

 `

HQ-DoG: HIERARCHICAL Q-LEARNING IN DOMINATION GAMES

by

ALLEN TAYLOR III

(Under the Direction of Walter D. Potter)

ABSTRACT

 This thesis presents HQ-DoG, an algorithm that uses hierarchical Q-learning to learn a policy that

controls a team of ten soldiers in a video game environment to compete in the gametype known as

domination. Domination is a game where two opposing teams compete for possession of three different

positions on a map. The team that holds the most positions for the longest amount of time wins the game.

HQ-DoG uses three Q-tables that represent a captain and two subordinate lieutenants connected in a

hierarchical structure. Together the captain and lieutenants learn where to deploy soldiers across the

environment in different circumstances and how many soldiers should be sent to different targets. HQ-

DoG is tested against a series of strategies that exhibit different levels of sophistication in playing

domination, and the results show it is able to learn a competitive strategy given enough time.

INDEX WORDS: Reinforcement Learning, Hierarchical Reinforcement Learning, Q-Learning,

Artificial Intelligence, Games, Video Games, Domination

HQ-DoG: HIERARCHICAL Q-LEARNING IN DOMINATION GAMES

by

ALLEN TAYLOR III

BS, North Carolina Central University, 2008

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012

© 2012

Allen Taylor III

All Rights Reserved

HQ-DoG: HIERARCHICAL Q-LEARNING IN DOMINATION GAMES

by

ALLEN TAYLOR III

 Major Professor: Walter D. Potter

 Committee: Prashant J. Doshi

 Khaled Rasheed

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2012

iv

 This thesis is dedicated to my family and friends who helped me and gave me support.

v

ACKNOWLEDGEMENTS

 I would like to thank the faculty of the University Of Georgia Institute Of Artificial Intelligence

and the Computer Science Department for everything they have taught me.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

INTRODUCTION .. 1

Chapter 1 BACKGROUND.. 3

1.1 Motivation ... 3

1.2 Domination Gametype .. 3

1.3 AI and the Gaming Industry.. 4

Chapter 2 THEORY ... 7

2.1 Agent Organization ... 7

2.2 Control Systems .. 13

Chapter 3 RELATED WORKS .. 22

3.1 Game Industry FPS AI .. 22

3.2 Control of Individual Soldiers .. 27

3.3 Control of a Team of Soldiers ... 29

Chapter 4 HQ-DoG METHODOLOGY AND IMPLEMENTATION... 36

4.1 Simulation Environment ... 36

4.2 Captain’s Process .. 39

vii

4.3 Lieutenant’s Process ... 42

4.4 Soldier Deployment .. 46

4.5 Different Soldier Behavior .. 47

Chapter 5 RESULTS AND DISCUSSION .. 49

5.1 Opponent Strategies .. 49

5.2. Experimental Results ... 53

5.3 Discussion ... 69

CONCLUSION ... 71

REFERENCES ... 73

Appendix A – Captain States and Actions .. 77

Appendix B – Lieutenant State and Actions ... 80

viii

LIST OF TABLES

Page

Table 1 - Captain Q-table vs. (5,5,0). Lost point A & B. Captured point C ... 61

Table 2 - Captain Q-table vs. (5,5,0). All points neutral ... 62

Table 3 - Lieutenant's Q-table vs. Static Strategy (5,5,0) ... 62

Table 4 - Captain Q-table vs. (4,4,2). Lost point A. Captured points B & C. ... 63

Table 5 - Captain Q-table vs. (4,4,2). Lost points A & B. Captured B ... 64

Table 6 - Captain Q-table vs. (3,4,3). All points neutral. .. 65

Table 7 - Captain Q-table vs. (3,4,3). Lost point A. Captured point B. Point C is neutral 65

Table 8 - Captain Q-table vs. (3,4,3). All points captured .. 66

Table 9 - Defense Lt.'s Q-table vs. Static Strategy (3,4,3) .. 66

Table 10 - HQ-DoG vs. Static Strategies (6,2,2) and (8,1,1) .. 66

Table 11 - HQ-DoG vs. Static Strategy (4,4,2) 1000 Games .. 68

Table 12 - HQ-DoG vs. Static Strategy (4,4,2) Second 500 Games .. 68

ix

LIST OF FIGURES

Page

Figure 1 - Hierarchical organization with managerial and operational roles .. 9

Figure 2 - Same agents but in different hierarchical organization .. 11

Figure 3 - Comparison among MDPs, SMDPs, and Options ... 13

Figure 4 - Task graph of two robots that must cooperate to clean an office room 19

Figure 5 - Evaluation of different moves on chess board. Consider threats from other pieces 23

Figure 6 - Path finding evaluates positions' danger from threat, not just distance to goal 23

Figure 7 - Evaluation of different positions in game. Consider enemy lines of fire and mobility 24

Figure 8 - Three state finite state machine used in F.E.A.R. .. 25

Figure 9 - Specify the goals (rectangles) and their actions (circles) independently of each other 26

Figure 10 - Automating interaction between goals and actions .. 26

Figure 11 - A simplified environment used to model Counter Strike ... 27

Figure 12 - A more complex environment used to model Counter Strike .. 28

Figure 13 - Task decomposition of HTN .. 30

Figure 14 - The domination map used for HQ-DoG ... 38

Figure 15 - Steps of the HQ-DoG algorithm starting from sensing the game environment 39

x

Figure 16 - Lieutenant Soldier Allotment vs. Captain Target Decision.. 43

Figure 17 - Different subset of actions Ai can be chosen based on current state .. 44

Figure 18 - Win/Loss chart of HQ-DoG vs. Greedy Strategy ... 55

Figure 19 - Score Difference of HQ-DoG vs. Greedy Strategy .. 55

Figure 20 - Win/Loss chart of HQ-DoG vs. Static Strategy (5,5,0) .. 56

Figure 21 - Score Difference of HQ-DoG vs. Static Strategy (5,5,0) ... 56

Figure 22 - Win/Loss chart of HQ-DoG vs. Static Strategy (4,4,2) .. 57

Figure 23 - Score Difference of HQ-DoG vs. Static Strategy (4,4,2) ... 57

Figure 24 - Win/Loss chart of HQ-DoG vs. Static Strategy (3,4,3) .. 58

Figure 25 - Score Difference of HQ-DoG vs. Static Strategy (3,4,3) ... 58

Figure 26 - Win/Loss chart of HQ-DoG vs. Random Strategy ... 59

Figure 27 - Score Difference of HQ-DoG vs. Random Strategy .. 59

1

INTRODUCTION

 This thesis presents HQ-DoG (Hierarchical Q-Learning in Domination Games), an algorithm

which controls a team of agents in a video game environment, and attempts to learn a winning policy for

the gametype known as domination (see Section 1.2). In domination, there are multiple spots in the game

map called domination points that a team must capture in order to score points. The more spots captured,

the faster points are accumulated. The challenge is to create an algorithm that effectively directs the team

towards a winning strategy. The algorithm has to observe the environment and make decisions about

when to capture and defend different spots. This is an important topic in the gaming industry, especially

for the first person shooter (FPS) genre where domination is most often used. Players do not always want

to compete against other humans; sometimes they are not able to play against humans, perhaps from lack

of an internet connection. Other times there is a learning curve to the game that players must overcome to

be competitive against other people. These obstacles should not prevent them from having an experience

where they can play on a team against another team. That is why games have modes where a person can

play with and against in-game agents, called soldiers. It is important that the soldiers seem competent to

make the user experience more realistic and entertaining. This includes appearing to work together as a

team.

 The organization of the team of soldiers can be made very similar to that of a military. There is a

person in charge at the top who has the final say on major matters. Under the highest leader there are

people with less authority relative to the leader, but who still have enough power to do their separate jobs.

The composition of this authoritative body depends on the scale under consideration. At the largest scale,

it might be the President and the Joint Chiefs of Staffs, but at the other end of the spectrum, it might be

the captain of a platoon and its lieutenants. This smaller side is the scale at which video games use a team

of soldiers, and it is the inspiration for the control system used in this thesis. Soldiers are treated as if they

are in a platoon. There is a hierarchical structure to the platoon where a captain soldier is the direct

2

superior to two lieutenant soldiers, one in charge of offense and the other in charge of defense. Each

lieutenant has a team of soldiers under their command, and together with the captain they direct the entire

platoon on what domination points to attack and defend and how many soldiers to commit to each target.

 Layered on top of this hierarchical structure is a decision-making process that uses hierarchical

reinforcement learning (HRL). Reinforcement learning is a machine learning (ML) approach that teaches

agents to make decisions in an environment based on the rewards given for different actions. HRL teaches

in the same way but breaks up the decision making responsibility into a hierarchy of tasks and subtasks.

Because the soldiers are already modeled as a hierarchy, HRL intuitively maps onto the team. The captain

and lieutenants each get their own task to learn. The captain learns to make broad strategic decisions

based on the environment and the lieutenants learn the most rewarding way to complete their separate

tasks and follow orders given to them by the captain. Soldiers do not learn; they only do what they’re

told. HRL allows for learning how to control the team during the game, but does not place the entire

responsibility on one soldier. It divides the duty as you would see in the army. For these reasons this

thesis attempts to show that the combination of hierarchical organization and hierarchical decision-

making can produce a winning policy for a team of agents in a militaristic video game environment.

3

Chapter 1 BACKGROUND

1.1 Motivation

Modern video games use simple artificial intelligence (AI) techniques for tasks such as path

finding and simple decision making. As attention shifts from graphical fidelity to realistic behavior and

gameplay, more advanced AI techniques will have to be implemented. One of the techniques gaining

notice is the use of agents to control non-player characters (NPCs). This thesis employs a hierarchical

decision making process which explicitly establishes coordination as well as lines of communication

among the NPC agents. It reduces the state-action space of the decision making domain by breaking the

space into smaller coherent pieces and assigning those pieces to individual agents at different levels. This

divide and conquer strategy allows the overall goal to be achieved by breaking it into sub-goals that can

each be accomplished separately. The strategy is applied to a set of agents working together as a team to

play the gametype known as domination. In this gametype, the team tries to capture and maintain

ownership of three territories in a computer game against another team of agents trying to do the same

thing.

1.2 Domination Gametype

 Domination is a gametype that rewards overall team strategy and not individual performance. It is

defined by key locations on the map called domination points owned by each side. A team captures a

domination point by going to the spot and holding it for a specific interval of time after which point it

becomes theirs. Players are able to fight each other in the map. When a player dies, they are respawned

randomly elsewhere on the map at what are called respawn points. When playing, the advantage doesn’t

come directly from killing the opponent. It comes indirectly from capitalizing on the absence of the

opponent as a result of their death, giving the player the opportunity to capture a point or continue

defending it from future assailants. Good domination gameplay needs coordinated team strategy. Human

players don’t control each other while playing, but the best performance occurs when they communicate

4

with each other and work together. Domination games are stochastic, adversarial, and deal with a partially

observable environment. Typically a player only knows the position of the enemies that are seen, and

perhaps whether or not different domination points are being captured or lost. This is why domination is a

suitable test bed for team-based AI (Hogg, Lee-Urban, Munoz-Avila, Auslander, & Smith, 2011).

1.3 AI and the Gaming Industry

Video games are becoming ever more popular and influential in the entertainment industry both

domestically and abroad. A recent video game from game publisher Infinity Ward called Call of Duty 4:

Modern Warfare 2, released in November of 2009, broke worldwide records for its initial 5 day sales

figures. In its first week it sold over 5 million copies (Walton, 2009) and had total overall sales of over

$550 million. At the time this was more than any other form of entertainment in history including movies,

music, and books (O'Connor, 2009). Two years later the sequel to this game (Call of Duty 4: Modern

Warfare 3) had even bigger sales. It reportedly sold 6.5 million copies and $400 million, in its first 24

hours (MacDonald, 2011).

 As the hardware on which games are played pushes the limit of how realistic the graphics can be,

more attention will be paid to the actual game play. Focus will change from graphical fidelity to more

complex behavior including natural interaction among NPCs and higher cognition used to control them

(Dignum, Westra, van Douesburg, & Harbers, 2009). In the future, in-game AI will be an increasingly

important factor in making games more interesting, challenging, and fun. The majority of AI in

contemporary games is controlled by scripting, finite state machines (FSMs), some sort of rule-based

system, or behavior trees (Miikkulainien, 2006), (Bourg & Seeman, 2004), (Champard, 2007). These

techniques are limited though because they fall back on the designer to anticipate different scenarios the

player might encounter in the game. Unfortunately even the most impressive AI done in this fashion can

become repetitive and then the focus of the game is reduced to memorizing the patterns and defeating

them (Miikkulainien, 2006). Future games must contain AI that is capable of more than just immediate

reactionary behavior. They must be capable of making plans then acting to achieve those plans. This

cannot be done with state-machines (Dignum, Westra, van Douesburg, & Harbers, 2009).

5

 FSMs have the advantage of providing a simple mechanism to edit behavior, but they don’t scale

well to large systems. Also their code isn’t modular; states are not reusable for different goals without

connecting them in a different way. Hierarchical FSMs (HFSMs) are used to solve the issue of scalability,

but they still don’t solve the problem of modularity and reusability. Behavior trees are the latest popular

tool to control game behavior, and they try to ensure modularity and reusability by removing the state-

transition logic that would normally be found in an FSM. States become self-contained behaviors with a

collection of actions without transition code to an external state (Champard, 2007). Behavior trees have

been used in recent games like Halo Reach and Red Dead Redemption. They have been applied to areas

like squad logic and strategy AI. Since 2011 a second generation of behavior trees has been employed in

commercial games, and they have more layers of decision that build up and more options to choose from

than their smaller first generation counterparts (Champard, 2012b). However, behavior trees are still static

and rely on the domain knowledge of their designer to create proper behavior.

 The future of the game development industry lies with advanced AI technologies like multi-agent

systems (MAS) and ML, but despite the benefits of advanced AI, retail game producers have been

somewhat reluctant to take advantage of them over the past few years. There are numerous possible

reasons for this. One may be that ML and MAS are designed to adapt and are thus non-deterministic by

nature. This makes it extremely difficult for developers to test and debug (Bourg & Seeman, 2004). Non-

deterministic behavior may also show up in the game itself, even after testing, as a result of the learning

process, which could produce undesirable game play (Mikkulanien, Bryant, Cornelius, Karpov, Stanley,

& Yong, 2006). It’s the responsibility of the game developer to create an entertaining experience with

agents that seem intelligent from a human’s point of view. Game developers have to satisfy the subjective

notion of what it means for a game to be “fun”, a constraint researchers may not necessarily have to

contend with. Researchers must build algorithms that prove the efficacy of their methodology. While they

do have to deal with issues like efficiency and practicality, researchers’ primary concerns are liable to be

more academic than anything else. “Fun” is not so much an issue as “effective” is. These two obligations

are not always reconcilable (Mikkulanien, Bryant, Cornelius, Karpov, Stanley, & Yong, 2006).

6

 Another possibility is that it may just be the fact that the present level of technology within

entertainment software has proven adequate to drive games to their current degree of success. 2011 was a

year of many sequels including Gears of War 3, Call of Duty 4: Modern Warfare 3, Uncharted 3, Killzone

3, Crysis 2, and F.E.A.R. 3, which some in the game industry have attributed to a lack of innovation

(Champard, 2012a) Game producers might feel incorporating advanced AI into games is too big a risk to

invest in right now (Miikkulainien, 2006). Due partly to the recession, research budgets have been

reduced, and games have developed as much of the simple AI as they can so progress into more advanced

techniques has been slow. On top of that it has been a problem for AI developers to convince game

designers that AI can be incorporated into areas such as animation, behavior, and reasoning to make the

entire game programming endeavor faster and cheaper with less effort (Champard, 2012a). In the end it

may simply fall on researchers to prove the efficacy of advanced AI techniques if there is to be any

significant move on this front.

 From the perspective of the AI community, games form a good test bed for ML and MAS

simulation. Many research issues can be safely applied and studied in games like real-time reactions in a

stochastic environment, management of multiple (possibly conflicting) goals, team work, and the

incorporation of personality and emotion into agents as well as their effect on behavior (Lees, Logan, &

Theodoropoulos, 2006). Early AI for games used symbolic knowledge representation because it worked

well with card games and board games like chess, checkers, backgammon, and poker. Modern video

games have highly dynamic environments with multiple characters both player-controlled and NPCs. FPS

games like the F.E.A.R, Killzone, and Unreal Tournament franchises are good examples of this. Their

NPCs must respond quickly to ever fluctuating environments that have things like the collapse of

buildings and infrastructure and the changing of objective positions like in capture the flag. ML

techniques thrive in the type of environment found in modern games. As such, these types of games

should be considered a viable platform to test and commercialize more advanced ML and multi-agent

techniques (Miikkulainien, 2006).

