or the discovery of services.

• Process re-design is greatly facilitated.

• Ready made templates can act as business/reference models and could be re-used

by different organizations that want to implement same process with different

services.

Our work does not take into consideration the B2B protocol standards that are crucial for

inter-enterprise collaboration and achieving public processes. Our work focuses on the private

processes of the enterprises that need to incorporate external services. Typically business

transactions occur using some B2B protocol standard [52] that defines the message formats

exchanged, sequencing, security, etc. There are several domain specific (Rosetta Net [57]) and

46

domain independent standards (ebXML BPSS [58]]) that focus on different aspects of the B2B

protocol. In addition, there are Web services standards (WSCIix [59], WS-CS [60]) to define

message exchange in a business collaboration and choreograph the activities in the collaboration.

These standards aim to improve the stateless synchronous/uncorrelated asynchronous model of

interaction supported by WSDL. A multi-party collaboration is carried out either by using a

global controller that coordinates various activities on behalf of the involved parties, or using a

mechanism [61] that links a data and messages from visible public processes to the private

organizational processes. In any case this is outside the scope of a process specification language

like BPML or BPELx and as well as outside the scope of our work too. We foresee the

convergence of standards like BPEL, WSCI, ebXML to realize a powerful e-commerce model.

This convergence in conjunction with Semantic Web techniques will revolutionize the way

businesses are done over the Internet.

Future research directions that we are beginning to explore include the following:

• Specifying collaboration in the process template and using an algorithm [62] to check the

compatibility of a service to engage in a conversation.

• Building own engine for better control over the process and performing sub-conversation

in a process.

• Extending process templates to capture the behavior of the intended process at high level

and providing direct mapping to the formalisms like state charts or Petri nets etc. to

enable process verification [63] and simulation [64, 65].

• Using a template in conjunction with other template [66] and a related analysis.

ix The convergence of complementary standards happened in the case of WSCI and BPML aims to provide
comprehensive view of role of businesses in a collaboration and the flow of activities that characterize each
business
x Abstract processes in BPEL are aimed to describe business protocols that specify the sequencing of
messages exchanged by one particular partner with its other partners to achieve a business goal . However,
an abstract BPEL process defines the business protocol from the perspective of a single entity in the
collaboration, while real world business collaboration need a peer-to-peer conversational model.

47

• Incorporating important e-business aspects like negotiation [67], Service Level

Agreements [68] and contracts [69] in template design and service discovery.

• Specifying goal definition as a part of process template. Goal definitions will represent a

business goal in highlevel representation in some standard format like UML, and

• Investigating possibilities to represent preconditions and effects in a more expressive

way.

48

CHAPTER 3

CONCLUSIONS

Web services have created a major wave in the IT industry. Several standards are being proposed,

consortia have been created and academic research has increased rapidly. The obvious reasons are

the immense power of Web services with regards to e-business and the commercial value behind

them. The Web services are indeed useful for easier, faster integration, good in terms of return of

investment (ROI), establishing friction free markets, rapid value added assembly of services, etc.

However, some of the inherent problems of e-business like scalability and semantic

interoperability are not solved by the service-oriented architecture provided by Web services. The

convergence of ideas, findings, and results from various initiatives like ebXML, Semantic Web

and Web services can bring about better solutions.

Our work is on applying Semantic Web techniques to design e-business processes.

Applying [54] Semantic Web findings to Web services technologies and use them for e-business

could revolutionize the existing business models and the way they are carried out. This idea has

received much attention and support both from academia and industry. For example, [55]

addresses these problems with a framework that aims to align concepts known from the Semantic

Web and the ebXML initiative and [56] discusses using Web services for implementing business

processes and the need for Business Process Management to use Web services for dynamic e-

businesses.

Using Semantic Process Templates in MWSCF provides following advantages:

49

• It helps in rapid process composition. The discovery of services can be

performed later and can be delegated to the system.

• It is not necessary to build a process from scratch. Templates can be configured

and reused.

• Process design is flexible as it is independent of web service portTypes. The

change in partner interface without change in the semantics of the interface does

not affect the process template or the discovery of services.

• Process re-design is greatly facilitated.

• Ready made templates can act as business/reference models and could be re-used

by different organizations that want to implement same process with different

services.

Our work does not take into consideration the B2B protocol standards that are crucial for inter-

enterprise collaboration and achieving public processes. Our work focuses on the private

processes of the enterprises that need to incorporate external services. Typically business

transactions occur using some B2B protocol standard [52] that defines the message formats

exchanged, sequencing, security, etc. There are several domain specific (Rosetta Net [57]) and

domain independent standards (ebXML BPSS [58]]) that focus on different aspects of the B2B

protocol. In addition, there are Web services standards (WSCIxi [59], WS-CS [60]) to define

message exchange in a business collaboration and choreograph the activities in the collaboration.

These standards aim to improve the stateless synchronous/uncorrelated asynchronous model of

interaction supported by WSDL. A multi-party collaboration is carried out either by using a

global controller that coordinates various activities on behalf of the involved parties, or using a

mechanism [61] that links a data and messages from visible public processes to the private

xi The convergence of complementary standards happened in the case of WSCI and BPML aims to provide
comprehensive view of role of businesses in a collaboration and the flow of activities that characterize each
business

50

organizational processes. In any case this is outside the scope of a process specification language

like BPML or BPELxii and as well as outside the scope of our work too. We foresee the

convergence of standards like BPEL, WSCI, ebXML to realize a powerful e-commerce model.

This convergence in conjunction with Semantic Web techniques will revolutionize the way

businesses are done over the Internet.

xii Abstract processes in BPEL are aimed to describe business protocols that specify the sequencing of
messages exchanged by one particular partner with its other partners to achieve a business goal . However,
an abstract BPEL process defines the business protocol from the perspective of a single entity in the
collaboration, while real world business collaboration need a peer-to-peer conversational model.

51

REFERENCES

[1] Sheth A., van der Aalst, Arpinar B., Processes driving the networked economy, IEEE

CONCURRENCY 7: (3) 18-31 JUL-SEP 1999.

[2] Bussler C., B2B Integration Concepts and Architecture, ISBN 3-540-43487-9, Springer. 2003

[3] Benatallah B., Dumas M., Fauvet M. C. and Rabhi F.A. Towards Patterns of Web Services

Composition. In S. Gorlatch and F. Rabhi (Eds): "Patterns and Skeletons for Parallel and

Distributed Computing". 2002. Springer Verlag (UK).

[4] Christensen E., Curbera F., Meredith G., Weerawarana S., Web Services Description

Language (WSDL) 1.1, W3C Note 15 March 2001.

