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calculation and mathematics reasoning in a sample of 401 college-age students referred for 

assessment of possible learning difficulties.  Three nested models were examined in an attempt 

to determine the differential effects of cognitive processes on mathematics calculation and 

mathematics reasoning.  Measures were chosen from a comprehensive neuropsychological 

battery administered to individuals seeking evaluations at The University of Georgia – Regents’ 

Center for Learning Disorders (UGA-RCLD).  Auditory long-term memory, auditory working 

memory, and reasoning contributed 14% and 44 % of the variance to mathematics calculation 

and mathematics reasoning, respectively.  Nested model analyses failed to demonstrate 

differential contributions of variance to mathematics calculation and mathematics reasoning.  
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INTRODUCTION 

Background 

Due to the importance of mathematical skills for college and for adequate adult 

functioning, mathematics courses are required and are a major component of both the primary 

and secondary grades of education (Patton, Cronin, & Bassett, 1998).  However, according to the 

US Department of Education, only 20 percent of twelfth-graders, nationally, were proficient in 

mathematics, based on testing conducted in 2000 

(http://www.ed.gov/nclb/methods/math/math.html/).    

The increasing demands of a technologically advanced society create a greater need for 

mathematics knowledge and skills, and individuals without these skills may be incapable of 

finding lucrative and personally rewarding positions (Fourqurean, Meisgeier, Swank, & 

Williams, 1991).  Furthermore, many of today’s technology jobs require advanced mathematics 

skills and training beyond high school.  Well-paying jobs in general, and not only those in 

science and technology fields, often require some college training (Fourqurean et al., 1991), and 

the general lack of mathematics skills in the adult population puts this country at a disadvantage 

when competing globally (Battista, 1999).  

The mathematics achievement of United States citizens has been a concern of the public 

and policy makers for some time, resulting in the recent legislation aimed at addressing this 

problem. This concern has manifested in a number of trends and legislative remedies including 

increasing “high stakes testing” particularly in recent years with the passing of the No Child Left 

Behind Act (NCLB) in 2001 (Miksch, 2003).  In an effort to ensure that all students are 

http://www.ed.gov/nclb/methods/math/math.html/
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academically proficient, NCLB mandates that each state administer annual assessments in 

language arts and mathematics in grades three through eight and at least once in grades ten 

through twelve by the year 2005 (Coleman, Palmer, & Garrett, 2003).  A specific concern is that 

these tests are not based on sound scientific research regarding an understanding of these subject 

areas or appropriate expectations for mathematical understanding at certain grade levels 

(Battista, 1999).  Penalties for failure of high stakes tests have severe implications for older 

students.  The cumulative nature of mathematics knowledge makes passing from one grade to the 

next unlikely when high stakes testing in middle or high school relies on information not learned 

in previous years (Ackerman & Dykman, 1995).  Older students at risk for not passing are at an 

increased risk of dropping out of school either after failing the exam or to avoid taking it 

(Miksch, 2003), and students who either drop out or are unable to pass the graduation exit exam 

leave school with even poorer employment prospects having been rendered unable to pursue 

postsecondary educational avenues, as a high school diploma is often mandatory for 

employment, on-the-job training, college, and the military (Albrecht & Joles, 2003; Miksch, 

2003).   

These substantial societal implications emphasize the need to better understand the 

cognitive abilities that contribute to mathematics achievement, especially since such an 

understanding could contribute information necessary to design better formative and summative 

achievement measures.  Relatively little is known about the cognitive processes that impact the 

higher-order mathematics skills of adults (Geary, 2005).  Yet, between five and eight percent of 

elementary school children demonstrate cognitive deficits that interfere with mathematics 

achievement (Geary, 2005).  Identifying a model of cognitive variables contributing to variation 

in mathematics skills in adults will contribute to a better understanding of cognitive and 
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linguistic processes impacting mathematics in a college population and help in developing 

accommodations for those students with learning disabilities impacting mathematics.   

By comparison, while extensive studies have been conducted on the cognitive and 

linguistic processes underlying reading decoding, relatively little has been accomplished in 

regard to uncovering the cognitive processes that contribute to variability in mathematics 

performance (Robinson, Menchetti, & Torgesen, 2002).  Working memory, linguistic abilities, 

and other individual cognitive abilities are known contributors to reading achievement.  Similar 

progress toward defining the cognitive abilities underlying mathematics performance and their 

interactive role in promoting or retarding mathematics achievement, however, has been far less 

rapid. 

Identification of the relationship between cognitive or linguistic processes and 

mathematics performance could be identified in the same way that studies focusing on reading 

decoding have supported a relationship between the cognitive and linguistic processes and 

reading achievement (Padget, 1998).  The same cognitive and linguistic processes implicated in 

reading achievement may also explain individual variation in mathematics achievement as well 

(Fletcher, 2005; Geary, 1993).  While research has been conducted with children identifying 

deficits in cognitive processes related to poor mathematics achievement, studies regarding the 

mathematics skills of adults have generally focused on mathematics failure rather than 

identifying the cognitive processes associated with individual variation in mathematics 

performance across skill levels (Cirino, Morris, & Morris, 2002).  Currently, models of cognitive 

processing variables accounting for the heterogeneity of mathematics performance in adults are 

lacking (Cirino et al., 2002).  Further research investigating a cognitive model accounting for 

individual variation in mathematics performance in adults is needed to provide differential 
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intervention and/or accommodations.  The testing of models of cognitive processes that 

undergird mathematics achievement is a needed first step, one that may be studied in a 

population at risk for achievement problems, because this population provides a range of 

proficiency levels that may be ideal for examining individual differences in achievement (Cirino 

et al., 2002). 

Previous research studies investigating mathematics skills have been largely applied to 

child populations, and studies regarding adult learners of mathematics and science have been 

largely absent (Croucher & Houssart, 1997; Ashcraft, 1992).  Thus, much of the current insight 

into these relationships is necessarily gleaned from the child literature.  Geary, for example, 

proposed a cognitive model describing a profile of a subset of children demonstrating specific 

learning disabilities interfering with mathematics performance (Geary, 2005).  A review of 

existing studies, such as those by Geary and his colleagues, in addition to research conducted 

with patients with focal brain lesions, is provided to identify commonalities among the studies 

regarding cognitive processes that likely contribute to individual differences in mathematics 

performance in older adolescents and adults.  Despite the difficulty with mathematics that many 

adolescents and adults experience, the majority of educational research conducted with college-

level populations has focused on the humanities and social science fields (Croucher & Houssart, 

1997).   

Research points to developmental growth and decline of cognitive and linguistic abilities  

across the lifespan that are related to mathematics skills (McGrew & Woodcock, 2001).  Several 

notable differences between the literature regarding children and adults exist (Cirino et al., 

2002).  For example, whereas typical elementary school children use counting strategies in order 

to solve simple mathematics problems (e.g., 5 + 4), typical adults rely almost exclusively on 
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retrieval strategies and only rely on counting when retrieval fails to produce a correct answer 

(Ashcraft, 1992).  Despite this reliance on retrieval, some evidence suggests that adults may 

utilize other cognitive processes to an equal or greater degree, such as working memory and 

reasoning (Floyd, Evans, & McGrew, in press).  Additionally, the support for a visual-spatial 

factor underlying mathematical skills in adults has varied widely across studies (Cirino et al., 

2002).  Thus, different cognitive abilities are employed to differing degrees based on age.  This 

study will attempt to examine whether children and adults are cognitively and linguistically 

similar with regard to mathematics achievement. 

The majority of research regarding the relationship between cognitive processes and 

mathematics achievement has focused on five cognitive abilities:  long-term memory (Geary, 

1993; Sokol, McCloskey, Cohen, & Aliminosa, D. 1991; Zentall, 1990), working memory 

(Gathercole & Pickering, 2000; Keeler & Swanson, 2001; McLean & Hitch, 1999; Swanson, 

1994), reasoning (Ablard & Tissot, 1998; Cifarelli, 1998; Rourke & Conway, 1997), visual-

spatial ability (Assel, Landry, Swank, Smith, & Steelman, 2003; Harnadek & Rourke, 1994; 

Hermelin & O’Connor, 1986; McLeod & Crump, 1978), and verbal ability (Abedi & Lord, 2001; 

Pennington, 1991).  The research regarding the relationships between these variables and 

mathematics achievement provides a basis to form an exploratory, theoretically-based model of 

cognitive processing variables related to mathematics achievement in older adolescents and 

adults that may be tested via structural equation modeling (SEM).   

The purpose of the current study was to develop and test an exploratory model of 

cognitive and linguistic processes contributing to individual variability in mathematics 

achievement in a post-secondary sample of clinic-referred college students.  This research 

systematically examined the cognitive processes that explain or predict achievement and 
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provided external validity for specific cognitive variables predicting mathematics achievement in 

young adults (McGrew & Flanagan, 1997).  It was also designed to contribute to an emerging 

body of literature regarding the relationships between cognitive and linguistic processes and 

mathematics achievement by exploring the relationships between cognitive processing variables 

related to two specific areas of mathematics achievement, mathematics calculation and 

mathematics reasoning, in a college population.  In addition, the study will contribute to 

understanding effective accommodations and interventions for populations with different 

learning profiles. 

Exploratory Model of Cognitive Processes 

 The cognitive variables chosen for the model studied include long-term memory, working 

memory, reasoning, visual-spatial ability, and vocabulary knowledge, as defined by subtests on 

various cognitive ability measures.  Mathematics achievement was defined by the Math 

Calculation Skills (Calculation and Math Fluency subtests) and Math Reasoning (Applied 

Problems and Quantitative Concepts subtests) clusters of the Woodcock-Johnson III Tests of 

Achievement (WJ III: Woodcock, McGrew, & Mather, 2001).  Each of the cognitive domains 

was selected based on theoretical support provided in the literature and represent the endogenous 

latent variables of the model tested in this study.  The hypothesis tested is that the cognitive 

processes and language abilities identified predict mathematics calculation and problem-solving 

as measured by subtests of the WJ III in a best-fitting model identified via structural equation 

modeling (SEM).  Mathematics achievement and each of the cognitive and language abilities 

included have been described in various ways, but in this study, were chosen based on support 

from previous studies conducted (Geary & Widaman,1992; Gersten, Jordan, & Flojo, 2005; 

Keeler & Swanson, 2001; McGrew & Hessler, 1995; Swanson, 1994) with adolescents and 
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adults and on practical consideration of available measures.  Specific terms are provided in Table 

1 to assist the reader in understanding the latent variables included in the model. 

Table 1. Terms and Definitions 

Latent Variable  Definition 
 
Long-term Memory Ability to store information and retrieve it later through association 

(McGrew & Flanagan, 1997). 
  
Auditory Working Memory The conscious process of mentally replaying experiences, actions, 

or mental processes and considering their results or how they are 
composed (Battista, 1999). 

 
Reasoning Thinking in a logical manner, formulating and testing conjectures, 

making sense of things, and forming and justifying judgments, 
inferences, and conclusions (Battista, 1999). 

 
Visual-spatial Ability The ability to perceive the visual world and recreate aspects of 

one’s visual experience (Gardner, 1983). 
 
Vocabulary Measure of language development using knowledge of definitions 

of words 
 
Mathematics Calculation Measure of computational skills and automaticity with basic 

mathematical facts (Mather & Woodcock, 2001) 
 
Mathematics Reasoning Measure of problem solving, analysis, reasoning, and vocabulary 

relating to mathematical knowledge (Mather & Woodcock, 2001) 
 
  

Cognitive and Linguistic Variables 

 It is difficult to differentiate the impact of verbal processes from nonverbal processes on 

mathematics achievement measures.  Mathematics problems rarely contain strictly verbal, or 

strictly visual, information.  Isolation of the verbal and nonverbal cognitive processes that 

potentially influence mathematical skills is equally challenging.  Thus, many of the cognitive 

variables chosen in the current model include both verbal and visual components.  Some 

researchers propose that individuals experiencing mathematical difficulties do so because of 
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deficits in verbal skills that globally impact achievement across reading and mathematical 

domains (Fletcher, 2005; Pennington, 1991).  Therefore, in the current model, a measure of word 

knowledge, namely vocabulary skills, was chosen to measure the impact of this variable on 

mathematics achievement.  The use of vocabulary as defined by the Peabody Picture Vocabulary 

Test – Third Edition (PPVT-III; Dunn & Dunn, 1997) and Wechsler Adult Intelligence Scale – 

Third Edition (WAIS-III; Wechsler, 1997b) as a measure of verbal skills has been previously 

supported in the literature (Cirino et al., 2002; Fletcher, 2005) and is used to determine if 

significant contributions from the other four cognitive processing variables are apparent over and 

above the contribution of vocabulary skills.  

The influence of long-term memory on mathematics achievement has been studied in 

both children and adults.  It is most frequently described in terms of a network retrieval model in 

which information, including basic mathematics facts (e.g., 4 + 2 = 6), are stored in and retrieved 

from a memory network (Ashcraft & Battaglia, 1978; Geary, Widaman, Cormier, & Little, 1987; 

Ashcraft, 1992).  Although the source of long-term memory deficits continue to be debated, 

deficits associated with mathematics performance are generally described as either impairments 

in the ability to retrieve mathematics facts from long-term memory or difficulties inhibiting the 

retrieval of irrelevant associations in memory (Geary, 2005).  Researchers often examine the role 

of long-term memory retrieval in mathematics achievement by testing an individual’s ability to 

retrieve mathematical facts from memory.  The current study defines long-term memory in terms 

of subtests taken from the California Verbal Learning Test – Second Edition (CVLT-II: Delis, 

Kramer, Kaplan, & Ober, 2000) and Wechsler Memory Scales – III (WMS-III: Wechsler, 1997c) 

in order to measure auditory-verbal and visual-nonverbal tasks unrelated to mathematics.   
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 While some studies have included both visual and auditory working memory in 

investigating the relationship between working memory and mathematics achievement (Wilson 

& Swanson, 2001), this study includes auditory working memory and visual-spatial skills as two 

distinct variables.  Research suggests that visual working memory may be related to 

mathematical achievement; however, auditory working memory measures, such as the reverse 

digit span task, have been more commonly used in studies investigating mathematics 

achievement and have gained more support in the empirical literature, (Gersten et al., 2005).  

Thus, the current study includes measures of auditory working memory as defined by selected 

subtests of the WAIS-III and WJ III.  In this study, working memory is distinguished from short-

term memory, as only measures requiring the individual to briefly store and mentally manipulate 

auditory-verbal information were included in the model.  Memory span measures that simply 

require subjects to repeat information after holding it in memory for a brief period of time were 

excluded, as research appears to support a stronger link between measures of auditory working 

memory and mathematics achievement than measures of short-term memory and mathematics 

achievement (Wilson & Swanson, 2001).   

 Definitions of reasoning ability and terminology vary widely across studies, but most 

point to an ability to “conceptualize” or to create abstract representations of information 

presented within mathematics problems (Cifarelli, 1998).  Future studies may seek to narrow a 

definition of reasoning, isolate its constructs, and determine if verbal or visual reasoning tasks 

better predict mathematics achievement in specific populations.  Measures of reasoning were 

defined using both auditory-verbal and visual-nonverbal measures taken from the WAIS-III and 

the WJ III.   
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Visual-spatial ability, as it relates to mathematics achievement, has been one of the most 

frequently examined cognitive processes in the literature (Assel, et al., 2003).  While many early 

studies suggested a clear relationship between visual-spatial ability and mathematical skills 

(Rourke & Strang, 1978), more recent studies have failed to support this relationship (Floyd et 

al., in press).  In the current study, visual-spatial skills are represented by measures on the 

WAIS-III that assess the ability to spatially represent and/or rotate visual information. 

 While the vast majority of studies have defined mathematics achievement by success in 

calculation of basic mathematics facts, the current study examines two aspects of mathematics 

achievement as defined by the WJ III, namely that of mathematics calculation and mathematics 

reasoning.  Support for these separate skills can be found in the standardization studies of the WJ 

III and in research identifying different types of mathematics achievement in older adolescents 

and adults (Floyd et al., in press).  The separation of these skills seemed particularly relevant in 

this study, which attempts to examine variation in achievement across a range of skills in a 

college sample, rather than simply examining the impact of cognitive processing on basic 

calculation skills.   

A Model of Mathematics Achievement 

 The model tested is based on the hypothesis that all independent variables have a direct 

influence on mathematics achievement.  The hypothesized relationships among latent variables 

are depicted in Figure 1.  
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In addition, three nested models, identical to the full model but with paths from each of 

the exogenous latent variables to the endogenous latent variables set to be equal, were estimated.  

