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Time scales theory provides a means for unifying and extending real and dis-
crete analysis. Transforms play a crucial role in analysis in part because of transform
methods for solving differential equations. Two of the most commonly used trans-
forms are the Laplace and Fourier transforms. We define the Laplace transform for
time scales noting that it is an extension of the Laplace transform for real numbers
as well as a discrete transform. We give properties of the Laplace transform and
discuss instances when results may not be generalized from the real case to times
scales. Dynamic equations are solved in examples using the Laplace transform. Next
we define the Fourier transform for time scales and discuss how it unifies the dif-
ferent types of Fourier analysis. Finally, we give a discussion on the possibilities for
a general transform theory based on time scales analysis.

Index words: Time scales, difference equations, q-difference equations,
Laplace transform, Fourier transform



Transforms on Time Scales

by

Alan M. Thomas

BS, The University of Georgia, 2001

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Arts

Athens, Georgia

2003



c© 2003

Alan M. Thomas

All Rights Reserved



Transforms on Time Scales

by

Alan M. Thomas

Approved:

Major Professor: Thomas Gard

Committee: Malcolm Adams

Elliot Gootman

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2003



Acknowledgments

I would like to thank my friends and family for not having me committed while I

wrote this thesis. I would like to thank the members of my graduate committee, Dr

Malcolm Adams and Dr. Elliot Gootman, for agreeing to be on my committee and

for the many hours they spent proof reading. Additionally I would like to thank Dr.

Joan Hoffacker for introducing me to the subject of time scales. Most importantly, I

would like to thank my advisor Dr. Thomas Gard for his invaluable guidance, advice,

and endless patience. Without his help I would still be lost in this pursuit.

iv



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Basic Notation and Definitions . . . . . . . . . . . . . 5

2.2 Differentiation and Integration . . . . . . . . . . . . 8

2.3 Polynomial and Exponential Functions . . . . . . . 27

2.4 Dynamic Equations . . . . . . . . . . . . . . . . . . . . 38

3 Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Definition and Examples . . . . . . . . . . . . . . . . . 44

3.2 Properties of the Laplace Transform . . . . . . . . 49

3.3 Convolution and Shifting Properties of Special

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Notation and Definitions . . . . . . . . . . . . . . . . 77

4.2 Properties of the Fourier Transform . . . . . . . . 81

4.3 Fourier Inversion . . . . . . . . . . . . . . . . . . . . . 87

5 Conclusion: Moving Toward a General Theory of Trans-

forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

v



vi

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Chapter 1

Introduction

The subject of calculus on time scales is a young one being first introduced by

Stefan Hilger in 1988 in his Ph.D. dissertation. The purpose of this new calculus

was to do away with the discrepancies between continuous and discrete analysis. In

particular, the subject allows one to prove results for both differential and difference

equations simultaneously. Instead of proving a result for a differential equation

defined on the real numbers R, or a difference equation defined on the integers Z,

one considers a general dynamic equation defined on a time scale, T, a closed subset

of the real line. Thus when proving a result for a time scale, one is not only proving

the result for R and Z, but for many other possible spaces as well. For example,

much recent attention has been given to q-difference equations, that is difference

equations defined on the set qN0 (see page 5). This recurring theme is often described

as being one of unification and extension.

With so much of time scale study focused on dynamic equations, it seemed

logical to develop a Laplace transform method for solving initial value problems.

Early efforts made by Hilger in this area attempted to unify the Laplace transform

for R with the Z-transform for Z. However the transform he developed only worked

for very special time scales and could be difficult to employ (see page 57). Later,

Martin Bohner and Allan Peterson developed a transform that unified the Laplace

transform for R with the Z̃-transform (see Donahue [5] for more information on
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this transform) for Z. The transform they developed appears much more nat-

ural and lends itself for use on a broader set of time scales.

While time scale theory is still in its early stages of development, Hilger has

begun work on Fourier analysis for time scales. His Fourier transform unifies the

different kinds of Fourier analysis. Most notably, it provides a closed form for both

the Fourier integral and Fourier series represented by a single times scale integral.

In this thesis, we will continue to center most of our attention on the theme of

unification and extension with particular emphasis on how this theme presents itself

in the theory of transforms. We will present results that unify and extend results

from real and discrete analysis pointing out the existing problems and differences

when they exist. The reader should observe that while many things may be said

about the theory of arbitrary time scales, we can always say more about a specified

time scale. Through such observations, it is possible that one will come to an even

greater appreciation of calculus.

Proofs in this work shed greater light on the relationship between analysis and

dynamic equations. Real analysis is frequently used to prove results in differential

equations. However, conventional analysis techniques often fail for time scales. Many

times when trying to find an analog to a result from real analysis we will be unable

to employ the analogous analysis techniques for time scales but will succeed in

proving a weaker result using what we know about dynamic equations. An example

of this is the convolution proposition, Proposition 3.16, given on page 61.

Transforms tend to present themselves in two forms. The first is the series form

such as seen in the cases of the Fourier series and Z-transform. The second form is

that of an integral transform such as seen in the cases of the Fourier integral and

Laplace transform. Most transforms have their own extensively developed theory,

however there is no general theory of transforms. In fact, it is not entirely clear
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what is meant by a transform. All integral transforms can be expressed as integra-

tion against some function and all series transforms can be expressed as summing

against some function. The theory of time scales presents itself as a potential way

for defining what we mean as a transform. One might be able to unify the definition

of all transforms as time scale integration against a function. Coming up with such

a definition would be a first step in developing a general theory of transforms. The

reader should keep this in mind when examining the sections on the Laplace and

Fourier transforms for time scales.

Although we will not give much consideration to applications, the potential of

applications motivates continued research in this area. Dynamic equations on time

scales may be be used to model populations, say of insects, that are continuous over

nonoverlapping periods of time separated by periods of inactivity, such as during

a dormant or hibernation period. It is also suggested that calculus on time scales

might prove useful in numerical analysis for example, in adaptive grid or variable

mesh size theory.

Throughout this paper, results are presented from other works. Many of the

sources for these results leave proofs to the reader as exercises. When this is the

case, we will present the proof here. Details and explanations have been added to

most proofs taken from other works. When a new result is presented we will make

note of it and give its proof.

In chapter 2, Preliminaries, we will introduce calculus on time scales. Most of the

information in this section is taken from Bohner and Peterson [4] and Agarwal and

Bohner [1]. However, the material on time scales integration is taken from Bohner

and Peterson [3].

Chapter 3 starts by introducing the Laplace transform for time scales and

presents some important results. We then proceed to work a few examples, solving

dynamic equations using the Laplace transform method. We also develop additional
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results needed in the examples as we go. Information on ordinary differential equa-

tions used in this section is taken from Edwards and Penney [6]. However, at times,

we will use conventions and information taken from Asmar [2] in this section and

the one that follows it.

Chapter 4 presents the Fourier transform for time scales, which unifies the dif-

ferent notions of Fourier transforms by presenting them all in the form of one time

scales integral. The material on this time scales transform is taken from Hilger [8]

and [9]. In the process of writing this section, Folland [7] was frequently consulted.



Chapter 2

Preliminaries

2.1 Basic Notation and Definitions

Definition 2.1 A time scale, denoted T, is a nonempty closed subset of the real

numbers.

There are a few time scales that will be of particular interest. They are

the real numbers R

the integers Z

hZ = {hz : z ∈ Z}, where h is a fixed positive real number.

the natural numbers N = {1, 2, ...}

N0 = N ∪ {0}

qN0 = {qn : n ∈ N0}, where q > 1 is fixed.

In this thesis, we will assume that a given time scale is endowed with the standard

relative topology from the real numbers.

Consider the integers, Z, and select t ∈ Z. We know that the next greater integer

is given by t+1. Next let’s consider the real numbers, R, and let t ∈ R. In this case,

5
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there is no next greater real number for t. Now consider the time scale T = [−1, 0]∪N.

If we choose t ∈ T such that t < 0, then there is no next greater element in T.

However if we choose t ∈ T such that t ≥ 0, then T has a next greater element given

by t + 1. The next definition formalizes such statements in a way that makes sense

for arbitrary time scales.

Definition 2.2 For t ∈ T the forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t},

the backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}

and the graininess function µ : T→ [0,∞) is defined by

µ(t) := σ(t)− t.

The convention here is to let inf ∅ = supT and sup ∅ = inf T.

The forward jump operator gives the next greater element than t or gives t if there

is none. The backward jump operator works similarly for the next lesser element.

Finally, the graininess function gives the distance to the next greater element. The

definition that follows uses these operators to classify points on time scales.

Definition 2.3 If σ(t) > t, then we say that t is right-scattered. If ρ(t) < t we say

that t is left-scattered. If a point is both right-scattered and left-scattered, then it is

called isolated. If t < supT and σ(t) = t, then t is called right-dense. If t > inf T and

ρ(t) = t, then t is called left-dense. Points that are both right-dense and left-dense

are called dense.
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The next two definitions set up conditions that are similar but somewhat

weaker than continuity.

Definition 2.4 A function f : T → R is called regulated provided that its right-

sided limits exist at all right-dense points in T and its left-sided limits exist at all

left-dense points in T, that is only jump discontinuities are possible.

Example 2.5 To give the reader an idea of what it means for a function to be

regulated, we’ll give an example of a function that is not regulated on R. Let f :

R→ [−1, 1] be defined by

f(t) :=





sin(1
t
) t 6= 0

0 t = 0.

Notice that while f is certainly continuous for all t ∈ R\{0}, neither the left-sided

nor the right-sided limit exist at 0 as

lim
x→∞

sin(x) does not exist

and

lim
x→−∞

sin(x) does not exist.

However, the restriction of f to the time scale N0 is regulated because N0 does not

have any left-dense or right-dense points.

Definition 2.6 A function f : T → R is called rd-continuous (or right-dense con-

tinuous) at a point t0 ∈ T if when t0 is left dense then the left-sided limit of f exists

at t0 and when t0 is right-dense then f is continuous at t0, that is if it is regulated



8

and continuous from the right. A function that is rd-continuous at all points in T is

called an rd-continuous function.

Example 2.7 Let

T := {0} ∪ { 1

n
: n ∈ N} ∪ {2} ∪ {2− 1

n
: n ∈ N}

and define f : T→ {0, 1} by

f(t) :=





t t 6= 2

0 t = 2

f is obviously continuous at the isolated points of T, so we’ll focus our attention on

the right-dense point 0 and the left dense point 2. The right-sided limit of f at 0

exists and equals f(0). So f is continuous at 0. While f is discontinuous at 2, the

left-sided limit of f exists at 2. We can see that although f is not continuous, f is

rd-continuous.

Theorem 2.8 Let f : T→ R and g : T→ T. Then

(i) If f is continuous, then f is rd-continuous.

(ii) If f is continuous and g is regulated or rd-continuous, then f ◦g is respectively

regulated or rd-continuous.

2.2 Differentiation and Integration

Definition 2.9 The set Tκ is defined as

Tκ :=





T\(ρ(supT), supT] if supT < ∞

T if supT = ∞.
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The times scales derivative of a suitable function can’t be defined for all points

on all times scales. In particular, we can’t define it at the finite supremum of a time

scale. However, we can define the times scales derivative at all points of Tκ. As we’ll

see in the next definition, Tκ is needed for the times scale derivative to make sense.

Definition 2.10 A function f : T → R is said to be ∆-differentiable at t ∈ Tκ

provided

f∆(t) := lim
s→t

f(σ(t))− f(s)

σ(t)− s
, s ∈ T\{σ(t)}

exists. f∆(t) is called the ∆-derivative of f at t. The function f is called ∆-

differentiable on Tκ if f∆(t) exists for all t ∈ Tκ and f∆ : Tκ → R is called the

∆-derivative of f on Tκ.

Notice that while we have stipulated that s cannot equal σ(t), it could happen

that s = t. When a point t on the time scale is right scattered, the ∆-derivative at

t is the slope of the line through the points (t, f(t)) and (σ(t), f(σ(t))). When t is

right dense, the ∆-derivative at t is similar the usual definition of the derivative.

Theorem 2.11 Let f : T→ R and let t ∈ Tκ. If f is ∆-differentiable at t, then:

(i)

f(σ(t)) = f(t) + µ(t)f∆(t)

and

(ii) f is continuous at t.
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Proof: (i) Assume that f is differentiable at a point t ∈ T. Observe that when t is

right-dense µ(t) = 0 and σ(t) = t, so we get

f(σ(t)) = f(t) = f(t) + µ(t)f∆(t). X

Consider the case when t is right-scattered. Then, because σ(t) 6= t and f is contin-

uous at t, we can rewrite the derivative at t as

f∆(t) =
f(σ(t))− f(t)

σ(t)− t

=
f(σ(t))− f(t)

µ(t)
.

So

f(σ(t))− f(t) = µ(t)f∆(t)

=⇒ f(σ(t)) = f(t) + µ(t)f∆(t). X

(ii) First observe that, for any s ∈ T,

σ(t)− s = (σ(t)− t) + (t− s) = µ(t) + (t− s). (2.1)

Let 1 > ε > 0, and define ε′ = ε[1 + |f∆(t)| + µ(t)]−1. Then 1 > ε′ > 0. By the

definition of the derivative, given 1 > ε > 0 there exists δ > 0 such that when

|t− s| < δ, s 6= σ(t) we have that

∣∣∣∣
f(σ(t))− f(s)

σ(t)− s
− f∆(t)

∣∣∣∣ < ε′

=⇒
∣∣∣∣
f(σ(t))− f(s)− (σ(t)− s)f∆(t)

σ(t)− s

∣∣∣∣ < ε′

=⇒
∣∣f(σ(t))− f(s)− (σ(t)− s)f∆(t)

∣∣ < ε′ |σ(t)− s| . (2.2)

We will proceed to use (2.1) and (2.2) to show that |f(t) − f(s)| < ε. Let

|t− s| < min{ε′, δ}.
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|f(t)− f(s)| =
∣∣f(t)− f(s) + f(σ(t))− f(σ(t)) + f∆(t)(σ(t)− s)− f∆(t)(σ(t)− s)

∣∣

Use equation 2.1 to rewrite this as

|f(t)− f(s) + f(σ(t))− f(σ(t)) + f∆(t)[µ(t) + (t− s)]

−f∆(t)(σ(t)− s)|

= |f(t)− f(s) + f(σ(t))− f(σ(t)) + f∆(t)µ(t)

+f∆(t)(t− s)− f∆(t)(σ(t)− s)|

= |{f(σ(t))− f(s)− f∆(t)(σ(t)− s)
}

+ f∆(t)(t− s)|

because by part (i) we have that f(σ(t)) − f(t) − µ(t)f∆(t) = 0. We can estimate

the last line by

≤ ε′|σ(t)− s|+ |t− s||f∆(t)|

= ε′|µ(t) + (t− s)|+ |t− s||f∆(t)|

≤ ε′µ(t) + ε′|t− s|+ |t− s||f∆(t)|

< ε′µ(t) + ε′ + ε′|f∆(t)|

= ε′[1 + |f∆(t)|+ µ(t)] = ε

Hence |f(t)− f(s)| < ε. 2

Part (ii) of Theorem 2.11 is not too surprising because it is the same in the real

case. Part (i) on the other hand is only useful when t is right scattered, otherwise

the statement becomes f(t) = f(t).

The next theorem gives some rules for ∆-differentiation. Notice that parts (i)

and (ii) below are the same as for the real case while part (iii) is slightly different.
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Theorem 2.12 Let f, g : T → R be ∆-differentiable at t ∈ Tκ. Then the following

hold:

(i) The sum f + g : T→ R is ∆-differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).

(ii) For any constant α ∈ R, αf : T→ R is ∆-differentiable at t with

(αf)∆(t) = αf∆(t).

(iii) The product fg : T→ R is ∆-differentiable at t with

(fg)∆(t) = f∆(t)g(σ(t)) + f(t)g∆(t) = f∆(t)g(t) + f(σ(t))g∆(t).

Proof: We will only give the proof of (iii). Let ε > 0 and define

ε′ =
ε

1 + |f(t)|+ |g(σ(t))|+ |g∆(t)| .

Then there exists δ > 0 such that when |t− s| < δ we have the following:

∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε′|σ(t)− s
∣∣

∣∣g(σ(t))− g(s)− g∆(t)(σ(t)− s)| ≤ ε′|σ(t)− s
∣∣

and by Theorem 2.11

|f(t)− f(s)| ≤ ε′.

