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Abstract

Neurospora crassa, a model organism has been extensively used to explore fundamental

cellular processes, such as recombination and for construction of high-resolution maps

because of its excellent biological characteristics. In this thesis we bring to bear statistical

techniques to integrate genome map information gleaned from two different sources with

varying resolution to create a high resolution integrated physical and genetic map. Those

two different sources of genomic information in our case are a high resolution restriction

frequent length polymorphism (RFLP) DNA markers and hybridization based physical data.

Recombination has long been used to create genetic maps starting from the rudimentary

but powerful empirical pair-wise frequency analysis to sophisticated statistical models with

generalized cross-over phenomena. Most of these approaches are theoretical lacking any

practical model estimation, or fail to capture the details of the crossover process. In recent

times the need has come up to analyze more number of genes to answer more complex

problems as gene discovery and disease tracing. In the first chapter we give a synopsis

of the entire work. In the second chapter of the thesis we have included published work

that formulates a detailed mathematical model of the recombination process. In the third

chapter we detail on a novel recursive linking algorithm that overcomes a computational

bottleneck often faced in gene mapping, the exponential time complexity of the algorithm

in the number of markers. In the fourth chapter we integrate physical and genetic maps to



produce a high resolution integrated physical and genetic map and study various genomic

questions. For example, we construct empirical mapping functions that relate the amount of

genetic recombination to physical distance. At the end we study the distribution of repeated

DNA markers and outline the potential for progress in future endeavors.

Index words:
Genetic Map,Physical Map,RFLP Data,Hybridization Data,Recombination,
Simulated Annealing, Maximum Likelihood Estimator,
Whole Genome-shotgun Sequencing,Tetrad Analysis,EM Algo-
rithm,Recursive Linking,Time Complexity
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Chapter 1

Introduction

1.1 Literature Review

Genetic mapping has been attempted ever since an understanding of the recombination

took place as early as 1913 [60]. These maps play central roles in understanding the whole

biological system in much the same way the map of earth has played a critical role in its

exploration. From the production of proteins in cells, their interaction to produce complex

molecules such as ribosomes, spliceosomes and DNA polymerase to the ways these complexes

interact with one another in sequential reactions to produce pathways and processes which

in turn as a whole form the phenotype of the individual genes play a central role, and an

accurate map is the only way to ever hope for an full understanding of the biological systems.

Recent advances in technology has enabled researchers to move from phenotypic or functional

interest in a small set of genes to more widely available feature rich set of markers, known

as DNA markers. The advantages of this shift from local to global approach of analysis

is manifold. First, obtaining a set of ordered clones of an entire chromosome or an entire

genome is an invaluable baseline for future molecular studies of any type. For example, these

clones can be used for finding and manipulating the individual genes of interest. Second,

genomic DNA is the blueprint of a species, the information needed to build a living cell and

a living organism. Hence knowledge of its specific nucleotide sequence lays the groundwork

for eventually providing answers to one of the basic questions of biology : why is an organism

the way it is and what makes it different from other organisms ?.

Chromosomal maps fall into two broad categories- genetic maps and physical maps.

Genetic maps represent an ordering of genetic markers along a chromosome where the dis-

tance between two genetic markers is related to their recombination frequency. Genetic maps

1
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are typically of low resolution i.e., 1-10Mb [39] in humans. While genetic maps enable a sci-

entist to narrow the search for genes to a particular chromosomal region, it is a physical

map that ultimately allows the recovery and molecular manipulation of genes of interest. A

physical map is defined as an ordering of distinguishable (i.e., sequenced) DNA fragments

called clones by their position along the entire chromosome where the clones may or may

not contain the genetic markers.

Early efforts in genetic mapping either fail to model in detail the recombination pro-

cess [39] or provide a such a model without the technology needed to implement it for a

large number of markers ( [73], [75], [22]). A detailed analysis of the competing models is

given in Section 2.4. In this thesis we provide such a model and fill the gap by providing the

technology to fit it to data on hundreds of markers. This has long been a challenge because

of the inherent exponential nature of the recombination configurations which in turn would

appear to give rise to an algorithm of exponential time complexity. We have proposed a novel

recursive linking algorithm that is inspired by the divide and conquer strategy of a dynamic

programming algorithm which reduces the time complexity from exponential to linear. This

has enabled us to integrate successfully genetic map with large number of markers with the

available likelihood based physical map [8]. This integrated physical and gentic map now pro-

vides a single place with a master-detail view of both genes and the clones they are tagged

to. This map or the maps created this way will be invaluable to the scientific community at

large as such maps have an associated probability metric that can be used to measure the

relative quality of the map and thus paves the way for better map creation.

1.2 Organization of this Thesis

In chapter 2 we develop a probabilistic framework for the chromatid exchanges for 2 markers

and illustrate various characteristics of the model. This model is also used to deal with the

tetrad types and we analyze a small data set to compare the traditional estimators of recom-

bination with the ones derived from this model. Also our model agrees with known biological

facts (See Section 2.6.3). We develop the likelihood model and use maximum likelihood esti-
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mation to estimate the parameter c, the exchange probability between a pair of markers.

Detailed proofs of the theorems appear at the end in an appendix. We show the unbiased-

ness of the estimator of c and address identifiability issues. We study the efficiency of our

MLE based estimator with other well known estimators and show its superiority. We extend

the model to account for arbitrary number of genes and use the well known EM algorithm

to estimate the variable number of exchange parameters simultaneously. We estimate the

standard errors of the parameters using rates of convergence of the EM algorithm [44]. A

combinatorial optimization technique simulated annealing is used to search of the space of

all possible marker orders. We use the high density of RFLP DNA markers in N.crassa to

create a genetic map and compare it with published maps. Lastly,we provide a goodness of

fit measure for the model and show that our model performs modestly well for most of the

linkage groups.

As mentioned in Section 1.1, our aim was to provide a detailed model with efficient

implementation lacking in the current literature. A straightforward algorithm to solve the

EM equations turn out to have exponential time complexity without bound in the number

of genetic markers. In this chapter we show in detail with pseudocode the outline of a such

a possible algorithm and compute its time complexity. We show with runtime results that

fitting a genetic map for more than 7 markers is not feasible.

We propose a novel recursive linking algorithm that is capable of dividing the sequence of

marker intervals into variable length intervals and manage the EM calculations for that block

and reconstruct the required computation in an exponential manner as one moves along the

order of the markers. This efficiently reduces the time complexity from exponential to linear.

We give in detail the various stages of this algorithm, illustrating the concepts with diagrams

and pseudocode. We calculate the time complexity of the algorithm and show the interval

length that gives the best performance. We give runtime results and make a side by side

comparison with the straightforward algorithm that immediately shows the usefulness of the

algorithm. We also discuss the space and time complexity trade-offs of the algorithm.

Since a straightforward algorithm faced difficulty in solving the EM equations themselves,

using it to estimate the standard errors, which is based on the rate of convergence of EM
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iterations could only result in worse performance. Again, we use the recursive linking algo-

rithm to overcome this problem and discuss the important parts. Simulated annealing is run

to create a genetic maps for the whole genome of Neurospora crassa which is also used in

reporting the map statistics in section 2.15.2. In the end we explore the distribution of the

DNA repeats along each chromosome which has important biological significance and discuss

how the efforts that have been undertaken has given us new insights for future exploration.

A likelihood based physical map has been available from earlier attempts [8]. Having

developed a likelihood based genetic map we were able to integrate the information obtained

from two distinct sources and create a high resolution genome map for N. crassa. We started

with a legacy order of probes on a physical map as an initialization and obtained a marker

order based on the sequence based tagging information. We formed a integrated likelihood

by combining the log-likelihoods of physical map and the genetic map. Simulated annealing

was used to obtain the best integrated orders. An integrated map allowed us to create an

empirical mapping function relating the recombination distance to the physical distance.

We explore the ”centromere” effects on the physical distance per map unit, as well as the

distribution of DNA repeats in the N. crassa genome with the integrated map.

The concluding chapter ties together the results from the previous chapters and shows

the future directions.



Chapter 2

LIKELIHOOD OF A PARTICULAR ORDER OF GENETIC MARKERS AND

THE CONSTRUCTION OF GENETIC MAPS 1

1Tewari,S., Arnold, J. and Bhandarkar,S.M. 2008
Journal of Bioinformatics and Computational Biology. 6 : 125-162
Reprinted here with permission of publisher
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2.1 Abstract

We model the recombination process of fungal systems via chromatid exchange in meiosis

that accounts for any type of bivalent configuration in a genetic interval in any specified

order of genetic markers for both random spore and tetrad data. First, a probability model

framework has been developed for 2 genes and then generalized for arbitrary number of genes.

Maximum Likelihood Estimators (MLE) for both random and tetrad data are developed. It

has been shown that the MLE estimator of recombination for tetrad data is uniformly more

efficient over that from random spore data by a factor of at least 4 usually. The MLE for the

generalized probability framework has been computed using the EM algorithm. Pearson chi-

squared statistic is computed as a measure of goodness-of-fit using a product multinomial set-

up. We implement our model with genetic marker data on the whole genome of Neurospora

crassa. Simulated annealing is used to search for the best order of genetic markers for each

chromosome, and the goodness-of-fit value is evaluated for model assumptions. Inferred map

orders are corroborated by genomic sequence with the exception of linkage group I, II and

V.

2.2 Introduction

Since almost the beginning of genetics, an important goal has been to create maps of entire

chromosomes. These maps fall into two classes, genetic and physical maps ( [16], [30]).

The former are constructed from information on how genes are transmitted from parent

to offspring. The latter are constructed by having an experimental approach designed to

distinguish DNA fragments and to order these fragments. Computationally feasible maximum

likelihood solutions for these respective problems were developed by Lander and Green for a

genetic map with many markers [39] and by Bhandarkar et al. [8] and Kececioglu et al. [33]

for a physical map composed of many DNA fragments.The focus here is on constructing

genetic maps with many markers.

With l markers or genetic loci, each with two or more alternate types of a gene called

alleles, the number of possible types of offspring is 2l and hence the computational com-
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plexity of a likelihood-based approach to estimating a genetic map would appear to go up

at least as O(25l) [62]. At first glance the computational complexity of the segregation of l

markers to build a genetic map seems daunting. For a special case, Lander and Green [39]

were able to develop a maximum likelihood procedure for ordering genetic markers that had

a computational complexity linear in the number of markers. This is essential because geneti-

cists have just completed the International HapMap [15] to hunt down most disease causing

genes with thousands of markers scattered through the genome and the single nucleotide

polymorphisms (SNPs) from the affymetrix chips in complex trait analysis are derived in

part from the HapMap SNPs. Several model systems now possess genetic maps with thou-

sands of markers, and their transmission to offspring can be observed simultaneously [70]. In

essence simultaneous use of mapping data together with variation in a complex trait, such

as many human diseases, provides a triangulation on genes that may influence a complex

trait controlled by two or more genes [40].

The ideal data obtainable from a geneticist’s perspective, is a situation in which he/she

can observe the gametes of a parent directly (as opposed to the offspring) to understand

the transmission of genes or genetic markers. Then the transmission of genes in one parent

does not mask how genes are transmitted in the other parent. In fungi, such as Neurospora

crassa, the gametic products can be typed directly (Figure 2.1). These strings of spores are

the gametes from a single cross. It is possible to engineer other organisms, such as the model

plant system Arabidopsis thaliana, for tetrad analysis( [18], [23]). The question is for this

ideal kind of genetic data (in the best of all possible experimental worlds) can we construct

a genetic map with many markers?

Given the importance of tetrads to understanding how genes are transmitted together or

separately in the hundreds of fungal laboratories employing these kinds of genetic analyses,

you would think there would be a clear statistical methodology for analysis of such multi-

locus data and the planning of such experiments. The problem examined here is very old,

difficult, and solved here for a case relevant to the fungal kingdom and organisms lucky

enough to be engineered to have tetrads. We extend the work of Zhao and Speed [75] to the

case of many markers [62]. Tetrad data are the best available for constructing genetic maps.
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Figure 2.1: Maturing asci of Neurospora crassa from wild type x histone H1−GFP (inserted
at his−3). Histone H1, being a chromosomal protein, allows the GFP-tagged nuclei (two per
spore at this stage) to fluoresce in four of the eight ascospores; the remaining four ascospores
carry the untagged nuclei from the wild-type parent. Almost all asci show the first-division
segregation of hH1−GFP because of its close proximity to the centromere of linkage group
I. (Photo courtesy of Namboori B. Raju, Stanford University.)

In a previous paper we have demonstrated how the likelihood function involving hundreds

of genetic markers can be computed with a computational complexity linear in l [62]. Here

we show that the inference tools based on the likelihood function for a genetic map in fact

produces the correct map. Resulting genetic maps are independently verified against the

sequence of the Neurospora crassa genome [24] with the exception of linkage group I, II and

V. Inferred recombination distances between markers and their standard errors are reported

for the first time for this model system.

2.3 Background Material on Meiosis, Recombination and Crossover

In eukaryotic organisms, the vast majority of genes are found on the chromosomes in the

cell‘s nucleus. Many eukaryotic species are classified as either diploid, carrying two nearly

identical pairs of nuclear chromosomes (i.e., two nuclear genomes) in each cell, or haploid,

with only one chromosome set per cell. Most fungi and algae are haploids, whereas many

other eukaryotes, including animals and flowering plants, are diploids. However, it is worth

noting that diploid organisms produce haploid reproductive cells (such as eggs and sperm in
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animals); conversely, some haploid organisms, such as fungi, produce specialized diploid cells

during the sexual phase of their life cycles. The letter n is used to designate the number of

distinct chromosomes in one nuclear genome, so the haploid condition is designated n (that

is, 1 × n) and the diploid state in 2n (that is, 2 × n). The symbol n is called the haploid

chromosome number.

Figure 2.2: The ascus classes produced by crossovers between linked loci. NCO, noncrossover
meioses; SCO, single-crossover meioses; DCO, double-crossover meioses. Taken from [63].

In many familiar eukaryotes, recombination principally takes place in meiosis. In eukary-

otes the sexual cycle requires the production of specialized haploid cells ( for example, egg

and sperm) called gametes. This is achieved by DNA replication prior to meiosis in a diploid

meiocyte, followed by two successive cell divisions, resulting in a tetrad of four haploid prod-

ucts or gametes. The two divisions of the nucleus that produce the tetrad of haploid gametes

are called meiosis. Because of DNA replication prior to meiosis and pairing of homologs, each

chromosomal type is represented in four copies, called chromatids, or in other words, two

pairs of sister chromatids. The two pairs of sister chromatids align, constituting a bivalent,

or group of four chromatids. It is at this stage that crossing-over is thought to take place.

For any particular bivalent, there can be from one to several crossovers. A crossover can

be represented by a double-stranded break in which ends of chromatids reanneal with the

wrong chromatid ends as shown in Figure 2.2. The crossovers can occur at any position along

the chromatids, and the positions are different in different gametes. Furthermore, crossovers

are usually only observed between nonsister chromatids, different colors in Figure(2.2). If we

designate the sister chromatids from one parent as 1 and 2, and from the other parent, 3

and 4, crossovers can be seen between 1 and 3, 1 and 4, 2 and 3, and 2 and 4 as shown in
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different crossovers in Figure(2.2). It is plausible that crossovers are equally likely over these

pairs, being random events. This assumption is sometimes referred to as No-Chromatid-

Interference(NCI).

The process underlying meiotic recombination shuffles heterozygous allele pairs and deals

them out in different combinations into the products of meiosis (such as the gametes of plants

and animals). Being precise, meiotic recombination is defined as the production of haploid

products of meiosis with genotypes differing from both the haploid genotypes that originally

combined to form the diploid parental meiocyte. The product of meiosis so generated is called

a recombinant, and the process generating the recombinant is hypothesized to be crossing-

over. Thus crossing-over is essentially a breakage-and-rejoining process between homologous

DNA double helices, in meiosis.

There are two different mechanisms of meiotic recombination: independent assortment

of heterozygous genes on different chromosomes and crossing-over between heterozygous

genes on the same chromosome. Since we deal with genes on the same chromosome in this

paper, we consider modelling only crossing-over. Figure(2.2) shows the way it works. In

the figure, one parental genotype (a.b) carries all the mutant alleles, and the other parent

contains all normal or what are called the wild type alleles (A.B). A typical meiotic product

(in single crossover : SCO) a.B, using the above definition of recombination, is clearly a

recombinant, as it is genotypically different from either of the haploid parents a.b and A.B. In

the figure, we see that different double crossovers (DCO) lead to different allelic combinations

in recombinants. The tetrads are classified as parental ditype (PD); denoting no recombinants

, Tetrad type (T ), denoting equal numbers of recombinants and parental gametes, and non-

parental ditype (NPD); denoting all recombinants. These are observable categories by typing

gametes (i.e.,PD,T and NPD) in asci such as in Figure(2.1).

2.4 Model Assumptions in Comparison to Existing Models

The modeling approach here is quite distinct from that of Lander and Green [39]. Here a

detailed model of recombination involves exchanges between 4 chromatids during Prophase
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I to generate all possible bivalent configurations in a given interval. The Lander and Green

approach is simply based on counting recombination events in a given interval with phase

known. As a consequence, in their approach no chromosomal interference is assumed, while

the likelihood function developed here does permit and is sensitive to chromosomal interfer-

ence.

Much work has been carried out on the genetic mapping problem, but most approaches

posit some underlying crossover process. For example, Zhao and Speed (see [41], [73], [75])

develop a model in which the crossover process is a stationary renewal process [74]. From

this modeling framework they can write down a likelihood specification that leads to the

Chi-Square model as a special case [22]. With this likelihood formulation they are able to

test the performance of the model for several model systems [73] in a limited way. The

limitation of their work is that they assume mathematically tractable processes to describe

the crossover process in order to derive analytically tractable likelihood functions for a genetic

map. As an example, in their formulation of the Chi-Square model [22] the recombinational

intermediates (C) are assumed to be uniformily distributed along a chromosome (i.e., no

chromosomal interference), while their resolution is assumed to follow a particular pattern.

While the model and hence the likelihood has a parameter m to measure interference, the

measure itself is quite abstract and hard to interpret. For example, in their model they state

that a non-exchange (C0) is required to occur m times after each crossover resolution (Cx)

followed by a crossover resolution (Cx). Our modeling approach below is distinct by not

invoking a particular crossover process to formulate a likelihood function.

Zhao and Speed have calculated very general expressions for the probability of multi-locus

recombinants in their Theorem 2.2 in [74], but the limitation of this work is no prescription

on how to compute these probabilities except when the assumed process (for example, the

Chi-Square model) allows sums over all possible exchanges, reducing to explicit, closed form

expressions (Appendix: Theorems 1 and 2 in [73]). Even in this circumstance, they do not

present an analysis for more than 10 markers simultaneously. As a consequence it is not clear

how their method of likelihood maximization (simplex method) would scale to hundreds of

markers without hitting some computational bottleneck. While their modeling and limited
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likelihood analysis have been illuminating about recombination, they have invoked modeling

assumptions about the crossover process that are unnecessary and difficult to verify. In their

approach the crossover process is used to connect the observed gametes to the bivalent

configurations. In our modeling we begin with the bivalent configurations, sidestepping the

specification of a crossover process.

Here we do not make explicit assumptions regarding the underlying crossover process as

in earlier work. We develop a probabilistic framework which works directly with all possible

bivalent configurations in distinct intervals along the chromosome using the No Chromatid

Interference (NCI) model. In this model each possible chromatid exchange between non-sister

chromatids in a given interval is equally likely. The term bivalent configuration refers to how

chromatids are joined with their non-sister chromatids along the chromosome. In Figure(2.2)

all possible bivalent configurations in a tetrad for two markers are depicted. In the next few

sections the model is laid out and its connection to the recombination fraction is detailed.

2.5 A Mathematical Formulation for Bivalent Configurations.

For the reader‘s convenience the following glossary of mathematical terms and symbols is

presented:

• ci = probability of a non-sister chromatid exchange for the ith genetic interval

• Si = sample space for the ith genetic interval

• Sl = sample space for all the genetic intervals

• φk = kth unique chromatid exchange in Sl

• fk = kth genotype

• nj = cell frequency for the jth observed genotype

• n = vector of cell frequencies nj.

• Rk = tetrad obtained via equations (2.18) for exchange φk
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• pj = cell probability for the jth observed genotype

• N = dg = total number of distinct genotypes (or cells).

• n =

dg∑
j=1

nj = total number of genotypes observed.

Using (2.1) to denote a paternally derived allele and 0 to denote a maternally derived

allele, genotypes 11, 00, 10, and 01 in a genetic interval (called, Si), can result from two simul-

taneous independent and identical chromatid exchange events (drawn from S). This double

chromatid exchange event in S is discrete and not viewed as the product of an underlying con-

tinuous crossover process. Chromatid exchanges come in four flavors diagrammed in Figure

2.3. There are a total of 5 kinds of possible chromatid exchanges (including a non-exchange

as one of the possibilities). Here our model entertains all possible bivalent configurations (i.e.,

the specified exchanges on four strands of a bivalent). These exchanges may in principle result

from a large number of crossovers occurring in a particular chromosome interval (between

markers). We emphasize that our model does not include the crossover(s) per se, but rather

a pair of abstract discrete events that are capable of describing all possible bivalent configu-

rations, which could arise from a large number of physical exchanges (i.e., chiasma). Define

ci as the probability of a chromatid exchange in the set S of possible exchanges between any

two non-sister chromatids in the ith genetic interval Si at meiosis. With the assumption of

No-Chromatid-Interference (NCI), all chromatid exchanges are equally likely so that:

S = {0, 1, 2, 3, 4}

Si = S × S

P (i) =
ci

4
; i = 1, · · · , 4; i ∈ S

P (0) = 1− ci; 0 ∈ S (2.1)

The element 0 in S denotes the absence of an exchange event. The elements 1, 2, 3, and

4 represent nonsister chromatid exchanges between the pairs of chromosomes, (1, 3), (2, 3),

(2, 4), and (4, 1). The probability distribution over Si on possible bivalent configurations
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between locus Ai and A(i+1)(i = 1, ..., l− 1), where l is the total number of loci on the map,

can be summarized as follows:

P ({i, j}) =
c2
i

16
I{i 6=0;j 6=0} +

ci(1− ci)

4
{I{i=0;j 6=0} + I{i6=0;j=0}}+ (1− ci)

2I{i=j=0} (2.2)

where, {i, j} ∈ Si.

Figure 2.3: Single exchange events are signified by a vertical line, and the exchanges take
place between chromatids at the ends of the vertical lines. These 4 strands are found in
Prophase-I [19]. All exchanges are equally likely under our hypothesized model. Taken from
[63].

2.6 A Probability Model on S1 = S × S.

The random variable X defined on S1 is introduced to describe an exchange event in the

first interval

X =





0, no crossover in S1;

1, single crossovers in S1;

2, 2-strand double crossovers in S1;

3, 3-strand double crossovers in S1;

4, 4-strand double crossovers in S1.

From Eqn. 2.2 we obtain

P (X = x) =





(1− c)2 if x = 0

2c(1− c) if x = 1

c2

4
if x = 2

c2

2
if x = 3

c2

4
if x = 4

(2.3)
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Let n = (n1, n2, n3, n4)
′ be the observed frequency or count vector corresponding to all

possible meiotic products for two markers, where one parent is MM and the other parent,

OO. In other words these are the counts of resulting genotypes, and the counts in f, are the

counts of a multi-locus genotype. With alleles M and O diagnostic of two parents at each of

l loci, we have 2l unique multi-locus genotypes in general. For the case of 2 markers (l = 2),

we have 22 = 4 genotypes along with their frequencies (or counts) listed below:

• MM with frequency n1

• MO with frequency n2

• OM with frequency n3

• OO with frequency n4

2.6.1 Conditional Distribution of n given X(the crossover event)

We derive the conditional distribution of these frequencies n by considering all of the

different meiotic products that might arise from each of the different exchange events in

S during meiosis. The exchange event is captured by the unseen random variable X. For

example, given X = 0, the outcomes are MM and OO, and offspring MO and OM are not

seen. Given the random variable X (i.e. the exchange event), the multinomial probabilities

associated with the frequencies are the expected Mendelian proportions:

Table 2.1: Conditional Distribution of n given X
(Different Crossovers) n1 n2 n3 n4

0 0.5 0 0 0.5
1 0.25 0.25 0.25 0.25
2 0.5 0 0 0.5
3 0.25 0.25 0.25 0.25
4 0 0.5 0.5 0

Using Eqn. 2.1 and Table 2.1, the model specification and hence the likelihood as a

function of the parameter Θ = c is given by
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L(Θ|n) =
4∏

i=1

pni
i (2.4)

where,

p1 = p4 =
2− 2c + c2

4
; p2 = p3 =

2c− c2

4

pi = P (ni) ; ∀i = 1, · · · , 4

1

4
≤ p1 ≤ 1

2
; 0 ≤ p2 ≤ 1

4

Restrictions on the parameters (see Catchpole and Morgan(1997) [11]) ensure that the

recombination probability is less than or equal to 1
2

see Section2.6.3). The likelihood in

Eqn. 2.4 is distinct from [73] because no crossover process is postulated in Eqn. 2.4.

2.6.2 Maximum Likelihood Estimation of the relative crossover frequency

c

There are at least two ways to collect data either as random spores or as tetrads in

Figure(2.1). The MLE for random spores when two markers are scored is now described to

allow comparisions with tetrad data. The following theorem is given without proof in [63].

Theorem 2.1. ”The maximum likelihood estimator of the exchange probability c is unique

and is given as follows:

1. If n1 + n4 < n2 + n3 then cmle = 1

2. If n1 + n4 ≥ n2 + n3 then cmle is given by the unique solution (in the interval [0, 1] ) of

the following equation:

f(c) = c2 − 2c + D = 0 (2.5)

where,

D =
2(n2 + n3)

N
; N =

4∑
i=1

ni

”

Proof: The maximum likelihood estimator of c is defined as
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cmle = arg Max
c∈(0,1]

log (L (c|n))

Let the logarithm of the likelihood function be denoted as

G(c) = alog(2− 2c + c2) + blog(2c− c2) (2.6)

where,

a = n1 + n4 and b = n2 + n3

Now,

∂G(c)

∂c
= 0

⇒ a(2c− 2)

2− 2c + c2
− b(2c− 2)

2c− c2
= 0

⇒ (2c− 2)
[
a(2c− c2)− b(2− 2c + c2)

]
= 0 c 6= 0

So, the solution set is,

c = 1

a(2c− c2)− b(2− 2c + c2) = 0



 (2.7)

If the second derivative is calculated,

∂2G(c)

∂c2
= 2

[
a

2− 2c + c2
− b

2c− c2

]

− (2c− 2)2

[
a

(2− 2c + c2)2 +
b

(2c− c2)2

]

From Eqn. 2.7 upon solving the quadratic equation we find,

(a + b)c2 − 2(a + b)c + 2b = 0

⇒ c =
2(a + b)

+−
√

4(a + b)2 − 8(a + b)b

2(a + b)
(2.8)

So, for a < b, roots in Eqn. 2.8 are imaginary pairs, and c = 1 is the only solution of (2.7).

Using c = 1 and the fact that a < b in (2.8) we obtain

∂2G(c)

∂c2
= a− b < 0
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Hence cmle = 1 for a < b and the claim in part1 of the theorem is proved.

For a = b Eqn. 2.6 becomes

G(c) = a
[
log(2− 2c + c2) + log(2c− c2)

]

∂G(c)

∂c
=

2a(c− 1)2

(2− 2c + c2)(2c− c2)

> 0

⇒ G(c) ↑ c

Thus, for a = b, cmle = 1. Note that cmle = 1 is also obtained as the unique solution of

Eqn. 2.5 (with D = 1) mentioned in the statement of the theorem.

For a > b, Eqn. 2.8 has only one root in the interval (0, 1). Also, c = 1 is another root

which comes from Eqn. 2.7. Now notice that for c = 1, Eqn. 2.8 is positive and hence actually

corresponds to a minimum rather than maximum. For the other solution, Eqn. 2.8 is clearly

negative as the first term goes away because of Eqn. 2.7, and the second term is inherently

non-negative. The second term cannot be zero as the solution is not 1.

Hence all the claims of the theorem are proved.

2.6.3 Recombination fraction r and the mapping function:

The recombination fraction (expressed as a percentage) is how distance is measured on a

genetic map. The mapping function relates the proportion of recombinants observed, to the

underlying physical exchange process captured in the exchange frequency c. Other approaches

can be taken. For example, the recombination fraction can be related to the number of

crossovers or physical distance We avoid this detailed specification of the crossover process

and simple relate the recombination fraction to the relative frequency of exchange c.

The recombination fraction ri for the ith genetic interval is defined as follows:

ri = P (at least one meiotic product is recombinant in Si)

= ci(1− ci

2
)

= φ(ci) (2.9)
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Also,

Max
ci∈[0,1]

r = Max
ci∈[0,1]

φ(ci) =
1

2
, ∀i = 1, · · · , l − 1,

which is the theoretical maximum of the recombination fraction from the theory of Mendelian

genetics.

