
XUTING WANG
Multiple Sequence Alignment Using Traveling Salesman Problem Algorithms
(Under the direction of Dr. ROBERT W. ROBINSON)

The construction of multiple sequence alignments (MSAs) is a fundamental

problem in computational biology, but computing an optimal MSA is NP-hard. It is

therefore necessary to develop heuristics to come as close to the optimum as possible but

operate within reasonable time and space bounds. In this thesis, an approach pioneered by

Korostensky and Gonnet is developed and tested extensively. The idea is to apply a

Traveling Salesman Problem (TSP) algorithm to find an optimal circular order to build an

MSA progressively. The sum-of-pairs (SP) score is used for computing pairwise

alignments and evaluating the quality of an MSA. Using the reference alignments from

the benchmark alignment database BALISBASE, the performance of my program,

tspMSA, was evaluated extensively with more than 60 reference data sets. Except for one

test case, the SP scores obtained from the TSP algorithm are significant better than the

scores obtained from two popular progressive alignment programs,
��� �������

 and

�
	��
��
���	 �
. The SP scores of MSAs built from different starting points and different

directions of an optimal circular order are studied.

INDEX WORDS: multiple sequence alignment, MSA, traveling salesman problem,

TSP, algorithms, branch-and-bound, global alignments, phylogenic

tree, progressive alignment.

MULTIPLE SEQUENCE ALIGNMENT USING TRAVELING SALESMAN

PROBLEM ALGORITHMS

by

XUTING WANG

B.S., Shandong University, China, 1988

M.S., Jilin University, China, 1991

Ph.D., The University of Georgia, 2001

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2002

 2002

Xuting Wang

All Rights Reserved

MULTIPLE SEQUENCE ALIGNMENT USING TRAVELING SALESMAN

PROBLEM ALGORITHMS

by

XUTING WANG

Approved:

Major Professor: Robert W. Robinson

Committee: Thiab R. Taha
 E. Rodney Canfield

Electronic Version Approved:

Gordhan L. Patel
Dean of the Graduate School
The University of Georgia
May 2002

 iv

DEDICATION

 This dissertation is dedicated to my beloved wife, children, parents, and parents-

in-law, whose love, support, and encouragement made this possible.

 v

ACKNOWLEDGMENTS

First, I want to express my most sincere thanks to my major professor Dr. Robert

W. Robinson for his guidance, encouragement, and help during my M.S. research at the

Department of Computer Science.

Many thanks to my other committee members, Drs. E. Rodney Canfield and

Thiab R. Taha, who offered valuable guidance and suggestion.

Special thanks to Dr. Liming Cai for his very valuable help, suggestion and

attentions on my research.

Finally, thanks are extended to Dr. Harry W. Dickerson, who supported me during

my completion of this degree.

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS... v

CHAPTER

1 BACKGROUND... 1

2 RELATED WORK ... 14

3 DESIGN OF ALGORITHMS... 19

4 SOFTWARE DESIGN AND IMPLEMENTATION 25

5 EVALUATION OF THE PROGRAM ... 32

6 CONCLUSIONS... 45

REFERENCES.. 46

 1

CHAPTER 1

BACKGROUND

 Two fundamental building blocks of living creatures are DNA (deoxyribonucleic

acid) and proteins, which are long linear chains of chemical components. The DNA

molecule is made up of four different nucleotides, each denoted by one of the letters A,

C, G or T. Proteins are made up of 20 different amino acids (or residues) which are

denoted by 20 different letters of the alphabet. So, the sequence of either a DNA or a

protein molecule can be simply viewed as a string of letters.

Alignment of DNA and protein sequences is one of the most important primitive

operations in computational biology, serving as a basis for many other more complex

manipulations. The basic concept of this operation is conceptually simple. However, the

problem of computing an optimal solution is NP complete (13). It is therefore necessary

to develop heuristics that come as close to the optimum as possible but operate within

reasonable time and space bounds.

1. Definition of sequence alignment

Sequence alignment is the procedure of comparing two or more sequences by

looking for a series of individual characters or character patterns that are in the same

order in the sequences. If we align two sequences, the operation is called a pair-wise

alignment; if the number of sequences to be aligned is more than two, the operation is

called a multiple sequence alignment.

 2

To align sequences by hand, they are written across a page in rows. Identical or

similar characters are placed in the same column, and non-identical characters can either

be placed in the same column as a mis-match or opposite a gap in one of the other

sequences. In an optimal alignment, non-identical characters and gaps are so placed to

bring as many identical or similar characters as possible into vertical agreement. Two

types of sequence alignment have been recognized, global and local, as illustrated below.

2. Global and local alignment of protein sequences

Global alignment compares sequences over their entire lengths, and is appropriate

for application to sequences that are expected to share similarity over the whole length. In

global alignment, an attempt is made to maximize regions of similarity and to minimize

gaps.

Local alignment finds subsequences of the input sequences which align at the

highest score. In other words we are ready to ignore any deletions which happen at the

beginning or end of any of the aligned fragments. A fragment is a consecutive

subsequence (or substring) of a sequence. In local alignment, stretches of sequence with

the highest density of matches are given the highest priority, thus generating one or more

islands of matches in the aligned sequences.