So
∣∣(fg)(σ(t))− (fg)(s)− [f∆(t)g(σ(t)) + f(t)g∆(t)](σ(t)− s)

∣∣

= |[f(σ(t))− f(s)− f∆(t)(σ(t)− s)]g(σ(t))

+[g(σ(t)− g(s)− g∆(t)(σ(t)− s)]f(t)
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+[g(σ(t)− g(s)− g∆(t)(σ(t)− s)][f(s)− f(t)]

+(σ(t)− s)g∆(t)[f(s)− f(t)]|

≤ ε′ |σ(t)− s| |g(σ(t))|+ ε′ |σ(t)− s| |f(t)|

+(ε′)2 |σ(t)− s|+ ε′ |σ(t)− s|
∣∣g∆(t)

∣∣

= ε′ |σ(t)− s| (|g(σ(t))|+ |f(t)|+ ε′ +
∣∣g∆(t)

∣∣) .

Assuming that we have chosen ε small enough that ε′ < 1, we get that the above is

< ε′ |σ(t)− s| (|g(σ(t))|+ |f(t)|+ 1 +
∣∣g∆(t)

∣∣)

= ε′ |σ(t)− s| (|1 + |f(t)|+ g(σ(t))|+
∣∣g∆(t)

∣∣)

= ε |σ(t)− s| .

We have shown that

(fg)∆(t) = f∆(t)g(σ(t)) + f(t)g∆(t). (2.3)

To get the second equality, switch f and g in equation 2.3. 2

It would be prudent now to give some attention to the chain rule. For functions

f, g : R→ R the chain rule is

(f ◦ g)′(t) = f ′(g(t))g′(t).

However, for arbitrary time scales this does not hold as we will show in the following

example which is taken from an exercise given in Bohner and Peterson [4].

Example 2.13 Let T = Z and let f, g : Z→ Z be defined by f(t) = g(t) = t2 = t · t.
Using the product rule, Theorem 2.12, we find that

f∆(t) = g∆(t) = t + σ(t) = t + t + 1 = 2t + 1.
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Notice that

(f ◦ g)(t) = (t2)2 = t4 = f(t)g(t).

So again using the product rule, we get that

(f ◦ g)∆(t) = (f(t)g(t))∆

= f∆(t)g(t) + f(σ(t))g∆(t)

= (2t + 1)t2 + (σ(t))2(2t + 1)

= (2t + 1)t2 + (t + 1)2(2t + 1)

= 2t3 + t2 + (t2 + 2t + 1)(2t + 1)

= 2t3 + t2 + 2t3 + 4t2 + 2t + t2 + 2t + 1

= 4t3 + 6t2 + 4t + 1.

Now we compute

f∆(g(t))g∆(t) = (2t2 + 1)(2t + 1)

= 4t3 + 2t2 + 2t + 1.

If we assume that (f ◦ g)∆(t) = f∆(g(t))g∆(t), then we obtain

4t3 + 6t2 + 4t + 1 = 4t3 + 2t2 + 2t + 1

=⇒ 4t2 + 2t = 0

=⇒ t ∈
{

0,−1

2

}
.

Thus (f ◦ g)∆(t) = f∆(g(t))g∆(t) holds for only one point in Z, namely 0.

Despite this situation, there are a few chain rules for time scales, each of which

is weaker than that for the real numbers. We will use only one of these chain rules in

this paper and so we will only present one. Information on the other chain rules may
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be found in Bohner and Peterson [4]. Before presenting the chain rule, Theorem

2.15, we should give some attention to the following question: For which strictly

increasing functions γ is γ(T) a time scale? We answer this question in the following

new proposition.

Proposition 2.14 Let γ : T→ R be a strictly increasing function. Then γ(T) is a

time scale if and only if

(i) γ is continuous

and

(ii) γ is bounded above (respectively below) only when T is bounded above (respectively

below).

Proof: We will do the forward direction using a contrapositive proof. Suppose that

γ is not continuous and γ(T) is a time scale. Then there exists a point a ∈ T that is

either left-dense, right-dense, or both such that γ is discontinuous at a. With out loss

of generality we will assume that a is left-dense but not right-dense. Let {tn}n∈N,

tn ∈ T, denote a strictly increasing sequence converging to a. Then because γ is

strictly increasing we know that γ(a) is an upper bound for the sequence {γ(tn)}n∈N.

So {γ(tn)}n∈N must converge to a finite supremum, moreover

sup{γ(tn)}n∈N < γ(a) (2.4)

because γ is discontinuous at a. Again using the fact that γ is strictly increasing, we

see that

sup{γ(tn)}n∈N /∈ {γ(tn)}n∈N.

Because γ(T) is closed,

sup{γ(tn)}n∈N ∈ γ(T).

Let b ∈ T be such that γ(b) = sup{γ(tn)}n∈N. Then because γ is increasing b =

sup{tn}n∈N hence b ≤ a. From (2.4) we get that b 6= a. Thus b < a. This contradicts
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our assumption that {tn}n∈N converges to a. Thus by the contrapositive when γ(T)

is a time scale, γ is continuous.

Now suppose that supT = ∞ and γ(T) < M < ∞ for some M ∈ R. Then we can

find an increasing sequence {tn}n∈N, tn ∈ T such that limn→∞ tn = ∞. Once again

we use the fact that γ is strictly increasing to determine that {γ(tn)}n∈N converges

to a finite supremum with

sup{γ(tn)}n∈N /∈ {γ(tn)}n∈N.

So

sup{γ(tn)}n∈N /∈ γ(T)

and hence γ(T) is once again not closed. By the contrapositive, when γ(T) is a time

scale, we get (ii).

Suppose that (i) and (ii) hold, and let a be a limit point of γ(T). Then with

out loss of generality we can assume there exists an increasing sequence {an}n∈N,

an ∈ γ(T), converging to a. Let {tn}n∈N, tn ∈ T, be a sequence such that γ(tn) = an.

Then {tn}n∈N is also an increasing sequence and limn→∞ γ(tn) = a. Suppose

supT = ∞, then by (ii), sup γ(T) = ∞. Thus limn→∞ tn < ∞, otherwise a = ∞.

Let t0 = limn→∞ tn, then the closure of T gives us that t0 ∈ T. Finally, the continuity

of γ implies that γ(t0) = a, hence a ∈ γ(T). 2

Theorem 2.15 Chain Rule

Let γ : T→ R be a strictly increasing function such that T̃ := γ(T) is a time scale.

Let ω : T̃ → R and let ω∆̃ denote the derivative of ω on T̃. If γ∆(t) and ω∆̃(γ(t))

exist for t ∈ Tκ, then

(ω ◦ γ)∆ = (w∆̃ ◦ γ)γ∆.
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Proof: Let 1 > ε > 0 and define ε′ := ε
[
1 + |γ∆(t)|+ |ω∆̃(γ(t))|

]−1

. Then 1 > ε′ > 0.

The ∆-differentiability of γ(t) implies that there exists δ1 > 0 such that for t, s ∈ T,

when |t− s| < δ1, we have

|γ(σ(t))− γ(s)− (σ(t)− s)γ∆(t)| ≤ ε′|σ(t)− s|.

Similarly, the ∆-differentiability of ω(t) implies that there exists δ2 > 0 such that

for r, γ(t) ∈ T̃, when |γ(t)− r| < δ2 we have

|ω(σ̃(γ(t)))− ω(r)− (σ̃(γ(t))− r)ω∆̃(t)(γ(t))| ≤ ε′|σ̃(γ(t))− r|

where σ̃(t) denotes the forward jump operator on T̃. Let

δ := min
{
δ1, t− γ−1 (γ(t)− δ2) , γ−1 (γ(t) + δ2)− t

}
.

Notice that because γ is strictly increasing

γ(t) > γ(t)− δ2 =⇒ t > γ−1(γ(t)− δ2) =⇒ t− γ−1(γ(t)− δ2) > 0.

Similarly γ−1 (γ(t) + δ2)− t > 0. Then for s ∈ T such that |t− s| < δ, we also have

that |t− s| < δ1. For such an s we also have

|t− s| < t− γ−1 (γ(t)− δ2)

t− s < t− γ−1 (γ(t)− δ2)

−s < −γ−1 (γ(t)− δ2)

s > γ−1 (γ(t)− δ2)

γ(s) > γ(t)− δ2

γ(s)− γ(t) > −δ2

γ(t)− γ(s) < δ2

Similarly we can use |t − s| < γ−1 (γ(t) + δ2) − t to show that δ2 < γ(t) − γ(s). So

|t− s| < δ implies |γ(t)− γ(s)| < δ2. Thus

∣∣∣ω(γ(σ(t)))− ω(γ(s))− (σ(t)− s)[ω∆̃(γ(t))γ∆(t)]
∣∣∣
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=
∣∣∣ω(γ(σ(t)))− ω(γ(s))− (σ̃(γ(t))− γ(s))ω∆̃(γ(t))

+[σ̃(γ(t))− γ(s)− (σ(t)− s)γ∆(t)]ω∆̃(γ(t))
∣∣∣

≤
∣∣∣ω(σ̃(γ(t)))− ω(γ(s))− (σ̃(γ(t))− γ(s))ω∆̃(γ(t))

∣∣∣

+
∣∣∣[σ̃(γ(t))− γ(s)− (σ(t)− s)γ∆(t)]ω∆̃(γ(t))

∣∣∣

< ε′ |σ̃(γ(t))− γ(s)|+ ε′ |σ(t)− s|
∣∣∣ω∆̃(γ(t))

∣∣∣

= ε′
∣∣σ̃(γ(t))− γ(s)− (σ(t)− s)γ∆(t) + (σ(t)− s)γ∆(t)

∣∣

+ε′ |σ(t)− s|
∣∣∣ω∆̃(γ(t))

∣∣∣

≤ ε′
{∣∣σ̃(γ(t))− γ(s)− (σ(t)− s)γ∆(t)

∣∣ + |(σ(t)− s)|
∣∣γ∆(t)

∣∣

+ |σ(t)− s|
∣∣∣ω∆̃(γ(t))

∣∣∣
}

Again because γ is strictly increasing, we get that σ̃(γ(t)) = γ(σ(t). So we can

rewrite this last line as

= ε′
{∣∣γ(σ(t))− γ(s)− (σ(t)− s)γ∆(t)

∣∣ + |(σ(t)− s)|
∣∣γ∆(t)

∣∣

+ |σ(t)− s|
∣∣∣ω∆̃(γ(t))

∣∣∣
}

< ε′
{

ε′ |σ(t)− s|+ |(σ(t)− s)| ∣∣γ∆(t)
∣∣ + |σ(t)− s|

∣∣∣ω∆̃(γ(t))
∣∣∣
}

= ε′
{

ε′ +
∣∣γ∆(t)

∣∣ +
∣∣∣ω∆̃(γ(t))

∣∣∣
}
|σ(t)− s|

< ε′
{

1 +
∣∣γ∆(t)

∣∣ +
∣∣∣ω∆̃(γ(t))

∣∣∣
}
|σ(t)− s|

= ε |σ(t)− s| . 2

We will now revisit Example 2.13 and confirm that

(f ◦ g)∆(t) = (f ∆̂ ◦ g)(t)g∆(t).
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First note that g(Z) = {t2 : t ∈ Z}. So

(f ∆̂ ◦ g)(t) =
f(σ̂(g(t)))− f(g(t))

σ̂(g(t))− g(t)
=

f(σ̂(t2))− f(t2)

σ̂(t2)− t2
=

f((t + 1)2)− f(t2)

(t + 1)2 − t2

=
(t + 1)4 − t4

(t + 1)2 − t2
=

(t4 + 4t3 + 6t2 + 4t + 1)− t4

(t2 + 2t + 1)− t2
=

4t3 + 6t2 + 4t + 1

2t + 1
.

Recalling that g∆(t) = 2t + 1, we get that

(f ∆̂ ◦ g)(t)g∆(t) = 4t3 + 6t2 + 4t + 1

which is what we have previously found (f ◦ g)∆(t) to be from the product rule.

We now set the stage for integration on time scales.

Definition 2.16 Let T be a time scale, and let a, b ∈ T such that a < b. A partition

of [a, b] (where [a, b] denotes the interval on the time scale) is any finite ordered

subset

P := {t0, t1, ..., tn} where a = t0 < t1 < ... < tn = b, ti ∈ T.

More precisely P separates the interval [a, b] ∩ T into a collection of subsets:

[t0, t1) ∩ T, [t1, t2) ∩ T, ... , [tn−2, tn−1) ∩ T, [tn − 1, tn] ∩ T.

We denote the collection of all such partitions as P(a, b).

We will now define what it means to be a δ-partition.

Definition 2.17 Let δ > 0. A partition P ∈ P(a, b) given by a = t0 < t1 < ... <

tn = b is called a δ-partition if for each i ∈ {1, 2, ..., n}

ti − ti−1 ≤ δ

whenever (ti−1, ti)∩T 6= ∅. We denote the collection of all such partitions for a given

δ by Pδ(a, b).
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Notice that it may occur that ti − ti−1 > δ but only if ρ(ti) = ti−1. We illustrate

this in the next example.

Example 2.18 Consider the time scale T = {2n : n ∈ N0} ∪ {0}. Suppose a = 0

and b = 32. Let Pα be the partition of [0, 32] on T given by {0, 1, 2, 4, 8, 16, 32}
and similarly let Pβ be given by {0, 1, 8, 16, 32}. Pα is a δ-partition of [0, 32] for all

δ > 0. This occurs because (ti−1, ti) ∩ T = ∅ for all i ∈ {1, 2, ..., n}. However, this

is not the case for Pβ. While (ti−1, ti) ∩ T = ∅ for all i 6= 2, when i = 2 we have

that (t1, t2) ∩ T = (1, 8) ∩ T = {2, 4} 6= ∅. So Pβ is a δ-partition of [0, 32] only when

δ ≥ 8− 1 = 7.

Next we have the definition of the Riemann ∆-integral which is very similar the

the usual Riemann integral.

Definition 2.19 Let f : [a, b] ∩ T→ C be a bounded function and let P ∈ P(a, b).

For each pair ti−1 and ti in P , choose a point τi ∈ T such that ti−1 ≤ τi < ti. We

call the sum

S :=
n∑

i=1

f(τi)(ti − ti−1)

a Riemann ∆-sum corresponding to P . We say that f is Riemann ∆-integrable on

[a, b] if there exists a number I ∈ C with the following property: Given ε > 0 there

exists δ > 0 such that

|S − I| < ε

for every Riemann ∆-sum of f corresponding to any P ∈ Pδ(a, b). The complex

number I is called the Riemann ∆-integral (or simply the ∆-integral) of f on [a, b]

and is denoted ∫ b

a

f(t)∆t.
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Now we will compute some ∆-integrals directly from the definition to give the

reader an idea of what it is for time scales other than R in which case it is just the

usual Riemann integral.

Example 2.20 Let f : T→ R be defined by f(t) = t2. Suppose that

T = {2n : n ∈ N0} ∪ {0}

and consider the integral ∫ 32

0

f(t)∆t. (2.5)

We have seen in this previous example that the partition Pα given by {0, 1, 2, 4, 8, 16, 32}
is in Pδ(0, 32) for all δ > 0. Because we must choose our τi ∈ T such that

ti−1 ≤ τi < ti, our only choice is to let

τ1 = 0, τi = 2i−2, 2 ≤ i ≤ 6.

Thus

∫ 32

0

f(t)∆t = f(0) +
6∑

i=2

f(2i−2)(2i−1 − 2i−2) =
5∑

i=1

f(2i−1)(2i − 2i−1)

=
5∑

i=1

22i−2(2i − 2i−1) =
5∑

i=1

(23i−2 − 23i−3) =
5∑

i=1

23i−3

= 1 + 8 + 64 + 512 + 4096 = 4681.

Compare this with the real case

∫ 32

0

t2dt =
1

3
(323 − 0) ≈ 10, 922.66.

Now suppose that

T =

{
32

n
: n ∈ N

}
∪ {0}
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and let Pn denote the partition of [0, 32] given by

{
0,

32

n
,

32

n− 1
, ... , 32

}
.

Notice that for this time scale Pn ∈ Pδ(0, 32) so long as δ ≥ 32
n
− 0 = 32

n
. We must

choose our as

τ1 ∈ [0,
32

n
), τi =

32

n− i + 2
, 2 ≤ i ≤ n.