[5] Ankolenkar A., Burstein M., Hobbs J. R., Lassila O., Martin D. L., McDermott D., McIlraith

S. A., Narayanan S., Paolucci M., Payne T. R. and Sycara K., DAML-S: Web Service Description

for the Semantic Web, The First International Semantic Web Conference (ISWC), Sardinia

(Italy), June, 2002.

[6] Sheth A. and Meersman R., Amicalola Final Report: SIGMOD Record Special Issue on

Semantic Web, Database Management and Information Systems, December 2002.

[7] Handschuh S., Sollazzo T., Staab S., Frank M., and Stojanovic N., Semantic Web Service

Architecture - Evolving Web Service Standards toward the Semantic Web. The 15th International

FLAIRS Conference, Special Track on Semantic Web, Florida, May 14-16, 2002.

52

[8] Fensel D. and Bussler C., The Web Service Modeling Framework WSMF, Technical report,

Vrije Universiteit Amsterdam, 2002.

http://informatik.uibk.ac.at/users/c70385/wese/wsmf.paper.pdf

[9] METEOR-S: Semantic Web Services and Processes, Applying Semantics in Annotation,

Quality of Service, Discovery, Composition, and Execution.

http://lsdis.cs.uga.edu/proj/meteor/SWP.htm, http://swp.semanticweb.org

[10] W3C, Technology and Society Domain, Semantic Web Activity, Semantic Web,

http://www.w3.org/2001/sw/

[11] Semantic Web Enabled Web Services, http://swws.semanticweb.org

[12] METEOR Project on Workflow and Semantic Web Process,

http://lsdis.cs.uga.edu/proj/meteor/meteor.html

[13] Sheth A., Kochut K., “Workflow Applications to Research Agenda: Scalable and Dynamic

Work Coordination and Collaboration Systems, in Workflow Management and Interoperability,

A. Dogac et al Eds., Springer Verlag, 1999, pp. 35-59.

[14] Sivashanmugam, K., Verma, K., Sheth, A., Miller, J., Adding Semantics to Web Services

Standards, Proceedings of the 1st International Conference on Web Services (ICWS'03), Las

Vegas, Nevada (June 2003) pp. 395 – 401.

53

[15] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S. and Miller, J.,

METEOR–S WSDI: A Scalable Infrastructure of Registries for Semantic Publication and

Discovery of Web Services, Journal of Information Technology and Management (to appear).

[16] Andrews T., Curbera F., Dholakia H.,Goland Y., Klein J., Leymann F., Liu K., Roller D.,

Smith D., Trickovic I., Weerawarana S., Ed: Satish Thatte, Business Process Execution Language

for Web Services, Version 1.1. May 2003.

ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf

[17] Arkin A., Business Process Modeling Language, http://www.bpmi.org/specifications.esp

[18] van der Aalst W.M.P., Dumas M., ter Hofstede A.H.M., and Wohed P. Pattern-Based

Analysis of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05, Queensland University

of Technology, Brisbane, 2002.

[19] Peltz C., Web Service Orchestraction:a review of emerging technologies, tools and

standards. Jan 2003.

http://devresource.hp.com/drc/technical_white_papers/ WSOrch/WSOrchestration.pdf

[20] Shapiro R., A Comparison of XPDL, BPML and BPEL4WS, Rough Draft, 2002

http://xml.coverpages.org/Shapiro-XPDL.pdf

[21] Comparison of DAML-S and BPEL4WS (initial draft), 2002

http://www.ksl.stanford.edu/projects/DAML/Webservices/DAMLS-BPEL.html

54

[22] Web Service Choreography Interface (WSCI) 1.0 Specification, FAQs.

http://wwws.sun.com/software/xml/developers/wsci/faq.html

[23] Tolksdorf R., A Dependency Markup Language for Web Services, Web, Web-Services, and

Database Systems, NODe 2002 Web and Database Systems 2002, Erfurt, Germany, October 7-

10, 2002.

[24] Haberl S., Business Process Description Languages

http://www.cis.unisa.edu.au/~cissh/research/webflow/bpdl.html

[25] Business Process Standards for Web Services.

http://www.webservicesarchitect.com/content/articles/BPSFWSBDO.pdf

[26] 'XLANG: Web Services for Business Process Design',

http://www.gotdotnetcom/team/xml_wsspecs/xlang-c/default.htm.

[27] 'Web service flow language (WSFL) 1.0',

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

[28] Universal Description, Discovery and Integration of Web Services, http://www.uddi.org/

[29] UDDI Spec Technical Committee Specification, 2002. http://uddi.org/pubs/uddi-v3.00-

published-20020719.htm

[30] Gong L., "JXTA: A Network Programming Environment", IEEE Internet Computing,

(5)3:88--95, May/June

55

[31] Apache Xindice, http://xml.apache.org/xindice/

[32] Java Web Services Developer Pack. http://java.sun.com/webservices/webservicespack.html

[33] UDDI4J Overview, http://www-124.ibm.com/developerworks/oss/uddi4j/

[34] Web Services Description Language for Java Toolkit, http://www-

124.ibm.com/developerworks/projects/wsdl4j/

[35] Chandrasekaran S., Miller J. A., Silver G., Arpinar I. B. and Sheth A. P., "Performance

Analysis and Simulation of Composite Web Services," Electronic Markets: The International

Journal of Electronic Commerce and Business Media, Special Issue on Web Services, Ronald

Klueber and Heiko Ludwig (Guest Editors) Vol. 13, No. 2 (Spring 2003) pp. 18-30. Taylor and

Francis Publishing.

[36] Using WSDL in a UDDI Registry, Version 1.08, http://www.oasis-

open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.pdf

[37] Cardoso, J., Sheth A. and Miller J. Workflow Quality of Service. International Conference

on Enterprise Integration and Modeling Technology and International Enterprise Modeling

Conference (ICEIMT/IEMC’02), Valencia, Spain, Kluwer Publishers.

[38] Business Process Execution Language for Web Services JavaTM Run Time,

https://www.alphaworks.ibm.com/tech/bpws4j

56

[39] Business Process with BPEL4WS: Learning BPEL4WS, Part 3, Activities and the in-

memory model, http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol3.html

[40] Sayal M., Casati F., Dayal U., Shan M-C., Integrating Workflow Management Systems with

Business-to-Business Interaction Standards, 18th International Conference on Data Engineering

(ICDE'02), p. 0287.

[41] Casati F. and Shan M., Semantic Analysis of Business Process Executions,

SpringerLink:Lecture Notes in Computer Science 2287, p. 287

[42] Sheng Q. Z., Benatallah B., Dumas M., Mak E. O, SELF-SERV: A Platform for Rapid

Composition of Web Services in a Peer-to-Peer Environment, Proceedings of 28th International

Conference on Very Large Data Bases 2002, Eds. Philip A. Bernstein; Yannis E. Ioannidis;

Raghu Ramakrishnan; Dimitris Papadias, Hong Kong China, 20-23 Aug. 2002, Morgan

Kaufmann Publishers, USA, pp. 1051-1054.