7

Chapter 2 THEORY

2.1 Agent Organization

One of the most fundamental aspects of designing a MAS is deciding how the agents are to be

organized within it. This is a very important question because its answer will dictate other critical factors

like the amount of agents the system can handle, the degree of cooperation among the agents, what type

of communication is allowed, if any, and the protocols needed to facilitate it all (Kraus, 1997).

Organization deals with how the agents are structured and controlled and that structure can be either

centralized or decentralized depending on the needs of the developer and the nature of the environment in

which the agents will be deployed. Both have pros and cons that must be studied carefully.

2.1.1 Decentralize vs. Centralized

Decentralized control is often employed on systems that require a distributed architecture, over a

network for example. Agents in this type of system usually have a greater level of autonomy because they

have more decision making responsibility. There is no higher authority telling them what to do, so they

must make many choices for themselves (Dignum, Dignum, & Sonenberg, 2004). An example of this is

in team sports, like Robo Soccer, where agents have to individually decide on their own actions (Mohd

Shukri & Mohd Shaukhi, 2008). Web programs that “crawl” the internet are another example of

decentralized control. Agents might go out searching through webpages then return with the desired

information without a centralized hub directing where they go or how they behave as they search. It is

common to approach MAS as a gathering of autonomous agents with little structure. The resulting system

is dynamic in that agents are not burdened with a centralized thinking process that may not work well in a

distributed environment. On the other hand, it becomes more difficult to collectively control the agents.

Communication becomes harder to implement, and if there is no explicit communication, any visible

cooperation is potentially emergent and not necessarily designed (Ferber & Gutknecht, 1998).

8

More centralized structure is needed for the purposes of this thesis; the goal is to coordinate the

agents in a team effort to achieve multiple objectives. A chain of command where supervisor agents hand

down instructions to their subordinates is used to do the job instead of relying on fully autonomous agents

and emergent behavior. There are three levels in the chain. A captain is at the top, in charge of the entire

team. At the second level there are two lieutenants, one responsible for offense, the other responsible for

defense. At the bottom of the chain of command are the soldiers that complete orders given to them.

Neither the captain nor the lieutenants are actually in the game environment; they are only represented

abstractly by the orders they give. Only the soldiers are embodied with a virtual presence inside the

environment. Although not as flexible as a decentralized approach, this allows the captain and lieutenants

to evaluate the environment and make global decisions for the entire team. An explicit illustration of

global constraints, represented by the state of the environment, and the solution, represented by the

actions being executed, can be kept at all times (Bensaid & Mathieu, 1997). It is much harder to do this

with a decentralized system where each agent has its own view about the world state. Not all the agents

require higher decision making abilities; the soldiers need just enough to carry out the low-level orders

they are given. This compartmentalization of responsibility allows each agent to focus and limit its

reasoning to the best action for its immediate responsibility (Dignum, Dignum, & Sonenberg, 2004).

This sort of team effort with different objectives lends itself to a hierarchical organization of the

soldiers, as in the military or a large corporation (Wooldridge, Jennings, & Kinny, 1999). Hierarchies are

natural structures for task delegation among agents (Routier, Mathieu, & Secq, 2001) because they are

able to break down complex tasks. An agent decomposes a problem into smaller problems and assigns

them to agents lower down in the chain. Agents repeat this process until problems are decomposed to the

point where they can be solved by single agents. Divide and conquer allows the hierarchical approach to

scale well with larger organizations of agents. It also clearly delineates authority and responsibility among

the agents by giving each agent a role (Ghijsen, Jansweijer, & Wielinga, 2010).

9

2.1.2 Agent Roles and Relationships

MAS organizations are defined by both their structure and the roles their agents play. This

includes the way the agents are arranged, the way they interact, and the relationships among their

respective roles (Ferber & Gutknecht, 1998). These roles are characterized by the set of skills needed to

fulfill them. Skills are the competencies an agent has and they govern the different roles an agent can play

in the organization (Glaser & Morginot, 1997). When these competencies are implemented as a set of

coherent functions it allows roles to be dynamically assigned to and withdrawn from agents as the

situation demands. This promotes modularity and reuse of functionality (Routier, Mathieu, & Secq,

2001).

The relationship among roles is directly dependent on the hierarchical structure of the

organization. The two most basic roles are operational and management. The hierarchy allows a manager

agent to be in charge of multiple agents at a lower level, irrespective of their roles. Any agent that is the

boss of another agent must at least play a manager role. As long as the rules permit, an agent can play

both a manager and operational role at the same time. An operational agent performs tasks that impact the

completion of the organization’s goals. Manager agents are responsible for the coordination of these

operational tasks (Ghijsen, Jansweijer, & Wielinga, 2010). By enforcing these rules, a tree-like structure

is formed among the agents, as in Figure 1. To monitor goal progress and implement actions, information

must pass among the agents.

Figure 1 - Hierarchical organization with managerial and operational roles

10

In a hierarchy, information flows down the structure in the form of orders and requests for new

information from upper management. Lower level agents use this information to carry out their orders or

gather intelligence for the requests. Information flows back up the architecture pertaining to the success or

failure of objectives and other data pertinent to maintaining and updating plans. This type of architecture

allows higher levels to pass down goals and context while the lower levels send up sensory information

(Atkin, Westbrook, & Cohen, 1999). The information that travels up the chain can come from multiple

sources simultaneously and converge into a single manager. This information might need to be

aggregated, meaning the information is fused together, abstracting it and making it simpler to understand.

Abstraction makes it easier for boss agents to receive potentially large amounts of information from

multiple subordinate agents. An agent in a management role needs to know the capabilities, status, and

responsibilities of the agents under its control (Ghijsen, Jansweijer, & Wielinga, 2010).

2.1.3 Organizational Reconfiguration and Adaptation

Because organizational structure and agent roles are related, a change in one may change the

other. Structural change is defined as moving an agent to a new position in the hierarchy somewhere other

than its current place. The general hierarchical nature is maintained, but its tree-like structure before and

after the reconfiguration is not identical. One of the main reasons for allowing the structure to be able to

change is so that it can adapt to a stochastic environment. For example, the lieutenant in charge of the

team’s offense may need more soldiers under its command, meaning soldiers will have to be taken from

under the defensive lieutenant’s chain of command. With respect to the hierarchical representation of the

organization, this corresponds to shifting the selected soldiers from the branch of the tree under the

defensive lieutenant to another branch under the offensive lieutenant. Adaptation of this type requires that

the system be able to monitor its current status and implement actions to preserve or salvage it. These

actions include reconfiguration of agent positions in the structure as described above.

When it comes to roles, the distribution of roles to the agents in the organization can be thought

of as the current behavioral convention that the system employs. Dynamic adaptation in terms of the

relationships among agents means changing from one convention to another with the reassignment of

11

roles (Glaser & Morginot, 1997). Take the structural change described above for example. The soldier

agents under the defensive lieutenant all have defensive roles which may be drastically different from the

roles played by the soldiers under the offensive lieutenant. If the offensive lieutenant receives more

resources, and solders are transferred under its command, this constitutes a new behavioral convention

because there has been a redistribution of roles. The agents that once played a defensive role are now

playing an offensive role which, depending on the implementation of the system, may accomplish a

completely different task. The structural reconfiguration implicitly causes a reconfiguration in roles which

can lead to a change in behavior for the entire system, namely one that exhibits more aggression. The

same principle holds true when switching agents from an offensive to defensive role. Figure 2 has the

same agents that are presented it Figure 1. It demonstrates how agents in one hierarchical structure can be

rearranged into another with a different role assignment.

Figure 2 - Same agents but in different hierarchical organization

Reconfiguration should increase the overall utility of the organization, meaning the team

somehow performs better in the new arrangement than it did in the previous one. Managerial agents in

charge of reorganization, in this case the captain and lieutenants of the team, must reason about changes

in the environment and decide how the system adapts to those changes (Dignum, Dignum, & Sonenberg,

2004). The alternative to developing a system that can adapt is trying to build a system robust enough to

12

predict and handle all foreseeable events. However this is difficult to accomplish as it is nearly impossible

for a designer to predict all the conditions of a stochastic environment. Therefore it is better to give the

organization a degree of flexibility; the approach of dynamic adaptation typically performs better than

prediction (Ghijsen, Jansweijer, & Wielinga, 2010).

By changing its structure and roles, a dynamic architecture is able to balance its workload among

the agents and ensure that no bottlenecks occur (Routier, Mathieu, & Secq, 2001). However, the change

must be orchestrated by an agent in a managerial role, which can happen in various ways. A manager

agent can tell a subordinate agent to abandon or adopt a specific role, be it operational or managerial. A

manager agent can tell a subordinate agent to go work for another subordinate agent. With this change,

authority relationships must be broken and recreated somewhere else in the hierarchy. Agents can be

thought of as scarce resources of the system, and arbitration of the utilization of those resources is left up

to managerial agents (Atkin, Westbrook, & Cohen, 1999). This allows agents to be assigned different

tasks as the need arises (Ghijsen, Jansweijer, & Wielinga, 2010). For example in a domination game,

more agents may need to be assigned to help capture a specific point if the enemy is putting up too

staunch a resistance. On the other hand more agents may need to be assigned to play defense if there is a

comfortable lead over the opposing team and it is more prudent to try to defend the currently possessed

points rather than spread the team thin trying to capture more points.

The problem with doing rearrangement is finding the right distribution of agents across the

hierarchy. Just because an agent can be moved or given a different role does not mean that it should be. In

the case of this thesis, there is the danger of becoming too offensive or too defensive at the wrong time.

Overstretching the forces to capture more domination points can lead to all your forces being defeated and

losing all points. However, too conservative an application of forces leads to not enough points gained.

Also the process of reconfiguration should not be cumbersome on the team. There is the risk that

reorganization can take too long, which could be harmful to the performance of the team in a fast-paced

environment like a video game where the opponent team is always active. Reassignment should be

efficient and not detract significantly from the execution of other actions.

13

2.2 Control Systems

Once an organization has been established for the agents, a control mechanism must be put into

place. The mechanism is responsible for guiding the actions of the agents and controlling how they

respond to changes in the environment, such as when a domination point is lost or when a substantial

portion of the team is killed and respawned somewhere else. Traditionally planning is used for action

selection; however, planning focuses on search, optimization, and much deliberation before decisions are

made. It excels when applied to mathematics or board games where there is time to look for the optimal

solution between moves. Dynamic games need a more efficient approach because they are typically fast-

paced and real-time, thus the use of a control system would make better sense. Control systems do not

have the luxury of extensive online planning. Online planning searches for the best solution to a problem

concurrently as the algorithm is running as opposed to offline planning, which searches before run-time

and then implements the solution when needed. Action is continuous and time sensitive because lag

between observation and action can lead to destabilization and poor performance (Albus, Anthony, &

Roger, 1981). Given these constraints it is not the absolute goal of a control system to find the optimal

solution, but to find the best possible solution within a reasonable amount of time. There are many

approaches to accomplish that.

2.2.1 Markov Decision Processes

A common methodology for agent decision making is the use of Markov Decision Processes

(MDPs). MDPs choose their next course of action based solely on the current condition of the

environment. Previous states and choices are not taken into account. They can be used for games because

games typically have large state spaces, need problem solving to succeed, and often use sequential

decision making (van Eck & Wezel, 2008). MDPs are characterized by the tuple 〈 〉 which define

their states, available actions, transition probabilities, and immediate rewards. With these a policy and

performance metric are defined as well. State is defined by the one or more variables required to describe

the system at any given time. Actions are the controls or commands issued by the system, dependent on

the system’s current state. Actions directly affect the next state of the system. A state-action pair is the

14

tuple of a state of the environment and one of the possible actions that can be taken from that state.

Associated with each state-action pair is a probability that the system will successfully transfer from the

current to desired state given the action taken. These probabilities grow exponentially with the number of

states and actions. After each transition from one state to another, the system receives an immediate

reward, either positive or negative, indicating the utility of being in that state. A policy is the directive

that specifies the course of action to take from each possible state. A performance metric grades the

overall quality of a given policy. The general point of the MDP is to choose the optimal policy that

maximizes the utility of the system (Gosavi, 2009).

2.2.2 Dynamic Programming

 MDPs are traditionally solved with a class of algorithms that are guaranteed to produce the

optimal policy, known as dynamic programming (DP). DP is a recursive technique that solves a small

subset of the MDP then iteratively finds the optimal policy for larger areas of the state space. The

problem with DP is that it is susceptible to poor performance in the presence of two conditions. The first

condition is called the curse of dimensionality and occurs when the state space of the domain is too large,

in the millions for example, and it becomes implausible to try to store all the states. The second condition

is called the curse of modeling. DP requires perfect knowledge of the domain in terms of the random

parameters of the system and the exact values of transition properties from one state to another, and it can

be difficult to derive these based on the nature of the model (Gosavi, 2009) (van Eck & Wezel, 2008).

Reinforcement learning (RL) is a technique used to solve MDPs similar to DP but does not suffer from

the same problems. The two are similar in that they both seek to learn value functions in order to find an

optimal policy, however RL does not have to cope with the curse of modeling. It learns value functions by

interacting with the environment directly or a simulation thereof (Gosavi, 2009). Instead of using

transition probabilities, it repeatedly observes the consequences of randomly choosing an action from a

particular state and records the results to find a near optimal policy (van Eck & Wezel, 2008).

15

2.2.3 Q-Learning

 One of the most common methods for RL is called Q-learning. Q-learning involves storing Q-

factors, each of which is comprised of a unique state-action pair of the domain. Associated with each Q-

factor is a real number which is initially set to a sufficiently low number (usually zero). Learning

commences by running a simulation of the domain in which the learner repeatedly chooses actions based

on the current state and then receives feedback based on the utility of the following state. If the feedback

for arriving at a certain state based on a previous action is good then the Q-factor of that previous state-

action pair is increased; if the feedback is negative the value is decreased. After a large number of steps

have been taken, all the Q-factors associated with each state are evaluated. The factor with the highest

value is deemed the best, and thus the action tied to that factor will be the one chosen for that state in the

future (Gosavi, 2009). Algorithm 1 shows the Q-learning algorithm.

Algorithm 1 Q-Learning Algorithm

1. Initialize each state-action pair (s,a), ()

2. Observe State

3. Choose action

 ()



4. Perform action and observe new state . Calculate reward r.

5. Update Q-table for previous state-action pair

 () () () (())

6. Current state becomes new state. Go to step 3

In the above algorithm, is the learning rate and it controls how much influence the utility of the current

state and the max expected utility from this state will have on the Q-factor of the previous state. The

discount factor is represented by and determines how important future rewards are to the decision

process, whether the learner values immediate reward over long-term gain. Long-term gain is calculated

by finding the Q-factor whose action maximizes value over all possible actions that can be executed from

the current state.

The typical way to do Q-learning is to save the value of each Q-factor in what is called the lookup

table approach (using a Q-table). However, Q-learning does not escape the curse of dimensionality. It

cannot use a lookup table if the state-action space is too large. An alternative is to use a function

16

approximation technique like a neural network or linear regression to map the state-action pairs to Q-

values. A neural network can train on a subset of the state-action space and then is able to generalize and

approximate the Q-values for the rest of the space based on key learned features. Neural network Q-

learning solves larger problems than the table lookup version, but is not guaranteed to converge to all the

correct Q-values for the domain because a change of a single neural network weight does not correspond

to the localized change of a Q-value in a look up table. It corresponds to the change of many Q-values at

once, some of which may have been the correct one. In spite of this, this form of Q-learning has been

proven to be effective for domains with large state spaces, like the game of Othello (van Eck & Wezel,

2008).

2.2.4 Semi-Markov Decision Processes

 The problem with regular MDPs is that decisions usually have implications that lead far into the

future; there are more than just the immediate consequences to take into consideration. Actions also

usually take an extended amount of time to complete, but conventional MDPs only move one time step

ahead after each action and then decide the next action. This is where Semi-Markov decision processes

(SMDPs) come into play. With SMDPs the time to transfer from the current state to another can be

greater than one unit (Gosavi, 2009). SMDPs allow actions to be temporally abstracted and continuous,

unlike regular MDPs, whose actions are discrete with time steps that only last 1 unit. Further down in the

theory, SMDPs also support the notion of an option. To discuss options, it is necessary to build the

distinction between primitive actions and extended actions. Primitive actions are simple and singular

while extended actions are more complex and are made up of smaller actions. Standard SMDP theory

treats extended actions as regular actions that just take longer to complete than primitive actions. They are

like little black boxes whose interior cannot be analyzed. An option, on the other hand, overlays SMDP

continuous extended actions onto discrete time MDP actions and analyzes the extended actions in terms

of the base MDP simpler actions. It opens up an extended action to be studied in terms of the primitive

actions it is made of. With this internal examination comes the possibility to change the policies of the

17

underlying MDP as necessary. Options can thus be considered as plans (not to be confused with planning)

that can be changed as needed (Sutton, Precup, & Singh, 1999). Figure 3 shows this overlay.