If we let Sn denote the Riemann ∆-sum corresponding to Pn, then we get that

Sn = f(τ1)
32

n
+

n∑
i=2

f(
32

n− i + 2
)

(
32

n− i + 1
− 32

n− i + 2

)

= f(τ1)
32

n
+

n−2∑
i=0

f(
32

n− i
)

(
32

n− i− 1
− 32

n− i

)

= τ 2
1

32

n
+

n−2∑
i=0

32768

(n− i)2

(
1

(n− i− 1)(n− i)

)

= τ 2
1

32

n
+

n−2∑
i=0

32768

(n− i)3(n− i− 1)

Note that

0 < τ 2
1

32

n
<

(
32

n

)3

so

lim
n→∞

τ 2
1

32

n
= 0.

We can evaluate the second term of Sn as n →∞ numerically, in this case we used

Maple 1 to evaluate
n−2∑
i=0

32768

(n− i)3(n− i− 1)

for n = 10, 000. We get that

∫ 32

0

f(t)∆t ≈ 5013.79989477

with error bounded by 323

10,0003 < 10−7.

1Maple 8, Waterloo Maple Inc.
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It is worth noting that for each of our two time scales in the previous example,

the ∆-integral was less than that in the real case. In fact, for any increasing function

f : R→ R and time scale T,

∫ b

a

g(t)∆t ≤
∫ b

a

f(t)dt

where g(t) is the restriction of f to T. Notice also that the ∆-integral on a discrete

interval of a time scale is just a weighted sum with the weight of t ∈ T being given

by µ(t). If there is a single right-dense point in our interval, it is weighted by a factor

of zero. The following proposition states this formally.

Proposition 2.21 Let f : T→ R, then

∫ σ(t)

t

f(τ)∆τ = µ(t)f(t). (2.6)

Proof: Suppose σ(t) = t. Then

∫ t

t

f(τ)∆τ = 0 = µ(t)f(t).

Now suppose that σ(t) > t. Then {t, σ(t)} is a δ-partition for every δ > 0. Thus

τ1 = t and ∫ σ(t)

t

f(τ)∆τ = f(τ1)(σ(t)− t) = µ(t)f(t). 2

Theorem 2.22 Every rd-continuous function f on the interval [a, b] is ∆-integrable

on [a, b].

Proof: First note that the backward jump operator ρ may be canonically extended

to the real interval [inf T, supT] by

ρ(x) := sup{s ∈ T : s < x, x ∈ R}.
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Let g be an extension of f to the real line defined by

g(x) =





f(x) x ∈ T

f(ρ(x)) x ∈ R\T.

Then ∫ b

a

f(t)∆t =

∫ b

a

g(x)dx

provided one of these integrals exists. Because f is rd-continuous, we know that

the set of discontinuities of g is at most countable. So g is piecewise continuous on

[a, b] (here we mean the interval on the real line) and thus integrable on the same

interval. Therefore, f must also be integrable on [a, b] ∩ T. 2

The following theorem establishes the linearity of the ∆-integral. The linearity

of time scales transforms, which will be introduced later, follows directly from this

result.

Theorem 2.23 Let f and g be ∆-integrable functions on [a, b], and let α, β ∈ C.

Then αf + βg is ∆-integrable and

∫ b

a

(αf + βg)(t)∆t = α

∫ b

a

f(t)∆t + β

∫ b

a

g(t)∆t.

Theorem 2.22 along with Theorem 2.11, tells us that a differentiable function is

also integrable, a fact which is used in the Fundamental Theorem of Calculus.

Theorem 2.24 Fundamental Theorem of Calculus

a) Let g be a function defined on [a, b] ∩ T such that g is ∆-differentiable on [a, b).
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If g∆ is ∆-integrable on [a, b), then

∫ b

a

g∆(t)∆t = g(b)− g(a) (2.7)

b) Let f be ∆-integrable on [a, b]. For t ∈ [a, b] ∩ T define

F (t) :=

∫ t

a

f(τ)∆τ.

Then F (t) is continuous on [a, b). If t0 ∈ [a, b) and if f is continuous at t0 when t0

is right-dense, then F is ∆-differentiable at t0 and

F∆(t0) = f(t0).

Theorem 2.25 (Change of Variable)

Let γ : T → R be a strictly increasing function such that T̃ = γ(T) is a time scale.

Let ∆̃ denote the ∆-derivative on T̃. Suppose f : T → R is ∆-integrable on each

finite interval of T. Suppose also that γ is ∆-differentiable and γ∆ is ∆-integrable

on each finite interval of T. Then if fγ∆ is ∆-integrable, we have that

∫ b

a

f(t)γ∆(t)∆t =

∫ γ(b)

γ(a)

(f ◦ γ−1)(s)∆̃s.

for a, b ∈ T.

Proof: Let

F (t) :=

∫ t

a

f(t)γ∆(t)∆t.
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Then by the previous theorem F∆ = fγ∆ for right-scattered points and those right-

dense points at which f is continuous. So

∫ b

a

f(t)γ∆(t)∆t =

∫ b

a

F∆(t)∆t

= F (a)− F (b)

= (F ◦ γ−1)(γ(b))− (F ◦ γ−1)(γ(a))

=

∫ γ(b)

γ(a)

(F ◦ γ−1)∆̃(s)∆̃s.

Now we employ the chain rule, Theorem 2.15, to get

∫ b

a

f(t)γ∆(t)∆t =

∫ γ(b)

γ(a)

(F∆ ◦ γ−1)(s)(γ−1)∆̃(s)∆̃s

=

∫ γ(b)

γ(a)

((fγ∆) ◦ γ−1)(s)(γ−1)∆̃(s)∆̃s

=

∫ γ(b)

γ(a)

(f ◦ γ−1)(s)
[
(γ∆ ◦ γ−1)(γ−1)∆̃

]
(s)∆̃s.

Again we use the chain rule,

∫ b

a

f(t)γ∆(t)∆t =

∫ γ(b)

γ(a)

(f ◦ γ−1)(s)(γ ◦ γ−1)∆̃(s)∆̃s

=

∫ γ(b)

γ(a)

(f ◦ γ−1)(s)∆̃s. 2

Theorem 2.26 (Integration by Parts)

Let a, b ∈ T and let f, g : T→ R be rd-continuous. Then

(i)

∫ b

a

f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(t)∆t.

(ii)

∫ b

a

f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(σ(t))∆t.
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Proof:

(i) ∫ b

a

f(σ(t))g∆(t)∆t =

∫ b

a

f(σ(t))g∆(t)∆t +

∫ b

a

f∆(t)g(t)∆t−
∫ b

a

f∆(t)g(t)∆t

=

∫ b

a

[f(σ(t))g∆(t) + f∆(t)g(t)]∆t−
∫ b

a

f∆(t)g(t)∆t

The product rule, Theorem 2.12, tells us that f(σ(t))g∆(t) + f∆(t)g(t) = (fg)∆(t).

This yields ∫ b

a

(fg)∆(t)∆t−
∫ b

a

f∆(t)g(t)∆t (2.8)

So applying the Fundamental Theorem of Calculus, Theorem 2.24, to equation (2.8)

gives

(fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(t)∆t.

The proof of (ii) proceeds by switching f and g in part (i). 2

2.3 Polynomial and Exponential Functions

While 0 is a derivative of 1 and 1 is a derivative of t, it is not possible in the time

scales calculus to to figure out what t is the derivative of in a way that provides a

closed form for arbitrary time scales. For example, t is a derivative of t2/2 on R, but

for an arbitrary time scale
(

t2

2

)∆

=

(
1

2
· t · t

)∆

which by the product rule (Theorem 2.12) is

=
1

2

(
t · t∆ + t∆ · σ(t)

)
=

t + σ(t)

2
.

Furthermore, t+σ(t)
2

is not necessarily differentiable even if σ(t) is continuous. What

we would like to do is come up with a set of functions that work like powers of
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t under the times scales calculus. We do this by starting with 1 and recursively

defining functions by integration. As we’ll see, there are at least two ways of doing

this.

Definition 2.27 We define the time scales polynomials

gk, hk : T× T→ R for k ∈ N0 as follows:

g0(t, s) = h0(t, s) ≡ 1 ∀s, t ∈ T

gk+1(t, s) =

∫ t

s

gk(σ(τ), s)∆τ ∀s, t ∈ T

hk+1(t, s) =

∫ t

s

hk(τ, s)∆τ ∀s, t ∈ T

Theorem 2.28 Let s ∈ T and let h∆
k (t, s) denote the ∆-derivative of hk(t, s) for

fixed s. Then the following hold:

(i)

g1(t, s) = h1(t, s) = t− s ∀t ∈ T

(ii)

g2(t, s) = h2(s, t) ∀t ∈ T

(iii)

h∆
k (t, s) = hk−1(t, s) ∀t ∈ Tκ, k ∈ N

(iv)

g∆
k (t, s) = gk−1(σ(t), s) ∀t ∈ Tκ, k ∈ N

The second variable, s, of our polynomials centers them at the point s. Notice

that when our time scale is R, gk(t, s) = hk(t, s) = 1
k!

(t− s)k for all k ∈ N0.
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Now we would like to come up with a function that serves the same pur-

pose as the exponential function does in the real case. That is, we would like to find

a solution to the initial value problem

y∆ = p(t)y, y(t0) = 1.

Before we can define find such a function we need several concepts in order for the

definition to make sense.

Definition 2.29 For h > 0 the Hilger complex plane is defined as

Ch := {z ∈ C : z 6= −1

h
}.

Definition 2.30 The circle plus addition, denoted ⊕, on Ch is defined by

z ⊕ w := z + w + zwh.

The circle negative of z ∈ Ch is defined by

ªz := − z

1 + zh
.

The circle minus subtraction is defined by

z ª w := z ⊕ (ªw).

Theorem 2.31 The pair (Ch,⊕) forms an abelian group.

Now we will begin considering variable graininess µ(t) instead of h.
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Definition 2.32 A function f : T→ C is called regressive if

1 + µ(t)f(t) 6= 0 for all t ∈ Tκ.

The set of all regressive and rd-continuous functions f : T→ R will be denoted by

R(T,R) = R(R).

Occasionally we will also consider R(C).

The following proposition is given as an exercise by Bohner and Peterson [A].

For this reason we will give a proof of it here.

Proposition 2.33 R(C) forms a group under pointwise circle plus addition.

Proof: Let p, q ∈ R(C).

(p⊕ q)(t) = p(t) + q(t) + µ(t)p(t)q(t)

Let s ∈ Tκ be an right-dense point. Then σ(s) = s =⇒ µ(s) = 0. So

(p⊕ q)(s) = p(s) + q(s).

p and q are each continuous at s, so p ⊕ q is continuous at s. Now let s ∈ Tκ be a

left-dense point. Then

lim
t→s

(p⊕ q)(t) = lim
t→s

[(p(t) + q(t) + µ(t)p(t)q(t)]

Now limt→s p(t), limt→s q(t), and limt→s µ(t) are each finite because p and q are both

rd-continuous and µ(t) is finite for all t ∈ T. So the left-sided limit of p⊕ q exists at
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s. For fixed t ∈ Tκ, (p ⊕ q)(t) is regressive by Theorem 2.31. So p ⊕ q is regressive

and rd-continuous. Hence p⊕ q ∈ R(C).

For fixed t ∈ Tκ, p(t)⊕q(t) is associative, commutative and p(t) has inverse ªp(t)

by Theorem 2.31. So if we allow t ∈ Tκ to vary, p⊕q is associative, commutative and

p has inverse ªp. Now we need to show that ªp is rd-continuous. Again let s ∈ Tκ

be an right-dense point. Then

ªp(s) = − p(s)

1 + µ(s)p(s)
= −p(s)

because µ(s) = 0. So ªp is rd-continuous because −p(s) is rd-continuous. Therefore

the pair (R(C),⊕) is an abelian group. 2

Definition 2.34 For h > 0, define Zh to be the strip

Zh := {z ∈ C : −π

h
< Im(z) ≤ π

h
}

Definition 2.35 For h > 0, the cylinder transform ξh : Ch → Zh is defined by

ξh(z) :=
1

h
Log(1 + zh)

where Log is the principal branch of the logarithm. For h = 0, define

ξ0(z) := z

for all z ∈ C.
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For x ∈ R, ξh(x) takes the form

ξh(x) =
1

h





log(1 + xh) if x > − 1
h

log |1 + xh|+ iπ if x < − 1
h

where by log we mean the natural logarithm. We refer to ξh as the cylinder transform

because if we associate the lines Im(z) = π
h

and Im(z) = −π
h

together then Zh forms

a cylinder.

Definition 2.36 For p ∈ R(C) we define the time scales exponential function to be

ep(t, s) := exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T

Notice that if didn’t have the regressivity, then the definition of the time scales

exponential function wouldn’t make sense. The next theorem tells us that this is

indeed the solution to the initial value problem we gave at the beginning of the

section.

Theorem 2.37 Let p(t) ∈ R(C) and fix t0 ∈ T. Then the unique solution to the

initial value problem

y∆ = p(t)y, y(t0) = y0 (2.9)

is given by

y(t) = y0 · ep(t, t0) (2.10)

on T.

We will now use Theorem 2.37 to find the exponential function for the time scale

qN0 , q ∈ N. This example is given as an exercise in Bohner and Peterson [4].
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Example 2.38 Let T = qN0 , let p(t) ∈ R(R), and fix t0 ∈ T. Then by the preceding

theorem, ep(t, t0) is the solution to the initial value problem

y∆ = p(t)y, y(t0) = 1.

Because each point of T is scattered, we can rewrite this dynamic equation as a

recurrence relation noting that σ(t) = qt:

y(σ(t))− y(t)

σ(t)− t
= p(t)y(t)

y(σ(t))− y(t)

qt− t
= p(t)y(t)

y(σ(t))− y(t) = (q − 1)tp(t)y(t)

y(σ(t)) = [1 + (q − 1)p(t)t]y(t)

Observing that ep(t0, t0) = 1 we are able to come up with a closed form for ep(t, t0):

ep(qt0, t0) = 1 + (q − 1)p(qt0)qt0

ep(q
2t0, t0) = [1 + (q − 1)p(qt0)qt0][1 + (q − 1)p(q2t0)q

2t0]

...

ep(t, t0) =
∏

s∈[t0,t)

(1 + (q − 1)p(s)s), t0 < t, s ∈ T

Theorem 2.39 If p, q ∈ R(C) and t, s, r ∈ T, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) 1
ep(t,s)

= eªp(t, s);

(iv) ep(t, s) = eªp(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);
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(vii) ep(t,s)

eq(t,s)
= epªq(t, s).

Part (ii) of Theorem 2.39 will be of particular importance to us in the next sec-

tion. The ability to rewrite ep(σ(t), s) without σ(t) inside the function will allow us

to prove many results about the Laplace transform of special functions.

The following Corollary is a consequence of Theorem 2.39 and will be used fre-

quently in the next section to compute the Laplace transform of special functions.

Corollary 2.40 Let p ∈ R(C). Then

eªp(σ(t), 0) =
1

1 + µ(t)p(t)
eªp(t, 0) = −(ªp)(t)

p(t)
eªp(t, 0)

Proof: Theorem 2.39, gives us

eªp(σ(t), s) =
eªp(t, 0)

1 + µ(t)p(t)

= (1 + µ(t)(ªp)(t))eªp(t, 0)

Using the definition of ª we get

eªp(σ(t), s) =

(
1− µ(t)p(t)

1 + µ(t)p(t)

)
eªp(t, 0)

=
1

1 + µ(t)p(t)
eªp(t, 0)

= −(ªp)(t)

p(t)
eªp(t, 0). 2

We will now use the time scales exponential function to define four new func-

tions that work like sine, cosine and their hyperbolic counterparts in the time scales

calculus.
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Definition 2.41 Let p be an rd-continuous function on T such that µp2 ∈ R(R).

Then we define the time scales trigonometric functions cosp and sinp by

cosp(t, t0) =
eip(t, t0) + e−ip(t, t0)

2
and sinp(t, t0) =

eip(t, t0)− e−ip(t, t0)

2i

where i =
√−1. Now let p be an rd-continuous function on T such that −µp2 ∈

R(R). Then we define the time scales hyperbolic trigonometric functions coshp and

sinhp by

coshp(t, t0) =
ep(t, t0) + e−p(t, t0)

2
and sinhp(t, t0) =

ep(t, t0)− e−p(t, t0)

2

Notice that µp2 is regressive iff ip and −ip are both regressive and −µp2 is

regressive iff p and −p are both regressive, hence the trigonometric and hyperbolic

trigonometric functions are well defined. When T = R, cos1(t, s) = cos(t − s)

where in the later half of the equation we mean the usual cosine function. Similarly

sin1(t, s) = sin(t− s). Furthermore, for this time scale,

cosp(t, s) = cos(

∫ t

s

p(τ)dτ) and sinp(t, s) = sin(

∫ t

s

p(τ)dτ).