[43] Limthanmaphon B. and Zhang Y., Web Service Composition with Case-Based Reasoning. In

Proc. Fourteenth Australasian Database Conference (ADC2003), Adelaide, Australia.

Conferences in Research and Practice in Information Technology, 17. Schewe, K.-D. and Zhou,

X., Eds., ACS. 201-208.

[44] Casati F., Ilnicki S., Jin L., Krishnamoorthy V., and Shan M.-C. eFlow: a platform for

developing and managing composite e-services. Technical report, Hewlett Packard, 2000.

[45] Supercharging WSDL with RDF: Managing structured Web service metadata, http://www-

106.ibm.com/developerworks/library/ws-rdf/?dwzone=ws

57

[46] Dumas M., O'Sullivan J., Heravizadeh M., Edmond D. and ter Hofstede A.. Towards a

semantic framework for service description In Proc. of the IFIP Conference on Database

Semantics, Hong Kong, April 2001. Kluwer Academic Publishers.

[47] Sirin E., Hendler J., Parsia B., "Semi-automatic Composition of Web Services using

Semantic Descriptions." Accepted to "Web Services: Modeling, Architecture and Infrastructure"

workshop in conjunction with ICEIS2003, 2002.

[48] Cardoso J., Sheth A., Semantic e-Workflow Composition, Journal of Intelligent Information

Systems (to appear), 2003.

[49] Smith H., The Role of Ontological Engineering in B2B Net Markets, August 2000.

http://www.ontology.org/main/papers/csc-ont-eng.html.

[50] Burdett D., Avoiding EDI's Mistakes With Web Services Semantic Interoperability, EAI

Journal Volume 4, Number 12 (December 2002), pages 8-11.

[51] Obrst L., Park J., Yim P., Semantics, Ontologies & UBL,

http://ubl.cim3.org/~lcsc/tempMeetingResources/for_2002-04-

02_a/Semantics_Ontologies_n_UBL_outline_1a.ppt.

[52] Bussler, C.: B2B Protocol Standards and their Role in Semantic B2B Integration Engines. In:

Bulletin of the Technical Committee on Data Engineering. March 2001,Vol. 24, No.1. IEEE

Computer Society.

58

[53] Sahai A., and Machiraju V., Enabling a Ubiquitous e-Service Vision on the Internet, e-

Services Journal, 1(1), 2002.

[54] Trastour D., Bartolini C., Preist C., Semantic web support for the business-to-business E-

Commerce Lifestyle, Autonomous Agents and Multi-Agent Systems.AAMAS'02.

[55] Hofreiter B., Huemer C. and Winiwarter W., Towards Syntax-Independent B2B, ERCIM

News No. 51, Special Theme: Semantic Web, October 2002.

[56] Leymann F., Roller D., and Schmidt M.-T., Web services and business process management,

IBM Systems Journal, New Developments in Web Services and E-commerce, Volume 41,

Number 2, 2002.

[57] RosettaNet Home, http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/LayoutInitial

[58] ebXML Business Process Specification Schema, Version 1.01,

http://www.ebxml.org/specs/ebBPSS.pdf

[59] Web Service Choreography Interface 1.0 ,

http://wwws.sun.com/software/xml/developers/wsci/wsci-spec-10.pdf

[60] Conversation Support for Web Services, http://www.alphaworks.ibm.com/tech/cs-ws

[61] Bussler C.: The Role of B2B Protocols in Inter-enterprise Process Execution. In Proceedings

of Workshop on Technologies for E-Services (TES 2001) (in cooperation with VLDB2001).

Rome, Italy, September 2001.

59

[62] Wombacher A. and Mahleko B., Finding Trading Partners to Establish Ad-Hoc Business

Processes, Proceedings of the Tenth International Conference on Cooperative Information

Systems 2002 (CoopIS '02), 2002

[63] Hull R., Benedikt M., Christophides V., Su J., E-Services: A Look Behind and Curtain, in

Proc. of ACM SIGMOD/PODS 2003.

[64] Bosilj V., Stemberger M. and Jaklic J., "Simulation Modelling Toward E-Business Models

Development", International Journal of Simulation Systems, Science & Technology, Special

Issue on: Business Process Modelling, Vol. 2, No. 2, 16-29. (2001).

[65] Silver G., Maduko A., Jafri R, Miller J. A. and Sheth A. P., "Modeling and Simulation of

Quality of Service for Composite Web Services," Proceedings of the 7th World Multiconference

on Systemics, Cybernetics and Informatics (SCI'03), Orlando, Florida (July 2003) pp. -. (to

appear)

[66] Edmond D. and ter Hofstede A.H.M.. Service composition for electronic commerce. In

Proceedings of PACIS-2000 (Pacific Asia Conference on Information Systems), Hong Kong,

June 2000.

[67] Benyoucef M. and Keller R. K., An Evaluation of Formalisms for Negotiations in E-

Commerce, In Proceedings of the Workshop on Distributed Communities on the Web, pages 45-

54, Quebec City, QC, Canada, June 2000. Springer. LNCS 1830.

[68] Sahai A, Durante A, Machiraju V. Towards Automated SLA Management for Web Services.

HPL-2001-310. http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf

60

[69] Angelov S., Grefen P, An Approach to the Construction of Flexible B2B E-Contracting

Processes; CTIT Technical Report 02-40; University of Twente, 2002.

61

APPENDIX A: GENERATED PROCESS

 The following listing shows an executable process generated from the template shown in

figures 5 and 6. During process generation 2 files are created. The first file has the executable

BPEL process and the second file is a WSDL file (sample-utils.wsdl in this example) that has

definitions for all the service link types that are given in partner elements.