Figure 3 - Comparison among MDPs, SMDPs, and Options

2.2.5 Hierarchical Reinforcement Learning

The concept of plans and complex actions composed of simpler primitive actions is very

powerful. As robust as RL is, it still has difficulty dealing with domains that have a high number of states.

When the concept of composite actions is applied to reinforcement learning it opens the door to a

methodology called hierarchical reinforcement learning (HRL). HRL gives regular RL the ability to scale

up to large domains by allowing the domain’s tasks to provide a context that limits the scope of its

policies (Ghavamzadeh, Mahadevan, & Makar, 2006). This limitation occurs by breaking the overall task

of the problem into subtasks, which are analogous to the plans described above. The subtasks become

miniature SMDPs in themselves with their own local policies. A subtask is defined by the subset of states

that are directly relevant to it. In this subset, there is the set of states from which the local policy can start,

called the initiation set, and the set of states in which the local policy terminates, called the termination

set. The subtask is also defined by the actions that can be chosen from states in this subdomain. These

actions can either be primitive actions or other subtasks (Mehta, Tadepalli, & Fern, 2009) (Ghavamzadeh,

Mahadevan, & Makar, 2006). Being able to call actions as either subtasks or primitive actions is what

18

allows subtasks to be connected together in a hierarchical directed acyclic structure called a task graph. A

task graph abstracts information not required for the completion of the present subtask by removing

unnecessary states or state variables from consideration in the local policy. This is how HRL combats the

problems caused by the curse of dimensionality.

Given a local policy for each subtask in the structure, a global hierarchical policy is formed for

the entire problem. The execution of the global hierarchical policy is similar to a stack wherein each

subtask is pushed onto the stack as it runs. If the current subtask invokes another subtask, then that child

subtask in pushed onto the stack until it completes its run and then is popped from the stack after it

terminates. If a parent subtask terminates for any reason, all child subtasks that are currently on the stack

terminate and are popped as well (Ghavamzadeh, Mahadevan, & Makar, 2006). Each subtask is generally

built around a sub-goal of the domain. Completing a subtask is thus like solving a component of the

whole problem. Completing the root task is equivalent to solving the entire problem because in order to

solve the root problem, you must first satisfy the sub-goals that it is made of (Mehta, Tadepalli, & Fern,

2009).

HRL easily expands from control of a single agent to control of multiple agents. Coordination can

be effectively learned due to the hierarchical structure of the tasks. It allows agents to learn skills at the

level of cooperative subtasks rather than only primitive actions. Cooperative subtasks can be used to

dictate the jobs whose performance is improved when team work is involved. When they are placed high

in the hierarchy of the task graph, they abstract the tasks that need coordination, making those tasks easier

and faster to learn. This prevents the agents from getting muddied in low-level details found further down

in the hierarchy that hinders progress. Levels of the task graph that have cooperative subtasks are called

cooperation levels, and they define joint-action decision points. These joint spaces only include the local

information of an agent and not the state information of other agents in order to limit the complexity of

the decision process. The joint action space is defined by the union of the children of the cooperative

subtask, be they subtasks themselves or primitive actions. Given just the actions of the other agent(s), an

agent is capable of making competent decisions. Figure 4 shows the task graph of two robots that must

19

cooperate to clean an office room. The root task of cleaning the room is a cooperative subtask because it

requires cooperation between the robots to complete. A single robot must look at the child subtask

(Collect Trash at T1 or T2) chosen by the other robot to decide the best course of action to take for itself.

This level of the task graph becomes a joint-action space. One robot can only observe the actions taken by

the other robot; it doesn’t know its internal state (Ghavamzadeh, Mahadevan, & Makar, 2006).

Figure 4 - Task graph of two robots that must cooperate to clean an office room

As stated before, the local policy of each subtask is modeled with a SMDP; cooperative subtasks

are joint-action, so they are represented by multi-agent SMDPs. Agents attached to a cooperative subtask

must choose extended actions that possibly depend on the actions of other agents. Because of the variable

time scale of SMDPs, different extended actions will end at different times. The designer must determine

when an agent can make its next decision in relation to when its chosen action completes and when the

chosen joint action of the other agents in the cooperative subtask complete. There are three common

strategies for deciding the next decision point τ-any, τ-all, and τ-continue. In τ-any, the next decision

point is set as soon as any agent finishes its current action. The actions still being performed by other

agents are stopped, and each agent selects a new joint action. τ-all waits for all agents to finish their jobs

before the next decision point. Agents who finish before this time will stand idle until all actions are

complete, and then all agents choose a new joint action. τ-continue lets agents make their next choice as

soon as their current action finishes without interrupting other agents that haven’t finished their task.

20

Once an agent completes an action, the next joint action is based on the current actions in the joint space

that the other agents are still running. Both τ-any and τ-all are synchronous strategies because all agents

must make a new decision together. This requires a decision making framework that can synchronize the

agents at decision points. τ-continue is asynchronous because only a subset of agents choose their next

action at each decision point (Ghavamzadeh, Mahadevan, & Makar, 2006). This thesis uses a form of the

τ-all strategy. The lieutenants cooperate in completing their tasks, and before the captain can move to the

next decision cycle and give the lieutenants another set of orders it must wait until they are both ready to

receive new orders.

2.2.6 Belief, Desire, and Intention

 Another methodology capable of high-level command and control is the use of Belief, Desire, and

Intention (BDI) agents. Belief, desire, and intention are the three mental attitudes that a BDI agent has.

Beliefs represent the information about the environment that an agent gathers, stores, and updates. They

can be implemented as logical expressions (like a knowledge base), a set of variables, a standard

database, or any other suitable data structure. There is a distinction between beliefs and knowledge.

Knowledge is absolute whereas beliefs may be inaccurate because they only need to describe the probable

state of the environment. Desires are the motivational part of an agent. They specify what the agent wants

as well as their priorities or rewards and can be produced dynamically based on the current beliefs.

Intentions are the deliberative portion of an agent. They incorporate part of the system’s state to keep

track of the present course of action that was selected to achieve the agent’s goal(s) (Rao & Georgegg,

1995).

Just as in RL, BDI supports extended actions in the form of plans. Plans can have a hierarchical

organization and are decomposable into subtasks and primitive actions (Rao, 1996). Also each plan

centers on a goal and goals can be broken into sub-goals, each of which have an associated subtask or

primitive action (van Oijen, van Doesburg, & Dignum, 2011). The system must be able to change plans

on the fly, for example in the case that a particular action fails or an event in the environment occurs that

forces a change in plans. A balance must be struck because excessive re-planning is too expensive but no

21

re-planning is ineffective in a stochastic environment. The balance between responsiveness to the

environment and determination to complete a goal lies in the notion of commitment. Commitment resides

within the intentions of the system because an agent has no control over its beliefs or desires; however, an

agent can manipulate its intentions. Each intention has two parts, a commitment condition that tells the

state the agent wants to maintain, and a termination condition that tells when the agent should quit the

current goal. Each intention boils down to a partially completed plan. In BDI methodology, plans are

more than just a sequence of subtasks and primitive actions. They are defined by a body and a head. The

body is made of the actions that must be performed for the plan to succeed. The head consists of the event

that triggers the plan, and the precondition that specifies the situation that must be true in order for the

plan to begin execution. This is analogous to the state an (S)MDP must be in before it can choose an

action; the head gives context and dictates the options the system has (Rao & Georgegg, 1995).

22

Chapter 3 RELATED WORKS

3.1 Game Industry FPS AI

 The following are examples of AI used currently by some of the popular commercial games in the

industry. It illustrates how the use of techniques like FSMs is still prevalent.

3.1.1 Kill Zone

 The Killzone franchise is a first person shooter game made by Guerilla Games for the Sony

PlayStation. Its AI uses a technique called procedural combat strategies (PCT) which makes dynamic

decisions for a single soldier, adjusting to the soldier’s combat situation at hand as well as its local terrain.

The combat situation is the combination of the soldier’s threats and goals. After choosing a goal a soldier

performs actions to achieve the goal until it is completed, it comes across a better goal, or the goal fails.

For example a soldier chooses between attacking and positioning. This includes firing its weapon,

selecting a point to get to, and navigating to that point. PCT uses an AI approach popular in games like

chess called position evaluation functions (see Figure 5). Position evaluation functions are similar to

fitness functions you find in evolutionary computation. They combine multiple properties of a particular

goal into a single value with a weighted sum and use these values to compare the pros and cons of

different goals. The properties reflect the competing importance of different aspects of the goal. Goals

vary and are used in the game to define safe and dangerous spots during path-finding (see Figure 6), to

decide the best position to throw a grenade, to classify enemy threats (see Figure 7), and even to prioritize

other goals. The properties used as input to the position function are numerous and include things like

proximity to desired location, cover from primary threat, the soldier’s line of fire, and preferred fighting

range (Straatman, van der Sterren, & Beij, 2005).

23

Figure 5 - Evaluation of different moves on chess board. Consider threats from other pieces.

Figure 6 - Path finding evaluates positions' danger from threat, not just distance to goal.

24

Figure 7 - Evaluation of different positions in game. Consider enemy lines of fire and mobility.

3.1.2 F.E.A.R.

 F.E.A.R. is a first person shooter developed by Monolith Productions and employs conventional

game AI techniques in an unorthodox way. It controls individual soldiers with a FSM and uses A* to plan

a sequence of actions as well as for path finding. The FSM has three states called Goto, Animate, and

UseSmartObject. Goto directs the soldier to a location, Animate performs an animation, and

UseSmartObject performs a data driven version of Animate given context by an object (like turning a

knob to open a door). Proper behavior modeling relies on the correct decision about when to switch

between states and how to set the involved parameters for that transition. When the logic to change

between the states is hardcoded, it becomes more complex and harder to manage as the FSM grows.

Instead of implanting that logic directly into the FSM, F.E.A.R. lets a planning system maintain that code

and dynamically chooses between states in real-time. It should be noted that the behaviors this technique

models are not too advanced to be implemented with traditional methods. The point is that as the system

grows, the interaction of the behaviors becomes increasingly sophisticated and unmanageable because the

designer must explicitly create each detail. F.E.A.R. uses a real-time planning system in order to try to

address this problem (Orkin, 2006).

25

Figure 8 - Three state finite state machine used in F.E.A.R.

 The FSM tells a soldier what it should do, but the planning system tells how to do it, providing

goals to aid the soldier in figuring out the best course of action to achieve those goals. F.E.A.R.’s

planning system resembles the STRIPS (Fikes & Nilsson, 1971) methodology in that there are

preconditions that must be met before an action can be executed and there are post-conditions specifying

how the environment should be changed after the action is completed. Soldiers are given goals to

accomplish with different priorities. Soldiers accomplish goals in different ways depending on their action

set. The action set determines what the soldiers can or can’t do. The benefit of this approach is that goals

are decoupled from the actions used to achieve them. If multiple soldiers are given the exact same goals

but completely different action sets, they will display different behavior as they try to accomplish those

identical goals. Adding additional behavior inside an FSM used to require that branches be added to it,

but now F.E.A.R. only needs to add actions to the action set. Also because of the separation, new soldier

types can be created by mixing goals and actions in different combinations. The modularity of goals and

plans allows for the creation of atomic behavior that can be layered into more complex composite

behaviors. The developer can put together goals and plans and let the planning system determine how

they should interact, deciding how to transition from one behavior to the next (see Figure 9 & 10).

Dependencies are resolved in real-time based on the current goal and the current action’s preconditions

26

and affects. The F.E.A.R. system allows for dynamic re-planning in case of the failure of the present plan.

A soldier can try to achieve the same goal with alternative actions and behaviors when obstacles thwart

previous attempts.

Figure 9 - Specify the goals (rectangles) and their actions (circles) independently of each other

Figure 10 - Automating interaction between goals and actions.

 F.E.A.R. planning is somewhat different from traditional STRIPS planning. F.E.A.R. assigns a

cost to actions to influence the choice among multiple viable options. The inclusion of these costs is

where A* comes into play. Although A* is typically used for navigation, in reality it is a general search

algorithm designed to find the shortest path through a graph of nodes whose connecting edges have an

27

associated cost. In the case of planning, the states are the nodes and the actions are the edges. A* thus

finds the lowest cost sequence of actions that accomplishes the soldier’s goal (Orkin, 2006).

3.2 Control of Individual Soldiers

 There is research in the area of using RL to control individual soldiers. A large amount of soldier

AI is controlled by FSMs. FSMs usually have static behavior and are difficult to maintain and update

because of their hardcoded logic. Their strategies are fixed and do not improve as a result of gameplay

(Patel, Carver, & Rahimi, 2011). Using Q-learning Patel et al develop a soldier meant to mimic the

actions of an NPC in the video game Counter-Strike. They develop a soldier that learns to fight and

compare its performance to soldiers hardcoded by humans. In Counter-Strike, planting a bomb at a

specific point on the map is the main objective, not fighting the enemy. RL is used to reward completing

this goal over killing enemy soldiers. They test the ability of a soldier to be pre-trained with an abstract

model of the game environment containing a smaller amount of states than the actual environment (see

Figure 11 & 12). They show that with this preliminary abstract knowledge, learning in the real

environment can be accelerated and soldier performance is better in the initial stages of the simulation

over soldiers whose learning starts from scratch. Their paper shows that RL can produce different

behavior by changing the reward function and the utility given to different actions and that RL can evolve

layers of behavior by adding more states to the learning process (Patel, Carver, & Rahimi, 2011).

Figure 11- A simplified environment used to model Counter Strike

28

Figure 12 : A more complex environment used to model Counter Strike.

 Instead of using Q-learning, McPartland and Gallagher use another RL approach called Sarsa(λ)

to teach a soldier to navigate through a map, fight, and pick up inventory like ammo, three of the most

common activities performed in FPS games. Sarsa(λ) is an algorithm similar to Q-learning in that it learns

state-action pair values for the environment. An extra feature is that it uses eligibility traces which keep a

history of the sequence of state-action pairs visited beyond just the most recent one. It gives a reward to

each state-action value in the eligibility trace based on the current state in order to speed up the learning

process. Changing the eligibility trace factor (λ) determines how far into the past a soldier can remember,

and allows sequences of actions to be learned. McPartland and Gallagher again show that RL can be used

to develop a controller for individual FPS soldiers, creating one controller for combat and another for

navigation and inventory collection. They also show that RL is more efficient than rule-based systems

because its underlying algorithm requires less code and needs less time for parameter tuning and updating

(McPartland & Gallagher, 2008a).

 In a later work, McPartland and Gallagher attempt to combine the two independent RL soldier

controllers they developed before. They want to blend the smaller tasks already learned with RL into a

larger more comprehensive behavior. The paper takes three different approaches to study the differences

in behaviors that occur. The first combines the previously learned controllers through HRL. The second

uses a rule-based reinforcement learner (RBRL) that decides when to switch between the previously

29

learned controllers. The last combines the tasks of combat and navigation into a new bigger RL controller

that has to learn the two tasks simultaneously. The HRL controller combines the states of the previously

learned combat and navigation controllers. Its actions are subtasks made of the individual controllers

themselves. The HRL controller has to learn when to switch between the smaller controllers based on the

current state. The RBRL controller also uses the smaller controllers for its actions, and uses simple rules

to switch between which one it executes. If an enemy is in site, the soldier uses the combat controller;

otherwise it uses the navigation controller. The regular RL controller has the same state space as the HRL

controller, but its structure is flat with no composite subtask for actions. Instead it has every possible

primitive action from the smaller combat and navigation controllers meaning its state-action space is

much larger than the other two combined controllers. The HRL and RBRL controllers outperform the flat

combined RL controller. They act more like experienced players, but the RL controller plays like a novice

sometimes shooting in panic in all directions. HRL seems the best strategy overall for its more diverse

behavior during combat because its transitions between subtask controllers are not hardcoded by static

rules like the RBRL controller (McPartland & Gallagher, 2008b).

3.3 Control of a Team of Soldiers

 The approaches in the previous section control individual soldiers, but there are other techniques

that attempt to control an entire team of soldiers simultaneously.

3.3.1 Hierarchical Task Network

 The previous work shows that RL can be applied to the development of single agents for the

creation of dynamic individual behavior. This thesis is more concerned with the coordination of a team of

players, particularly in a game of domination. There has been work in recent years dealing specifically

with this domain of multi-agent systems.