Proposition 2.42 Let p be an rd-continuous function on T such that µp2 ∈ R(R).

Then

(i)

cos∆
p (t, t0) = −p(t) sinp(t, t0)

and

(ii)

sin∆
p (t, t0) = p(t) cosp(t, t0).
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Proof:

cos∆
p (t, t0) =

(
eip(t, t0) + e−ip(t, t0)

2

)∆

=
e∆

ip(t, t0) + e∆
−ip(t, t0)

2

=
ip(t)eip(t, t0)− ip(t)e−ip(t, t0)

2

=
ip(t)(eip(t, t0)− e−ip(t, t0))

2

= −p(t)
eip(t, t0)− e−ip(t, t0)

2i

= −p(t) sinp(t, t0)

The proof of (ii) proceeds similarly. 2

We end this subsection with a theorem for time scales functions of two variables

which will prove useful in the next subsection.

Theorem 2.43 Let a ∈ Tκ, b ∈ T and suppose f : T × Tκ → R is continuous

at (t, t), where t ∈ Tκ, t > a. Suppose that f∆(t, ·) is rd-continuous on [a, σ(t)].

Also suppose that f(·, τ) is ∆-differentiable for each τ ∈ [a, σ(t)]. Denote by f∆ the

derivative of f with respect to the first variable. Then

g(t) :=

∫ t

a

f(t, τ)∆τ =⇒ g∆(t) =

∫ t

a

f∆(t, τ)∆τ + f(σ(t), t). (2.11)

Proof: The fact that f(t, τ) is ∆-differentiable with respect to t implies that there

exists δ1 > 0 such that when |t− s| < δ1 we have

∣∣f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)
∣∣ ≤ ε

2(σ(t)− a)
|σ(t)− s| . (2.12)

The continuity of f at (t, t) tells us that there exists δ2 > 0 such that when |t−s| < δ2

and |t− τ | < δ2 we have

|f(s, τ)− f(t, t)| ≤ ε

2
. (2.13)



37

Let δ := min{δ1, δ2} and suppose that |t− s| < δ. Then

∣∣∣∣g(σ(t))− g(s)−
(∫ t

a

f∆(t, τ)∆τ + f(σ(t), t)

)
(σ(t)− s)

∣∣∣∣

=

∣∣∣∣∣
∫ σ(t)

a

f(σ(t), τ)∆t−
∫ s

a

f(s, τ)∆τ

−(σ(t)− s)f(σ(t), t)− (σ(t)− s)

∫ t

a

f∆(t, τ)∆τ

∣∣∣∣

by the definition of g. We can now manipulate the integration limits and subtract

of the difference to rewrite this as
∣∣∣∣∣
∫ σ(t)

a

[
f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)

]
∆τ

−
∫ s

σ(t)

f(s, τ)∆τ − (σ(t)− s)f(σ(t), t)

−(σ(t)− s)

∫ t

σ(t)

f∆(t, τ)∆τ

∣∣∣∣ .

Using Theorem 2.21 we can rewrite the last integral in this expression as µ(t)f∆(t, t)

thus obtaining
∣∣∣∣∣
∫ σ(t)

a

[
f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)

]
∆τ −

∫ s

σ(t)

f(s, τ)∆τ − (σ(t)− s)f(σ(t), t)− (σ(t)− s)µ(t)f∆(t, t)

∣∣∣∣ .

Theorem 2.11 tells us that f(t, t) = f(σ(t), t)− µ(t)f∆(t, t) yielding

∣∣∣∣∣
∫ σ(t)

a

[
f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)

]
∆τ

−
∫ s

σ(t)

f(s, τ)∆τ − (σ(t)− s)f(t, t)

∣∣∣∣

=

∣∣∣∣∣
∫ σ(t)

a

[
f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)

]
∆τ

+

∫ σ(t)

s

f(s, τ)∆τ − (σ(t)− s)f(t, t)

∣∣∣∣∣
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=

∣∣∣∣∣
∫ σ(t)

a

[
f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)

]
∆τ

+

∫ σ(t)

s

[f(s, τ)− f(t, t)] ∆τ

∣∣∣∣∣

≤
∫ σ(t)

a

∣∣f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)
∣∣ ∆τ

+

∫ σ(t)

s

|f(s, τ)− f(t, t)|∆τ

Now we’ll use equations 2.12 and 2.13 to bound this by
∫ σ(t)

a

ε

2(σ(t)− a)
|σ(t)− s|∆τ +

∫ σ(t)

s

ε

2
∆τ

=
ε

2
|σ(t)− s|+ ε

2
|σ(t)− s|

= ε|σ(t)− s|. 2

2.4 Dynamic Equations

We already seen an example of a dynamic initial value problem in Theorem 2.37.

We will now consider the solutions of some more initial value problems that will be

of use later.

Theorem 2.44 Variation of Constants I

Suppose p ∈ R(R) and f : T → R is rd-continuous. Let t0 ∈ T and x0 ∈ R. Then

the unique solution of the initial value problem

x∆(t) = −p(t)x(σ(t)) + f(t), x(t0) = x0 (2.14)

is given by

x(t) = eªp(t, t0)x0 +

∫ t

t0

eªp(t, τ)f(τ)∆τ. (2.15)
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Proof: We start by showing that x(t) given in equation 2.15 satisfies the initial value

problem given in equation 2.14.

x∆(t) =

(
eªp(t, t0)x0 +

∫ t

t0

eªp(t, τ)f(τ)∆τ

)∆

= ªp(t)eªp(t, t0)x0 +

(∫ t

t0

eªp(t, τ)f(τ)∆τ

)∆

By Theorem 2.43 we get that

x∆(t) = ªp(t)eªp(t, t0)x0 +

∫ t

t0

(eªp(t, τ)f(τ))∆∆τ

+eªp(σ(t), t)f(t)

= ªp(t)eªp(t, t0)x0 +

∫ t

t0

ªp(t)eªp(t, τ)f(τ)∆τ

+eªp(σ(t), t)f(t).

By Corollary 2.40, we can rewrite this last term to obtain

x∆(t) = ªp(t)eªp(t, t0)x0 +

∫ t

t0

ªp(t)eªp(t, τ)f(τ)∆τ

+
1

1 + µ(t)p(t)
eªp(t, t)f(t)

= ªp(t)eªp(t, t0)x0 +

∫ t

t0

ªp(t)eªp(t, τ)f(τ)∆τ

+
1

1 + µ(t)p(t)
f(t)

=
−p(t)

1 + µ(t)p(t)
eªp(t, t0)x0

+
−p(t)

1 + µ(t)p(t)

∫ t

t0

eªp(t, τ)f(τ)∆τ

+
1

1 + µ(t)p(t)
f(t).

Multiplying both sides by (1 + µ(t)p(t)) gives

(1 + µ(t)p(t))x∆(t) = −p(t)eªp(t, t0)x0

−p(t)

∫ t

t0

eªp(t, τ)f(τ)∆τ + f(t)

= −p(t)x(t) + f(t).
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Thus we get

x∆(t) = −µ(t)p(t)x∆(t)− p(t)x(t) + f(t)

= −p(t)[x(t) + µ(t)x∆(t)] + f(t)

= −p(t)x(σ(t)) + f(t)

by Theorem 2.11. It is easy to see that x satisfies the initial conditions because

eªp(t0, t0) = 1 and

∫ t0

t0

eªp(t, τ)f(τ)∆τ = 0.

Now we proceed to showing the uniqueness of the solution. Suppose that x(t) is a

solution of (2.15). Then we can solve the dynamic equation for f(t) to get

f(t) = x∆(t) + p(t)x(σ(t)) (2.16)

ep(t, t0)f(t) = ep(t, t0)[x
∆(t) + p(t)x(σ(t))] (2.17)

= ep(t, t0)x
∆(t) + p(t)ep(t, t0)x(σ(t)) (2.18)

= [ep(t, t0)x(t)]∆. (2.19)

Equation (2.19) follows from equation (2.18) by an application of Theorem 2.12.

Integrating both sides yields

∫ t

t0

ep(τ, t0)f(τ)∆τ =

∫ t

t0

[ep(τ, t0)x(τ)]∆∆τ

= ep(t, t0)x(t)− ep(t0, t0)x(t0)

= ep(t, t0)x(t)− x0

ep(t, t0)x(t) = x0 +

∫ t

t0

ep(τ, t0)f(τ)∆τ.

Solving for x(t) we get

x(t) = eªp(t, t0)x0 +

∫ t

t0

eªp(t, t0)ep(τ, t0)f(τ)∆τ

= eªp(t, t0)x0 +

∫ t

t0

eªp(t, t0)eªp(t0, τ)f(τ)∆τ

= eªp(t, t0)x0 +

∫ t

t0

eªp(t, τ)f(τ)∆τ
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by parts (iii), (iv), and (v) of Theorem 2.39. 2

Corollary 2.45 Variation of Constants II

Suppose p ∈ R(R) and f : T → R is rd-continuous. Let t0 ∈ T and x0 ∈ R. Then

the unique solution of the initial value problem

x∆(t) = p(t)x(t) + f(t), x(t0) = x0 (2.20)

is given by

x(t) = ep(t, t0)x0 +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ.

Proof: By Theorem 2.11 we can write x(t) = x(σ(t)) − µ(t)x∆(t). Using this, we

rewrite (2.20) as

x∆(t) = p(t)[x(σ(t))− µ(t)x∆(t)] + f(t)

= p(t)x(σ(t))− p(t)µ(t)x∆(t) + f(t).

Thus we have

x∆(t) + p(t)µ(t)x∆(t) = p(t)x(σ(t)) + f(t)

(1 + µ(t)p(t))x∆(t) = p(t)x(σ(t)) + f(t)

x∆(t) =
p(t)

1 + µ(t)p(t)
x(σ(t)) +

1

1 + µ(t)p(t)
f(t)

= −(ªp)(t)x(σ(t)) +
1

1 + µ(t)p(t)
f(t) (2.21)

Notice that ª(ªp) = p(t) and apply this along with Theorem 2.44 to equation (2.21)

to get that

x(t) = x0ep(t, t0) +

∫ t

t0

ep(t, τ)
f(τ)

1 + µ(τ)p(τ)
∆τ.

Theorem 2.39 tells us that

1 + µ(τ)p(τ) = (1 + µ(τ)p(τ))ep(τ, τ) = ep(σ(τ), τ).
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Thus

x(t) = x0ep(t, t0) +

∫ t

t0

ep(t, τ)

ep(σ(τ), τ)
f(τ)∆τ

= x0ep(t, t0) +

∫ t

t0

ep(t, τ)eªp(σ(τ), τ)f(τ)∆τ

= x0ep(t, t0) +

∫ t

t0

ep(t, τ)ep(τ, σ(τ))f(τ)∆τ

= x0ep(t, t0) +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ

as desired. 2

Theorem 2.46 Variation of Constants III

Let g be an rd-continuous function. Then the solution to the initial value problem

x∆k+1

(t) = g(t), x∆i

(0) = 0 for all 0 ≤ i ≤ k (2.22)

is given by

x(t) =

∫ t

0

hk(t, σ(s))g(s)∆s. (2.23)

Proof: We proceed by induction on k. Suppose k = 0. Corollary 2.20 gives us that

the solution to

x∆(t) = p(t)x(t) + g(t), x(t0) = x0

is

x(t) = ep(t, t0)x0 +

∫ t

t0

ep(t, σ(s))g(s)∆s.

So for p(t) ≡ 0, we get that the solution to

x∆(t) = g(t), x(0) = 0

is

x(t) =

∫ t

0

e0(t, σ(s))g(s)∆s =

∫ t

0

g(s)∆s.
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Recalling that h0(t, s) ≡ 1, we get

x(t) =

∫ t

0

h0(t, σ(s))g(s)∆s.

So our hypothesis holds for k = 0. Now suppose our hypothesis holds for k = n and

consider

x(t) =

∫ t

0

hn+1(t, σ(s))g(s)∆s.

x∆n+2

(t) =

(∫ t

0

hn+1(t, σ(s))g(s)∆s

)∆n+2

By Theorem 2.43, the right side of this is

(∫ t

0

h∆
n+1(t, σ(s))g(s)∆s + hn+1(σ(t), σ(t))g(t)

)∆n+1

Recalling that hk(a, a) = 0 and h∆
k (t, s) = hk−1(t, s) we get

x∆n+2

(t) =

(∫ t

0

hn(t, σ(s))g(s)∆s

)∆n+1

By our induction hypothesis

∫ t

0

hn(t, σ(s))g(s)∆s

is the solution to the initial value problem

y∆n+1

= g(t), y∆i

(0) = 0 for all 0 ≤ i ≤ n.

So

x∆n+2

(t) = g(t).

Furthermore,

x∆i

(0) = y∆i−1

(0) = 0 for all 1 ≤ i ≤ n + 1.

The case i = 0 is trivial as x(0) = 0 directly from the definition. 2



Chapter 3

Laplace Transform

3.1 Definition and Examples

We start this section by introducing the Laplace transform. The goal is to exploit

some of the properties of the transform in solving dynamic equations.

Definition 3.1 Let T+ be a time scale such that 0 ∈ T+ and supT+ = ∞. Let

f : T+ → C be a regulated function. Then the Time Scale Laplace transform is

defined by

L{f}(z) :=

∫

0

∞
f(t)eªz(σ(t), 0)∆t (3.1)

for z ∈ D{f} where D{f} is the set of z ∈ C such that the integral exists and

1 + µ(t)z 6= 0, ∀t ∈ T+.

We will see why it is important to have σ(t) instead of t in the exponential

function when we do Example 3.12. Before presenting the properties of the Laplace

transform, we will compute the Laplace transform of a function directly from the

definition.

Example 3.2 Let T+ = 2N0 ∪ {0} and let χ[22,25] be the characteristic (indicator)

function of T+ ∩ [22, 25]. Then

L{χ[22,25]}(z) =

∫ ∞

0

χ[22,25]eªz(σ(t), 0)∆t

=

∫ 25

22

eªz(σ(t), 0)∆t

44
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The exponential function for 2N0 (see page 33) is given by

ep(t, 1) =
∏

s∈[1,t)

(1 + p(s)s) .

Observe that for 2N0 ∪ {0} we can write

ep(t, 0) = ep(t, 1)ep(1, 0) = [1 + p(0)]
∏

s∈[1,t)

(1 + p(s)s)

where we have calculated ep(1, 0) directly from the definition. So

L{χ[22,25]}(z) =

∫ 25

22

[1 +ªz(0)]
∏

s∈[1,σ(t))

(1 +ªz(s)s) ∆t

= [1 +ªz(0)]
4∑

n=2

[
n∏

i=0

(1 +ªz(2i)2i)

]
(
2n+1 − 2n

)

= [1 +ªz(0)]
4∑

n=2

[
n∏

i=0

(1 +ªz(2i)2i)

]
2n

=

(
1 +

−z

1 + z

) 4∑
n=2

[
n∏

i=0

(
1 +

−z2i

1 + z2i

)]
2n

=
1

1 + z

4∑
n=2

[
n∏

i=0

1

1 + z2i

]
2n

=

(
1

1 + z

)2 (
1

1 + 2z

)(
1

1 + 4z

)
22

+

(
1

1 + z

)2 (
1

1 + 2z

)(
1

1 + 4z

)(
1

1 + 8z

)
23

+

(
1

1 + z

)2 (
1

1 + 2z

)(
1

1 + 4z

)(
1

1 + 8z

)(
1

1 + 16z

)
24

Notice that the Laplace transform maps functions defined on time scales to func-

tions defined on some subset of the complex numbers. The region of convergence

of the transform, D{f}, varies not only with the function f but also with the time
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scale. We will illustrate this with a couple of examples.

Example 3.3 Suppose that T = hZ. Then for any regressive α ∈ C,

eα(t, 0) = exp

(∫ t

0

1

h
Log(1 + αh)∆t

)
= exp

(
t

h
Log(1 + αh)

)

= exp
(
Log(1 + αh)

t
h

)
= (1 + αh)

t
h .

So in particular,

eªz(t, 0) = (1 + (ªz)h)
t
h =

(
1− zh

1 + zh

) t
h

=

(
1

1 + zh

) t
h

.

First we’ll find D{1}.

L{1}(z) =

∫

0

∞
eªz(σ(t), 0)∆t =

∫

0

∞ (
1

1 + zh

) t+1
h

∆t

=
∞∑

t=0

(
1

1 + zh

) t+1
h

=
1

1 + zh

∞∑
t=0

(
1

1 + zh

) t
h

.