Figure 1.1 illustrates a global alignment and a local alignment of two hypothetical

protein sequences (24). Vertical bars between the sequences indicate the presence of

identical amino acids. Dashes indicate fragments that are not included in the alignment.

The global alignment is stretched over the entire sequence lengths to include as

many matching amino acids as possible. Although there is an obvious region of identity

 3

in this example (the sequence FGKG), a global alignment may not align such regions in

order to favor matching more amino acids along the entire sequence lengths.

The local alignment of the same sequences tends to stop at the ends of regions of

identity or strong similarity. A much higher priority is given to finding these local regions

than to extending the alignment to include more neighboring amino acid pairs. This type

of alignment favors finding conserved amino acid motifs in related protein sequences.

 LGPSTKQFGKGSSSRIWDN
 | |||| | |
 LNQIERSFGKGAIMRLGDA global alignment
 | |||| | |
 LNQIERSFGKGAIMRLGDA

 -------FGKG--------

 ------FGKG--------- local alignment
 ||||
 ------FGKG---------

Figure 1.1. Alignment of two protein sequences.

3. Why perform sequence alignments?

Multiple sequence alignments are usually undertaken in order to perform a

function such as one of the following:

• Determination of consensus regions of several sequences;

• Characterization of protein families by identifying shared regions;

• Molecular evolution analysis of a gene/protein family;

• Prediction of the secondary and tertiary structures of new sequences;

• Prediction of the function of new sequences.

 4

There are many other functions that might be the goal of a multiple sequence

alignment. For example, by making a multiple sequence alignment, we can find that two

or more sequences are similar. If many characters in one sequence are in the same order

as they are in the other sequence, then we say they are similar. We know 1) or 2) may be

true for similar sequences: 1) the sequences may share a common origin - a common

ancestor sequence. If the similarity is suff iciently convincing or if we have additional

evidence for an evolutionary relationship, then we say that the sequences are

homologous. 2) the sequences may have the same or related structure and function. The

stronger the alignment between sequences, the more likely they are to be related. Very

similar sequences that are almost identical along their lengths almost certainly have the

same function. Sequences that are only weakly similar may or may not be related, and no

firm conclusions can be drawn about their relationship.

4. Algorithms for multiple sequence alignment

This thesis is devoted to global alignment of multiple protein sequences, so

hereafter the terms alignment and MSA mean global alignment of multiple protein

sequences.

 Definition: Global Multiple Sequence Alignment (MSA)

 Given a set of sequences S ={ s1, s2, …, sk} with si ∈ Σ∗ where Σ∗ is a finite

alphabet, a multiple sequence alignment is a set of sequences A = < a1, a2, …, ak > with

ai ∈ Σ’ ∗ where Σ’ = Σ ∪ { “ -” } and {“ -” } ∉ Σ. All sequences in A have some common

length n and therefore can be arranged in a matrix of k rows and n columns. The sequence

obtained from ai ∈ A by removing all “ -” gap characters is equal to si.

 5

The problem of finding an MSA can be solved by either a dynamic programming

(DP) algorithm or a heuristic algorithm.

 4.1. Dynamic programming algorithm

Basically, dynamic programming is a method for successively optimizing the

alignments of all pairs of prefixes of the two sequences, adding just one new character at

a time to a prefix.

Needleman and Wunsch (26) first used dynamic programming in the comparison

of two protein sequences. This algorithm sets up a 2-dimensional matrix where each

sequence is placed along the sides of the matrix. Each element in the matrix represents

the two residues of the sequences being aligned at that position. To calculate the score in

position (i, j), one looks at the alignment that has already been made up to that point, and

finds the best way to continue. Having gone through the entire matrix in this way, one

can go back and trace which way through the matrix gives the best alignment.

To evaluate the quality of an alignment, we need some scoring scheme. A popular

scoring scheme is the so-called sum-of-pairs (SP) function, which adds up the scores of

each pair of aligned residues. For the SP score function, the higher the score, the better

the quality of an alignment. So, the optimal alignment is an alignment with the

maximum SP score.

The following is an example of pairwise sequence alignment using

Needleman/Wunsch techniques. Two sequences to be globally aligned are:

sequence 1 = G A A T T C A G T T A, and sequence 2 = G G A T C G A

A simple scoring scheme is assumed where

 6

• Si,j = 1 if the residue at position i of sequence 1 is the same as the residue at

position j of sequence 2 (match score); otherwise

• Si,j = -1 (mismatch score)

• g = -2 (gap penalty)

In the dynamic programming algorithm, alignment is performed in three steps:

1) Initialization

Create a matrix with m + 1 columns and n + 1 rows where m and n correspond to

the lengths of the sequences to be aligned (Figure 1.2). The first row and first column of

the matrix are filled with 0s.

Figure 1.2. Initialized matrix

2) Matrix fill (scoring)

For each position, Mi,j is defined to be the maximum score at position i,j;

i.e., Mi,j = max{ Mi-1, j-1 + Si,j (match/mismatch in the diagonal),

 Mi,j-1 + g (gap in sequence 1),

 Mi-1,j + g (gap in sequence 2) }

Optionally, an arrow is placed to point back to the cell that led to the maximum

score. The filled matrix is shown below (Figure 1.3).