In this way, it may be determined that the exogenous latent variables have a differential impact 

on mathematics reasoning and mathematics calculation. 

 Structural Equation Modeling (SEM) was used to investigate the multivariate 

relationships among the variables in the current study.  As the latent variables (i.e., long-term 

memory, auditory working memory, reasoning, visual-spatial ability, vocabulary, mathematics 

calculation, and mathematics reasoning) are not directly observable, SEM includes a 

measurement model, in addition to the structural model, that depicts the relationships among 

observed variables, or measurements, that constitute the latent variables.  The full model 

(measurement model + structural model) is presented in Figure 2. 

Research Questions 

 The following research questions were addressed by comparing a series of three nested 

models to the full structural model.  Nested models contained equal paths between one 

exogenous latent variable at a time and the endogenous latent variables.  The overall fit of the 

models and the influence of each exogenous latent variable were assessed in a sample of college 

students at risk for learning problems. 

1. Do the cognitive and linguistic abilities of long-term memory, auditory working memory, 

reasoning, visual-spatial ability, and vocabulary contribute significant variance to mathematics 

calculation and mathematics reasoning? 

2. What are the strengths of the relationships between the exogenous latent variables (i.e., 

long-term memory, auditory working memory, reasoning, visual-spatial ability, and vocabulary) 

and endogenous latent variables (i.e., mathematics calculation and mathematics reasoning)? 
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3. Do the exogenous latent variables explain differential variance in the endogenous latent 

variables of mathematics calculation and mathematics reasoning?   
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CHAPTER 2 

LITERATURE REVIEW 

Mathematics underachievement can limit an adult’s academic and vocational success.  

Studies investigating the etiologies of mathematics difficulties in older adolescents and adults are 

needed for the purpose of identifying better interventions and accommodations.  One method of 

investigating the possible causes of these difficulties is to study the relationships of cognitive and 

linguistic processes to mathematics performance in the areas of calculation and problem solving 

(Cirino et al., 2002).  Cognitive and linguistic processes may be defined as underlying 

achievement constructs that indicate a person’s level of cognitive functioning in specific areas 

(McGrew & Flanagan, 1997).  In this study, these constructs are represented by long-term 

memory, reasoning, auditory working memory, visual-spatial skills, and vocabulary.  These 

abilities can be used as a guide to interpret how specific types of information are processed and 

can be used to predict achievement.  While the adult neuropsychological literature has suggested 

memory and visual-spatial deficits in patients with focal brain lesions, and other investigations 

into the relationship between cognitive processing and mathematics achievement have implicated 

reasoning, working memory, and long-term memory, little empirical evidence exists that 

supports a model of cognitive variables linked to typical mathematics achievement in adults.  

The current study proposes a model of cognitive and linguistic processes for young adults at risk 

for poor achievement. 
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The Development of Mathematical Skills 

Counting is the basis from which individuals learn mathematics skills, both procedurally 

and conceptually (Geary, 2005; Gersten, et al., 2005).  Learning to count usually begins at 

approximately age four and is guided by five implicit principles (Gallistel & Gelman, 1992).  

These principles are referred to as the essential features of counting, and implicit adherence to 

them is necessary for accurate counting.  The first principle is one-one correspondence, which is 

defined as assigning one, and only one, word (e.g., one, two, three, etc.) to each counted item. 

The second principle is stable order, which means that the order of the assigned words must not 

vary across counted sets.  The third principle, cardinality, means that the value of the final word 

represents the quantity of the total set of items.  Fourth is abstraction, which indicates that any 

object can be counted.  The fifth, and final, essential counting principle is order-irrelevance, 

which states that items in a set can be counted in any sequence (Gelman & Gallistel, 1978).  

Several researchers have assessed the degree to which children attend to the essential features of 

counting, and also, make errors by attending to unessential features of counting.  Children who 

make frequent errors by attending to unessential features of counting (e.g., believing that it is 

necessary to begin counting from the left end of a series of objects) understand counting as a rote 

activity but may not understand the conceptual nature of counting (Geary, Hoard, & Hamson, 

1999).  

The seminal work by Gelman and Gallistel (1978) outlines the evolutionary theory on 

which the essential features of counting are based.  According to Gelman and Gallistel’s 

principles first theory, evidence that humans not only count in a rote fashion but use cognitive 

processes, such as reasoning and memory to conceptually represent counting, is inherent in 

animal studies.  Gallistel and Gelman (1992) cite a study by Meck and Church (1983) describing 
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a system in which animals store numerical information in memory and compare new numerical 

information to the stored information, in a manner that might be analogous to working memory, 

in order to make decisions about the environment.  “If the magnitudes that represent 

numerosities enter into processes equivalent to ordering, addition, subtraction, multiplication, 

and division, then, by our definition, the animals reason arithmetically” (Gallistel and Gelman, 

1992, p. 53).  According to Gallistel and Gelman (1992), these preverbal conceptualizations of 

number are then incorporated into a “bidirectional mapping system” when humans learn to 

count.  Other preverbal mechanisms that lay the foundation for later mathematical skills may 

include infants’ manipulation of objects of varying distances, which aids in the development of 

spatial conceptualization (Sutaria, 1985).   

Human beings not only rely on preverbal, or primary abilities, however, but must learn to 

make analogies between preverbal concepts of numerosity and learned number words and then 

incorporate these number words into knowledge of digit intervals and other number concepts.  

As evidence for the principles first theory, Gallistel and Gelman (1992) suggest that both 

children and adults make more errors and are slower in identifying which of two quantities is 

larger or smaller when the difference between the quantities is small, a procedure that relies on 

linking preverbal concepts of number to number words and mathematics processes, such as 

addition. 

One competing hypothesis to Gelman and Gallistel’s theory suggests that children simply 

imitate counting, so initially, counting is nothing more than a rote task.  In this, principles after 

theory, the essential and nonessential features are inferred after repeated imitation (Briars & 

Siegler, 1984; Fuson, 1988; Fuson & Hall, 1983; Dehaene, 1992).  However, in both the 
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principles first and principles after theories, the development of mathematics computation skills 

stems from the ability to discern the essential and nonessential features of counting. 

Once counting is mastered, the development of basic arithmetic skills typically begins 

when children add using one of several counting procedures.  The min, otherwise known as the 

counting-on procedure, is the most efficient of the counting methods and is executed by counting 

up from the largest addend to the value of the smallest addend (e.g., 7 +3 is calculated by stating, 

“seven...eight, nine, ten”). The max procedure is similar, but rather than beginning with the 

largest addend, children begin with the smallest and count up through the quantity of the larger 

(e.g., “three...four, five, six, seven, eight, nine, ten”).  In the sum, or counting-all, procedure, 

children count the values of both integers.  Decomposition occurs when children use either a 

base of 10 or “ties” as a starting point from which to add integers.  For example, using a base of 

10 strategy, a child might calculate, 8 + 5, by conceptualizing the problem as 8 + 2 = 10, and 10 

+ 3 = 13.  Like solutions to problems using the base of 10 strategy, problems with ties (e.g., 6 + 

6) appear to be more easily stored and/or recalled from memory.  Thus, using ties, a child might 

solve the problem, 6 + 7, by conceptualizing 6 + 6 = 12, and 12 + 1 = 13.  The fingers and 

counting fingers strategies are also commonly used by children to solve simple addition 

problems.  Children use the fingers strategy when they use their fingers to look at them, without 

actually counting them, which seems to prompt memory retrieval, while the counting fingers 

procedure involves the child counting his or her fingers (Geary & Brown, 1991).  In a study by 

Geary and Brown (1991), third and fourth grade gifted, academically normal, and children with 

learning disabilities impacting mathematics were compared to determine the strategies they used 

for solving simple addition problems.  As gifted children used memory retrieval to an equal 

extent as adults, and children with learning disabilities used retrieval the least frequently, instead 
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using finger counting strategies, Geary and Brown (1991) concluded that typical children 

gradually progress through stages, whereby finger-counting is replaced with memory retrieval.  

Geary and Brown (1991) also noted that older children used verbal counting more often than 

finger-counting, suggesting that finger-counting strategies are not instantaneously replaced by 

retrieval, but rather, during typical development, children gradually develop new strategies, 

eventually preferring retrieval to solve basic arithmetic facts, a strategy that continues into 

adulthood.   

By sixth grade counting procedures are nearly entirely replaced by retrieval in typically 

developing children to solve most simple addition problems, as children are able to quickly and 

automatically recall answers from memory without having to calculate.  However, the transition 

to retrieval does not occur instantaneously, but rather, old procedural strategies, such as the max 

procedure, are gradually replaced with more efficient strategies (Ashcraft, 1992). 

Ashcraft (1992) also recognized the influence of memory processes in mathematics 

development.  Ashcraft proposed three network retrieval models for explaining how 

mathematical information is accessed and used.  These models answer the questions, “How is a 

person’s knowledge of number and mathematics organized in memory and what are the 

processes by which this knowledge is accessed and applied in various settings?” (Ashcraft, 1992, 

p.77).  In other words, Ashcraft assumed the accuracy of the retrieval model and only debated 

how the retrieval model is organized.  In the network retrieval model proposed by Ashcraft, 

mathematical information is accessed and retrieved via spreading activation, where the strength 

of memory nodes are influenced by practice and the frequency with which certain mathematical 

facts are utilized.  Similar models that build on Ashcraft also support the network system, such as 

Siegler and Shrager’s (1984) distribution of associations model and Campbell’s (1987) network 
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interference model.  While these models differ slightly in the type of information that is held in 

memory (e.g., correct and incorrect answers versus associations between whole problems and 

answers), all three of these models stipulate that mathematical information is retrieved from a 

memory network (Ashcraft, 1992).  Although these models tout the importance of retrieval in 

mathematics processing for individuals of all ages, only basic mathematics facts, such as in 

simple addition and multiplication, are accounted for, and as these network nodes cannot be seen 

or specifically measured, the models represent best guesses about the manner in which memory 

influences mathematics processing and knowledge. 

Ashcraft’s theory focused on a method for how memory and mathematics are linked, but 

memory retrieval is not the only cognitive process underlying mathematics skills development 

that Ashcraft noted.  For example, in Ashcraft’s network retrieval model, working memory also 

plays a role, as information that undergoes a delay in storage or activation is subject to decay, 

indicating that working memory deficits may impact storage and/or retrieval of mathematical 

information.  Furthermore, as these network retrieval models only address basic arithmetic 

problems, other, more complex problem-solving procedures may rely on working memory to 

carry out the multiple steps involved in arriving at a solution.  Even processes like carrying and 

borrowing in multiple-digit addition and subtraction require individuals to mentally hold on to 

information while performing operations with the digits of the problem at hand (Ashcraft, 1992).  

Additionally, Siegler and Shrager (1984) focused on choice of solution strategies in the network 

retrieval model, in which problem difficulty determines the use of reasoning in mathematical 

problem-solving, as the errors noted in children’s attempts to solve problems suggest 

misunderstanding in conceptualization of the problem.  The transition from counting to utilizing 

other procedural strategies and the eventual graduation to retrieval represents only one major 
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shift in development related to the acquisition of mathematics skills.  Another shift is the 

transition children make once they have achieved mastery of basic arithmetic and must learn 

more advanced mathematical concepts such as algebra.  In a rare study examining the 

mathematical difficulties of adolescents, Greenstein & Strain (1977) measured the Key Math 

Diagnostic Arithmetic Test’s (Connolly, Nachtman, & Pritchett, 1976) ability to discriminate 

students with mathematics disabilities from those without mathematics disabilities.  The mean 

performance of the students identified with mathematics disabilities fell at approximately the 

fourth grade level despite actual grade level ranging between eighth and eleventh grades.  The 

results of this study may suggest that fourth grade represents a new shift in mathematics skills, 

one in which a transition from concrete to abstract thinking is necessary for mathematics skill 

acquisition to progress. 

 Historical Studies 

Longitudinal studies may be the most effective way to study the progression of 

mathematics development from childhood to adulthood (Geary et al., 1999; Gersten, et al., 

2005).  However, such longitudinal studies are costly, time-consuming, and relatively rare.  In 

lieu of longitudinal studies, neuropsychological studies investigating the relationship between 

focal brain lesions, their corresponding cognitive deficits, and their resulting impact on 

mathematics skills may provide information about how cognitive processing is related to 

mathematics skills in adults.  While these studies are frequently based on mathematical deficits 

rather than analyses of normal mathematical functioning, such studies can provide insight into 

the cognitive processes underlying variability in mathematics performance (McCloskey, Harley, 

& Sokol, 1991). 
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 Mathematical difficulties likely stem from a variety of factors.  Neuropsychologists have 

examined the brain in an effort to uncover anomalies that might account for mathematical 

deficits.  Therefore, most of what is known about the association between neurology and 

mathematics skills has been revealed in studies of brain-injured adults (Sutaria, 1985).  This 

information is helpful in understanding the mathematical abilities of adults, as it is often difficult 

to draw parallels from the child literature to adult functioning.  In addition, these neurological 

studies may help identify differences between mathematical skills in children and adults. 

In the early 1920’s Henschen (1925) conducted the first large-scale statistical analysis of 

mathematics ability in adults and coined the term, “Akalkulia” to describe a disorder in which 

mathematics ability was affected in people with acquired brain damage (Rourke & Conway, 

1997).  Since then, neuropsychological studies have sought to uncover a wide range of physical 

characteristics and anomalies associated with mathematics disabilities.  For example, some 

studies have suggested a link between birth complications, such as low birth weight and toxemia 

during delivery, to poor mathematics performance later in life (Badian, 1999).  Other studies 

have examined the relationship between low mathematics scores and right versus left hemisphere 

deficits (Rourke, 1993).  The revised term, “acalculia” was designated to define difficulties with 

mathematics calculation that resulted from neurological damage and to distinguish mathematics 

disorders from reading and writing disorders (Sutaria, 1984).   

Between 1924 and 1930, Gerstmann conducted research with individuals who appeared 

to exhibit four behavioral symptoms together in a developmental syndrome, one of which 

included an inability to perform mathematics operations.  These operations led to the 

development of a new term, “dyscalculia.”  Dyscalculia is similar to acalculia in that it is defined 
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by impairments in the ability to perform mathematics calculations, but its origin stems from 

congenital, rather than acquired, brain anomalies (Kosc, 1974). 

Gerstmann believed that the syndrome resulted from a lesion in the left-parietal occipital 

area of the brain (Gerstmann, 1957).  However, others have pointed to lesions in the superior 

temporal and supramarginal gyri and the angular gyrus.  Contradictory research results, in 

addition to variation in the degree and nature of symptoms, make Gerstmann’s syndrome a 

controversial disorder (Rourke & Conway, 1997).  Although the existence of the syndrome has 

never been validated, it represents one of the first examples of developmental impairments in 

mathematics skills, and many of the symptoms affecting mathematics performance continue to 

mimic those characterized by individuals with learning disabilities impacting mathematics 

(Rourke & Conway, 1997). 

The evidence of involvement of such cognitive abilities as visual-spatial ability, linguistic 

processes, and concept formation (i.e., reasoning) has influenced several researchers’ 

conceptualizations of the underlying cognitive processes impacting mathematics achievement 

(McLeod & Crump, 1978; Kosc, 1993; Rourke & Conway, 1997; Badian, 1999; Hécaen, 

Angelergues, & Houillier, 1961).  For example, Rourke and Conway (1997) and Badian (1999) 

summarized Hécaen’s et al. (1961) theory of mathematics disability by describing three 

subtypes.  The first of the three subtypes, alexia or agraphia for numbers, encompasses 

difficulties in mathematics that result from verbal deficits and is characterized by difficulty in 

reading and writing numbers (Rourke & Conway, 1997).  The second subtype, spatial acalculia, 

is influenced by visual-spatial deficits, and the third subtype, anarithmetria, describes individuals 

who have difficulty in carrying out mathematics operations despite intact visual-spatial skills 

(Rourke & Conway, 1997).  Badian (1999) cited evidence for a visual-spatial subtype of 
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mathematics disabilities that described students’ confusion in working with digits aligned 

horizontally and vertically, errors made by subtracting top numbers from bottom numbers, 

reversing two-digit numbers when carrying, ignoring place values, and omitting zeros in three 

digit numbers when the zero is located in the tens place.  Badian (1999) also cited Hécaen’s 

anarithmetria subtype, suggesting that individuals with this subtype of mathematics disability 

know mathematics facts and exhibit no spatial deficits, but confuse procedures.  Badian 

suggested that “disturbances in memory” may be involved in the anarithmetria subtype, but 

stated that these memory disturbances differ from memory impairments that impede the learning 

of mathematics facts, procedures, and multiplication tables.  Badian also expanded on Hécaen’s 

model of mathematics disability by adding a subtype that she called attentional-sequential 

dyscalculia in which children forget to add all the digits in a column, have difficulty 

remembering multiplication tables, omit decimal points and dollar signs, and make frequent 

errors in adding and subtracting (Badian, 1983). 