Recognizing this as a geometric series, we conclude that the L{1}(z) converges if

and only if

∣∣∣∣
1

1 + zh

∣∣∣∣
1
h

< 1

⇐⇒
∣∣∣∣

1

1 + zh

∣∣∣∣ < 1

⇐⇒ |1 + zh| > 1

⇐⇒
∣∣∣∣
1

h
+ z

∣∣∣∣ >
1

h

⇐⇒
∣∣∣∣z −

(
−1

h

)∣∣∣∣ >
1

h
.

If we let D(a, r) ⊂ C denote the closed ball of radius r about the point a, then the

region of convergence is

D{1} = C\D
(−1

h
,
1

h

)
.



47

Now we will find D{eα(t, 0)} for α ∈ R regressive.

L{eα(t, 0)}(z) =

∫

0

∞
eα(t, 0)eªz(σ(t), 0)∆t

=

∫

0

∞
(1 + αh)

t
h

(
1

1 + zh

) t+1
h

∆t

=

(
1

1 + zh

) 1
h

∫

0

∞
(1 + αh)

t
h

(
1

1 + zh

) t
h

∆t

=

(
1

1 + zh

) 1
h

∫

0

∞ (
1 + αh

1 + zh

) t
h

∆t

=

(
1

1 + zh

) 1
h

∞∑
t=0

(
1 + αh

1 + zh

) t
h

Again, we recognize this as a geometric series which converges if and only if

∣∣∣∣
1 + αh

1 + zh

∣∣∣∣
1
h

< 1

⇐⇒ |1 + zh| > |1 + αh|

⇐⇒
∣∣∣∣z −

(
−1

h

)∣∣∣∣ >

∣∣∣∣
1

h
+ α

∣∣∣∣ .

So our region of convergence is

D{eα(t, 0)} = C\D
(−1

h
,
1

h
+ α

)
.

Before presenting the operational properties of the Laplace transform, there is an

issue that deserves some attention as it will present itself frequently. When T+ = R,

the convergence of

lim
t→∞

f(t)eªz(σ(t), 0) = lim
t→∞

f(t)e−zt = 0

implies that

lim
t→∞

f(t)eªz(t, 0) = 0.
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However for arbitrary time scales it is not clear when this is true because the expo-

nential function could possibly switch sign. For example, when T = Z, we have from

the previous example that

eªz(t, 0) =

(
1

1 + z

)t

.

For z < −1, this changes sign for all t ∈ Z. What we can do is give a sufficient

condition on T+ for limt→∞ f(t)eªz(t, 0) = 0. The next proposition is a new result

for time scales.

Proposition 3.4 Suppose T+ is such that µ(t) < M for some M ∈ R and all

t ∈ T+. Also suppose that f : T+ → R and

lim
t→∞

f(t)eªz(σ(t), 0) = 0.

Then

lim
t→∞

f(t)eªz(t, 0) = 0.

Proof:

lim
t→∞

f(t)eªz(σ(t), 0) = 0.

From this Theorem 2.40 gives

lim
t→∞

−(ªz)(t)

z
f(t)eªz(t, 0) = 0

=⇒ lim
t→∞

z

z(1 + µ(t)z)
f(t)eªz(t, 0) = 0

=⇒ lim
t→∞

1

1 + µ(t)z
f(t)eªz(t, 0) = 0.

Because µ(t) < M , we find that

lim
t→∞

∣∣∣∣
1

1 + µ(t)z
f(t)eªz(t, 0)

∣∣∣∣ >

∣∣∣∣
1

1 + Mz
lim
t→∞

f(t)eªz(t, 0)

∣∣∣∣ > 0.
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Thus

1

1 + Mz
lim
t→∞

f(t)eªz(t, 0) = 0

=⇒ lim
t→∞

f(t)eªz(t, 0) = 0. 2

3.2 Properties of the Laplace Transform

Theorem 3.5 (Linearity). Let f and g be regulated functions on T+ and let α, β ∈ R
be constants. Then

L{αf + βg}(z) = αL{f}(z) + βL{g}(z)

for those z ∈ D{f} ∩ D{g}.

Proof: The proof of this theorem follows directly from the linearity of the ∆-integral,

Theorem 2.23.

Theorem 3.6 Let f : T+ → R be such that f∆ is regulated. Then

L{f∆}(z) = zL{f}(z)− f(0) + lim
t→∞

f(t)eªz(t, 0)

for those regressive z ∈ R such that the limit exists.

Proof:

L{f∆}(z) =

∫ ∞

0

f∆(t)eªz(σ(t), 0)∆t.

Using integration by parts, Theorem 2.26, and the derivative of eªz(σ(t), 0) (see

Theorem 2.37 ) we get

L{f∆}(z) = lim
t→∞

f(t)eªz(t, 0)− f(0)eªz(0, 0)−
∫ ∞

0

f(t)(ªz)(t)eªz(t, 0)∆t.
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Recognizing that eªz(0, 0) = exp(0) = 1 and that −(ªz)(t)eªz(t, 0) = zeªz(σ(t), 0)

(see Corollary 2.40), we can simplify this to

L{f∆}(z) = lim
t→∞

f(t)eªz(t, 0)− f(0)− z

∫ ∞

0

f(t)eªz(σ(t), 0)∆t.

The definition of the Laplace transform now gives

L{f∆}(z) = lim
t→∞

f(t)eªz(t, 0)− f(0) + zL{f}(z).

Rearranging the order of the terms gives the desired result. 2

Theorem 3.6 exhibits one of the most important properties of the Laplace trans-

form. This property allows us to remove the ∆-derivatives from dynamic equations

when we apply this transform to them.

Corollary 3.7 Let f : T+ → R be such that f∆n
is regulated. Then

L{f∆n}(z) = znL{f}(z)−
∑n−1

i=0
zif∆i

(0)

for those regressive z ∈ R such that

lim
t→∞

f∆i

(t)eªz(t, 0) = 0, 0 ≤ i ≤ n− 1.

Proof: By Theorem 2.11, if a function is differentiable at a point t ∈ T, then it

is continuous at t. By Theorem 2.8, the continuity of a function implies that it is

regulated. So f∆n
regulated implies that f∆k

is regulated for all 0 ≤ k ≤ n. We will

now proceed by induction on n. For n = 1, Theorem 3.6 gives us that

L{f∆}(z) = zL{f}(z)− f(0).

Suppose that

L{f∆n}(z) = znL{f}(z)−
∑n−1

i=0
zif∆i

(0).
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Then

L{f∆n+1}(z) = zL{f∆n}(z)− f∆n

(0)

= z
(
znL{f}(z)−

∑n−1

i=0
zif∆i

(0)
)
− f∆n

(0)

= zn+1L{f}(z)−
∑n

i=0
zif∆i

(0). 2

Theorem 3.8 Let f : T+ → R be regulated and

F (t) :=

∫ t

0

f(τ)∆τ

for t ∈ T+, then

L{F}(z) =
1

z
[L{f}(z)− lim

t→∞
F (t)eªz(t, 0)]

for regressive z ∈ R, z 6= 0.

Proof:

L{F}(z) =

∫ ∞

0

F (t)eªz(σ(t), 0)∆t

Corollary 2.40, gives

L{F}(z) = −1

z

∫ ∞

0

F (t)(ªz)(t)eªz(t, 0)∆t.

Integration by parts yields

L{F}(z) = −1

z
[−

∫ ∞

0

F∆(t)(ªz)(t)eªz(t, 0)∆t− F (0) + lim
t→∞

F (t)eªz(t, 0)].

Using the fact that F (0) = 0 and the Fundamental Theorem of Calculus, Theorem

2.24, we find that

L{F}(z) = −1

z
[−L{f}(z) + lim

t→∞
F (t)eªz(t, 0)]

=
1

z
[L{f}(z)− lim

t→∞
F (t)eªz(t, 0)]. 2
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Example 3.9

L{1} =
1

z
[1− lim

t→∞
eªz(t, 0)]

for all regressive z ∈ R, z 6= 0.

Proof:

L{1}(z) =

∫ ∞

0

1 · eªz(σ(t), 0)∆t.

Corollary 2.40 gives

L{1}(z) = −1

z

∫ ∞

0

(ªz)(t)eªz(t, 0)∆t.

Applying the Fundamental Theorem of Calculus yields

L{1}(z) = −1

z
[eªz(t, 0)]t→∞t=0

=
1

z
[1− lim

t→∞
eªz(t, 0)]. 2

Theorem 3.10 Let k ∈ N0, then

L{hk(t, 0)}(z) =
1

zk+1
− lim

t→∞

k∑
i=0

hi(t, 0)eªz(t, 0)

zk−i+1

for those regressive z ∈ R, z 6= 0.

Proof: We will proceed by induction on k. Because h0(t, 0) = 1, the proceeding

example shows that our hypothesis holds for k = 0. Now assume that our hypothesis

holds for fixed k ∈ N.

L{hk+1(t, 0)}(z) = L{
∫ t

0

hk(τ, 0)∆τ}(z)
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by the definition of the time scales polynomials. Theorem 3.8 gives

L{hk+1(t, 0)}(z) =
1

z
[L{hk(t, 0)}(z)− lim

t→∞
hk+1(t, 0)eªz(t, 0)]

=
1

z

(
1

zk+1
− lim

t→∞

k∑
i=0

hi(t, 0)eªz(t, 0)

zk−i+1
− lim

t→∞
hk+1(t, 0)eªz(t, 0)

)

=
1

zk+2
− 1

z
lim
t→∞

k∑
i=0

hi(t, 0)eªz(t, 0)

zk−i+1
− lim

t→∞
hk+1(t, 0)eªz(t, 0)

z

=
1

zk+2
− lim

t→∞

k∑
i=0

hi(t, 0)eªz(t, 0)

zk−i+2
− lim

t→∞
hk+1(t, 0)eªz(t, 0)

z

=
1

zk+2
− lim

t→∞

k+1∑
i=0

hi(t, 0)eªz(t, 0)

zk−i+2
.

We have shown that when our hypothesis holds for k then it also holds for k + 1. So

our claim holds for all k ∈ N by the first principle of mathematical induction. 2

Theorem 3.11 Let α ∈ R be regressive. Then

(i)

L{eα(t, 0)}(z) =
1

z − α

provided that limt→∞ eαªz(t, 0) = 0

(ii)

L{cosα(t, 0)}(z) =
z

z2 + α2

provided that limt→∞ eiαªz(t, 0) = limt→∞ e−iαªz(t, 0) = 0

(iii)

L{sinα(t, 0)}(z) =
α

z2 + α2

provided that limt→∞ eiαªz(t, 0) = limt→∞ e−iαªz(t, 0) = 0.

Proof:

(i)
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L{eα(t, 0)}(z) =

∫ ∞

0

eα(t, 0)eªz(σ(t), 0)∆t

Again, we use Corollary 2.40:

L{eα(t, 0)}(z) =

∫ ∞

0

1

1 + µ(t)z
eα(t, 0)eªz(t, 0)∆t.

Now we can employ Theorem 2.39 to combine the two exponential functions.

L{eα(t, 0)}(z) =

∫ ∞

0

1

1 + µ(t)z
eαªz(t, 0)∆t.

L{eα(t, 0)}(z) =
1

α− z

∫ ∞

0

α− z

1 + µ(t)z
eαªz(t, 0)∆t.

In the proceeding line, we have simply multiplied the right side by a appropriate

choice of 1, ie α−z
α−z

. Recognizing α−z
1+µ(t)z

as (αª z)(t) brings us to the next line.

L{eα(t, 0)}(z) =
1

α− z

∫ ∞

0

(αª z)(t)eαªz(t, 0)∆t.

Noticing that (αª z)(t)eαªz(t, 0) is the derivative of eαªz(t, 0), allows us to use the

Fundamental Theorem of calculus to get

L{eα(t, 0)}(z) = lim
t→∞

[
1

α− z
eαªz(t, 0)

]
− 1

α− z
eαªz(0, 0).

So

L{eα(t, 0)}(z) =
1

z − α

provided that limt→∞ eαªz(t, 0) = 0. Because the time scales trigonometric functions

are defined in terms of the exponential function, the proofs of (ii) and (iii) follow

directly from the definitions of cosα(t, 0) and sinα(t, 0), the linearity of the Laplace

transform, and part (i). 2.

Example 3.12 Consider the dynamic equation

x∆∆ + kx = sinα(t, 0) (3.2)
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for α, k ∈ R, k > 0, k 6= α2. When T = R this becomes the differential equation

x′′ + kx = sin αt

which describes the oscillations of a mass spring system with spring constant k. The

solution to this equation with initial value conditions x(0) = x′(0) = 0 is

x(t) =
1

(k − α2)
sin(αt) +

α

(α2 − k)
√

k
sin(t

√
k) (3.3)

Now we will use L to solve the initial value problem

x∆∆ + kx = sinα(t, 0), x∆(0) = x(0) = 0 (3.4)

for all T+ under the assumption that limt→∞ eαªz(t, 0) = 0, limt→∞ e√kªz(t, 0) = 0,

limt→∞ x(t)eªz(t, 0) = 0, and limt→∞ x∆(t)eªz(t, 0) = 0. We start by applying L to

both sides of equation (3.4).

L{x∆∆ + kx} = L{sinα(t, 0)}

L{x∆∆}+ kL{x} = L{sinα(t, 0)}

Notice that

L{x∆∆}(z) = z2L{x}(z)

by Corollary 3.7 along with our initial conditions and our assumption that

limt→∞ x(t)eªz(t, 0) = 0, and limt→∞ x∆(t)eªz(t, 0) = 0. Using this along with

the transform of sine, part (iii) of Theorem 3.11, under the assumption that

limt→∞ eαªz(t, 0) = 0 we get

z2L{x}(z) + kL{x}(z) =
α

z2 + α2

(z2 + k)L{x}(z) =
α

z2 + α2

L{x}(z) =
α

(z2 + α2)(z2 + k)
.
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Decomposing this by partial fractions yields

L{x}(z) =
1

(k − α2)

(
α

z2 + α2

)
+

α

(α2 − k)
√

k

( √
k

z2 + k

)
.

Now we can use part (iii) of Theorem 3.11 again to invert the terms, that is:

L{x}(z) =
1

(k − α2)
L{sinα(t, 0)}+

α

(α2 − k)
√

k
L{sin√k(t, 0)}

= L
{

1

(k − α2)
sinα(t, 0) +

α

(α2 − k)
√

k
sin√k(t, 0)

}

Notice that we have used limt→∞ e√kªz(t, 0) = 0 in the inversion process. So the

solution to (3.4) is

x(t) =
1

(k − α2)
sinα(t, 0) +

α

(α2 − k)
√

k
sin√k(t, 0). (3.5)

Observe that using L to solve the initial value problem for all time scales T+ was

just as easy as restricting ourselves to R.

In the process of solving this initial value problem, we have made the assumption

that L is injective on the space of functions in its domain. However, there is currently

no result for time scales regarding this injectivity. This creates a problem when we

try to find x(t) from L{x}(z). There may exist another function, say y(t), such

that L{x}(z) = L{y}(z). In order to ensure that the function found is indeed the

solution to a given initial value problem, it would be wise to verify it directly. On a

historical note, the techniques for using the Laplace transform to solve differential

equations were first employed by the engineer Oliver Heaviside before they were

proven mathematically.

We will now verify directly that x(t) given in (3.5) is indeed the solution to the

initial value problem given in (3.4). Employing Proposition 2.42 we find that:

x∆(t) =
α

(k − α2)
cosα(t, 0) +

α
√

k

(α2 − k)
√

k
cos√k(t, 0)

x∆∆(t) =
−α2

(k − α2)
sinα(t, 0) +

−kα

(α2 − k)
√

k
sin√k(t, 0)
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Now computing the left side of our dynamic equation, we have that

x∆∆(t) + kx(t) =

( −α2

k − α2
+

k

(k − α2)

)
sinα(t, 0)

+

( −αk

(α2 − k)
√

k
+

kα

(α2 − k)
√

k

)
sin√k(t, 0)

=

(
k − α2

k − α2

)
sinα(t, 0)

= sinα(t, 0)

as desired. Now we will check the initial conditions. First notice from their definitions

that sinp(t, t) = 0 and cosp(t, t) = 1 as one would expect. Thus it is clear that

x(0) = 0. Now consider

x∆(0) =
α

(k − α2)
+

α
√

k

(α2 − k)
√

k
=

α

(k − α2)
+

−α

(k − α2)
= 0. X

There is another Laplace transform defined for time scales with constant graini-

ness by

Lh{f}(z) :=

∫

0

∞
f(t)eªz(t, 0)∆t.