2.7 Likelihood of Tetrad Types

In the case of two markers MLEs for tetrad analysis are developed to make contact with

results in the literature: heuristic estimators of map distances need standard errors, and

to provide a reasonable initialization for recombination distances, when many markers are

followed simultaneously.

Often in tetrad analysis we have additional information on the gametes produced.

Let T be a random variable defined as follows:

T =





1 if x = 0, 2

2 if x = 1, 3

3 if x = 4

(2.10)

where,

t = 1 is known as the Parental ditype(PD)

t = 2 is known as the Tetrad type(T)

t = 3 is known as the Non-Parental ditype(NPD)

The values of T designate the spore package makeup or tetrad type [19]. Figure 2.2 depicts

a model of the sample space for T .

From Eqn. 2.3, the likelihood of t = (t1, t2, t3)
′ as a function of c is

L(c|t) =
3∏

i=1

pti
Ti

(2.11)
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where,

t1 = frequency of PD

t2 = frequency of T

t3 = frequency of NPD

pT1 = (1− c)2 + c2

4

pT2 = 2c(1− c) + c2

2

pT3 = c2

4

We also consider another widely used heuristic estimator of rheu [19] under the model specified

by (2.10) as

rheu =
0.5t2 + 3t3

Nt

; Nt =
3∑

i=1

ti

2.7.1 Maximum Likelihood Estimation of cmle.td:

Theorem 2.2. The maximum likelihood estimator of the exchange probability cmle.td under

the tetrad model as specified by Eqn. 2.11 always exists and is unique under some regularity

conditions and is given by :

cmle.td = arg Max
A
{logL (A)} (2.12)

where,

L is given by Eqn. 2.11 and A is the set of all real roots in the interval (0, 1] of the equation

below (including 1 if not present in the interval).

a3c
3 + a2c

2 + a1c + a0 = 0 (2.13)

where,

a3 = −30T1 − 30T2 − 30T3

a2 = 64T1 + 68T2 + 88T3

a1 = −32T1 − 56T2 − 88T3

a0 = 16T2 + 32T3

The Regularity Conditions are:

1. 2T1 − 2T2 + 2T3 < 0 or
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2. T1 > T2 > T3 and G(T) < 0

[for an expression for G(T)see the proof of Lemma2.2 in the appendix. ]

Proof: Differentiating the log-likelihood function given by Eqn. 2.11 we arrive at the

estimating Eqn. 2.13. Under the first regularity condition using Descartes rule of signs [13],

a solution in the interval (0, 1] is guaranteed. Under the second regularity condition using

the lemma below all the roots of the estimating equation are real. In the lemma we will also

see that one solution always lies in the interval (1, 2] which is not considered directly as an

MLE since the parameter space is (0, 1]. The MLE is found using Eqn. 2.12. The reason for

including 1 in the set is that sometimes the global maximizer of L is in the interval (1, 2]

and the function keeps increasing after the other two local extrema, and a check is necessary

to see if the likelihood value at 1 is greater.

Lemma 2.1. Under the condition

T1 > T2 > T3 and G(T) < 0

the roots of the Eqn. 2.13 are all real.

Proof: See the Appendix.

2.8 Identifiability of the single spore and tetrad model

Silvey ( [59],Ch.4) defines a model to be identifiable if no two values of the parameters

give the same probability distribution of the data. In the single spore model described by

equation(2.4) there are only 2 independent observable parameters namely, p1 and p2. Their

model equations are

2− 2c + c2 = 4p1

2c− c2 = 4p2

We see that both the model equations are monotonic in the crossover probability c in

the interval [0, 1], and hence the model is identifiable. For the tetrad model described by
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equation(2.11) the model equation corresponding to tetrad NPD is clearly monotonic in c

and hence the tetrad model is identifiable too.

2.9 Data Analysis

Giles et al. [25] obtained tetrads on several biochemical mutants to understand recombination

and chromosome inteference. The tetrad counts for the loci hist-2, nic-2, al-2, ad-3A and

ad-3B on 646 complete asci are reported in Table2.2.

Table 2.2: Summary of tetrad analyses of 646 complete asci
Ascus Classification hist-2-nic-2 hist-2-al-2 nic-2-al-2 ad-3A-ad-3B

Parental ditype 538 115 125 640
Tetratype 108 486 487 6

Nonparental ditype 0 45 34 0

It is important to point out the difference in the nature of information between single

spores and tetrad data. In the single spore model one spore is taken from each ascus ideally,

from one diploid individual. In contrast spores inside a complete ascus in tetrad data are

not independent because they are gametes from the same diploid parents. Although both

single spores and tetrad data reflect on the underlying crossover events, tetrad data do so

more directly. For example, an NPD tetrad directly indicates a four strand double crossover.

Since we model the underlying recombination process which is fundamental to any observed

cross, it is possible to ascribe a probability distribution on the tetrad types directly from

the recombination process. Note that though an NPD tetrad ensures 50% f2 and 50% f3

(see Section2.6.1) it would be wrong to calculate the probability of an NPD tetrad via the

conditional distribution in Section2.6.1 as the spores in the NPD asci are not independent.

We compute the recombination fraction r for the heuristic estimator rheu and maximum

likelihood estimator rmle.td under the model described in equation(2.11) and for the maximum

likelihood estimator rmle under the single spore model described in equation(2.4).The results

are tabulated in Table2.3. All the estimators are observed to agree quite well.
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Table 2.3: Test Results on the Data set:
Ascus Classification rmle rmle.td rheu

hist-2-nic-2 0.083591571 0.083630811 0.0835
hist-2-al-2 0.445820264 0.435380594 0.4458
nic-2-al-2 0.42956649 0.422590286 0.4295

ad-3A-ad-3B 0.004644165 0.004643966 0.0046

where,

rmle = MLE estimate of the recombination fraction under the single spore model

rmle.td = MLE estimate of the recombination fraction under the tetrad model

rheu = heuristic estimator of the recombination fraction r

=
(0.5T + NPD)

PD + T + NPD

Any of these estimators would provide a good initialization for iterative computation of the

MLE for a single spore model in the case of multiple markers (see Section 2.11).

As all the estimators perform well, it becomes interesting to study their accuracy. In the

following section we compare the efficiency of these three estimators.

2.10 Comparison of Efficiency among rmle, rmle.td and rheu

Theorem 2.3. The estimator of the recombination fraction based on the tetrad model is

uniformly more efficient than that of the single-spore model. This shows that tetrad data

does have more information about the recombination fraction than the single spore data.

Proof: Variances of the maximum likelihood estimators rmle.td and rmle are obtained

via the Fisher-information [54]. The variance of the heuristic estimator rheu is obtained in

a straightforward manner using tetrad probabilities given by equation(2.11). The details of

the derivation are included in the appendix. The plot (Fig.2.4) compares the variances of

rmle,rmle.td and rheu using equations (2.14), (2.15) and (2.16).
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σ2
rmle.td

=
(1− c)2

(
3∑

i=1

ti)

[
1

2
+

50c2 − 80c + 24

16(1− c)2 + c2
+

18c2 − 24c + 16

2c2 + 8c(1− c)

] (2.14)

σ2
rheu

=
− c4

4
+ c3 − 9

8
c2 + c

2

(
3∑

i=1

ti)

(2.15)

σ2
rmle

=
(2− 2c + c2)(2c− c2)

4(
4∑

i=1

ni)

(2.16)
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Figure 2.4: Comparative plot of variances rmle, rmle.td and rheu.td.

These standard errors have not been available before for the fungal genetic community.

In the plot (Fig.2.4) we see that the estimators rmle.td and rheu of the tetrad model are

uniformly more efficient than rmle of the single spore model. Although this was intuitively

expected, it was not quite obvious. Although identifying a tetrad type involves extracting

more information (hence intuitively smaller variance) than for a single spore, we had different



25

probability distributions for them, and a check was necessary to confirm intuition. In the

next section we expand on the single spore model to account for multiple markers. It would

appear that the amount of information in tetrads is usually at least a factor of 4 greater than

that of single random spore. If obtaining tetrads is not more than 4 times the work of random

spores, then tetrads are worth obtaining versus random spore data. This is intuitive because

each tetrad in Figure(2.1) allows us to observe potentially up to 4 distinct recombination

events. The only situation where the relative efficiency approaches 1 is as the recombination

fraction approaches zero.

2.11 Multi locus Model for Random-Spore Data

Let φk denote a unique chromatid exchange on Sl as described below:

φk = i1 × i2 × ...× il−1 (2.17)

where,

k = i1.i2.i3...il−1 ; ij ∈ Si ; φk ∈ Sl =
l−1∏
i=1

Si

From this point on, for the sake of brevity, we may abbreviate term chromatid exchanges

to simply exchanges when referring to φk.

Let fk denote a multi-locus genotype with l loci:

fk = i1 × i2 × ...× il−1 × il

where,

k = i1.i2.i3...il ; ij = 0, 1; ∀j = 1, · · · , l

The indices ij = 1 and ij = 0 indicate the paternal and maternal alleles respectively.

The progeny are obtained by exchanges between homogeneous parents. The observed data

set can be represented as:

n =
{
nj ; ∀j = 1, · · · , 2l

}

where, nj is the observed frequency of fj.
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2.11.1 Probability distribution on Sl

Let us define the following functions

f 0(a) = (a1, a2, a3, a4)
′

f 1(a) = (a3, a2, a1, a4)
′

f 2(a) = (a1, a3, a2, a4)
′ (2.18)

f 3(a) = (a1, a4, a3, a2)
′

f 4(a) = (a4, a2, a3, a1)
′

where,

a = (a1, a2, a3, a4)
′

ai = 0, 1 ∀i

Equation (2.18) represents the elements of set S (see equation (2.1)) as mathematical

functions. For example, the function f 0(a) represents element 0, showing no chromatid

exchange, whereas function f 4(a) represents element 4, indicating that the first and fourth

strand have had an exchange.

The function fij(a) = fj(fi(a)) corresponds to events in Si accounting for all possible

bivalent configurations. For a particular chromatid exchange φk a model tetrad can be gener-

ated at meiosis using the function fij. The matrix Rk of size 4× l defines a simulated tetrad

below [57]:

Rk =
(
R0R1 · · ·R(l−1)

)
(2.19)

where,

R0 = (1100)′ ; Ri = fjk(Ri−1) ∀i = 1, · · · , l − 1

and the ith genetic interval Si contains the observed chromatid exchange {j, k}. That is,

Rk possesses 4 rows which correspond to the 4 gametes in a tetrad during meiosis if the

chromatid exchange φk had occurred according to our model.

The conditional distribution of fi for a given φk is calculated as

P (fi|φk) =
1

4

4∑
j=1

Ifi∈Rk(j,.)
(2.20)
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where, Rk(j, .)is the jth row of Rk.

The marginal density of a single spore fi is given by

P (fi) =
∑

k

P (fi|φk)× Pk

= C × P (2.21)

where, C is the conditional probability matrix defined by :

C = ((cki))

cki = P (fi|φk) (from equation (2.20))



 (2.22)

and P is given by,

P = (Pk; ∀k)′

Pk = P (φk)

=
l−1∏
j=1

P (Ij = ik,j) (2.23)

where, ik,j ∈ Sj and the probability distribution P (Ij = ik,j) is as defined in equation (2.2).

Let Θ = (c1, c2, ..., cl−1)
′ denote the unknown parameter vector in the model. The likeli-

hood of n viewed as a function of Θ is specified as :

L(Θ|n) ∝
N∏

j=1

P (fi)
nj

=
N∏

j=1

[∑

k

[
P (fi|φ(k))×

l−1∏
j=1

Pj (Ik,j = ik,j)

]]nj

(2.24)

The log-likelihood function is then :

ln(Θ|n) ∝
N∑

j=1

njlog

[∑

k

[
1

4

4∑
j=1

I{fi∈Rk(j,.)}
l−1∏
j=1

Pj (Ik,j = ik,j)

]]
(2.25)

2.11.2 Computation of MLE of the Crossover Probability Vector Θ via the

EM Algorithm

Lander and Green [39] suggested the application of the EM algorithm to the genetic mapping

problem. Consider two sample spaces X and N and a many → one mapping from X to N .

The actual data n = (nj; j = 1, · · · , 2l) are a realization of N . Let Xkj be the random
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variable corresponding to Xj which denotes the frequency of events like φk for random

spores fj. Define

X.j =
∑

k

Xkj and Xk. =
∑

j

Xkj

X =
∑

k

Xk. =
∑

j

X.j

where,

Xkj

∣∣∣(X = N)
dist
= Xkj

∣∣∣(X.j = nj) ∼ B
(
nj, πk|j

)

We refer to X as complete data and N , as incomplete data.

The log-likelihood with complete data is given by :

lc(Θ, x) =
∑

k

xk.log(πk) (2.26)

where,

Π = (π1, π2, ..., πK)′

πk =
∑

j

πk|j

πk = f : [0, 1]l−1 → [0, 1] and is defined in Eqn. 2.23.

The log-likelihood with incomplete data is given by :

l(Θ;n) =
∑

j

njlog(pj)

where,

pj = P (observing a single spore of fj)

= P (fj) , a function of Θ and is defined in Eqn. 2.21.

In the EM algorithm [20] we do not maximize l(Θ;n) directly to obtain the ML estimates

of Θ, but iteratively maximize lc(Θ, x), averaged over all possible values of the complete data,

given the incomplete data. That is, the objective function is defined as

Q(Θ|Θ(h)) = E
[
lc(Θ; x|n, Θ(h)

]
,

and we iteratively maximize Q
(
Θ

∣∣∣Θ(h)
)

i.e.,

Θ(h+1) = arg Max
Θ

Q
(
Θ|Θ(h)

)
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E-Step:

Q
(
Θ|Θ(h)

)
= E

[∑

k

xklog(πk)
∣∣∣n, Θ(h)

]

=
∑

k

[
log(πk)E(xk

∣∣∣n, Θ(h)
]

=
∑

k

[
log(πk)

∑
j

njπk|j(Π
(h))

]

=
∑

k

[
log(πk)n

(h)
k

]
where n

(h)
k =

∑
j

njπ
(h)
k|j (2.27)

Note that

π
(h)
k|j = P (xkj = 1|fj) =

π
(h)
j|k × π

(h)
k

p
(h)
j

(2.28)

M-Step:

Using Eqn. 2.27 above we find,

Q
(
Θ|Θ(h)

)
=

∑

k

(
l−1∑
m=1

log (P (Im = ik,m))

)
n

(h)
k

=
l−1∑
m=1

(∑

k

log (P (Im = ik,m)) n
(h)
k

)

=
l−1∑
m=1

{
N0,mlog

(
1− c2

m

)
+ N1,m (log (cm(1− cm))) + 2N2,mlog(cm)

}

=
l−1∑
m=1

{log(1− cm) [2N0,m + N1,m] + log(cm) [2N2,m + N1,m]}

Now

∂Q
(
Θ|Θ(h)

)

∂Θ
= 0 for m = 1, · · · , l − 1

⇒ cm

1− cm

=
2N2,m + N1,m

2N0,m + N1,m

⇒ cm =
2N2,m + N1,m

2Nm

(2.29)

where

Nm =
∑

k

n
(h)
k = N0,m + N1,m + N2,m

N0,m =
∑

k

∣∣ik,m=(0,0)

n
(h)
k
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N1,m =
∑

k

∣∣ik,m=(i1,i2)

i1=0 (Strict)OR i2=0

n
(h)
k

N2,m =
∑

k

∣∣ik,m=(i1,i2)

i1 6=0 AND i2 6=0

n
(h)
k and so on.

Note that, ik,m denotes an event in Sm for the crossover φk.

Thus,

Θ(h+1) =
(
c(h+1)
m ∀m = 1, · · · , l − 1

)′

where c(h+1)
m =

(
2N2,m + N1,m

2Nm

)(h)

(2.30)

Computational implementation of the EM algorithm is described in a separate paper [63].

2.12 Computing the Standard Error of the MLE

We employ the SEM algorithm [44] to compute the standard errors of Θ = (cm,m = 1, · · · , l − 1).

Its description paraphrases the description in [63]. The large sample variance-covariance

matrix is calculated by (Equation (2.3.5) [44])

V = I−1
oc + ∆V (2.31)

where,

∆V = I−1
oc D(I −D)−1

and D is the matrix determining the rate of convergence of EM and Ioc is defined as below:

Ioc = E [Io (θ|Y ) |Yobs, θ]
∣∣∣
θ=θ∗

(2.32)

where, Io(θ|Y ) is the complete-data observed information matrix.

The EM algorithm described in section2.11.2 implicitly defines a mapping θ → M(θ) by

equation(2.29) from the parameter space of θ,(0, 1]l−1, to itself such that

θ(t+1) = M(θ(t)), for t = 0, 1, · · ·
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Since M(θ) is continuous and θ(t) converges to the MLE θ∗(using EM algorithm), then

θ∗ is a root of

θ∗ = M(θ∗)

Therefore in the neighborhood of θ∗, by a Taylor series expansion, we obtain

θ(t+1) − θ∗ ≈ (θ(t) − θ∗)D

where,

D =

(
∂Mj(θ)

∂θi

) ∣∣∣
θ=θ∗

is the (l− 1)× (l− 1) jacobian matrix for M(θ) = (M1(θ), · · · ,Ml−1(θ)) evaluated at θ = θ∗.

2.12.1 Computation of D

Define dij to be the (i, j)th element of D and define θ(t)(i) to be

θ(t)(i) =
(
θ∗1, · · · , θ

(t)
i , θ∗i+1, · · · , θ∗l−1

)
(2.33)

That is, only the ith component in θ(t)(i) is active since the other components are fixed at

their MLE‘s. By the definition of dij, we have

dij =
∂Mj(θ

∗)
∂θi

= lim
θi→θ∗i

Mj

(
θ∗1, · · · , θ∗i−1, θi, θ

∗
i+1, · · · , θ∗l−1

)−Mj (θ∗)

θi − θ∗i

= lim
θi→θ∗i

Mj

(
θ(t)(i)

)− θ∗j
θi − θ∗i

= lim
t→∞

d
(t)
ij

The following steps are performed to compute the dij‘s.

INPUT: θ∗ and θ(t).

Step 1. Run the usual E and M steps to obtain θ(t+1)(i).

Repeat steps 2-3 for i = 1, · · · , l − 1.

Step 2. Calculate θ(t)(i) from Equation(2.33), and treating it as the current estimate of
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θ, perform one iteration of EM¡ to obtain θ (t+1)(i).

Step 3. Obtain the ratio

dij =
θ

(t+1)
j (i)− θ∗j

θi − θ∗i
, for j = 1, · · · , l − 1

OUTPUT: θ(t+1) and {d(t)
ij , i, j = 1, · · · , l − 1}.

We obtain dijwhen the sequence d
(t∗)
ij , d

(t∗+1)
ij , · · · is stable for some t∗. This process may

result in using different values of t∗ for different dij elements.

2.12.2 Evaluation of I−1
oc .

The complete-data information for the (i, j)th element (i = 1, · · · , l−1 and j = 1, · · · , l−1)

is given by

Io(i, j) = −∂2f c(x, θ)

∂θi∂θj

= −
∑

k

xk

πk
∂2

∂θi∂θj
(πk)− ∂

θi
(πk)

∂
θj

(πk)

π2
k

The complete-data information for the (i, j)th element (i = 1, · · · , l−1 and j = 1, · · · , l−
1) is

Io(i, j) = −∂2f c(x, θ)

∂θi∂θj

= −
∑

k

xk

πk
∂2

∂θi∂θj
(πk)− ∂

θi
(πk)

∂
θj

(πk)

π2
k

Using Equation(2.32), we obtain

Ioc = E [Io (θ|Y ) |Yobs, θ]
∣∣∣
θ=θ∗

=
∑

k

[
−xk

πk
∂2

∂θi∂θj
(πk)− ∂

∂θi
(πk)

∂
∂θj

(πk)

π2
k

[
E

(
xk

∣∣∣n, θ∗
)]]

=
∑

k

[
−xk

πk
∂2

∂θi∂θj
(πk)− ∂

∂θi
(πk)

∂
∂θj

(πk)

π2
k

[
N∑

j′=1

n′jπk|j′(θ
∗)

]]

=
N∑

j′=1

nj′

pj′

[∑

k

[
πj′|k
πk

∂

∂θi

(πk)
∂

∂θj

(πk)− πj′|k
∂2

∂θi∂θj

(πk)

]]
using Equation(2.28)
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2.12.3 Empirical Validation of Standard Errors

We performed a study to verify empirically equation(2.31). We used the first 9 genes of

chromosome 7 of Neurospora crassa [46] for the study. First, we computed the parameter

vector θ using equation(2.29), and we used the estimated parameter to generate 50 data

sets from the model described in equation(2.1). For each model we computed the parameter

vector θ and calculate the empirical standard error for all the data sets. The following table

shows the theoretical and empirical estimates of the parameter vector θ.

Table 2.4: Empirical Validation of Standard Errors:

Genetic Intervals Theoretical Estimates Empirical Estimates
Tel VIIL - AP8e.1 0.0682 0.0733

AP8e.1 - 5:5A 0.0935 0.2225
5:5A - 00003 0.0599 0.0273
00003 - ccg-9 0.1012 0.0843
ccg-9 - pho-4 0.0902 0.1712
pho-4 - nic-3 0.1036 0.1690

nic-3 - AP12i.2 0.1415 0.1417
AP12i.2 - AP11c.3 0.1307 0.0475

2.13 Computing Goodness-of-Fit of the Model

Let Ri(i = 1, 2, · · · , l − 1) be a multinomial vector for the ith genetic interval, where

Ri = (Ri1, Ri2, Ri3, Ri4)
′ ; Rij =

n∑

k=1

Rijk ; Rijk ∼ M(1, Pij(θ)) ; j = 1, · · · , 4 (2.34)

In other words, Rij= count of genotype fj as in equation(2.4) for the ith genetic interval.

Assuming independence of the multinomial counts by virtue of the assumption of independent

DNA breakage across the intervals, we get

Ri
ind∼ M(n,Pi(θ)) ∀i = 1, 2, · · · , l − 1

where, Pi(θ) = (Pi1(θ), · · · , Pi4(θ))
′ and θ = (c1, c2, · · · , cl−1)

′

This independence assumption is an approximation, but a good one (See Section(2.15)).

We use the standard Pearson chi-squared statistic as a measure of goodness-of-fit for the
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model proposed as in Equation(2.1) and is defined as

X 2 =
l−1∑
i=1

(
Oi − nP (θ̂)

)2

nP (θ̂)

which asymptotically follows a central chi-squared distribution with n − l degrees of

freedom [1]. The following lemma and its proof are repeated from [63] for the reader‘s

convenience.

Lemma 2.2. ”Under the model described by Equation(2.1) at any particular locus only one

of the tetrad patterns 1 1 0 0, 0 1 1 0, 1 0 1 0, 1 0 0 1, 0 1 0 1 and 0 0 1 1 could occur.

Proof: Recall that a tetrad pattern is an arrangement of the alleles of a particular

gene in the simulated tetrad generated by a given crossover under the model described

by Equation(2.1), where 1 and 0 indicate the parental alleles for the particular locus. Let

P1,P2,· · · ,P6 denote the tetrad patterns 1 1 0 0, 0 1 1 0, 1 0 1 0, 1 0 0 1, 0 1 0 1 and 0 0 1 1

respectively. The tetrad pattern at locus i for a crossover value si in the ith genetic interval

Si is given by

Tsi
= fk(fj(Tsi−1

))

where, si = {j, k} ∈ Si in equation(2.2) and fk(.) and fj(.) are obtained from equation(2.18).

Note that Ts0 = P1. In order to generate the patterns beginning with pattern Ts0 along with

their sample points (Table2.5), we can see that all the sample points with the source pattern

Ts0 = P1 correspond to the patterns within Pi(i = 1, · · · , 6). Next we enumerate tetrad

patterns beginning with source patterns Pi(i = 1, 2, · · · , 6) and from Table2.5 it is clearly

seen that tetrad patterns cannot lie outside the set Pi(i = 1, · · · , 6). Hence the lemma is

proved.”

The probability distributions of the tetrad patterns are given below:

Next we derive probability distribution of the multinomial counts for each genetic interval

and for each of the beginning strand among the possible tetrad patterns.

Theorem 2.4. Let C1 and C2 define two classes of tetrad patterns as below:

C1 = {P1, P6} C2 = {P2, P3, P4, P5}
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The probability distribution of Ri for a tetrad pattern Pl(l = 1, · · · , 6) as the beginning

strand is given by:

P
(
Rij

∣∣Pl ∈ C1

)
=





c2−2c+2
4

if Rij = f1, f4

2c−c2

4
if Rij = f2, f3

(2.35)

P
(
Rij

∣∣Pl ∈ C2

)
=





c2−4c+8
16

if Rij = f1, f4

4c−c2

16
if Rij = f2, f3

(2.36)

Now,from equation(2.34)

Pij(θ) = E [Rijk]

= EGi

[
E

[
Rijk

∣∣Gi

]]

=
2∑

k=1

PGi
(Ck) P

(
Rij

∣∣Pl ∈ Ck

)
(2.37)

where, Gi is the random variable denoting a strand pattern among P1, · · · , P6. Note that the

distribution of Gi is of branching type where ith genetic interval corresponds to what we call

the ith generation. Since the genetic map starts with the pattern P1, the distribution of G1

i.e.,the 1st generation, is given by the first row in Table 2.6. We see that

PGi
(C1) =

∑

l=1,6

PGi
(Pl)

and

PGi
(C2) =

5∑

l=2

PGi
(Pl)

Hence in order to compute Equation(2.37) we have to find the probability distribution

of the ith generation random variable Gi i.e., compute PGi
(Pl) ∀i = 1, · · · , l − 1 and ∀l =

1, · · · , 6. The following theorem provides a set of recurrence relations for obtaining them.

Theorem 2.5. The set of recurrence relations for computing Equation(2.37) is given as

follows:

PG1 (P1) = (1− c1)
2 +

c2
1

4

PG1 (P6) =
c2
1

4

PG1 (Pl) =
c1

2
(1− c1) +

c2
1

8
∀ l = 2, · · · , 5
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For i = 2, · · · , l − 1

PGi
(P1) =

(
(1− ci)

2 +
c2
i

4

)
PGi−1

(P1) +

(
ci

2
(1− c1) +

c2
i

8

) 5∑

k=2

(
PGi−1

(Pk)
)

+
c2
i

4
PGi−1

(P6)

PGi
(P2) =

(
ci

2
(1− c1) +

c2
i

8

) ∑

k=1,6

(
PGi−1

(Pk)
)

+
c2
i

16

(
3PGi−1

(P3) + 2PGi−1
(P4) + PGi−1

(P5)
)

+

(
(1− ci)

2 + ci(1− ci) +
3c2

i

8

)
PGi−1

(P2)

PGi
(P3) =

(
ci
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2.14 The Use of Simulated Annealing for Searching for the Best Order.

Finding the order of genetic markers is a combinatorial optimization problem. Simulated

annealing has long been used quite successfully for solving combinatorial optimization prob-

lems [35]. In this paper, we use simulated annealing to find the best order of genetic markers.

Simulated annealing has been used previously [17], to reconstruct chromosomes based on

binary scoring of DNA fragments and a Hamming distance-based objective function as well

as in genetic mapping [67]. In our case, the objective function is the likelihood of a partic-

ular order of genes on a genetic map obtained upon convergence of the EM algorithm. So,

in our case a single computation of the objective function for one order of markers is quite

expensive. A heuristic stochastic strategy to hunt for a good order is:

1. Generate a random order of probes, Π, and calculate f(Π).
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2. Select a random segment within the ordering Π.

3. Perform a segment reversal and name the new ordering Π′.

4. Compute f(Π′).

5. If f(Π′) is less than f(Π), then retain the new order. However, if f(Π′) is larger than

f(Π), then generate a random number between 0 and 1. If this random number is less

than E(−(f(Π′)− f(Π))/T , then retain the new order. Here T denotes the ”tempera-

ture” of the annealing schedule.

6. Proceed downward in the multiplicative steps, decreasing T by a factor F . Hold each

value of T constant until M re-orderings have been attempted or S successful re-

orderings have resulted, whichever comes first. If the number of successes equals zero

for a given step, the process is complete; otherwise go to step 2.

2.15 Genetic Mapping from the RFLP data of NEUROSPORA CRASSA

2.15.1 Calibration of the Annealing Parameters

In order to find the optimal values of the factors T , F , M and S to use the annealing machine

for chromosome VII of Neurospora crassa we undertake a full factorial design [69] of the four

factors (T, F,M, S) for several values for each parameter as shown in the table below. For

each combination of the factors the likelihood measure of the converged order was noted in

a simulation study. Missing data are handled as described in [63]. We first estimated θ using

equation(2.29) on the data ( The entire 31 genes in chromosome VII of Neurospora crassa)

and then used those estimates to simulate a data set according to model equation(2.1) by

basically a single inversion when there is a difference (see Figure 2.5 and Figure 2.6). For

each combinations of factors in Table 2.7 10 random permutations of the gene order were

run, and the likelihood of their converged order was obtained.