A sample executable process that is generated is as follows:

<process name = "sample"

 xmlns:NS1 = "http://lsdis.cs.uga.edu"

 xmlns:tns-utils = "http://lsdis.cs.uga.edu//sample-utils.wsdl"

xmlns:NS2="http://lsdis.cs.uga.edu:7001/axis/services/sample/axis/services/sample"

xmlns:NS3="http://decatur.cs.uga.edu:8080/axis/services/sampleSupplierService7/axis/serv

ices/ sampleSupplierService7"

xmlns:NS4="http://decatur.cs.uga.edu:8080/axis/services/sampleDelvieryService23/axis/se

rvices/sampleDelvieryService23"

 xmlns = "http://schemas.xmlsoap.org/ws/2002/07/business-process/">

 <partners>

 <partner name = "caller" serviceLinkType = "NS1:sampleProcessSLT"/>

 <partner name = "service-provider-1" serviceLinkType = "tns-utils:provider-1-SLT"/>

 <partner name = "service-provider-2" serviceLinkType = "tns-utils:provider-2-SLT"/>

 <partner name = "service-provider-3" serviceLinkType = "tns-utils:provider-3-SLT"/>

 </partners>

 <containers>

 <container name = "request" messageType = "NS1:getDetailsRequest"/>

 <container name = "response" messageType = "NS1:getDetailsResponse"/>

62

 <container name = " InventoryCheckActivity -request"

messageType = "NS2:checkInventoryRequest"/>

 <container name = " InventoryCheckActivity -response"

messageType = " NS2:checkInventoryResponse"/>

 <container name = "DeliveringToysToDistributor-request"

messageType = " NS2:arrangeDeliveryRequest"/>

 <container name = "DeliveringToysToDistributor -response"

messageType = " NS2:arrangeDeliveryResponse"/>

 <container name = "FixProce-request" messageType = " NS2:fixPriceRequest"/>

 <container name = "FixPrice-response" messageType = " NS2:fixPriceResponse"/>

 <container name = "FinalizePrice-request" messageType = " NS2:finalizePriceRequest"/>

 <container name = "FinalizePrice-response" messageType = " NS2:finalizePriceResponse"/>

 <container name = "QuerySupplierPartner-request"

messageType = " NS3:orderToyPartsRequest"/>

 <container name = "QuerySupplierPartner-response"

messageType = " NS3:orderToyPartsResponse"/>

 <container name = "DeliveryPartnerService-request"

messageType = " NS4:arrangeDeliveryRequest"/>

 <container name = "DeliveryPartnerService-response"

messageType = " NS4:arrangeDeliveryResponse"/>

 <container name = "AskAssemblyLine -request"

messageType = " NS2:assemblyServiceRequest"/>

 <container name = "AskAssemblyLine -response"

messageType = " NS2:assemblyServiceResponse"/>

 </containers>

 <sequence name = "sequence-1">

63

 <receive name = "receive" partner = "caller" portType = "NS1:samplePortType"

 operation = "getDetails" container = "request"

 createInstance = "yes"/>

 <assign>

 <copy>

 <from container = "request" part = "ToyId"/>

 <to container = "InventoryCheckActivity -request" part = "ToyIdentifier"/>

 </copy>

 <copy>

 <from container = "request" part = "ToyCount"/>

 <to container = “InventoryCheckActivity -request" part = "NoOfToys"/>

 </copy>

 </assign>

 <invoke name = "InventoryCheckActivity" partner = "service-provider-1"

portType = "NS2:IntraOrgServicesPortType"

 operation = "checkInventory" inputContainer = " InventoryCheckActivity -request"

 outputContainer = "InventoryCheckActivity -response">

 <assign>

 <copy>

 <from container = " InventoryCheckActivity -response" part = "ToysCountToOrder"/>

 <to container = "QuerySupplierPartner-request" part = "OrderCount"/>

 </copy>

 <copy>

 <from container = "request" part = "ToyId"/>

 <to container = "QuerySupplierPartner -request" part = "IdentifierForToy"/>

64

 </copy>

 </assign>

 <switch name = "switch-1">

 <case condition = "bpws:getContainerData('InventoryCheckActivity-response', 'return') =

'no'">

 <sequence name = "sequence-3">

<invoke name = "QuerySupplierPartner" partner = "service-provider-2"

 portType = "NS3:SupplierPartnerPT"

 operation = "orderToyParts"

 inputContainer = "QuerySupplierPartner -request"

 outputContainer = "QuerySupplierPartner -response">

 <assign>

 <copy>

 <from container = "QuerySupplierPartner-response" part = "PickUpDate"/>

 <to container = "DeliveryPartnerService-request" part = "CollectDate"/>

 </copy>

 <copy>

 <from container = "QuerySupplierPartner-response"

part = "PickUpLocationIdentifier"/>

 <to container = "DeliveryPartnerService-request" part = "CollectLocationId"/>

 </copy>

 <copy>

 <from expression = "'AA-465'"/>

 <to container = "DeliveryPartnerService-request" part = "DeliveryLocationId"/>

 </copy>

65

 <copy>

 <from expression = "'AIR-CARGO'"/>

 <to container = "DeliveryPartnerService -request" part = "DeliveryMeans"/>

 </copy>

 </assign>

 <invoke name = "DeliveryPartnerService" partner = "service-provider-3"

 portType = "NS4:DeliveryPartnerPortType"

 operation = "arrangeDelivery"

 inputContainer = "DeliveryPartnerService-request"

 outputContainer = "DeliveryPartnerService-response">

 <assign>

 <copy>

 <from container = "DeliveryPartnerService -response" part = "DeliveryDate"/>

 <to container = "AskAssemblyLine -request" part = "InDate"/>

 </copy>

 </assign>

 <invoke name = "AskAssemblyLine" partner = "service-provider-1"

 portType = "NS2: IntraOrgServicesPortType"

 operation = "assemblyService"

 inputContainer = "AskAssemblyLine-request"

 outputContainer = "AskAssemblyLine-response">

 </sequence>

 </case>

 </switch>

 <assign>

 <copy>

66

 <from container = "request" part = "DeliveryLocation"/>

 <to container = "DeliveringToysToDistributor -request" part = "DeliveryLocationId"/>

 </copy>

 <copy>

 <from container = "request" part = "DeliveryMeans"/>

 <to container = "DeliveringToysToDistributor -request" part = "DeliveryMeans"/>

 </copy>

 <copy>

 <from expression = "'AL-465'"/>

 <to container = "DeliveringToysToDistributor -request" part = "PickUpLocationId"/>

 </copy>

 <copy>

 <from container = "AskAssemblyLine-response" part = "OutDate"/>

 <to container = "DeliveringToysToDistributor -request" part = "CollectDate"/>

 </copy>

 <copy>

 <from container = "request" part = "ToyCount"/>

 <to container = "FixPrice-request" part = "ToyCount"/>

 </copy>

 </assign>

 <sequence name = "sequence-2">

 <flow name = "flow-1">

 <invoke name = "DeliveringToysToDistributor" partner = "service-provider-1"

 portType = "NS2:IntraOrgServicesPortType "

 operation = "deliveryService"

 inputContainer = "DeliveringToysToDistributor -request"