When T = Z, Lh{f}(z − 1) = Z{f}(z) the Z-transform defined by

Z{f}(z) :=
∞∑

t=0

f(t)

zt
.

We’ll use properties of the Z-transform to solve the initial value problem 3.4 with

Lh when T = Z. In this case the problem presents itself in the form of a difference

equation:

∆∆x + kx = sinα(t, 0) (3.6)

In solving this problem, the well known properties

Z{∆f}(z) = (z − 1)Z{f}(z)− z · f(0)

Z{at}(z) =
z

z − a
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of the Z-transform along with the fact that Lh{f}(z) = Z{f}(z + 1) will be used.

As with the previous two examples, this one is started by applying the transform in

question to both sides.

Lh{∆∆x + kx} = Lh{sinα(t, 0)}

Lh{∆∆x}+ kLh{x} = Lh{sinα(t, 0)} (3.7)

Write sinα(t, 0) in terms of the exponential function.

sinα(t, 0) =
eiα(t, 0)− e−iα(t, 0)

2i
.

We know for this time scale that ea(t, 0) = (1 + a)t, so we have

sinα(t, 0) =
(1 + iα)t − (1− iα)t

2i
.

Thus

Z{sinα(t, 0)}(z) =
Z{(1 + iα)t} − Z{(1− iα)t}

2i

=
1

2i

(
z

z − 1− iα
− z

z − 1 + iα

)

So

Lh{sinα(t, 0)}(z) = Z{sinα(t, 0)}(z + 1)

=
1

2i

(
z + 1

z − iα
− z + 1

z + iα

)

=
2iα

2i

(
z + 1

z2 − α2

)

= α

(
z + 1

z2 − α2

)

Now we find Lh{∆∆x}.

Lh{∆∆x} = Z{∆∆x}(z + 1) = z · Z{∆x}(z + 1)− (z + 1) ·∆x(0)

= z · [z · Z{x}(z + 1)− (z + 1) · x(0)]− (z + 1) ·∆x(0)
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The initial conditions give

Lh{∆∆x} = z2Z{x}(z + 1) = (z − 1)2Lh{x}(z)

Putting this and the transform of the sine into equation 3.7 yields

(z − 1)2Lh{x}(z) + kLh{x}(z) = α

(
z + 1

z2 − α2

)

[(z − 1)2 + k]Lh{x}(z) = α

(
z + 1

z2 − α2

)

Lh{x}(z) =
α(z + 1)

[z2 − α2][(z − 1)2 + k]
(3.8)

We see at this point that the transformed equation is quite ugly, and trying to

separate the right side of (3.8) only makes it worse. We will not proceed beyond

this point in solving (3.6) but we will make a few observations about Lh. Solving

the same problem with L was not nearly as involved as using Lh. Furthermore, the

transform L is defined for all time scales T+ such that 0 ∈ T+ and supT+ = ∞.

Lh is only defined for T = hZ and R. While we could probably extended Lh to a

greater class of time scales, we can’t be sure it will work for all time scales T+. It is

for this reason that throughout the rest of this thesis, we’ll focus on L.

It would now be prudent to examine our Laplace transform in the case that T

is the set of positive integers, but first we have the definition of another discrete

transform developed by Donahue in [5].

Definition 3.13 Let f(t) be a function such that f : N0 → R and let z ∈ R. Then

the Z̃-transform is defined by

Z̃{f}(z) :=
∞∑

t=0

f(t)

(z + 1)t+1

provided the series converges.
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Proposition 3.14 When T = N0, L is equivalent to the Z̃-transform.

Proof: We will start by finding eªz(t, 0) when T = Z.

eªz(t, 0) = exp

(∫ t

0

1

µ(t)
Log(1 +ªzµ(t))∆t

)

We know that for this time scale µ(t) = 1 for all t ∈ T, thus giving

eªz(t, 0) = exp

(∫ t

0

Log(1 +ªz)∆t

)
.

Now we use the definition of ª to get

eªz(t, 0) = exp

(∫ t

0

Log

(
1− z

1 + z

)
∆t

)
,

keeping in mind the value of µ.

eªz(t, 0) = exp

(∫ t

0

Log

(
1 + z

1 + z
− z

1 + z

)
∆t

)

= exp

(∫ t

0

Log

(
1

1 + z

)
∆t

)

The ∆-integral on this time scale is just the sum of the function values at each point

of Z within the bounds of integration, that is
∫ b

a
f(t)∆t =

∑b
i=a f(i). Thus we obtain

eªz(t, 0) = exp

(
t∑

i=0

Log

(
1

1 + z

))

= exp

(
tLog

(
1

1 + z

))
= exp

(
Log

(
1

1 + z

)t
)

=

(
1

1 + z

)t

.

For this time scale, σ(t) = t + 1. So

eªz(σ(t), 0) = eªz(t + 1, 0) = (
1

z + 1
)t+1

Therefore

L{f}(z) =

∫

0

∞
f(t)eªz(σ(t), 0)∆t =

∫

0

∞ f(t)

(z + 1)t+1
∆t
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=
∞∑

t=0

f(t)

(z + 1)t+1
= Z̃{f}(z) 2.

3.3 Convolution and Shifting Properties of Special Functions

The usual convolution of two functions on the real interval [0,∞) is defined by

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds for t ≥ 0.

However, this definition does not work for general time scales because t, s ∈ T+ does

not imply that t − s ∈ T+. So the possibility exists that f might not be defined at

t− s. What we can do is give an alternative definition for the convolution of special

functions on a general time scale T+.

Definition 3.15 Assume that f is one of the functions eα(t, 0), coshα(t, 0),

sinhα(t, 0), cosα(t, 0), sinα(t, 0), or hk(t, 0), k ∈ N0. If g is a regulated function

on T0, then we define the convolution of f with g by

(f ∗ g)(t) :=

∫ t

0

f(t, σ(s))g(s)∆s for t ∈ T+.

Proposition 3.16 Convolution Properties

Assume that α ∈ R and f is one of the functions eα(·, 0), coshα(·, 0), sinhα(·, 0),

cosα(·, 0), sinα(·, 0), or hk(·, 0), k ∈ N0. If g is a regulated function on T0 such that

lim
t→∞

eªz(t, 0)(f ∗ g)(t) = 0,

then

L{f ∗ g}(z) = L{f}(z)L{g}(z).
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Proof: First we will prove the case f(t, 0) = eα(t, 0). Consider the dynamic initial

value problem

y∆ − αy = g(t), y(0) = 0.

By the variation of constants formula in Theorem 2.45, the solution of the this

problem is given by

y(t) =

∫ t

0

eα(t, σ(s))g(s)∆s.

But the right side of this is just (eα(t, σ(s)) ∗ g)(t). Now we apply the Laplace

transform to both sides of y∆ − αy = g(t) to get

L{y∆}(z)− αL{y}(z) = L{g}(z).

=⇒ zL{y}(z)− αL{y}(z) = L{g}(z)

=⇒ L{y}(z) =
1

z − α
L{g}(z)

Theorem 3.11 tells us that L{eα(t, 0)}(z) = 1
z−α

, which leads to

L{y}(z) = L{eα(t, 0)}(z)L{g}(z).

So

L{f ∗ g}(z) = L{f}(z)L{g}(z).

The cases that f is one of the functions coshα(·, 0), sinhα(·, 0), cosα(·, 0), or

sinα(·, 0) follows from their respective definitions, the proceeding case and the lin-

earity of the Laplace transform.

We will now prove the proposition in the case f(t, 0) = hk(t, 0). Consider the

dynamic initial value problem

y∆k+1

= g(t), y∆i

= 0 for all 0 ≤ i ≤ k.

By the variation of constants formula given by Theorem 2.46, the solution to this

problem is given by

y(t) =

∫ t

0

hk(t, σ(s))g(s)∆s.
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As before, we recognize the right side of this equation as

(hk(t, σ(s)) ∗ g)(t). Taking the Laplace transform of both sides of y∆k+1
= g(t), gives

L{y∆k+1}(z) = L{g}(z).

Employing Corollary 3.7 along with the initial conditions tells us that

zk+1L{y}(z) = L{g}(z).

=⇒ L{y}(z) =
1

zk+1
L{g}(z)

Recall from Theorem 3.10 that L{hk(t, 0)} = 1
zk+1 ; thus

L{y}(z) = L{hk(t, 0)}(z)L{g}(z).

=⇒ L{hk(t, σ(s)) ∗ g}(z) = L{hk(t, 0)}(z)L{g}(z)

So we get the desired result

L{f ∗ g}(z) = L{f}(z)L{g}(z). 2

Corollary 3.17 Assume f and g are each one of the functions eα(t, 0), coshα(t, 0),

sinhα(t, 0), cosα(t, 0), sinα(t, 0), or hk(t, 0), k ∈ N0, not both hk(t, 0). Then

f ∗ g = g ∗ f.

Proof: First we’ll do the case

eα(t, 0) ∗ eβ(t, 0) = eβ(t, 0) ∗ eα(t, 0).

Let

x(t) := eα(t, 0) ∗ eβ(t, 0) and y(t) := eβ(t, 0) ∗ eα(t, 0).
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Notice that x(0) = 0 and y(0) = 0. Then by the variation of constants formula given

in Corollary 2.45, x(t) and y(t) are the solutions to the initial value problems

x∆ − αx = eβ(t, 0), x(0) = 0 (3.9)

and

y∆ − βy = eα(t, 0), y(0) = 0

respectively. Then

x∆(0) = αx(0) + eβ(0, 0) = 1

and by the same reasoning y∆(0) = 1. We claim that both x and y are solutions to

the initial value problem

x∆∆ − (α + β)x∆ + αβx = 0, x(0) = 0, x∆(0) = 1.

To show this, we rewrite (3.9) as

x∆ = αx + eβ(t, 0), (3.10)

and then differentiate both sides to get

x∆∆ = αx∆ + βeβ(t, 0). (3.11)

Using (3.11) we get that

x∆∆ − (α + β)x∆ + αβx

= αx∆ + βeβ(t, 0)− (α + β)x∆ + αβx

= βeβ(t, 0)− βx∆ + αβx.

Now using (3.10) we rewrite this as

βeβ(t, 0)− αβx− βeβ(t, 0) + αβx = 0.

One can show y is also a solution to this initial value problem by the same method.

Then because the solution of this problem is unique, we get x(t) = y(t).
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The proofs for the trigonometric functions and their hyperbolic counterparts

follows the fact that they are defined in terms of the exponential function and from

the linearity of the time scales integral. The last thing to show is that

eα(t, 0) ∗ hk(t, 0) = hk(t, 0) ∗ eα(t, 0).

Let

x(t) := eα(t, 0) ∗ hk(t, 0) and y(t) := hk(t, 0) ∗ eα(t, 0).

Because hk(0, 0) = 0, k > 0 then x(0) = 0 and y(0) = 0. (Recall that h0(t, s) = 1

making this case trivial) So by the variation of constants formula given in Corollary

2.45, we have that x(t) is a solution to the initial value problem

x∆(t)− αx = hk(t, 0), x(0) = 0.

Differentiating this i times gives

x∆i+1 − αx∆i

= hk−i(t, 0)

and by a finite induction on i

x∆i

(0) = 0, 0 ≤ i ≤ k, x∆k+1

(0) = 1.

Thus x(t) is the solution to the initial value problem

x∆k+2 − αx∆k+1

= 0, x∆i

(0) = 0, 0 ≤ i ≤ k, x∆k+1

(0) = 1.

Now we will show that y is a solution to the same initial value problem. By Theorem

2.43, the fact that hk(0, 0) = 0, k > 0, implies that

y∆i

(0) = 0, 0 ≤ i ≤ k.

So by the variation of constants formula given in Theorem 2.46, y is the solution of

the of the initial value problem

y∆k+1

= eα(t, 0), y∆i

(0) = 0, 0 ≤ i ≤ k.
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Thus y∆k+1
(0) = 1 and

y∆k+2 − αy∆k+1

= 0, y∆i

(0) = 0, 0 ≤ i ≤ k, y∆k+1

(0) = 1.

So x and y are solutions to the same initial value problem and hence must be equal.

2

Now we will focus our attention on shifts. Shifting theorems provide the answers

to two important questions:

1) What can we do to a function to cause its image under the Laplace transform to

be shifted by a factor α?

2) What does shifting a function by a factor α do to its image under the Laplace

transform?

For T = R the answer to the first question is given by the formula

L{eatf(t)}(z) = L{f}(z − a).

While there is currently no known way of proving the analog of this for arbitrary

functions and time scales, part (ii) of Theorem 2.39 allows us to prove such an analog

for the exponential and trigonometric functions.

Proposition 3.18 Shifting Property I

If α, β ∈ R(R) are constants, then

(i) L{eα(t, 0) sin β
1+µα

(t, 0)} = β
(z−α)2+β2 , provided that

limt→∞ eα(t, 0) sin β
1+µα

(t, 0) = 0 and limt→∞ eα(t, 0)
(
sin β

1+µα
(t, 0)

)∆

= 0;

(ii) L{eα(t, 0) cos β
1+µα

(t, 0)} = z−α
(z−α)2+β2 , provided that

limt→∞ eα(t, 0) cos β
1+µα

(t, 0) = 0 and limt→∞ eα(t, 0)
(
cos β

1+µα
(t, 0)

)∆

= 0;

(iii) L{eα(t, 0) sinh β
1+µα

(t, 0)} = β
(z−α)2−β2 , provided that

limt→∞ eα(t, 0) sinh β
1+µα

(t, 0) = 0 and limt→∞ eα(t, 0)
(
sinh β

1+µα
(t, 0)

)∆

= 0;
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(iv) L{eα(t, 0) cosh β
1+µα

(t, 0)} = z−α
(z−α)2−β2 , provided that

limt→∞ eα(t, 0) cosh β
1+µα

(t, 0) = 0 and limt→∞ eα(t, 0)
(
cosh β

1+µα
(t, 0)

)∆

= 0.

Proof: (i) Let

x(t) := eα(t, 0) sin β
1+µ(t)α

(t, 0).

We start by verifying that x(t) is the solution of the initial value problem

x∆∆ − 2αx∆ + (α2 + β2)x = 0, x(0) = 0, x∆(0) = β. (3.12)

Using the product rule, Theorem 2.12, and Theorem 2.39, we compute x∆ and x∆∆.

x∆ = αeα(t, 0) sin β
1+µ(t)α

(t, 0) +
β

1 + µ(t)α
eα(σ(t), 0) cos β

1+µ(t)α
(t, 0)

= αeα(t, 0) sin β
1+µ(t)α

(t, 0) +
β(1 + µ(t)α)

1 + µ(t)α
eα(t, 0) cos β

1+µ(t)α
(t, 0)

= αeα(t, 0) sin β
1+µ(t)α

(t, 0) + βeα(t, 0) cos β
1+µ(t)α

(t, 0).

Now we ∆-differentiate x∆ to get

x∆∆ = α2eα(t, 0) sin β
1+µ(t)α

(t, 0) + α
β

1 + µ(t)α
eα(σ(t), 0) cos β

1+µ(t)α
(t, 0)

+αβeα(t, 0) cos β
1+µ(t)α

(t, 0)− β
β

1 + µ(t)α
eα(σ(t), 0) sin β

1+µ(t)α
(t, 0)

= α2eα(t, 0) sin β
1+µ(t)α

(t, 0) + α
β(1 + µ(t)α)

1 + µ(t)α
eα(t, 0) cos β

1+µ(t)α
(t, 0)

+αβeα(t, 0) cos β
1+µ(t)α

(t, 0)− β
β(1 + µ(t)α)

1 + µ(t)α
eα(t, 0) sin β

1+µ(t)α
(t, 0)

= α2eα(t, 0) sin β
1+µ(t)α

(t, 0) + 2αβeα(t, 0) cos β
1+µ(t)α

(t, 0)

−β2eα(t, 0) sin β
1+µ(t)α

(t, 0).

So

x∆∆ − 2αx∆ = −α2eα(t, 0) sin β
1+µ(t)α

(t, 0)− β2eα(t, 0) sin β
1+µ(t)α

(t, 0)
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= −(α2 + β2)eα(t, 0) sin β
1+µ(t)α

(t, 0) = −(α2 + β2)x. X

Noting that eα(0, 0) = 1, sin β
1+µ(t)α

(0, 0) = 0, and cos β
1+µ(t)α

(0, 0) = 1, it follows that

x(t) satisfies the initial conditions. Next we apply the Laplace transform to both

sides of the dynamic equation in (3.12) and invoke Corollary 3.7 to obtain

z2L{x} − zx(0)− x∆(0)− 2α[zL{x} − x(0)] + (α2 + β2)L{x} = 0.