 (Hoang, Lee-Urban, & Munoz-Avila, 2005) use a form of planning to direct soldier team

behavior with a structure called a hierarchical task-network (HTN), which is very similar to the task graph

used by HRL described earlier. HTNs break high-level tasks into a hierarchy of composite and low level

actions. Like the task graph, an HTN has compound actions that are decomposed into primitive actions at

30

the lowest level. The primary features of an HTN are its methods and operators. Methods specify the goal

to reach, the preconditions to execute the plan, and the subtasks used to achieve it. Operators are primitive

actions with post conditions that detail how the world should be changed. An HTN represents plans at the

level of subtasks rather than at the level of primitive actions. They connect a team of soldiers controlled

by an HTN to the video game Unreal Tournament (UT). The Simple Hierarchical Ordered Planner

(SHOP) (Nau, Cao, Lotem, & Munoz-Avila, 1999) generates the plans that the HTN enacts. The problem

with this approach is that the strategies are predefined and hardcoded. The first strategy attempts to

control half plus one of the available domination points after which the soldiers patrol between the points

and defend them. The second strategy tries to gain control of all the domination points (Hoang, Lee-

Urban, & Munoz-Avila, 2005). These strategies are encoded to be tested for certain situations; no ML is

employed in the process (Smith, Lee-Urban, & Munoz-Avila, 2007). Because of this lack of ML an HTN

potentially requires its designer to be a subject matter expert on the domination gametype domain to know

how to effectively combine actions hierarchically (Hogg, Lee-Urban, Munoz-Avila, Auslander, & Smith,

2011).

Figure 13 - Task decomposition of HTN

31

3.3.2 RETALIATE

 (Smith, Lee-Urban, & Munoz-Avila, 2007) control a team of soldiers connected to UT like

Hoang, but they do so with a RL system they call RETALIATE which stands for Reinforced Strategy

Learning in Agent-Team Environments. Individual soldier behavior is static but interchangeable, meaning

a developer can simply plug in an arbitrary soldier controller. For the experiment, soldiers are controlled

by the same reactive state machine that comes standard with UT. This is done so that there is a fair

comparison between team strategies and that one team does not have an advantage over another because

their soldiers have superior individual behavior. This is also done so that the system can focus on team

behavior without consideration for the complexities of individual soldier abilities. RETALIATE

coordinates the team effort by pointing out important spots in the game environment, specifically the

domination points. It exploits the fact that the game of domination inherently only rewards fighting

around the domination points and not random areas across the map. Simply killing the enemy doesn’t

score a player points. However, if the player kills an enemy around a domination point, then that enemy is

spawned somewhere else in the map, giving the player a chance to either capture the point or live on to

continue defending it from further intrusion. RETALIATE learns a team policy using Q-learning, but

removes the discount factor typically used; this causes the algorithm to focus on quick adaptation to an

opponent’s changing strategy rather than slow convergence to an optimal policy. RETALIATE’s ideology

is that optimality is not necessary, only fast exploration towards a winning policy (Smith, Lee-Urban, &

Munoz-Avila, 2007).

 RETALIATE’s state space is defined by the different domination points in the map and which

team, if any, owns them. If there are three domination points and two teams, then each point can be

owned by either team. There is also the special case at the start of a match where none of the points are

owned by either team. The state can thus be represented by a tuple (P1,P2,P3) where each P stands for a

domination point and can take on the value C (captured), L (lost), N (neutral). For example the state

(C,N,L) means the first domination point has been captured, the third has been lost to the opposing team,

and the second one has not been taken by either team. This means RETALIATE has a problem space of

32

size (T+1)
D
 where T (equals 2) is the number of teams and D is the number of domination points on the

map. It can execute team actions which are actually joint actions of individual soldier actions. An

individual soldier action consists of going to a specific location in the map. So each action performed by

the algorithm tells the entire team of soldiers to go to different locations based on the current state. This

can pose a problem because the number of team actions grows exponentially with the number of players

on the team. Each soldier can potentially be sent to each domination point. This means for a team of size

M, there are M
D
 different joint actions, where again D is the number of domination points. Another

potential problem is that the locations of domination points are not known by the RETALIATE soldiers

beforehand. Exploration of the map and discovery of the points must happen before learning can proceed,

which slows the learning process. The utility of an action is determined directly by the state of the world

afterward. It is calculated by subtracting the number of domination points lost from the number of

domination points captured. So the state (C,C,L) has a value of 1 because there are two captured points

and one lost point. It would be of higher utility than the state (N,L,N) which has a value of -1 because

there are no captured points and one lost point (Smith, Lee-Urban, & Munoz-Avila, 2007).

3.3.3 CBRetaliate

The work done in RETALIATE is extended by Auslander et al by combining RL with case-based

reasoning. The original RETALIATE takes a little too long to adapt against an opponent that changes

strategy. They create CBRetaliate to try to remedy this issue. It uses features of the game to calculate

similarity metrics to compare the current situation with past ones. These features include the number of

team members, each team’s score, how far team members are from domination points, and which teams

own what point. Cases are stored in a knowledge base, and each case has a set of these similarity features

with unique values as well as their own Q-table. When it is time for comparison, a case will be retrieved if

the current game features sufficiently match the features of that stored case. CBRetaliate runs the original

RETALIATE underneath everything, but when there is a successful match it switches to the previously

learned Q-table associated with that past case. If there are no matches found during comparison against

the stored cases, a new case is created and stored. A case can only be created if the team is beating its

33

opponent and is scoring points at a faster rate than the enemy team. Meeting this condition implies that

the Q-table being used is employing a winning strategy and should be saved for later use. The problem

with CBRetaliate is that when its opponent constantly changes strategy, CBRetaliate becomes no more

effective than the original RETALIATE algorithm. Both algorithms are designed to deal with an

opponent that changes its strategy then uses that same strategy for a period of time before changing again.

They simply can’t adapt fast enough to deal with an enemy that constantly changes strategy with rapid

succession (Auslander, Lee-Urban, Hogg, & Munoz-Avila, 2008)

3.3.4 RL-DOT

 RL-DOT (Wang, Gao, & Chen, 2010) uses an RL approach similar to that of RETALIATE to

direct of team of agents in a match of domination in the video game UT. RL-DOT uses a boss NPC to

directly control multiple soldier NPCs. The boss NPC tells them which domination points to either attack

or defend, similar to RETALIATE; however, the actions of RL-DOT are not as explicit as actions in

RETALIATE. The actions of RL-DOT are just abstract intentions of how the system should distribute its

soldiers across the domination points. This means it comes up with a number of soldiers that should be

assigned to each point, but it does not actually determine which soldiers go where. Because each soldier

can be sent to each domination point, there are a variety of ways to explicitly execute the boss NPC’s

abstract intentions, some better than others. The interpretation of these abstract commands is handled in a

lower level of the hierarchy. Like RETALIATE, all individual RL-DOT soldier controllers are identical.

This simplifies the RL algorithm because it doesn’t have to account for differences in individual soldier

behavior. There is no consideration for how differences in offensive and defensive behavior can

completely change the way a team plays the game. The downside of this approach is that it may simplify

the model too much. Unlike RETALIATE, RL-DOT soldiers are aware of the location of the domination

points beforehand which cuts down on slow exploration. It is also common in video games for human

players to have some a priori knowledge of the map such as the location of domination points in the case

of the domination gametype (Wang, Gao, & Chen, 2010).

34

The key difference between the two is that RETALIATE does not account for the effect of enemy

activity on the game while RL-DOT does. A conventional MDP works best in an environment where only

it can affect the state transition, meaning only its actions cause the environment to move from one state to

another. However UT, as all other FPS games, is a game where at least two opposing teams impact the

same environment, meaning the actions of the enemy cause the environment to change state as well. This

alters the way the MDP learns and RL-DOT makes up for this deficiency by modeling enemy activity in

its algorithm. The UT video game gives its soldiers the ability to report what enemy it sees to the system

and where it saw that enemy. The algorithm uses this information to keep track of each enemy team

member and their relative location. By tracking enemy movement, RL-DOT maintains an approximation

of the opponent’s plans by assuming that a soldier is attacking the domination point that it’s closest to.

These observations of enemy position are incorporated into the decision making process and used to

update the Q-learning table appropriately. The states of the learning process are determined by the

number of domination points, and which team owns each of them, just like for RETALIATE, but the

utility of a state is determined only by the number of domination points RL-DOT owns (Wang, Gao, &

Chen, 2010).

 RL-DOT faces the possibility of poor performance with a large number of team members just like

RETALIATE. It mitigates this risk by having its actions be represented by soldier distributions across the

map. It just gives the number of soldiers that should be sent to each domination point and leaves it to

another algorithm to figure out the details of the deployment as opposed to giving explicit instructions

about where each individual soldier should go. Despite this, both approaches have one soldier in charge of

both offensive and defensive deployment of soldier agents, and all those agents exhibit the exact same

behavior.

 This thesis differentiates itself from previous work by splitting up the responsibility among a

single captain and two lieutenant agents, one in charge of offense, and the other defense. This divides the

task of learning where to send soldiers as well as how many to send. It will make the task of soldier

deployment cooperative, allowing each lieutenant to be charged with taking care of a smaller task, but at

35

the same time working together to accomplish the overall goal. Soldiers assigned under the lieutenants

will also display different behavior depending on whether they are playing offense or defense. As a result,

the team will have the ability to showcase a wider variety of behaviors. This approach will scale better as

the number of soldiers grows because it reduces the state-action space and abstracts certain data in the

decision process. Both RL-DOT and RETALIATE tested five or fewer soldiers on one team. This thesis

will test ten soldiers per team, which is common for the number of members on a team in modern games.

It doubles the size of the team controlled in these other approaches but without exponentially increasing

the size of the state-action space, which RL-DOT and RETALIATE would have to do.

36

Chapter 4 HQ-DoG METHODOLOGY AND IMPLEMENTATION

4.1 Simulation Environment

 The simulation environment is built with a 3D game engine called Unity and is based off of the

domination gametype found in the Call of Duty franchise. Figure 14 shows the simulation environment

with obstacles and the domination points. HQ-DoG starts all of its games near point C and the enemy it

competes against starts games near point A. A navigation mesh is placed on top of the map so that

soldiers can move from one position to another using A*. Teams poll the environment every two seconds

to determine targets which they do and don’t own, and every five seconds they get one point for each

target they possess. There is a five second cycle that respawns all dead soldiers. There is also a ten second

cycle that removes all dead bodies from the map so that they do not pile up and get in the way of living

soldiers as they move around.

 Domination is a gametype that rewards teamwork. The more soldiers that attempt to attack a

domination point together, the less amount of time it will take to capture that point. To begin the capture

process, a soldier only needs to stand inside the capture radius of its target. It takes a single soldier ten

seconds to capture a point by himself, so there is a time bonus for each soldier that helps him capture that

point, but only up to five soldiers. This means that if five or more soldiers attack a point together, it will

only take one second to capture. The time bonus is limited to five soldiers so that the capture process does

not happen too quickly, otherwise it would only take one-tenth of a second to capture a point if the entire

team were to take advantage of the time bonus.

 Each domination point has five respawn points associated with it that are placed within its

vicinity. If a soldier is killed during the game it is respawned randomly at one of the respawn points

connected to a domination point its team owns. If one of the teams does not own any domination points,

because either there are neutral positions that it has not captured or the other team has captured all the

domination points, then a soldier will be respawned randomly from any of the respawn points on the map.

37

This setup rewards a team for maintaining control of a position because if a soldier is killed in the process

of defending a domination point it is more likely to respawn near that point. If the soldier is respawned

near the point, it has a better chance of making it back to continue to defend that point as opposed to

being respawned somewhere far away across the map.

 If a team is able to keep consistent control of two of the domination points, say A and B, then its

soldiers will continue to respawn near those targets when they die and the enemy soldiers will only be

able to respawn at point C. This is a phenomenon known as Spawn Trapping because unless the team that

only owns one domination point is able to capture another point, its soldiers are effectively trapped

continually respawning at point C. If the team that owns points A and B continues to hold just those two

points and doesn’t try to capture all the points, the spawn-trapped team will be at a constant disadvantage

if they are unable to escape from the trap because they will only score points at half the rate of the other

team until the end of the game. This is an effective way to play the game, but it is a strategy that requires

teamwork. In a way this mechanism also punishes greedy teams because if a team captures all three

points, the enemy soldiers will respawn randomly all across the map and not near a specific area, making

their movement harder to anticipate and counteract.

 It is important to note that this simulation is not a complete recreation of the domination

gametype found in Call of Duty, just a simplified model. It does not include features like the ability to

through grenades and smoke screens, call in special vehicles to attack the other team, have enhanced

physical abilities, or obtain special attachments for weapons. All soldiers have the same physical abilities

and use the exact same weapons. It is not the purpose of this thesis to build a fully functioning game, only

to show HQ-DoG’s ability to learn a competitive policy against various opponents.

38

Figure 14 - The domination map used for HQ-DoG

 Figure 15 shows a diagram of the flow of the HQ-DoG algorithm. There are three major

components which include:

 Captain’s Process – Captain senses the game environment, updates Q-table based on utility,

chooses action, and then gives orders to lieutenants.

 Lieutenants’ Process – The lieutenants each interpret their separate tasks from the captain’s

orders, update their observation models and Q-tables, and choose action for soldier deployment.

 Deployment of Soldiers – The lieutenants each send their actions to an algorithm that calculates

the most efficient way to execute soldier deployment across the map based on distances of the

soldiers from different domination points.

39

Figure 15 – Steps of the HQ-DoG algorithm starting from sensing the game environment

4.2 Captain’s Process

 The captain begins the decision making process. It is his job the decide the overall strategy of the

team for the current decision cycle.

4.2.1 Sense Environment

The captain waits for notification from both of its lieutenants that they are ready to receive their

next order then it senses the current state. The state of the captain is directly influenced by the game

environment. HQ-DoG determines state the same way as RETALIATE and RL-DOT, by the status of

ownership for each domination point. There are three domination points each of which can be owned by

one of the two opposing teams or neither of them, thus ownership status can take three values. This means

that there are a total of twenty-seven states that the captain can sense from the environment. A single state

is described by a tuple of three values from the set (Lost,Neutral,Captured). The captain’s state-space

remains the same size regardless of the number of soldiers on its team. Appendix A shows the captain’s

entire state space.

40

4.2.2 Choose an Action

After sensing the environment the captain must choose its next action based on the current state.

Each decision cycle it chooses an action that captures, defends, or ignores each of the domination points,

so a single action consists of a tuple of three values from the set (Capture, Defend, Ignore). The captain

has to balance exploration of new parts of the state-action space with exploitation of the Q-values it has

already learned from its experience and interaction with the environment. This means deciding whether to

choose the best learned action for the current state as of yet or choosing an action other than the best to

see if it yields a better utility. Q-learning settles this by choosing the best action each decision cycle with

probability and choosing a random action with probability (). There are twenty-seven states and

twenty-six possible actions for the captain which means it would have a state-action space of 702 if it

could execute each possible action from every state.
1
 However, HQ-DoG reduces this state-action space

by restricting what qualifies as a valid action for each state. The set of valid actions become a function of

the state.

HQ-DoG soldiers behave differently based on whether they are attacking or defending a

domination point. If the soldier is an attacker, it goes to a point and remains there until the point is

captured. If the soldier is a defender, it patrols around the perimeter of the target looking for enemies

trying to capture the point it’s defending. Each decision cycle the captain chooses an action that attacks,

defends, or ignores each domination point in some combination. Because of how soldiers carry out orders

based on their type, it is ineffective for the captain to choose an action that defends a point it doesn’t own

or attack a point it has already captured. Therefore, given the current state, any action that attacks a

Captured position or defends a Neutral or Lost position is invalid. This approach reduces the number of

valid actions for each state from twenty-six to seven and decreases the captain’s state-action space to 189.

Appendix A shows the captain’s state-action space with the IDs of each state’s valid actions.

1
 There are twenty-six actions and not twenty-seven because the action [Ingore,Ignore,Ignore] ignores all

domination points and does nothing to protect or increase the team’s score.

41

4.2.3 Calculate Utility and Update Q-table

 Once the captain has performed its chosen action, it is able to determine which domination points

it owns and which it doesn’t and it uses this to calculate the utility of the current state. As in RETALIATE

utility is calculated as the difference between the number of points owned by the teams. Specifically the

captain subtracts the number of points owned by the opposing team from the number of points it owns.

Calculating utility like this gives a range of values from +3 (when the captain owns all three domination

points) to -3 (when the opposing team owns all points). After the captain has the utility for the current

state it uses that utility to update the Q-value of the previous state-action pair with the standard equation

for Q-learning (see Algorithm 1in Section 2.2.3).