There were no significant main effects for any of the factors except for near significance

of M (P value < 0.066). All the interactions were insignificant. From the annealing schemes

we recommend T = 10.0, F = 0.5, M = 100 and S = 20, since this annealing machine
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Figure 2.5: Comparative Genetic Map for Linkage Group V

Figure 2.6: Comparative Genetic Maps for Linkage Group VII

converged with the highest likelihood of the converged order and took the least amount of

time.

2.15.2 Genetic Map of Linkage Groups V & VII of Neurospora crassa

We search for an optimal order of genetic markers of chromosome VII in Neurospora

crassa( [34], [46]) using simulated annealing to maximize the log-likelihood, in Section(2.14).

The values of the parameters used in the search of the best order are T = 10.0,F =

0.5,M = 100 and S = 20. For each order proposed, the exchange probability estimates

are computed by the EM algorithm in Section(2.11.2). The exchange probability estimates
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with their standard errors and the corresponding recombination fractions (see Section 2.6.3)

are reported for the best order in Table 2.10 (See at the end of the paper). We found the

covariances of the exchange probabilities small (though not reported here), and that explains

why the pairwise analysis provides a good initialization to multiple marker MLE as well as

satisfies the independence assumption underlying the goodness-of-fit statistic. For linkage

group-VII, the published order [46] turned out to be the best order with likelihood −60.3270

using simulated annealing but the P-value is 0.00026 for the chi-squared goodness-of-fit

(See Section2.13). So, the chromosome VII map appears to have a poor fit to the model.

For all other linkage groups the P-value indicated a good fit to the model. Goodness-of-fit

value for the entire genome (all 7 chromosomes) are tabulated in Table 2.8.The maps for all

the chromosomes can be found at http://gene.genetics.uga.edu. Linkage groups II, IV and

V differed from the published order [46] by a simple inversion as shown for linkage group

in Figure(2.5). As can be seen from Table2.9, even in the cases of linkage groups II and

V the likelihood of the published order is extremely close to the maximum likelihood of

the inferred order. There are at least two reasons for the discrepancy. The simplest is that

the maps were constructed by hand, so there is only a limited number of possible solutions

considered. Metzenberg(personal communication) has also indicated that he held additional

data that helped him decide on the map, data which the current computation did not have

access to.

As a final test of the maximum likelihood methodology developed here for building genetic

maps, we now demonstrate the methodology generates the correct order of genetic markers

on four of the linkage groups. The 277 markers on all linkage groups were mapped onto the

genomic sequence of this model system [24]. The markers on this physical map provided by

the genomic sequence can then be ordered independently of the genetic map. As can be seen

in Figure(2.5,2.6), the two orders of the physical and genetic maps are largely in agreement;

see http://gene.genetics.uga.edu for figures similar to Figure(2.5,2.6) for four linkage groups.

The numbers of crossed lines (discrepancies between genetic and physical maps) for each

linkage group are reported in Table2.9 with linkage group V having the most discrepancies

between the order of the genetic map and sequence map. The conclusion is that that the
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genetic map generated by the methodology in this paper is independently corroborated

by the genomic sequence except for linkage groups I, II and V. It is not surprising to see

the discrepancies for linkage groups I and V, since these are the largest and hence hardest

to assemble correctly [34]. The discrepancy in the genomic sequence of linkage group II

appears to be due to the assignment of one segment to a different arm of linkage group II. In

conclusion, genetic maps with 277 markers can be constructed by the method of maximum

likelihood as demonstrated here, and the order inferred by the method of maximum likelihood

can be independently corroborated.

2.16 Conclusions and Future Directions

We modeled the recombination process of fungal systems for both random spore and tetrad

data. Assuming no-chromatid-interference (NCI) model, a probability model framework was

developed using bivalent configurations along the chromosome for 2 genes, and MLE esti-

mators for both random and tetrad data have been studied. It was shown that the MLE

estimator of recombination for tetrad data is uniformly more efficient over that from random

spore data by usually a factor of at least 4. The probability framework was generalized for an

arbitrary number of genes, and the MLE with its standard error have been computed using

the EM algorithm. We implemented our model with data on the whole genome of Neurospora

crassa. Simulated annealing was used to search for the best order of genetic markers and

the standard Pearson chi-squared goodness-of-fit values supported the model assumptions

(See Table 2.8). A desired extension is to unite this framework with that for constructing a

physical map( [33], [8])to produce integrated maps. These data are available [34], and the

statistical methodology for generating these integrated maps by the method of maximum

likelihood are not developed. It would be desirable to develop faster methods [31] for com-

puting the MLE of the genetic map (as in [8], [63] for the physical map and genetic map

respectively). It would be useful to have robust alternatives to the MLE [68] as well.

All of these tools are being made available for the first time to the fungal genetics commu-

nity. The no-chromatid-interference (NCI) is evaluated using this new statistical methodology
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on the Neurospora crassa genome. Under this model the pair of chromatids involved in a

double-stranded breaks are equally likely. Based on goodness-of-fit measure, the assumption

appears plausible (See Table 2.8). The assumption may need reevaluation as higher density

maps come available.

The problem considered here has a broader context. While we have solved the problem

for hundreds of markers, what is needed is to solve the problem for thousands of markers

to understand the genetic basis of human disease using resources such as the International

Hap Map [15]. It will be interesting to see whether or not the methods here scale [62]. The

results here suggest the scaling can be done.
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2.18 Appendix

1. Proof of Lemma2.2: Eqn. 2.13 is a cubic polynomial equation and we know that all

of its roots are real iff,

H < 0 and G < 0

where,

H = a3a1 − a2
2 and G = a2

3a0 − 3a3a2a1 + 2a3
2
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Now,

a3 = −30t1 − 30t2 − 30t3

a2 = 64t1 + 68t2 + 88t3

a1 = −32t1 − 56t2 − 88t3

a0 = 16t2 + 32t3

So,

H(t) =
1

9

{−1216t21 − 784t1t2 − 464t1t3 + 416t22 + 992t2t3 + 176t23
}

=
1

9
[(t3 − t1) (784t2 + 176t3) + t3 (208t2 − 288t1)]

< 0 , Since t1 > t2 > t3

Now, G(t) is obtained after some algebraic simplification to be,

G(t) =
113459200

3
t31t2t

2
3 −

65945600

3
t1t

3
2t3 − 18022400t1t

4
2t3

−15974400t41t2t3 + 45465600t1t2t
4
3 +

223232000

3
t21t2t

3
3 +

19558400

3
t21t

2
2t

2
3

+4300800t31t
2
2t3 +

56934400

3
t1t

2
2t

3
3 −

58777600

3
t21t

3
2t3 +

18022400

3
t42t

2
3

31129600

3
t32t

3
3 +

28672000

3
t2t

5
3 −

4096000

3
t52t1 + 3379200t42t

2
1 +

6553600

3
t52t3

45670400

3
t32t

3
1 + 3379200t41t

2
2 +

9420800

3
t41t

2
3 + 44646400t31t

3
3 + 48332800t21t

4
3

−19660800t51t3 +
63488000

3
t1t

5
3 −

45875200

3
t51t2 +

36454400

3
t22t

4
3

1638400

3
t62 +

10240000

3
t63 −

26214400

3
t61

2. Proof of Eqn.(2.14): From Eqn. 2.11 we get the log-likelihood function as

logL(c) = t1log
{
4(1− c)2 + c2

}
+ t2log

{
c2 + 4c(1− c)

}
+ t3logc2

Now differentiating the above we obtain,

∂logL(c)

∂c
= c

{
10t1

4(1− c)2 + c2
− 6t2

c2 + 4c(1− c)

}

+
2t3
c

+
4t2

c2 + 4c(1− c)
− 8t1

4(1− c)2 + c2
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Hence,

σ2
mle.td =

(φ(c)′)2

−E
(

∂2logL(c)
∂c2

)

=
(1− c)2

(
3∑

i=1

ti)

[
1

2
+

50c2 − 80c + 24

16(1− c)2 + c2
+

18c2 − 24c + 16

2c2 + 8c(1− c)

]

3. Proof of Eqn.(2.15): From Eqn. 2.11 we have the probability distribution of T . The

heuristic estimator of recombination fraction is given by

rheu =
0.5t2 + t3

(
3∑

i=1

ti)

Now,

E (rheu) = 0.5P (T2 = t2) + P (T3 = t3)

= 0.5

{
c2

2
+ 2c(1− c)

}
+

c2

4

= c
(
1− c

2

)

Hence, rheu is an unbiased estimator of r.

Var (rheu) =
1

(
3∑

i=1

ti)
2

[
Var(T2)

4
+ Var(T3) + Cov(T2, T3)

]

(
3∑

i=1

ti)Var (rheu) =
1

4

[{
c2

2
+ 2c(1− c)

}{
1− c2

2
− 2c(1− c)

}]

+
c2

4

(
1− c2

4

)
−

{
c2

2
+ 2c(1− c)

}
c2

4

= −c4

4
+ c3 − 9

8
c2 +

c

2

So,

Var (rheu) =
− c4

4
+ c3 − 9

8
c2 + c

2

(
3∑

i=1

ti)
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4. Proof of Eqn.(2.16): From Eqn. 2.4 we get the log-likelihood for c in the random

spore model as

logL(c) = (n1 + n2)log(2− 2c + c2) + (n3 + n4)log(2c− c2)

Differentiating the above we get,

∂logL(c)

∂c
= (2c− 2)

[
n1 + n2

2− 2c + c2
− n3 + n4

2c− c2

]

Hence the information on c in the model is

I(c) = E

(
−∂2logL(c)

∂c2

)

=

4(
4∑

i=1

ni)(1− c)2

(2− 2c + c2)(2c− c2)

Hence,

σrmle
=

(2− 2c + c2)(2c− c2)

4(
4∑

i=1

ni)
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Table 2.5: Possible Tetrad Patterns(taken from Fig 2 in [63])
Source Pattern Generated Patterns Sample Points

P1 P1 (0,0),(1,1),(2,2),(3,3),(4,4)
P2 (0,1),(1,0),(1,2),(1,4)
P3 (0,2),(2,0),(2,1),(2,3)
P4 (0,3),(3,0),(3,2),(3,4)
P5 (0,4),(4,0),(4,1),(4,3)
P6 (1,3),(3,1),(2,4),(4,2)

P2 P1 (0,1),(1,0),(2,1),(4,1)
P2 (0,0),(0,2),(2,0),(0,4),(4,0),(1,1),(2,2),(3,3),(4,4),(4,2),(2,4)
P3 (1,2),(3,4)
P4 (1,3),(3,1)
P5 (1,4),(3,2)
P6 (0,3),(3,0),(2,3),(4,3)

P3 P1 (0,2),(2,0),(1,2),(3,2)
P2 (2,1),(2,3),(4,3)
P3 (0,0),(0,1),(1,0),(0,3),(3,0),(1,1),(2,2),(3,3),(4,4),(1,3),(3,1)
P4 (4,1)
P5 (4,2),(2,4)
P6 (0,4),(4,0),(1,4),(3,4)

P4 P1 (0,3),(3,0),(2,3),(4,3)
P2 (1,3),(3,1)
P3 (1,4),(3,2)
P4 (0,0),(0,2),(2,0),(0,4),(4,0),(1,1),(2,2),(3,3),(4,4),(4,2),(2,4)
P5 (1,2),(3,4)
P6 (0,1),(1,0),(2,1),(4,1)

P5 P1 (0,4),(4,0),(1,4),(3,4)
P2 (4,1)
P3 (4,2),(2,4)
P4 (2,1),(2,3),(4,3)
P5 (0,0),(0,1),(1,0),(0,3),(3,0),(1,1),(2,2),(3,3),(4,4),(1,3),(3,1)
P6 (0,2),(2,0),(1,2),(3,2)

P6 P1 (1,3),(3,1),(4,2),(2,4)
P2 (0,3),(3,0),(3,2),(3,4)
P3 (0,4),(4,0),(4,1),(4,3)
P4 (0,1),(1,0),(1,2),(1,4)
P5 (0,2),(2,0),(2,3),(2,1)
P6 (0,0),(1,1),(2,2),(3,3),(4,4)
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Table 2.6: Probability Distributions of the Tetrad Patterns
Source Pattern Generated Patterns Sample Points

P1 P1 (1− c)2 + c2

4

P2
c
2
(1− c) + c2

8

P3
c
2
(1− c) + c2

8

P4
c
2
(1− c) + c2

8

P5
c
2
(1− c) + c2

8

P6
c2

4

P2 P1
c
2
(1− c) + c2

8

P2 (1− c)2 + c(1− c) + 3c2

8

P3
c2

8

P4
c2

8

P5
c2

8

P6
c
2
(1− c) + c2

8

P3 P1
c
2
(1− c) + c2

8

P2
3c2

16

P3 (1− c)2 + c(1− c) + 3c2

8

P4
c2

16

P5
c2

8

P6
c
2
(1− c) + c2

8

P4 P1
c
2
(1− c) + c2

8

P2
c2

8

P3
c2

8

P4 (1− c)2 + c(1− c) + 3c2

8

P5
c2

8

P6
c
2
(1− c) + c2

8

P5 P1
c
2
(1− c) + c2

8

P2
c2

16

P3
c2

8

P4
3c2

16

P5 (1− c)2 + c(1− c) + 3c2

8

P6
c
2
(1− c) + c2

8

P6 P1
c2

4

P2
c
2
(1− c) + c2

8

P3
c
2
(1− c) + c2

8

P4
c
2
(1− c) + c2

8

P5
c
2
(1− c) + c2

8

P6 (1− c)2 + c2

4
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Table 2.7: Levels Examined in the Calibration of the Annealing Machine

Parameter Values
T 10.0 , 20.0
F 0.25 , 0.5 , 0.75
M 100 , 200 , 300
S 0.2M , 0.4M

Table 2.8: Goodness-of-fit for the whole Genome of N.crassa

Linkage Group Chi-Square df P-Value
I 71.9640 104 0.9929
II 55.4553 76 0.9633
III 18.5361 60 0.99
IV 57.8726 76 0.9396
V 82.9384 104 0.9364
VI 58.3165 60 0.5374
VII 105.5206 60 0.00026

Table 2.9: Discrepancy and Likelihood Measures for the whole Genome of N.crassa

Linkage Group Discrepancya Published Map Inferred Map Sequence Map
I 13 -42.01182 -42.01182 -233.9733
II 13 -63.7872 -63.7825 -62.4309
III 3 -101.1678 -101.1678 -53.4956
IV 9 -93.1492 -86.1172 -143.6690
V 14 -4.7713b -4.7713c -20.7591
VI 7 -73.0293 -73.0293 -79.2024
VII 6 -60.3270 -60.3270 -99.0543

aDiscrepancy is measured as the total number of line crosses between the Inferred map and the
Sequence map.

bActual Value -4.771375255655365
cActual Value -4.771375255655364
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Table 2.10: Best Genetic Map with Estimates of Exchange Probability (c), its
Standard Error(σc) and Recombination Fraction (r) on Linkage Group-VII of N.crassa

Genes ca σc r Genesb c σc r
Tel VIIL–AP8e.1 0.0001 0.0003 0.0001 AP36a.4–ars-1 0.0001 0.0042 0.0001

AP8e.1–5:5A 0.0001 0.0003 0.0001 ars-1–Cen VII 0.0001 0.0042 0.0001
5:5A–00003 0.4712 0.288 0.3602 Cen VII–msh-2 0.16 0.1197 0.1472
00003–ccg-9 0.0001 0.0041 0.0001 msh-2–frq 0.0001 0.0043 0.0001
ccg-9–pho-4 0.0001 0.0041 0.0001 frq–cfp 0.1568 0.1181 0.1445
pho-4–nic-3 0.0001 0.0041 0.0001 cfp–AP32a.1 0.3209 0.237 0.2694

nic-3–AP12i.2 0.0001 0.0041 0.0001 AP32a.1–R29.1 0.0001 0.0027 0.0001
AP12i.2–AP11c.3 0.0001 0.0041 0.0001 R29.1–pep-4 0.1571 0.2053 0.1448
AP11c.3–AP34a.1 0.0001 0.1154 0.0001 pep-4–cat-2 0.3295 0.2812 0.2752
AP34a.1–AP39a.2 0.3128 0.1681 0.2639 cat-2–COXVIII 0.3259 0.2032 0.2728
AP39a.2–AP31a.2 0.1553 0.1174 0.1432 COXVIII–pRB22 0.0001 0.0037 0.0001
AP31a.2–X23:9G 0.0001 0.0042 0.0001 pRB22–Ncr-1 0.0001 0.0037 0.0001
X23:9G–R58.1 0.0001 0.0042 0.0001 Ncr-1–NP4A9 0.1568 0.1143 0.1445
R58.1–AP36a.1 0.0001 0.0042 0.0001 NP4A9–AP5i.2 0.1483 0.1599 0.1373

AP36a.1–AP36a.4 0.0001 0.0042 0.0001 AP5i.2–Ncr-9 0.6519 0.2664 0.4394

ac, σc and r correspond to the genetic interval formed by the genes at the current row and the
following row

bcomes after the first column for genes is completed



Chapter 3

DESIGN AND ANALYSIS OF AN EFFICIENT RECURSIVE LINKING

ALGORITHM FOR CONSTRUCTING LIKELIHOOD BASED GENETIC

MAPS FOR A LARGE NUMBER OF MARKERS 1

1Tewari,S., Bhandarkar,S.M. and Arnold, J. 2008
Journal of Bioinformatics and Computational Biology. 5 : 201-250
Reprinted here with permission of publisher
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3.1 Abstract

A multi-locus likelihood of a genetic map is computed based on a mathematical model of

chromatid exchange in meiosis that accounts for any type of bivalent configuration in a

genetic interval in any specified order of genetic markers. The computational problem is to

calculate the likelihood (L) and maximize L by choosing an ordering of genetic markers

on the map and the recombination distances between markers. This maximum likelihood

estimate (MLE) could be found either with a straightforward algorithm or with the proposed

recursive linking algorithm that implements the likelihood computation process involving

an iterative procedure, called Expectation Maximization(EM). The time complexity of the

straightforward algorithm is exponential without bound in the number of genetic markers,

and implementation of the model with a straightforward algorithm for more than 7 genetic

markers is not feasible, thus motivating the critical importance of the proposed recursive

linking algorithm. The recursive linking algorithm decomposes the pool of genetic markers

into segments and renders the model implementable for hundreds of genetic markers. The

recursive algorithm is shown to reduce the order of time complexity from exponential to

linear in the number of markers. The improvement in time complexity is shown theoretically

by a worst-case analysis of the algorithm and supported by run time results using data on

linkage group-II of the fungal genome Neurospora crassa.

3.2 Introduction

High density linkage maps are an essential tool for characterizing genes in many systems,

fundamental genetic processes, such as genetic exchange between chromosomes, as well as

the analysis of traits controlled by more than one gene (i.e., complex traits) [40]. Since

genetic maps are most often the critical link between phenotype (what a gene or its product

does) and the genetic material, genetic maps can be exploited to address how the genetic

material controls a particular trait [21] controlled by one or more genes. Most model systems

possess high density linkage maps that can assist in the analysis of complex traits. The
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bread mold, Neurospora crassa [19] , which gave us the biochemical function of genes, is

no exception [46]. One approach to understanding the genetic basis of a complex trait is to

follow its segregation in offspring along with an array of genetic markers. One class of genetic

markers frequently used are restriction fragment length polymorphisms (RFLPs), markers in

the DNA itself. Another class are single nucleotide polymorphisms (SNPs). These markers,

in essence, allow a triangulation on loci in the DNA affecting the complex trait of interest.

Part of this triangulation process involves the construction of the relative positions of these

several markers along a genetic map. This is a computationally challenging problem [39]

and at the heart of understanding complex traits, such as human disease. In this paper we

address the problem of genetic map reconstruction from a large number of RFLP markers.

We focus on map construction for a model system N. crassa [3], where there is a wealth of

published information about how markers segregate because the genetic makeup of gametes

(as opposed to offspring) can be identified [3]. In this setting we can build a much more

realistic model of the recombination process between chromosomes than in more complex

eukaryotes [56].

Given l markers or genetic loci, each with two or more alternate forms of a gene called

alleles, the number of distinct types of offspring is 2l. This implies that the computational

complexity of a likelihood-based approach to estimating a genetic map would appear to scale

at least as O(25l−1) [62]. At first sight the computational complexity of following the seg-

regation of l markers to build a genetic map seems infeasible beyond about 7 markers. It

is remarkable that Lander and Green [39] were able to solve this problem for a special case

with an algorithm whose computational complexity is linear in l. The likelihood, in their

algorithm, is computed from a recombination fraction defined on each genetic interval.The

limitation of their work is that they did not model the recombination process in detail; for

example, chromatid exchanges are not explicitly modeled as discussed in the next section.

Others have tried to circumvent the computational complexity of this problem by utilizing

only pairwise information on genetic loci [45]. Solving this reconstruction problem is essen-

tial for geneticists to make use of the recently completed International HapMap [15] with

thousands of markers scattered throughout the human genome to hunt down important dis-
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ease causing genes. In addition, several model systems now possess the data for constructing

dense genetic maps with thousands of markers [70]. Using such mapping data together with

variation in a complex trait, such as heart disease, will allow researchers to triangulate on

genes determining the trait of interest. Here we focus on solving this problem in a setting

considered ideal for geneticists. For some organisms, it is possible to observe the gametes (as

opposed to the offspring) from a parent organized into a package called a tetrad [53] uncom-

plicated by what is going on in another parent. For organisms such as fungi and some more

complex eukaryotes engineered to have this property [18], gametes can be observed directly,

as opposed to offspring with the contributions of the two parents. For this reason, we focus

on reconstructing a genetic map where tetrads can be obtained. In fungi, such as Neurospora

crassa, the gametes can be typed directly (Figure 3.1). A string of spores (or gametes) in

Figure 3.1 are the products of single cross. In this setting the recombination process can be

modeled in detail. The challenge we address here is, in the best of all possible worlds can

we reconstruct a genetic map with many markers? This is a very old and difficult problem

without a good solution (particularly when the order of markers is unknown) in spite of the

fact that hundreds of fungal laboratories around the world make use of this kind of tetrad

data in genetic analysis. Zhao and Speed( [75], [73]) demonstrate a solution for few number

of markers (less than 10) under some assumptions on the exchange process.

Figure 3.1: Various forms of tetrads : (a) unordered; (b) linear; (c) normally maturing asci
of Neurospora crassa. (from Namboori B. Raju, [53] and Davis [19])
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3.3 Background Material on Meiosis, Recombination and Exchange

The following biological section is introduced to make the paper self-contained. The vast

majority of genes in cells with nuclei (eukaryotes) occur on chromosomes. Depending on the

organism and life stage, a eukaryotic species can have 1 to several copies of these chromo-

somes. For example, many eukaryotes, such as animals and flowering plants, possess 2 copies

of their chromosomes and are referred to as diploid, while many fungi and algae may possess 1

copy of their chromosomes and are referred to as haploid. The ploidy for these organisms can

vary with their life cycle. For example, diploid animals and plants produce haploid gametes;

conversely, haploid fungi often produce a temporary diploid stage (a meiocyte) during sexual

reproduction. The letter n is used to refer to the number of distinct chromosomes in a haploid

condition. So, gametes have n chromosomes, and diploids have 2n chromosomes.

The process of recombination underlies the reconstruction of genetic maps and thought

to take place principally during a cell division process called meiosis underlying sexual

reproduction. To understand how recombination takes place between chromosomes, it is

necessary to have an understanding of how meiosis proceeds. In eukaryotes, meiosis is the

production of specialized cells (such as sperm and eggs) called gametes. Prior to the onset of

meiosis the genetic material is completely duplicated, and during meiosis two divisions take

place to convert a diploid cell, for example, with 2n chromosomes into four haploid gametes

called a tetrad, each with n chromosomes. This process is termed meiosis.

As a diploid cell, a meiocyte, enters meiosis, the meiocyte contains at least four copies

of each chromosome because DNA replication has taken place already. In the succeeding

rounds of two cell divisions, the number of chromosomes in each daughter cell is reduced

to one copy. The four copies of each chromosome in the diploid meiocyte are referred to as

chromatids. During the earliest stage of meiosis, prophase, these four chromatids align into a

structure called a bivalent (See Fig( 3.2)). Two pairs of these chromatids are nearly identical,

one being descended from the other by DNA replication immediately prior to meiosis. The

related chromatids are called sister chromatids (same color in Figure 3.2), and if the two
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chromatids are not related by the immediately prior round of DNA replication, they are

nonsister chromatids. A bivalent then consists of two pairs of sister chromatids.

The physical proximity of the chromatids in Prophase of meiosis leads to exchanges

between chromatids. A exchange can arise as shown in Figure 3.2. These exchanges are

generated by random double stranded breaks, in which the ends of chromatids reanneal

with the wrong chromatid as shown in Figure 3.2. The resulting exchanges can take place

anywhere along the chromatids, and the positions of the exchanges vary from meiocyte to

meiocyte (as well as their products, i.e.,from gamete to gamete). In that sister chromatids

are so similar, exchanges are usually only observed between nonsister chromatids. Let us

designate the sister chromatids from one parent as 1 and 2, and the sister chromatids from

the other parent, 3 and 4. Exchanges are then usually only observed between 1 and 3, 1 and

4, 2 and 3, and 2 and 4 as depicted in Figure 3.3. It is plausible that exchanges between each

of these combinations of nonsister chromatids are equally likely because the exchanges are

generated by random breakage events along the chromatids. This hypothesis or assumption

is referred to as No-Chromatid-Interference(NCI). There is substantial empirical support for

this hypothesis [72].

The process of crossing-over underlying meiotic recombination shuffles the allele pairs in

the diploid parent and deals them out randomly as the products of meiosis (such as egg and

sperm). For clarity, meiotic recombination can be defined as the production of gametes from

meiosis with genotypes that differ from the parental genotypes that combined to form the

(diploid) parental meiocyte. Put more simply, if the descendant does not resemble the parent

in its genotype, we say the descendant is a recombinant. The product of meiotic recombi-

nation is referred to as a recombinant, and the physical process generating a recombinant

is hypothesized to be crossing-over. Thus, the hypothesis is that the breakage-and-rejoining

process leading to exchanges is an explanation for recombination of genes on chromatids,

making children different from their parents.

There are two different flavors of meiotic recombination: independent assortment of

genes on different chromosomes and crossing-over between genes on the same chromo-

some. To see genetic recombination, it is necessary that the pair of genes involved in
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recombination in the diploid meiocyte each have two different alleles. That is, each gene

has to be heterozygous in the diploid parental meiocyte. For constructing a genetic map,

we only consider genes on the same chromosome, and thus do not consider independent

assortment. In Figure 3.2 we present how recombination works. In Figure 3.2, one parental

genotype (a.b) is labeled with all mutant alleles, and the other parent is labeled with

what is called wild type alleles (A.B). A typical meiotic product from a single exchange

(SCO) a.B would be termed a recombinant by the definition above, as the recombinant

is genetically distinct from the haploid parents, a.b and A.B. In Figure 3.2(Redrawn from

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=iga.figgrp.1135), other double exchange

events, such as double exchanges (DCO), lead to different allelic combinations that are

recombinant as well. The tetrads from one meiosis can then be classified as parental ditype

(PD), in which no recombinants occur; as tetrad type (T), in which equal numbers of recom-

binants and non-recombinants co-occur; or as non-parental ditype (NPD), in which only

recombinants occur.

Figure 3.2: The ascus classes produced by exchanges between linked loci. NCO, nonexchange
meioses; SCO, single-exchange meioses; DCO, double-exchange meioses. Chromosomes of the
same color are sister chromatids

3.4 Model Assumptions in Comparison to Existing Models

One critical feature of the exchanges is how they occur along a chromosome. One assump-

tion that has been made by Lander and Green [39] is that crossovers along a chromosome

are independent and uniformly distributed. This assumption of no crossover interference,

referred to as the (NChI) hypothesis enabled the likelihood calculation to be tractable in
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their work [39]. For phase-known type data Lander and Green compute the likelihood of

an order of markers by simply computing the fraction of recombinants for each interval.

Although this give a likelihood against which to compare marker orders relative to each

other, it does not go into the recombination process in detail. They do not consider the

chromatid exchanges at all which is crucial to describing recombination. The problem with

not having a model is that likelihood measures could differ arbitrarily for small changes in

the marker order. The absence of a model also implies that there are no parameters one can

monitor in order to examine the changes in the process underlying the model in response to

the changes in the marker order.