0

 7

Figure 1.3. Score Matrix with pointers for tracing back

3) Traceback (alignment)

The traceback step determines the actual alignment that resulted in the maximum

score. This step begins in the (n, m) position. It takes the current cell and looks to the

neighbor cells that could be direct predecessor. This means it looks to the neighbor to the

left (gap in sequence 2), the diagonal neighbor (match/mismatch), and the neighbor above

it (gap in sequence1). Since we have kept pointers back to all optimal predecessors, the

traceback step is simple. At each cell, we just need to find where we move next according

to the pointers. In the example here, we can get the two possible paths shown in Figure

1.4.

Figure 1.4. Traceback step

 The alignments corresponding to these two paths are:
 G A A T T C A G T T A G A A T T C A G T T A
 | | | | | | | | | | | |
 G G A _ T C _ G _ _ A G G A T _ C _ G _ _ A

0

 8

This method also has been extended directly to the comparison of three sequences

using a reduced three-dimensional matrix by Murata et al (25) with O(n3) computational

complexity, where n is the longest length of sequences to be aligned.

The dynamic programming algorithm guarantees an optimal MSA on a set of

given sequences. However, the space complexity is O(nk) and the time complexity is

O(k22knk) if we use the sum-of-pairs score, where k is the number of sequences and n is

the longest length of the sequences to be aligned.

In 1989, Lipman, Altschul, and Kececioglu implemented a more refined version

of this algorithm in their program "MSA". This program in practice is restricted to

aligning 5-7 protein sequences of 200-300 residues each (21).

4.2. Heuristic algorithms

Since searching for the optimal MSA using a DP algorithm is not realistic for

more than 10 sequences, a number of heuristic algorithms have been developed to carry

out a multiple global alignment in a reasonable amount of time with a reasonable chance

of finding a near-optimal alignment.

These algorithms are heuristic in that they are not guaranteed to find an optimal

solution. But they run fast, use reasonable memory in practice, and get MSAs with good

quality at most cases.

4.2.1 Progressive Alignment

This approach begins with the alignment of the two most closely related

sequences (as determined by pairwise analysis) and subsequently adds the next closest

sequence or sequence group to this initial pair (4, 5). This process continues in an

 9

iterative fashion, adjusting the positioning of indels in all sequences. An indel is an

insertion or a deletion which appears in any aligned sequence.

The major shortcoming of this approach is that a bias may be introduced in the

inference of the ordered series of motifs (homologous parts) because of an over-

representation of a subset of sequences.

A concrete implementation of the progressive algorithm was developed by Feng

and Doolittle in 1987 (5). The steps can be summarized as follows:

a) Calculate an above the diagonal matrix of k(k-1)/2 pairwise distances between all pairs

of sequences s1, s2, …, s n using the dynamic programming pairwise sequence alignment

(PSA) algorithm (26),

b) These similarity scores are used to create a clustering order that can be represented as a

dendrogram. The clustering strategy represented by the dendrogram is called UPGMA,

which stands for unweighted pair-group method using arithmetic averages (32).

c) Construct a guide tree from the distance matrix computed in step b);

d) Build the multiple alignment by first aligning the most similar pair of sequences, then

the next most similar pair and so on. Once an alignment of two sequences has been made,

then it is fixed and can only be modified by the insertion of common gaps;

e) Repeat step d) until all sequences have been aligned.

 A program called “
��� �������

” (a component of the GCG software package) creates

a MSA using the progressive alignment method of Feng and Doolittle (4-6).

 	�
���
�����
 � is another widely used progressive MSA program. It is very similar to

the Feng-Doolittle algorithm and works as follows:

 10

a) Construct a distance matrix of all k(k-1)/2 unordered pairs of sequences by pairwise

sequence alignment. Then convert the similarity scores to evolutionary distances using a

specific model of evolution proposed by Kimura in 1983 (14);

b) Construct a guide-tree from this matrix using a clustering method called neighbor-

joining proposed by Saitou and Nei in 1987 (30);

c) Progressively align nodes of the tree in order of decreasing similarity.

 The time complexity of either progressive alignment algorithm is O(k2n2).

 4.2.2. Divide-and-Conquer Alignment

The Divide-and-Conquer Alignment is a fast heuristic algorithm for multiple

sequence alignment which provides near-to-optimal results for sufficiently similar

sequences (33, 37). The main idea is first to cut the sequences several times at certain

points to reduce the length of the sequences, second to align the fragments, and third to

concatenate the multiple alignments. The method needs time O(kn-1) and space O(k2n2) .

5. Scoring matrices for sequence alignments

Early sequence alignment programs used a simple scoring function that scores all

matches the same and penalizes all mismatches the same. This approach ignores protein

evolution and structure. Construction of biologically significant alignments should take

into account the fact that protein evolution is constrained by the chemical properties of

amino acids, and by the degeneracy of the genetic code. Chemically conservative

replacements tend to occur more frequently than replacements with amino acids that are

chemically different. For example, it is far more likely that Leucine will be replaced with

Isoleucine (both of which are non-polar), than with Aspartic acid (which is negatively

charged).

 11

Many scoring matrices have been constructed to replace the simple scoring

functions described above. The commonly used scoring matrices are substitution matrices

based on evolutionary distances. Substitution matrices are constructed by observing the

frequencies of amino acid replacements in large samples of protein sequences.