Kosc’s (1974) six subtypes deviated slightly from Hécaen’s model by including two 

verbal subtypes, the first of which he called verbal dyscalculia, characterized by impairments in 

the ability to name mathematics terms, quantities, and numbers.  The second verbal type, lexical 

dyscalculia, is defined by deficits in the ability to read numbers and operational symbols.  The 

third subtype, Kosc named graphical dyscalculia, which characterizes deficits in the 

manipulation of mathematical symbols in writing.  Next, Kosc identified operational dyscalculia, 

which is equivalent to Hécaen’s anarithmetria.  Then, Kosc named a visual-spatial type of 

mathematics disability that he referred to as practognostic dyscalculia, meaning dysfunction in 

the ability to mentally, or otherwise, manipulate objects affecting such skills as estimating and 

comparing quantities and objects.  Lastly, Kosc recognized a subtype that he called ideognostic 
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dyscalculia that explained difficulties in performing mathematics calculations that is not caused 

by linguistic or visual-spatial deficits but is characterized by deficits in the ability to understand 

mathematics ideas and relationships (Rourke & Conway, 1997).   In more recent years, 

neurological evidence has continued to reveal mathematical deficits.  However, specific brain 

sites have not been reliably linked to specific processing deficits due to the small number of 

studies and the fact that brain injuries rarely result in localized damage that impacts a single 

cognitive skill (Geary, 1993). 

Relationship between Cognitive and Linguistic Processes and Mathematics 

 Support for the role of memory retrieval can be found in recent studies conducted by 

Geary on the impact of mathematical learning disabilities in children (Geary, Hamson & Hoard, 

2000; Geary, Hoard & Hamson, 1999; Geary, 1993; Geary, Brown & Smaranayake, 1991, 

Gersten, et al., 2005).  A model of three primary cognitive variables impacting mathematics 

skills was posited by Geary from his work with children and is supported by much of the 

research conducted with children and adults.  In Geary’s studies of calculation skills, he 

identified deficits in the “representation and retrieval of arithmetic facts from long-term semantic 

memory” (Geary, 1993, p. 346).  The second cognitive processing domain that Geary proposed is 

“manifested by the use of developmentally immature arithmetical procedures and a high 

frequency of procedural errors” (Geary, 1993, p. 346).  Procedural errors may include skills 

deficits in counting and using computational strategies (Geary, Bow-Thomas & Yao, 1992).  The 

third cognitive processing variable described by Geary’s model includes visuospatial skills, 

which according to Geary, lead to a “disruption of the ability to spatially represent numerical 

information” (Geary, 1993, p.346).  
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Geary proposes that the poor mathematics skills of children with learning disabilities 

impacting mathematics result from both memory and procedural deficits.  “Mathematically 

disabled children are also less skilled than normal children in the use of counting, or 

computational, procedures to solve arithmetic problems…” (Geary et al., 1992, p. 372) and that 

memory retrieval deficits demonstrate a different developmental trajectory and result from a 

different etiology than procedural deficits (Geary et al., 1992).  Thus, not only are children who 

demonstrate mathematics difficulties less likely to use retrieval strategies in solving basic 

arithmetic problems, but they make more errors in retrieval and computational procedures.  

However, Geary contends that these computational errors represent a developmental delay rather 

than a true deficit.  As evidence for a dual developmental trajectory, one in which computational 

skills catch up with other developmentally appropriate skills, Geary cites his studies showing that 

computational errors disappear by second grade (Geary et al., 1992).  However, it seems likely 

that errors made in the procedural algorithms for solving mathematical problems may be related 

to a lack of conceptual understanding of mathematics.  As these errors do not appear to be related 

to memory deficits, they may be related to other underlying cognitive processes, such as 

reasoning, which Geary has not examined.  Again, Geary’s studies in regard to computational 

and procedural errors deal only with basic mathematics problems in young children and do not 

address other cognitive processes, aside from memory retrieval, that may impact students’ 

difficulties with mathematics later in life. 

Despite the strong evidence that memory retrieval is the primary strategy in solving basic 

mathematics problems once children reach the sixth grade, Geary’s conclusion that poor 

arithmetic performance is primarily explained by disturbances in long-term memory networks 

may not account for the wide range of difficulties in mathematics that students experience.  As 
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Geary’s studies examine only very basic mathematics problems, one cannot generalize to other 

types of mathematics problem-solving that is more typical of students in high school and college. 

 Although few investigations into the cognitive processes underlying mathematics skills in 

adults have been conducted, one such study by Geary et al. (1987) supported the role of retrieval 

in the mathematics achievement of undergraduate college students.  In this study several 

cognitive processes, such as counting, memory retrieval, and rule-based procedural processes 

were investigated by predicting reaction times when performing simple and complex (e.g., 

involving carrying) addition problems.  As in many of the studies involving child populations, 

this study was limited in the scope of mathematical skills examined, and all cognitive processes 

investigated were assumed to correlate with reaction times.  However, this study represents one 

early attempt to test the importance of retrieval in the mathematics skills of young adults. 

 Floyd et al. (in press) investigated the cognitive and linguistic processes underlying 

mathematics skills (calculation and problem solving) of adults by using a large nationally 

represented sample used to norm the WJ III.  The study included subjects ranging in age from six 

years to over 80 years to predict the WJ III Clusters, such as Comprehension-Knowledge (Gc), 

Fluid Reasoning (Gf), Short-term Memory (Gsm), Processing Speed (Gs), Long-term Storage 

and Retrieval (Glr), and Visual-Spatial Thinking (Gv), that were most predictive of mathematics 

achievement across the lifespan.  Unlike previous studies identifying mathematics achievement 

in terms of basic arithmetic skills alone, Floyd’s study utilized all the mathematics achievement 

subtests of the WJ III including Calculation, Math Fluency, Applied Problems, and Quantitative 

Concepts to develop two criterion variables, Math Calculation Skills, made up of the Calculation 

and Math Fluency subtests, and Math Reasoning, consisting of the Applied Problems and 

Quantitative Concepts subtests. 
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 Results of Floyd’s study led to interesting implications for adults.  Both Comprehension-

Knowledge and Fluid Reasoning demonstrated significant relationships to mathematics 

achievement across the lifespan.  Whereas Fluid Reasoning demonstrated moderate correlations 

with Math Calculation Skills that increased from approximately age 6 to age 70, Fluid Reasoning 

demonstrated an even stronger relationship with Math Reasoning that increased after age 25. 

 Another interesting finding of the study involved the clusters related to memory.  The 

Long-term Storage and Retrieval Cluster demonstrated a significant relationship with 

mathematics achievement only during the elementary school years and demonstrated the most 

important contribution before age 7.  However, the Short-term Memory and Working Memory 

Clusters demonstrated significant and moderate correlations with mathematics achievement 

across age groups into middle adulthood.  The relationship between Working Memory 

demonstrated a stronger relationship with both the Math Calculation Skills and Math Reasoning 

Clusters than did the Short-term Memory Cluster, which includes both Short-term Memory 

subtests and Working Memory Subtests.  The effects were apparent across age groups into 

adulthood, but were most evident between the ages of 6 and 10.   

 In contrast to several neuropsychological studies investigating the cognitive processes 

underlying mathematics skills in adults, the Visual-Spatial Thinking Cluster of the WJ III failed 

to yield significant correlations between the cluster and mathematics achievement across the 

lifespan. 

 The results of this study indicate several notable variations between the cognitive 

processes important for the development of mathematics skills in childhood and those that 

underlie mathematics skills in adulthood.  For example, the implications for reasoning skills in 

the mathematics skills of adults is emphasized by this study, where as long-term memory may be 
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less important.  However, the role of auditory working memory is supported, but the role of 

visual-spatial skills is questioned. 

  Cognitive Processing Variables 

Variation in mathematics achievement may be explained by variations in the cognitive 

processes underlying achievement (Geary et al., 1999).  While many studies identifying 

cognitive processes that contribute to reading achievement variability have been conducted, 

studies investigating the cognitive processes contributing to variability in mathematics 

achievement are needed, particularly for older adolescents and adults (Silver, Pennett, Black, 

Fair, & Balise, 1999).  As no cognitive processes have been identified that contribute to 

mathematics achievement with equal empirical support as that of the literature on reading 

achievement (Robinson et al., 2002), the current study aims to add to the mathematics 

achievement literature for this age group. 

Long-Term Memory 

In regard to mathematics, Gelman and Gallistel’s (1978) theory of preverbal concepts of 

numerosity suggest that cognitive processing domains, such as long-term memory, must function 

adequately to ensure the normal development of mathematics skills, such as adding and 

multiplying basic facts.  For example, studies investigating preverbal processes, otherwise 

known as primary abilities, indicate that stimuli is stored in memory from which information 

regarding number may be inferred (Geary, 1995).  Meck and Church (1983) proposed a model 

suggesting that a series of pulses or noises are stored in memory after the last noise or pulse is 

perceived.  The number of pulses stored in memory may then be compared against another group 

of successive pulses differing in quantity.  When animals and very young children base decisions 
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on such information a process analogous to subtraction occurs because the first set of stimuli 

must be compared to the second set in order to make a decision. 

The relationship between long-term memory retrieval and mathematics has been studied 

in a variety of ways.   One common method is to directly assess an individual’s facility at 

retrieving the answers to basic mathematical facts from memory (Geary, 1993).  For example, 

Geary et al. (1987) administered a battery of tests measuring Numerical Facility, Perceptual 

Speed, and Spatial Relations to undergraduate students and asked them to verify whether simple 

and complex addition and multiplication problems were correct or incorrect.  The results from 

reaction time measurements indicated that fact retrieval, carrying, and encoding contributed to 

the Numerical Facility and Perceptual Speed factors but not to the Spatial  Relations factor.  

Measuring retrieval in this way assumes that frequent solving of basic calculations eventually 

leads to the storage of the correct answers to basic mathematics facts (e.g., 4 x 2 = 8) in memory 

(Geary, 1993).  However, this method is domain-specific in that it measures retrieval related 

specifically to mathematical information.  The method says little about the relationship between 

the more general cognitive processing domain of long-term memory and mathematics.  

Additionally, such a domain-specific method considers only a very narrow range of 

mathematical information, which in most cases includes elementary knowledge of mathematics 

facts (e.g., simple addition and multiplication facts).  A model assessing a broader range of 

mathematical information may provide a means of studying the relationship between long-term 

memory and mathematics achievement across a range of skills, including advanced mathematics, 

that is typically required of older adolescents and university students.  Thus, we can determine if 

variability in the ability to store and retrieve information in long-term memory results in 
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variability in the accuracy of performing mathematical calculations and solving mathematics 

problems (Cirino et al., 2002).  

Typical studies linking long-term memory to mathematical skills stems from the child 

literature and often includes empirical studies supporting the role of long-term memory retrieval 

in learning disabilities impacting mathematics (Fleishner, Garnett, & Shepherd, 1982; Garnett & 

Fleishner, 1983; Geary et al., 1987; Gersten, et al., 2005; Goldman, Pellegrino, & Mertz, 1988).  

In a study by Geary (1990), first and second graders with and without learning disabilities were 

separated into three groups.  The first group consisted of children demonstrating 

underachievement in mathematics but who improved over the course of an academic year.  The 

second group was comprised of children exhibiting low mathematics achievement who showed 

no improvement over the school year, and the third group of children demonstrated grade-level 

mathematics achievement.  The second (no-improvement) group was presumed most likely to 

demonstrate true mathematics disabilities, as their failure to improve over time indicated 

neurological deficits leading to underachievement in mathematics. All three of Geary’s groups 

utilized verbal counting and retrieval more than any other strategy.  However, the no-

improvement, underachieving group utilized retrieval strategies significantly less often than 

counting strategies.  The relationship between counting and retrieval was -.45 for the no-

improvement group compared to -.93 for the normally achieving group and -.91 for the 

mathematics improved group.  Therefore, the results of this study indicate that children with 

mathematics disabilities rely more heavily on strategies other than retrieval to solve simple basic 

arithmetic problems.  In addition to relying less on retrieval to solve mathematics problems, the 

no-improvement group made significantly more errors when using the retrieval strategy, 

suggesting abnormalities in long-term memory storage and/or retrieval (Geary, 1990).  
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The implications of such studies are that young children and individuals with learning 

disabilities may use counting strategies to solve basic mathematics facts, but once in adolescence 

mastery of basic addition facts is achieved when all basic facts can be retrieved accurately and 

automatically from long-term memory (Geary, 1994).  Robinson, et al. (2002) argued that 

difficulty in retrieving number facts from long-term memory is caused by semantic or 

phonological deficits because both represent cognitive errors in the storage mechanism.  In other 

words, semantic features of numbers are misrepresented in long-term memory, which leads to 

deficits in number sense.  The more likely it is that new information makes sense to the 

individual (i.e., stored in a semantic context), the more likely it is that the information will be 

easily recalled. 

Although research on the relationship between memory retrieval and mathematics 

achievement has been conducted primarily with children, Svenson (1985) demonstrated that 

adults also use memory retrieval as their primary strategy to solve arithmetic problems.  This 

finding is consistent with Geary’s (1993) theory regarding long-term memory and its pervasive 

and permanent effect on mathematics throughout the lifespan.  For example, frequent counting 

eventually leads to the long-term memory associations between addends and their sums (Geary 

et al., 1999).  As children develop they rely more heavily on retrieval and increasingly less on 

other types of strategies, such as counting (Geary, 1993).  With increasing maturity and skill 

development, individuals gradually shift from using learned procedures and algorithms to direct 

retrieval of answers from memory, at least for solving high-frequency arithmetic facts.  Thus, 

adults rely heavily on long-term memory to solve basic mathematics problems.  “Basic 

arithmetic facts constitute a well-defined and circumscribed set of facts that is learned by 

virtually every adult.” (McCloskey et al., 1991, p. 377).  In typically developing individuals, 
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retrieval of declarative knowledge is presumed to underlie addition performance (Geary et al., 

1987).  Therefore, it is the ability to store and retrieve semantic information in memory that 

allows adults to quickly and automatically provide answers to simple mathematical problems.   

 In a study of adults with acquired brain damage, Sokol, et al. (1991) examined patterns of 

calculation errors to make inferences about the cognitive processes that aid typical adults in 

performing calculations.  While the authors suggest that cognitive processes, such as long-term 

memory retrieval, problem comprehension, and production of retrieved answers, contribute to 

mathematics calculation skill, several limitations of the study appear to attenuate these results.  

For example, calculation skills of typical adults were examined by presenting a limited scope of 

problems, primarily single-digit multiplication problems, to two patients with brain damage 

incurred in potentially non-identical areas of the brain.  Sokol et al. (1991) tested an unconfirmed 

model of mathematics calculation that assumed the existence of two essential components, 

including number processing, defined by the ability to comprehend and produce numbers, and 

calculation (e.g., operations signs/words and mathematics facts).  Additionally, these processes 

were inferred from the patterns of errors made in performing the calculation tasks.  According to 

Sokol et al., (1991), calculation requires individuals to first translate mathematics problems into 

abstract, internal representations, suggesting abstract reasoning involvement.  The next step 

requires the individual to retrieve answers to these representations from memory and then 

translate and produce the answer into the appropriate form.  Despite the implication of mediating 

cognitive processes, such as reasoning, the authors state that the errors of the patients with brain 

damage indicate deficits in long-term memory retrieval, rather than in the processes required to 

carry out calculation processes (e.g., carrying).  
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Reasoning 

Because human beings develop verbal abilities, preverbal mathematics concepts are 

eventually linked with words that represent numbers (Ashcraft, 1992).  Therefore, deficits may 

appear in the processes that link preverbal concepts and the words learned to define and work 

with them.  This shift from preverbal understanding of numerosity to analogous verbal 

conceptualization allows human beings to build on their mathematics knowledge by learning, 

through a verbal medium, lessons taught in school.  While studies that examine mathematics 

abilities in young children often refer to children’s “conceptualizations,” the shift from concrete 

thinking to more abstract thinking impels the inclusion of “reasoning” skills when the 

mathematics skills of adolescents and adults are studied.  Conceptual knowledge is defined as an 

understanding of the principles that govern the domain (of mathematics) and the interrelations 

between pieces of knowledge in that domain, although it is not necessary for that knowledge to 

be explicit (Rittle-Johnson & Siegler, 1998).  In order to be successful in advanced mathematics 

courses, such as algebra, complex reasoning skills are required in addition to knowledge of 

operations (Ablard & Tissot, 1998).  Students who do not possess these reasoning skills and 

attempt to perform algebra by simply adhering to procedural rules will be unlikely to master 

algebra and advance to more complex mathematics (Ablard & Tissot, 1998).  While it is 

recognized that the “conceptualization” of mathematics that occurs in young children does not 

correspond perfectly to “reasoning” skills in adolescence and adulthood, presumably the latter is 

built upon the former, as the abstraction and verbal skills of children develop over time.   