There have been several approaches to modeling the crossover process in a series of papers

by Zhao and Speed (see [41], [73], [75]). For example, they formulate a more general model of

crossing-over based on a stationary renewal process [74] to derive the likelihood formulation

based on the popular Chi-Square model [22], as a special case. They also perform statistical

tests to evaluate the performance of the model for several important data sets [73]. The Chi-

square model is obseerved to fit the data well while accounting for interference. However there

are a few points that limit their model for broader application. In all of the models that have

been proposed so far, the crossover process has been assumed to follow some mathematically

tractable process, and several assumptions on the process are generally made to make it

viable. For example, in the Chi-Square model [22] the so-called “recombinational intermedi-

ates” (C) have been assumed to be uniform across the chromosome (i.e., with no interference)

while their resolutions are assumed to follow a particular pattern. Though the model gives

a measure of interference through its parameter m, the meaning of the model itself is quite

abstract. For example, the model states that a non-exchange resolution(C0) must result m

times after each crossover resolution(Cx) followed by a crossover resolution(Cx).

Zhao and Speed ave worked out very general expressions for the joint probability of

multilocus recombinants in Theorem 2.2 of [74], but it is not clear how those can be actually

computed except when the assumed process (for example, the Chi-square model) allows sums

over all possible exchanges to be represented as explicit closed-form expressions (Appendix:

Theorems 1 and 2 in [73]). Even with assumptions that make it mathematically tractable
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as in [73], there is no analysis presented for more than 10 markers. It is not clear if their

method of likelihood maximization (downhill simplex method) would scale for hundreds of

markers without running into some kind of computational bottleneck. Though these models

are quite helpful in fitting data, we feel that the assumptions underlying their model of the

crossover process are hard to verify as exchanges can not be observed directly enough to

provide any direct validation. Note that a crossover process is used to connect the observed

gametes to the bivalent configurations. Nonetheless, despite their aforementioned limitations,

the methods presented by Zhao and Speed do provide insights into recombination.

In this paper we do not make any assumptions regarding the underlying crossover process,

if any, that gives rise to the observed gametes. We consider a probabilistic framework for all

possible bivalent configurations along the chromosome using the No Chromatid Interference

(NCI) model, which assumes that chromatid exchange between non-sister chromatids is

equally likely. The term bivalent configuration describes how chromatids are joined with

their non-sister chromatids along the chromosome. Figure 3.2 shows depicts possible bivalent

configurations in a tetrad for two intervals. The following sections detail the proposed model

formulation and show how connections to key concepts such as, recombination fraction, and

likelihood based marker order, can be made using the proposed model.

3.5 A Mathematical Formulation for Bivalent Configurations.

The primary emphasis of this paper is to design and analyze the proposed recursive linking

algorithm. In order to make the algorithm more readable, the theory underlying the algo-

rithm, which is under submission as a separate work, is presented in a concise manner. For

detailed proofs of the theorems, interested readers are referred to [61].

Before describing the mathematical model in detail, we introduce the following glossary

of mathematical terms and symbols used:

• ci = probability of a non-sister chromatid exchange for the ith genetic interval

• Si = sample space for the ith genetic interval

• Sl = sample space for all the genetic intervals
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• φk = kth unique chromatid exchange in Sl

• fk = kth genotype

• nj = cell frequency for the jth observed genotype

• Rk = tetrad obtained via Eqn. 3.5 for exchange φk

• pj = cell probability for the jth observed genotype

• N = dg = total number of distinct genotypes (or cells).

• n =

dg∑
j=1

nj = total number of genotypes observed.

We model the genotypes 1 1 , 0 0,1 0 and 0 1 (where 1 and 0 refer to paternal and maternal

alleles respectively) of a genetic interval (say,Si), as a consequence of two simultaneous inde-

pendent and identical chromatid exchange events (say, S). Note that this double chromatid

exchange is modeled as a discrete event as opposed to an analogous continuous process. The

four possible chromatid exchanges between non-sister chromatids are pictorially represented

in Figure 3.3. There are 5 possible ways of performing a chromatid exchange (including a

non-exchange as one of these possibilities) between non-sister chromatids. Note that our

model accounts for all possible bivalent configurations (a bivalent configuration is defined as

the chromatid exchanges on four strands of a tetrad) that may result due to any number

of exchanges that may occur along the chromosome. It is important to distinguish that our

model does not represent crossovers per se, but rather a pair of abstract discrete events that

is capable of mapping the bivalent configurations, which could arise from any number of

physical exchanges (chiasma). Let ci denote the probability of a chromatid exchange in S

between any two non-sister chromatids in the ith genetic interval Si at meiosis. Since under

the No-Chromatid-Interference (NCI) assumption, all chromatid exchanges are equally likely,

we get:
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S = {0, 1, 2, 3, 4}

P (i) =
c

4
; i = 1, · · · , 4; i ∈ S

P (0) = 1− c; 0 ∈ S (3.1)

The element 0 in S indicates the absence of an exchange event. Elements 1, 2, 3 and 4

indicate that non-sister chromatids (1, 3), (2, 3), (2, 4) and (4, 1) took part in the exchange

process respectively. The set Si, defined by the Cartesian product S × S, enumerates all

possible bivalent configurations for the ith genetic interval.

Figure 3.3: The single exchange events are signified by a vertical line, and the exchanges
take place between chromatids at the ends of the vertical lines. These 4 strands are found in
Prophase-I [19]. All exchanges are equally likely under our model.

3.6 Multi locus Genetic Likelihood for a Specified Order of Genetic

Markers.

The probability distribution of Si denoting bivalent configurations between locus Aiand

A(i+1)(i = 1, ..., l− 1), where l=total number of loci being studied, can be derived as follows

using Eqn. 3.1.

P ({i, j}) =
c2
i

16
I{i 6=0;j 6=0} +

ci(1− ci)

4
{I{i=0;j 6=0} + I{i6=0;j=0}}+ (1− ci)

2I{i=j=0} (3.2)

where, {i, j} ∈ Si.

Let φk denote a unique chromatid exchange on Sl as described below:

φk = i1 × i2 × ...× il−1 (3.3)
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where,

k = i1.i2.i3...il−1 ; ij ∈ Si ; φk ∈ Sl =
l−1∏
i=1

Si

From this point on, for the sake of brevity, we may abbreviate term chromatid exchanges

to simply exchanges when referring to φk.

Let fk denote a multi-locus genotype with l loci:

fk = i1 × i2 × ...× il−1 × il

where,

k = i1.i2.i3...il ; ij = 0, 1; ∀j = 1, · · · , l

The indices ij = 1 and ij = 0 indicate the paternal and maternal alleles respectively.

The progeny are obtained by exchanges between homogeneous parents. The observed data

set can be represented as:

D =
{
nj ; ∀j = 1, · · · , 2l

}

where, nj is the observed frequency of fj.

3.6.1 Recombination fraction ri:

There are a variety of ways that various researchers have connected the recombination pro-

cess to the underlying exchange process. For example, Mather [42] connects the recombi-

nation fraction to the number of exchanges occurring on the chromosome. Others, such as

Haldane [28], relate the recombination fraction to a physical distance. More recently Zhao

et.al [73] relate recombination to an underlying exchange process. In the proposed model,

the probability of recombination (or recombination fraction) can be calculated simply from

the probability distribution of the bivalent configurations in set Si.

The recombination fraction ri is defined as follows:

ri = P (at least one meiotic product is recombinant in Si)

= ci(1− ci

2
)

= φ(ci) (3.4)
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Also,

Max
ci∈[0,1]

r = Max
ci∈[0,1]

φ(ci) =
1

2
, ∀i = 1, · · · , l − 1,

which is the theoretical maximum of the recombination fraction from the theory of Mendelian

genetics.

3.6.2 Probability distribution on Sl

Let us define the following functions

f 0(a) = (a1, a2, a3, a4)
′

f 1(a) = (a3, a2, a1, a4)
′

f 2(a) = (a1, a3, a2, a4)
′ (3.5)

f 3(a) = (a1, a4, a3, a2)
′

f 4(a) = (a4, a2, a3, a1)
′

where,

a = (a1, a2, a3, a4)
′

ai = 0, 1 ∀i

Note that Eqn. 3.5 encodes the elements of set S (See Eqn. 3.1) as mathematical functions.

For example, the first function f 0(a) encodes element 0, showing no chromatid exchange

whereas function f 4(a) encodes element 4, indicating that the first strand and the fourth

strand have had an exchange.

The function fij(a) = fj(fi(a)) corresponds to the events in Si accounting for all possible

bivalent configurations. For a particular chromatid exchange φk we can generate a model

tetrad at meiosis using the function fij. The matrix Rk of size 4 × l defines the simulated

tetrad as follows [57]:

Rk =
(
R0R1 · · ·R(l−1)

)
(3.6)

where,

R0 = (1100)′ ; Ri = fjk(Ri−1) ∀i = 1, · · · , l − 1
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and the ith genetic interval Si contains the observed chromatid exchange {j, k}. In other

words, Rk has 4 rows which correspond to the 4 gametes in a tetrad during meiosis if the

chromatid exchange φk had occurred according to our model.

The conditional distribution of fi for a given φk is

P (fi|φk) =
1

4

4∑
j=1

Ifi∈Rk(j,.)
(3.7)

where, Rk(j, .)is the jth row of Rk.

The marginal density of a single spore fi is given by

P (fi) =
∑

k

P (fi|φk)× Pk

= C × P (3.8)

where, C is the conditional probability matrix given by :

C = ((cki))

cki = P (fi|φk) (from equation (3.7))



 (3.9)

and P is given by,

P = (Pk; ∀k)′

Pk = P (φk)

=
l−1∏
j=1

P (Ij = ik,j) (3.10)

where, ik,j ∈ Sj and the probability distribution P (Ij = ik,j) is as defined in equation (3.2).

Let Θ = (c1, c2, ..., cl−1)
′ denote the unknown parameter vector in the model. The log-

likelihood of f = (fi, i = 1, · · · , 2l−1)′, viewed as a function of Θ, is given by :

l(Θ|D) =
N∑

i=1

nilog

[∑

k

[
1

4

4∑
j=1

I{fi∈Rk(j,.)}
l−1∏
j=1

Pj (Ik,j = ik,j)

]]
(3.11)

Note that the log-likelihood in Eqn. 3.11 is distinct from the one in Zhao et.al [73].

Zhao and Speed have formulated a log-likelihood function similar to the one in Eqn. 3.11

for ordered tetrads in the appendix of [75]. However, the log-likelihood in Eqn. 3.11 does
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not hypothesize an exchange process. Both, Lander and Green [39] and Zhao and Speed [75]

have used the EM algorithm in the context of genetic map reconstruction.

The following two theorems maximize the log-likelihood in equation (3.11) using a set of

recurrence relations obtained via the Expectation-Maximization (EM) algorithm [20]. The

proofs are not given in the interest of brevity, but the development of Eqn. 3.12 is described

elsewhere [61].

Theorem 3.1. The EM-iterative equations are given below.

Θ(h+1) =
(
c(h+1)
m ∀m = 1, · · · , l − 1

)′

where c(h+1)
m =

(
2N2,m + N1,m

2Nm

)(h)

(3.12)

where

Nm =
∑

k

n
(h)
k = N0,m + N1,m + N2,m

N0,m =
∑

k

∣∣ik,m=(0,0)

n
(h)
k

N1,m =
∑

k

∣∣ik,m=(i1,i2)

i1=0 (Strict)OR i2=0

n
(h)
k

N2,m =
∑

k

∣∣ik,m=(i1,i2)

i1 6=0 AND i2 6=0

n
(h)
k

n
(h)
k =

∑
j

njπk|j(Θ
(h))

π
(h)
k|j = P (xkj = 1|fj) =

π
(h)
j|k × π

(h)
k

p
(h)
j

p
(h)
j =

∑

k

π
(h)
j|k × π

(h)
k

π
(h)
j|k = cki in Eqn. 3.9 for the hthiteration

π
(h)
k = Pk in Eqn. 3.10 for the hthiteration

Note that, ik,m denotes an event in Sm for the exchange φk.
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The following theorem provides an initialization of c for the recurrence relations in

Eqn. 3.12.

Theorem 3.2. Let f = (f1, f2, f3, f4)
′ be the observed frequency vector corresponding to

all possible meiotic products for parental genes M and O for two markers. The genotype

vector for f is (MM MO OM OO)’. The maximum likelihood estimator [54] of the exchange

probability c under the model represented by Eqn. 3.1 is unique and is given as follows:

1. If f1 + f4 < f2 + f3 then cmle = 1

2. If f1 + f4 ≥ f2 + f3 then cmle is given by the unique solution (in the interval [0, 1] ) of

the following equation:

f(c) = c2 − 2c + D = 0 (3.13)

where,

D =
2(f2 + f3)

N
; N =

4∑
i=1

fi

This theorem is used to obtain the starting values of cm for the EM-iterative equations in

Theorem (3.1).

3.7 The Straightforward Algorithm

3.7.1 The RFLP Data

Some of the RFLP data for chromosome-I of Neurospora crassa [46] are shown in Table 3.1.

In the data, at each locus, the symbols ”M” and ”O” denote genes of the parents which

have been encoded in the pseudocode description of the algorithms to follow as 1 and 0

respectively. A dash (-) indicates that the scoring was not done or was equivocal and thus

denotes a missing observation. Note that in the pseudocode description of the algorithms to

follow, any value other than a 0 or 1 indicates a missing value.
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Table 3.1: A Partial View of the RFLP Data
A A| B B| C C| D D
1 4| 6 7| 1 4| 5 7

AP10.1,AP10.4 M O| M O| M O| M O
AP8d.4 M -| M O| M O| M O
AP38a.1,R237 O M| M O| M O| O O

3.7.2 Treating the Missing Scores

For a particular order of genetic markers (for example, the rows of the Table 3.1) the spores

(for example, the columns of the Table 3.1) are searched to see if they contain any missing

score. The spores with missing scores are substituted in the following manner. If a missing

genotype at any particular locus is surrounded by the same type (for example, genotypes of

the pattern M - M or O - O, the missing genotype is substituted by the surrounding geno-

type. On the other hand, if the missing genotype is surrounded by different genotypes (for

example, genotypes of the pattern M - O or O - M, a genotype between O and M is chosen

with equal probability and substituted for the missing value. We do not attempt to address

the issue of missing observations in this paper beyond this simple adjustment and spores

with any other pattern of missing values (such as successive missing genotypes, though very

rare) are simply removed from the study. The pseudocode below describes the algorithm

used to achieve this. We have used Java syntax [32] throughout this paper in illustrating the

various algorithms.

Algorithm : Treating Missing Values

temp1=new int[sporeNumber];

for int index=0;index<sporeNumber;index++ do

count1+=checkMissing(getCol(data,index+1),order,missingValue);

if checkMissing(getCol(data,index+1),order,missingValue) == 1 then

temp1[index]=0; // missing Value is present

else
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temp1[index]=1;

end if

end for

{Treating for Possible Missing values }
for int index2=0;index2<sporeNumber;index2++ do

for int index1=0;index1<geneNumber-1;index1++ do

if !(data[index1][index2]==0 OR data[index1][index2]==1) AND index1>0 then

if data[index1-1][index2]==0 AND data[index1+1][index2]==0 then

data[index1][index2]=0;

end if

if data[index1-1][index2]==1 AND data[index1+1][index2]==1 then

data[index1][index2]=1;

end if

if (data[index1-1][index2]==1 AND data[index1+1][index2]==0)

OR (data[index1-1][index2]==0 AND data[index1+1][index2]==1) then

if Math.random()<0.5 then

data[index1][index2]=0;

else

data[index1][index2]=1;

end if

end if

end if

end for

end for

{Spores with Persistent Missing values are Removed:}
count2=0;

int[][] trimdData1=new int[loci][sporeNumber-count1];

for int index1=0;index1<sporeNumber;index1++ do

if temp1[index1]==1 then
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for int index2=0;index2<loci;index2++ do

trimddata1[index2][count2]=data[order[index2]-1][index1]

end for

count2++;

end if

end for

{trimdData1 contains usable genotypes for the order specified}

3.7.3 Identifying the Distinct Genotypes and Computing their Count

For l markers there are 2l possible genotypes and as many categories for a multinomial

distribution [47] if each genotype is considered a category. Obviously, the categories are

mutually exclusive and exhaustive, and the trials are independent if the spores are assumed

to have come from different diploid parents. We identify the distinct genotypes and count

their number using the following algorithm.

Algorithm : Counting Distinct Genotypes

int[][] trimdData2;

int[] freq;

searchList=new int[trimdData1[0].length];

exhaustList=new int[trimdData1[0].length];

for int index=0;index<trimdData1[0].length;index++ do

searchList[index]=1

exhaustList[index]=1

end for

compareTo=1;

count3=0;

count4=0;

while counter5==1 do

for int index1=0;index1<loci;index1++ do

for int index2=0;index2<searchList.length;index2++ do
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if searchList[index2]==1 then

if trimdData1[index1][compareTo-1]!= trimdData1[index1][index2] then

searchList[index2]=0;

end if

end if

end for

end for

for int index3=0;index3<searchList.length;index3++ do

if searchList[index3]==1 then

exhaustList[index3]=0;

count3++;

end if

searchList[index3]=exhaustList[index3];

end for

count4++; //This is counting the distinct loci patterns

if count4==1 then

trimdData2=addCol(getCol(trimdData1,compareTo));

{addCol(.) returns a column in the type of trimdData2}
freq=addElement(count3);

{addElement(.) returns count3 as a vector (in the type of freq)}
else

trimdData2=addCol(trimdData2,getCol(trimdData1,compareTo));

{trimdData2 is updated with an additional column}
freq=addElement(freq,count3);

{freq is updated with an additional element count3}
end if

count3=0;

check=0;

counter5=0;
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for check=0;check<searchList.length;check++ do

if searchList[check]==1 then

counter5=1;

break;

end if

end for

compareTo=check+1; // compareTo denotes position rather than array index

end while

{trimdData2 contains the distinct genotypes in the order of the markers }
{freq contains the frequency count of the distinct genotypes in trimdData2}

3.7.4 Initial Probability Estimates

Theorem (3.2) is used to compute the initial estimates of the exchange probabilities for each

interval in the given order of markers. These probability estimates are interval based and do

not take into account the interdependence of the markers in the order, but rather serve as

good initial estimates to implement the EM algorithm detailed in Section 3.1. The algorithm

for computing the initial estimates of c is given below.

Algorithm : Computing Initial Probability Estimates of c

for int i=0;i<loci-1;i++ do

int count=0;

double d,c;

for int index=0;index<sporeNumber;index++ do

if (trimdData1[i][index]==1 AND trimdData1[i+1][index]==0)

OR trimdData1[i][index]==0 AND trimdData1[i+1][index]==1) then

count++;

end if

end for

d=(double)2*count/obs;
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if d > 1.0 then

cProbOld[index]=1.0;

else

cProbOld[index]=1-sqrt(1-d);

end if

end for

{cProbOld holds the initial probability estimates}

3.7.5 Computing the Likelihood and Implementing the EM Algorithm

To compute the likelihood described by Eqn. 3.11, it is evident that we need to process 25l−1

exchanges. The algorithm has to be extremely efficient to handle a large number of genetic

markers to allow for several computations of the log-likelihood for different orderings of the

markers (see Section 3.12).

Given the huge computational complexity of this task, it would not be possible to store

either the matrices C or R on account of their prohibitive size. Note that we must compute

the likelihood incrementally (and hence on the fly), and the nested FOR loops in algorithm

Loop(0) must be dynamically created (as l is a variable). Hence a recursive function needs

to be designed to accomplish this task. Furthermore, to implement the EM algorithm to

iterate the value of the probability vector c described in the series of equations (3.12) one

must again process 25l−1 exchanges. Consider the following two equations from the series of

equations (3.12).

π
(h)
k|j = P (xkj = 1|fj) =

π
(h)
j|k × π

(h)
k

p
(h)
j

p
(h)
j =

∑

k

π
(h)
j|k × π

(h)
k

The computation of π
(h)
k|j requires the knowledge of p

(h)
j - whose value is based on the

computation of 25l−1 exchanges. This makes the simultaneous implementation of the com-

putation of the likelihood and running the EM algorithm ( to update the exchange probability

vector c ) a non-trivial problem. This problem has been bypassed by implementing both, the

likelihood computation and the EM algorithm in a recursive loop, which avoids computing
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the cell probabilities p
(h)
j until all the exchanges have been processed and readjusts them in

the end as they are computed during the likelihood computation. The following algorithm

illustrates this point.

Algorithm : Computing the Likelihood and Implementing the EM Algorithm

for iteration=0;iteration<iterationLimit;iteration++ do

probFOld=new double[freq.length];

cProbNew=new double[loci-1];

counter=new int[loci-2];

pCount=new double[3][loci-1][freq.length];

Loop(0);

Loop(0) creates both pCount(ie cProbNew) and probFOld at the same time

/* Reporting the likelihood */

logLikelihood=0.0;

for int index=0;index<freq.length;index++ do

logLikelihood+=freq[index]*Math.log(probFOld[index]);

end for

System.out.println(”The like lihood is ”+ logLikelihood +” at iteration ” + iteration);

/* Getting the posterior counts */

for int index1=0;index1<3;index1++ do

for int index2=0;index2<loci-1;index2++ do

for int index3=0;index3<freq.length;index3++ do

pCount[index1][index2][index3]=pCount[index1][index2][index3]/probFOld[index3]

end for

postCount[index1][index2]=Sum(pCount[index1][index2])

end for

end for

/* Getting the c probs */

for int index1=0;index1<loci-1;index1++ do

cProbNew[index1]= (postCount[1][index1]+2∗postCount[2][index1])
(2.0∗Sum(getCol(postCount,index1+1)))
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end for

if Convergence(cProbOld,cProbNew,0.0000001) ==1 then

break;

{Convergence(.) checks if the absolute difference in all dimensions is < 0.0000001}
end if

cProbOld=setEqual(cProbNew);

{setEqual(.) creates a copy of the object}
end for

Algorithm : Loop(0)

void Loop2(int index )

if index < loci-2 then

for counter[index]=0;counter[index]<24;counter[index]++ do

Loop2(index+1);

end for

end if

if index == loci-2 then

for int check1=0;check1<24;check1++ do

for int check2=0;check2<loci-2;check2++ do

k[check2]=counter[check2];

end for

k[loci-2]=check1;

r=getRMatrix(k);

if kIsWorthy(r,trimdData2)==1 then

prob=kProb(cProbOld,k);

double[] sum=new double[freq.length];

for int index1=0;index1<freq.length;index1++ do

sum[index1]=countMatch(r,getCol(trimdData2,index1+1))

*prob*freq[index1]/(4.0*totalObs)
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{countMatch(.) counts the number of tetrads (out of 4) in r that match with the

current distinct genotype}
probFOld[index1]+=countMatch(r,getCol(trimdData2,index1+1))/4.0*prob

end for

for int index2=0;index2<loci-1;index2++ do

pCount[CellSpecial(k[index2])][index2]+=sum;

{ The above addition is a vector addition}
end for

end if

end for

end if

In the pseudocode above, k denotes a particular exchange φk as defined in Eqn. 3.3.

The function getRMatrix implements Eqn. 3.6 to create the Rk matrix corresponding to the

exchange φk. The function kProb computes the marginal probability Pk due to exchange φk

as defined in Eqn. 3.10. The matrix Rk and the probability Pk in turn create matrices C and

P progressively during the course of the recursive loop to compute the marginal probability

of each observed distinct genotype as defined in Eqn. 3.8. These marginal probabilities along

with the counts for the distinct genotypes are used to compute the log-likelihood in Eqn. 3.11.

A particular exchange φk does not enter into the computation of the likelihood so long as

it does not have positive probability for at least one distinct genotype. The elimination of

such exchanges is achieved with the function kIsWorthy, which implies that at least some

amount of computation cannot be avoided for each exchange. In the recursive algorithm

that we propose in the paper, this feature is handled more efficiently where a large number

of exchanges are eliminated by performing checks on a few. In the pseudocode the vector

sum computes the conditional probabilities across all distinct genotypes. The conditional

probability is computed with the help of the function countMatch that implements Eqn. 3.7,

by counting the number of strands (out of 4) in Rk that match with the observed geno-

type. The vector freq has the observed count corresponding to the distinct genotypes(dg),



74

totalObs is the total sample size, and probFOld stores the marginal probability of each dis-

tinct genotype using Eqn. 3.8.The array pCount implements the EM algorithm via Eqn. 3.12

by re-categorizing the vector sum based on the exchange values along the chromosome. Note

that the denominator of πk|j, i.e., pj, the marginal probability due to the jth distinct geno-

type, is omitted from its πk|j computation as that requires going through all the exchanges,

and is currently being progressively computed by probFOld. To compute n
(h)
k in Eqn. 3.12

we need to sum up the inverse probabilities πk|j across the distinct genotypes but, as their

marginal probabilities are not computed yet, it is not possible to do so. We work around

this problem by adding another dimension along the number of distinct genotypes to the

structure pCount. The first dimension of pCount is of magnitude 3 to account for N0,m,N1,m

and N2,m in Eqn. 3.12, whereas the second dimension runs along m, accounting for the

(l− 1) genetic intervals. Once all the exchanges are processed and the marginal probabilities

computed, the elements in the third dimension are divided by their corresponding marginal

probabilities and then added up across the dimension. This gives us the two dimensional

structure postCount containing values of N0,m,N1,m and N2,m for all the genetic intervals.

The new value of ci for each genetic interval is then computed using Eqn. 3.12, and the pro-

cess iterates until convergence is reached. Despite being a recursive algorithm (exchanges are

generated recursively), it suffers from the computational bottleneck of having to process a

large number of exchanges i.e., 25l−1 for l loci. This problem is overcome using the proposed

recursive linking algorithm.

3.8 The Proposed Recursive Linking Algorithm

Let the entire order of genetic markers be decomposed into segments of equal width (h),

such that all the intervals are covered. Thus, for l genetic markers the number of segments

s is given by the following equation :

s =
(l − 1)

(h− 1)
(3.14)
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Figure 3.4: A visual depiction of the data structures

3.8.1 Overview of the Recursive Linking Algorithm

The first segment has an associated array called kArrayF irst that contains all the exchanges

for this segment. The array linkInfoF irst stores the last row generated by the matrix R

for each exchange of the segment. The array cArrayF irst checks for each exchange and for

each observed genotype of the first segment, which strands of the simulated tetrad (based

on the model described in Eqn. 3.1, obtained via matrix R, match with the genotype. The

matching status forms the last dimension of the array with length 4 and consists of symbols

1 and 0 indicating a match(1) or mismatch(0) respectively. For example, a matching status

1 0 0 1 for the first distinct genotype corresponding to the exchange pattern 0 0 2 3 4 in the

first segment level indicates that among the 4 tetrads in meiosis generated by the exchange

pattern 0 0 2 3 4 in the first segment, the observed genotype in question was found only

on the first and the fourth tetrad. When we use this information over a combined segment

formed using two segments, only a match at the same tetrad position will ensure a match
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for the combined segment.Note that R depends on exchange values on all intervals of the

segment and its columns are sequentially dependent on each other with a lag of one. Similarly

we have structures kArrayLast and cArrayLast for the last segment. Each exchange in the

first segment branches out to 25(h−1) exchanges in the following segment and creates 252(h−1)

combined exchanges. This continues till the last segment is accounted for. In order to move

along the segments following the model described in Eqn. 3.1, we need to know the last

row (a tetrad pattern for the last locus of the segment) generated by the matrix R for the

linked exchange of the previous segment corresponding to each combined exchange of the two

segments. The following lemma states that only certain patterns are possible at the terminal

locus of the adjoining segments. Hence we create arrays similar to kArray,linkInfo and

cArray for all the following segments between the first segment and the last segment and

call them kArrayTemp[],linkInfoTemp[] and cArrayTemp[] respectively, where the array

index denotes the segment numbers.

Lemma 3.1. Under the model described by Eqn. 3.1 at any specified locus only one of the

tetrad patterns 1 1 0 0, 0 1 1 0, 1 0 1 0, 1 0 0 1, 0 1 0 1 and 0 0 1 1 could occur.

Proof: Recall that a tetrad pattern is an arrangement of the alleles of a particular gene in

the simulated tetrad generated by a given exchange under the model described by Eqn. 3.1,

where 1 and 0 indicate the parental alleles for the particular locus. Let P1,P2,· · · ,P6 denote

the tetrad patterns 1 1 0 0, 0 1 1 0, 1 0 1 0, 1 0 0 1, 0 1 0 1 and 0 0 1 1 respectively. The

tetrad pattern at locus i for a exchange value si in the ith genetic interval Si is given by

Tsi
= fk(fj(Tsi−1

))

where ,si = {j, k} ∈ Si in Eqn. 3.2 and fk(.) and fj(.) are obtained from Eqn. 3.5. Note

that Ts0 = P1. In order to generate the patterns beginning with pattern Ts0 along with their

sample points, (Table 3.2) we can see that all the sample points with the source pattern

Ts0 = P1 correspond to the patterns within Pi(i = 1, · · · , 6). Next we enumerate tetrad

patterns beginning with source patterns Pi(i = 1, 2, · · · , 6). From Table 3.2 it is clearly seen

that tetrad patterns cannot lie outside the set Pi(i = 1, · · · , 6). Hence the lemma is proved.
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3.8.2 Counting Active Exchanges

Analogous to the function kIsWorthy in the straightforward algorithm we implement the

concept of counting active exchanges for each segment. We call an exchange of a particular

segment active if it has positive probability for at least one distinct genotype. Note that

active exchanges will be different across segments as an active exchange depends on both,

the observed genotypes (that vary across segments) and the tetrad pattern used in the

generation of the matrix R. It is important to emphasize the substantial computational

savings achieved by the elimination of the exchanges on a segment-wise basis in the proposed

algorithm compared to the straightforward algorithm which eliminates exchanges one at a

time. Elimination of a single exchange in the first segment has the effect of elimination of

25l−2 exchanges in the straightforward algorithm. In general, elimination of a single exchange

in the ith segment has the effect of eliminating 25l−i−1 exchanges in the straightforward

algorithm. The following algorithm shows how active exchanges are computed.