The PAM (Point Accepted Mutations) matrices are the most commonly used

scoring matrices. They were proposed by Margaret Dayhoff in 1978 (2, 31). Dayhoff

carefully aligned all of the proteins in several families of proteins and then constructed

phylogenetic trees for each family. Each phylogenetic tree was examined for the

substitutions found on each branch. This leads to a table of the relative frequencies with

which amino acids replace each other over a short evolutionary period. This table and the

relative frequency of occurrence of the amino acids in the proteins studied were

combined in computing the PAM family of scoring matrices. Therefore, PAM matrices

show probability scores of replacement of amino acids by each other based on natural

mutation rates in related protein families. For a given replacement, the PAM value is

proportional to the natural log of the frequency with which that replacement was

observed to occur. A positive score assigned to two amino acids indicates that these two

replace each other more often than expected by chance alone, i.e., they are functionally

exchangeable. A negative score indicates that the two amino acids are rarely

interchangeable. One PAM unit is defined as the amount of evolutionary change that

yields, on average, one substitution in 100 amino acid residues. The traditional PAM

matrix, the PAM250 matrix (Figure 1.5), often referred to as the Dayhoff Matrix,

assumes the occurrence of 250 point mutations per 100 amino acids or 300 nucleotides in

the gene.

 12

Figure 1.5. PAM250 matrix

The BLOSUM (Blocks Substitution Matrix) series of matrices are also commonly

used. BLOSUMs are substitution matrices derived from the observed frequencies of

amino acid replacements in highly conserved regions of ungapped local alignments. The

data for the substitution scores in these matrices come from about 2000 blocks of aligned

sequence segments characterizing more than 500 groups of related proteins (11).

Substitution matrices have theoretical advantages over alternative methods of

scoring schemes. From a biological point of view, substitution matrices are based on

observed mutations. Thus they contain information about the processes that generate

mutations as well as the criteria that are important in selection and in fixing a mutation

within a population. From a statistical point of view, substitution matrices are the most

accurate description of the changes in amino acid composition that are expected after a

given number of mutations that can be derived from the data used in creating the

matrices. Thus the highest scoring alignment is the statistically most likely to have been

generated by evolution rather than by chance.

 13

6. Gap Penalty

A gap penalty is designed to reduce the score when an alignment has been broken

by an insertion in one of the sequences. The value should be small enough to allow a

previously accumulated alignment to continue with an insertion in one of the sequences

but should not be so large that this previous alignment score is removed completely. The

gap penalty scheme is often used to have a larger gap opening penalty followed by a

much smaller gap extension penalty. Thus, the score becomes larger as a linear function

of gap length. One extreme is to allow a constant gap penalty regardless of gap length.

The gap penalty used in this study is the same value used by ��� ������� and

	 ����

����� � .

 14

CHAPTER 2

RELATED WORK

Multiple sequence alignment analysis has become an essential tool that enables

biologists to find characteristic motifs and conserved regions in protein families,

determine evolutionary linkage, and predict secondary and tertiary structure. With the

explosive increase in the number of known protein sequences, notably from the genome

sequencing projects, searching protein databases for homologous sequences, followed by

the alignment of a new sequence with a large closely related group is now standard

practice. The development of accurate, reliable multiple alignment programs capable of

handling these divergent sets of data is therefore of major importance. Although a

dynamic programming algorithm (10) guarantees a mathematically optimal alignment,

the method is limited to a small number of short sequences because the computing power

required for larger data sets becomes prohibitive. To overcome this problem, various

heuristic approaches have been developed leading to a variety of programs based on very

different algorithms. This chapter summarizes some of the most commonly used

programs.

 1. Software implementing a dynamic programming approach: �����

����� is a global optimal multiple sequence alignment program originally written

by John Kececioglu, Stephen Altschul, David Lipman, and Robert Miner and distributed

in 1989 (21). Credit for improvements in release 2.0 of the code belong to Sandeep K

Gupta and Alejandro A Schaffer with some guidance from John Kececioglu (10).

 15

�����
 utilizes a variant of a multi-dimensional dynamic programming to produce

an optimal global alignment between several sequences.
�����

 implements a branch-and-

bound technique together with a variant of Dijkstra’s shor test path algorithm to greatly

reduce the amount of space required to solve the the basic dynamic programming

problem. Generally speaking,
�����

 will produce better alignments than other multiple

sequence alignment programs such as ���	� ��
�� � � or
�� �	����
 . The drawback to using

�����
 is that it requires an enormous amount of both computer time and memory to align

more than a few distantly related sequences. The size of the problems solved by
�����

 are

directly related to the sequence lengths, the number of sequences, and the amount of

sequence diversity. At the Pittsburgh Supercomputing Center (PSC,

http://www.psc.edu/general/software/packages/msa), there are three versions of
�����

compiled for problems of different sizes:

 * msa_50_150 - Align fewer than 50 sequences. Each sequence has fewer than 150

residues;

 * msa_25_500 - Align fewer than 25 sequences. Each sequence has fewer than 500

residues;

 * msa_10_1000 - Align no more than 10 sequences. Each sequence has fewer than

1000 residues.