67

 outputContainer = "DeliveringToysToDistributor-response">

 <invoke name = "FixPrice" partner = "service-provider-1"

 portType = "NS2: IntraOrgServicesPortType"

 operation = "fixPrice" inputContainer = "FixPrice-request"

 outputContainer = "FixPrice-response">

 </flow>

 <assign>

 <copy>

 <from container = "FixPrice-response" part = "Price"/>

 <to container = "FinalizePrice-request" part = "DeliveryCost"/>

 </copy>

 <copy>

 <from container = "DeliveringToysToDistributor-response" part = "Cost"/>

 <to container = "FinalizePrice-request" part = "ToysCost"/>

 </copy>

 </assign>

 <invoke name = "FinalizePrice" partner = "service-provider-1"

portType = "NS2:IntraOrgServicesPortType "

 operation = "finalizePrice" inputContainer = "FinalizePrice-request"

 outputContainer = "FinalizePrice-response">

 </sequence>

 <assign>

 <copy>

 <from container = "DeliveringToysToDistributor-response" part = "DeliveryDate"/>

 <to container = "response" part = "PossibleOrderDeliveryDate"/>

 </copy>

68

 <copy>

 <from container = "FinalizePrice-response" part = "FinalCost"/>

 <to container = "response" part = "FinalCost"/>

 </copy>

 </assign>

 <reply name = "reply-1" partner = "caller" portType = "NS1:samplePortType"

 operation = "getDetails" container = "response"/>

 </sequence>

</process>

69

APPENDIX B: INSTALLATION GUIDE

The implementation of the framework uses several tools and packages namely Jena, JXTA,

Xindice, JWSDP, UDDI4J, WSDL4J, BPWS4J. A short summary of their use and links to

download and installation instructions are provided for each of these tools.

Jena DAML-API [Version 1.6.1]

o Provides support for loading DAML ontologies into jena RDF models and performing

several functions such as loading an ontology, traversal, etc.

o DOWNLOAD & INSTALLATION: http://www.hpl.hp.com/semweb/download.htm

Project JXTA [Version 65e]

o Provides a set of platform independent protocols that are used to allow devices

interconnected in a network to communicate and collaborate using Peer-to-Peer

communication.

o DOWNLOAD & INSTALLATION: http://www.jxta.org/project/www/download.html

Xindice [Version 1.1b]

o Database designed to store XML data.

o DOWNLOAD & INSTALLATION: http://xml.apache.org/xindice/download.html

Java Web Services Developer Pack [Version 1.2]

o Used to test and deploy XML applications and Web applications

o The framework uses

o Java WSDP Registry Server –used to manually or automatically advertise and

discover Web services

o Apache Tomcat container- provides an environment for development and

deployment of Java application

70

http://www.hpl.hp.com/semweb/download.htm
http://www.jxta.org/project/www/download.html
http://xml.apache.org/xindice/download.html

o DOWNLOAD &

INSTALLATION:http://java.sun.com/webservices/downloads/webservicespack.html

UDDI4J [Version 2.0]

o Provides class libraries that help in interacting with UDDI (Universal Description,

Discovery and Integration) registry.

o DOWNLOAD & INSTALLATION:

http://www-124.ibm.com/developerworks/oss/uddi4j/

WSDL4J [Version 1.4]

o Used for creating, representing and manipulating WSDL documents.

o DOWNLOAD & INSTALLATION:

http://www-124.ibm.com/developerworks/projects/wsdl4j

BPWS4J [Version 1.1]

o Provides a platform for creating, validating and executing BPEL4WS processes

o DOWNLOAD & INSTALLATION:

http://alphaworks.ibm.com/aw.nsf/download/bpws4j

71

http://java.sun.com/webservices/downloads/webservicespack.html
http://www-124.ibm.com/developerworks/oss/uddi4j/
http://www-124.ibm.com/developerworks/projects/wsdl4j
http://alphaworks.ibm.com/aw.nsf/download/bpws4j

APPENDIX C: USER GUIDE

This user’s guide is designed to help understand the functionalities and operations of METEOR-S

Process Composition tool. Kindly refer to the installation guide for the software that needs to be

installed for operating this tool.

After installing the respective software, for running the tool, the user needs to type the following

command in the directory that contains the classes for the tool.

java –classpath %BCP%;%UDDI%;%JENA%;%WSD%;XIN%;. MainWindow

BCP - includes the jar files of BPWS4J

JENA – includes jar files of Jena

WSD – includes jar files of WSDL4J

XIN – includes jar files of Xindice

UDDI – includes jar files of UDDI4J

Before using the tool, it is required to start the start the required UDDI registries (if needed).

Operating the Tool

It should be noted that this tool could be used for “Template Design” and “Process Composition”.

Template Design

The template can be designed in three ways.

• Concrete Web Service: Static composition of a process is done by specifying activities

using concrete Web service implementations.

• Interface: Activities can be specified by a Web Service interface. Only the services that

implement the interface can be discovered using the tModel id.

72

• Semantic Template: Requirements for the activity are given using its semantic

characteristics.

Concrete Web Service:

1. Select the ADDWEBSERVICES tab from the GUI.

2. The following fields appear on the GUI:

• Activity Name: Enter the name of the activity

• WSDL URL: Enter the URL of the WSDL file pertaining to the activity.

• Operation Name: Enter the name of the operation that you want to associate to an

the activity.

3. After entering corresponding details in these fields click on the SAVE tab.

Interface:

Interface Implementation can be done by two methods.

Method1: To be used when the tModel id for a particular type of interface is known.

1. Select the ADDACTIVITYINTERFACE tab from the GUI.

2. The following fields appear on the GUI:

• Activity Name: Enter the name of the activity.

• tModel id: Enter the id of the tModel for a particular type of interface.

• Operation Name: Enter the name of the operation in the interface.

• Discovery URL: Enter the access URL of the UDDI registry to be used.

• Discovery Specification: Specify additional features for basic discovery

supported by UDDI.

73

• Ranking Details: Enter the URL of the XML file that contains the weights for

QoS criteria.

• QoS: Enter the URL of the XML file that contains QoS requirements.

 3. After entering corresponding details in these fields click on the SAVE tab.

Method2: To be used when you want to select a particular type of interface from a list of

interfaces in the repository.

1. Select the INTERFACEBROWSER tab from the GUI.

2. The following fields appear on the GUI:

• Select: Select a single interface from the lists different interfaces.

• Operation Name: Enter the name of the operation in the interface.

• Discovery URL: Enter the access URL of the UDDI registry to be used

• Discovery Specification: Specify additional features for basic discovery

supported by UDDI.

• Ranking Details: Enter the URL of the XML file that contains the weights for

QoS criteria.

• QoS: Enter the URL of the XML file that contains QoS requirements.

 3. After entering corresponding details in these fields click on the SAVE tab.

Semantic Template:

1. Select the ADDSEMANTICACTIVITY tab from the GUI.

2. The following fields appear on the GUI:

• Activity Name: Enter the name of the activity.

• Decomposable: under construction. You can ignore this.

• Ontology URL: Enter the URL of the required functional Ontology.