Algorithm : Counting Active Exchanges

int startRowIndex,endRowIndex;

activeKFirst=0;

activeKLast = new int[6];

k=new int[height-1];

counter=new int[height-2];

startRowIndex=0;

endRowIndex=startRowIndex+height-1;

data1=GetData(startRowIndex,endRowIndex,0,(distinctGenotypes-1));

{Extracting genotype data for the first segment using data trimdData2}
startRowIndex=loci-height;

endRowIndex=loci-1;

data2=GetData(startRowIndex,endRowIndex,0,(distinctGenotypes-1));

{Extracting genotype data for the last segment using data trimdData2}
ActiveKLoopFirstAndLast(0,height);
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Algorithm : ActiveKLoopFirstAndLast(0,height)

void ActiveKLoopFirstAndLast(int index,int height)

if index < height-2 then

for counter[index]=0;counter[index]<24;counter[index]++ do

ActiveKLoopLast(index+1,height);

end for

end if

if index == height-2 then

for int check1=0;check1<24;check1++ do

for int check2=0;check2<height-2;check2++ do

k[check2]=counter[check2];

end for

k[height-2]=check1;

int[][]r;

r=getRMatrix(k,firstCol);

{firstCol is 1 1 0 0}
{ FOR THE FIRST SEGMENT}
if kIsWorthy(r,data1)==1 then

activeKFirst++;

end if

{ FOR THE LAST SEGMENT}
for int i=0;i<6;i++ do

r=getRMatrix(k,tempVec[i]);

{getRMatrix(.) computes Eqn. 3.6 for the (i + 1)th tetrad pattern in Lemma 3.1}
if kIsWorthy(r,data2)==1 then

activeKLast[i]++;

end if

end for

end for
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end if

3.8.3 Computing kArray,LinkInfo and cArray for the First and the Last Seg-

ment

Figure 3.5: A visual depiction of the data structures kArray,LinkInfo and cArray

Figure 3.5 shows the data structures kArray,linkInfo and cArray as they are linked

to each other on a particular segment. This structure is true for both the first and the

last segments. As described in Section 3.8.1, the data structure linkInfo keeps track of

the tetrad pattern which is one of the 6 possibilities described in Lemma 3.1. Structure

cArray helps in computing the matching status over the combined segments, which in turn

helps to compute the conditional probability of observed genotypes given the progressive

consideration of exchanges as more and more segments are linked. This process is best

understood by the algorithm shown below.

Algorithm : Computing kArray,LinkInfo and cArray

startRowIndex=0;

endRowIndex=height-1;

kCount1=0;
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kCount = new int[6];

k=new int[height-1];

counter=new int[height-2];

kArrayFirst= new int[activeKFirst][height-1];

inkInfoFirst=new int[activeKFirst];

cArrayFirst=new int[activeKFirst][distinctGenotypes][4];

endRowIndex=height-1;

data1=GetData(startRowIndex,endRowIndex,0,(distinctGenotypes-1));

startRowIndex=loci-height;

endRowIndex=loci-1;

kArrayLast= new int[6][][];

cArrayLast= new int[6][][][];

for int i=0;i<6;i++ do

kArrayLast[i]=new int[activeKLast[i]][height-1];

cArrayLast[i]=new int[activeKLast[i]][distinctGenotypes][4];

end for

data2=GetData(startRowIndex,endRowIndex,0,(distinctGenotypes-1));

ComputeFirstAndLast(0,height);

Algorithm : ComputeFirstAndLast(0,height)

void LoopLast(int index,int height)

if index < height-2 then

for counter[index]=0;counter[index]<24;counter[index]++ do

LoopLast(index+1,height);

end for

end if

if index == height-2 then

for int check1=0;check1<24;check1++ do

for int check2=0;check2<height-2;check2++ do
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k[check2]=counter[check2];

end for

k[height-2]=check1;

int[][]r;

{ THE FOLLOWING CODE COMPUTES OBJECTS FOR THE FIRST SEGMENT}
r=getRMatrix(k,firstCol);

if kIsWorthy(r,data1)==1 then

kArrayFirst[kCount1]=setEqual(k);

linkInfoFirst[kCount1]=Map6ToInt(r[r.length-1]);

{Map6ToInt(.) converts the tetrad patterns in Lemma 3.1 to an integer between 1

and 6}
for int index1=0;index1<distinctGenotypes;index1++ do

cArrayFirst[kCount1][index1]=MatchArray(r,getCol(data1,index1+1));

{MatchArray(.) creates a matching status vector for the genotype and segment in

question }
end for

kCount1++;

end if

{ THE FOLLOWING CODE COMPUTES OBJECTS FOR THE LAST SEGMENT}
for int i=0;i<6;i++ do

r=getRMatrix(k,tempVec[i]); // r is segment-1 by 4

if kIsWorthy(r,data2)==1 then

kArrayLast[Map6ToInt(tempVec[i])][kCount[i]]=setEqual(k);

for int index1=0;index1<distinctGenotypes;index1++ do

cArrayLast[Map6ToInt(tempVec[i])][kCount[i]][index1]

=MatchArray(r,getCol(data2,index1+1));

end for

kCount[i]++;

end if
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end for

end for

end if

3.8.4 Computing tempSumIndex

Although not absolutely necessary in the implementation of the recursive linking algorithm,

we compute a variable called tempSumIndex for the last segment which helps to speed up

the EM iterations. Consider a combined exchange for all the segments. To compute Eqn. 3.7

i.e, to count the matches for the entire exchange we have to examine the matching status

of all the segments and update them. To be considered a match for the entire segment at a

particular position (out of 4 possible positions) one must have a match for all the segments

at that position. Hence when the matching status values of two segments are updated,

the resulting matching status is 1 if and only if both the segments have a value 1 at that

position and 0 otherwise. This updated matching status is termed a spore in this paper.

The distinction between a spore and matching status is that while a matching status is the

original status of the segment, the spore is the matching status obtained after updating the

matching status of all the previous segments. The following lemma restricts the number of

possible spore patterns.

Lemma 3.2. Under model described by Eqn. 3.1, for any exchange and any observed geno-

type the spore patterns 0 1 1 1, 1 0 1 1, 1 1 0 1, 1 1 1 0 and 1 1 1 1 are not possible.

Proof: Recall that a spore pattern denotes the matching status of the tetrad of a diploid

cell corresponding to an order of genetic markers. A 1 indicates a match, and 0 a mismatch

of the observed genotype to the simulated tetrad for the exchange at hand, according to

the model. Note that since each parent has a characteristic allele, it is not possible to have

matches at 3 locations. Hence spore patterns with 3 or more matches are not possible. Hence

the above lemma is proved.
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Figure 3.6: A visual depiction of structures kArray,LinkInfo and cArray of the last chro-
mosome segment after computation of the sum of elements of the updated matching status
vector

As a visual image of the interplay along different dimensions, we define a plane corre-

sponding to each exchange. The blocks along the x dimension refer to distinct genotypes

whereas its cells denote the sum of the updated matching status values for the 11 possible

matching status values from the previous segment as specified by Lemma 3.2. The structure

tempSumIndex essentially computes Eqn. 3.9 for the last segment except that the matching

status value is computed for all possible tetrad patterns described in Lemma 3.1. Note that

Lemma 3.1 and Lemma 3.2 restrict the array size and ensure efficient memory usage. The

following algorithm illustrates the computation of tempSumIndex.

Algorithm : Computing tempSumIndex

int[][] spores=getSpores();

{getSpores(.) creates all the 11 possible spores (out of 16) using Lemma 3.2}
tempSumIndex = new int[6][][][];

for int i=0;i<6;i++ do
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tempSumIndex[i]=new int[distinctGenotypes][11][activeKLast[i]];

end for

for int index0=0;index0<6;index0++ do

for int index1=0;index1<distinctGenotypes;index1++ do

for int index2=0;index2<11;index2++ do

for int index3=0;index3<activeKLast[index0];index3++ do

tempSumIndex[index0][index1][index2][index3]

=Sum(UpdateSpore(cArrayLast[index0][index3][index1],spores[index2]));

{UpdateSpore(.) updates the matching status as described earlier}
{Sum(.) adds up the elements of its argument}

end for

end for

end for

end for

3.8.5 Computing the Recursive Structures tempSum and tempPCount

The structure tempSumIndex created for the last segment is used in conjunction with certain

operations performed on each plane to compress the information for the last segment. Each

exchange has a positive probability (since inactive exchanges have been omitted) defined in

Eqn. 3.10 which is same for all the cells in the attached plane. Cells in a plane refer to the

conditional probability up to a constant(divisor 4) for all possible situations. If we multiply

cells by the exchange probability of the plane and sum across all the planes we essentially

implement Eqn. 3.8 except that we do it for various matching status configurations in the

previous segment. This allows us to implement Eqn. 3.8 for the combined segment as if

the combined segment were never decomposed into segments. Note that all these operations

are performed for a specific value of θ. We need to implement Eqn. 3.12 to update θ via

the EM algorithm. This is done using the pipes shown in Figure 3.7. A cell on a plane

has as many pipes as there are genetic intervals and each pipe has 3 associated categories
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Figure 3.7: A visual depiction of structures tempSum and tempPCount of the last chromo-
some segment

for computing N0,m,N1,m and N2,m in Eqn. 3.12. Note that as planes are added up (com-

pressed) each exchange is categorized within its pipes according to its exchange values in

the genetic intervals. This logic is similar to that underlying the implementation of pCount

in the straightforward algorithm. The structures tempSum and tempPCount together con-

stitute the recursive structure of the last segment. In the following pseudocode, structures

tempSum and tempPCount implement Eqns. 3.8 and 3.12 respectively.

Algorithm : Computing the Recursive Objects tempSum and tempPCount
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double[][][] FirstTempSum=new double[6][distinctGenotypes][11];

double[][][][][] FirstTempPCount=new double[6][distinctGenotypes][11][3][loci-1];

double[] lastCProb=getCProb(cProbOld,0,height-1)

{getCProb(.) extracts the current segment from the exchange probability cProbOld }
for int index0=0;index0<6;index0++ do

for int index1=0;index1<distinctGenotypes;index1++ do

for int index3=0;index3<11;index3++ do

for int index2=0;index2<activeKLast[index0];index2++ do

double tempDouble=kProb(lastCProb,kArrayLast[index0][index2]);

{kProb(.) computes the exchange probability for the

exchange value in kArrayLast[index0][index2]}
double condProb=tempSumIndex[index0][index1][index3][index2]/4.0;

FirstTempSum[index0][index1][index3]+=condProb*tempDouble;

for int index=loci-height;index<loci-1;index++ do

FirstTempPCount[index0][index1][index3]

[CellSpecial(kArrayLast[index0][index2]

[index-loci+height])][index]+=condProb*tempDouble;

end for

end for

end for

end for

end for

3.8.6 Traversing the Segments by Updating the Recursive Structure

As we traverse the segments, for each segment we create the associated structures kArray

(which is the same for all segments if equal width segments are assumed), linkInfo and

cArray, by first computing the active exchanges and then computing the structures in a

similar manner as described in Sections 3.8.2 and 3.8.3. Given a recursive structure for

the last segment (on the right in Figure 3.8) the goal is to generate a recursive structure
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Figure 3.8: A visual depiction of the updating of the recursive structure

for the second to last segment using the first one. This process is outlined in Figure 3.8.

This structure has the property that 25(h−1) exchanges have already been processed in a

form such that Eqn. 3.12 can be implemented and any spore generated from the previous

segment can be handled. Note that when an exchange from the previous segment(the second

to last segment) is processed(allowing for all possible spore patterns of the previous segment),

the corresponding spore is computed, its equivalent cell on the last segment is identified and

25(h−1) combined exchanges of these two segments are processed. After all the exchanges from

the previous segment are processed, the proposed algorithm generates a recursive structure

that is exactly the same as that of the last segment without adding to the storage requirement.

The recursive structure for the last but one segment now has 252(h−1) exchanges processed

within it with provision for all possible spores from its preceding segment. This very feature



88

shows how we can geometrically increase the information base (in terms of exchanges) of

the ”table look up ” procedure and avoid traversing all the exchanges one at a time. One of

the reasons this procedure works is because if we examine the combined exchanges of two

segments, we see that exchange values for the left segment change only once for every 25(h−1)

combined exchanges. This allows us to delay the probability value updates when linking the

segments. In the next few paragraphs we discuss in detail the updating procedure.

The structure on the left in Figure 3.8, called a container, is essentially a recursive struc-

ture except that has not been yet instantiated. We choose a cell on the plane corresponding

to an exchange in the container. Note that the cell that is visited depends on the matching

status of the container’s preceding segment and the genotype of the cell. The matching

status of the cell in the container is updated with the matching status of the genotype cor-

responding to the segment of the container and a cell for the updated matching status is

identified in the recursive structure (on the right in Figure 3.8), for that particular genotype.

The structure tempSum for the container is instantiated by multiplying the structure

tempSum of the recursive structure with the exchange probability of the plane in container.

Here, the term multiplication is used in a loose sense of multiplication. Note that a single

multiplication operation processes 25h−1 exchanges at a time. We have l − 1 pipes in each

cell, and for the cell under consideration, the pipes are updated in the following manner. The

pipes for the segments other than the segment of the container and following segments are

left unfilled. The pipes for the container’s segment are filled for the categories (one of the 3)

corresponding to the exchange values of each plane by multiplying the structure tempSum

of the recursive structure with the plane probability (i.e., the exchange probability for the

plane in question). For the pipes corresponding to the following segments (segments that

have been processed already), all the pipes in the identified cell are copied and multiplied

by the plane probability. This process is carried out for all the cells on all the planes of a

container. The other 5 containers corresponding to the tetrad patterns in Lemma 3.1 are

processed similarly. All of the planes for all the 6 containers are compressed as described

earlier to generate a recursive structure for the segment corresponding to the container.

Note that πk|j in Eqn. 3.12 is computed only up to a constant value. The denominator pj
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cannot be computed at the same time since that also involves traversing all exchange paths

and is handled by the structure tempSum in the pseudocode. It is important to note that

this creates no problem as at the end of the processing, the value of pj is adjusted. The same

issue arises in the implementation of the straightforward algorithm discussed earlier.The

process is best understood by examining the pseudocode below and noticing how the arrays

tempSum and tempPCount are updated in the recursive linking process.

Algorithm : Updating the Recursive Structure

double[][][] temp1TempSum = FirstTempSum;

double[][][][][] temp1TempPCount = FirstTempPCount;

double[][][] temp2TempSum=new double[6][distinctGenotypes][11];

double[][][][][] temp2TempPCount=new double[6][distinctGenotypes][11][3][loci-1];

INTERMEDIATE STEPS

int startRowIndex=0;

int endRowIndex=loci-height;//note that there is a common gene in each interval

int startPos =0;

int endPos=loci-height;

for int indexS=0;indexS<segments-2;indexS++ do

startPos=endPos-height+2;

double[] firstCProb=ChopAtoB(cProbOld,startPos,endPos);

{ChopAtoB(.) extracts elements in cProbOld from startPos to endPos}
int[][] spores = getSpores();

{Setting up the current temporary segment}
kCount = new int[6];

k=new int[height-1];

counter=new int[height-2];

activeKTemp = new int[6];

Get the relevant data

startRowIndex=endRowIndex-height+1; // endRowIndex is changed in the bottom.

data=GetData(startRowIndex,endRowIndex,0,(distinctGenotypes-1));
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Calculate active exchanges. Stored in activeKTemp.

ActiveKLoopTemp(0,height,indexS); // note this uses the object data.

{ActiveKLoopTemp(.) is similar in function to the previously

explained function ActiveKLoopF irstAndLast(.) except being for an intermediate seg-

ment}
Allocate cells

cArrayTemp = new int[6][][][];

linkInfoTemp = new int[6][];

kArrayTemp = new int[6][][];

for int i=0;i<6;i++ do

cArrayTemp[i] = new int[activeKTemp[i]][distinctGenotypes][4];

linkInfoTemp[i] = new int[activeKTemp[i]];

kArrayTemp[i] = new int[activeKTemp[i]][height-1];

end for

{Run the loop to set kArrayTemp,cArrayTemp AND linkInfoTemp}
LoopTemp(0,height,indexS); // note this uses the object data

{LoopTemp(.) is similar in function to the function ComputeF irstAndLast(.) except

being for an intermediate segment}
{Linking at work}
for int index0=0;index0<6;index0++ do

for int index1=0;index1<distinctGenotypes;index1++ do

for int index2=0;index2<11;index2++ do

for int indexK=0;indexK<activeKTemp[index0];indexK++ do

int[] k=setEqual(kArrayTemp[index0][indexK]);

double prob=kProb(firstCProb,k);

int index01=linkInfoTemp[index0][indexK];

int spike=getSporeMatch(UpdateSpore(cArrayTemp[index0][indexK][index1],

spores[index2]));
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{getSporeMatch(.) converts spores in Lemma 3.2 to one of the integers from 1 to

11}
temp2TempSum[index0][index1][index2]+=temp1TempSum[index01]

[index1][spike]*prob;

for int index=startPos-1;index<endPos;index++ do

temp2TempPCount[index0][index1][index2]

[CellSpecial(k[index-startPos+1])][index]+=

temp1TempSum[index01][index1][spike]*prob;

end for

for int i=0;i<3;i++ do

for int index=endPos;index<loci-1;index++ do

temp2TempPCount[index0][index1][index2][i][index]+=

temp1TempPCount[index01][index1][spike][i][index]*prob;

end for

end for

end for

end for

end for

end for

CHANGE TEMP1 TO TEMP2

temp1TempSum = setEqual(temp2TempSum);

temp1TempPCount = setEqual(temp2TempPCount);

SET TEMP2 TO ZEROS FOR SECURITY

temp2TempSum=new double[6][distinctGenotypes][11];

temp2TempPCount=new double[6][distinctGenotypes][11][3][loci-1];

endPos=startPos-1;

endRowIndex=startRowIndex;

end for
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3.8.7 Linking with the First Segment

Linking with the first segment is the last step of the likelihood computation process. In this

phase we do not have any previous matching status vectors and instead of tempPCount

we have the structure pCount as in the straightforward algorithm. Note that the length of

the first segment must be adjusted to account for both, even and odd number of genetic

markers. That entails a trivial modification of the algorithm, and hence we do not mention

the details. In the interest of clarity of description of the algorithm, we have assumed all the

segments to be of equal length, and hence both an even and odd number of markers cannot

be implemented without first changing the length of at least one segment; preferably that of

the first one.

Algorithm : Linking with the First Segment

double[] firstCProb=getCProb(cProbOld,1,height-1);

for int index1=0;index1<activeKFirst;index1++ do

int[] k=setEqual(kArrayFirst[index1]);

double prob=kProb(firstCProb,k);

int[] spike=new int[distinctGenotypes];

{Spike is updated spore before the last segment}
for int i=0;i<distinctGenotypes;i++ do

spike[i]=getSporeMatch(cArrayFirst[index1][i]);

end for

{probFOld and pCount are global variables}
int index0=linkInfoFirst[index1];

for int index3=0;index3<distinctGenotypes;index3++ do

probFOld[index3]+=temp1TempSum[index0][index3][spike[index3]]*prob;

for int index=0;index<height-1;index++ do

pCount[CellSpecial(k[index])][index][index3]+=

temp1TempSum[index0][index3][spike[index3]]

*prob*genotypeFreq[index3]/totalObs;
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end for

for int i=0;i<3;i++ do

for int index=height-1;index<loci-1;index++ do

pCount[i][index][index3]+=

temp1TempPCount[index0][index3][spike[index3]]

[i][index]*prob*genotypeFreq[index3]/totalObs;

end for

end for

end for

end for

3.8.8 Implementing the EM Algorithm by Recursive Linking

The following algorithm wraps around the entire EM algorithm as implemented in the pro-

posed recursive linking algorithm. This is similar in many aspects to the straightforward

algorithm except that the function SpiralUp() joins the broken segments and updates the

exchange probability (c) estimate and treats the entire process as if it were never decomposed.

The description of the algorithm is as follows:

Algorithm : Implementing the EM Algorithm by Recursive Linking

for int iteration=0;iteration<iterationLimit;iteration++ do

double[] cProbNew=new double[order.length-1];

probFOld=new double[distinctGenotypes];

pCount=new double[3][order.length-1][distinctGenotypes];

double[][] postCount=new double[3][order.length-1];

RECURSIVELY JOINING THE BROKEN GENETIC SEGMENTS AND

IMPLEMENTING THE EM ALGORITHM

SpiralUp();

{ SpiralUp() Implements the following algorithms previously outlined in the order they

appear:

Algorithm1 : Computing the Recursive Objects tempSum and tempPCount
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Algorithm2 : Updating the Recursive Structure

Algorithm3 : Joining with the First Segment }
Reporting the likelihood

logLikelihood=0.0;

for int index=0;index<distinctGenotypes;index++ do

logLikelihood+=genotypeFreq[index]*Math.log(probFOld[index]);

end for

System.out.println(”The log-likelihood is ”+logLikelihood+” at iteration ”+iteration);

GETTING THE POSTERIOR COUNTS :POSTCOUNT OF SIZE 3

for int index1=0;index1<3;index1++ do

for int index2=0;index2<order.length-1;index2++ do

for int index3=0;index3<distinctGenotypes;index3++ do

pCount[index1][index2][index3]=pCount[index1][index2][index3]/probFOld[index3];

end for

postCount[index1][index2]=Sum(pCount[index1][index2]);

end for

end for

Getting the c probability estimates

for int index1=0;index1<loci-1;index1++ do

cProbNew[index1]=

(postCount[1][index1]+2*postCount[2][index1])/(2.0*Sum(getCol(postCount,index1+1)));

end for

if Convergence(cProbOld,cProbNew,0.01) ==1 then

System.out.println(”Convergence Achieved !”);

break;

end if

cProbOld=setEqual(cProbNew);

end for
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3.9 Time Complexity Comparison of the Algorithms

In the analysis of time complexity of the genetic map reconstruction algorithms [64], the

running variable is l, the number of genetic markers. The core function of the algorithm

is to process a large number of exchanges in real time. The algorithm would be required

even if one wanted to compute just the likelihood for the initial exchange probabilities and

not use the subsequent EM iterations. Hence in both the straightforward and the proposed

algorithm we provide run time complexity analysis for the main computationally intensive

phase, namely processing all the exchanges for a single iteration.

The loop in the straightforward algorithm runs for 25(l−1) iterations. In each iteration the

computation time associated with matrix R is O(l), since matrix R has l columns and the

computation time for each column is fixed. Since the observed genotypes are not known in

advance we do a worst-case analysis for the computation of the vector sum. The worst case

occurs when there is a match between an observed genotype and any of the 4 columns of the

matrix R resulting in run time complexity of order O(l). The vector sum has dg elements

and its size does not vary with l. Hence the total execution time for computing vector sum is

O(l). The vector addition involved in computing pCount entails the processing of dg elements

and thus accounts for run time complexity of O(l). Hence the total run time complexity of

the straightforward algorithm is given by

Rst = O
(
l25(l−1)

)
(3.15)

In the recursive linking algorithm the run time for each of the s segments is O((h −
1)25(h−1))). So the total run time for the recursive algorithm is given by

Rrl = O
(
s(h− 1)25(h−1)

)
(3.16)

which is minimized for h = 3 for any odd number of loci l. Hence for h = 3 the run time

complexity for the recursive linking algorithm is of order O(l) using Eqns. 3.14 and 3.16.
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3.10 Run Time Results

We ran several jobs on a DELL PC (Model DM051 Pentinum(R) 4 CPU 3.40GHz and 4GB

of RAM) for different number of genetic markers in their natural order of precedence on

a data set from the linkage group-I of Neurospora crassa [46] for both algorithms. It was

verified that both the algorithms provide the same likelihood for the same order of markers

as they essentially solve the same problem but in different ways. The run time corresponds

to the average time taken for a single EM iteration before convergence upon multiple starts.

The resulting speedup is clearly evident from results in Table 3.3.

3.11 Additional Application of the Recursive Linking Algorithm

Besides computing the likelihood, the recursive linking algorithm can be used successfully

to compute the standard error of ci for each genetic interval Si. Without this algorithm,

computation of a standard error suffers from the same computational bottleneck as the

computation of the likelihood. In the following sections we briefly describe the theory used

to compute a standard error and show in detail how the recursive linking algorithm is used

to implement the theory. The theory in Section 3.11.1 has appeared in a separate paper [61]

but is mentioned here briefly in order to make this paper self-contained and the algorithm

more readable.

3.11.1 Computing the Standard Error of MLE

We use the SEM algorithm [44] to compute the standard errors of Θ = (cm,m = 1, · · · , l − 1).

The large sample variance-covariance matrix is given by (Eqn. 2.3.5 in [44])

V = I−1
oc + ∆V (3.17)

where,

∆V = I−1
oc D(I −D)−1

and D is the matrix corresponding to the rate of convergence of EM and Ioc is defined as

below:
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Ioc = E [Io (θ|Y ) |Yobs, θ]
∣∣∣
θ=θ∗

(3.18)

where, Io(θ|Y ) is the complete-data observed information matrix.

The EM algorithm described in Section 3.1 implicitly defines a mapping θ → M(θ) via

Eqn. 3.12 from the parameter space of θ,(0, 1]l−1, to itself such that

θ(t+1) = M(θ(t)), for t = 0, 1, · · ·

Since M(θ) is continuous and θ(t) converges to the MLE θ∗(using EM algorithm), then

θ∗ must satisfy

θ∗ = M(θ∗)

Therefore in the neighborhood of θ∗, using a Taylor series expansion, we get

θ(t+1) − θ∗ ≈ (θ(t) − θ∗)D

where,

D =

(
∂Mj(θ)

∂θi

) ∣∣∣
θ=θ∗

is the (l−1)× (l−1) Jacobian matrix for M(θ) = (M1(θ), · · · , Ml−1(θ)) evaluated at θ = θ∗.

3.11.2 Computation of D

Let dij be the (i, j)th element of D and define θ(t)(i) to be

θ(t)(i) =
(
θ∗1, · · · , θ

(t)
i , θ∗i+1, · · · , θ∗l−1

)
(3.19)

that is, only the ith component in θ(t)(i) is active in the sense that the other components are

fixed at their MLE values. By the definition of dij, we have

dij =
∂Mj(θ

∗)
∂θi

= lim
θi→θ∗i

Mj

(
θ∗1, · · · , θ∗i−1, θi, θ

∗
i+1, · · · , θ∗l−1

)−Mj (θ∗)

θi − θ∗i

= lim
θi→θ∗i

Mj

(
θ(t)(i)

)− θ∗j
θi − θ∗i

= lim
t→∞

d
(t)
ij
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The following steps are performed to compute the dij‘s.

INPUT: θ∗ and θ(t).

Step 1. Run the usual E and M steps to obtain θ(t+1)(i).

Repeat steps 2-3 for i = 1, · · · , l − 1.

Step 2. Calculate θ(t)(i) from Eqn. 3.19, and treating it as the current estimate of θ, run

an additional iteration of EM to obtain θ (t+1)(i).

Step 3. Obtain the ratio

dij =
θ

(t+1)
j (i)− θ∗j

θi − θ∗i
, for j = 1, · · · , l − 1

OUTPUT: θ(t+1) and {d(t)
ij , i, j = 1, · · · , l − 1}.

We obtain dijwhen the sequence d
(t∗)
ij , d

(t∗+1)
ij , · · · is stable for some t∗. This process may

result in using different values of t∗ for different dij elements.