�����
restricts the amount of memory needed by computing bounds that

approximate the center of a multi-dimensional hypercube. The first bound is producing

by computing pairwise alignments between the set of sequences. Weights are applied to

this value to produce the lower bound used by the program. Next a heuristic alignment is

produced for the sequences. Weights are applied to this value to produce the upper bound

 16

used by the program. A delta value is then computed as the difference between these two

values. The epsilon for each sequence pair may be input by the user or estimated. An

heuristic alignment is computed and the epsilons are taken to be the differences between

the projected and pairwise costs. The delta and epsilon values are preliminary measures

of the divergence between the set of sequences. Thus, closely related sequences will have

low epsilons and deltas while distantly related sequences will have high epsilons and

deltas.

Even though ����� reduces the space required to produce a multiple alignment

dramatically, it is still uses much more memory than the progressive pairwise technique.

2. Software implementing the progressive pairwise approach

The progressive pairwise approach relies on exhaustive pairwise alignments

between all of the sequences to produce a measure of sequence relatedness. From this

measure, an algorithm (UPGMA in ��� �
	��
� , Neighbor Joining in ���
�������
� �) is used to

develop a joining order. This joining order corresponds to a tree that is used to produce

the multiple sequence alignment. It should be noted that this tree is not an evolutionary

tree. After the joining order has been determined, sequences close to each other are

aligned first.

 (a) ��� �
	����

��� �
	��
� creates a multiple sequence alignment from a group of related sequences

using progressive, pairwise alignments. It implements a simplification of the progressive

alignment method of Feng and Doolittle (4-6). The method used is similar to the method

described by Higgins and Sharp (12). ��� �
	���� is usually distributed as part of the

 17

Wisconsin Package from the Genetics Computer Group (GCG) (http://www.gcg.com),

which is licensed to numerous bioinformatics services on the Internet.

��� �������
 begins by doing pairwise alignments that score the similarity between

every possible pair of sequences. Each pairwise alignment in
��� �������

 uses the method of

Needleman and Wunsch. These similarity scores are used to create a clustering order that

can be represented as a dendrogram. The clustering strategy represented by the

dendrogram is called UPGMA, which stands for unweighted pair-group method using

arithmetic averages (32).

��� �������
 uses this clustering order and first aligns the two most-related sequences

to each other in order to produce the first cluster. It then aligns the next most related

sequence to this cluster. Alignments continue in a progressive fashion until all sequences

have been included in the final alignment.

As a general rule,
�	� ���	�
�

 can align up to 500 sequences, with any single

sequence in the final alignment restricted to a maximum length of 5,000 characters

(including gap characters inserted into the sequence by
��� �������

 to create the alignment).

(b) � ���
��
	�
� �

� �����	
���� � is one of the most popular multiple nucleotide or protein sequence

alignment programs. It uses a progressive alignment approach (35).

� �����	
���� � uses a neighbor-joining method to construct a guide tree. This

determines the order in which the sequences are incorporated into the alignment.

Progressive multiple alignments are created by first aligning the most similar of a set of

sequences and then incorporating less similar sequences successively into the alignment.

A comparison of multiple sequence alignment programs revealed that � ���
��
	�
� �

 18

performs well when aligning equidistant sequences of a similar length and when aligning

small to large families of similar sequences, in which a few divergent sequences are also

included in the alignment (36). In both cases, the performance of ���������
	�� � was

maintained from short sequences of less than 100 residues to those of over 400 residues.

 �������
��	
� � is available on several Internet servers, such as the European

Bioinformatics Institute (EBI) (http://www2.ebi.ac.uk/clustalw/).

 3. Other software

In addition to the software packages mentioned above, numerous new alignment

algorithms have recently been developed which offer fresh approaches to the multiple

alignment problem. A common point of interest has been the application of iterative

strategies to refine and improve the initial alignment. The ������� program (8) optimises a

progressive, global alignment by iteratively dividing the sequences into two groups,

which are subsequently realigned using a global group-to-group alignment algorithm.

�
�����
 (27) uses a genetic algorithm to select from an evolving population the alignment

which optimizes the ���������
� Objective Function (OF) (28). The OF is a measure of the

consistency between the multiple alignment and a library of ���������
��� � pairwise

alignments. Hidden Markov models (HMMs) have also been used as statistical models of

the primary structure consensus of a sequence family (1, 18). The program �
 ! #" (3)

uses a simulated annealing method to maximize the probability that an HMM represents

the sequences to be aligned.

 19

CHAPTER 3

DESIGN OF ALGORITHMS

Adapting an approach pioneered by Korostensky and Gonnet (13), I have

developed a heuristic method for multiple sequence alignment (MSA) which provides

near-optimal results for protein sequences. It is assumed that the sequences are related to

each other. To compute an MSA, this method first calculates the pairwise sum-of-pairs

scores for each pair of sequences using the dynamic programming algorithm. Then the

resulting scores are converted to a cost matrix and sent to a Traveling Salesman Problem

(TSP) solver. Finally the circular tour determined via the TSP solver is used to provide a

linear order to assemble the MSA. I will describe these steps in detail below.