 Geary (1993) has conducted extensive research regarding the relationship between 

children’s understanding of mathematical concepts and achievement.  According to Geary’s 

theory, children who exhibit developmental delays in the acquisition of conceptual knowledge 
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use immature strategies and display frequent procedural errors.  Conceptual knowledge is related 

to counting in children aged five and younger.  Counting provides the first conceptual basis for 

the development of basic mathematics skills because understanding the counting process and the 

underlying assumptions involved in number sense is a prerequisite for learning basic addition. 

Later, knowledge of complex mathematical procedures is built upon these early skills.  Thus, 

counting errors made in childhood suggest deficits in conceptualizing numbers and their 

symbolic representations, and this lack of conceptual knowledge may persist into adolescence 

and adulthood.  Geary also contends that children with learning disabilities impacting 

mathematics often demonstrate developmental delays in their acquisition of conceptual 

knowledge (Geary, 2005).  This conceptual knowledge is needed to implement strategies for 

accurately solving mathematical problems.  When children lack conceptual understanding of 

mathematical principles, they employ ineffective strategies and make procedural errors (Geary, 

1993).  As Geary’s research has been conducted primarily with children, it is unclear if deficits 

in mathematics achievement seen in adolescence and adulthood result from deficits in reasoning 

or because basic skills were not sufficiently acquired at a young age for more complex skills to 

be built upon.  For this reason, studying how reasoning impacts adult mathematics performance 

is important.  

 Further support for the relationship between reasoning and mathematics has emerged 

from research regarding strategy choice in children with learning disabilities.  Geary and Brown 

(1991) found that when 41 third and fourth grade students were separated into gifted, average, 

and learning disabilities groups, and the distributions of strategy choices for solving mathematics 

problems were plotted, the learning disabled group’s distribution showed overuse of immature 

strategies, in contrast to use of a retrieval strategy.  Therefore, children diagnosed with 
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mathematics disabilities used less efficient strategies for retrieving information from long-term 

memory than their peers (Geary & Brown, 1991; Geary et al., 1991).  While these results might 

suggest deficits in storage or retrieval of basic facts from long-term memory, choosing less 

efficient strategies to solve mathematics problems may also represent a lack of understanding of 

the conceptual nature of mathematics problems.  

 Studies investigating cognitive processes underlying mathematics performance have 

seldom focused on reasoning skills (Citarelli, 1998).  In addition, terms describing reasoning 

skills have varied widely.  For example, reasoning ability is often implied through other terms, as 

in Geary’s contention that children develop an understanding of numbers with little direct 

instruction (Geary, 1995).  In a study by Geary and Widaman (1992), numerical facility is 

defined by the measures used in the study that “require the execution of arithmetic operation to 

solve the presented problems.”  In other words, the mere inclusion of numbers does not 

necessarily indicate numerical facility.  In attempting to replicate an earlier study (Geary, et al. 

1987), Geary and Widaman (1992) measured several cognitive processes underlying air force 

recruits’ mathematical skills by measuring reaction times to verify answers to addition and 

multiplication problems.  The cognitive processes measured included Numerical Facility, 

Perceptual Speed, Spatial Relations, General Reasoning, and Memory Span.  Rather than directly 

measuring the relationship of these cognitive domains to mathematical ability, Geary and 

Widaman (1992) attempted to show that arithmetic fact retrieval contributes to reasoning 

measures.  Although the tasks were called reasoning measures, each involved arithmetic skills to 

perform the task, so rather than assessing the direct relationship of mathematical skills to 

reasoning, reasoning was compounded with mathematics skills to assess the relationship to 
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retrieval.  Therefore, an assumption was made about the relationship of retrieval, not only to 

mathematics achievement, but to other cognitive processes, as well.   

Other studies have investigated the processes of production and comprehension of 

numerical information separately and have examined the individual processes involved in 

mathematical problems written in numeric versus lexical formats (McCloskey et al., 1991).  The 

study of these separate components implies that this information is processed, or reasoned, 

differently by individuals in order to make sense of the information.  The reasoning abilities 

required in performing mathematical problems was summed up by Cifarelli (1998, p. 239)  “The 

success of capable problem solvers [in mathematics] may be due in large part to their ability to 

construct appropriate problem representation in problem-solving situations, and to use these 

representations as aids for understanding the information and relationships of the situation.” 

Some studies of more advanced mathematics refer to how individuals form internal 

representations of the information provided in the problem.  For example, one study attempted to 

discern how algebra students were able to recognize and construct mathematical relationships 

involving rate, motion, proportions, and probabilities.  When students were able to recognize 

similarities across tasks, it was assumed that they used reasoning skills to form accurate internal 

representations of the problems (Cifarelli, 1998).  Therefore, reasoning skills appear to play a 

strong role in the advanced mathematics skills required of older adolescents and adults, as they 

are no longer simply required to know mathematical procedures but also know how to use these 

procedures (Ablard & Tissot, 1998). 

Auditory Working Memory 

The relationship between working memory capacity and mathematics ability of older 

children and adults has been examined in several studies.  However, many of these studies have 
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merely compared the performance of children and adults and concluded that adults perform 

better due to greater working memory capacity.  For example, Holzman, Pellegrino, and Glaser 

(1982) determined that college undergraduates performed better than fourth and fifth graders on 

complex mathematical tasks involving inductive skills due to the greater working memory 

capacities of the college students.  Even in simple addition tasks, greater working memory 

capacity has been suggested to contribute to the increased performance of junior high school and 

college students (Little and Widaman, 1995).  While these studies suggest that working memory 

ability increases throughout development from childhood to adulthood, the individual variation 

in working memory skills contributing to different types of mathematical tasks has not been well 

studied in adults.   Whether the relationship between working memory and mathematics skills is 

as strong in older adolescents and adults as it is in children is a question that continues to require 

clarification (Geary, et al., 1991).  However, some studies investigating the relationship between 

working memory and procedural errors have suggested that working memory functions 

optimally in young adults in their twenties versus older adults between the ages of 40 and 60 

(Campbell & Charness, 1990). 

 Some studies examining the impact of working memory and mathematics have focused 

on narrowing the definition of working memory and determining if visual or auditory working 

memory contributes greater variability to mathematics achievement.  A study by Swanson (1994) 

examined short-term memory and working memory in 75 children and adults with learning 

disabilities in order to determine if these two constructs are independently related to 

achievement.  Whereas short-term memory was considered to be utilized when verbal 

information is simply maintained in memory through rehearsal or other mneumonic strategies, 

working memory was defined as the “simultaneous storage and processing” of the information so 
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that information is not only held, but manipulated, in memory (Swanson, 1994).  While working 

memory is assumed to access long-term memory either through the encoding process or by 

drawing on information that has been previously learned, short-term memory is thought to occur 

at only a “surface level” having no access to long-term memory (Swanson, 1994).  Results of this 

study indicated that, overall, visual-spatial measures did not distinguish between the learning 

disabled and non-learning disabled groups, nor did short-term memory tasks.  Furthermore, 

confirmatory factor analyses indicated a two-factor model consisting of separate working 

memory and short-term memory factors for both ability groups, with some evidence that a three 

factor model, including visual-spatial working memory, may fit better for the learning disabled 

group.  Verbal working memory measures contributed significantly more variance than short-

term memory to achievement for both ability groups (Swanson, 1994). 

Despite the implications for the relationship between working memory and mathematics 

achievement, this study did not directly examine the relationship among the constructs and 

mathematics skills, as individuals with learning disabilities were identified according to scores 

on reading achievement scores.  Nor did the study address possible variation in results between 

children and adults.  Thus, further investigation into the impact of working memory on 

mathematics achievement in adults is needed.   

Working memory is an important skill in performing calculations because learning 

mathematics facts involves the simultaneous activation of procedural knowledge as well as 

mentally holding onto and manipulating numbers (Geary, 1993).  In regard to learning 

mathematics skills, working memory deficits negatively impact the retention of mathematics 

information by resulting in working memory overload.  If working memory span is atypically 

short or brief, the amount of information passing into long-term memory and/or the time required 
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for retention to take place is insufficient for long-term storage (Ashcraft, 1982).  According to 

Ashcraft (1982), in addition to the influence working memory has on retrieval, holding partial 

answers in memory while employing procedural algorithms (e.g., for carrying or borrowing) also 

uses working memory and affects more complex problem-solving such as multi-digit addition 

and subtraction. 

 The relationship between working memory and mathematics has been studied in a 

number of ways.  Some studies have investigated how working memory deficits impact 

mathematics by looking at children’s ability to develop strategies and to perform mental 

addition.  For example, Keeler and Swanson (2001) studied the relationship between strategy 

choice and children’s working memory, as children with working memory deficits have been 

noted to lack automaticity in implementing efficient strategies.  The stability of strategy choice, 

rather than utilizing any one particular strategy, was hypothesized to mediate working memory in 

children with mathematics disabilities, based on studies by Coyle, Read, Gaultney, and 

Bjorklund (1998) who found that gifted and non-gifted children demonstrated differences in 

strategic knowledge, which related to recall and use of consistent strategies.  Results showed that 

stable strategy choices were related to verbal and visual-spatial working memory performance, 

while no specific strategy choice emerged that was significantly related to working memory.  In 

the same study, mathematics performance was significantly correlated with verbal working 

memory, visual-spatial working memory, and reading.  Furthermore, working memory 

composite scores contributed an additional 34% of variance to a regression equation after 

reading.  These results indicate that working memory and strategy choice are not independent 

constructs, and both are related to mathematics achievement.    
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Adams and Hitch (1998) investigated the role of working memory deficits in mental 

addition by disrupting children’s subvocalization strategies for holding information in working 

memory to complete calculations.  The results indicated that articulatory suppression 

significantly impaired children’s ability to perform mental arithmetic, lending support for the 

role of working memory and the phonological loop in performing mental arithmetic.  

Visual-spatial Ability 

 Early studies suggested that mathematics difficulty was primarily explained by deficits in 

visual-spatial processing, and visual-spatial deficits were often presumed to account for errors in 

alignment in writing mathematics problems and in incorrectly representing place values (Geary, 

1993).  For example, Badian (1999) suggested that vertical and horizontal alignment errors in 

written addition and subtraction, calculating two or three-digit problems in random places other 

than the right-hand column, subtracting the top digit from the bottom digit, particularly when the 

top digit is smaller than the digit underneath it, difficulty telling time, and reversing two-digit 

numbers and omitting zero and making other place value errors are indicative of spatial deficits.  

Greenstein and Strain (1977) analyzed error patterns of individuals demonstrating mathematics 

difficulties and determined that errors in misaligning numbers occurred more often in those 

diagnosed with learning disabilities than in a control group.  Badian (1983), following Hécaen’s 

original model described a subtype of learning disabilities whose deficits focused on visual-

spatial deficits, called spatial acalculia, defined by impaired calculation caused by spatial 

processing deficits.  According to Badian, the spatial acalculia subtype included the second 

largest number of individuals with mathematics disabilities after attentional-sequential 

dyscalculia. 



  
 42 

 Visual-spatial deficits have been frequently cited in early studies investigating 

mathematics performance, as problems with counting were thought to contribute to errors 

children make in drawing pictures that depict an incorrect number of fingers and facial features.  

For example, children as old as nine who demonstrate mathematics difficulties have been noted 

to omit noses in their drawings of human figures (Badian, 1983).  In a study by Badian (1983), 

21% of 669 preschool children omitted the nose.  Seventeen five-year-old boys who left out the 

nose in drawings were compared to 17 age- and kindergarten-screening score matched controls 

that included noses in their drawings.  The groups were compared across achievement measures 

seven years later, and the no-nose group was one-year behind the control group in mathematics.  

Badian explained this finding by suggesting that the no-nose group lacked attention to visual 

detail, which tends to predict later mathematics ability.  

Much of the literature linking visual-spatial skills to mathematics achievement stems 

from the field of neuropsychology.  A study by Rourke (1989) revealed that students with 

mathematics disabilities exhibited poor visual-spatial ability, psychomotor coordination, and 

tactile-discrimination, and students diagnosed with comorbid reading and mathematics 

disabilities demonstrated poor performance on verbal and auditory-perceptual tasks.  In another 

study, Rourke (1993) demonstrated that children diagnosed with learning disabilities performed 

more poorly on the Mazes subtest of the WISC-III, pointing to spatial deficits, and White, 

Moffitt, and Silva (1992) also interpreted visual-spatial deficits from children’s relatively poor 

performance on Making Trails (Reitan, 1958), Grooved Pegboard (Klove, 1963), and WISC-R 

Coding (Wechsler, 1974).  However, other studies have shown no group differences on the 

Mazes subtest (Geary et al., 2000).  Morris et al. (1998) also failed to identify deficits in spatial 

skills in children with mathematics and reading disabilities.  
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 Neuropsychological evidence has also suggested a relationship between visual-spatial 

deficits and poor mathematics achievement.  For example, while the majority of males and 

approximately half of females with Fragile X syndrome are mentally retarded, approximately 

50% of females demonstrate average overall intelligence and significantly weak mathematics 

achievement relative to reading and spelling.  These individuals also tend to perform poorly on 

tasks measuring visual rotation, but not on all visual-spatial tasks (Mazzocco, 2001). 

 Despite these early theories based on children’s errors in alignment and the 

neuropsychological evidence supporting the contribution of visual-spatial ability in mathematics 

achievement, several studies have failed to support this relationship.  A study comparing the 

roles of verbal ability and visual-spatial ability in the mathematics skills of first through fifth 

graders demonstrating mathematics difficulties determined that verbal ability more strongly 

predicted mathematics achievement on the Key Math Diagnostic Arithmetic Test (Connolly, 

Nachtman, & Pritchett, 1971) than visual-spatial ability (McLeod & Crump, 1978).  In a more 

recent study of college students using a similar model as in this study, researchers examined the 

relationship of visual-spatial ability, executive functioning, and semantic retrieval to calculation 

skills via SEM analysis.  Visual-spatial ability did not contribute significantly to variation in 

calculation skills in this population (Cirino, et al., 2002). 

 While it is possible that the strength of the relationship between visual-spatial skills and 

mathematics achievement weakens with age, accounting for the lack of findings, it is also 

possible that different types of visual-spatial tasks contribute to variability in mathematics 

achievement in adults (Gersten, et al., 2005).  In addition, the severity of deficits in visual-spatial 

ability caused by brain anomalies documented in some early studies may have a more profound 

impact on mathematical skills.  However, it is important to determine if tasks commonly 
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employed to measure visual-spatial ability may be used to account for individual variability on 

different types of mathematics tasks as the model in this study attempts to show.  

Linguistic Processes 

There is no question that a relationship exists between verbal ability and mathematics 

achievement, as individuals learn and carry out mathematics operations, in large part, through 

verbal mediums.  For example, verbal steps in solving many mathematical problems are often 

memorized and one must rely heavily on verbal skills in order to successfully solve word 

problems.  The question is not whether a relationship between verbal ability and mathematics 

exists, but how strong is the relationship, particularly given the difficulty in separating the impact 

of reading skills on mathematical performance.  For example, the fact that so many students with 

documented reading disabilities demonstrate difficulties with mathematics have led some to 

believe that all learning disabilities are essentially reading disabilities and that often mathematics 

skills are impacted secondarily, as at least average reading skills are necessary to read, carry out, 

and learn mathematics computation (Padget, 1998).   