4.2.4 Give Orders and Proximity

 The captain passes the same global action to both of its lieutenants that dictates which targets to

attack, defend, or ignore. Along with the global action, the captain gives the lieutenants the observed

proximity of enemy forces. HQ-DoG attempts to model the actions of the enemy soldiers because they

affect the state as well. HQ-DoG’s soldiers tell the captain the location of enemy soldiers when they

encounter them. However unlike RL-DOT, HQ-DoG does not try to account for the proximity of each and

every soldier on the enemy team. As the number of soldiers per team increases, the number of possible

observations for enemy activity as defined in RL-DOT increases exponentially. Instead HQ-DoG informs

the lieutenants of whether or not there are enemies near any of the domination points with a true or false

value. Along with decreasing the observation model, this approach is also closer to the way information is

passed when actually playing the domination gametype. When a player communicates enemy activity to

his teammates, he is more likely to tell what point they’re closest to or whether or not there are any enemy

soldiers at a specific point. He won’t give details as to the exact number of enemy soldiers. The captain is

able to give information about enemy activity because when its soldiers encounter the enemy, they pass

the enemy soldier’s position up the chain of command. The captain maintains a record of each enemy

soldier position by tracking which domination point the soldier is closest to. When the next decision cycle

comes the captain abstracts this information out to whether or not the enemy is near each point, meaning

42

there are eight different enemy approximations. This abstraction allows the information used by the

lieutenants to be simplified and reduces their observation models and Q-tables. It also scales well to

domains with larger team sizes because the eight possible approximations will not change with team; they

will only change with a different number of domination points.

4.3 Lieutenant’s Process

 It is the job of the lieutenants to take their orders from the captain and work together to

collectively accomplish their tasks. Offense and defense are decoupled which makes it possible to learn

the tasks separately.

4.3.1 Interpret Orders

Because each lieutenant is given the same global action from the captain, they must both interpret

the global action to derive their own individual orders. A lieutenant’s state space is determined by the

number of targets it’s been assigned and the percentage of the team’s soldiers it has control of to

accomplish its task. The problem is to find the right balance between the two as there is a limited supply

of soldiers and it would be of little use for the captain to decide to attack all three domination points and

then give the offensive lieutenants no soldiers to carry out its orders. HQ-DoG borrows the concept of

supply and demand from economics to find this balance. Figure 16 shows a picture of the general idea. As

the number of domination points designated for capture increases the demand for offense rises as well,

and the demand for defense falls; the opposite of this is true as well. As more points need to be defended,

the system responds by supplying the defensive lieutenant with more soldiers. The double-sided arrow in

the diagram depicts this trade off. Moving right along the arrow signifies a more defensive strategy, and

moving left represents a more aggressive strategy. The diagram is not completely accurate though, as it

does not account for when one or more points are ignored by the captain and are neither attacked nor

defended. Appendix B gives a full chart of how the lieutenants derive the percentage of forces they

received based on the captain’s orders and how that translates into hard numbers given that there are ten

soldiers on the team.

43

Figure 16 - Lieutenant Soldier Allotment vs. Captain Target Decision

4.3.2 Choose an Action

 When a lieutenant chooses an action, it is confined within the orders it is given by the captain and

dependent on the number of targets is has been assigned. Its actions pertain to a distribution of soldiers

across the targets it must defend or attack. Appendix B lists all the possible distributions a lieutenant can

choose based on its orders and what that means in terms of concrete numbers. These distributions are

predetermined by the designer but are based on reasonable assumptions about how to deploy forces

effectively. If the captain chooses to attack all three domination points (with a team size of 10 soldiers), it

would not make much sense to send eight soldiers to the first target and only one soldier to each of the

remaining two targets. The captain has the option to only attack one point and ignore the others if it

chooses. If the captain decides to attack all three targets it’s more sensible to devise distributions for the

lieutenant that commit forces to the targets in a manner that gives the plan of action a reasonable chance

of success. This is the philosophy that guided the creation of these distributions.

 Like in the captain’s Q-learner, the lieutenants choose the best learned action with

probability () and choose a random action with probability This approach solves the problem of

trying to learn the utility of each possible permutation of deployment for soldiers across three targets

which grows exponentially with team size. The use of a set of percentages can be applied to multiple team

sizes and does not grow exponentially as the number of soldiers grows. There are eight different

distributions a lieutenant can choose from, but only a subset of these can be chosen from a given state.

The eligible subset is a function of the current state. Specifically it depends on the number of targets it’s

been assigned; the lieutenant can’t send its soldiers to only two positions when it’s ordered to attack or

44

defend three. Figure 17 illustrates how a different set of actions Ai can be chosen based on the current

state. Appendix B shows the subset of actions a lieutenant can choose from given the current state. Given

how a lieutenant’s states, observations, and actions are defined, it has a state-action space of 122.

Algorithm 2 on page 52 shows how action selection works.

Figure 17 – Different subset of actions Ai can be chosen based on current state

4.3.3 Update Observation Model

 The captain passes its observation of the enemy location in its global action order, but it does not

use the observation itself in its decision making. The approximation is meant for the lieutenants to use

when updating their observation model, which is done in a manner similar to what happens in RL-DOT.

Appendix B shows the different observations that can be made when a lieutenant is assigned one, two, or

three targets. The observation model consists of state-observation pairs and connects a probability ()

with each pair. It tracks how often different observations have occurred in a certain state and adjusts their

associated probability accordingly. Each time an observation is made, the probability for that observation

is increased and the probabilities for all other observations in the state are decreased by an equal amount

so that the total sum of the probabilities still equals one. The more often an observation is made, the more

likely it is that that observation is a true representation of the enemy’s current activity. Algorithm 2 below

details how the observation model is updated for each lieutenant.

45

4.3.4 Update Q-Table

 A lieutenant’s Q-table, unlike a captain’s, incorporates observations into its Q-factors where each

factor consists of a state, observation, action triplet (〈 〉). Because of this, the equation for updating

the Q-table is modified. HQ-DoG uses an equation defined by RL-DOT for calculating the maximum

future reward for a Q-table that incorporates observations. The main difference is that determining long-

term reward for the modified equation requires finding the Q-factor whose action maximizes value over

all observations for every possible executable action. The state and observation components of a

lieutenant’s Q-factor separately form a state-observation pair that has a probability associated with it in

the lieutenant’s observation model. The value of each Q-factor that an action is a part of is multiplied by

the probability of the state-observation pair that is also part of the Q-factor. All these products are then

added together, and the action with the highest sum is returned as the maximum future value for the

current state. Example 1 shows how to calculate maximum future reward for the Q-factor where

lieutenant has been assigned all three targets, is allotted the entire team to carry out its task, and the

lieutenant chooses action 0. The lieutenants use the same reward function as the captain when updating

their tables. Algorithm 2 gives the equation for how this process works.

Example 1 – Calculating Expected Maximum Future Reward for Lieutenant

 For each state s, action a and observation o

 State: Assigned all three targets ([ABC]) and allotted entire team (100%)

 Action ID: 0 (33%, 33%, 33%)

 Max future reward = ∑ [() (〈 〉)] =

 ([ABC] 100%, [TTT])([ABC] 100%, 0, [TTT])

+ ([ABC] 100%, [TTF])([ABC] 100%, 0, [TTF])

+ ([ABC] 100%, [TFT])([ABC] 100%, 0, [TFT])

+ ([ABC] 100%, [TFF])([ABC] 100%, 0, [TFF])

+ ([ABC] 100%, [FTT])([ABC] 100%, 0, [FTT])

+ ([ABC] 100%, [FTF])([ABC] 100%, 0, [FTF])

+ ([ABC] 100%, [FFT])([ABC] 100%, 0, [TFT])

+ ([ABC] 100%, [FFF])([ABC] 100%, 0, [FFF])

Algorithm 2 Q-Learning Algorithm for Lieutenants

1. For each state count the number of different possible enemy observations that can be made | |.
Also initialize a counter k for the number of times this state visited to zero.

2. Initialize the probability of each observation to

| |
 for the state it is a part of.

46

3. Initialize each state, observation, action triplet to zero

4. Choose action after receiving orders from captain

 (〈 〉) ()



5. Perform action

6. Observe current state s.

7. After observation made in state , increment k for observation in state and update model.

For each observation o in s:

 ()
 ()

 () (

) ()

7. Update Q-table for previous state

 (〈 〉) () (〈 〉) [∑ () (〈 〉)]

8. Transition state to .

4.4 Soldier Deployment

 After both lieutenants have decided how many soldiers they want to go to each target HG-DoG

must determine the most efficient way to incorporate their actions together. No soldier is permanently

assigned to a lieutenant for the entire duration of a match. The structural hierarchy has to change and

adapt according to the captain’s orders for different types of behavior. This means that the algorithm must

be able to assign any soldier to either of the lieutenants during each decision cycle. This assignment is

based on which domination points have been selected as targets, how many soldiers need to go to each

target, and how close a soldier is to each of the targets. HG-DoG uses what RL-DOT defines as an action

interpretation to find this most effective deployment. An action interpretation takes the combined actions

of the lieutenants and sends soldiers to different targets based on their minimal distance from each point.

Once a certain target has reached the quota of soldiers it needs to fulfill its part of the combined action, it

rejects all other soldiers even if they are closest to it. Soldiers are then assigned to their next closest target

until that target reaches its quota. In doing this HG-DoG ensures that soldiers are not traveling longer

distances across the map than they need to. This minimizes the time it take HG-DoG to execute a single

action, which is very important because domination is a time sensitive game. The algorithm will

continually lose if it’s unable to react to changes in the environment in a timely manner. Algorithm 3

describes soldier deployment.

47

Algorithm 3 Soldier Deployment Across Map

1. Initialize a distance matrix whose elements are the distance of each soldier from each domination

point. Each row i represents a soldier, each column j represents a target.

2. The quota for each domination point in the combined distribution is quotan where ()
stands for the number of soldiers needed for the 1

st
 through 3

rd
 targets.

3. Sort the elements of the array from smallest to greatest distances.

4. Select the smallest element from the matrix

 If the element’s row has already been assigned a target or the element’s column has

already reached its quota, move on to the next smallest element.

 Otherwise assign the soldier to this target, mark the soldier as assigned, and increment the

number of soldiers currently committed to this target. Also assign the soldier to the

proper lieutenant so it knows what its behavior for this cycle will be.

5. Repeat step 4 until the end of the sorted list is reached.

4.5 Different Soldier Behavior

 At any given time a soldier can be either an attacker or defender dependent on whether it is

assigned to the offensive or defensive lieutenant. Attackers and defenders have different behavior to

accomplish different tasks. Attackers are meant to capture points and defenders are meant to protect them.

4.5.1 Attacker Behavior

 If a soldier is assigned to the Offensive Lieutenant and given a point to capture, it becomes an

attacker and will take the shortest path to its target. If it comes across any enemies along the way it will

engage and shoot at them until they are dead or out of range before continuing on to its target. If it arrives

at its target, an attacker will remain there until it has successfully captured the point at which time it will

report to its assigned lieutenant that it has completed its mission. After an attacker captures the target it

was assigned, it will then proceed to attack the closest neutral or lost point on the map until it has been

issued new orders or killed. If an attacker is killed en-route to or while it is in the process of capturing a

target, it will report to its lieutenant that it has been killed in action and respawn at another randomly

selected location after a certain amount of time. After it has respawned, an attacker will continue with its

original mission, if its target still has not been captured, until it’s given new orders.

4.5.2 Defender Behavior

 A soldier becomes a defender after being assigned to the Defensive Lieutenant. Each domination

point has a set of waypoints that form a path around its perimeter. When a defender is given a domination

48

point to defend, it finds the closest of these waypoints and takes the shortest path to it. Like the attacker, it

engages any enemies it confronts along the way until they are dead or out of view. It reports it has been

killed in action if it dies before reaching its target. Once at the closest waypoint, a defender follows the

path the waypoints create, patrolling around its target, warding against potential attackers from the

opposing team. After it starts patrolling, a defender reports to its lieutenant it has begun doing so. If while

patrolling, enemy forces are able to get past the defense and being capturing the domination point, a

defender goes to the point and tries to stop them. It attacks the intruders until they are all dead or it is

killed. If the intruders were able to capture the point a defender is tending, it goes to the point and

attempts to recapture it; after recapturing it goes back to patrolling around the perimeter. A defender

repeats these actions until it is killed or given new orders. If it is killed, it will respawn somewhere else

and continue on with its mission.

49

Chapter 5 RESULTS AND DISCUSSION

5.1 Opponent Strategies

 To evaluate its efficacy, HQ-DoG is tested against seven different opponent strategies broken into

three categories to determine if the algorithm can learn a competitive policy. The first category has one

strategy that uses a team whose soldiers all attack the closest un-captured (neutral or lost) domination

point. The second category has five strategies each of which is static, meaning the strategy directs each

soldier to go to a specific domination point. The soldier will repeatedly go to that same point throughout

each match. The final category uses one strategy that chooses randomly between three different static

strategies each game match. These strategies themselves are non-learning; they do however represent the

range of sophistication and skill with which the domination gametype can be played.

 HQ-DoG is not tested against RETALIATE nor RL-DOT because their state-action spaces would

be too large if they were expanded to accommodate the control of a team with ten soldiers. The captain of

HQ-DoG has a state-action space of 189 regardless of the size of the team. For a team of ten soldiers a

single lieutenant has a state-action-observation space of 122. Combining the Q-tables of the captain and

both lieutenants, HQ-DoG has a state-action-observation space of only 433 for a team of ten soldiers. For

a team of ten RL-Dot has 27 states, 66 possible actions, and 66 possible observations giving it a state-

action-observation space of over 117,000. RETALIATE would have a prohibitively large state-action

space as well. They both would both grow exponentially with larger team sizes.

5.1.1 Greedy Strategy

 The Greedy Strategy is the strategy used in the first category and is one of the simplest of the

seven strategies. Each soldier in this strategy continually runs towards the closest un-captured domination

point and remains there until the point has been captured or it is killed. There is no coordination

whatsoever among the soldiers; they all act completely independently of each other. This strategy is used

for testing because it is actually what one is most likely to encounter in the real world. In online multi-

50

player shooter games that have the domination gametype each player on the team is free to act and make

decisions for himself. He can attack or defend whichever target he decides is most advantageous

regardless of what his teammates are doing. There is no central force commanding the team which is

compounded by the fact that most people playing online are absolute strangers randomly put together on a

team. Although there is the ability for players to talk to each other if they have a headset, this feature is

very rarely used for effective coordination. If anything communication might be used to notify other

teammates of the whereabouts of the enemy. For the purposes of this thesis, such autonomy implies very

dynamic and unpredictable team behavior because everyone on the team is acting on their own accord.

The extreme lack of coordination, however, can be problematic as the behavior is purely reactionary. It

does not anticipate enemy actions at all.

5.1.2 Static Strategies Category

 A Static Strategy utilizes the exact same strategy each game match. In many ways it is the

complete opposite approach to the Greedy Strategy. It may seem counter-intuitive to do the exact same

thing throughout the match, but in domination it can lead to an advantage (in the right circumstances)

because of its consistency and coordination. Consistency and coordination alone are not enough though.

They must be used together with a smart deployment of soldiers. Not every static strategy intelligently

directs it soldiers, and the second category exhibits five different static strategies that range from effective

to ineffective in their deployment. If a static strategy for domination is defined by a triplet that denotes the

number of soldiers sent to domination points A, B, and C in that order, then the five Static Strategies in

the second category are (5,5,0), (4,4,2), (3,4,3), (6,2,2), and (8,1,1).

5.1.2.1 Static Strategy (5,5,0)

 The Static Strategy (5,5,0) devotes half its forces to constantly attack domination point A and the

other half to attack domination point B. This is arguably one of the best strategies for playing domination

because it focuses on capturing just two of the three points on the map and then maintaining control for

the duration of the match. It essentially tries to spawn trap the enemy (see Section 4.1). The team does not

have to maintain possession of all three points on the map to achieve an advantage because doing so is

51

likely to spread its forces thin. The team only needs to consistently keep control of two of the points in

order for its score to grow faster than the opponent’s. Given the choice to control the same two points the

entire match or controlling different pairs of points, it is better to maintain control of the same two points.

Otherwise the team has to capture a point previously owned by the opponent, which typically takes more

effort and time than capturing a neutral point. In most domination maps, points A and C are positioned

near the edges close to where the two teams start off, and point B is positioned near the middle. As a

result it is usually better to try to control points A and B together or points C and B together because

points A and C are far apart. The Static Strategy (5,5,0) attempts to unswervingly control points A and B

and take advantage of their proximity. This is the type of behavior one might expect from a group of

people consciously playing together as a team. Each player is given a role to play and they all perform

their jobs in concert, determined to collectively stick to a single course of action. It is a more complex

strategy than running to the nearest un-captured point like the Greedy Strategy. The downside of this

strategy is that it completely ignores one of the domination points, and if the team is unable to maintain

control of either of the two points it has committed its forces to, it will lose.

5.1.2.2 Static Strategy (4,4,2)

 The Static Strategy (4,4,2) is close to the strategy (5,5,0) and attempts to capitalize on its benefits

by constantly focusing on just two of the domination points. However, (4,4,2) tries to mitigate the pitfalls

of (5,5,0) by sending two soldiers to the third target so that the opponent team cannot keep control of it

uncontested. The two soldiers are not really meant to capture point C; this size of force is too small to

have a chance of contending against any serious defense. The two soldiers are only meant to pester the

enemy team and cause them to devote at least some minimal amount of force to defending C, which

detracts from attacking either points A or B. The downside of (4,4,2) is that it must spread its forces

across the map to do so.