Step 1. Calculating pairwise sum-of-pairs score

The Needleman-Wunsch dynamic programming algorithm (26) is used to find the

optimal alignment of two sequences. This algorithm ensures the optimal global alignment

by exploring all possible alignments and choosing the best. In a pairwise alignment, two

sequences are padded by gaps to achieve the same length and to display the maximum

similarity/conservation on a character-by-character basis.

To find the optimal alignment of two sequences, we first need to fill a score

matrix by the following algorithm.

fillMatrix (s, t)

 // Input: a pair of sequences s and t

 // Output: a score matrix a[m, n]

 20

 m ← length (s)

n ← length (t)

for i ← 0 to m do

 a[i, 0] ← 0

for j ← 0 to n do

 a[0, j] ← 0

for i ← 1 to m

 for j ← 1 to n do

 a[i, j] ← max (a[i-1, j] + g, a[i-1, j-1] + w(i, j), a[i, j-1]+g)

 // w(i, j) is the score from the substitute matrix, g is the gap penalty

 return a[m, n]

 Then, we traceback the matrix to print out the optimal alignment by calling

traceback(m, n, len), where len = max(m, n).

traceback(i, j, l)

 // Input: a score matrix with pointers

// Output: an alignment in sequences align-s and align-t with length len

if i = j = 0 then

 return

else if a[i, j] = a[i-1, j] + g then

 traceback(i-1, j, len-1)

align-s[len] ← s[i]

align-t[len] ← -

 21

else if a[i, j] = a[i-1, j-1] + w(i, j) then

 traceback(i-1, j-1, len-1)

align-s[len] ← s[i]

align-t[len] ← t[j]

 else if a[i, j] = a[i, j-1] + g then

 traceback(i, j-1, len-1)

align-s[len] ← -

align-t[len] ← t[j]

An optimal alignment is an alignment which has an optimal sum-of-pairs score.

The sum-of-pairs (SP) score is defined as the sum of all scores between all pairs of letters

in the columns of the pairwise alignment.

For a pairwise alignment a(s, t) made of a pair of sequences s and t and with the

same length len, the SP score is calculated by:

 len

SP(a) = ∑ w(s[j], t[j])
 j =1

where s[j] or t[j] is a residue in sequence s or t, and w(s[j], t[j]) is the score from

the substitute matrix if s[j] and t[j] form a match or a mismatch. Otherwise w(s[j], t[j]) =

gap penalty.

The SP-score of each optimal pairwise alignment is calculated and saved into an

kxk distance matrix (where n is the number of sequences to be aligned). Since the matrix

is symmetric and has 0’s on the diagonal, we just store the k*(k -1)/2 entries which lie

above the diagonal.

 22

 Step 2. Constructing a cost matrix

Initialize a kxk cost matrix (where k is the number of sequences to be aligned);

Find the largest value SPmax in the distance matrix;

Fill t he cost matrix with the function: cost(i,j) = SPmax – SP(i, j) +1.

 Step 3. Finding the order of MSA by TSP algorithm

 Using the symmetric Traveling Salesman Problem (TSP) algorithm, an optimal

circular order based on the distances between the given sequences can be found. This

optimal circular order can be used to construct a MSA (15).

In TSP, we are given a matrix M that contains the k*(k-1)/2 distances of n cities,

and we need find the shortest tour where each city is visited once. In our case, the cities

correspond to the sequences and the distances are the scores of the pairwise alignments.

However, we are interested in the longest, not shortest tour, as we are interested in the

maximum SP-score for a MSA. To be able to use any available TSP algorithm, we built

a new cost matrix with the function cost(i,j) = SPmax – SP(i, j) +1 in Step 2.

The Traveling Salesman Problem is NP hard (20, pp.1-15). But it is very well

studied and optimal solutions can be calculated within a few hours for up to 1000 cities

and in a few seconds for up to 100 cities (16). For real applications we have seldom more

than 100 sequences to compare simultaneously. In my software, the branch-and-bound

technique is used to solve the TSP. The algorithm and source code come from Drs.

Donald L. Kreher and Douglas R. Stinson (17, pp.127-143).

Step 4. Assembling the MSA

Assuming the optimal circular order is { s1, s2, …, sn}, an MSA is assembled

progressively. First, do an optimal alignment of sequences s1 and s2 using the Needleman-

 23

Wunsch algorithm. The sequences in this alignment with the gaps are called t1 and t2.

Then, align the remaining sequences one-by-one against previously aligned sequences

until all n sequences are in the MSA. In detail, the procedure to add a sequence sk+1 into a

partially aligned MSA A’ = <a1, a2, …, ak> can be done in the following two steps (15):

1) Take sequence sk and calculate an optimal pairwise alignment with the next

sequence sk+1. The sequences in this alignment with the gaps are called tk and

tk+1.

2) Insert all gaps from tk that are not already present in ak into all previously

aligned sequences A’ = <a1, a2, …, ak>. Insert all the gaps that were present

in ak into both, tk and tk+1, except for the gaps that are already present in tk.

Add ak+1 to the alignment A’ .

 Step 5. Calculating sum-of-pairs score of MSA

 The SP score of the resulting MSA is used to evaluate the quality of the MSA.

The SP score is defined as the sum of all pairwise scores between all pairs of letters in the

columns of the multiple alignment A, and is calculated by the following algorithm.