Pennington (1991) defined “core” symptoms of a disorder as those that are most directly 

caused by the underlying neurological deficit.  For learning disabilities impacting reading, the 

core symptom is difficulty reading and spelling, and the underlying cognitive deficit is typically 

identified as phonological processing.  Because individuals with poor reading skills often exhibit 

poor mathematics skills, children diagnosed with learning disabilities in reading may also be 

diagnosed with comorbid mathematics disabilities (Geary, 1993; Cirino et al., 2002).  Pennington 

(1991) also defined secondary symptoms as those that are consequences of core symptoms.   

Thus, the question of whether similar underlying cognitive processing domains may be 

present in both reading and mathematics variability is valid.  As discussed previously, the 
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transition between preverbal mathematics concepts and learned mathematics skills occurs 

concomitantly with verbal ability, and continuing knowledge of mathematics facts is mediated 

by verbal ability.  Geary et al., (2000), who has postulated his own three-subtype model of 

learning disabilities impacting mathematics recognizes that mathematics and reading disabilities 

may be associated with the same cognitive deficits.  He suggests that deficits in retrieval of 

mathematical facts from long-term memory represent a general deficit in the ability to represent 

and retrieve information stored in phonetic and/or semantic codes.  The comorbidity of reading 

and mathematics disabilities, then, can be explained by a single deficit in retrieval of arithmetic 

facts and terms from long-term memory.  In fact, individual differences in phonological 

processing skills may explain variance related to mathematics calculation ability, and the 

correlation between mathematics calculation and word-level reading skills has been found to be 

as high as .59 (Hecht, Torgesen, Wagner, & Rashotte, 2001).  In order to write and comprehend 

numbers, an individual must continuously convert Arabic symbols to number words and vice 

versa, or in other words translate representations of numbers into semantic codes (Geary et al., 

1999).  However, an inability to translate these codes may imply quantitative and/or reading 

deficits, and children with comorbid mathematics and reading difficulties demonstrated the 

highest rate of errors for these tasks (Geary et al., 1999). 

 Rourke (1993) has conducted a number of studies related to the cognitive processes 

underlying reading and mathematics.  In a comparison of two groups of children, the first 

exhibiting low arithmetic scores and average reading and spelling scores, and the second 

exhibiting low arithmetic and even lower reading and spelling scores, a difference was noted in 

cognitive processes associated with right and left hemispheres of the brain.  The first group 

demonstrated poor performance on right hemispheric measures, such as visual-spatial, 
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psychomotor, and nonverbal reasoning tasks, while the second group demonstrated poor 

performance on left hemispheric measures, such as auditory-perceptual tasks and printed word 

problems.  

 In another study, Jordan (1995) found that young children with no spatial or language 

deficits and children with spatial deficits but no language deficits demonstrated significantly 

better performance on calculation measures than children with language deficits and no spatial 

deficits (Cirino et al., 2002).  Evidence of a similar pattern was found with adolescents when 

improved performance was noted on mathematics word problems when linguistic modifications 

were made to simplify wording in tests given to eighth grade students (Abedi & Lord, 2001). 

Other Cognitive Processes 

 The focus of much of the research conducted to date that attempts to explain the 

relationship between mathematics achievement and cognitive processing domains investigates 

lower order mathematics skills of children, such as simple addition and multiplication (Geary, 

2005).  However, the cognitive variables chosen for this study are those that have gained the 

most empirical support for their relationship to mathematics achievement, particularly for older 

adolescents and adults.  Cognitive processes that have been studied less frequently, such as 

attention and processing speed, may contribute to variation in mathematics achievement.  

Additionally, the impact of higher order cognitive processes, such as metacognition and 

executive functioning, on mathematics achievement across the lifespan is still unclear (Geary, 

1993).  The following is a brief discussion of several studies that address these domains. 

 Support for the relationship between attention and mathematics achievement is found in 

research involving individuals diagnosed with Attention Deficit Hyperactivity Disorder 

(ADHD), as a large proportion of individuals with ADHD experience learning and academic 
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problems (Marshall, Hynd, Handwerk, & Hall, 1997).  For example, in a study by Carlson, 

Lahey, and Neeper (1986), mathematics achievement, in addition to reading and spelling 

achievement, were significantly lower for an ADHD group without hyperactivity when children 

diagnosed with ADHD with and without hyperactivity were compared in an analysis of 

covariance, controlling for IQ.  Zentall & Ferkis (1993) suggested that certain symptoms of 

ADHD, such as disorganization and poor attention are related to poor mathematics computation 

skills, whereas deficits in memory are correlated with decreased comprehension and problem-

solving. 

A study by Douglas, Barr, O’Neill, & Briton (1986) showed that children with ADHD 

who were administered psychostimulant medication improved in mathematics performance 

accuracy, mathematics speed, and self-correcting behaviors over children administered a 

placebo.  However, different ADHD subtypes may impact mathematics performance to varying 

degrees.  According to the Diagnostic and Statistical Manual of Mental Disorders-Forth Edition 

(DSM-IV) (American Psychiatric Association, 1994), ADHD, Predominantly Hyperactive-

Impulsive type is characterized by excessive movement, difficulty staying quiet, interrupting, 

and being unable to take turns in conversation or play.  In contrast, ADHD, Predominantly 

Inattentive type includes symptoms of inattention while hyperactive and impulsive symptoms are 

largely absent.  A third diagnostic category, ADHD, Combined Type, includes both inattentive 

and hyperactive symptoms.   

Hynd (1991) compared those with and without hyperactivity on measures of reading, 

mathematics, and spelling.  Although individuals without hyperactivity scored lower in all 

academic areas, score differences were significant only for mathematics.  These results were 

confirmed by several studies that suggest that students diagnosed with ADHD without 
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hyperactivity have poorer achievement in mathematics than their peers (Nussbaum, Grant, 

Roman, Poole, & Bigler, 1990; Semrud-Clikeman et al., 1992; Zentall & Ferkis, 1993.)  

Furthermore, Barkley, Dupaul, and McMurray (1990) found that children diagnosed with ADHD 

with hyperactivity were more likely to be placed in behavior disorder classrooms, while children 

diagnosed with ADHD without hyperactivity were more likely to be placed in classes for 

learning disabled children.  Marshall et al. (1997) conducted a study with 182 school-age 

children diagnosed with ADHD with and without hyperactivity.  The students were compared on 

several achievement measures.  Results indicated that students without hyperactivity scored 

significantly lower than students with hyperactivity on the Basic Achievement Skills Individual 

Screener: Math (BASIS; Floden & Schutz, 1983) and Wide Range Achievement Test – Revised: 

Arithmetic (WRAT-R; Jastak & Wilkinson, 1984). 

 However, individuals diagnosed with ADHD have a myriad of deficits, which vary in 

scope and degree, not all of which involve attention.  Some researchers attribute mathematics 

disabilities to deficits in automaticity of retrieval of number facts, which may directly result from 

attention deficits or from diminished learning of mathematics facts due to mathematics 

avoidance (Marshall et al., 1997).  Other researchers have hypothesized that poor mathematics 

skills result from secondary deficits to attention problems because attention problems interfere 

with the acquisition of new skills (Ackerman, P.T., Anhalt, J.M., Dykman, R.A., & Holcomb, 

P.J., 1986).  Badian (1983) supported a three-subtype model of mathematics disabilities that was 

originally developed by Hécaen et al. (1961).  This model included alexia and agraphia for 

numbers, spatial acalculia, and anarithmetia, and Badian added a fourth subtype that she termed 

attentional-sequential dyscalculia based on the frequency with which a subgroup of individuals 

made careless errors in executing mathematical procedures and recalling mathematics facts. 
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Although children with mathematics disabilities are not consistently slower than typical 

children in performing all mathematics operations, the heterogeneity of mathematics deficits may 

account for processing speed differences in some subtypes (Geary, 1993).  Processing speed 

deficits can affect mathematics performance directly or by acting on working memory because 

slower processing allows more time for information held in working memory to decay (Towse & 

Hitch, 1995).  A study by Adams and Hitch (1998) indicated that speed has the same relationship 

with addition span as working memory does in eight to eleven year olds.  Speed of processing is 

especially important for working memory because working memory is directly affected by the 

time information is held in memory (Adams & Hitch, 1998).   However, speed of processing in 

performing basic arithmetic will increase with development as slower arithmetic algorithms and 

strategies are replaced by quicker retrieval methods (Adams & Hitch, 1998).  Larson and 

Saccusso (1989) also suggested that variable rates of information processing may be related to 

working memory deficits. 

 In addition to contributing to working memory, processing speed may contribute to 

higher order mathematics skills, such as problem-solving (Kaye, deWinstanley, Chen, & 

Bonnefil, 1989; Kaye, Post, Hall, & Dineen, 1986).  Geary et al. (1992) tested four latent factors, 

including Processing Speed, Numerical Facility, General Reasoning, and Memory Span 

contributing to mathematics ability in Air Force recruits.  Results indicated that Memory Span 

was correlated with Perceptual Speed, while the rate of fact retrieval and carrying processes 

contributed to General Reasoning ability. 
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CHAPTER 3 

METHODS 

Model Justification 

 Mathematics success may be measured by one’s score on a standardized achievement test 

(Geary & Brown, 1991).  However, if that score is low, indicating poor mathematics success, the 

achievement test does not provide an explanation for the poor performance.  Models of cognitive 

processes contributing to variation in mathematics performance such as the one proposed by 

Geary (1993) attempt to provide such an explanation.  While Geary’s theory seeks to explain the 

cognitive processes underlying the basic mathematical skills of young children, the literature 

regarding cognitive processes contributing to the more complex mathematical skills of older 

adolescents and adults suggests differences between how children and adults process 

mathematical information.  However, to date, no theoretically sound model of the cognitive 

processes contributing to mathematics achievement variability in adults has been proposed, and 

within the literature regarding mathematics achievement in adults, there is a lack of theories 

explaining the mathematics difficulties of adults (Robinson et al., 2002).  It is the purpose of this 

study to propose a theoretical explanation for the variation in mathematics achievement in a 

sample of adults. 

One method of identifying the cognitive processes that are related to mathematics 

achievement is to analyze, via structural equation modeling, the relatedness of specified 

cognitive processes to mathematics achievement.  The method chosen for this study is to test the 

fit of a full model (see Figure 1) to the data and compare a series of three nested models, which 
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depict hypothesized relationships between cognitive processes in certain areas (e.g., long-term 

memory, auditory working memory, visual-spatial skills, reasoning, and vocabulary) and 

mathematics performance (i.e., problems answered correctly on tests of mathematics 

achievement).   

Benefits of SEM 

 SEM is a multivariate form of statistical analysis that requires the development of a 

model, typically represented in drawings, that hypothesizes causal variables and their 

relationships to other variable(s) on which they are presumed to have an effect (Keith, 1999).  

Despite the investigation of causal hypothesis through SEM, the technique used is correlational, 

rather than experimental.  Thus, random assignment of subjects, manipulation of independent 

variables, and experimental control is not typically applied (Keith, 1999).  Cause and effect is not 

proved by the confirmation of a model, but rather, the models are hypothesized, without 

manipulating the independent variables, and tested by determining if the direction and strength of 

the hypothesized relationships are sufficient to conclude that the a priori models “fit” the data.  

The fit is assessed by determining how well the model accounts for the data (Kline, 1998, p. 50).  

In other words the correlations themselves do not determine whether variables are causal, but the 

model chosen and drawn a priori to the analysis implies cause and effect (Keith, 1999).   

In addition to being a powerful method of analysis because, simultaneously, the 

measurement model tests the degree to which the variables measure the latent constructs, while 

the structural model explains the relationships among the latent constructs, SEM has several 

advantages over other statistical techniques (Keith, 1999).  While analysis of variance (ANOVA) 

designs are most appropriate when testing categorical rather than continuous independent 

variables and assumes non-correlated independent variables, multiple regression (MR) allows the 
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analysis of continuous predictor variables, and simultaneously measures the direct effects of a 

number of variables at once.  However, results may vary widely depending on the MR technique 

used.  For example, in hierarchical regression, variables are entered one at a time with order of 

entry influencing results, whereas stepwise regression measures predictive power by 

successively assessing the contribution of each added variable, rather than analyzing the 

influence of all variables equally (Keith, 1999). 

   Structural equation modeling, on the other hand, not only simultaneously measures the 

direct effects of a number of variables, but can measure the direct, indirect, and total effects (i.e., 

sum of the direct and indirect effects) of variables on a criterion variable (Floyd et al., in press).  

In addition, errors of measurement are analyzed separately from the structural model, increasing 

the stability of analysis of the effects of one variable on another, as SEM controls for 

measurement error by considering only the common variance of several observed measures in 

order to measure the latent construct.  Thus, path coefficients among the latent variables in the 

structural model are not determined by unique variance (i.e., error variance specific to the 

measures in addition to random error).  SEM may also help determine the relationships of 

indirect effects, or intervening variables (Keith, 1999).  For example, if it is hypothesized that 

working memory has a causal effect on mathematics achievement, it is also possible to determine 

if working memory is indirectly related to mathematics achievement by having an effect on long-

term memory.  In other words, a subsequent test might be to determine if long-term memory 

helps explain the effect of working memory on mathematics achievement (Keith, 1999).  SEM 

allows the researcher to calculate direct, indirect, and total effects of the hypothesized 

independent, or exogenous, latent variables on the criterion, or endogenous, latent variables 

(Keith, 1999).   
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SEM is well-suited to the current study because it is a multivariate technique for 

analyzing a complex model including relationships among mathematics achievement and several 

cognitive variables.  Furthermore, in predictive procedures, such as in regression methods, no 

overall test of model fit is provided as it is in SEM methods.  Thus, SEM is an excellent way to 

develop, modify, and test competing theories (Keith, 1999).  SEM is ideal for testing theory 

because the analysis allows the examination of relationships among latent constructs while 

excluding random error variance and specific measurement error variance, thus providing 

parameter estimates that more precisely explain relationships (Anderson & Gerbing, 1988).   

Furthermore, SEM can be used to test competing hypotheses about causal relationships 

and thus help to strengthen the arguments made in favor of theories made and tested via SEM 

models (Keith, 1999).  Despite these advantages, SEM cannot prove the existence of the model 

but only provide support for the model by disconfirming other models (Anderson & Gerbing, 

1988).   

SEM in the Current Study 

 A two-step procedure was used in the current study where a measurement model was 

hypothesized first, and then tested via confirmatory factor analysis.  The measurement model 

depicts the hypothesized relationships among the observed variables and the constructs, or latent 

variables, that they are hypothesized to measure (Keith, 1999).  This measurement model was 

then analyzed via confirmatory factor analysis utilizing the following five steps:  Model 

specification, identification, parameter estimation, testing fit by determining how well the model 

replicates the covariance matrix, and examining how the model might be modified to provide for 

better fit.  This last step makes the term, “confirmatory” a misnomer, as initial lack of fit may 

require re-specification (Anderson & Gerbing, 1988).  However, re-specification is based on 
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theoretical considerations rather than on statistical benefits so as to avoid capitalizing on random 

sampling error, but any model modification done post hoc will still capitalize on chance to some 

degree (Anderson & Gerbing, 1988). 

The second step in SEM consists of hypothesizing the causal relationships of the latent 

variables to one another in the structural model.  The structural model defines the causal 

relationships in accordance with a theory (Anderson & Gerbing, 1988).  The model’s latent and 

observed variable structure represents the proposed theory and indicates the direction of causality 

(Kavale & Nye, 1991).  Together, the measurement and structural models represent a test of 

validity for the theory.  Testing the overall model assesses convergent and discriminant validity 

because when data support a priori hypotheses predicting that certain variables are correlated 

while predicting that other variables will not be related, then fit of the model provides a measure 

of construct validity (Wechsler, 1997a).  As long as analysis of the measurement model yields 

good statistical fit to the data, the analysis of the structural model provides a measure of 

theoretical validity (Bentler, 1990).   

 In order for the measurement model to be identified, the model must have as many 

covariances as path values to be estimated, and it is preferable for the model to be overidentified 

so that there are more covariances than unknown path values.  According to Bollen (1989), the 

measurement model will be identified if the following criteria are met:  At least three indicators 

are correlated with each factor, each indicator loads on only one factor, and measurement errors 

are not correlated.  Models may still be identified when there are only two indicators per factor if 

measurement errors are not correlated, each indicator loads on only one factor, and all factors are 

correlated with at least one other factor.  By choosing multiple indicators for a factor, 
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measurement error can be estimated, and the validity of the construct is strengthened because the 

construct is measured in different ways (Bollen, 1989). 