5.1.2.3 Static Strategy (3,4,3)

 The Static Strategy (3,4,3) spreads its soldiers as evenly as possible across all three domination

points, but because there are ten soldiers, one of the targets will get more soldiers than the other two. This

52

strategy tries to maintain control of the middle of the map by devoting more forces to point B. This is a

good idea because it is usually harder to maintain control of point B than any other point given its

position in the center where the most foot traffic will be. Sending an equal amount of force to the

remaining two positions attempts to maintain control of the target closest to the team’s starting point

while also applying pressure on the opponent to defend the target closest to its starting point and not give

it a free pass. This strategy is very aggressive because it wants to capture everything, but there is the

chance that it can be too aggressive. By spreading its forces into groups to attack all the points

simultaneously, it is also reducing the number of soldiers that can be in each group; these forces might get

spread too thin. Also the strategy is obviously not trying to take advantage of the Spawn Trapping

phenomenon because if it is successful in capturing all points, the enemy will spawn randomly at all

respawn points across the map.

5.1.2.4 Static Strategy (6,2,2)

 The Static Strategy (6,2,2) is a defensive approach to playing the domination gametype. It focuses

on maintaining a defensive posture around point A and making sure it never loses it by devoting more

than half the team to protecting it. Of course by doing this, the strategy surrenders the majority of the map

to the enemy. It commits an even amount of force to the other points, but this only results in two soldiers

left for each of the remaining groups. Because of its high degree of defensiveness it is not expected that

this will be a competitive policy. In domination it is not enough to hold just a single point. If a team wants

to be defensive, it is usually only wise to be defensive after at least two points are held. Strategy (6,2,2)

doesn’t retreat completely into a shell around point A, but the forces it sends to points B and C cannot

hope to compete against the enemy. At best the soldiers sent to points B and C might be able to capture

their respective targets if there is no enemy force present for a long enough period of time. They might

gain a few points by doing so, but the they have no chance of defending either point B or C and will be

overwhelmed the moment HG-DoG commits forces to attack those points.

53

5.1.2.4 Static Strategy (8,1,1)

 The Static Strategy (8,1,1) takes all key points of Strategy (6,2,2) to the next level. It is protective

of domination point A, but to a degree that it is too defensive. The enemy would have to essentially

commit the entire team to the offense of point A if it wanted to capture it, but that would be unnecessary

as it could just attack and hold points B and C. The strategy only sends one soldier to the point B and C

each, which is a very ineffective use of its forces. Of all the Static Strategies in the second category, it is

predicted this one will perform the worst because it does not efficiently deploy its soldiers across the map

to find the right balance of offense and defense.

5.1.3 Random Strategy

 The Random Strategy is similar to the Static Strategy in that it chooses one strategy and continues

to employ that strategy for the duration of the game match. The difference from the Static Strategy is that

the Random Strategy chooses randomly among competitive static strategies each game match. The chosen

static strategies are determined by which of them win the most games against HQ-DoG in their separate

experiments. The Random Strategy is somewhat of a compromise between the Greedy and Static

strategies. On one hand, it tries to capitalize on the consistency of the Static Strategy, but on the other it

changes the strategy every game match so that it is more difficult for HQ-DoG to learn an effective policy

to counter it.

5.2. Experimental Results

 Each experiment consists of five hundred separate game matches. The first team to reach a score

of 100 wins the match, but in the rare case that both teams reach 100 at the same time, the match ends in a

draw. The captain and lieutenant Q-tables are initialized at the beginning of the experiment. The Q-tables

update as games progress through matches and they pass on what they have learned to the next game until

the end of the experiment. Experiments are independent of one another, so all Q-tables are reinitialized at

the start of a new experiment.

 The number of game matches per experiment was determined by looking at how experiments in

similar work were conducted. In other papers researching the domination gametype experiments had up to

54

200 game matches for testing a team of five soldiers. Because this thesis doubles the number of soldiers

on a team from five to ten, it increases the number of game matches in order to give the algorithm more

time to learn. This is also the reason why the score required to win a game match is increased to 100

compared to only 50 in other papers. A higher score limit causes games to run longer, giving the

algorithm more time to learn within a single match. More time is needed for HQ-DoG compared to other

approaches because even though HQ-DoG uses a hierarchy and data abstraction to reduce the domain’s

state-action space, it is still directing twice the number of soldiers controlled by other algorithms. The

larger team size naturally increases the size of the state-action space which makes the learning process for

HQ-DoG more difficult.

5.2.1 HQ-DoG vs. Greedy Strategy.

 Figure 18 shows the win/loss chart for HQ-DoG against the Greedy Strategy. A green bar (top

half) signifies when HQ-DoG won the match and a red bar (bottom half) means the Greedy Strategy won.

Contiguous bars of the same color mean that consecutive games were won. A space with neither a green

nor red bar means the matched ended in a draw. As can be seen in the chart, HQ-DoG dominated the

Greedy Strategy for the majority of the trial. Of the five hundred games, the Greedy Strategy only won

twenty-nine matches. As was stated before, the Greedy Strategy is a very simple approach to playing

domination. It requires no communication or any coordination among the soldiers; as such it is a strategy

that only reacts to changes in the environment. HQ-DoG is able to both react and plan in the environment

by learning when it’s better to be offensive versus defensive. Positioning defenders around a target plans

against potential future attackers from the opposing team, which is something HQ-DoG learns to do.

 The environment is stochastic, and executing even the most competent plan of action at any given

time is not guaranteed to succeed because in the end it comes down to whether a team’s soldiers can

survive long enough to perform their tasks. This is why the Greedy Strategy is able to win even in late

stages of the experiment. Despite this, it appears that executing a plan with coordination and

communication like HQ-DoG is far superior to a strategy without it such as the Greedy Strategy. In this

experiment HQ-DoG wins 94.2% of the matches. Figure 19 shows

55

F
ig

u
re

 1
8
 -

 W
in

/L
o
ss

 c
h
ar

t
o
f

H
Q

-D
o

G
 v

s.
 G

re
ed

y
 S

tr
at

eg
y

F
ig

u
re

 1
9
 -

 S
co

re
 D

if
fe

re
n
ce

 o
f

H
Q

-D
o
G

 v
s.

 G
re

ed
y
 S

tr
at

eg
y

56

F
ig

u
re

 2
0
 -

 W
in

/L
o
ss

 c
h
ar

t
o
f

H
Q

-D
o

G
 v

s.
 S

ta
ti

c
S

tr
at

eg
y
 (

5
,5

,0
)

F
ig

u
re

 2
1
 -

 S
co

re
 D

if
fe

re
n
ce

 o
f

H
Q

-D
o
G

 v
s.

 S
ta

ti
c

S
tr

at
eg

y
 (

5
,5

,0
)

57

F
ig

u
re

 2
2
 -

 W
in

/L
o
ss

 c
h
ar

t
o
f

H
Q

-D
o

G
 v

s.
 S

ta
ti

c
S

tr
at

eg
y
 (

4
,4

,2
)

F
ig

u
re

 2
3
 -

 S
co

re
 D

if
fe

re
n
ce

 o
f

H
Q

-D
o
G

 v
s.

 S
ta

ti
c

S
tr

at
eg

y
 (

4
,4

,2
)

58

F
ig

u
re

 2
4
 -

W
in

/L
o
ss

 c
h
ar

t
o
f

H
Q

-D
o

G
 v

s.
 S

ta
ti

c
S

tr
at

eg
y
 (

3
,4

,3
)

F
ig

u
re

 2
5
 -

 S
co

re
 D

if
fe

re
n
ce

 o
f

H
Q

-D
o
G

 v
s.

 S
ta

ti
c

S
tr

at
eg

y
 (

3
,4

,3
)

59

F
ig

u
re

 2
6
 -

 W
in

/L
o
ss

 c
h
ar

t
o
f

H
Q

-D
o

G
 v

s.
 R

an
d
o

m
 S

tr
at

eg
y

F
ig

u
re

 2
7
 -

 S
co

re
 D

if
fe

re
n
ce

 o
f

H
Q

-D
o
G

 v
s.

 R
an

d
o
m

 S
tr

at
eg

y

60

a line graph of the difference in scores for each game of the experiment. A positive difference indicates

HQ-DoG had a higher score, negative means the Greedy Strategy had a higher score, and a difference of

zero indicates a tie. It shows that for most of the matches, HQ-DoG wins by an ample lead. The average

lead over the Greedy Strategy is 23.794.

5.2.2 HQ-DoG vs. Static Strategies

 One of the benefits of testing against Static Strategies is that it is known in advanced exactly what

the strategy is trying to accomplish every moment of any given match. This fact makes it easier to analyze

the HQ-DoG Q-tables when trying to determine if they successfully learned the action to execute to

counteract the static strategy.

5.2.2.1 HQ-DoG vs. Static Strategy (5,5,0)

 Figure 20 shows the win/loss chart of HQ-DoG against the Static Strategy (5,5,0). It is obvious

that HQ-DoG has a much more difficult time competing against the Static Strategy (5,5,0) compared to

the Greedy Strategy as indicated by the fact that it wins far fewer games. The Static Strategy (5,5,0)

focuses on attacking only domination points A and B, and HQ-DoG must learn that it doesn’t have to

devote forces to the defense of point C. Table 1 shows that when HQ-DoG only owns point C and has lost

the other two points, it learns it’s best to attack point B with the full force of the team. This overwhelms

the force of the enemy at point B, which is likely to be five soldiers at the most. The action associated

with this, [Ignore,Attack,Ignore], has the highest Q-value of -2.78004. Table 1 also shows that the

algorithm learns the worst thing it can do in this situation is only defend point C. This action,

[Ignore,Ignore,Defend] has the lowest associated value of -5.76506. Similarly Table 2 displays the

portion of the captain’s Q-table for the state when all domination points are neutral (the very beginning of

the game). By the end of the experiment the captain learns that the best action is to attack points B and C

as its first move. The action that accomplishes this, [Ignore,Attack,Attack], earns a Q-value of 8.119135

which is much higher than the values of the other actions that can be executed from this state.

 The captain learns to attack and defend the appropriate positions when necessary, but this alone is

not enough. The lieutenants must learn to send the appropriate amount of force to their targets. The Static

61

Strategy (5,5,0) commits five soldiers to both points A and B, and this is a very formidable force to deal

with. It only takes three or four shots to kill a soldier with full health, so it is nearly impossible for a

soldier to survive against an enemy that significantly out mans it. If Static Strategy (5,5,0) has a hold on

either of A or B, HQ-DoG must devote more than half the team to attacking the point if it hopes to have

any chance of capturing it.

The algorithm learns how much force to use upon observation. Table 3 shows the offensive

lieutenant learns to send half the soldiers to point C, the point closest to its starting position, at the

beginning of a match and send the rest of the team to point B. Sending five soldiers to C captures the

point faster than sending three soldiers would. If it sent seven to C that would only leave three soldiers to

capture point B, which would most likely fail against the enemy’s five soldiers. After capturing C these

soldiers join the rest of the team trying to capture point B, providing reinforcements, and this is usually

successful. The max Q-value of 1.519102 associated with that action reflects that the lieutenant learns.

By learning these maneuvers HQ-DoG is able to become competitive by the end of the

experiment. Overall, it wins 54.8% of the matches. Figure 21 shows the difference in scores during the

course of the experiment, the average lead of which is 8.656 for HQ-DoG. It is clear the graph straddles

zero more than the score difference graph for the Greedy Strategy meaning HQ-DoG lost more games

against Static Strategy (5,5,0). However it also means HQ-DoG won many games, over half, and that it

was not overpowered. This shows that even against one of the best overall strategies, HQ-DoG is able to

learn a competitive policy from scratch based solely on its experiences.

Table 1 - Captain Q-table vs. (5,5,0). Lost point A & B. Captured point C

State Action Q-Value Visits

Lost,Lost,Captured Attack,Attack,Defend -3.64959 212

Lost,Lost,Captured Attack,Attack,Ignore -3.39036 454

Lost,Lost,Captured Attack,Ignore,Defend -4.03783 280

Lost,Lost,Captured Attack,Ignore,Ignore -4.18537 465

Lost,Lost,Captured Ignore,Attack,Defend -3.71928 285

Lost,Lost,Captured Ignore,Attack,Ignore -2.78004 742

Lost,Lost,Captured Ignore,Ignore,Defend -5.76506 170

62

Table 2 - Part of Captain's Q-table vs. Static Strategy (5,5,0)

State: All Points Neutral (beginning of game).

State Action Q-Value Visits

Neutral,Neutral,Neutral Attack,Attack,Attack 5.696432 150

Neutral,Neutral,Neutral Attack,Attack,Ignore 1.690666 4

Neutral,Neutral,Neutral Attack,Ignore,Attack 2.898006 4

Neutral,Neutral,Neutral Attack,Ignore,Ignore -0.014946 6

Neutral,Neutral,Neutral Ignore,Attack,Attack 8.119135 322

Neutral,Neutral,Neutral Ignore,Attack,Ignore 2.726068 5

Neutral,Neutral,Neutral Ignore,Ignore,Attack 4.590344 9

Table 3 - Lieutenant's Q-table vs. Static Strategy (5,5,0).

State: Assigned to attack Points B and C. Given 100% of team. No enemy seen at either Point.

Assignment Observation Force Distribution Q-Value Visits

B C False,False 100% [7,3] -0.165 8

B C False,False 100% [5,5] 1.519102 172

B C False,False 100% [3,7] -0.04839 62

5.2.2.2 HQ-DoG vs. Static Strategy (4,4,2)

 Static Strategy (4,4,2) focuses on capturing domination points A and B and pestering its enemy at

point C, causing the enemy to devote forces to its defense. Figure 22 displays the win/loss chart of HQ-

DoG against the Static Strategy (4,4,2) and shows that HQ-DoG had more difficulty against it than

against Static Strategy (5,5,0) as it only wins 41.4% of the matches. Figure 23 displays the score

difference between the two and shows that the difference is negative more than it is positive. The average

difference is -7.138. Static Strategy (4,4,2) outperforms Static Strategy (5,5,0) because it does not ignore

domination point C; two soldiers can capture a point given a long enough absence of the enemy. Even if

the two soldiers sent to point C are stopped before they can successfully capture it, they still distract HQ-

DoG from attacking points A and B, something Static Strategy (5,5,0) does not do at all.

 Despite the fact that it loses most of its games, HQ-DoG is able to learn competent strategies to

handle different circumstances. Table 4 shows the portion of the captain’s Q-table for the state where HQ-

DoG has captured points B and C and has lost point A. The Q-values indicate that against Static Strategy

(4,4,2) the best action to take in this state is devote the entire team to the defense of point B and ignore all

63

other points. This is smart because even though Static Strategy (4,4,2) will attack point C, its main focus

is still to maintain control of points A and B, so that’s where the majority of its force will be placed. The

Q-value for this action is 5.18675. In the event that point C is lost while executing this action, Table 5

shows that HQ-DoG learns it is then best to attack point C with half the team in hopes of recapturing the

point and continue to defend point B with the remaining half of the team. The Q-value for this action of

simultaneous attack and defense has a Q-value of 4.9106. So even if HQ-DoG does not have the upper

hand in a match, it is still able to learn a good strategy because learning takes place on a case by case

basis of the current state.

 A game can be thought of as a sequence of states, some of which HQ-DoG has the advantage,

some which it doesn’t. A win or loss is the final product of this sequence of states, but a win doesn’t mean

all the states in the sequence were good, neither does a loss mean all the states that led to that result were

unfavorable. Even if HQ-DoG loses a match, there is still the chance that it learned shrewd strategy

sometime during the game. Also there is the fact that HQ-DoG does not reward or punish itself based on

whether it won or lost a match. All utility is derived solely on the merit of the current state.