 24

SPscore(A)

 // Input: a MSA A = { a1, a2, …, ak}

 // Output: sop (SP score) of A

 sop ← 0

for j ← 1 to len

for i ← 1 to k do

 sop ← sop + w(ai[h], aj[h]) Figure
 // w(ai[h], aj[h]) = score from the substitute matrix if match or

// mismatch. Otherwise w(aih, ajh) = gap penalty

 return sop

 25

CHAPTER 4

SOFTWARE DESIGN AND IMPLEMENTATION

 Architecture

 My software package � � ������� is an implementation of the progressive alignment

of multiple protein sequences using a Traveling Salesman Problem approach. The

package has five major modules; Sequence Reader, Distance Calculator, TSP Solver,

MSA Builder, and MSA printer. Its architecture is depicted in Figure 4.1.

Sequence Reader
(parses sequences, and builds a string array to

hold sequences)

Distance Calculator
(using a DP pairwise alignment algorithm)

TSP Solver
(using a branch-and-bound technique to find an

optimal circular order for building the MSA)

MSA builder
(building the MSA progressively based on the

TSP order)

Input file
(in FASTA format)

MSA printer
(Output the MSA in GCG MSF format)

Figure 4.1. The architecture of � � �������

 26

Process Description

• Input file

The format for input files is a modified version of FASTA, which is very popular

and compatible with most software used in biological research.

A sequence in FASTA format begins with a single line description, followed by

lines of sequence data. The description line is distinguished from the sequence data by a

greater than (">") symbol in the first column. An example sequence in FASTA format is:

> SequenceName description here
ATGTCGTTACCGTCGTCGGGACCGACCATG
AGAGCGA

 In order to allow for easy termination of the Sequence Reader, I add two '>' s at

the end of each input file. The following file is an example input file that contains three

sequences.

Figure 4.2. A sample of a modified FASTA format file of 3 sequences

• Sequence Reader

The input file is parsed, and two string arrays are built from parsed strings. One

string array, seqt[], is made of sequence titles, each of which comes from the first

> Randseq1 first randomly generated seq
GGTGGTTACTAACCGTAAGAGATGATGTCGCCGTGGTCGCGTGGCGCCGCGGACCCAG
TGTACTTCTCTGAGTCGTTCTAGATCGACCAGTCTTCTAGCTTGCCCGTGAGGTATGG
AGCCGCATATTGCCCACAAT
> Randseq2 second randomly generated seq
GCGACGCGTCTCTACACCAGACGCTTCTGTTGAGGAAGAGTGCCTGAGTGCAGGTCCT
AGAACCCACTGGAACTTGAAGGGCGCGTCTCACTGGTCGTGAGAAGGCTCCGTCGATA
AAAGTCCATGCCAAGGACAT
> Randseq3 third randomly generated seq
GGCGAGTCTGAACTCACAAATATTGCACGAGAGTTTAGTGTATGTTCCTCTTAGGCTG
AACAATAGTTTAGTGAGCGGAAATGCAACCGCGAGGCGGTCCCCTGCGCTTGTAATGG
ACCTGTTGCCCGTCGGATAT
>>

 27

4 letters of the sequence description. The other string array, seq[], contains protein

sequences.

• Distance Calculator

First, an upper diagonal matrix of k(k-1)/2 pairwise distances between all pairs of

sequences s1, s2, …, s k is calculated using the dynamic programming pairwise sequence

alignment algorithm (26). In the distance matrix, each element is the sum-of-pairs score

of the corresponding pair of sequences.

In order to use TSP Solver, we need to build a new cost matrix with the function

cost(i,j) = SPmax – SP(i, j) +1. Since we are interested in an optimal circular order to

build an MSA with the maximum SP-score, we need look for the longest with our TSP

Solver. However, the TSP algorithm used finds an optimal shortest tour. This program is

easily solved by subtracting each SP score in the distance matrix from a large number

(here I use the maximum SP score in the distance matrix plus 1).

• TSP Solver

The Traveling Salesman Problem is NP hard. But it is very well studied and

optimal solutions can be calculated within a few hours for up to 100 cities and in a few

seconds for up to 30 cities. For real applications we seldom have more than 100

sequences to compare simultaneously. In WVS06$ a branch-and-bound technique is used

to solve the TSP. The algorithm and source code come from Drs. Donald L. Kreher and

Douglas R. Stinson (17, pp.127-143).

• MSA Builder

Assuming the optimal circular order is {s1, s2, …, sn}, a MSA is assembled

progressively. First, do an optimal alignment of sequences s1 and s2 using the Needleman-

 28

Wunsch algorithm. The sequences in this alignment with the gaps are called t1 and t2.

Then, align the rest of the sequences one-by-one against the previously aligned sequences

until all n sequences are in the MSA.

The SP score of the resulting MSA is calculated and used to evaluate the quality

of the MSA.

• MSA printer

The output file is produced in a format similar to the MSF format. MSF is the

multiple sequence alignment format of the GCG sequence analysis package. MSF is

accepted by many bioinformatics software packages. Also, I include the SP score of the

MSA in the output file generated by my program. These features will be helpful for

comparing my output with that of others.

 29

An example of my output file containing the SP score and the multiple sequence

alignment is shown below.