3.11.3 Evaluation of I−1
oc .

The complete-data information for the (i, j)th element (i = 1, · · · , l−1 and j = 1, · · · , l−1)

is given by:

Io(i, j) = −∂2f c(x, θ)

∂θi∂θj

= −
∑

k

xk

πk
∂2

∂θi∂θj
(πk)− ∂

∂θi
(πk)

∂
∂θj

(πk)

π2
k

The complete-data information for the (i, j)th element (i = 1, · · · , l−1 and j = 1, · · · , l−
1) is given by:

Io(i, j) = −∂2f c(x, θ)

∂θi∂θj

= −
∑

k

xk

πk
∂2

∂θi∂θj
(πk)− ∂

∂θi
(πk)

∂
∂θj

(πk)

π2
k
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Using Eqn. 3.18,

Ioc = E [Io (θ|Y ) |Yobs, θ]
∣∣∣
θ=θ∗

=
∑

k

[
−xk

πk
∂2

∂θi∂θj
(πk)− ∂

∂θi
(πk)

∂
∂θj

(πk)

π2
k

[
E

(
xk

∣∣∣n, θ∗
)]]

=
∑

k

[
−xk

πk
∂2

∂θi∂θj
(πk)− ∂

∂θi
(πk)

∂
∂θj

(πk)

π2
k

[
N∑

j′=1

n′jπk|j′(θ
∗)

]]

=
N∑

j′=1

nj′

pj′

[∑

k

[
πj′|k
πk

∂

∂θi

(πk)
∂

∂θj

(πk)− πj′|k
∂2

∂θi∂θj

(πk)

]]
[using Eqn. 3.12](3.20)

Note that this is the only part in the computation of standard error that requires pro-

cessing an exponential number of exchanges and the proposed recursive linking algorithm

can be successfully used to address the computational bottleneck.

3.11.4 Algorithm to Compute the Standard Error of MLE

In the following algorithm active exchanges are computed and the cells allocated in a similar

manner as in the likelihood computation. Here also we start with the last segment with all

suitable indices as before and attempt to compute Eqn. 3.20. The structure probDeri com-

putes the double partial derivatives while probSingle and probSingle2 compute the univariate

derivatives in Eqn. 3.20. The structure FirstTempInfo accounts for the conditional proba-

bility term along with the double derivative whereas the structure FirstTempInfo2 accounts

for the conditional probability term along with the product of the univariate derivatives.

Notice that the structures FirstTempInfo and FirstTempInfo2 will be recursively created

for all the segments as they progressively help to move across all the exchanges as in the

likelihood computation process.

Compute Active Exchanges and do Cell Allocations for all the Segments

{ For each segment the structures kArray,linkInfo and cArray are realized using sim-

ilar algorithms as in Section 3.8.2 and Section 3.8.3. The structures kArray,linkInfo

and cArray for the intermediate segments are arrays kArrayTemp[],linkInfoTemp[] and

cArrayTemp[], where the array index indicates a segment as earlier mentioned in the

algorithm in Section 3.8.6.
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}
Last Part First

double[] lastCProb=ChopAtoB(cProbFinal,loci-height+1,loci-1);

double probDeri=0.0,probSingle=0.0,probSingle2=0.0;

double[][][][][] FirstTempInfo=new double[6][11][height-1][height-1][distinctGenotypes];

double[][][][][] FirstTempInfo2=new double[6][11][height-1][height-1][distinctGenotypes];

double[][][][] FirstTempSingleD=new double[6][11][height-1][distinctGenotypes];

double[][][] FirstTempSum=new double[6][distinctGenotypes][11];

for int index1=0;index1<6;index1++ do

for int index6=0;index6<activeKLast[index1];index6++ do

double prob=kProb(lastCProb,kArrayLast[index1][index6]);

for int index2=0;index2<11;index2++ do

for int index5=0;index5<distinctGenotypes;index5++ do

condProb=Sum(UpdateSpore(cArrayLast[index1][index6][index5],spores[index2]))/4.0;

for int index3=loci-height;index3<loci-1;index3++ do

probSingle=kProbSingle(lastCProb,kArrayLast[index1][index6],index3-loci+height+1);

for int index4=loci-height;index4<loci-1;index4++ do

if index3! = index4 then

probDeri=kProbDeriOff(lastCProb,kArrayLast[index1][index6],

index3-loci+height+1,index4-loci+height+1);

else

probDeri=kProbDeriDiag(lastCProb,kArrayLast[index1][index6],

index3-loci+height+1);

end if

FirstTempInfo[index1][index2][index3-loci+height]

[index4-loci+height][index5]+=condProb*probDeri;

probSingle2=kProbSingle(lastCProb,kArrayLast[index1]

[index6],index4-loci+height+1);

FirstTempInfo2[index1][index2][index3-loci+height]
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[index4-loci+height][index5]+=condProb/prob*probSingle*probSingle2;

end for

FirstTempSingleD[index1][index2][index3-loci+height]

[index5]+=condProb*probSingle;

end for

FirstTempSum[index1][index5][index2]+=condProb*prob;

end for

end for

end for

end for

Let us consider how the information matrix is configured when the second to last segment

is processed. Note that the dimension of the information matrix (which is inherently a square

matrix) has now increased from height − 1 to 2(height − 1) to account for intervals of 2

segments. We have 4 different cases for rows and columns arising from these 2 segments. For

each of these cases, the double derivatives and single derivatives are processed individually.

For the first case, the rows and columns are both obtained from the second to last segment;

for the second case, the rows are obtained from the second to last segment and the columns

from the last segment and so on, until for the fourth case, both the rows and columns

are obtained from the last segment. Notice in the pseudocode below how double derivative

computation is necessary only for the first case and for the remaining cases everything can be

computed from the previous segment except for computation of the single derivatives. The

probability adjustments are made in a similar manner as during the likelihood computation

process.

Recursive Loop across all the Segments

startRowIndex=0;

endRowIndex=loci-height;//note that there is a common gene in each interval

int startPos =0;

int endPos=loci-height;
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double[][][][][]temp1Info=FirstTempInfo;

double[][][][][]temp1Info2=FirstTempInfo2;

double[][][][]temp1SingleD=FirstTempSingleD;

double[][][]temp1Sum=FirstTempSum;

for int indexS=0;indexS<segments-2;indexS++ do

for int index1=0;index1<6;index1++ do

for int indexK=0;indexK<activeKTemp[index1];indexK++ do

double prob=kProb(tempCProb,kArrayTemp[index1][indexK]);

for int index2=0;index2<11;index2++ do

for int index5=0;index5<distinctGenotypes;index5++ do

int spike=getSporeMatch(UpdateSpore(cArrayTemp[index1][indexK]

[index5],spores[index2]));

int index01=linkInfoTemp[index1][indexK];

temp2Sum[index1][index5][index2]+=temp1Sum[index01][index5][spike]*prob;

for int index3=startPos-1;index3<loci-1;index3++ do

for int index4=startPos-1;index4<loci-1;index4++ do

if (index3>=startPos-1 AND index3<=endPos-1)

AND (index4>=startPos-1 AND index4<=endPos-1) then

if index3 != index4 then

probDeri=kProbDeriOff(tempCProb,kArrayTemp[index1]

[indexK],index3-startPos+1+1,index4-startPos+1+1);

else

probDeri=kProbDeriDiag(tempCProb,kArrayTemp[index1]

[indexK],index3-startPos+1+1);

end if

temp2Info[index1][index2][index3-startPos+1]

[index4-startPos+1][index5]+=temp1Sum[index01]

[index5][spike]*probDeri;

probSingle=kProbSingle(tempCProb,kArrayTemp[index1]
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[indexK],index3-startPos+1+1);

probSingle2=kProbSingle(tempCProb,kArrayTemp[index1]

[indexK],index4-startPos+1+1);

temp2Info2[index1][index2][index3-startPos+1]

[index4-startPos+1][index5]+=temp1Sum[index01]

[index5][spike]*probSingle*probSingle2/prob;

else

if (index3>=startPos-1 AND index3<=endPos-1)

AND (index4>=endPos AND index4<=loci-2) then

probSingle=kProbSingle(tempCProb,kArrayTemp[index1]

[indexK],index3-startPos+1+1);

temp2Info[index1][index2][index3-startPos+1]

[index4-startPos+1][index5]+=temp1SingleD[index01]

[spike][index4-endPos][index5]*probSingle;

temp2Info2[index1][index2][index3-startPos+1]

[index4-startPos+1][index5]+=temp1SingleD[index01]

[spike][index4-endPos][index5]*probSingle;

else

if (index3>=endPos AND index3<=loci-2)

AND (index4>=startPos-1 AND index3<=endPos-1) then

probSingle=kProbSingle(tempCProb,kArrayTemp

[index1][indexK],index4-startPos+1+1);

temp2Info[index1][index2][index3-startPos+1]

[index4-startPos+1][index5]+=temp1SingleD

[index01][spike][index3-endPos][index5]*probSingle;

temp2Info2[index1][index2][index3-startPos+1]

[index4-startPos+1][index5]+=temp1SingleD

[index01][spike][index3-endPos][index5]*probSingle;

else



104

if (index3>=endPos AND index3<=loci-2)

AND (index4>=endPos AND index4<=loci-2) then

temp2Info[index1][index2][index3-startPos+1]

[index4-startPos+1][index5]+=temp1Info[index01]

[spike][index3-endPos][index4-endPos]

[index5]*prob;

temp2Info2[index1][index2][index3-startPos+1]

[index4-startPos+1][index5]+=temp1Info2

[index01][spike][index3-endPos][index4-endPos]

[index5]*prob;

end if

end if

end if

end if

if (index3>=startPos-1 AND index3<=endPos-1) then

probSingle=kProbSingle(tempCProb,kArrayTemp[index1]

[indexK],index3-startPos+1+1);

temp2SingleD[index1][index2][index3-startPos+1][index5]+=

temp1Sum[index01][index5][spike]*probSingle;

else

temp2SingleD[index1][index2][index3-startPos+1][index5]+=

temp1SingleD[index01][spike][index3-endPos][index5]*prob;

end if

end for

end for

end for

end for

end for

end for
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Change temp1 to temp2

temp1Info = setEqual(temp2Info);

temp1Info2 = setEqual(temp2Info2);

temp1SingleD = setEqual(temp2SingleD);

temp1Sum=setEqual(temp2Sum);

endPos=startPos-1;

endRowIndex=startRowIndex;

end for

Computation of double and single derivatives for all the segments completes with joining

with the first segment as earlier.

Linking with the First Segment

double[] firstCProb=ChopAtoB(cProbFinal,1,height-1);

double[][][] tempInfo=new double[loci-1][loci-1][distinctGenotypes];

double[][][] tempInfo2=new double[loci-1][loci-1][distinctGenotypes];

double[][] tempSingleD=new double[loci-1][distinctGenotypes];

for int index1=0;index1<activeKFirst;index1++ do

int[] spike=new int[distinctGenotypes];

for int i=0;i<distinctGenotypes;i++ do

spike[i]=getSporeMatch(cArrayFirst[index1][i]);

end for

prob=kProb(firstCProb,kArrayFirst[index1]);

index01=linkInfoFirst[index1];

for int index2=0;index2<distinctGenotypes;index2++ do

probFOld1[index2]+=temp1Sum[index01][index2][spike[index2]]*prob;

for int index3=0;index3<loci-1;index3++ do

for int index4=0;index4<loci-1;index4++ do

if (index3>=0 AND index3<=height-2)

AND (index4>=0 AND index4<=height-2) then
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if index3 != index4 then

probDeri=kProbDeriOff(firstCProb,kArrayFirst[index1],index3+1,index4+1);

else

probDeri=kProbDeriDiag(firstCProb,kArrayFirst[index1],index3+1);

end if

tempInfo[index3][index4][index2]+=temp1Sum[index01][index2]

[spike[index2]]*probDeri;

probSingle=kProbSingle(firstCProb,kArrayFirst[index1],index3+1);

probSingle2=kProbSingle(firstCProb,kArrayFirst[index1],index4+1);

tempInfo2[index3][index4][index2]+=temp1Sum[index01][index2]

[spike[index2]]*probSingle*probSingle2/prob;

else

if (index3>=0 AND index3<=height-2)

AND (index4>=height-1 AND index4<=loci-2) then

probSingle=kProbSingle(firstCProb,kArrayFirst[index1],index3+1);

tempInfo[index3][index4][index2]+=temp1SingleD[index01][spike[index2]]

[index4-endPos][index2]*probSingle;

tempInfo2[index3][index4][index2]+=temp1SingleD[index01]

[spike[index2]][index4-endPos][index2]*probSingle;

else

if (index3>=height-1 AND index3<=loci-2)

AND(index4>=0 AND index4<=height-2) then

probSingle=kProbSingle(firstCProb,kArrayFirst[index1],index4+1);

tempInfo[index3][index4][index2]+=temp1SingleD[index01]

[spike[index2]][index3-endPos][index2]*probSingle;

tempInfo2[index3][index4][index2]+=temp1SingleD[index01]

[spike[index2]][index3-endPos][index2]*probSingle;

else

if (index3>=height-1 AND index3<=loci-2)
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AND (index4>=height-1 AND index4<=loci-2) then

tempInfo[index3][index4][index2]+=temp1Info[index01]

[spike[index2]][index3-endPos][index4-endPos][index2]*prob;

tempInfo2[index3][index4][index2]+=temp1Info2[index01]

[spike[index2]][index3-endPos][index4-endPos][index2]*prob;

end if

end if

end if

end if

end for

if index3>=0 AND index3<=height-2 then

probSingle=kProbSingle(firstCProb,kArrayFirst[index1],index3+1);

tempSingleD[index3][index2]+=temp1Sum[index01][index2]

[spike[index2]]*probSingle;

else

tempSingleD[index3][index2]+=temp1SingleD[index01]

[spike[index2]][index3-endPos][index2]*prob;

end if

end for

end for

end for

We compute the information matrix using Eqn. 3.20. Computing the variance-covariance

matrix using Eqn. 3.17is straightforward. We do not show the computation of matrix

D in Eqn. 3.17 represented by dm2mat in the pseudocode since the implementation is

straightforward.

Getting the Expected Information Matrix

double[][] info=new double[loci-1][loci-1];

double[][] info1=new double[loci-1][loci-1];

double sumCov=0.0;
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for int index1=0;index1<loci-1;index1++ do

for int index2=0;index2<loci-1;index2++ do

sumCov=0.0;

for int index3=0;index3<distinctGenotypes;index3++ do

sumCov+=(tempInfo2[index1][index2][index3]-tempInfo[index1][index2][index3])

*genotypeFreq[index3]/probFOld1[index3];

end for

info[index1][index2]=sumCov;

end for

end for

Matrix inverse=new Matrix(info).inverse();

Matrix dm2Mat =new Matrix(dm2);

Matrix delV=inverse.times(dm2Mat).times((Matrix.identity(loci-1,loci-1)

.minus(dm2Mat)).inverse());

Matrix varCov=inverse.plus(delV);

for int index=0;index<varCov.getRowDimension();index++ do

SE[index]=Math.sqrt(varCov.get(index,index));

end for

3.12 Genetic Mapping from the RFLP data of NEUROSPORA CRASSA

We use our algorithm to create a genetic map for the entire genome of Neurospora crassa. The

chromosomes involve large number of markers (around 60). The computation of the likelihood

along with the estimates of ci and their standard errors would have been impractical with any

straightforward algorithm, however it was made possible with the proposed algorithm. We

used the widely known stochastic optimization technique simulated annealing to determine

the best genetic map by performing combinatorial optimization over the space of possible

marker orders.
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3.12.1 The Use of Simulated Annealing for Searching the Best Order.

Several combinatorial optimization problems can be tackled using simulated annealing (SA)

as a stochastic optimization technique [35]. We use SA to determine the best order of genetic

markers by sampling stochastically from the space of all possible gene orders. Simulated

annealing has been used previously [17], to reconstruct chromosomes based on binary scoring

of DNA fragments and a Hamming distance-based objective function. In our case, the objec-

tive function is the likelihood of a particular order of genes on a genetic map obtained upon

convergence of the EM algorithm ( [45], [67]). Thus, in our case a single computation of

the objective function for a single order of markers is quite expensive. The SA provides a

stochastic sampling technique to search for a good order as follows:

1. Choose a random order of probes, Π, and calculate f(Π).

2. Choose a random segment within the ordering Π.

3. Perform a segment reversal and call the new ordering Π′.

4. Compute f(Π′).

5. If f(Π′) is less than f(Π), then retain the new order. However, if f(Π′) is larger than

f(Π), then generate a random number between 0 and 1. If this random number is less

than E(−(f(Π′) − f(Π))/T , then retain the new order. Here T is the “temperature”

of the annealing schedule.

6. Proceed to anneal the temperature in multiplicative steps, i.e., decrease T by a factor

F at each SA iteration. Hold each value of T constant until D re-orderings have been

attempted or S successful re-orderings have resulted, whichever comes first. If the

number of successes equals zero for a given step, the process is complete; otherwise go

to step 2.

Simulated annealing (SA) has been used to create a genetic map of chromosome-II in

Neurospora crassa( [34], [46]). For each order in SA, the likelihood is computed, and the

order with the maximum value of the likelihood is selected as the desired map. The values
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of the parameters used in the search of the best order are T = 10.0,F = 0.25,D = 500 and

S = 50. For the best order, cis, their standard errors and their corresponding recombination

fractions (see Section 3.6.1) for each genetic interval are computed. These statistics are

reported for the best order in Table 3.4 (displayed at the end of the paper). The best order

for linkage group-II turned out to be different from the published order [46] and has log-

likelihood value of −63.9341. There are at least two reasons for the discrepancy. The simplest

is that the maps were constructed by hand, so there is only a limited number of possible

solutions considered. Metzenberg(personal communication) has also indicated that he held

additional data that helped him decide on the map, data which the current computation did

not have access to. The maps and their statistics for the remaining six chromosomes of N.

crassa can be found at http://gene.genetics.uga.edu.

3.13 Conclusions

A multi-locus genetic likelihood was computed based on a mathematical model of the chro-

matid exchange in meiosis that accounts for any type of bivalent configuration in a genetic

interval in any specified order of genetic markers. We proposed an algorithm that can reduce

the time complexity of computations, for example, computing the likelihood, finding esti-

mates of parameters (ci) and their standard errors from exponential to linear time in the

number of genetic markers. To illustrate the advantages of the proposed algorithm, we com-

pared it alongside a straightforward algorithm presenting both, theoretical worst-case anal-

ysis and runtime results. Finally as an application, we reconstructed a genetic map of the

entire genome of the model fungal system Neurospora crassa which otherwise would have

been impractical to achieve, considering the number of markers involved.
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Table 3.2: Possible Tetrad Patterns
Source Pattern Generated Patterns Sample Points

P1 P1 (0,0),(1,1),(2,2),(3,3),(4,4)
P2 (0,1),(1,0),(1,2),(1,4)
P3 (0,2),(2,0),(2,1),(2,3)
P4 (0,3),(3,0),(3,2),(3,4)
P5 (0,4),(4,0),(4,1),(4,3)
P6 (1,3),(3,1),(2,4),(4,2)

P2 P1 (0,1),(1,0),(2,1),(4,1)
P2 (0,0),(0,2),(2,0),(0,4),(4,0),(1,1),(2,2),(3,3),(4,4),(4,2),(2,4)
P3 (1,2),(3,4)
P4 (1,3),(3,1)
P5 (1,4),(3,2)
P6 (0,3),(3,0),(2,3),(4,3)

P3 P1 (0,2),(2,0),(1,2),(3,2)
P2 (2,1),(2,3),(4,3)
P3 (0,0),(0,1),(1,0),(0,3),(3,0),(1,1),(2,2),(3,3),(4,4),(1,3),(3,1)
P4 (4,1)
P5 (4,2),(2,4)
P6 (0,4),(4,0),(1,4),(3,4)

P4 P1 (0,3),(3,0),(2,3),(4,3)
P2 (1,3),(3,1)
P3 (1,4),(3,2)
P4 (0,0),(0,2),(2,0),(0,4),(4,0),(1,1),(2,2),(3,3),(4,4),(4,2),(2,4)
P5 (1,2),(3,4)
P6 (0,1),(1,0),(2,1),(4,1)

P5 P1 (0,4),(4,0),(1,4),(3,4)
P2 (4,1)
P3 (4,2),(2,4)
P4 (2,1),(2,3),(4,3)
P5 (0,0),(0,1),(1,0),(0,3),(3,0),(1,1),(2,2),(3,3),(4,4),(1,3),(3,1)
P6 (0,2),(2,0),(1,2),(3,2)

P6 P1 (1,3),(3,1),(4,2),(2,4)
P2 (0,3),(3,0),(3,2),(3,4)
P3 (0,4),(4,0),(4,1),(4,3)
P4 (0,1),(1,0),(1,2),(1,4)
P5 (0,2),(2,0),(2,3),(2,1)
P6 (0,0),(1,1),(2,2),(3,3),(4,4)
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Table 3.3: Run time Comparison of Straight forward and Recursive Algorithm
Loci(l) Runtime(secs)

Straight forward algorithm Recursive Linking Algorithm
5 2.49 0.073
7 1336.45 0.298
9 > 43200.0 0.66
21 ∞ 5.61
41 ∞ 8.93
61 ∞ 13.03

Table 3.4: Best Genetic Map with Estimates of Parameters (c), its Standard Error(σc) and
Recombination Fraction (r) on Linkage Group-II of N.crassa

Genes ca σc r Genesb c σc r
Tel IIL 0 0.0022 0 Ncr-5 0.1588 0.2164 0.1462
hsps-1 0.2127 0.2019 0.1901 preg, cit-1 0.1524 0.2056 0.1408
00008 0.0002 0.0078 0.0002 12:11C, pma-1 0.3229 0.308 0.2708

pSK2-1A 0.1263 0.1709 0.1183 nuo78 0.0012 0.0248 0.0012
3:9A 0.1409 0.1894 0.131 21:D3 0.0012 0.0248 0.0012

Fsr-52 0.0007 0.0182 0.0007 X18:9A 0.0012 0.0248 0.0012
AP32b.1,R31.1, vph-1 0.1555 0.2268 0.1434 11:F3 0.1614 0.2196 0.1484

Fsr-32 0.0011 0.0238 0.0011 ccg-7 0.0012 0.0241 0.0012
Cen II, arg-5 0.0011 0.0238 0.0011 vma-2 0.0012 0.0241 0.0012

25:1D 0.0011 0.0238 0.0011 DB0001 0.0012 0.0241 0.0012
G8:11H 0.0011 0.0238 0.0011 Fsr-3 0.1588 0.2164 0.1462
atp-2 0.0011 0.0238 0.0011 X24:A11 0.1588 0.2164 0.1462

cya-4, Fsr-55 0.0011 0.0238 0.0011 eas=ccg-2=bli-7 0.1588 0.2164 0.1462
AP5i.1 0.0011 0.0238 0.0011 bli-4 0.1555 0.2119 0.1434
AP5.1 0.0011 0.0238 0.0011 Fsr-34 0.3153 0.3057 0.2656
AP3.2 0.154 0.196 0.1421 Fsr-17 0.001 0.0223 0.001
AP8u.4 0.154 0.196 0.1421 AP13.4 , 8:4GL 0.001 0.0223 0.001
H3H4 0.0011 0.0237 0.0011 AP32c.2, R32.2 0.001 0.0223 0.001
Ncr-2 0.0011 0.0237 0.0011 leu-6 0.1557 0.2129 0.1436

Tel IIR

ac, σc and r correspond to the genetic interval formed by the genes at the current row and the
following row

bcontinuation of the first 4 columns of Table 3.4
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LIKELIHOOD-BASED INTEGRATED GENETIC AND PHYSICAL MAP OF

NEUROSPORA CRASSA 1

1Tewari,S., Bhandarkar, James Griffith, S.M. and Arnold, J. 2008
Journal of The American Statistical Association.
To be submitted.
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4.1 Abstract

We model the two processes of clone/probe hybridizations to create a physical map and the

chromatid exchange process to create a genetic map from a single cross. From this modeling

framework a joint likelihood function is developed in which distances on each map and the

order of markers on each map appear as parameters. The method of maximum likelihood

is implemented to generate an integrated physical and genetic map at 23 kilobase pairs

resolution for the model fungal system, Neurospora crassa. The integrated map permits

the determination empirically of the mapping function relating recombination distance on

the genetic map to physical distances in bp on the physical map. Some limitations of this

mapping function are discussed in the light of the ”centromere effect” on the physical size of

a map unit on the genetic map and local variation in the physical size of a map unit over an

order of magntude in N. crassa. In addition, the integrated maps permitted us to examine

the non random distribution of repeated DNA sequences along its length beyond those

noted for the ribosomal rDNA cluster, telomeres, and centromeres. The integrated map was

compared with the genomic sequence of N. crassa, and there was substantial differences in

their alignment above 9 Mb for linkage groups I and V.

KeyWords : recombination, genetic map, physical map, whole genome-shotgun sequencing,

simulated annealing, MLE.

4.2 Introduction

Integration of genetic and physical maps has become a pressing problem in genomics with

the steady accumulation of mapping information on a variety of genomes [7]. Genetic maps

tend to have information on what genes do, but physical maps allow researchers access to

the DNA sequence on genes of interest. The former are based on how genes are transmitted

from generation to generation, whereas the latter require isolating and ordering distinguish-

able DNA fragments. Very different methodologies and experimental protocols are used to

generate genetic and physical maps. As a result, the genetic and physical maps generated are
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not necessarily consistent. Consequently, special tools are needed to resolve rationally the

discrepancies between genetic and physical maps [29] and integrate coherently their infor-

mation content. In prior work we have developed maximum likelihood methods for building

genetic maps ( [63], [61]) based on earlier work [39]. We have developed maximum likelihood

methods for building physical maps [8]. We have also investigated various combinatorial and

continuous optimization algorithms and their parallel implementations to compute efficiently

the maximum likelihood estimator of a physical map ( [5], [6], [30]). An open methodological

problem is developing maximum likelihood methods for building integrated maps of whole

genomes.

Examples of physical maps vary. A physical map is defined to be a partial ordering

of distinguishable DNA fragments [7]. The oldest example is the cytological map of the

fruit fly, Drosophila melanogaster. A more familiar example is the DNA sequence of an

entire genome. Recently there has been a shift in strategy to obtaining a genome’s entire

sequence [65] to what is termed the whole genome shotgun approach [4]. In this approach the

entire genome is subdivided into many small fragments, and the resulting small fragments are

then sequenced and assembled. The utility of the whole genome shotgun approach, however,

is still in question [27]. The whole genome shotgun approach was employed on the model

fungal system, Neurospora crassa, in which the 42.9 megabase (Mb) genome was sequenced

to an unusual depth of > 20 genome equivalents (> 20×) [24]. The question arises whether or

not the resulting genomic sequence is consistent with the available genetic and physical maps

(based on cosmid libraries [34]) obtained independently. The cosmid library-based physical

map and genetic map provide an opportunity to evaluate the utility of the whole genome

shotgun approach.

We report here for the first time a hybridization-based physical map integrated with a

published genetic map for the bread mold, N. crassa. This integrated map has a resolution

of 23 kilobases [71]. The integrated map allows an examination of whether or not repeats

in the genome are organized as they are in a related fungus, Aspergillus nidulans [52]. Some

organisms as simple as the model fungal system, A. nidulans, have a repeat organization

similar to larger eukaryotic genomes. The question arises whether or not its relative, N.



117

crassa, has such an organization. N. crassa differs from A. nidulans in that it is intolerant

to repeats and appears to have a mechanism for removing repeats from its genome [58].

We address three questions in this work. First, we address the methodological problem

of how to integrate genetic and physical maps using the method of maximum likelihood.

Second, we examine the efficacy of the whole genome shotgun approach in N. crassa against

a high-resolution physical map integrated with a genetic map. The physical map is reported

for the first time in this work. Lastly, we examine directly how DNA repeats are organized

in a genome, in which there is experimental evidence for a process removing these repeats.

4.3 Methods and Materials

4.3.1 Probe Sampling Design

To avoid problems with repeated sequences, all cosmid probes were selected from among

cosmids hybridizing to one and only one chromosome [34]. Probes with a unique assignment

to a chromosome were then used to anchor the physical map to the correct chromosome and

helped to achieve a more accurate reconstruction of the physical map. Cosmid probes were

selected by a sampling design called sampling without replacement [71]. In this design each

new cosmid was selected as a probe which hybridized to no previous cosmid probe. The effect

of this design was to tile the chromosome with probes with no overlap between the probes. An

alternate design is sampling with replacement in which cosmid probes are chosen randomly.

As can be seen from Fig. 4.1, sampling without replacement progresses considerably faster

than sampling with replacement. Progress is measured by the number of contiguous blocks

of clones or contigs identified as probes are added into the physical mapping experiment.

The size and hence time in mapping is measured by the number of probings used up to a

particular time in the experiment. In the current case sampling with replacement would have

taken at least twice as long (twice as many probings) to finish the physical map. The actual

progress tracks the expectation under sampling without replacement, as it should, with a

small departure towards the end.
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Figure 4.1: Progress Curve

4.3.2 Physical Mapping by Clone/Probe Hybridization

Each clone was assigned a binary call number (1 indicating a hbridization and 0, no hybridiza-

tion) by hybridizing all clones in a chromosome-specific library [34] with a panel of more than

1000 probes as shown in Fig. 4.1. The chromosome-specific library has two parts, clones with

N. crassa DNA inserted into the cosmid vector, pMOcosX [49], and clones with N. crassa

DNA inserted into the cosmid vector, pLorist6Xh [34]. The average insert size was 34 kb +/-

0.7 kb [34]. Two very different cosmid cloning vectors were utilized to ensure more represen-

tative sampling of the N. crassa genome. Clones with inserts in pMOcosX are referred to as

the pMOcosX library; clones with inserts in pLorist6Xh are referred to as the pLorist6Xh

library. Clone names from these two respective libraries begin with an X or H. This letter



119

designation is followed by a number indexing a microtitre plate, then by a letter indexing

the row of a particular plate, and lastly by a number indexing the column of a particular

plate. For example, H123E02 is a clone in the 123rd plate of the pLorist6Xh library in row

E and column 2. Each plate has 96 clones. Libraries are available from the Fungal Genetics

Stock Center at http://www.fgsc.net.