After the hypothesized models are specified, parameters are estimated.  In the CFA, 

factor loadings, measurement error variances, factor variances, factor correlations, and 

measurement error correlations, if any, are estimated.  In addition, paths among latent variables 

and disturbance terms (i.e., unexplained variance of each criterion variable) are estimated via 

SEM.  Although several estimation methods are available, Maximum Likelihood (ML) 

estimation was chosen for the current analysis due to its advantages over other methods with 

sample sizes less than 1000.  In addition, the Sattorra-Bentler technique was implemented to 

adjust to the level of multivariate kurtosis.  The choice of estimation method is important only 

when models are misspecified and data are not multivariate normally distributed.  As these two 

assumptions are rarely perfectly met, it is important to choose an estimation method that most 

accurately estimates empirical fit (Olsson, Foss, Troye, & Howell, 2000).  Maximum Likelihood 

(ML) estimation techniques have demonstrated better overall performance than Generalized 

Least Squares (GLS) when models are misspecified, providing less biased, and more consistent, 

parameter estimates, and demonstrating higher accuracy in empirical and theoretical fit (Olsson 

et al., 2000).  Both ML and GLS are based on an assumption of multivariate normality.  

Therefore, the only variation in fit occurs due to misspecification of the models, and results from 

difference in the weight matrixes used in the discrepancy functions for each estimation method 

(Olsson et al., 2000).  The discrepancy function assesses the weighted difference between the 

elements of the original sample matrix and the reproduced covariance matrix based on the 

proposed model. The weight matrix in ML changes with each iteration.  The weight matrix for 

GLS is equal to the inverse of the original sample covariance matrix, whereas the weight matrix 
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of ML is the inverse of the reproduced covariance matrix.  The weight matrix in ML is updated 

at each iteration and produces the most unbiased (i.e., the sample mean is an adequate estimate 

of the population mean), consistent (i.e., the mean of the sample gets closer to the population 

mean as sample size increases), and efficient (i.e., the estimator results in minimal variability) 

estimates when the model is misspecified.  The more statistically significant the parameter 

estimates, the greater the confidence one may have in the theoretical fit of the model tested 

(Olsson et al., 2000).  Therefore, it is important that the estimation method chosen yields the 

most accurate parameter estimates, not only the estimates that produce the best statistical fit, 

because statistical fit at the expense of theoretical fit is not better when parameter estimates are 

biased (Olsson et al., 2000). 

When data are not multivariate normally distributed, model fit and tests of significance 

may be affected (Jöreskog & Sörbom, 1984).  Therefore, data must be screened for skewness 

(i.e., symmetry) and kurtosis (i.e., peakedness) prior to analysis.  As kurtosis is more likely to 

threaten tests of variances and covariances than skewness, it is particularly important to ensure 

that values do not exceed /3.0/, which represents normally distributed data (Browne, 1984).  

When values exceed /3.0/, standard errors of parameter estimates may be underestimated, thus 

affecting significance tests.  Jöreskog and Sörbom (1996) recommend values of less than /2.0/ 

for multivariate normality.  In sum, empirical fit is rarely perfect, and the models tested are less 

than perfect representations of the true model.  However, the estimation method chosen should 

yield parameter estimates that most closely reflect the true parameter estimates (Olsson et al., 

2000).  Because ML yields standard errors of the parameter estimates, it is possible to test 

individual parameters for significance as well as testing significance of overall model fit 

(Anderson & Gerbing, 1988).  However, in ML estimation nonnormality may result in the 
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underestimation of standard errors, which affects tests of significance by increasing t-values, 

which makes t-values for parameter estimates higher (Hu & Bentler, 1995).  Yet, ML produces 

weighted residuals rendering scale of measurement irrelevant, so that variables can utilize 

different scales of measurement.   

Overall fit is assessed via fit indexes, which compare the observed variance-covariance 

matrix and the estimated matrix implied by the theoretical model.  The degree of congruence 

between the matrixes represents the degree to which the theoretical model represents the data 

(Keith, 1999).  Chi-square is generally reported, as it is the only fit index that provides a 

significance test that suggests the probability that the theoretical model accurately represents the 

data.  However, chi-square is sensitive to sample size, so that one may obtain a statistically 

significant chi-square, suggesting poor fit, when only a small difference exists between the actual 

and implied matrixes (Keith, 1999).  In addition to examining fit indexes, fit of the model may be 

assessed by making sure that the standardized residuals are minimal (i.e., values less than /2.0/), 

indicating only small discrepancies between the sample matrix and reproduced matrix, and by 

checking for significant t-values for each path (i.e., t-values greater than /2.0/), which test if the 

path value significantly deviates from zero.  In addition, improper solutions and unexpected 

signs or values for paths should be noted.  Furthermore, in ML estimation nonnormality may 

cause the chi-square statistic to be inflated, increasing the likelihood of Type I errors (West, 

Finch, & Curran, 1995).  Therefore, chi-square is always accompanied by other fit indexes.  In 

the current analysis the Minimum Fit Function Chi-square test was supplemented with the 

Comparative Fit Index (CFI; Bentler, 1990), the Non-Normed Fit Index (NNFI or TLI; Tucker & 

Lewis, 1973) and the Root Mean Square Error of Approximation (RMSEA; Steiger, 1990).  The 

CFI and NNFI are incremental fit indexes, indicating they compare the hypothesized model to a 
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null or baseline model in which the measured variables are assumed to be unrelated (Keith, 

1999).  The CFI is an incremental fit index that measures the proportion of improvement of the 

proposed model over the null model.  The NNFI is similar to the CFI but includes a correction 

for model complexity (Kline, 1998).  Both the CFI and NNFI are less affected by sample size 

than chi-square (Keith, 1999).  A cutoff of .95 or above is used to identify good fitting models 

with the CFI and NNFI (Hu & Bentler, 1995).  The RMSEA is a stand-alone index, less 

susceptible to model complexity than the CFI or NNFI, which will always reflect better model fit 

in more complex models (i.e., models containing more paths) (Keith, 1999).  The RMSEA 

assesses fit by determining how close the population data is to the covariance matrix implied by 

the model.  According to Hu and Bentler (1999) values less than .08, in conjunction with CFI 

and NNFI indexes greater than .95, are recommended for adequate fit for the RMSEA.   

Measurement Models 

Subtests selected to measure the long-term memory (LTM) factor included the Long 

Delay Free Recall subtest of the California Verbal Learning Test – Second Edition (CVLT-II:  

Delis, Kramer, Kaplan, & Ober, 2000) and the  Logical Memory II and Family Pictures II 

subtests of the Wechsler Memory Scales – III (WMS-III:  Wechsler, 1997c).  Subtests 

hypothesized to measure the auditory working memory (AWM) factor included the Letter-

Number Sequencing subtest of the Wechsler Adult Intelligence Scale – Third Edition (WAIS-III:  

Wechsler, 1997b) and the Auditory Working Memory and Numbers Reversed Subtests of the WJ 

III.  Observed variables included in the visual-spatial (VS) factor are the WAIS-III Block Design 

and WJ III Spatial Relations subtests.  The reasoning (REA) factor consisted of the Matrix 

Reasoning and Similarities subtests of the WAIS-III and the Concept Formation subtest of the 

WJ III.  Subtests chosen to measure the vocabulary (VOC) factor included two vocabulary 
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subtests, the Vocabulary subtest of the WAIS-III and the Vocabulary subtest of the PPVT-III.  

The two endogenous latent variables representing mathematics achievement were made up of 

mathematics calculation (MCALC), which included the Calculation and Math Fluency subtests 

of the WJ III, and mathematics reasoning (MREA), which included the Applied Problems and 

Quantitative Concepts subtests of the WJ III (See Figure 2).  

Structural Models 

These studies, which describe the current literature trends regarding mathematics 

achievement across the lifespan, were used to develop a full structural model of select cognitive 

processes associated with variability in mathematics achievement, where mathematics 

achievement was defined as mathematics calculation and mathematics reasoning (See Figure 1).  

Next, nested models were tested with paths from each exogenous latent variable to the 

endogenous latent variables successively set to be equal.  Successively setting these paths to be 

equal allows examination of the differential effects of each exogenous variable on the 

endogenous variables in order to determine which model most accurately represents the 

cognitive variables underlying mathematics achievement in a sample of adults who were referred 

to the Regents’ Center for Learning Disorders at the University of Georgia due to academic 

difficulties. 

 All variables in the model were hypothesized to have a direct and positive relationship 

with mathematics achievement, which was defined by the two mathematical clusters of the 

Woodcock Johnson III Tests of Achievement (WJ III: Woodcock, McGrew, & Mather, 2001), 

Math Calculation Skills and Math Reasoning.  Each exogenous latent variable was hypothesized 

to correlate with each of the two endogenous latent variables (See Figure 1).  In the first nested 

model, the same relationships are hypothesized among the latent variables.  However, the paths 
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from long-term memory to the endogenous latent variables are set to be equal to each other.  

Setting these paths to be equal allows a comparison to be made between the full model and the 

nested model.  This comparison will show the differential effects of long-term memory on 

mathematics calculation and mathematics reasoning.  Vocabulary is included as an exogenous 

latent variable in both models due to its high correlation with general verbal ability.   

Measures 

The measures used to examine the relationship between cognitive processing and 

mathematics achievement in the adult population in this study were chosen from among the 

standard battery given to participants evaluated at the University of Georgia – Regents’ Center 

for Learning Disorders (UGA-RCLD).  All of the measures represent individual subtests 

included on widely recognized tests of ability and achievement.  The WAIS-III (Wechsler, 1997) 

was developed as a test of intelligence, standardized on 2,450 individuals ranging in age from 16 

to 89.  Individual subtests measure aspects of intelligence.  The Letter-Number Sequencing, 

Block Design, Matrix Reasoning, Similarities, and Vocabulary subtests of the WAIS-III were 

included in the proposed models.  See Table 2 and 3 for reliability and validity information for 

the WAIS-III subtests used in the current study.  Letter-number sequencing, a subtest included in 

the WAIS-III working memory factor was selected for the current study to measure working 

memory.  On this subtest, examinees must repeat strings of items, consisting of both letters and 

numbers, of increasing length.  The examinee is required to mentally manipulate the items by 

putting them in chronological and alphabetical orders.  The test contains 21 items when an 

examinee completes all test items.  The block design subtest, which asks examinees to 

manipulate blocks in order to match a target design presented on a stimulus card contains 14 

items of increasing difficulty.  It was included in the current study to measure visual-spatial 
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ability.  Matrix reasoning contains 26 items that require the examinee to choose the item that 

completes a geometric pattern or sequence from one of five choices.  In the current study, the 

subtest was selected as a measure of reasoning.  The Similarities subtest contains 19 items that 

ask the examinee to explain how two objects or ideas are conceptually related.  The vocabulary 

subtest contains 33 items that ask the examinee to provide definitions for words that are 

presented verbally by the examiner and visually on a stimulus card.   

Table 2. WAIS-III Reliability by Subtest 

Subtests   Test-Retest  Avg. Internal Consistency 
 
Vocabulary   .89-.94    .93 
 
Similarities   .74-.88    .86 
 
Matrix Reasoning  .75-.81    .90 
 
Block Design   .80-.88    .86  
 
Letter-Number Seq.  .70-.80    .82 
 
Note:  The range of test-retest stability coefficients is reported for the four age groups (16-29, 

30-54, 55-74, 75-89), and were tested within an interval ranging from 2 to 12 weeks.  The mean 

retest interval was 34.6 days (WAIS-III; Wechsler, 1997).  Internal consistency coefficients were 

determined using a split-half method and were averaged across the four age groups. 
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Table 3.  Criterion-related Validity for the WAIS-III 

 Subtest of WAIS-III  WAIS-R WISC-III SPM SB-IV 

Full Scale IQ   .93      .88  .64    .88 

Vocabulary   .90      .83 

Similarities   .79      .68  

Block Design   .77      .80 

Note:  Criterion-related validity coefficients for the matrix reasoning and letter-number  

sequencing subtests were unavailable, as these subtests were not included on either the WAIS-R 

(Wechsler Adult Intelligence Scale – Revised) (WAIS-R; Wechsler, 1981) or the WISC-III 

(Wechsler Intelligence Scale for Children-Third Edition) (WISC-III; Wechsler, 1991).  In 

addition to the WAIS-R and WISC-III, the full scale score of the WAIS-III was compared to the 

Standard Progressive Matrices (SPM; Raven, 1976) and the global composite of the Stanford-

Binet Intelligence Scale-Fourth Edition (SB-IV; R.L. Thorndike et al., 1986). 

 Each subtest of the WJ III measures a single narrow ability according to Cattell-Horn-

Carroll theory of intelligence on which the WJ III is based.  As each subtest measures only one 

narrow ability, any variance that is irrelevant to the ability is decreased.  In addition, growth 

curves, which depict the relationships between ability levels and age, show the expected patterns 

of growth and decline among the narrow abilities, providing evidence for their validity (McGrew 

& Woodcock, 2001).  Subtests of the WJ III chosen in the current study include the following:  

Numbers Reversed, Auditory Working Memory, Spatial Relations, and Concept Formation.    

Numbers Reversed and Auditory Working Memory measure auditory working memory in the 

current study.  Numbers reversed contains 30 items for which the examiner or a recorded 

message presents strings of numbers and asks the examinee to repeat the number strings in 
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reverse order.  Auditory Working Memory, which includes 42 items, requires examinees to 

repeat strings that contain numbers and objects.  Examinees must first repeat the objects, then 

repeat the numbers, in the same order in which they were presented.  Spatial Relations was 

chosen in order to measure visual-spatial processing and asks the examinee to choose the shapes 

that complete a geometric design and consists of 81 possible points.  Concept Formation was 

selected as a measure of nonverbal reasoning.  Concept formation consists of 40 items and 

requires examinees to state the rule that explains why varying colors and numbers of shapes are 

included in a series.  See Table 4 for median split-half internal consistency estimates reported 

across ages.  Median stability coefficients, collapsed across years, taken at intervals  of less than 

one year, between one and two years, and between three and ten years are reported as .77, .75, 

and .62, respectively for the Concept Formation subtest.  Stability coefficients for the other 

subtests included in the proposed model were not reported in the manual. 

Table 4. WJ III Reliability by Subtest 

Subtest      Internal Consistency   
 
Spatial Relations     .81    
 
Concept Formation     .94    
 
Numbers Reversed     .87    
 
Auditory WM      .87  
   
 

The Wechsler Memory Scale – Third Edition (WMS-III) was standardized on 1250 

individuals between the ages of 16 and 89 and included an equal number of males and females.  

Subtests used for the current study included tests of long-term verbal and visual memory.  The 

Logical Memory II subtest measures verbal long-term memory by asking examinees to recall 

details of two stories that were read to them 20-30 minutes previously and consists of a possible 
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total 50 points.  Family Pictures II is a measure of visual long-term memory and contains 64 

items that asks examinees to recall which family members were in four scenes, where they were, 

and what they were doing when the scenes were shown to them 20-30 minutes earlier.  

Reliability for the WMS-III was established using a split-half method for internal consistency.  

Stability coefficients were estimated with a test-retest interval between 2 and 12 weeks with an 

average of 35.6 days and were calculated with two age groups, 16 to 55 year olds and 55-89 year 

olds.  See Table 5 for reliability data reported in the manual.  The WMS-III was correlated with 

the Wechsler Memory Scales – Revised (WMS-R; Wechsler, 1987) and the Children’s Memory 

Scale (CMS; M. Cohen, 1997), an individually administered test of memory functioning in 

children and adolescents aged 5 to 16 years, in order to establish criterion-related validity. 

The correlation coefficients estimating the relationship between the WMS-III Auditory 

and Visual Indexes and the corresponding Indexes of the CMS ranged from .26 (Visual-Delayed 

Indexes) to .74 (Auditory/Verbal Immediate Indexes) (Wechsler, 1997).     

Table 5. WMS-III Reliability by Subtest 

Subtest  Internal Consistency  Stability Coefficients 
     Age   16-55  55-89     
 
Logical Memory II .79       .79  .79     
 
Family Pictures II .84       .68  .71    
 
  

The CVLT-II is a test that measures learning by listing 16 words that the examinee must 

remember and repeat.  The test, as a whole, measures verbal learning and memory in individuals 

between the ages of 16 and 89 years.  The Long Delay Free Recall (LDFR) subtest of the CVLT-

II measures long-term verbal memory of the list of 16 words presented five times approximately 

20 minutes earlier.  Although the manual reports internal consistency and stability reliability 
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estimates, only the stability coefficient is reported for the LDFR subtest.  Internal consistency 

coefficients are reported for the five immediate recall trials in which the 16 words are presented 

immediately before asking the examinee the repeat the words that he or she remembers.  Internal 

consistency estimates are reported in Table 6 for the immediate recall trials using a split-half 

technique with the total sample, with three subsamples using age- and gender-corrected scores, 

and using the number of times each of the 16 words were recalled across the immediate recall 

trials.  Table 6 also reports the stability coefficient for the LDFR trial in which the test was 

administered twice to 78 subjects with a median test-retest interval of 21 days.   