Notice that in the process of using Corollary 3.7, we have used the assumption that

limt→∞ eα(t, 0) sin β
1+µα

(t, 0) = 0 and limt→∞ eα(t, 0)
(
sin β

1+µα
(t, 0)

)∆

= 0. Using the

initial conditions, we arrive at

z2L{x} − β − 2αzL{x}+ (α2 + β2)L{x} = 0.

We now proceed to solve for L{x}.

L{x}(z2 − 2αz + α2 + β2) = β

L{x}(z) =
β

z2 − 2αz + α2 + β2

L{x}(z) =
β

(z − α)2 + β2
(3.13)

So we get

L{x}(z) =
β

(z − α)2 + β2
.

Recalling the definition of x(t) we find that

L{eα(t, 0) sin β
1+µα

(t, 0)} =
β

(z − α)2 + β2

as desired. The proofs of parts (ii), (iii), and (iv) proceed in a similar fashion.

2
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Definition 3.19 Let a ∈ T, a > 0, and define the step function ua by

ua(t) :=





0 if t ∈ T ∩ (−∞, a)

1 if t ∈ T ∩ [a,∞).

Proposition 3.20 Let a ∈ T+, a > 0. Then

L{ua(t)} =
eªz(a, 0)

z

for those z ∈ R(R) such that

lim
t→∞

eªz(t, 0) = 0.

Proof:

L{ua(t)}(z) =

∫ ∞

0

ua(t)eªz(σ(t), 0)∆t =

∫ ∞

a

eªz(σ(t), 0)∆t

By Corollary 2.40 we can re write this as

∫ ∞

a

(
−ªz

z

)
eªz(t, 0)∆t = −1

z
[eªz(t, 0)]∞0

= −1

z
[0− eªz(a, 0)] =

eªz(a, 0)

z
. 2

We will now consider the second type of shift property, the type referred to in

question 2 at the beginning of this section. For T = R this kind of shift property is

expressed by

L{ua(t)f(t− a)}(z) = e−azL{f}(z).

Again, though, we have a problem. As mentioned before the convolution proposition,

even if both t and a are in our time scale, there is no guarantee that t− a is in our
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time scale. Thus f(t − a) may not be defined. Once again, however, we can verify

an analogous result for some functions. The following proposition is a new result for

time scales.

Proposition 3.21 Shifting Property II

Let a ∈ T+, a > 0. Assume f is one of the functions eα(t, a), cosα(t, a), sinα(t, a),

sinhα(t, a), coshα(t, a). If z, α ∈ R(R) are regressive and satisfy

lim
t→∞

eαªz(t, a) = lim
t→∞

eiαªz(t, a) = lim
t→∞

e−iαªz(t, a) = 0,

then

L{ua(t)f(t, a)} = eªz(a, 0)L{f(t, 0)}.

Proof: First we’ll do the case f(t, a) = eα(t, a). Observe that by using Theorem 2.39,

eα(t, a)eªz(σ(t), 0) =
1

1 + µ(t)z
eα(t, a)eªz(t, 0)

=
1

1 + µ(t)z
eαªz(t, a)eªz(a, 0) =

1

α− z

(
α− z

1 + µ(t)z

)
eαªz(t, a)eªz(a, 0)

=
1

α− z
(αª z)eαªz(t, a)eªz(a, 0) =

1

α− z
eªz(a, 0)(αª z)eαªz(t, a)

So

L{ua(t)f(t, a)} =

∫ ∞

0

ua(t)eα(t, a)eªz(σ(t), 0)∆t

=
1

α− z
eªz(a, 0)

∫ ∞

0

ua(t)(αª z)(t)eαªz(t, a)∆t

=
1

α− z
eªz(a, 0)

∫ ∞

a

(αª z)(t)eαªz(t, a)∆t

=
1

α− z
eªz(a, 0)[eαªz(t, a)]t→∞t=a = − 1

α− z
eªz(a, 0)

= eªz(a, 0)L{eα(t, 0)}
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provided that

lim
t→∞

eαªz(t, a) = 0 X.

Next consider the case f(t, a) = cosα(t, a).

cosα(t, a) =
eiα(t, a) + e−iα(t, a)

2

So

L{ua(t) cosα(t, a)} = L{ua(t)
eiα(t, a) + e−iα(t, a)

2
}

=
1

2
L{ua(t)eiα(t, a)}+

1

2
L{ua(t)e−iα(t, a)}

by the linearity of L. Using the first case of this proof yields

1

2
eªz(a, 0)L{eiα(t, 0)}+

1

2
eªz(a, 0)L{e−iα(t, 0)} (3.14)

provided that limt→∞ eiαªz(t, a) = limt→∞ e−iαªz(t, a) = 0. Manipulating (3.14)

yields

eªz(a, 0)
1

2
L{eiα(t, 0) + e−iα(t, 0)} = eªz(a, 0)L{eiα(t, 0) + e−iα(t, 0)

2
}

This last line is again due to the linearity of L. Now we use the definition of cosα(t, 0)

to get

= eªz(a, 0)L{cosα(t, 0)} X.

The proofs for sinα(t, a), coshα(t, a), and sinhα(t, a) are the same as that for cosα(t, 0)

because they are all linear combinations of exponential functions. 2.

We will now proceed to introduce the Dirac delta function. Consider a function

da,ε : T→ R with parameters ε > 0 and a ∈ T, a + ε ∈ T, given by

da,ε(t) :=





1
ε

if a ≤ t < a + ε

0 otherwise .
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Then for b ∈ T, b ≥ a + ε, we get that

∫ b

a

da,ε(t)∆t =

∫ a+ε

a

1

ε
∆t = 1.

We can think of da,ε(t) as a force acting on a mass over a brief time interval of length

ε such that the net effect of force is independent of ε. An impulse function can be

thought of as such a force acting instantaneously (as in the real case) or at least

acting over the smallest time interval allowed by a given time scale, that is

δa(t) = lim
ε→µ(a)

da,ε(t).

Example 3.22 Suppose T = R, then

δa(t) = lim
ε→0

da,ε(t) =





+∞ if t = a

0 otherwise.

Now suppose that T = hZ, h > 0, then

δa(t) = lim
ε→h

da,ε(t) =





1
h

if t = a

0 otherwise.

Consider for a continuous function f : T→ R the integral

∫ b

a

f(t)da,ε(t)∆t =

∫ a+ε

a

f(t)da,ε(t)∆t =

∫ a+ε

a

f(t)
1

ε
∆t.

As ε → µ(a) this integral approaches f(a). This motivates our next definition.

Definition 3.23 Let a, b ∈ T and let f : T→ R be continuous. If δ0(t) satisfies the

following two conditions:

(i) ∫ b

a

f(t)δ0(t)∆t = f(0) if a ≤ 0 < b
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(ii) ∫ b

a

f(t)δ0(t)∆t = 0 if 0 not in [a, b)

then δ0(t) is called the Dirac delta function.

We define the impulse function with parameter t0 ∈ T by

δt0(t) = δ0(t− t0).

The next Theorem and the following Corollary are new results for time scales.

Theorem 3.24 Let a, b ∈ T and let f : T→ R be continuous. Then

∫ b

a

f(t)δt0(t)∆t =





f(t0) if a ≤ t0 ≤ b

0 if t0 not in [a, b]

Proof: Let γ(t) = t− t0. Then γ is strictly increasing, ∆-differentiable, and γ∆ = 1

is ∆-integrable on each finite interval of T. Furthermore, because γ(T) is just a

translation of T, it is also a time scale. Then by the change of variable theorem

(Theorem 2.25) ∫ b

a

f(t)δt0(t)∆t =

∫ b

a

f(t)δt0(t)γ
∆(t)∆t

=

∫ γ(b)

γ(a)

(f ◦ γ−1)(s)(δt0 ◦ γ−1)(s)∆̃s

=

∫ γ(b)

γ(a)

f(s + t0)δt0(s + t0)∆̃s

=

∫ γ(b)

γ(a)

f(s + t0)δ0(s + t0 − t0)∆̃s

=

∫ γ(b)

γ(a)

f(s + t0)δ0(s)∆̃s.
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If t0 ∈ [a, b], then 0 ∈ [γ(a), γ(b)] and so we get

∫ γ(b)

γ(a)

f(s + t0)δ0(s)∆̃s = f(0 + t0) = f(t0).

If t0 is not in [a, b], then 0 is not in [γ(a), γ(b)] and we get

∫ γ(b)

γ(a)

f(s + t0)δ0(s)∆̃s = 0. 2

Corollary 3.25 Let α ≥ 0 be regressive. Then

L{δ0(t− α)}(z) = eªz(α, 0) (3.15)

for z ∈ R(R).

Proof:

L{δ0(t− α)}(z) =

∫ ∞

0

δ0(t− α)eªz(t, 0)∆t

= eªz(α, 0) by Theorem 3.24 2

Example 3.26 We’ll now use L to solve the following initial value problem:

ax∆∆ + bx∆ + cx = δα(t) (3.16)

x(0) = x∆(0) = 0, a, b, c ∈ R, a 6= 0, α ≥ 0. (3.17)

Applying L to both sides of equation 3.16, we get

aL{x∆∆}(z) + bL{x∆}(z) + cL{x}(z) = L{δ0(t− α)}(z).

Corollary 3.25 implies

aL{x∆∆}(z) + bL{x∆}(z) + cL{x}(z) = eªz(α, 0).



75

Using Theorem 3.7 along with the initial value conditions (3.17) yields

(az2 + bz + c)L{x}(z) = eªz(α, 0)

provided our solution satisfies limt→∞ x(t)eªz(t, 0) = limt→∞ x∆(t)eªz(t, 0) = 0. So

L{x}(z) =
eªz(α, 0)

az2 + bz + c
. (3.18)

Suppose b2 − 4ac > 0 and let

r1 =
−b +

√
b2 − 4ac

2a
and r2 =

−b−√b2 − 4ac

2a

the roots of az2 + bz + c. Then

L{x}(z) =
eªz(α, 0)

a(z − r1)(z − r2)
.

Decomposing this by partial fractions gives

aL{x}(z) =
eªz(α, 0)

(z − r2)(r2 − r1)
− eªz(α, 0)

(z − r1)(r2 − r1)
.

By Theorem 3.11

aL{x}(z) =
1

r2 − r1

eªz(α, 0)L{er2(t, 0)} − 1

r2 − r1

eªz(α, 0)L{er1(t, 0)}.

Proposition 3.21 gives

L{x}(z) =
1

a(r2 − r1)
L{uα(t)er2(t, 0)} − 1

a(r2 − r1)
L{uα(t)er1(t, 0)}

So

x(t) =
1

a(r2 − r1)
uα(t)er2(t, 0)− 1

a(r2 − r1)
uα(t)er1(t, 0).

Now suppose that b2 − 4ac = 0. Then az2 + bz + c = a(z + b
2a

)2 and so equation

(3.18) becomes

L{x}(z) =
eªz(α, 0)

a(z + b
2a

)2
=

1

a
eªz(α, 0)

(
L{e− b

2a
(t, 0)}

)2

.
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by Theorem 3.11. Applying Proposition 3.21 yields

L{x}(z) =
1

a
L{ua(t)e− b

2a
(t, α)}L{e− b

2a
(t, 0)}.

After observing that ua(t)e− b
2a

(t, α) is regulated, we can simplify the right side using

Proposition 3.16,

L{x}(z) =
1

a
L{e− b

2a
(t, α) ∗ (ua(t)e− b

2a
(t, α))}.

So

x(t) =
1

a
e− b

2a
(t, α) ∗ (ua(t)e− b

2a
(t, α)). X



Chapter 4

Fourier Transform

Fourier analysis for locally compact abelian groups may be found in Fourier Analysis

on Groups by Walter Rudin 1. The presentation given here by defining the Fourier

transform on time scales, however, is more concrete than that which appears in such

an abstract environment while still showing the importance of the group structure.

4.1 Notation and Definitions

Before defining the Fourier transform, we’ll need to define some special time scales.

Definition 4.1 The time scale Th is defined as

Th :=





0 if h = ∞

hZ if h > 0

R if h = 0.

Notice that (Th, +) forms an abelian group. If H > 0 is an integer multiple of

h or if H = ∞, then TH is a proper subgroup of Th. This leads us to our next

definition.

Definition 4.2 Let H > h such that TH is a proper subgroup of Th. Then the time

1W. Rudin. Fourier Analysis on Groups. Interscience Publishers, New York, 1962.

77
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scale ThH is defined as the quotient group

ThH := Th/TH ,

and T̂hH is defined by

T̂hH := TĥĤ where ĥ = lim
x→H

2π

x
and Ĥ = lim

x→h

2π

x
.

Notice that if h < ∞ then ĥ = 2π
h

with the same being true for Ĥ. Here, h is the

graininess of the timescale and H can be thought of as the length. We will illustrate

this with a few examples.

Example 4.3

Th∞ = hZ/{0} = hZ

T0∞ = R/{0} = R

Assume that H < ∞.

T0H = R/HZ = {x (modH) : x ∈ R}

Now also assume that h > 0.

ThH = hZ/HZ ∼= ZH/h

Proposition 4.4 All time scales that are abelian groups may be written as ThH for

some h and H.

Proof: Let G be a time scale such that (G, +) is an abelian group. We will show

first that Gκ must have constant graininess, that is µ(t) ≡ h, t ∈ Gκ, for some

h ∈ R ∪ {∞}, h ≥ 0. Notice that by considering t ∈ Gκ we avoid the case when G
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is finite and has µ(sup G) = 0. Suppose that a, b ∈ Gκ. Then clearly σ(a), σ(b) ∈ G

and also the additive inverses −a,−b ∈ G. So µ(a), µ(b) ∈ G by the closure of G.

By the order on R, we have that µ(a) ≤ µ(b), µ(b) ≤ µ(a), or both. With out loss of

generality we may assume that µ(a) ≤ µ(b). Again by the closure of G, we find that

b + µ(a) ∈ G. By the definition of σ, σ(b) ≤ b + µ(a). Thus σ(b) − b ≤ µ(a) =⇒
µ(b) ≤ µ(a). So µ(a) = µ(b). Thus if we let h be the graininess of G, then as a set

G ⊆ Th. Let

H = sup
a,b∈G

|b− a|+ h.

If h = 0 then G is a closed interval with length given by H. If h > 0, then H/h is

the order of the group G. Thus we get that G = ThH . 2

We now give a couple of definitions to establish relationships between functions

defined on Th and functions defined on ThH .

Definition 4.5 For each function f : ThH → C we define the function f ↑ : Th → C

by

f ↑(t) := f(t mod H)χ[−H
2

, H
2

](t)

where χ[−H
2

, H
2

] is the indicator function of the interval [−H
2

, H
2
].

What we have done here is to periodically extended f to Th, then we restricted this

continuation to the interval [−H/2, H/2], and finally we halved the function at the

end points ±H/2.

Definition 4.6 Let f : Th → C. We define f ↓ : ThH → C by

f ↓(t) :=





f(t) for |t| < H
2

1
2

[
f

(−H
2

)
+ f

(
+H

2

)]
for |t| = H

2
.
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Essentially, what we have done here is to make a periodic function of period H

from the restriction of f to the interval [−H
2
, +H

2
], averaging the endpoints if they

are in ThH . Notice that if f : ThH → C, then (f ↑)↓ = f . These relationships allow

us to define integration on ThH in terms of integration on Th.

Definition 4.7 Let f : ThH → C. Then we define the integral of f on ThH by

∫ b

a

f(t)∆t :=

∫ ∞

−∞
f ↑(s)χ[a,b)∆s t ∈ ThH , s ∈ Th

where χ[a,b) is the characteristic (or indicator) function of the interval [a, b) ⊂ R.

Now we give the definition of the time scale Fourier transform.

Definition 4.8 Let f : ThH → C. We define the Fourier transform of f by

F{f}(ω) :=

∫ ∞

−∞
f(t)e−iωt∆t

for those ω ∈ T̂hH such that the integral exists. At times we may also write F{f}(ω)

as f̂(ω).

For T0,∞ = R, this becomes

F{f}(ω) =

∫ ∞

−∞
f(t)e−iωtdt

the usual Fourier integral. When h = 0 and H < ∞, we get

F{f}(ω) =

∫ H/2

−H/2

f(t)e−iωtdt

the Fourier transform for H-periodic functions. In the case Th,∞ = hZ, the transform

becomes the Fourier series

F{f}(ω) = h
∑

t∈hZ
f(t)e−iωt = h

∞∑
n=−∞

f(nh)e−iωnh.
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Similarly in the case, H/h = N we get

F{f}(ω) = h
∑

t∈ThH

f(t)e−iωt = h

N−1∑
n=0

f(nh)e−iωnh

the discrete Fourier transform. So the Fourier transform for time scales incorporates

the four classical kinds of Fourier transform for R.