4.3.3 Arraying the Chromosome-Specific Libraries

The chromosome-specific cosmid libraries [34] were first double-stamped onto nylon mem-

branes (Hybond-XL and Hybond-N+ (Amersham)) in a 6 × 6 array from 36, 96-well

plates per membrane with a BioGrid high density stamping robot (BioRobotics). Inocula on

membranes were allowed to grow overnight at 37oC on Luria Broth agar plates containing

Kanamycin (50 µg/ml) for the pLorist6Xh library or containing ampicillin (50 µg/ml) for the

pMOcosX library. Membranes were treated to lyse colonies and to enrich for cosmid DNA:

(1) lysing solution: 10% SDS for 5 min; (2) denaturing solution: 1.5 M NaCl, 0.5 M NaOH for

5 min; (3) neutralizing solution: 0.5 M Tris-HCl, 1.5 M NaCl, pH 7.2, for 5 min; (4) washing

solution: 0.3 M NaCl, 0.3 M Na citrate, pH 7.0 (2× SSC), for 5 min. The treated membranes

were then air-dried for 30 min, and DNA, cross-linked to the nylon membranes by UV radi-

ation ( 3 min) with a UV cross-linker (Stratagene) or alternatively, by baking at 80oC for 2

hours. The result is that all of the DNAs of the cosmids in the chromosome-specific library

are arrayed on nylon membranes for hybridization with the radiolabeled DNAs of selected

cosmid probes.

4.3.4 Clone/Probe Hybridization

A set of 6 membranes representing the entire chromosome-specific library in duplicate was

prehybridized at 65oC for 2 hours with 10-12 ml of modified hybridization buffer con-

taining casein hydrolysate (instead of bovine serum albumin) to reduce background (non-

specific) hybridization. Gentle agitation was implemented in a hybridization oven (Hybaid).

As explained below, a probe pool was created as an equi-molar mixture of up to 7 probes,

each previously assigned by clone/chromosome hybridization uniquely to one linkage group
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(an S-clone). Radioactive cosmid probe pools were labeled using T7 and T3 (SP6) primers

flanking the insert in a pMOcosX (pLorist6Xh) clone with a random hexamer priming kit

(Stratagene or High Prime(Roche)). After prehybridization, 5-20 ml of radioactive cosmid

probe pool (> 108 cm) was added and hybridized overnight at 65oC with gentle agitation.

Membranes were washed twice in 2× SSC, 1% SDS at 65oC for 30 min with agitation.

Two subsequent washes were performed in 0.5× SSC at 65oC for 30 min. Washed membranes

were removed, blotted dry, and electronically autoradiographed on a Packard Instant Imager

(Packard, Meriden, CT). The membranes were also exposed to X-ray film (BIOMAX MR) at

-80oC with intensifying screens. In this way the hybridization of a probe pool to all clones in

the chromosome-specific library identified whether or not each clone’s DNA on the membrane

shared DNA sequences in common with the probe(s).

4.3.5 Pooling Strategy of Probes

To accelerate the mapping up to 7-fold by exploiting the chromosome-specific libraries, each

probe pool represented an equal mixture of up to 7 labeled chromosome-specific S-clone

DNAs, and the chromosome-specific assignments of all clones in the library were then used to

assign hybridization signals on autoradiographs to specific linkage groups, thereby attributing

a hybridizing probe at the same time. The result was a clone/probe hybridization matrix for

each linkage group.

4.3.6 Physical Mapping Strategy

A summary of the physical mapping strategy is given in Fig. 4.2. The N. crassa Genome

Project began with separating the chromosomes of all 7 linkage groups by pulsed-filed elec-

trophoresis using a CHEF-gel apparatus (BIO-RAD) [34]. Each chromosome was gel-isolated

and radio-labeled [34] for hybridization against the pMOcosX and pLorist6Xh libraries. The

result was that each of 13,882 clones was assigned to one or more chromosomes. S-clones

uniquely hybridized to one chromosome. R-clones hybridized to 2 to 6 chromosomes. A-clones

hybridized to all 7 chromosomes. The resulting chromosome-specific library of 13,882 clones

was then used in physical mapping.
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Figure 4.2: Physical Mapping Strategy

To carry out the physical mapping rapidly, the chromosome-specific library was

hybridized to 312 pools of 1-7 S-clones using a sampling without replacement strategy

to ensure that the probes were selected to be non-overlapping (see 4.3.1). This sampling

design accelerated the rate of progress as measured by the number of contigs formed as a

function of the number or probes used during the mapping experiment (Fig. 4.1). After

probing the chromosome-specific library robotically arrayed on 6 nylon membranes in dupli-

cate, the resulting positive hybridization signals were deconvoluted into linkage groups using

the chromosomal assignments of each clone in the chromosome-specific library. The resulting

clone/probe hybridization matrix for each linkage group (with a 1 denoting hybridization and

a 0 denoting no hybridization) was uploaded to the Fungal Genome Database (FGDB) [36].

A random cost algorithm was used to compare the digital call numbers of each clone on the

basis of a Hamming distance between clones to order clones in the clone/probe hybridization

matrix [66]. Clones with similar digital call numbers were moved closer to each other in

the hybridization matrix. An analogous process was carried out on the columns of the
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clone/probe hybridization matrix. Then the reordered clone/probe hybridization repre-

senting an initial physical map was manually edited to achieve a descending staircase (of

positive hybridization signals) format [52].

A limitation of physical maps is their long-range continuity over 1 Mb. To overcome

this problem, a single cross with 277 markers scored in progeny was used to build a genetic

map [61] using published data [51]. This genetic map was aligned visually with the physical

map to produce a legacy ordering for each linkage group. The legacy ordering constitutes the

starting point for the likelihood analysis presented here. These initial maps and alignments

were constructed without reference to the genomic sequence [24] to provide an independent

test of the sequence assembly from a whole genome shotgun implemented to a depth of

> 20-fold.

4.3.7 Initializing the likelihood-based search for an integrated physical

and genetic map beginning with a legacy ordering

The clone/probe hybridization matrices as well as chromosome assignments of each clone,

assignments of genes to clones, and a published genetic map [50] were loaded into the Fungal

Genome Database (FGDB) [36]. Within the FGDB, an implementation of the random cost

algorithm [66] was utilized to build physical maps for each linkage group. Finally, Dr. Arnold

visually resolved the genetic and physical maps within the FGDB, to produce a legacy

ordering to initialize the likelihood based reconstruction of an integrated physical and genetic

map.

4.4 Likelihood Methods

The integrated log-likelihood is defined as

lj = lp + lg (4.1)

where, lp denotes the physical log-likelihood and lg denotes the genetic log-likelihood. Their

expressions follow ( [61]-Eq-(25), [8]-Eq-(24)) :
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lp =
k∑

i=1

ln

{
Ri −

n+1∑
j=1

(ai,πj
− 1)(ai,πj−1

− 1) min(Yj,M)

}
− C (4.2)

where C is a constant given by

C = k ln(N −M)− P ln
ρ

(1− ρ)
− nk ln(1− ρ) (4.3)

and π0 = πn+1 = 0.

lg =
N∑

j=1

njlog

[∑

k

[
1

4

4∑
j=1

I{fi∈Rk(j,.)}
l−1∏
j=1

Pj (Ik,j = ik,j)

]]
(4.4)

The following sections give a very short introduction to the models used for formulating

likelihood based measure on gene orders and probe orders. For detailed introduction see [61]

and [8].

4.4.1 Brief Introduction to the formulation of Genetic Likelihood

We model the genotypes 1 1 , 0 0,1 0 and 0 1 (where 1 and 0 refer to paternal and maternal

alleles respectively) of a genetic interval (say,Si), as a consequence of two simultaneous

independent and identical chromatid exchange events (say, S). The four possible chromatid

exchanges between non-sister chromatids are pictorially represented in Figure 4.3. Let ci

denote the probability of a chromatid exchange in S between any two non-sister chromatids

in the ith genetic interval Si at meiosis. Since under the No-Chromatid-Interference (NCI)

assumption, all chromatid exchanges are equally likely, we get:

S = {0, 1, 2, 3, 4}

P (i) =
c

4
; i = 1, · · · , 4; i ∈ S

P (0) = 1− c; 0 ∈ S (4.5)

The element 0 in S indicates the absence of an exchange event. Elements 1, 2, 3 and 4

indicate that non-sister chromatids (1, 3), (2, 3), (2, 4) and (4, 1) took part in the exchange
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Figure 4.3: Single exchange events are signified by a vertical line, and the exchanges take
place between chromatids at the ends of the vertical lines. These 4 strands are found in
Prophase-I [19]. All exchanges are equally likely under our hypothesized model. Taken from
[61].

process respectively. The set Si, defined by the Cartesian product S × S, enumerates all

possible bivalent configurations for the ith genetic interval.

The probability distribution of Si denoting bivalent configurations between locus Aiand

A(i+1)(i = 1, ..., l− 1), where l=total number of loci being studied, can be derived as follows

using Eqn. 4.5.

P ({i, j}) =
c2
i

16
I{i 6=0;j 6=0} +

ci(1− ci)

4
{I{i=0;j 6=0} + I{i6=0;j=0}}+ (1− ci)

2I{i=j=0} (4.6)

where, {i, j} ∈ Si.

Let φk denote a unique chromatid exchange on Sl as described below:

φk = i1 × i2 × ...× il−1 (4.7)

where,

k = i1.i2.i3...il−1 ; ij ∈ Si ; φk ∈ Sl =
l−1∏
i=1

Si

From this point on, for the sake of brevity, we may abbreviate term chromatid exchanges

to simply exchanges when referring to φk.

Let fk denote a multi-locus genotype with l loci:

fk = i1 × i2 × ...× il−1 × il
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where,

k = i1.i2.i3...il ; ij = 0, 1; ∀j = 1, · · · , l

The indices ij = 1 and ij = 0 indicate the paternal and maternal alleles respectively.

The progeny are obtained by exchanges between homogeneous parents. The observed data

set can be represented as:

D =
{
nj ; ∀j = 1, · · · , 2l

}

where, nj is the observed frequency of fj.

Let us define the following functions

f 0(a) = (a1, a2, a3, a4)
′

f 1(a) = (a3, a2, a1, a4)
′

f 2(a) = (a1, a3, a2, a4)
′ (4.8)

f 3(a) = (a1, a4, a3, a2)
′

f 4(a) = (a4, a2, a3, a1)
′

where,

a = (a1, a2, a3, a4)
′

ai = 0, 1 ∀i

Note that Eqn. 4.8 encodes the elements of set S (See Eqn. 4.5) as mathematical functions.

For example, the first function f 0(a) encodes element 0, showing no chromatid exchange

whereas function f 4(a) encodes element 4, indicating that the first strand and the fourth

strand have had an exchange.

The function fij(a) = fj(fi(a)) corresponds to the events in Si accounting for all possible

bivalent configurations. For a particular chromatid exchange φk we can generate a model

tetrad at meiosis using the function fij. The matrix Rk of size 4 × l defines the simulated

tetrad as follows [57]:

Rk =
(
R0R1 · · ·R(l−1)

)
(4.9)

where,

R0 = (1100)′ ; Ri = fjk(Ri−1) ∀i = 1, · · · , l − 1
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and the ith genetic interval Si contains the observed chromatid exchange {j, k}. In other

words, Rk has 4 rows which correspond to the 4 gametes in a tetrad during meiosis if the

chromatid exchange φk had occurred according to our model.

The conditional distribution of fi for a given φk is

P (fi|φk) =
1

4

4∑
j=1

Ifi∈Rk(j,.)
(4.10)

where, Rk(j, .)is the jth row of Rk.

The marginal density of a single spore fi is given by

P (fi) =
∑

k

P (fi|φk)× Pk

= C × P (4.11)

where, C is the conditional probability matrix given by :

C = ((cki))

cki = P (fi|φk) (from equation (4.10))



 (4.12)

and P is given by,

P = (Pk; ∀k)′

Pk = P (φk)

=
l−1∏
j=1

P (Ij = ik,j) (4.13)

where, ik,j ∈ Sj and the probability distribution P (Ij = ik,j) is as defined in equation (4.6).

Let Θ = (c1, c2, ..., cl−1)
′ denote the unknown parameter vector in the model. The log-

likelihood of the counts f = (fi, i = 1, · · · , 2l−1)′, viewed as a function of Θ, is given by

:

lg(Θ|D) =
N∑

i=1

nilog

[∑

k

[
1

4

4∑
j=1

I{fi∈Rk(j,.)}
l−1∏
j=1

Pj (Ik,j = ik,j)

]]
(4.14)

Note that the log-likelihood in Eqn. 4.14 is distinct from the one in Zhao et.al [73].

Zhao and Speed have formulated a log-likelihood function similar to the one in Eqn. 4.14

for ordered tetrads in the appendix of [75]. However, the log-likelihood in Eqn. 4.14 does
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not hypothesize an exchange process. Both, Lander and Green [39] and Zhao and Speed [75]

have used the EM algorithm in the context of genetic map reconstruction.

The following two theorems maximize the log-likelihood in Eqn. 4.14 using a set of recur-

rence relations obtained via the Expectation-Maximization (EM) algorithm [20]. The proofs

are not given in the interest of brevity, but the development of Eqn. 4.15 is described else-

where [61].

Theorem 4.1. The EM-iterative equations are given below.

Θ(h+1) =
(
c(h+1)
m ∀m = 1, · · · , l − 1

)′

where c(h+1)
m =

(
2N2,m + N1,m

2Nm

)(h)

(4.15)

where

Nm =
∑

k

n
(h)
k = N0,m + N1,m + N2,m

N0,m =
∑

k

∣∣ik,m=(0,0)

n
(h)
k

N1,m =
∑

k

∣∣ik,m=(i1,i2)

i1=0 (Strict)OR i2=0

n
(h)
k

N2,m =
∑

k

∣∣ik,m=(i1,i2)

i1 6=0 AND i2 6=0

n
(h)
k

n
(h)
k =

∑
j

njπk|j(Θ
(h))

π
(h)
k|j = P (xkj = 1|fj) =

π
(h)
j|k × π

(h)
k

p
(h)
j

p
(h)
j =

∑

k

π
(h)
j|k × π

(h)
k

π
(h)
j|k = cki in Eqn. 4.12 for the hthiteration

π
(h)
k = Pk in Eqn. 4.13 for the hthiteration

Note that, ik,m denotes an event in Sm for the exchange φk.
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The following theorem provides an initialization of c for the recurrence relations in

Eqn. 4.15.

Theorem 4.2. Let f = (f1, f2, f3, f4)
′ be the observed frequency vector corresponding to

all possible meiotic products for parental genes M and O for two markers. The genotype

vector for f is (MM MO OM OO)’. The maximum likelihood estimator [54] of the exchange

probability c under the model represented by Eqn. 4.5 is unique and is given as follows:

1. If f1 + f4 < f2 + f3 then cmle = 1

2. If f1 + f4 ≥ f2 + f3 then cmle is given by the unique solution (in the interval [0, 1] ) of

the following equation:

f(c) = c2 − 2c + D = 0 (4.16)

where,

D =
2(f2 + f3)

N
; N =

4∑
i=1

fi

This theorem is used to obtain the starting values of cm for the EM-iterative equations in

Theorem (4.1).

4.4.2 Brief Introduction to the formulation of Physical Likelihood

The probe ordering problem can be formally stated as follows. Given a set P = {P1, P2, . . . , Pn}
of n probes and a set C = {C1, C2, . . . , Ck} of k clones generated using the sampling-without-

replacement protocol described earlier, and the k × n clone-probe hybridization matrix H

containing both false positives and false negatives with predefined probabilities, recon-

struct the correct ordering Π = (π1, π2, . . . , πn) of the probes and also the correct spacing

Y = (Y1, Y2, . . . , Yn) between the probes. The ordering Π is a permutation of (1, . . . , n) that

gives the labels (indices) of the probes in left-to-right order across the chromosome. In the

inter-probe spacing vector Y , Y1 denotes the space between the left end of the first probe

Pπ1 and the left end of the chromosome, and Yi the spacing between the right end of probe

Pπi−1
and and the left end of probe Pπi

(where 2 ≤ i ≤ n). The spacing between the right
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end of probe Pπn and the right end of the chromosome is given by Yn+1 = N −nM −∑n
i=1 Yi

where N is length of the chromosome and M is the length of each clone/probe. Note that

our protocol requires that all probes and clones be of the same length.

The mathematical notation used in the formulation of the maximum likelihood estimator

is given below:

N : Length of the chromosome,

M : Length of a clone/probe,

n : Number of probes,

k : Number of clones,

ρ : Probability of false positive,

η : Probability of false negative,

H = ((hi,j))1≤i≤k, 1≤j≤n: clone-probe hybridization matrix,

where

hi,j =





1 if clone Ci hybridizes with probe Pj

0 otherwise,

Hi : ith row of the hybridization matrix,

Π = (π1, . . . , πn): permutation of {1, 2, . . . , n} which denotes the probe labels in the ordering

when scanned from left to right along the chromosome,

pi =
∑n

j=1 hi,j: number of 1’s in Hi,

P =
∑k

i=1 pi: total number of 1’s in H, Y = (Y1, Y2, . . . , Yn): vector of inter-clone spacings

where Yi is the spacing between the right end of Pπi−1
and the left end of Pπi

(2 ≤ i ≤ n),

and Y1 is the spacing between the left end of Pπ1 and the left end of the chromosome, and

F ⊆ Rn: set of feasible interprobe spacings Y = {Y1, . . . , Yn} such that Yi ≥ 0, 1 ≤ i ≤ n

and N − nM −∑n
i=1 Yi ≥ 0.

The Model: Given a vector of inter-probe spacings Y = (Y1, . . . , Yn), there are 2n+1

possible cases to consider depending on whether 0 ≤ Yi ≤ M or Yi > M where 0 ≤ i ≤ n+1.

Without loss of generality, we present the maximum likelihood model for n = 3 and illustrate

3 of the 24 = 16 possible cases.
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Case 1: 0 ≤ Y1 ≤ M , 0 ≤ Y2 ≤ M , 0 ≤ Y3 ≤ M , and 0 ≤ Y4 ≤ M as depicted in Figure

4.4.

����������������������������������������������������������������������������������

���������
���������
���������
���������

��������
��������
��������
��������

���������
���������
���������
���������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Y1 Y2 Y3 Y4πP
1 P Pπ2 π3

Y1 +  Y2 M-Y 2 Y2 + Y3 M-Y 3 Y  +  Y3 4

A B C D E

Figure 4.4: Interprobe spacings: Case 1

Case 2: 0 ≤ Y1 ≤ M , 0 ≤ Y2 ≤ M , 0 ≤ Y3 ≤ M , and Y4 > M as depicted in Figure 4.5.
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Figure 4.5: Interprobe spacings: Case 2

Case 3: Y1 > M , 0 ≤ Y2 ≤ M , 0 ≤ Y3 ≤ M , and 0 ≤ Y4 ≤ M as depicted in Figure 4.6.
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Figure 4.6: Interprobe spacings: Case 3

Type 1: Both region between probe Pπj
and Pπj+1

, for j = 1, . . . , n−1. An intervening clone

hybridizes to both probes if its left end falls in this region.

Type 2: Only region of probe Pπj
, for j = 1, . . . , n. A clone will hybridize to Pπj

only of its

left end falls in this region.

Type 3: None region after probe Pπj
, for j = 0, . . . , n. A clone will hybridize to no probe

if its left end falls in this region. Here probe Pπ0 is referred to as the beginning of the

chromosome.

It can be shown that for j = 1, . . . , n− 1

Length of the Both region

between probes Pπj
and Pπj+1

=





0 if Yj+1 > M

M − Yj+1 if Yj+1 ≤ M

= M −min(Yj+1,M), (4.17)
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and for j = 1, . . . , n

Length of the Only

region of probe Pπj

=





Yj + Yj+1 if Yj ≤ M and Yj+1 ≤ M

M + Yj if Yj > M and Yj+1 ≤ M

Yj + M if Yj ≤ M and Yj+1 > M

2M if Yj > M and Yj+1 > M

= min(Yj, M) + min(Yj+1,M), (4.18)

and for j = 0, . . . , n

Length of the None

region after probe Pπj

=





Yj+1 −M if Yj+1 > M

0 if Yj+1 ≤ M

= Yj+1 −min(Yj+1,M). (4.19)

We assume that the left ends of the clones are uniformly distributed over the interval [0, N−
M ] i.e., the probes are uniformly distributed across the length of the chromosome. Therefore

it can be shown that for j = 1, . . . , n−1, the probability PBoth that a randomly chosen clone

will fall in the Both region of probes Pπj
and Pπj+1

is given by

PBoth =
M −min(Yj+1,M)

N −M
; (4.20)

for j = 1, . . . , n the probability POnly that a randomly chosen clone will fall in the Only

region of probe Pπj
is given by

POnly =
min(Yj,M) + min(Yj+1,M)

N −M
, (4.21)

and for j = 0, . . . , n the probability PNone that a randomly chosen clone will fall in the None

region after probe Pπj
is given by

PNone =
Yj+1 −min(Yj+1,M)

N −M
. (4.22)

The conditional probability of observing a clonal signature Hi (i.e., the ith row in the

hybridization matrix H), given a probe ordering Π and an inter-probe spacing vector Y , is
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given by

P (Hi | Π, Y ) =
n∑

j=1

P (Hi | Π, Y, Oi,j)P (Oi,j | Π, Y ) +

n−1∑
j=1

P (Hi | Π, Y, Bi,j)P (Bi,j | Π, Y ) +

n∑
j=0

P (Hi | Π, Y,Ni,j)P (Ni,j | Π, Y ) (4.23)

where

Oi,j: the event that the clone i will fall in the Only region of probe Pπj
.

Bi,j: the event that the clone i will fall in the Both region of probes Pπj
and probe Pπj+1

.

Ni,j: the event that the clone i will fall in the None region after probe Pπj
.

Assuming that the false positive and false negative errors at different positions along the

clonal signature Hi are independent of each other the following can be shown

P (Hi | Π, Y, Oi,j) = (1− η)hi,πj · η(1−hi,πj
) · ρ(pi−hi,πj

) · (1− ρ)(n−1)−(pi−hi,πj
) (4.24)

P (Hi | Π, Y, Bi,j) = (1− η)(hi,πj
+hi,πj+1

) · η(2−hi,πj
−hi,πj+1

) · ρ(pi−hi,πj
−hi,πj+1

)

· (1− ρ)(n−2)−(pi−hi,πj
−hi,πj+1

) (4.25)

P (Hi | Π, Y, Ni,j) = ρpi · (1− ρ)(n−pi). (4.26)

From the previous equations,

P (Hi | Π, Y ) =
n∑

j=1

[
(1− η)hi,πj · η(1−hi,πj

) · ρ(pi−hi,πj
) · (1− ρ)(n−1)−(pi−hi,πj

)

· min(Yj,M) + min(Yj+1,M)

N −M

]

+
n−1∑
j=1

[
(1− η)(hi,πj

+hi,πj+1
) · η(2−hi,πj

−hi,πj+1
) · ρ(pi−hi,πj

−hi,πj+1
)

· M −min(Yj+1,M)

N −M

]

+
n∑

j=0

[
ρpi · (1− ρ)(n−pi) · Yj+1 −min(Yj+1,M)

N −M

]
(4.27)



133

We assume that the clones ∈ C are independently distributed along the chromosome i.e.,

each row of H is independent of the other rows. Hence

P (H | Π, Y ) =
k∏

i=1

P (Hi | Π, Y ). (4.28)

From equations (4.27) and (4.28),

P (H | Π, Y ) =
k∏

i=1

Ci

{
Ri −

n+1∑
j=1

(ai,πj
− 1)(ai,πj−1

− 1)min(Yj,M)

}

(4.29)

where

ai,j =





η
(1−ρ)

if hi,j = 0 and j = 1, . . . , n

(1−η)
ρ

if hi,j = 1 and j = 1, . . . , n

0 otherwise,

(4.30)

Ci =
ρpi(1− ρ)(n−pi)

N −M
, (4.31)

and

Ri = N − nM + M

(n−1)∑
j=1

ai,πj
ai,πj+1

. (4.32)

Hence the log-likelihood function is given by

lp =
k∑

i=1

ln

{
Ri −

n+1∑
j=1

(ai,πj
− 1)(ai,πj−1

− 1) min(Yj,M)

}
− C (4.33)

where C is a constant given by

C = k ln(N −M)− P ln
ρ

(1− ρ)
− nk ln(1− ρ) (4.34)

and π0 = πn+1 = 0.

4.5 Finding Best Order Using Simulated Annealing

Several combinatorial optimization problems can be tackled using simulated annealing (SA)

as a stochastic optimization technique [35]. We use SA to determine the best order of genetic

markers by sampling stochastically from the space of all possible gene orders guided by lg.
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Simulated annealing has been used previously [17], to reconstruct chromosomes based on

binary scoring of DNA fragments and a Hamming distance-based objective function. In our

case, for the genetic map, the objective function is the genetic likelihood lg (see Section 4.4)

of a particular order of genes. This objective function is computed upon convergence of the

EM algorithm ( [45], [67]). Thus, in our case a single computation of the objective function

for the genetic map for a single order of markers is quite expensive.

For the physical map, the objective function is the physical likelihood lp (see Eqn 4.2) of

a particular order of probes. The computation of this objective function involves finding an

optimal spacing among the probes using gradient descent search [8]. For the integrated

physical and genetic map we locate the genes on the probes (using sequence informa-

tion,complementation and hybridization) and then for a an order of probes derive and order

of genes that are tagged while keeping the un-tagged genes as they are. The objective func-

tion for the integrated map is the integrated likelihood lj (see Eqn 4.1). The SA provides a

stochastic sampling technique to search for a good order as follows:

1. Choose a random order of probes, Π, and calculate f(Π).

2. Choose a random segment within the ordering Π.

3. Perform a segment reversal and call the new ordering Π′.

4. Compute f(Π′).

5. If f(Π′) is less than f(Π), then retain the new order. However, if f(Π′) is larger than

f(Π), then generate a random number between 0 and 1. If this random number is less

than E(−(f(Π′) − f(Π))/T , then retain the new order. Here T is the “temperature”

of the annealing schedule.

6. Proceed to anneal the temperature in multiplicative steps, i.e., decrease T by a factor

F at each SA iteration. Hold each value of T constant until D re-orderings have been

attempted or S successful re-orderings have resulted, whichever comes first. If the

number of successes equals zero for a given step, the process is complete; otherwise go

to step 2.
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For each order in SA, the likelihood l is computed, and the order with the maximum

value of the likelihood is selected as the desired map. The values of the parameters used in

the search of the best order are T = 50.0,F = 0.95,D = 500 and S = 2000.

4.6 Results

4.6.1 Quality of Integrated Physical Map

For the 42.9 Mb N. crassa genome a chromosome-specific library of 13,882 clones or 11

genome equivalents was constructed with an average insert size of 34 kb [34]. A total of

10,356 clones were uniquely assigned to linkage groups and called S-clones; 3,419 clones

were assigned to 2-6 linkage groups (R-clones); and 107 clones were assigned to all 7 linkage

groups (A-clones) [34]. A total of 1506 probings with principally non-overlapping S-clones

(see 4.3.1) from this 13,882 clone chromosome-specific library [34] was used to create an

integrated physical and genetic map or integrated physical map for short. The 882 cosmid

probes produced a total of 22773 positive hybridization signals, and each probe on average

hybridized to 25 clones. The clone/probe hybridization H provided the linking information to

produce the physical map, which was then integrated with a genetic map [51]. The physical

map consists of 176 contigs across 7 linkage groups (Fig. 4.8). The average number of clones

per contig is 8, and the average size of a contig is 201 kb.

The quality of the resulting integrated physical map can be assessed in three ways,

by its completeness, by its resolution, and by its consistency with itself, the genetic map,

and sequenced-based physical map [24]. Sizes of the chromosomes are known [48] and can

be compared with the chromosome sizes estimated from the physical map. The resolution is

determined by the average spacing between markers along the physical map. The consistency

involves comparing the hybridization-based physical map with itself and the genetic map and

genomic sequence.
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4.6.2 Completeness

The completeness of the physical map can be assessed in several ways. One approach is by

the number of contigs in the final map. The most complete physical map of a eukaryote

(organisms with nuclei) is likely to remain the 12 Mb genomic sequence of the fungus, Sac-

charomyces cerevisiae [26], where there are 16 contigs corresponding to its 16 linkage groups.