74

• Operation Concept: Enter the Operation concept from the required ontology that

is associated with the functionality of the service.

• Discovery URL: Enter the access URL of the UDDI registry to be used.

• Discover Specifications: Specify additional details for basic discovery supported

by UDDI.

• Ranking Details: Enter the URL of the XML file that contains the weights for

Qos criteria.

• Message Part Name: Specify the input and output concepts from the ontologies.

• Message Part Category: under construction.

• Collect: Collect the entered semantics of input / output / precondition / effect for

the activity.

• Add: Add the semantics of input / output / precondition / effect to the activity.

3. After entering corresponding details in these fields click on the SAVE tab.

Process Composition

Process Composition assumes that the WSDL file of the process and the template for the

process is already present.

The steps for “Process Composition” are as follows.

1. Select the PROCESS NAME tab from the GUI. This step is required to initialize all

the required details. The following fields appear on the GUI after selection:

• Process Name: Enter the name of the Process.

• URL for WSDL of process: Specify the URL of the WSDL file of the

process.

• Operation Name in process WSDL: Specify the name of the operation for

which the process is to be generated.

75

• Read Details: Click on Read Details after entering all the details.

2. Select SERVICE SELECTION tab from the GUI. This step is required for selecting a

particular service for a particular activity. The following fields appear on the GUI

after selection:

• Update Activities: Click on Updates Activities so that all the activities that

needed to be discovered are updated.

• Select: Click on Select, this lists the activities from which on can be selected.

• List Services: Click on List Services, this lists the services for the selected

activity along with the Operation Name, WSDL, Ranking value for each of

the services.

-Operation Name: Displays the operation name of the service

selected to be used for the selected activity.

-WSDL: Displays the WSDL URL for the service selected.

-Ranking value: Displays the ranking value for the selected

activity.

• Select Services: Select a particular service from the list and click on Select

Services.

• This procedure can be repeated for other activities.

• After selecting services for all the activities, click on SAVE DETAILS tab

which will save all the details in a file called “activities.list”.

3. Select DATA FLOW tab from the GUI. This step is required for establishing the data

flow from one activity to another. The following fields appear on the GUI after

selection:

76

• Load Activity: Click on Load Activity, this loads all the activities.

• Source Activity: Click on Source Activity, this loads the output messages of

all the activities except for receive where in it loads the input messages.

• Target Activity: Click on Target Activity, this loads all the input messages

for all the activities except for reply where in it loads the output messages.

• After selecting the Source Activity and Target Activity click on SELECT

AND ASSIGN. This creates a data flow from the source activity to the target

activity.

• The data flow is represented in five columns namely Source From Target To

Expression.

• If you desire to give a constant as an input to a particular activity, click on

the FROM column and delete the details in it and enter the XPATH

expression and check in the Expression box.

• Press SAVE and details of the dataflow are saved in a file called

SerializedAssignmentDetails.

4. Select PROCESS VARIABLES from the GUI.

Executable process variables should carry assignments. This is the requirement of the

BPEL4WS specifications. Therefore unassigned process variables in the template

have to be assigned to values (output of Web services) to generate executable

process.

The following fields appear on the GUI after selection:

• UPDATE VARIABLES and ACTIVITIY: Click on Update Variables and

this updates the variables and activities.

77

• SELECT ACTIVITY: Select a particular activity for which you want to

assign variable(s). The output messages for this activity are displayed.

• Select an output message to assign to the variable.

• SELECT VARIABLE: Select the required variable.

• ASSIGN: Click on ASSIGN, this assigns the selected output to the selected

variable.

• Repeat the same procedure for other variables and activities

• SAVE: Click on SAVE, this will save all the assignment details to a file

called SerializableVariableAssignmentDetails.

5. Select GENERATE PROCESS

This generates the process taking into account the template and the WSDL file

specified and the Data Flow constructed and the variable assignments done.

There are few other tabs on the GUI, which have the following functionalities.

• View BPEL Tree: This tab on the GUI gives a view of the process tree that is

generated.

• List Activities: This tab on the GUI lists all the activities present.

• List Ontology: This tab on GUI lists all the ontologies present.

• View Template: This tab on the GUI displays the template used.

• View Process WSDL: This tab on the GUI displays the WSDL of the process.

• Control Flow: Under construction.

After the process is generated the output is in the form of two files called the

generatedBPEL_final.bpel and utils.wsdl and two intermediate files, namely, the

78

intermediateBPEL.xml and generatedBPEL_initial.bpel. The intermediateBPEL.xml has the

skeletal structure of the process. The generatedBPEL_initial.bpel has the generated process but

with redundancies with respect to namespaces, containers, partners, etc. The

generatedBPEL_final.bpel has the generated process without the redundancies. The utils.wsdl has

the service link types of the services used in the generated process.

79

APPENDIX D: TESTING

The tool implemented performs two main functions, service discovery and process generation.

This section describes the testing process that was carried on to carry out these functionalities. To

test these functions a process template was created and a process was generated using the

template. This template was created in order to generate an executable process that will help in

arranging for a trip to a conference. It has four activities getting conference details, booking a

hotel, booking a ticket to go to conference location and booking the return ticket. Since the

purpose is to demonstrate the working of the tool and not to generate a process with intricate

details, a simplified process has been assumed.

The METEOR-S Process Composition tool needs two file as inputs, the process template

(shown in figure 18) and the process WSDL (shown in figure 19). The process template, the

process WSDL and the generated process (shown in figure 20) are shown in the end of this

appendix section.

Discovery

This section describes the testing of the discovery mechanism implemented as a part of this work.

The process template has an activity to reserve a room in a hotel (for simplicity, the location of

the hotel is assumed to be in the location of the conference). If the search for Web services that

assist in making room reservation has to be carried out in UDDI it can be done in two ways,

keyword based search or category-based search.

Microsoft’s UBR (http://uddi.microsoft.com/search/default.aspx) was searched for

testing. When the search was keyword based (using ‘hotel’) it resulted in 7 records. When the

search was based on the UNSPC3.1 taxonomy. It resulted in only one service.

The results can be summarized as follows

80

http://uddi.microsoft.com/search/default.aspx

1. The descriptions of few services were meaningful. Typically descriptions are for

human understanding and it is not feasible to use descriptions for automated service

discovery or selection.

2. None of the results was linked to a WSDL file. Even if we could locate WSDL files of

the services, selection of the most appropriate service based on the semantics of the

activity requirements is not possible with the current discovery mechanism supported

by UDDI.