Table 4 - Captain Q-table vs. (4,4,2). Lost point A. Captured points B & C

State Action Q-Value Visits

Lost,Captured,Captured Attack,Defend,Defend 3.91322 160

Lost,Captured,Captured Attack,Defend,Ignore 4.23564 345

Lost,Captured,Captured Attack,Ignore,Defend 3.13522 101

Lost,Captured,Captured Attack,Ignore,Ignore 3.71065 484

Lost,Captured,Captured Ignore,Defend,Defend 3.86257 202

Lost,Captured,Captured Ignore,Defend,Ignore 5.18675 1837

Lost,Captured,Captured Ignore,Ignore,Attack 3.93011 1198

64

Table 5 – Captain Q-table vs. (4,4,2). Lost points A & B. Captured B

State Action Q-Value Visits

Lost,Captured,Lost Attack,Defend,Defend 1.71168 504

Lost,Captured,Lost Attack,Defend,Ignore 2.30322 219

Lost,Captured,Lost Attack,Ignore,Attack 1.90236 76

Lost,Captured,Lost Attack,Ignore,Ignore 0.82281 53

Lost,Captured,Lost Ignore,Defend,Attack 4.9106 321

Lost,Captured,Lost Ignore,Defend,Ignore 1.39398 24

Lost,Captured,Lost Ignore,Ignore,Attack 1.83775 41

5.2.2.3 HQ-DoG vs. Static Strategy (3,4,3)

 Figure 24 shows the win/loss chart between HQ-DoG and the Static Strategy (3,4,3). HQ-DoG

fairs better in this experiment compared to it competition against the Static Strategy (4,4,2), winning

46.6% of the five hundred matches. Figure 25 displays their score difference, which has an average of -

2.498. This static strategy is the most aggressive because it tries to capture all domination points at the

same time and spread its forces as evenly over the map as possible. It does not ignore point C, which is

why it performs better than Static Strategy (5,5,0). The problem is that in focusing on all targets equally,

it spreads its forces thin. This is why HQ-DoG does better against it than against Static Strategy (4,4,2),

which focuses on points A and B.

 Again, even though HQ-DoG loses the majority of the matches in the experiments, that doesn’t

preclude it from learning good strategy. Table 6 shows that against Static Strategy (3,4,3), HQ-DoG

learns to attack point B at the beginning of a game with the entire team to ensure it gains early control of

the middle of the map. The Q-value for this action is 3.93379. Table 7 shows that after point B is

captured, HQ-DoG goes back to capture point C while still defending point B. This action has a Q-value

of 5.39847. This can be smart because even though capturing C first would give HQ-DoG points sooner,

those faster points might cost it possession of point B. If the team devotes all its forces to capturing point

B first, it is likely to kill the enemy soldiers that are also trying to capture point B. Those killed enemy

soldiers will respawn back at point A, giving HQ-DoG the opportunity to divert soldiers back to capture

point C.

65

 Sometimes HQ-DoG captures all the domination points when playing against Static Strategy

(3,4,3). In these cases, Table 8 shows that the algorithm learns that it is best to try to defend all points for

as long as it can which makes sense because at that point it will earn three points every five seconds and

the enemy will earn none. The Q-value for this action is 3.585859. Table 9 shows that when the defensive

lieutenant is given the task of defending all points and it is observed that there are enemy soldiers all over

the map, it tries to spread its soldiers out as evenly as possible. This gives HQ-DoG the best chance of

defending the three points against enemy attack. The Q-value for this action is 2.09847. This shows that

both the captain and lieutenants are able to learn good strategy when facing a competitive opponent.

Table 6 - Captain Q-table vs. (3,4,3). All points neutral

State Action Q-value Visits

Neutral,Neutral,Neutral Attack,Attack,Attack 3.585859 101

Neutral,Neutral,Neutral Attack,Attack,Ignore 2.437947 116

Neutral,Neutral,Neutral Attack,Ignore,Attack 2.53359 6

Neutral,Neutral,Neutral Attack,Ignore,Ignore -0.368639 6

Neutral,Neutral,Neutral Ignore,Attack,Attack 2.068462 6

Neutral,Neutral,Neutral Ignore,Attack,Ignore 3.933379 259

Neutral,Neutral,Neutral Ignore,Ignore,Attack 0.773485 6

Table 7 - Captain Q-table vs. (3,4,3). Lost point A. Captured point B. Point C is neutral

State Action Q-value Visits

Lost,Captured,Neutral Attack,Defend,Defend 3.50264 206

Lost,Captured,Neutral Attack,Defend,Ignore 2.91887 8

Lost,Captured,Neutral Attack,Ignore,Attack 2.84923 4

Lost,Captured,Neutral Attack,Ignore,Ignore 0.32096 2

Lost,Captured,Neutral Ignore,Defend,Attack 5.39847 113

Lost,Captured,Neutral Ignore,Defend,Ignore 1.36745 3

Lost,Captured,Neutral Ignore,Ignore,Attack 2.28632 5

66

Table 8 - Captain Q-table vs. (3,4,3). All points captured

State Action Q-value Visits

Captured,Captured,Captured Defend,Defend,Defend 2.26174 36

Captured,Captured,Captured Defend,Defend,Ignore 0.46074 1

Captured,Captured,Captured Defend,Ignore,Defend 0.83213 1

Captured,Captured,Captured Defend,Ignore,Ignore 1.37616 2

Captured,Captured,Captured Ignore,Defend,Defend 1.00711 1

Captured,Captured,Captured Ignore,Defend,Ignore 0.37641 1

Captured,Captured,Captured Ignore,Ignore,Defend 0.63632 1

Table 9 - Defense Lt.'s Q-table vs. Static Strategy (3,4,3).

State: Defend all points. Enemy seen near all targets.

Assignment Observation Force Distribution Q-Value Visits

A B C True,True,True 100% [3,4,3] 2.09847 24

A B C True,True,True 100% [2,4,4] 0.44569 1

A B C True,True,True 100% [4,2,4] 0 0

A B C True,True,True 100% [4,4,2] 0 0

5.2.2.4 HQ-DoG vs. Static Strategy (6,2,2) and (8,1,1)

 Table 10 displays how HQ-DoG compares against all the Static Strategies. It shows that the Static

Strategies (6,2,2) and (8,1,1) fared poorly as expected. Even though their strategies employ coordination,

they ineffectively deploy their soldiers across the domination points. As stated in Section 5.1.2, these two

strategies are too defensive around point A and HQ-DoG capitalizes on this winning 98.2% of its matches

against Strategy (6,2,2) and 99.4% of its matches against Strategy (8,1,1). This shows that coordination

alone is not enough to be competitive in the domination gametype and defeat HQ-DoG. An opponent

static strategy must have both coordination and an effective deployment of its soldiers across the map.

Table 10 - HQ-DoG vs. Static Strategies (6,2,2) and (8,1,1)

Strategy Avg. Score Diff Win Ratio

(5,5,0) 8.656 54.8%

(4,4,2) -7.138 41.4%

(3,4,3) -2.498 46.6%

(6,2,2) 39.264 98.2%

(8,1,1) 47.78 99.4%

67

5.2.3 HQ-DoG vs. Extended Experiment Static Strategy (4,4,2)

 The previous experiments allow HQ-DoG to learn its strategy within five hundred matches. There

is the question of whether performance against a particular strategy can be improved if the algorithm is

given more time to learn. There is also the question as to how the currently learned Q-table will perform if

its learning is frozen but it is allowed to continue to compete. To answer these questions an extended

experiment is conducted with the Static Strategy that performed the best against HQ-DoG. Static Strategy

(4,4,2) won the most games out of all the Static Strategies, so it is the one chosen for an extended

experiment of 1000 games. Two separate trials are run in the extended experiment; they both use the same

captain and lieutenant Q-tables acquired in the first 500-game experiment for Static Strategy (4,4,2). One

trial disables learning and plays against Static Strategy (4,4,2) for another 500 games with the frozen Q-

tables. The other trial plays another 500 matches but allows the learning process to continue.

 This extended experiment compares its trials against the original experiment for Static Strategy

(4,4,2) to determine if HQ-DoG can improve its win/loss ratio given more time to compete with a

developed Q-table. The extended experiment also compares its trials directly to each other to discover if

there is an advantage to be had by allowing the algorithm to continue to learn as it competes versus

locking the algorithm and just utilizing what it has learned up to the current point. Table 11 shows the

three different runs of HQ-DoG against different versions of Static Strategy (4,4,2). It shows that after

freezing the algorithm’s learned Q-tables and running for another 500 matches, HQ-DoG is able to

increase the percentage of games won from 41.4% to 52.2%, over half the games in the 1000 matches.

This means that HQ-DoG won 63% of the 500 games in the second half of the extended experiment while

competing with the Q-tables it had developed during the first 500 games. Table 11 also shows that when

learning is allowed to continue, HQ-DoG wins 55.5% of the 1000 matches, meaning in that trial HQ-DoG

wins 69.6% of the last 500 matches. It indicates that HQ-DoG is able to perform better after it is given the

time to develop a policy for its Q-tables and that continued development improves its performance.

 Table 12 shows the comparison between HQ-DoG with and without continued learning against

Static Strategy (4,4,2) for the last 500 games of each trial of the extended experiment. It shows that

68

allowing HQ-DoG to continue to learn after it has developed a policy improves performance over

competing with frozen Q-tables. The trial that uses continued learning has a higher average lead and a

higher win percentage than the trial that locks the learning process.

Table 11 - HQ-DoG vs. Static Strategy (4,4,2) 1000 Games

Strategy # of Matches Avg. Score Diff. HQ-DoG Win %

(4,4,2) 500 -7.138 41.4%

Extended (4,4,2) w/o Learning 1000 0.312 52.2%

Extended (4,4,2) w/ Learning 1000 2.630 55.5%

Table 12 - HQ-DoG vs. Static Strategy (4,4,2) Second 500 Games

Trial Avg. Score Diff HQ-DoG Win%

Extended (4,4,2) w/o Learning 7.762 63.0%

Extended (4,4,2) w/ Learning 12.398 69.6%

5.2.4 HQ-DoG vs. Random Strategy

 Out of all the experiments with the static strategies, HQ-DoG has the most difficulty contending

with Strategies (5,5,0), (4,4,2), and (3,4,3). Because of this the Random Strategy chooses randomly from

these three static strategies. Figure 26 displays the win/loss chart of HQ-DoG against the Random

Strategy. It shows that it is more difficult for HQ-DoG to learn a policy against the Random Strategy

compared to most of the other strategies. In this experiment, it wins only 45.8% of the matches. Figure 27

shows the difference in scores against Random Strategy, the average of which is -2.774, one of the worst

of all. By choosing a strategy at random, the Random Strategy makes it harder for HQ-DoG to learn a

competitive policy against any one of the chosen strategies in particular. HQ-DoG must adapt to a new

strategy at the start of each game which is comparable to erasing its Q-table and starting from scratch.

This shows changing strategies each match and not doing the same thing repeatedly, is an effective line of

attack against HQ-DoG. This would give a team of players more entertainment value because they would

have to constantly change their gameplay if they wanted to win matches against HQ-DoG.

69

5.3 Discussion

 The results of these experiments show that HQ-DoG is capable of learning a competitive policy

against different strategies for the domination gametype in first person shooter games. It is far superior to

the Greedy Strategy and Static Strategies (8,1,1) and (6,2,2), winning over 94% of the matches in all

cases. It is able to win over half the matches it has against Static Strategy (5,5,0), which is competitive

given that Static Strategy (5,5,0) uses one of the best strategies there is for playing domination and HQ-

DoG must learn a policy from scratch. Against a more difficult enemy like Static Strategy (4,4,2) HQ-

DoG is able to win approximately 40% of the matches. However, HQ-DoG shows that it can compete

better against this same strategy if it plays again with the policy it has just learned. The results show that

after a policy is developed, HQ-DoG wins over 60% of the games in another 500-match experiment with

Static Strategy (4,4,2). When the developed policy is allowed to continue learning as it competes, it wins

almost 70% of the games in another 500-match experiment with Static Strategy (4,4,2). This shows that

learning does take place and that it improves performance of HQ-DoG over time. By examining its Q-

tables, HQ-DoG shows that it is capable of learning the appropriate decision in different circumstances

for both offense and defense. These decisions include where to send soldiers as well as how many to send.

The results show that one of the best ways to compete against HQ-DoG is to change strategies and not

stick to one plan. In the last experiment the Random Strategy wins approximately 55% of the matches.

This shows that if a team wishes to win consistently against HQ-DoG the team must change its strategy

so that HQ-DoG can not learn to counter it.

 It is important to note that the randomness found in the Greedy Strategy is different from that

found with the Random Strategy. The Greedy Strategy is unpredictable in nature mostly because there is

neither communication nor any coordination among soldiers. All the soldiers act independently of one

another so any cooperation is emergent. This type of randomness is very ineffective against HQ-DoG.

Alternatively, the Random Strategy is unpredictable only in what strategy it will employ each game

match. Once it has chosen a strategy it sticks with it for the duration of the match, and to do so it must

explicitly coordinate its soldiers. Soldiers are split off into groups and assigned a domination point. Even

70

though the soldiers in a group don’t communicate with each other directly their cooperation is by design

because they were all deliberately sent to the same spot. This purposeful use of randomness and

coordination is what gives the Random Strategy its edge.
2
 It shows that if a team wants to be successful

against HQ-DoG it must change its strategies over time; otherwise the algorithm will eventually learn a

policy that is able to counteract it and given enough time begin to defeat it.

 It is also important to note that the purpose of HQ-DoG is not to learn a policy that wins every

match. As stated before, even if the optimal decision is always made, winning the match is not guaranteed

because the environment is stochastic. Part of victory is based on the position of the enemy and how well

a team’s soldiers fair against the opposition in combat. Instead the purpose of HQ-DoG is to find a policy

that is competitive against the opposing team’s strategy to provide a fun and challenging experience. Fast

convergence to an optimal policy is not the primary concern. The fact that the algorithm adapts to

gameplay and makes the opposing team change its strategies is what’s most important. By doing this,

HQ-DoG gives the opposing team a different experience from one game to the next which makes the

game interesting and entertaining.

2
 The Random Strategy must choose among competitive strategies like (4,4,2) and (5,5,0) for an advantage though.

Choosing among poor performing strategies like (8,1,1) will still result in mostly losses despite the random factor.

71

CONCLUSION

 This paper has presented HQ-DoG, an algorithm that employs hierarchical Q-learning to direct

the actions of a team of ten soldiers in the domination gametype for a first person shooter simulation.

Whereas previous work employs conventional RL in this area for control of up to only five agents, this

paper contends that controlling larger groups of agents with these methods grows increasingly difficult

because the state-action space of the domain grows exponentially with the number of soldiers on a team.

This is compounded by the fact that the tasks of learning which targets to attack or defend as well as how

many soldiers to commit to each target are learned simultaneously in the same Q-table. For these reasons,

HQ-DoG proposes a hierarchical architecture consisting of three separate Q-tables that represent a captain

and two subordinate lieutenants. The captain learns a competitive policy for which points to attack and

defend given the state of the environment (which flags it does and doesn’t own). The lieutenants are

responsible for offense and defense and, given the orders they receive from the captain, learn how to

distribute the team’s forces across the targets. This divides the task of learning where and how to deploy

the soldiers into two easier to solve subtasks. HQ-DoG reduces the state-space and abstracts the

information used by the Q-tables compared to other methods and in doing so proves it can learn a winning

policy for controlling a large number of soldiers.

 HQ-DoG is able to scale well to a domain with a larger team size. The state-action space of the

captain’s Q-table remains the same regardless of team size because its state is based on the 27 possible

combinations of the three domination points which do not change. Only a lieutenant’s state-action space

has the potential to grow with a different team size, but the designer has some control over this growth.

Lieutenants choose among percentages for different soldier distributions, and these percentages as well as

the number of possible distributions can change at the designer’s discretion. The designers can have the

lieutenants choose from as many distributions as he or she feels is adequate. Given N number of soldiers

72

per team, it is not necessary to make every mathematically possible distribution across the three points

available because not every distribution deploys the soldiers effectively across the map.

 There is further research that can be done with HQ-DoG. One direction is to implement the

algorithm across a network. At the moment the captain, lieutenants, and soldiers are tied together, but this

is not a requirement of the algorithm, it is only a restriction of the development environment it is

deployed in. The components of the algorithm can be separated as long as they are able to communicate

with each other. It is of interest to investigate how HQ-DoG can perform in a client-server capacity where

embodied soldiers on the team execute actions in the simulation environment at one location, but the

disembodied AI sits somewhere else, passing instructions from a different location. There are issues to

explore like the implications of how long it takes for data to travel across the network and what happens

if the network fails to deliver information in a timely manner or at all.

 Another direction of research is to investigate how HQ-DoG behaves with a different utility

function, particularly one that doesn’t explicitly take the enemy into consideration, like what is found in

RL-DOT. HQ-DoG subtracts the number of enemy-owned points from the number of points it owns to

directly calculate utility from the environment. This means there is a different utility for when HQ-DoG

owns one point and the enemy owns none as opposed to when they both own one. Alternatively RL-DOT,

assigns utility based only on the number of points that it owns, so it would give the same reward under

both circumstances. HQ-DoG uses a wider range for utility (seven values compared to four) but it is

uncertain at this point whether that leads to better performance. A wider range of utility values allows

HQ-DoG to detect more circumstances and score them differently, but this might be unnecessary. Further

study would be required to determine if a change in utility function would result in a more or less

competitive policy.

73

REFERENCES

Albus, J. S., Anthony, J. R., & Roger, N. N. (1981). Theory and Practice of Hierarchical Control. Proc

23rd IEEE Computer Society International Conference, (pp. 19-39).