In contrast, the genomic sequence of the fungus, N. crassa, consists of 958 contigs assem-

bled into what are called scaffolds (163 in number). The integrated physical map reported

here consists of 175 contigs of overlapping cosmids. As clone/probe hybridizations were per-

formed, the completeness of the project was monitored sequentially under sampling without

replacement as shown in Fig. 4.1 to examine the progress of the project.

Completeness can also be assessed by taking the estimated size of each linkage group

derived directly from its physical map. As an example, in Fig. 4.4 and Fig. 4.5, linkage group

I’s physical map includes the ordering of 153 tiling cosmid probes, each with an insert of 34 kb

on average, and the maximum likelihood estimates of the spacings Y1, Y2, , Y153 between tiling

probes. The estimated lengths of tiling probes and spacings can be summed to yield an esti-

mated size of each linkage group’s chromosome in Table 4.2, i.e., the physical size in kb. The

lowest coverage is for linkage group I (85.7 %). The coverage for the remaining linkage groups

is over 97%. The estimated completeness for the entire genome from Table 4.2 is 96%. An

independent assessment of completeness was performed using 344 genes assigned to clones in

the pMOcosX library derived from the Fungal Genetics Stock Center (http://www.fgsc.net)

and sought in the physical map, and 318 of these genes were located on the physical map,

suggesting a completeness of 92%. In contrast to the genomic sequence [24], the ribosomal

rDNA cluster [38] is found on the physical map, although it lacks telomere ends [55] and

probably portions of the centromeres as discussed previously [34]. A precise estimate of the

sizes of gaps Yi > 34 kb constituting contig boundaries is given in Fig. 4.9 along with gap

locations as a byproduct of the maximum likelihood method used for map reconstruction.

Unlike most published physical maps, this one tells us what we know and how much is not

known.
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4.6.3 Resolution

The resolution of a physical map is determined by the number of markers and the spacings

between them on average. This quantity can also be derived from the maximum likelihood

estimation of the physical map (see Section 4.4) as well. The markers on the physical map

are the ends of clones in the chromosome-specific library on the physical map. The resolution

is the average spacing between ends. As shown in Fig. 4.9, the estimated spacing alternates

between the insert size, 34 kb, and an estimated spacing, Yi. The resolution is 23 kb. This

is considerably higher than that of the genetic map with its 252 markers [50] used to assess

the long-range accuracy of the genomic sequence [24] or the restriction fragment length

polymorphism (RFLP) genetic map with its 277 markers used here [51]. The genetic maps

place a marker at 150 kb intervals throughout the genome, if they were distributed at

random in the genome. The resolution of the physical map provides a much stronger test of

the long-range accuracy of the genomic sequence.

4.6.4 Consistency

Self-consistency can be assessed by examining the clone/probe hybridization matrix for each

linkage group after maximum likelihood estimation (see Section 4.4) at http://gene.genetics.uga.edu

or [2]. Once the map is complete, the physical map can be represented by a descending

staircase of positive hybridization signals in a recordered clone/probe hybridization matrix

stretching from one end of the reconstructed chromosome to the other end (See, for

example, [52] or [2]). If there were no errors in the data, under sampling without replace-

ment each clone should only hybridize to 0, 1, or 2 probes (Fig. 4.4) with hybrdization

signals falling near the diagonal of the reordered clone/probe hybridization matrix. Signals

in the clone/probe hybridization matrix not satisfying this property are explained as false

positives or false negatives with rates of 0.02 in the maximum likelihood procedure [8]. The

repeatability of hybridization also puts an upper bound on the sum of the false positive

and false negative rate of about 5% [34]. Entries off the diagonal of the descending staircase

in the reordered clone/probe hybridization matrix could also be explained by the presence
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of repeated sequences in the genome or be hybridization to chimeric clones with inserts

derived from 2 or more regions of the genome. Given that each off-diagonal positive entry

is the result of two independent hybridizations on double-stamped membranes, the latter

explanations of repetitive sequences or chimeric clones may be more likely (but harder to

deal with in constructing a likelihood). If these off-diagonal positive entries were all false

positives, the estimated rate would be 0.3% or less here and 3% in [2]. In the likelihood-based

construction of the physical maps we thus used false positive (ρ) and false negative (η) rates

of 0.2%. Consistency of the physical and genetic maps with the sequence is taken up in later

sections.

4.6.5 Integration of physical and genetic maps

The major methodological problem solved here is integrating a physical and genetic map with

the method of maximum likelihood, as illustrated here with the building of an integrated map

of N. crassa. To achieve this goal first a model and methodology for estimating a physical

map by the method of maximum likelihood was developed for this genome project ( [8];

[33]). The limitation of this solution is that long-range continuity of the physical map was

not insured. False joins do inevitably enter into the physical map to result in contigs that

are overly long and inappropriately joined [66]. To overcome this problem, we developed

a separate methodology for building a genetic map by the method of maximum likelihood

( [63], [61]) with the goal of using the genetic map to give accurate long-range continuity

to the physical map. The unusual challenge here is that experiments can be done in fungi to

examine directly the gametic products of a cross through tetrad analysis, giving much more

information about recombination than is normally available in building a genetic maps for

other organisms [19]. Secondly, by developing a model for tetrad analysis and the associated

maximum likelihood methods, we did not have to rely on a composite genetic map [50] built

from many crosses involving parents of many different genetic backgrounds to validate the

physical map, as done with the genomic sequence [24]. Instead we could rely on a genetic

map produced by a single cross of two parents, thus permitting the quantitative estimation

of recombination distances between 277 markers as well as the inference of their order for
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building a physical map with long-range continuity. With both methodologies in hand we

could then construct a joint log-likelihood function lj in Eqn 4.1 to reconstruct an integrated

map here. The unusual challenge of this estimation problem is that one set of parameters,

the orderings of markers on each map, is discrete, while the distances between markers on

each map are real-valued.

The two log-likelihoods, lg and lp, in Eqn. 4.1 share some parameters and have their own

unique parameters. The unique parameters to the genetic log-likelihood lg are the exchange

probabilities ci between markers giving rise to the genetic map distances between markers

and their orderings on the genetic map and not assigned to the physical map. The unique

parameters to the physical mapping log-likelihood lp are the cosmid probe spacings yi and

ordering of cosmids not linked to the genetic map through genes which they carry. The

shared parameter is the ordering of genetic markers assigned to both maps. The ordering of

shared markers creates a tension between the two likelihood functions, whose resolution is

the integrated maps of each linkage group as shown in Fig. 4.7.

The coherence in map alignments can be examined at the level of genes shared between

the maps and at the finer level of cosmid probes linked between maps by the genes carried.

The coherence of the aligned maps is graphically displayed in Fig. 4.7 at the level of genes.

The ordering of shared markers are displayed on the genetic, integrated, and physical maps

by connecting common markers on different maps. If the order of shared markers differ, the

lines cross. The largest linkage groups (I and V) have the most incoherence as measured

by the number of line crossings for each linkage group in Table 4.3, a phenomenon seen for

the other physical map, the genomic sequence [61]. The integrated map is identical to the

physical map at the level of genes (but not at the cosmid probe level, results not shown). The

reason for this is that the search for the integrated map was initialized with a legacy ordering

that was visually aligned to the genetic map (See Materials and Methods). Apparently the

legacy ordering was a very good initialization. This phenomenon also occurred for the genetic

maps [61]: the maximum likelihood ordering was largely coincident with the heuristically

constructed genetic maps published [51]. Use of the legacy ordering for initialization did

improve the value of lj in Eqn 4.1 (Table 4.3) vs. other initializations tried, such as the
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original order in which probes were collected in Fig. 1 (see Table 4.1); however, a lj value

could be maximized in a few minutes on a laptop computer that was competitive with the

legacy ordering without investing several months of time required in producing the legacy

ordering (see Table 4.3) as described under Materials and Methods.

Table 4.1: Likelihood

Linkage Group lg lj lp ls
1 −42.011 −25659.4155 −25626.7398 −334.5498
2 −63.9341 −17649.6358 −17600.3810 −180.1985
3 −101.1718 −14663.7926 −15224.1471 −82.7432
4 −86.1272 −18660.5664 −18588.0228 −237.2802
5 −4.7988 −15812.1735 −35379.9591 −299.7167
6 −116.3973 −15812.1735 −15763.7036 −178.5936
7 −60.3366 −13428.6187 −13418.7729 −141.5237

In linkage group I the joint order does differ from that on the genetic map. The main

inconsistency appears to be a block of genes, nuo12.3-al-2-vma-11, that are placed on dif-

ferent arms of the chromosome for linkage group I for the integrated and genetic maps. The

order of this block on the RFLP map [51] is supported by the composite genetic map [50].

Most geneticists would conclude that the integrated map is in error.

In linkage group IV the genetic and physical maps have a better alignment with fewer line

crossings (Fig. 3). There is still one marker cre-1 that is assigned to a very different location

on the genetic map, and again the position assigned by the RFLP map [51] is concordant

with the assignment of the composite genetic map [50]. The alignments of maps at the

gene level as well as compressed and full uncompressed integrated maps [52] are reported

at http://gene.genetics.uga.edu. With these integrated maps several interesting biological

questions can be addressed.

4.6.6 Centromere effect

In addition to centromeres allowing chromosomes to move in mitosis and meiosis (i.e., pro-

cesses of cell division), they have an effect on recombination known as the centromere effect

in a variety of organisms [14]. The centromere effect is an hypothesis in which recombination

is reduced near centromeres, and hence the physical size of a map unit (Mu) on the genetic
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map (1 Mu is 1% percent recombination on the genetic map) increases near the centromere.

The centromere of linkage group VII has been partially characterized and evidence, presented

for a centromere affect in N. crassa [12]. The question is whether or not all centromeres in N.

crassa display this phenomenon. This question can be addressed by virtue of the centromere

markers on the integrated map (see Fig. 3). In the case of linkage group IV, the gene aod-1

is linked to the centromere [51].

Each marker’s distance in kb divided by its distance in map units to its nearest neighbor

distal to the centromere on the integrated maps at the gene level was plotted against physical

distance from the centromere in Fig. 5.1.A using the physical map. As markers recede from

the centromere, the physical size of a map unit appears to decline with distance from the

centromere. The centromere effect as an hypothesis is supported. In addition it can be seen

that there is an order of magnitude variation in physical size of a map unit ranging from 24

kb to 871 kb per Mu. This is typical of the variation in the expansion and contraction of

the genetic map relative to a physical map [43] that is seen in a variety of organisms. The

explanation for this variation in the physical size of a map unit in N. crassa apparently is

the presence of genes that locally affect recombination rate ( [9]; [10]). A genetic map is

thus analogous to a rubber band that is stretched or allowed to relax at different places next

to the analog of a ruler, a physical map.

4.6.7 Direct Empirical determination of the mapping function relating

recombination fraction to physical distance along the chromosome

There is a considerable body of literature attempting to establish a functional relation

between recombination distance on the genetic map to physical distance in kb or to at

least the underlying recombination process [73], and this literature dates back to the earliest

effort of [28] to calculate this relationship. This relationship is termed a mapping function

derived from a model of recombination [28]. Barratt et al. [3] in the same spirit have modeled

the recombination process in N. crassa and produced a mapping function as well relevant

for tetrad analysis. In all of these studies the evidence in support of a particular mapping

function is indirect.
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Since all pairs of neighboring markers on the integrated map in Fig. 5.1 have both an

estimated recombination fraction [61] in one genetic background as well as a physical dis-

tance, we can empirically determine the mapping function. In Fig. 5.1B the recombination

distance ri = ci(1− ci/2) in map units between neighboring markers is plotted as a function

of physical distance (see [61], for a derivation of the quadratic relation between the recom-

bination fraction ri and the underlying exchange probability between nonsister chromatids

ci). This empirically derived mapping function compares favorably with both the simplest

Haldane mapping function, but this mapping function obviously has its limitations. It does

not take into account other phenomena, such as the centromere effect, or loci that affect the

recombination rate locally ( [9], [10]).

4.6.8 Evaluation of the whole genome shotgun sequencing strategy

The National Science Foundation (NSF) and the National Institutes of Health (NIH) are now

investing hundreds of millions of dollars in this approach with little critical evaluation of its

limitations [27]. The availability of an integrated physical and genetic map at 23 kb resolution

in N. crassa provides an unusual opportunity to evaluate critically the whole genome shotgun

approach in an instance most favorable to this approach. The whole genome shotgun in N.

crassa was carried out to a depth of > 20-fold, which is much deeper than in most other

systems.

As previously noted [61], there were differences in gene orderings between the genetic

map and genomic sequence for linkage groups I, II, and V, although the maximum-likelihood-

based genetic map actually had a lower log-likelihood lg than that of the sequence map for

linkage group II. What remained as unsatisfactory was the alignment of the two largest

linkage groups (I and V in Table 4.2) at the gene level with the genomic sequence; there

was substantial incoherence with the maximum likelihood estimate of the RFLP map used

here [61]. As a consequence the alignment of the genetic and integrated maps was compared

further with that of the genomic sequence at the cosmid probe level as a stronger test of the

whole genome shotgun approach. As seen in Fig. 4.8, the genomic sequence had substantial

number of line crossings in Table 4.3 (and visually in Fig. 4.8) for linkage groups I and V.
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One limitation then of the genomic sequence is in long-range continuity beyond 9 Mb. There

is more coherence between the integrated map and genomic sequence with the 5 remaining

smaller chromosomes over a range of sizes up to 5.7 Mb (Table 4.2).

Table 4.2: Estimated Sizes of Chromosomes of Neurospora crassa

Linkage Group Size (Mb)a Estimated Size (Mb) % Coverage
I 10.3 8.83 85.7
II 4.6 4.58 99.56
III 5.1 5.07 99.41
IV 5.7 5.63 98.77
V 9.2 9.13 99.23
VI 4.0 3.95 97.5
VII 4.0 3.95 97.5

aChromosome sizes are derived from [48]; See [34]

Another question is how the genomic sequence compares with the integrated map, which

was generated independently of the genomic sequence. The former can be generated more

quickly (less than 2 years as opposed to 6 years), but with a order of magnitude increase

in cost. The chromosome-specific libraries used to generate the hybridization-based physical

map took 3.4 years to construct, and it took 3.4 years to carry out the clone/probe hybridiza-

tion. In an alternative sequencing strategy the cosmid libraries could have been used as a

sequencing resource [34]. If one compares the integrated maps of each linkage group with

those of the genomic sequence at the probe level, there are 3 linkage groups in which the inte-

grated physical map outperforms the genomic sequence in Table 4.3 in terms of its coherence

with the genetic map; there are 3 linkage groups in which the genomic sequence outperforms

the integrated physical map in Table 4.3; and there is one linkage group on which they per-

form the same (linkage group IV in Table 4.3) relative to the genetic map. Alignments of

the genetic and integrated maps with the genomic sequence at the probe level for all linkage

groups can be found at http://gene.genetics.uga.edu. With respect to long-range continuity,

it appears that the competition between an integrated physical and genetic map at 23 kb

resolution and the genomic sequence is a tie.

There is one other dimension on which the integrated map can be compared, the likelihood

function, in Table 4.1. It can be seen that generally the integrated map outperforms the
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Table 4.3: Crossing counts of lines in alignments

Linkage Group Genes Probes
G-Ja J-Pb P-Gc G-Jd J-Se S-Gf

1 13 0 13 18 20 19
2 11 0 11 8 7 8
3 7 0 7 7 7 10
4 8 0 8 11 12 12
5 12 0 12 13 14 13
6 8 0 8 13 10 12
7 5 0 5 13 13 12

aalignment genetic and integrated map at gene level
balignment integrated and physical map at gene level
calignment physical and genetic map at gene level
dalignment genetic and integrated map at probe level
ealignment integrated and sequence map at probe level
falignment sequence and genetic map at probe level

sequence-based map, but they are very close. A similar result was found for the genetic map

at the genic level [61]. In one case, the sequence-based map improves on the search for the

maximum likelihood estimator of the integrated physical map.

In summary, the long-range continuity of the whole genome shotgun approach is in ques-

tion beyond 9 Mb. As seen in Fig. 4.7, there can be substantial incoherence between the

genomic sequence on the one hand and an integrated map on the other. Second, an inte-

grated physical and genetic map performs comparably on this criterion in Table 4.1. Finally,

there will be incoherencies between genetic and physical maps on the one hand with genomic

sequence on the other hand even when a whole-genome shotgun approach is pursued to a

depth of > 20-fold.

4.6.9 DNA repeat organization in the N. crassa genome

The N. crassa genome consists of 10% DNA repeats as assayed by three independent method-

ologies ( [37], [34], [24]), and 4% of these repeats are the tandemly arrayed repeats of the

rDNA cluster [38]. In addition to obtaining more accurate reconstruction of the genome and
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a speedup in mapping with the use of chromosome-specific libraries in the physical mapping

strategy in Fig. 4.2, there is the final benefit of generating a direct portrait of repeats in the

genome in Fig. 4.9 as a byproduct of the physical mapping strategy in Fig. 4.2.

Each cosmid making up the integrated map has its content assayed for repeats by

hybridization to all seven chromosomes of each linkage group [34]. As a consequence, each

clone is classified as an S-clone, R-clone, and A-clone with the R- and A- clones usually

containing DNA sequence repeats. Each clone in the integrated map can then be labeled as

S, R, or A and color-coded as in Fig. 4.9 to determine the distribution of repeated sequences

along the chromosome of a linkage group [52]. The third and final biological question is

whether or not the repeat organization of N. crassa differs from that of A. nidulans (and

that of other more complex eukaryotes) because of processes that remove repeats in the N.

crassa genome [58].

In the A. nidulans genome there is an alternating pattern of DNA sequence repeats

much like that in more complex eukaryotes [52]. This alternating nonrandom pattern can

be quantified by the transitions between S-, R-, and A-clones along a chromosome governed

by a homogeneous (across linkage groups with the exception of V) Markov Chain with the

following transition matrix in Table 4.4:

Table 4.4: Transition Matrix

Current Clone Next Clone
S R A

S 0.68 0.29 0.03
R 0.90 0.08 0.02
A 0.93 0.07 0.00

The same test of dependency were carried out for the N. crassa genome, and the test of

first-order dependency required for description by a first order Markov Chain with its own

distinct transition probabilities was significant (X2
4 = 84.98, P < 10−7, see Materials and

Methods in [52]). The conclusion is that the repeats were non randomly distributed in the

N. crassa genome in addition to the two known cases discussed below.

It was possible to build the integrated physical map with 70% of its clones uniquely

assigned to one chromosome (being S-clones) in the integrated map. This translates into 30%
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of its genome having a repetitive DNA content, which compares favorably with measurements

of 10% [38], 10% [34] and 10% from the genomic sequence [24] if no more than 1/3 of each

R or A clone is repetitive.

There are two known exceptions to the random distribution of DNA repeats. The N.

crassa genome possesses 165 tandem repeats of the rDNA cluster on linkage group V [38],

which can be found on the integrated map. Second, both the telomeres (which are not part of

the physical map, [34]) and centromeres have repetitive DNA. Each centromere is probably

on the order of 450 kb [12] and largely composed of a divergent family of repeats. If we

examine the location on the integrated map, we find that they are color-coded accordingly

in Fig. 4.9.
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Figure 4.7: Alignment of genetic, integrated, and physical maps of linkage groups I and IV
through shared markers. The orderings were produced by maximizing lg, lj, and lp, respec-
tively.
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Figure 4.8: Alignment of genetic map, integrated map, and genomic sequence by probes for
linkage groups V and VI. The orderings were produced by maximizing lg and lj and induced
by genomic sequence.
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Figure 4.9: Distribution of repeated DNA sequences in Neurospora crassa. Physical maps
of individual chromosomes are listed across the rows and contigs represented by rectangles
that correspond to their estimated sizes (in megabases). Chromosomal regions containing
repeated DNA sequences that are shared by 7 or fewer chromosomes are indicated by their
color-coded boxes.



Chapter 5

CONCLUSIONS

A major methodological problem for genomics is integrating information from diverse

sources [4]. Most model systems contain genetic maps, physical maps, and genomic sequences.

Bioinformatics tools have been slow to develop for integrating these disparate kinds of infor-

mation. In part this is explainable by the slow development of reasonable models for the

experiments generating the different kinds of genomic mapping information, and even when

these models are developed, the computational challenge of developing traditional inference

approaches, such as the method of maximum likelihood, are quite challenging ( [39]; [8]). To

take the next small step of combining data sets and hence inference engines is then daunting.

Here we have successfully tackled the integration of a genetic map with a hybridization-based

physical map using the method of maximum likelihood.

The effort of carrying out this data integration was justified because there is a real issue

of assuring the long-range continuity of a physical map, and the two distinct data sources

(progeny genotypes from crosses and clone/probe hybridization data) are complementary

and mutually supporting. On a fine scale of less than a map unit the physical map is more

reliable, but on a large scale above a map unit the genetic map is likely to be more reliable.

The two resources also represent two very different kinds of information. The genetic map

carries phenotypic information, while the physical map carries the DNA sequence. Geneticists

want both kinds of information on a particular trait, and an integrated map provides a means

to deliver both in one package.

Here we have shown how the method of maximum likelihood provides answers to standard

questions as a byproduct of its approach. With regard to the question of scale the integrated

map has a scale in kilobases that is generated by the method of maximum likelihood. The

scale can be attached to the map using the average insert size of each clone and the spacing
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between tiling probes (clones), which is part of the statistical estimation problem of specifying

the physical map. Having this scale for the map allows related questions to be addressed.

As shown in Fig. 4.9, what is known and the extent of the unknown (gaps in the map) are

quantified. The methodology used here provides a quantitative assessment of the coherency

of the information sources in Fig.s 4.7 and 4.8 as well as Table 4.3. By examining the

average distance between markers on the integrated map we obtain a direct estimate of the

map’s resolution. Here we estimated the resolution of the integrated physical and genetic

map to be 23 kb.

By combining the two maps we were able to obtain directly an elusive quantity empir-

ically, the mapping function. We were able to relate empirically physical distance in kb to

recombination distance by creating an integrated map in Fig. 4.7. There were two limitations

to this mapping function. We found there was substantial variation in the physical size of a

map unit along a N. crassa chromosome (Fig. 5.1), and there were centromere effects on the

physical size of a map unit on all chromosomes of N. crassa when combined with the earlier

finding of [12] for linkage group VII.

With such an integrated resource in hand, the integrated physical and genetic map can

be used to evaluate other data sources, such as the N. crassa genomic sequence. Having

constructed a high resolution integrated physical and genetic map, we were now in the

position to evaluate the strategy of a whole genome shotgun approach. The cost of the 23

kb resolution integrated map was $468,000 over a period of 5.8 years. The cost of the > 20-

fold whole genome shotgun of N. crassa was $6,000,000 over two years. Each was generated

independently.

The limitations of the whole genome shotgun approach was substantial incoherence

between the integrated map and genomic sequence above 9 Mb in a genome with only

10% repeats ( [37]; [34]; [24]). The coherency of the integrated map vs. that of genomic

sequence with the genetic map was about the same (Table 4.2). The likelihood function

as a criterion did not strongly differentiate between the order of markers generated by the

genomic sequence (Table 4.1) and that of the integrated physical and genetic map at 23 kb

resolution.
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The major purpose of generating the physical map was to address one question. How are

repeats distributed in the genome? Previous work [52] had shown that the relative A. nidulans

had a non-random alternating repeat structure much like more complex eukaryotes [52]. The

question naturally arose whether or not N. crassa had a similar genome organization. The

reason that there might be a difference from A. nidulans is that N. crassa has a process called

Repeat-Induced Point mutation (or RIPing) to remove repeated DNA sequences (Selker et

al., 2003). In fact most of the repeats in the genomic sequence show evidence of RIPing [24],

and most of the RIPed sequences show evidence of methylation as well, which has the effect

of silencing their expression. The N.crassa genome, in contrast to the A. nidulans genome,

thus has a belt-and-braces strategy to control repeated DNA, such as might be introduced

by a virus or other foreign DNA.

The observation is that N.crassa has a similar genome organization to A.nidulans. There

is evidence for the nonrandom alternating pattern of repeated DNA sequences detected in the

A.nidulans genome [52] as evidenced in Fig. 4.9. These are repeats in addition of the rDNA

cluster on linkage group V and the centromeric/telomeric sequences. The dual strategy of

RIPing and methylation appears not to be completely effective.

In summary, we have successfully addressed three fundamental questions. We have suc-

cessfully integrated physical and genetic maps by the method maximum likelihood to achieve

long range continuity of the physical map and to specify empirically the mapping function.

Second, we have determined the limitations of the whole genome shotgun sequence approach

and found substantial incoherence between an integrated map and genomic sequence above

9 Mb. Finally, we have exploited the physical mapping strategy here based on chromosome-

specific libraries to show that the genome organization of DNA sequence repeats in N.crassa

is largely non-random away from telomeres, centromeres, and the rDNA cluster.

The work here suggests two new methodological problems to be addressed in the future.

The first problem has to do with genetic and physical map integration. With semi-parametric

characterization of the mapping function in Fig. 5.1, it is possible to envision a constraint

between the spacings and average insert size and the exchange probabilities so that the

exchange probabilities and spacings are no longer independently varying parameters under
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the model. The semi-parametric character of the proposed mapping function could be

designed to maintain one of the standard functional forms, but be allowed to vary about

the standard form to account for local fluctuations in recombination rate and centromere

effects. The maximization of the likelihood could then be pursued subject to this mapping

function constraint using the semei-parametric mapping function. In the second problem it

is clear that we can expect incoherencies between an integrated map and genomic sequence.

A new method is necessary for modeling the assembly process so that a joint likelihood for

crossing data, hybridization data, and sequence reads (possibly traces) simultaneously can

be developed to resolve rationally these discrepancies.
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Figure 5.1: A. Plot of size of map unit in kb versus distance from centromere. B. Plot of
recombination fraction r as a function physical distance d (kb) or mapping function in blue.
The curve in red is a modification of the [28] mapping function to r = (2/3)(1 − e(−2d/a)),
where a = (average physical distance between markers on integrated map/ average physical
distance between markers on the integrated map



Bibliography

[1] A. Agresti. Categorical Data Analysis. Wiley-InterScience, 1990.

[2] V. Aign, U. Schulte, and J. D. Hoheisel. Hybridization-based mapping of Neurospora

linkage groups ii and v. Genetics, 157:1015–1020, 2001.

[3] R. W. Barratt, D. Newmeyer, D. D. Perkins, and L. Garnjobst. Map construction in

Neurospora crassa. Advances in Genetics, 6:1–93, 1954.

[4] J. Bennett and J. Arnold. Genomics of Fungi. The Mycota VIII. Biology of the Fungal

Cell, pages 267–297. Springer-Verlag, NY, NY, 2001.

[5] S. M. Bhandarkar, J. Huang, and J. Arnold. Parallel Monte Carlo methods for physical

mapping of chromosomes. Proc. IEEE Bioinformatics Conference, pages 64–75, Stanford

University, Palo Alto, CA,, August 14-16 2002.

[6] S. M. Bhandarkar, J. Huang, and J. Arnold. A parallel genetic algorithms for phys-

ical mapping of chromosomes. Proc. IEEE Bioinformatics Conference, pages 567–572,

Stanford University, Palo Alto, CA,, August 12-14 2003.

[7] S.M. Bhandarkar, J. Huang, and J. Arnold. An information theoretic approach to

genome reconstruction, chapter:11. Handbook of Computational Molecular Biology

(S.Aluru(ed.)). CRC Press, Boca Raton, FL, pages 11–1–11–26, 2006.

[8] S.M. Bhandarkar, S.A. Machaka, S. Shete, and R. N. Kota. Parallel computation of a

maximum-likelihood estimator of a physical map. Genetics, 157:1021–1043, 2001.

[9] D. E .A. Catcheside. Genes in Neurospora that suppress recombination when they are

heterozygous. Genetics, 98:55–76, 1981.

155



156

[10] D. E. A. Catcheside. A restriction and modification model for the interaction and control

of recombination in Neurospora. Genetic Research, 47:157–165, 1986.

[11] E.A. Catchpole and B.J.T Morgan. Detecting parameter redundancy. Biometrika,

84:187–196, 1997.

[12] M. Centola and J. Carbon. Cloning and characterization of centromeric dna from

Neurospora crassa. MCB, 14:1510–1519, 1994.

[13] J.G. Chakravorty and P.R. Ghosh. Higher algebra including Modern algebra. U.N.Dhur

and Sons Private Ltd, 1996.

[14] L. Clarke and J Carbon. The structure and function of yeast centromeres. Ann. Rev.

Gen, 19:29–55, 1985.

[15] The International HapMap Consortium. A haplotype map of the human genome.

Nature, 437:1299–1320, 2005.

[16] R.W. Cottingham, Jr., R.M. Idury, and A.A. Sch äffer. Faster sequential genetic linkage
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