4.2 Properties of the Fourier Transform

Theorem 4.9 (Linearity). Let f, g : ThH → C and α, β ∈ C. Then

F{αf + βg}(ω) = αF{f}(ω) + βF{g}(ω)

for those ω ∈ T̂hH such that F{f}(ω) and F{g}(ω) converge.

Proof: The proof of this theorem follows directly from the linearity of the ∆-integral,

Theorem 2.23.

Theorem 4.10 Let f : ThH → C and t, τ ∈ ThH . Then

(i)

F{eitνf}(ω) = F{f}(ω − ν)

(ii)

F{f(t + τ)}(ω) = eiωτF{f(t)}(ω)

(iii)

F{f(−t)}(ω) = F{f(t)}(−ω)

(iv)

F{f}(ω) = F{f}(−ω)

for those ν, ω ∈ T̂hH such that the respective integrals exist.



82

Proof: (i)

F{eitνf}(ω) =

∫ ∞

−∞
f(t)eitνe−iωt∆t =

∫ ∞

−∞
f(t)e−iω(t−ν)∆t

= F{f}(ω − ν) X

(ii) Here we could employ the change of variable theorem for times scales, but

because we have constant graininess on each time scale ThH the usual change of

variable theorem is valid. Thus we have

F{f(t + τ)}(ω) =

∫ ∞

−∞
f(t + τ)e−iωt∆t

=

∫ ∞

−∞
f(t)e−iω(t−τ)∆t

= eiωτ

∫ ∞

−∞
f(t)e−iωt∆t. (4.1)

Suppose H = ∞, then (4.1) becomes

eiωτ

∫ ∞

∞
f(t)e−iωt∆t = eiωτF{f(t)}(ω).

Suppose that H < ∞, then the definition of ThH as a quotient group gives us that

f(t + H) = f(t) and so (4.1) becomes

eiωτ

∫ H/2

−H/2

f(t)e−iωt∆t = eiωτF{f(t)}(ω). X

(iii)

F{f(−t)}(ω) =

∫ ∞

−∞
f(t)e−iω(−t)∆t =

∫ ∞

−∞
f(t)e−i(−ω)t∆t

= F{f(t)}(−ω) X

(iv)

F{f}(ω) =

∫ ∞

−∞
f(t)e−iωt∆t =

∫ ∞

−∞
f(t)ei(−ω)t∆t

= F{f}(−ω) 2

The following is a new theorem for time scales.
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Theorem 4.11

F{f∆k}(ω) =

(
lim
τ→h

eiωτ − 1

τ

)k

F{f}(ω) (4.2)

for ω ∈ T̂hH .

Proof: Observe that when h = 0,

lim
τ→h

eiωτ − 1

τ
= lim

τ→0

eiωτ − 1

τ
= lim

τ→0

iωeiωτ

1
= iω.

Thus (4.2) just becomes the well known statement from real analysis. Consider h > 0

and k = 1. Then

F{f∆}(ω) =

∫ ∞

−∞
f∆(t)e−iωt∆t =

∫ ∞

−∞

f(t + h)− f(t)

h
e−iωt∆t

=
1

h

∫ ∞

−∞
f(t + h)e−iωt∆t− 1

h

∫ ∞

−∞
f(t)e−iωt∆t.

By part (ii) of Theorem 4.10, we get that this is

1

h
eiωhF{f}(ω)− 1

h
F{f}(ω) =

eiωh − 1

h
F{f}(ω)

= lim
τ→h

eiωτ − 1

τ
F{f}(ω).

The remainder of the proof proceeds by induction on k. 2

Theorem 4.12 Let f : ThH → C and g : T̂hH → C be functions such that

∫ ∞

−∞
|f(t)|∆t < ∞ and

∫ ∞

−∞
|g(ω)|∆ω < ∞.

Then ∫ ∞

−∞
|f(t)ĝ(t)|∆t < ∞ and

∫ ∞

−∞
|f̂(ω)g(ω)|∆ω < ∞.

Furthermore ∫ ∞

−∞
f(t)ĝ(t)∆t =

∫ ∞

−∞
f̂(t)g(t)∆t.
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Proof: The proof of this theorem proceeds by examining each of the four cases and

using results from real analysis, in particular Fubini’s Theorem.

Definition 4.13 For T ∈ Th, T ≥ 0, we define the rectangle function χT on Th by

χT (t) := χ[−T,T ]

where once again χ[−T,T ] is the characteristic function of the interval [−T, T ].

For T < H/2, the function χ↓T is also a rectangle function on ThH .

Notice that we have been using eiωt, the restriction of the usual exponential

function to a time scale, and not the time scale exponential function eiω(t, 0). So we

cannot assume that (eiωt)∆ = iωeiωt. In fact, this does not hold true in general as

we will see in the next proposition.

Proposition 4.14 Let t ∈ ThH . Then

(eiωt)∆ = iωsinc

(
ωh

2

)
eiω(t+h

2
)

where

sinc(x) :=





sin(x)
x

if x 6= 0

1 if x = 0.

Proof: The case where h = 0 is obvious. Consider h > 0. Then

(eiωt)∆ =
eiω(t+h) − eiωt

h
=

eiω h
2 − e−iω h

2

h
eiω(t+h

2
) =

2i

h
sin

(
ωh

2

)
eiω(t+h

2
)

= iωsinc

(
ωh

2

)
eiω(t+h/2) 2
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It follows from Proposition 4.14 that the ∆-derivatives of the usual trigonometric

functions are

cos∆(ωt) = −ωsinc

(
ωh

2

)
sin

[
ω

(
t +

h

2

)]

and

sin∆(ωt) = ωsinc

(
ωh

2

)
cos

[
ω

(
t +

h

2

)]
. (4.3)

Lemma 4.15 Let a, b ∈ Th and let f : Th → C. Then

∫ b

a

f(t)∆t =

∫ −a+h

−b+h

f(−t)∆t.

Proof: For h = 0 this is clear. Consider h > 0:

∫ b

a

f(t)∆t = h[f(a) + ... + f(b− h)]

= h[f(−[(−a + h)− h]) + ... + f(−(−s + h))]

= h[f(−(−s + h)) + ... + f(−[(−a + h)− h])]

=

∫ −a+h

−b+h

f(−t)∆t 2

Now we will consider the Fourier transform of the rectangle function χ↓T (t).

Proposition 4.16 Let T < H/2, then

F{χ↓T}(ω) = 2
sinc[ω(T − h

2
)]

sinc(ωh
2

)

(
T − h

2

)

for ω ∈ T̂hH\{0}.
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Proof: Notice that χ↓T is a function on ThH . Assume s ∈ Th. Recalling the definition

of the integral on ThH we get that

F{χ↓T}(ω) =

∫ ∞

−∞
χ↓T (t)e−iωt∆t

=

∫ ∞

−∞
(χ↓T (s)e−iωs)↑∆s

=

∫ T+h

−T

e−iωs∆s

=

∫ 0

−T

e−iωs∆s +

∫ h

0

e−iωs∆s +

∫ T+h

h

e−iωs∆s

=

∫ 0

−T

e−iωs∆s +

∫ σ(0)

0

e−iωs∆s +

∫ T+h

h

e−iωs∆s

=

∫ 0

−T

e−iωs∆s + µ(0)e0 +

∫ T+h

h

e−iωs∆s

=

∫ 0

−T

e−iωs∆s + h +

∫ T+h

h

e−iωs∆s

By the previous lemma, we can rewrite this as

F{χ↓T}(ω) = h +

∫ T+h

h

eiωs∆s +

∫ T+h

h

e−iωs∆s

= h + 2

∫ T+h

h

cos(ωs)∆s.

Notice that from (4.3) we have that

sin∆(ωs) = ωsinc

(
ωh

2

)
cos

[
ω

(
s +

h

2

)]

sin∆
[
ω

(
s− h

2

)]

ωsinc
(

ωh
2

) = cos(ωs).
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Thus we may write

h + 2

∫ T+h

h

cos(ωs)∆s = h + 2

[
sin

[
ω

(
t− h

2

)]

ωsinc
(

ωh
2

)
]s=T+h

s=h

= h + 2

[
sin

[
ω(s− h

2
)
]

sinc
(

ωh
2

) (s− h
2
)

(s− h
2
)

]s=T+h

s=h

= h + 2

[
sinc

[
ω(s− h

2
)
]

sinc
(

ωh
2

)
(

s− h

2

)]s=T+h

s=h

= 2
sinc

[
ω(T + h

2
)
]

sinc
(

ωh
2

)
(

T +
h

2

)
. 2

Definition 4.17 We define the trapezoidal function φT (t) for T ∈ Th
2

by

φT :=





1
2
(χT−h + χT ), if T ∈ Th,

χT−h
2
, if T ∈ Th + h

2

where by Th + h
2

we mean the translation {t + h
2

: t ∈ Th}.
It follows from Proposition 4.16 that

F{φ↓T}(ω) =

∫ T+h

−T

φT (t)e−iωt∆t =





2 sinc(ωT )

tanc(ωh
2

)
T, if T ∈ Th,

2 sinc(ωT )

sinc(ωh
2

)
T, if T ∈ Th + h

2
,

where tanc(x) := sinc(x)
cos(x)

.

4.3 Fourier Inversion

Definition 4.18 Suppose that Ω ∈ T ĥ
2

, 0 ≤ Ω ≤ Ĥ
2
, and let φΩ(ω) be the trapezoidal
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function defined on Tĥ. Then we define the Dirichlet kernel by

DΩ(t) := φ̂↓Ω(T ).

Lemma 4.19 Let f : Th → C be a continuously differentiable function such that

∫ ∞

−∞
|f(t)|∆t < ∞.

Then

lim
Ω→ Ĥ

2

∫ ∞

−∞
f(t)DΩ(t)∆t = 2πf(0)

Proof: The proof proceeds in manner similar to that used in real analysis.

Theorem 4.20 Fourier Inversion Theorem

Let f : ThH → C be continuously differentiable and assume that

∫ ∞

−∞
|f(t)|∆t < ∞ and

∫ ∞

−∞
|f̂(t)|∆t < ∞.

Then

1

2π

∫ ∞

−∞
f̂(ω)eiωt∆ω = f(t).

Proof:

1

2π

∫ ∞

−∞
f̂(ω)eiωt∆ω =

1

2π
lim

Ω→ Ĥ
2

∫ ∞

−∞
φ↓Ω(ω)F{f(s)}(ω)eiωt∆ω

By Theorem 4.10 we can rewrite this as

1

2π
lim

Ω→ Ĥ
2

∫ ∞

−∞
φ↓Ω(ω)F{f(s + t)}(ω)∆ω.
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Now we employ Theorem 4.12 to obtain

1

2π
lim

Ω→ Ĥ
2

∫ ∞

−∞
φ̂↓Ω(s)f(s + t)∆s =

1

2π
lim

Ω→ Ĥ
2

∫ ∞

−∞
DΩ(s)f(s + t)∆t = f(t).

2

We will now use Theorem 4.20 to solve the heat equation for time scales.

Example 4.21 Let Th1H1 and Th2H2 be two time scales and let

u : Th1H1 × Th2H2 → R.

We will denote by ux the ∆-derivative of u(x, t) with respect to the first variable

x ∈ Th1H1 . Similarly we denote by ut the ∆-derivative of u(x, t) with respect to the

second variable t ∈ Th2H2 .

Consider the initial value problem

ut = κuxx, u(x, 0) = f(x) (4.4)

where κ ∈ R is a constant and f : Th1H1 → R. Applying the Fourier transform to

both sides of (4.4) gives

ût = κ

(
lim
τ→h

eiωτ − 1

τ

)2

û, û(ω, 0) = f̂(ω), ω ∈ T̂h1H1 .

Notice that this is now just an ordinary dynamic equation with respect to the variable

t. If we let p(ω) =
(
limτ→h

eiωτ−1
τ

)2

then according Theorem 2.37 the solution is given

by

û(ω, t) = f̂(ω)ep(ω)(t, 0).

Thus if f̂(ω)ep(ω)(t, 0) satisfies the conditions of Theorem 4.20, then

u(t, x) =
1

2π

∫ ∞

−∞
f̂(ω)ep(ω)(t, 0)eiωt∆ω, ω ∈ T̂h1H1 .
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Conclusion: Moving Toward a General Theory of Transforms

In section 3, we saw that Laplace transform for R and the discrete Z̃-transform

could both be represented as a single time scale integral. Furthermore this integral

extends the notion of the Laplace transform to other closed subsets of R. Similarly,

in section 4, we saw that the different types of the Fourier transform could all be

represented by a single time scale integral. Representing the Fourier transform like

this makes it clearer that the Fourier series and Fourier integral convey the same

idea but for different domain sets. Perhaps we could do something similar for other

transforms. For instance, it would be interesting if one could solve the time scale

analog to the Bessel equation, which might look something like

t2x∆∆(t) + tx∆(t) +
(
t2 − ν2

)
x(t) = 0,

and use the resulting Bessel functions to extend the Hankel transform to time scales.

That is if one could find the Bessel function, Jν(x), of order ν ≥ 0, then we might

define the Hankel transform of f : T+ → R by

Hν(f)(s) =

∫ ∞

0

f(x)Jν(sx)x∆x, for s ≥ 0.

In this type of manner, we could extend many know transforms to time scales and

in some cases write two or more transforms as a single time scales integral.

The times scale integral also gives us a means to define what we mean by a

transform. For instance,we might define integral transforms of a function f defined

90
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on R by integrating f against some function g, that is

∫ b

a

f(t)g(t, s)dt.

However we exclude discrete transforms such as the Fourier series in this definition.

If we were to define a transform of a function f defined on T by

∫ b

a

f(t)g(t, s)∆t

then we would have included many more known transforms. Such a definition would

allow for a general theory of transforms for functions of one variable.

Extending such a definition to higher dimensions might prove more challenging.

Say, for instance, one wished to extend the definition to two dimensions. Then one

must decide whether to consider functions defined on T1 × T2, where T1 and T2

are two time scales, or to consider more generally functions defined on some closed

subset of R2. Choosing the former already presents a problem in that conventional

analysis techniques have thus far failed in attempts to prove that the derivative

of a function defined on T1 and T2 is unique. Thus one would have to develop

multivariable calculus on time scales before making a definition of transforms of

multivariable functions.

There are existing problems with the Laplace and Fourier transforms that should

be addressed before moving on to other transforms. In particular, attention should

be given to the issue of the injectivity of L. Recall that in Example 3.2, we used

L to solve a dynamic equation for T+ and then we verified our solution directly.

Although we did not know that L was injective for each each time scale of this form,

we were still able to obtain the correct solution by proceeding as if it were injective.

Perhaps we do not need L to be injective on each time scale T+. If we could say

that a dynamic equation maintains solutions of a like form over a collection of times

scales T and if L is injective on at least one time scale Tα ∈ T, then it would seem
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reasonable that using the Laplace transform method would yield correct solutions

for all T ∈ T.

Proving a result of this nature would not only be a valuable addition to the theory

of this transform but would also give one hope of extending the Fourier transform

to a more general class of time scales. In order to ensure the existence of the Fourier

inversion, we need our time scale to be a group. However maybe we can still employ

the Fourier transform method to solving say PDEs without needing inversion. A

result to this effect would motivate the extension of our current Fourier transform

to perhaps all time scales. It is important that the issue of the injectivity of these

transforms be confronted as early as possible because this issue is likely to present

itself again in the development of additional transforms.
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Birkhäuser, Boston, 2001.

[5] R. Donahue. The development of a transform method for use in solving

difference equations. Honors thesis, University of Dayton, 1987.

[6] C. H. Edwards Jr. and D. E. Penney. Differential Equations: Com-

puting and Modeling. Prentice Hall, Englewood Cliffs, NJ, 1996.

[7] G. Folland. Real Analysis: Modern Techniques and Their Applications.

John Wiley and Sons, Inc., New York, second edition, 1999.

[8] S. Hilger. An Application of Calculus on Measure Chains to Fourier

Theory and Heisenburg’s Uncertainty Principle. Journal of Difference

Equations and Applications, 8(10):897-936, 2002.

[9] S. Hilger. Special Functions, Laplace and Fourier Transform on Mea-

sure Chains. Dynamic Systems and Applications, 8:471-488, 1999.

93