Table 6. CVLT-II Internal Consistency and Stability Coefficients 

Internal Consistency (Immediate Recall)    Stability Coefficient (LDFR) 
Total Sample  Subsamples  # Words  
 
    
 .94 .87-.89 .79   .88    
 
  

 In order to investigate validity, a comparison study of the CVLT-II and original CVLT 

was conducted with a sample of 62 nonclinical adults who ranged in age from 19 to 71 years.  

The correlation coefficient for the LDFR subtest was estimated at .78.  Construct validity of the 

test as a whole is discussed in the manual in the context of numerous prior studies conducted 

with the original CVLT and are not specifically cited.  While the authors state that studies have 

failed to demonstrate the contribution of the delayed recall test over and above the immediate 

recall tests, they assert the importance of delayed memory tests in general due to certain clinical 

populations’ impairments in these measures.  

 The Vocabulary test of the PPVT-III is an achievement test of hearing vocabulary in 

English that may be given to individuals from 2 years, 6 months to 57 years, 11 months of age.  
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Like the Vocabulary subtest of the WAIS-III, the PPVT-III measures vocabulary word 

knowledge, but rather than asking examinees to provide definitions for words, the words are 

given, to which the examinee must respond by pointing to corresponding pictures.  The test is 

made up of 204 items.  To obtain estimates of internal consistency, alpha reliability coefficients 

and split-half reliability coefficients were calculated.  The median value for internal consistency 

was .95 across age groups.  The median split-half reliability coefficient for internal consistency 

was .94, and test-retest reliability ranged from .91 to .94 across age groups after a one-month 

time interval.  Alternate forms reliability was also calculated on the entire standardization 

sample, and stability was established through a test-retest method with a month interval between 

testing.  Alternate forms reliability estimates ranged from .89 to .99 with a median of .95 across 

age groups. 

 The following WJ III achievement tests make up the observed variables that are 

hypothesized to correlate with the endogenous latent variables measuring achievement.  

Quantitative Concepts A consists of 34 items that ask the examinee to provide the meaning of 

mathematics terms and symbols and thus represent mathematics fact knowledge, while 

Quantitative Concepts B has 23 items and asks examinees to complete sequences of number 

patters and was used in the this study as a measure of quantitative reasoning.  The Mathematics 

Fluency subtest is a timed achievement task that requires examinees to solve as many simple 

arithmetic problems as quickly as they can in three minutes.  The Applied Problems subtest 

measures mathematics achievement by requiring examinees to solve 63 word problems.  They 

are allowed to use scrap-paper, and the test is not timed.  The calculation subtest is another test 

of mathematics achievement that provides examinees with 45 addition, subtraction, 

multiplication, division, fraction, decimal, and algebra problems and asks them to solve as many 
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items as they can at their own pace.  See Table 7 to view median internal consistency estimates 

collapsed across age groups for all achievement tests. 

Table 7. WJ III Achievement Tests - Reliability by Subtest 

Subtest     Internal Consistency   
         
 
Quantitative Concepts    .91 
 
Applied Problems    .93 
 
Calculation     .86 
 
Math Fluency     .90     
 

  

Participants 

 The sample for this study was taken from archival data collected from the Regents’ 

Center for Learning Disorders at the University of Georgia (UGA-RCLD).  The UGA-RCLD 

provides evaluations for individuals experiencing academic difficulties in order to determine 

eligibility for accommodations in college classes and during exams.  Four-hundred-one 

predominantly white undergraduate and graduate college students participated in the study.  

Table 8 provides descriptive information for the sample. 

Table 8. Descriptive Information for Sample 

  Mean Standard Deviation   
 
Age at Testing  22.50  6.27   
 
Verbal IQ 107.47  11.65 
 
Performance IQ 105.21  14.44 
 
Full Scale IQ 106.87  12.50   
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 As part of the evaluation process, all individuals were administered an extensive test 

battery including measures of intellectual ability, attention, working memory, learning, long-term 

memory, executive functions, reasoning, visual-spatial skills, phonological/orthographic 

processing, verbal fluency, vocabulary, listening comprehension, receptive syntax, social-

emotional status, reading decoding, reading rate, reading comprehension, spelling, grammar, 

punctuation, mathematics calculation, mathematics reasoning, and mathematics fluency. 

The sample was collected between 2001 and 2003 and consisted of older adolescents and 

adults between the ages of 18 and 57, and had a mean age of 22.50.  One hundred thirty-eight 

individuals were diagnosed by the LDC with learning disabilities (LD), ninety-six individuals 

were diagnosed with Attention Deficit Hyperactivity Disorder (ADHD), and thirty-six were 

diagnosed with both LD and ADHD as defined according to Diagnostic and Statistical Manual of 

Mental Disorders – Fourth Edition (DSM-IV) criteria (American Psychiatric Association, 1994).  

The remaining one hundred thirty-one individuals in the sample were not diagnosed with LD or 

ADHD.  

 A team of psychologists, a linguistic expert, and Masters level clinicians relied on clinical 

judgment to interpret tests and make diagnoses.  All students met the criteria for the diagnosis of 

learning disabled prescribed by the Georgia Board of Regents of the University System of 

Georgia, which include an average score on a measure of cognitive ability, underachievement in 

an academic area, and a processing deficit that can be used to explain the underachievement.  No 

diagnoses are made on the basis of a single test score or a discrepancy formula.  Rather, a careful 

analysis by the team of each individual’s cognitive, achievement, and social-emotional profile is 

completed, using quantitative data, qualitative data, and clinical judgment. 
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Diagnoses of ADHD were based on clinical judgment by examiners after reviewing 

information from test results, observations, rating scales, and responses to interview questions.  

All diagnoses were made according to Diagnostic and Statistical Manual for Mental Disorders – 

Fourth Edition (DSM-IV, American Psychiatric Association, 1994) criteria. 

Procedures 

A full structural model and a series of three nested models were tested through a 

sequence of steps.  First, the data were screened for outliers, nonnormality, and multicollinearity.  

Second, the measurement models were evaluated for identification and examined for model fit.  

Third, the full structural model was tested for model fit and subsequently compared to nested 

models (Keith, 1999).          

Limitations of SEM in the Current Study 

 While it is possible to hypothesize and test the fit of a causal model of variables via SEM, 

the method does not prove causality.  Instead, SEM provides a statistical method of estimating 

the magnitude of the effects of independent variables on criterion variables within the constraints 

of a causal model.  The accuracy of the causal interpretations of analyses depends on how 

accurately the hypothesized model reflects the reality of relationships among the variables 

(Keith, 1999).  In order to determine causality, use of an experimental design is more 

appropriate.  However, in many instances, such as with the current study, the random assignment 

of subjects to groups who receive different treatments, or as in this study, different cognitive 

processing skills before measurement, was not possible. 

 In addition to the limited use of experimental design in many areas of social science 

research, it is also unlikely that the measures used in the social sciences, such as the tests used in 

the current study have perfect reliability and validity.  Imperfect reliability and validity may lead 
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to errors in the estimation of the magnitudes of path values (Keith, 1999).  Validity may be 

helped by using multiple measures to represent latent variables.  However, the accessibility of 

collecting multiple measures precluded doing so in the current study. 

 Three conditions must be met to make inferences about causality in SEM.  First, the 

variables represented in the hypothesized model must be related to one another.  Second, the 

assumed cause must occur prior to the assumed effect.  In this study, all measures are collected at 

the same point in time, so this second condition cannot be fulfilled.  Third, the relationship that is 

interpreted to be causal must not be spurious (Keith, 1999).  In other words, the causal 

relationship between an independent variable and criterion variable depicted in the model must 

not be caused by a different, unspecified variable.  Omitting such variables may result in 

inflation of the hypothesized cause on the hypothesized effect (Keith, 1999).  This limitation is 

particularly pertinent to the population under study in the current model, as the only way to 

decrease the likelihood of omitting causal variables in the hypothesized model is to depict the 

model based on a thorough understanding of the theories and previous research relevant to the 

current study (Keith, 1999).  However, as little prior research has been conducted regarding 

mathematics achievement in older adolescents and adults, the hypothesized models may be 

vulnerable to variable omission. 



  
 71 

 

 

CHAPTER 4 

RESULTS 

  Prior to running analyses, the full data set, which included 401 cases, was screened for 

outliers and nonnormality using DeCarlo’s Macro (DeCarlo, 1997).  Univariate tests of skew 

noted a value of 5.6335 on the WJ III Calculation variable, indicating positive skew (i.e., most 

values fall below the mean).  All other variables contained values less than /3.0/.  Univariate tests 

of kurtosis revealed a kurtosis index of 52.92 for WJ III Calculation, indicating a leptokurtic 

distribution.  Kline (1998, p.82) suggested that values greater than /3.0/ represent extreme skew, 

and values greater than /10.0/ indicate problematic kurtosis, while kurtosis values greater than 

/20.0/ indicate seriously problematic kurtosis.  Nonnormality of data can result in the 

underestimate of standard errors for parameter values, thus impacting tests of significance 

(Browne, 1984).  To address this problem, Satorra-Bentler Scaled Chi-square was implemented 

to adjust chi-square and standard errors to the degree of multivariate kurtosis.   

Three cases with Mahalanobis distances exceeding critical values were noted as outliers.  

The data set was scanned to detect obvious data-entry errors; however, none were noted.  Next, 

SPSS, version 12.0, was used to determine upper and lower bounds for each measured variable 

in outlying cases in order to further scan for discrepancies in entered data.  As scores in the 

outlying cases did not appear to deviate from other cases included in the data set, outliers were 

treated as extreme cases within the target population and included in the analysis.  The 

percentage of missing values in the total sample equaled 27.64 percent with a total effective 

sample of 153 after listwise deletion of incomplete cases.   
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Initial runs of the original data resulted in a nonpositive definite input covariance matrix.  

Calculation of the weight matrix involves taking the inverse of the covariance matrix during the 

initial step of the iterative process in ML estimation.  Thus, correlations greater than /1.0/ among 

latent variables indicate that the matrix does not have a positive determinant, which leads to an 

undefined value when the weight matrix is divided by the determinant.  Examination of the 

intermediate solution revealed correlations among latent variables greater than /1.0/, indicating 

multicollinearity among latent variables.  In addition, several path values for measured variables 

contained low R² values, indicating poor measurement of the latent factor.  The issue of 

multicollinearity was addressed by successively deleting latent variables from the analysis.  

Measured variables that resulted in paths with R² values less than .10 were also deleted, which 

created one exogenous latent factor and two endogenous latent factors with single indicators.  

Measurement error variances of single indicators used to measure latent factors were set to the 

variance of the measured variables multiplied by one minus its reliability [(1-r)(σ²)] to account 

for lack of perfect reliability of the measures (Keith, 1999).  After the exogenous latent factors of 

visual-spatial ability and vocabulary were eliminated, the analysis converged; however, negative 

parameter estimates for the structural equations emerged.  Although these path values were 

nonsignificant, all covariances among variables were positive.  Thus, negative parameter 

estimates suggest continued problems with multicollinearity among the exogenous latent factors.  

The resulting model included three, rather than five, exogenous latent variables, namely, long-

term auditory memory, auditory working memory, and reasoning (See Figure 3).   Data from the 

sample are presented in Table 9, including means, standard deviations, and univariate skew and 

kurtosis values for each measured variable included in the analysis. 
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Table 9. Descriptive Information for Measured Variables 

 Sim. LNSeq MR CF NR AuWm Calc QC LM  
 
Mean   24.33 11.67 19.84 33.51 16.59 28.82  29.55 43.55 28.71 
         
S.D.     4.01 2.46 3.55 5.77 3.95 5.55  7.32 4.53 7.13 
 
Skew -0.403 0.133 -1.627 -1.381 0.079 -1.196 5.634 -1.184 -0.083 
 
Kurtosis -0.550 -0.161 4.427 1.750 0.010 2.292 52.917 3.035 -0.672  
 

 

Prelis, version 2.72, provided tests of univariate and multivariate normality for variables 

included in the adjusted model, in addition to constructing correlation and covariance matrixes 

that were later used in SEM analyses.  Multivariate kurtosis values, as opposed to skewness, are 

typically considered to evaluate normality of data used in SEM analyses given the impact that 

kurtosis has on variances and covariances (DeCarlo, 1997; Olsson et al., 2000).  Relative 

Multivariate Kurtosis was 2.029, slightly above the /2.0/ cutoff suggested by Jöreskog and 

Sörbom (1996).  The correlation matrix of observed variables (See Table 10) was constructed to 

screen for bivariate multicollinearity among variables.  Correlations among observed variables 

were relatively low.  None of the correlations among measured variables were greater than .50, 

including those hypothesized to measure the same latent factor, which suggests that some factors 

may not be represented well by the measured variables.  For example, while both the auditory 

working memory and reasoning factors were represented by three indicators, the highest 

correlation among indicators for auditory working memory was .463, and for reasoning, .427. 

 

 

 



  
 75 

Table 10. Correlation Matrix of Observed Variables 

 Sim. LNSeq MR CF NR AuWm Calc QC LM  
 
Sim    1.000    
 
LNSeq    0.326 1.000  
 
MR 0.359 0.234 1.000 
 
CF 0.421 0.360 0.427 1.000 
 
NR 0.326 0.463 0.250 0.376 1.000 
 
AuWm 0.201 0.456 0.149 0.380 0.413 1.000     
  
Calc 0.135 0.128 0.198 0.303 0.131 0.050 1.000    
 
QC 0.326 0.282 0.458 0.482 0.313 0.268 0.137 1.000   
 
LM 0.278 0.151 0.051 0.291 0.148 0.198 0.033 0.190 1.000 
 

Satorra-Bentler Scaled Chi Square indicated good fit of the structural model (χ² = 13.86 

(21), p = .88).  As the RMSEA was less than the suggested .08 cutoff, and the NNFI and CFI 

were greater than .95, the model was considered to be a good fit (See Table 11).  Values of 

greater than 1.0, such as the NNFI, indicate an overidentified model with almost perfect fit to the 

data (Kline, 1998, p. 129).  In other words, there are more paths in the model than are needed for 

a good fit. 

Table 11. Fit Indexes for Full Structural Model 

  DF  SB Χ² RMSEA  NNFI CFI 
 
Full Model 21 13.86 0.0 1.03  1.00 
   (p = 0.88)  
 

 



  
 76 

Model fit was further assessed by reviewing individual path t-values (see Table 12) and 

standardized residuals (see Table 13).  All path values for measurement equations were 

significant; however, R² values for WAIS-III Similarities and WAIS-III Matrix Reasoning were 

relatively low (< .40), indicating poor measurement of these variables on their respective factors.  

In addition, path values for the long-term memory and auditory working memory factors were 

not significant on either of the structural equations.  R² values were low to moderate, .14 for 

mathematics calculation and .44 for mathematics reasoning.  Two standardized residuals 

(approximately 6 % of the total elements in the residual matrix) had values greater than /2.0/, 

indicating adequate model fit.  As expected, all measurement path values were positively 

correlated with latent variables; however, unexpected negative path values were detected 

between exogenous and endogenous latent variables (See Table 14).   

Table 12. Parameter Estimates for Measurement Equations 

Path From: Path To: Path Value  T-Value R² 
 
MCAL  Calc ----------  -------- 0.86 
 
MREA  WJQC ----------  -------- 0.91 
 
REA  Sim 2.27   8.58 0.32 
 
AWM  LNSeq 1.71   8.70  0.48 
 
REA  MR 2.00  4.54 0.32 
 
REA  Con 4.51  7.84 0.61  
 
AWM  NR 2.66  7.70 0.45 
 
AWM  AuWm 3.50  6.89 0.40    

    
LTM  LM 6.89  20.24 0.93      
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Table 13. Standardized Residuals 

 Calc WJQC Sim LNSEQ MR Con NR AuWm LM 
 
Calc  
 
WJQC -0.25 
 
Sim -3.38 -1.15 
 
LNSeq  0.51 -0.28  1.21 
 
MR  1.62  1.22  0.78 -0.51 
 
Con  ----- -0.34 -1.37 -0.24  -0.14 
 
NR  1.69  0.49  1.16 -0.13  -0.15  0.16 
 
AuWm -0.41   -0.10 -1.11  0.33  -1.49  0.37 -0.54    
 
LM -1.42  -0.01  1.71 -0.34  -2.68  0.71 -0.33  0.65 
 
  
 

Table 14. T-Values for Structural Equations    

  LTM AWM  REA R² 
 
MCAL  -1.49 -1.07  3.23  0.14   
 
MREA  -0.29 -0.0053  2.54  0.44 
        
  
 

 As can be seen in Table 14, the long-term memory and auditory working memory factors 

were not correlated with the endogenous latent factors, mathematics calculation and mathematics 

reasoning. 