Figure 14: Search for Hotel Booking services in UBR using keyword

81

Figure 15: Search for Hotel Booking services in UBR using category

 In contrast, the discovery mechanism suggested in this paper can be used effectively to

discover appropriate Web services based on the semantics of the requirement. For example, the

template shown in figure 18 has an activity named Hotel that is annotated with

HotelServiceSemantics. This semantic specification is defined in the criteria element of the

template. It states that one of the inputs of the service should be compatible with the concept

CheckInDate in the ontology identified by HotelOnto and so on. The METEOR-S Process

Composition tool discovery mechanism finds all related services and rank them based on their

semantics. The following screenshot shows the service selection step in the process composition

using our tool.

82

Figure 16: Search for Hotel Booking services based on semantics of requirements

The tool selects the services and ranks based on the semantics of the requirement and the QoS

criteria. Using the overall ranking value, a service can be selected. The higher-ranking value

implies better match between activity requirement and service specification. This type of service

discovery and ranking mechanism is not supported by UDDI. Hence the semantic discovery

mechanism can improve upon the existing Web service discovery techniques and can be used

effectively in automated Web service discovery.

Process Generation

The second functionality of the tool is process generation. This section explains testing carried

our to check the functionality. The template describes various activities and their sequence in the

process of arranging for a trip to a conference. The template describes the process shown in the

following figure:

83

Figure 17: Web Process that is described in the template

Two of the activities AirTicketTo and AirTicketReturn are specified as activities of type

serviceImpl. There are two other activities ConferenceDetails and Hotel of types WSInterface and

SemanticActivityTemplate respectively. After the discovery and service selection, data flow has to

be established among the activities. Based on the template, WSDL details and the data flow

specified during build time, the process was generated successfully. The process is listed in the

end of the appendix. The control flow in the template for this process is different from the control

flow specified in the template shown in figure 1 and the process generation was successful. Hence

the process generator is working well for different kind of control and data flow constructs.

Template Follows:

<?xml version="1.0" encoding="UTF-8"?>

<process-template name="sample process" HotelOnto="HotelOntologyTModel"

FinanceOnto="FinanceOntologyTModel" GeneralTrade="GeneralTradeOntology">

 <sequence name="sequence-1">

 <receive name="receive" processWSDL-operation = "arrange4Conference"/>

 <invoke-activity name="ConferenceDetails" type="WSInterface"

84

 tModel-id="uuid:f5e283fd-0bf5-e283-b52d-b8acf6332a17"

 qos-spec="qos-1"

 ranking-weights="ranking-1"

 operation-name="getConferenceDetails"/>

 <flow name="flow-1">

 <invoke-activity name="Hotel" type="SemanticTemplate"

 semantic-spec="HotelServiceSemantics"

 ranking-weights="ranking-2"

 discovery-URL=

"http://westpoint.cs.uga.edu:8080/registry-server/RegistryServerServlet"/>

 <invoke-activity name="AirTicketTo" type="ServiceImpl"

 wsdl-URL=

"http://lsdis.cs.uga.edu/proj/meteors/wsdls/TravelServiceNo1.wsdl"

 operation-name="bookAirTicket"/>

 <invoke-activity name="AirTicketReturn" type="ServiceImpl"

 wsdl-URL=

"http://lsdis.cs.uga.edu/proj/meteors/wsdls/TravelServiceNo1.wsdl"

 operation-name="bookAirTicket"/>

 </flow>

 <reply name="reply" processWSDL-operation = "arrange4Conference"/>

 </sequence>

 <qos-spec name="qos-1">

 <delaytime unit="milliseconds" qualifier="LT">200</delaytime>

 </qos-spec>

 <ranking-weights name="ranking-2">

 <semantic-matching-weight>100</semantic-matching-weight>

85

 <input-semantics-weight>30</input-semantics-weight>

 <output-semantics-weight>20</output-semantics-weight>

 <operational-semantics-weight>30</operational-semantics-weight>

 </ranking-weights>

 <ranking-weights name="ranking-1">

 <qos-weight>100</qos-weight>

 </ranking-weights>

 <criteria>

 <semantic-spec name="HotelServiceSemantics">

 <input name="anyInput1" onto-concept="HotelOnto:CheckInDate"/>

 <input name="anyInput2" onto-concept="HotelOnto:CheckOutDate"/>

 <input name="anyInput3" onto-concept="HotelOnto:GuestName"/>

 <input name="anyInput4" onto-concept="FinanceOnto:CrCardNo"/>

 <input name="anyInput5" onto-concept="FinanceOnto:CrCardType"/>

 <input name="anyInput6" onto-concept="FinanceOnto:CrCardExpiryDate"/>

 <output name="anyOutputName"

onto-concept="GeneralTrade:Confirmation"/>

 <operation name="operationConcept"

operation-concept="HotelOnto:RoomBooking"/>

 </semantic-spec>

 </criteria>

</process-template>

Figure 18: Process Template used to generate the process

86

Process WSDL follows:

<?xml version="1.0" encoding="UTF-8"?>

<definitions

 name="ConferenceScenarioNo1"

 targetNamespace="http://lsdis.cs.uga.edu/ConferenceScenarioNo1.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://lsdis.cs.uga.edu/ConferenceScenarioNo1.wsdl"

 xmlns:slt="http://schemas.xmlsoap.org/ws/2002/07/service-link/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="arrange4ConferenceResponse">

 <part name="HotelConfirmation" type="xsd:string"/>

 <part name="ToTicketConfirmation" type="xsd:string"/>

 <part name="ReturnTicketConfirmation" type="xsd:string"/>

 </message>

 <message name="arrange4ConferenceRequest">

 <part name="AttendeeName" type="xsd:string"/>

 <part name="ConferenceId" type="xsd:int"/>

 <part name="CCNo" type="xsd:string"/>

 <part name="CCType" type="xsd:string"/>

 <part name="CCExpDate" type="xsd:string"/>

 </message>

 <portType name="ConferenceScenarioNo1PortType">

 <operation

 name="arrange4Conference">

 <documentation>Books hotel, travel tickets for a conference</documentation>

87

 <input message="tns:arrange4ConferenceRequest"/>

 <output message="tns:arrange4ConferenceResponse"/>

 </operation>

 </portType>

 <slt:serviceLinkType name="sampleConferenceArrangerSLT">

 <slt:role name="anyRole">

 <slt:portType name="tns:ConferenceScenarioNo1PortType"/>

 </slt:role>

 </slt:serviceLinkType>

</definitions>

Figure 19: Process WSDL used to generate the process

Generated process is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<process xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/"

xmlns:NS1="http://lsdis.cs.uga.edu/ConferenceScenarioNo1.wsdl"

xmlns:NS2="http:/lsdis.cs.uga.edu/ConferenceServiceNo1.wsdl"

xmlns:NS3="http://lsdis.cs.uga.edu/HotelServiceNo1.wsdl"

xmlns:NS4="http://lsdis.cs.uga.edu/TravelServiceNo1.wsdl"