Atkin, M. S., Westbrook, D. L., & Cohen, P. R. (1999). Capture the Flag: Military Simulation Meets

Computer Games. Symposium on Artificial Intelligence and Computer Games (pp. 1-5). Menlow

Park, CA: AAAI Press.

Auslander, B., Lee-Urban, S., Hogg, C., & Munoz-Avila, H. (2008). Recognizing the Enemy: Combining

Reinforcement Learning with Strategy Selection using Case-Based Reasoning. In Proceedings of

the Ninth European Conference on Case-Based Reasoning (ECCBR 2008), (pp. 59-73). Trier,

Germany.

Bensaid, N., & Mathieu, P. (1997). A Hybrid and Hierarchical Multi-Agent Architecture Model. PAAM,

(pp. 145-155).

Bourg, D., & Seeman, G. (2004). AI For Game Developers. Beijing: O'Reiily Media Inc.

Champard, A. J. (2007, September 6). Understanding Behavior Trees. Retrieved June 4, 2012, from AI

Game Dev: aigamedev.com/open/article/bt-overview

Champard, A. J. (2012a, Febraury 9). Trends and Highlights in Game AI for 2011. Retrieved June 3,

2012, from AI Game Dev: aigamedev.com/insider/discussion/2011-trends-highlights/

Champard, A. J. (2012b, February 26). Understanding the Second-Generation of Behavior Trees.

Retrieved June 3, 2012, from AI Game Dev: aigamedev.com/insider/tutorial/second-generation-

bt/

Dignum, F., Westra, J., van Douesburg, W. A., & Harbers, M. (2009). Games and Agents: Designing

Intelligent Gameplay. International Journal of Computer Games Technology. Hindawi

Publishing Corporation.

Dignum, V., Dignum, F., & Sonenberg, L. (2004). Towards Dynamic Reorganization of Agent Societies.

CEAS: Workshop on Coordination in Emergent Agent Sociesties at ECAI, (pp. 22-27). Valencia:

Spain.

Ferber, J., & Gutknecht, O. (1998). A Meta-Model for the Analysis and Design of Organization in Multi-

Agent Systems. Third International Conference of Multi-Agent Systems, (pp. 128-135). Paris,

France.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of Theorem Proving

to Problem Solving. International joint Conferences on Artificial Intelligence, (pp.189-208).

74

Ghavamzadeh, M., Mahadevan, S., & Makar, R. (2006). Hierarchical Multi-Agent Reinforcement

Learning. Autonomous Agents Multi-Agent System, (pp. 197-229).

Ghijsen, M., Jansweijer, W. N., & Wielinga, B. J. (2010). Adaptive Hierarchical Multi-Agents

Organizations. Interactive Collaborative information systems, (pp. 375-400).

Glaser, N., & Morginot, P. (1997). The Reorganization of Societies of Autonomous Agents. Eighth

European Workshop on Modelling Autonomous Agents in a Multi-Agent World, (pp. 98-111).

Gosavi, A. (2009). A Tutorial for Reinforcement Learning. Rolla, MO: Department of Enginerring

Management and System Engineering Missouri Uinversity of Science and Technology.

Hoang, H., Lee-Urban, S., & Munoz-Avila, H. (2005). Hierarchical Plan Representations for Encoding

Strategic Game AI. In Proceedings of Artificial Intelligence and Interactive Digital

Entertainment Conference (AIIDE-05). AAAI Press.

Hogg, C., Lee-Urban, S., Munoz-Avila, H., Auslander, B., & Smith, M. (2011). Game AI for Domination

Games. Artificial Intelligence for Computer Games, (pp. 83-102).

Kraus, S. (1997). Negotiation and Cooperation in Multi-Agent Environments. Artificial Intelligence, (pp.

79-98).

Lees, M., Logan, B., & Theodoropoulos, G. K. (2006). Agents, Games, and HLA. Simulation Modelling

Practice and Theory, (pp. 752-767).

MacDonald, K. (2011, November 11). Modern Warfare 3 has Biggest Launch of Anything Ever.

Retrieved November 14, 2011, from www.ign.com:

http://xbox360.ign.com/articles/121/1212246p1.html

McPartland, M., & Gallagher, M. (2008a). Learning to be a Bot: Reinforcement Learning in Shooter

Games. Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment

Conference, (pp. 78-83). Stanford, California.

McPartland, M., & Gallagher, M. (2008b). Creating a Multi-Purpose First Person Shooter Bot with

Reinforcement Learning. In Proceedings of IEEE Symposium on Comnputation Intelligence ang

Games (CIG '09), (pp. 143-150).

Mehta, N., Tadepalli, P., & Fern, A. (2009). MASH: A Scalable Multi-Agent Framework for Hierarchical

Reinforcement Learning. AAAI Press.

Miikkulainien, R. (2006). Creating Intelligent Agents in Games. The Bridge, (pp. 5-13).

Mikkulanien, R., Bryant, B. D., Cornelius, R., Karpov, I. V., Stanley, K. O., & Yong, C. H. (2006).

Computational Intelligence in Games. Computational Intelligence: Principles and Practice, (pp.

155-191).

Mohd Shukri, S. R., & Mohd Shaukhi, M. K. (2008). A Study on Multi-Agent Behavior in a Soccer

Game Domain. World Academy of Science, Engineering and Technology, (pp. 308-312).

75

Nau, D., Cao, Y., Lotem, A., & Munoz-Avila, H. (1999). SHOP: Simple Hierarchical Ordered Planner.

Proceedings of the 16th International Joint Conference on Artificial Intelligence. San Francisco,

CA: Morgan Kaufmann Publicers Inc.

O'Connor, A. (2009, November 18). Activision Boasts Modern Warfare 2 Sales Figures, Broken Records.

Retrieved Decebmer 12, 2009, from Shack News:

http://www.shacknews.com/article/61298/activision-boasts-modern-warfare-2

Orkin, J. (2006). Three States and a Plan: The AI of F.E.A.R. In Proceedings of Game Developer's

Conference.

Patel, P. G., Carver, N., & Rahimi, S. (2011). Tning Computer Gaming Agents using Q-Learning.

Proceeding of the Federated Conference on Computer Science and Information Systems, (pp.

581-588).

Rao, A. S. (1996). AgentSpeak(L): BDI Agents speak out in a logical computational language".

Proceedings of the 7th Workshop on Modeling Autonomous Agents in a Multi-Agent World

(MAAMAW'96) (pp. 42-45). London: Spring-Verlag.

Rao, A. S., & Georgegg, M. P. (1995). BDI Agents: From Theory to Practice. Proceedings of the 1st

International Conference on Multi-Agent Systems (ICMAS-95), (pp. 312-319). San Francisco,

USA.

Routier, J. C., Mathieu, P., & Secq, Y. (2001). Dynamic Skills Learning: A support to Agent Evolution.

AISB Symposium on Adaptive Agents and Multi-Agents Systems, (pp. 25-32).

Smith, M., Lee-Urban, S., & Munoz-Avila, H. (2007). RETALIATE: Learning Winning Policies in First-

Person Shooter Games. In Proceddings of the Seventeenth Innovative Applications of Artificial

Intelligence Conference (IAAI-07). AAAI Press.

Straatman, R., van der Sterren, W., & Beij, A. (2005). Killzone's AI: dynamic procedural combat tactics.

In Proceedings of Game Developer's Conference.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A Framework for

Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, (pp. 181-211).

van Eck, N. J., & Wezel, M. (2008). Application of Reinforcement Learning to the Game of Othello.

Computers & Operations Research, (pp. 1999-2017).

van Oijen, J., van Doesburg, W., & Dignum, F. (2011). Goal-Based Communication Using BDI Agents

as Virtual Humans in Training: An Ontology Driven Dialogue System. Agents for Games and

Simulations II, (pp. 38-52).

Walton, B. (2009, November 11). VG Chartz. Retrieved December 12, 2009, from Modern Warfare 2

sells 7 million copies on day one: http://www.vgchartz.com/article/5826/modern-warfare-2-sells-

7-million-copies-on-day-one/

76

Wang, H., Gao, Y., & Chen, X. (2010, March). RL-DOT: A Reinforcement Learning NPC Team for

Playing Domination Games. IEEE Transactions on Computational intelligence and AI in Games,

(pp. 17-26).

Wooldridge, M., Jennings, N. R., & Kinny, D. (1999). A Methodology for Agent-Oriented Analysis and

Design. International Conference of Autonomous Agents, (pp. 69-76). Seattle, Washington.

77

Appendix A – Captain States and Actions

A.1 Captain States

A B C

Lost Lost Lost

Lost Lost Captured

Lost Lost Neutral

Lost Captured Lost

Lost Captured Captured

Lost Captured Neutral

Lost Neutral Lost

Lost Neutral Captured

Lost Neutral Neutral

Captured Lost Lost

Captured Lost Captured

Captured Lost Neutral

Captured Captured Lost

Captured Captured Captured

Captured Captured Neutral

Captured Neutral Lost

Captured Neutral Captured

Captured Neutral Neutral

Captured Lost Lost

Neutral Lost Captured

Neutral Lost Neutral

Neutral Captured Lost

Neutral Captured Captured

Neutral Captured Neutral

Neutral Neutral Lost

Neutral Neutral Captured

Neutral Neutral Neutral

78

A.2 Captain Actions and Associated IDs

Action ID A B C

1 Attack Attack Attack

2 Attack Attack Defend

3 Attack Attack Ignore

4 Attack Defend Attack

5 Attack Defend Defend

6 Attack Defend Ignore

7 Attack Ignore Attack

8 Attack Ignore Defend

9 Attack Ignore Ignore

10 Defend Attack Attack

11 Defend Attack Defend

12 Defend Attack Ignore

13 Defend Defend Attack

14 Defend Defend Defend

15 Defend Defend Ignore

16 Defend Ignore Attack

17 Defend Ignore Defend

18 Defend Ignore Ignore

19 Ignore Attack Attack

20 Ignore Attack Defend

21 Ignore Attack Ignore

22 Ignore Defend Attack

23 Ignore Defend Defend

24 Ignore Defend Ignore

25 Ignore Ignore Attack

26 Ignore Ignore Defend

79

A.3 Captain State-Action Space

A B C Valid Action IDs

Lost Lost Lost 1,3,7,9,19,21,25

Lost Lost Captured 2,3,8,9,20,21,26

Lost Lost Neutral 1,3,7,9,19,21,25

Lost Captured Lost 4,6,7,9,22,2,25

Lost Captured Captured 5,6,8,9,23,24,26

Lost Captured Neutral 4,6,7,9,22,24,25

Lost Neutral Lost 1,3,7,9,19,21,25

Lost Neutral Captured 2,3,8,9,20,21,26

Lost Neutral Neutral 1,3,7,9,19,21,25

Captured Lost Lost 10,12,16,18,19,21,25

Captured Lost Captured 11,12,19,18,20,21,26

Captured Lost Neutral 10,12,16,18,19,21,25

Captured Captured Lost 13,15,16,18,22,24,25

Captured Captured Captured 14,15,17,18,23,24,26

Captured Captured Neutral 13,15,16,18,22,24,25

Captured Neutral Lost 10,12,16,18,19,21,25

Captured Neutral Captured 11,12,17,18,20,21,26

Captured Neutral Neutral 10,12,16,18,19,21,25

Neutral Lost Lost 1,3,7,9,19,21,25

Neutral Lost Captured 2,3,8,9,20,21,26

Neutral Lost Neutral 1,3,7,9,19,21,25

Neutral Captured Lost 4,6,7,9,22,24,25

Neutral Captured Captured 5,6,8,9,13,24,26

Neutral Captured Neutral 4,6,7,9,22,24,25

Neutral Neutral Lost 1,3,7,9,19,21,25

Neutral Neutral Captured 2,3,8,9,20,21,26

Neutral Neutral Neutral 1,3,7,9,19,21,25

80

Appendix B – Lieutenant State and Actions

B.1 Derived State Space of a Lieutenant

A B C % Attackers % Defenders

Attack Attack Attack 100% 0%

Attack Attack Defend 66% 33%

Attack Attack Ignore 100% 0%

Attack Defend Attack 66% 33%

Attack Defend Defend 33% 66%

Attack Defend Ignore 50% 50%

Attack Ignore Attack 100% 0%

Attack Ignore Defend 50% 50%

Attack Ignore Ignore 100% 0%

Defend Attack Attack 66% 33%

Defend Attack Defend 33% 66%

Defend Attack Ignore 50% 50%

Defend Defend Attack 33% 66%

Defend Defend Defend 0% 100%

Defend Defend Ignore 0% 100%

Defend Ignore Attack 50% 50%

Defend Ignore Defend 0% 100%

Defend Ignore Ignore 0% 100%

Ignore Attack Attack 100% 0%

Ignore Attack Defend 50% 50%

Ignore Attack Ignore 100% 0%

Ignore Defend Attack 50% 50%

Ignore Defend Defend 0% 100%

Ignore Defend Ignore 0% 100%

Ignore Ignore Attack 100% 0%

Ignore Ignore Defend 0% 100%

81

B.2 Translation between team percentage of forces and actual size

Percentage of Forces Actual Size of Force

0% 0

33% 3

50% 5

66% 7

100% 10

B.3 Action Space of Lieutenants

Action

IDs

Distribution of Allotted Forces

Across Targets

Number of Targets

Assigned

1 (33%, 33%, 33%) 3 Targets

2 (20%, 40%, 40%) 3 Targets

3 (40%, 20%, 40%) 3 Targets

4 (40%, 40%, 20%) 3 Targets

5 (33%, 66%) 2 Targets

6 (50%, 50%) 2 Targets

7 (66%, 33%) 2 Targets

8 100% 1 Target

82

B.4 Break down of lieutenant distribution across assigned targets given different percentages of the entire

team

Action ID 1st 2nd 3rd

Three Targets, Ten Players (100%)

1 3 4 3

2 2 4 4

3 4 2 4

4 4 4 2

Two Targets, Ten Players (100%)

5 3 7

 6 5 5

 7 7 3

 Two Targets, Seven Players (66%)

5 2 5

 6 3 4

 7 5 2

 One Target, Ten Players (100%)

8 10

 One Target, Five Players (50%)

8 5

 One Target, Three Players (33%)

8 3

B.5 Observation Model Dependent on Number of Targets Assigned

1st 2nd 3rd 1st 2nd

1st

True True True True True True

True True False True False False

True False True False True

True False False False False

False True True

False True False

False False True

False False False

83

B.6 Entire Lieutenant State-Action Space

Assignment Observation Force Actions

A B C TRUE TRUE TRUE 100% 1,2,3,4

A B C TRUE TRUE FALSE 100% 1,2,3,4

A B C TRUE FALSE TRUE 100% 1,2,3,4

A B C TRUE FALSE FALSE 100% 1,2,3,4

A B C FALSE TRUE TRUE 100% 1,2,3,4

A B C FALSE TRUE FALSE 100% 1,2,3,4

A B C FALSE FALSE TRUE 100% 1,2,3,4

A B C FALSE FALSE FALSE 100% 1,2,3,4

A B TRUE TRUE 66% 5,6,7

A B TRUE FALSE 66% 5,6,7

A B FALSE TRUE 66% 5,6,7

A B FALSE FALSE 66% 5,6,7

A B TRUE TRUE 100% 5,6,7

A B TRUE FALSE 100% 5,6,7

A B FALSE TRUE 100% 5,6,7

A B FALSE FALSE 100% 5,6,7

A C TRUE TRUE 66% 5,6,7

A C TRUE FALSE 66% 5,6,7

A C FALSE TRUE 66% 5,6,7

A C FALSE FALSE 66% 5,6,7

A C TRUE TRUE 100% 5,6,7

A C TRUE FALSE 100% 5,6,7

A C FALSE TRUE 100% 5,6,7

A C FALSE FALSE 100% 5,6,7

84

Assignment Observation Force Actions

 B C TRUE TRUE 66% 5,6,7

 B C TRUE FALSE 66% 5,6,7

 B C FALSE TRUE 66% 5,6,7

 B C FALSE FALSE 66% 5,6,7

 B C TRUE TRUE 100% 5,6,7

 B C TRUE FALSE 100% 5,6,7

 B C FALSE TRUE 100% 5,6,7

 B C FALSE FALSE 100% 5,6,7

A TRUE 33% 8

A FALSE 33% 8

A TRUE 50% 8

A FALSE 50% 8

A TRUE 100% 8

A

FALSE

100% 8

 B TRUE 33% 8

 B FALSE 33% 8

 B TRUE 50% 8

 B FALSE 50% 8

 B TRUE 100% 8

 B FALSE 100% 8

 C TRUE 33% 8

 C FALSE 33% 8

 C TRUE 50% 8

 C FALSE 50% 8

 C TRUE 100% 8

 C FALSE 100% 8