Modification Indexes (MI) suggested that allowing WJ III Calculation to load on 

mathematics reasoning, and conversely, allowing WJ III Quantitative Concepts to load on 
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mathematics calculation would result in significant path values, suggesting that the endogenous 

latent factors may be highly related, or measuring the same construct.   MIs also suggested 

significant path values resulting from allowing WAIS-III Similarities and WAIS-III Matrix 

Reasoning to load onto the long-term memory factor, which again points to poor representation 

of the long-term memory factor.  While several MIs suggested allowing measurement errors to 

covary, none were considered theoretically sound. 

Nested Model Analyses 

To assess the hypothesis that exogenous latent variables (i.e., auditory long-term 

memory, auditory working memory, and reasoning) differentially impact mathematics 

calculation and mathematics reasoning, a set of procedures using nested models was employed.  

These procedures created nested models by successively setting the paths from one exogenous 

latent variable at a time to each endogenous latent variable (i.e., mathematics calculation and 

mathematics reasoning) equal to each other.  Thus, the two models are hierarchically related, as 

Model 1 (See Figure 4) is nested under the Full Structural Model, as are Models 2 and 3 (See 

Figures 5 and 6).  Satorra-Bentler chi-square differences were computed.  The value of chi-

square generally increases as paths are eliminated, so the goal is to find the most parsimonious 

model that fits the data as well as the full structural model (Kline, p. 132).  Thus, in this instance 

chi-square difference tests provide a test of whether imposition of the equality constraints in the 

more constrained models (i.e., Models 1, 2, and 3) result in a significant decrement in the fit of 

the nested model.  A significant chi-square difference implies that values of the parameters 

actually differ significantly from one model to the next, and therefore, do not predict equally 

well.  It should be noted that while fit indexes and examination of residuals for the full model 

indicated good fit, problems detected in the measurement of exogenous latent variables and low 
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correlations among exogenous latent variables and endogenous latent variables attenuate the 

results of nested model analyses.  For this reason, only the Satorra-Bentler chi-square difference 

test conducted between the Full Structural Model and Model 3 is discussed in detail, as among 

the three exogenous latent variables, reasoning appears to have the strongest relationship to the 

mathematics calculation and mathematics reasoning variables.  However, the cursory results of 

all nested model analyses are reported below. 

In addition to the Satorra-Bentler Scaled Chi-Square, the Comparative Fit Index (CFI; 

Benter, 1990), the Non-Normed Fit Index (NNFI or TLI; Tucker and Lewis, 1973), and the Root 

Mean Square Error of Approximation (RMSEA; Steiger, 1990) were employed to evaluate fit of 

nested models.  Thus, primary statistics used to assess change in model fit were the Satorra-

Bentler chi-square difference tests as well as inspection of other fit indexes.  Significance of path 

values and R2 values were used to evaluate models for misspecification. 

Results from model comparisons (See Table 15), revealed non-significant Satorra-Bentler chi- 
 
square difference tests (ρ >.05) for each of the nested models (i.e., Models1 -3) when each model  
 
was compared with the Full Structural Model, indicating that the overall fits of the models are 
 
comparable.  It should be noted that neither the path from long-term memory, nor from auditory  
 
working memory to endogenous latent variables was significant.  When paths that are not  
 
significant are deleted from the model, or constrained, as in this study, it is not surprising that the  
 
chi-square difference test is also non-significant (Kline, p. 133).  Therefore, the most interesting  
 
finding from the nested model analyses is that Model 3 did not demonstrate a significant  
 
decrement in fit when the paths between reasoning and the endogenous latent variables were  
 
constrained to be equal.  Examination of the parameter estimates for the structural equations in  
 
Model 3 indicated that the path between reasoning and each of the endogenous latent variables 
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was significant, and R² values for mathematics calculation and mathematics reasoning were .13 

and .45, respectively, indicating that very little of the variance in mathematics calculation was 

accounted for by exogenous latent variables.   As chi-square did not demonstrate a significant 

change from the Full Structural Model to Model 3, it is not surprising that Model 3 provided 

good fit to the data, given that the Full Structural Model also demonstrated good fit.  Satorra-

Bentler Scaled Chi-Square was non-significant, and other fit indexes demonstrated good fit (CFI 

= 1.00, NNFI = 1.03, and RMSEA = 0.0).  However, small R² values for the structural equation 

for mathematics reasoning and generally low and negative path values of long-term memory and 

auditory working memory on mathematics calculation and mathematics reasoning indicate model 

misspecification.  

Table 15. Nested Model Analyses 

   SB χ² df CFI NNFI RMSEA ∆df  ∆ SB χ² 
 
Full Structural Model  13.86 21 1.00 1.03 0.0 --- ---  
 
Model 1  14.32 22 1.00 1.03 0.0 1  0.40 
 
Model 2  14.12 22 1.00 1.03 0.0 1  0.24  
 
Model 3  14.31 22 1.00 1.03 0.0 1  0.07  
      
* Each Model comparison was made with the Full Structural Model 
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CHAPTER 5 

DISCUSSION 

 The purpose of this study was to contribute to the current research regarding the 

relationships between cognitive and linguistic processes and mathematics achievement.  A series 

of models were tested to examine the strengths of relationships between auditory long-term 

memory, auditory working memory, and reasoning and mathematics achievement and to 

compare the differential effects of auditory long-term memory, auditory working memory, and 

reasoning on mathematics calculation and mathematics reasoning in adults.  This study 

demonstrated that the cognitive processing domains of auditory long-term memory, auditory 

working memory, and reasoning contribute to variation in the performance of adults on measures 

of mathematics calculation and mathematics reasoning.  The first goal of the study was to assess 

overall fit of the cognitive model.  While fit indexes suggested adequate fit of the structural 

model, R² values for the structural equations suggested that a large proportion of variance was 

unaccounted for by the latent variables, particularly in regard to variation in the mathematics 

calculation factor.  Low correlations between the auditory long-term memory and auditory 

working memory factors and the endogenous latent factors (mathematics calculation and 

mathematics reasoning) and nonsignificant parameter estimates for these factors were detected.  

In contrast, the parameter estimate for reasoning was significant for both the mathematics 

calculation and mathematics reasoning factors, indicating that reasoning demonstrated the 

strongest relationship with both mathematics calculation and mathematics reasoning.  However, 

several indications of mulitcollinearity were detected.  While removing the visual-spatial and 

vocabulary factors from the original model helped address this problem and allowed the model to 
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converge, the presence of negative path values in the structural equations for the auditory long-

term memory and auditory working memory factors continued to suggest linear dependency of 

the factors.  This issue points to overlap in skills measured by the factors.  Choosing different 

indicators and refining the factors to more specific areas of measurement (e.g., verbal reasoning) 

to improve the model for future studies is suggested.  While the paths chosen for this model 

appear to fit the data, other models may fit equally well.  Future studies may determine that more 

specific measures of the cognitive processes examined in this study provide good fit to the data 

while eliminating multicollinearity problems due to overlap in cognitive abilities.  A further 

improvement may be made by including visual-spatial abilities and linguistic processing 

measures, as these processes are supported by research, and omission of them may lead to model 

misspecification. 

 The second goal of this study was to conduct nested model analyses to determine the 

differential impact that auditory long-term memory, auditory working memory, and reasoning 

have on mathematics calculation and mathematics reasoning.  However, as the auditory long-

term memory and auditory working memory factors were not correlated with mathematics 

calculation and mathematics reasoning, it was not theoretically justifiable to compare the 

differential impact of these factors on the endogenous latent factors, and any results of such 

analyses would not be meaningful.  While reasoning did demonstrate a significant relationship to 

both mathematics calculation and mathematics reasoning, constraining the paths between 

reasoning and the endogenous latent factors did not demonstrate a significant decrement in fit, 

indicating that the reasoning factor did not demonstrate a differential impact on mathematics 

calculation and mathematics reasoning.  However, refining the reasoning factor by choosing 
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different indicators and/or improving the measurement of the mathematics calculation and 

mathematics reasoning factors may result in different findings.   

  The results of this study are consistent with the literature regarding the developmental 

trajectory of mathematics achievement, as young children appear to transition from counting as a 

primary strategy in solving mathematics calculation problems to memory retrieval when they 

reach approximately sixth grade.  Previous research conducted with child populations has 

supported the theory that once children are able to retrieve mathematics facts from memory 

rapidly and automatically, their attentional resources may be allocated to other higher-order 

processes (Gersten et al., 2005).  Thus, long-term memory skills are equally important for both 

children and adults, to proficiently learn and memorize basic mathematics facts and to allow 

allocation of attentional resources to higher order skills.  However, very little is known about 

how older adolescents and adults use cognitive processing abilities to solve higher-order 

mathematics problems such as algebra and geometry (Geary, 2005).  Several investigations, such 

as one conducted by Floyd et al. (in press) suggest that reasoning skills are more strongly related 

to mathematics achievement in adults than long-term memory skills.  The results of the current 

study provide support to the theory that cognitive processes other than long-term memory, such 

as reasoning and auditory working memory make significant contributions of variance to adult 

achievement in mathematics.  This study hypothesized that specific cognitive abilities 

demonstrate a differential impact on mathematics calculation and mathematics reasoning.  A 

frequent problem that occurs when using broad-band measures of achievement, as was employed 

in this study, is the lack of specificity in measuring a vast array of mathematical skills across a 

number of skill domains (Geary, 2005).  This lack of specificity in skill measurement may have 

resulted in the failure of the nested model comparisons in this study to identify differential 
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effects of cognitive processes on mathematics calculation and mathematics reasoning.   Future 

studies should continue to investigate the strength of these relationships and consider whether 

reliance on long-term memory in childhood diminishes in favor of reasoning skills in adulthood.   

Limitations 

While results of SEM analyses indicated a good fit of the Full Structural Model to the 

data according to a combination of commonly employed fit indexes, examination of standardized 

residuals, and significant path values for measurement equations, several measured variables, 

represented by subtests on nationally standardized and widely used measures of cognition and 

achievement, did not appear to adequately measure the latent factors.  The most severe 

measurement problems were apparent with the long-term memory and auditory working memory 

factors, as evidenced by low correlations among observed variables representing the auditory 

working memory factor and modification indexes that suggested improved fit with the addition 

of paths to the long-term memory factor.  While measurement issues related to the long-term 

memory and auditory working memory factors appeared most problematic, low factor loadings 

on the endogenous latent factors made it necessary to reduce the representation of each factor to 

single indicators, compromising the integrity of the mathematics achievement factors.  While 

deletion of the Math Fluency and Applied Problems subtests improved the measurement of the 

endogenous latent factors from a statistical standpoint, allowing single indicators to represent 

factors often leads to psychometric inadequacy of measured variables and increased 

measurement error (Keith, 1999).  One manifestation of this problem in the current study can be 

seen with the Quantitative Concepts subtest chosen to represent the mathematics reasoning 

factor.  In addition to items requiring an examinee to complete number sequences, the subtest 

includes items that tap knowledge of mathematics terminology, compromising the purity of the 
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subtest as a measure of mathematics reasoning.  The mathematics calculation factor was also 

reduced to include only a single indicator when the Math Fluency and Calculation subtests 

making up the factor appeared unrelated.  However, Calculation, the indicator chosen to 

represent the mathematics calculation factor was severely skewed and leptokurtic.   

The combination of measurement problems and muliticollinearity among latent factors, 

resulted in nonpositive definite matrixes upon initial runs of the data.  While eliminating the 

visual-spatial ability and vocabulary factors from the analysis helped solve some of the problems 

caused by multicollinearity, the presence of negative parameter estimates for structural equations 

after the removal of these latent factors, suggested continued problems with multicollinearity 

among exogenous latent factors, particularly in regard to long-term memory and auditory 

working memory. 

While comparisons of nested models indicated that none of the exogenous latent factors 

contributed to mathematics calculation and mathematics reasoning differentially, measurement 

problems related to latent factors precluded definitive results.  Due to low correlations among the 

measured variables chosen to represent the factors and nonsignificant parameter estimates for 

paths between the long-term memory and auditory working memory factors and endogenous 

latent variables, nonsignificant differences between nested models and the Full Structural Model 

were anticipated.  In addition, the questionable measurement of the endogenous latent factors 

rendered the nested model analyses less meaningful. 

While reasoning demonstrated the strongest relationship to endogenous latent variables, 

correlations among the measured variables representing the reasoning factor were moderate at 

best.  Furthermore, R² values for structural equations were low to moderate, .14 and .44, for 

mathematics calculation and mathematics reasoning, respectively.  While improving 
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measurement of the latent factors may increase R² values, it is likely that misspecification of the 

model resulted from omission of causal variables.  Omission of these variables can lead to biased 

parameter estimates of paths included in the model (Keith, 1998, p. 99).  

Because the sample utilized in this study consisted of individuals referred for evaluation 

due to academic difficulties, the seemingly poor measurement of cognitive factors calls into 

question whether these measures assess individuals with learning difficulties in the same way 

that they assess normally-achieving adults.  The utilization of an at-risk population may also 

restrict generalizability of the results to other populations.  The size of the sample presented 

another limitation to the study, and also impacts generalizability.  Although the original sample 

consisted of 401 participants, the sample decreased to 153 participants after listwise deletion.  

While medium-size samples (i.e., between 100 and 200 participants) are not uncommon in SEM 

studies, larger samples are recommended as models become more complex.  Insufficient sample 

sizes can lead to sampling error, instability of estimates, and less power (i.e., the likelihood that 

null hypotheses are rejected correctly) (Kline, 1998). 

Future Studies 

In addition to the tests included in this study, many other neuropsychological and 

educational measures exist that may more accurately measure these cognitive processes for 

future research.  While it is probably not prudent to define latent constructs too narrowly, some 

of the cognitive processing measures included in this study may be replaced with measures that 

refine the scope of the cognitive processes investigated, such as verbal versus visual working 

memory and long-term memory, and verbal versus nonverbal reasoning abilities.  In addition, 

mathematics reasoning and mathematics calculation require sound measurement to determine if 

they are indeed separate constructs, and if so, if they are differentially impacted by specific 
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cognitive processes.  It should be noted that the measures included in this study were comprised 

of broad measures of mathematics achievement, rather than component processes of mathematics 

calculation and reasoning.   

Future investigations into mathematics achievement in adults should also address the 

contributions of other cognitive processes that were not included in this study but are clearly 

supported by research, such as visual-spatial skills, executive functioning, processing speed, and 

linguistic processes.  Unfortunately, the deletion of the vocabulary factor precluded the 

possibility of assessing the contribution of the other factors over and above the contribution of 

vocabulary as a language measure.  Future studies should further investigate the contribution of 

language to mathematics achievement.   

While it was beyond the scope of this study to investigate the impact of cognitive 

processes on mathematics achievement associated with learning and emotional disorders, studies 

investigating these processes in individuals with learning disabilities, ADHD, and other disorders 

will make important contributions to the mathematics achievement literature. 

Conclusion 

 This study supported the relationship of auditory long-term memory, auditory working 

memory, and reasoning with mathematics achievement in adults.  While nested model analyses 

did not appear to support differential effects of the cognitive processes on mathematics 

calculation and mathematics achievement, measurement problems attenuated results of nested 

model analyses, making further investigation of this hypothesis an important consideration for 

future research.  Improving measurement conditions may result in higher R² values, indicating 

higher proportions of variance accounted for by the cognitive processes included in this study.  

However, re-specification of the model by including omitted cognitive processes may also 
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contribute to variance in mathematics achievement.  Studies such as these, which investigate the 

relationships among cognitive processes and mathematics achievement in adults may lead to a 

better understanding of the differences between the manner and method that children and adults 

learn and process mathematics information.  Creation of such knowledge will, hopefully, lead to 

better instructional techniques for college students and accommodations and interventions for 

older students who demonstrate difficulties in mathematics.   
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