xmlns:tns-utils="http://lsdis.cs.uga.edu/sample-utils.wsdl">

 <partners>

 <partner name="caller" serviceLinkType="NS1:dummySLT"/>

 <partner name="service-provider-1" serviceLinkType="tns-utils:provider-1-SLT"/>

 <partner name="service-provider-2" serviceLinkType="tns-utils:provider-2-SLT"/>

88

 <partner name="service-provider-3" serviceLinkType="tns-utils:provider-3-SLT"/>

 </partners>

 <containers>

 <container messageType="NS1:arrange4ConferenceRequest" name="receive"/>

 <container messageType="NS2:getConferenceDetailsRequest"

name="ConferenceDetails-request"/>

<container messageType="NS2:getConferenceDetailsResponse"

name="ConferenceDetails-response"/>

 <container messageType="NS3:bookHotelRequest" name="Hotel-request"/>

 <container messageType="NS3:bookHotelResponse" name="Hotel-response"/>

 <container messageType="NS4:bookAirTicketRequest"

name="AirTicketTo-request"/>

 <container messageType="NS4:bookAirTicketResponse"

name="AirTicketTo-response"/>

 <container messageType="NS4:bookAirTicketRequest"

name="AirTicketReturn-request"/>

 <container messageType="NS4:bookAirTicketResponse"

name="AirTicketReturn-response"/>

 <container messageType="NS1:arrange4ConferenceRequest"

name="response"/>

 </containers>

 <sequence name="sequence-1">

89

 <receive container="receive" createInstance="yes" name="receive"

operation="arrange4Conference" partner="caller"

portType="NS1:ConferenceScenarioNo1PortType"/>

 <assign name="ConferenceDetails">

 <copy><from container="receive" part=" ConferenceId"/><to container="ConferenceDetails-

request" part=" ConferenceId"/></copy><copy><from expression="'2003'"/><to

container="ConferenceDetails-request" part=" Year"/></copy>

 </assign>

 <invoke inputContainer="ConferenceDetails-request" name="ConferenceDetails"

operation="getConferenceDetails" outputContainer="ConferenceDetails-response"

partner="service-provider-1" portType="NS2:ConferenceServiceNo1PortType"/>

 <flow name="flow-1">

 <assign name="Hotel">

 <copy><from container="receive" part=" CCNo"/><to container="Hotel-request" part="

CreditCardNo"/></copy><copy><from container="receive" part=" CCExpDate"/><to

container="Hotel-request" part=" CreditCardExpDate"/></copy><copy><from

container="receive" part=" CCType"/><to container="Hotel-request" part="

CreditCardType"/></copy><copy><from container="receive" part=" AttendeeName"/><to

container="Hotel-request" part=" GuestName"/></copy><copy><from

90

container="ConferenceDetails-response" part=" StartDate"/><to container="Hotel-request"

part=" DateIn"/></copy><copy><from container="ConferenceDetails-response" part="

EndDate"/><to container="Hotel-request" part=" DateOut"/></copy>

 </assign>

 <invoke inputContainer="Hotel-request" name="Hotel" operation="bookHotel"

outputContainer="Hotel-response" partner="service-provider-2"

portType="NS3:HotelServiceNo1PortType"/>

 <assign name="AirTicketTo">

 <copy><from container="ConferenceDetails-response" part=" Location"/><to

container="AirTicketTo-request" part=" To"/></copy><copy><from

expression="'HOMELOCATION'"/><to container="AirTicketTo-request" part="

From"/></copy><copy><from container="ConferenceDetails-response" part=" StartDate"/><to

container="AirTicketTo-request" part=" JourneyDate"/></copy><copy><from

container="receive" part=" AttendeeName"/><to container="AirTicketTo-request" part="

PassengerName"/></copy>

 </assign>

 <invoke inputContainer="AirTicketTo-request" name="AirTicketTo"

operation="bookAirTicket" outputContainer="AirTicketTo-response" partner="service-provider-

3" portType="NS4:TravelServiceNo1PortType"/>

91

 <assign name="AirTicketReturn">

 <copy><from container="ConferenceDetails-response" part=" Location"/><to

container="AirTicketReturn-request" part=" From"/></copy><copy><from

expression="'HOMELOCATION2'"/><to container="AirTicketReturn-request" part="

To"/></copy><copy><from container="ConferenceDetails-response" part=" EndDate"/><to

container="AirTicketReturn-request" part=" JourneyDate"/></copy><copy><from

container="receive" part=" AttendeeName"/><to container="AirTicketReturn-request" part="

PassengerName"/></copy>

 </assign>

 <invoke inputContainer="AirTicketReturn-request" name="AirTicketReturn"

operation="bookAirTicket" outputContainer="AirTicketReturn-response" partner="service-

provider-3" portType="NS4:TravelServiceNo1PortType"/>

 </flow>

 <assign name="reply">

 <copy><from container="Hotel-response" part=" Confirmation"/><to container="response"

part=" HotelConfirmation"/></copy><copy><from container="AirTicketTo-response" part="

Confirmation"/><to container="response" part=" ToTicketConfirmation"/></copy><copy><from

container="AirTicketReturn-response" part=" Confirmation"/><to container="response" part="

ReturnTicketConfirmation"/></copy>

 </assign>

92

93

 <reply container="response" name="reply" operation="arrange4Conference"

partner="caller" portType="NS1:ConferenceScenarioNo1PortType"/>

 </sequence>

</process>

Figure 20: Process Generated based on template shown in figure 18

	THE METEOR-S FRAMEWORK FOR SEMANTIC WEB PROCESS COMPOSITION
	KAARTHIK SIVASHANMUGAM
	
	
	THE METEOR-S FRAMEWORK FOR SEMANTIC WEB PROCESS COMPOSITION

	KAARTHIK SIVASHANMUGAM
	
	
	THE METEOR-S FRAMEWORK FOR SEMANTIC WEB PROCESS COMPOSITION

	KAARTHIK SIVASHANMUGAM
	DEDICATION
	TABLE OF CONTENTS
	REFERENCES.......................................
	A GENERATED PROCESS….............................�
	CHAPTER 2
	
	Introduction

	2.1.1 BPEL4WS
	2.1.2 BPML
	2.1.3 DAML-S
	3.2.1 Specifying an Activity using a Web Service
	3.2.3 Specifying an Activity using a Semantic Activity Template
	3.2.4 Process Composition
	3.2.5 Semantic Process Template
	3.2.6 Service Ranking and Selection
	3.2.7 Process Generation
	4.1 Semantically Enriched Service and Process Descriptions
	4.2 Configurable Processes
	Comprehensive Framework for Web Service Composition
	Adaptability to any Process Specification Standard
	
	
	Operating the Tool
	Template Design
	Process Composition