!! tspMSA1.0
Input file: @hsp70.list

 substitution table name: pam250

 GapWeight: 8
 GapLengthWeight: 0

Sequences are entered in the following order:
 1)kcc2 kcc2_orysa
 2)dmk_ dmk_gcn2
 3)kpfg kpfg_human
 4)daf1 daf1_yeast

-- Compute Pairwise Sum-of-Pair Score --
 kcc2 dmk_ kpfg daf1
kcc2 0 2100 1975 1944
dmk_ 2100 0 1964 1988
kpfg 1975 1964 0 1933
daf1 1944 1988 1933 0

 -- Compute TSP optimal route --
n=4

 TSP3 with ReduceBound: NODES=6192441
 Optimal Cost = 6913

Route = [0,2,1,3]

 aligning.........

**The SUM-OF-PAIRS score of this alignment is: 19560

---- RESULT of Alignment ----

//

kcc2 NYIFGRTLGA GSFGVVRQAR KLSTNEDVAI KILLKKALQG NNVQLQMLYE
dmk_ DFEILKVIGR GAFSEVAVVK MKQTGQVYAM KIMNKWDML. KRGEVSCFRE
daf1 QIRLTGRVGS GRFGNVSRGD YR..GEAVAV KVFNALDEPA FHKETEIF.E
kpfg TRKFKVELGR GESGTVYKGV LED.DRHVAV KKLEN..... VRQGKEVFQA

.
.
.

Indicates output staring point
and program name

Gap penality

List of input sequence titles
and descriptions

Symbol of header ending
MSA itself

SP score of MSA

Pairwise SP score

 30

Implementation

My program, � � ������� , described above is written in the C language and run under

the UNIX operation system.

My implementation includes two free programs, “	�
 �
�� ” from D. F. Feng and R.

F. Doolittle (4-6), and “TSP3” from D. L. Kreher and D. R. Stinson (17, pp.127-143),

which are available for free downloading from:

http://www-biology.ucsd.edu/~msaier/transport/software.html and

http://www.math.mtu.edu/~kreher/cages.html

 ALIGN has the following major functions (Table 4.1):

Name Function Comment

read_seq() Parse input file Only recognizes files in the rarely used
Old Atlas format

align() Pairwise sequence alignment

bord() Build a distance matrix
and compute the guide tree

Uses a special scoring function

mulalign() Output MSA

main() Control data flow
and assemble MSA

Adds sequences one-by-one to MSA
by iteratively calling align()

 Table 4.1. Functions in 	�
 �
��

 Based on the ALIGN and TSP3, first I integrated TSP3 into ALIGN in order to

achieve my goal, then I added new functions and improved some existing functions. My

program, � � ����� 	 , has the following major functions (Table 4.2):

 31

Name Function Comment

read_seq() Parse input file, establish string
arrays which hold sequences.

Re-implemented from $/,*1 to
read the most popular format,
FASTA.

align() Do pairwise alignment using
SP Score.

Modified from $/,*1 .

distCalc() Calculate pairwise SP scores,
build a distance matrix, build a
cost matrix.

Re-implemented from $/,*1 to
compute the distance matrix using
SP score function.

tspOrder() For a given cost matrix,
compute the optimal route
(circular order for building
MSA).

Modified from 763� .
A timer function is added to
terminate tspOrder() after a certain
time.

RandomOrder() Generate a randomized order
of the given sequences.

Implemented to build the MSA from
a random ordering of the given
sequences.

sop() Compute the SP score of an
MSA (also parse the MSF file
and convert the aligned
sequences to FASTA format).

Implemented to evaluate the quality
of the MSA, to parse the MSF file
and convert the aligned sequences
in FASTA format.

printMSA() Output the MSA. Improved from $/,*1 to output the
MSA as a GCG MSF format file.

main() Control data flow and generate
the MSA.

Modified from $/,*1 .

 Table 4.2. Funtions in � � �������

 32

CHAPTER 5

EVALUATION OF THE PROGRAM

TEST DATA

In order to comprehensively evaluate a new alignment program, we need a large

number of accurate reference alignments which can be used as test cases. It has been

shown (23) that the performance of alignment programs depends on the number of

sequences, the degree of similarity between the sequences, the lengths of the sequences,

andthe existence of large insertions and N/C-terminal extensions.

Thompson et al have developed a benchmark alignment database called

BAliBASE (Benchmark Alignment dataBASE) specifically for evaluating new alignment

programs (36). It is available on the World Wide Web at http://www-igbmc.u-

strasbg.fr/BioInfo/BAliBASE. The sequences included in this database are selected from

alignments in either the FSSP (Fold classification based on Structure-Structure

alignment of Proteins) database or HOMSTRAD (Homologous Structure Alignment

database), or from manually constructed structural alignments taken from the literature.

The alignments of sequences sharing the same three-dimensional fold have been

validated to ensure the alignment of functional and other conserved residues. The VAST

(Vector Alignment Search Tool) Web server (22) is used to confirm that the sequences in

each alignment are structural neighbors and can be structurally superimposed. Functional

sites are identified using the PDBsum database (19) and the alignments are manually

 33

verified and adjusted, in order to ensure that conserved residues are aligned as well as the

secondary structure elements.

BAliBASE2.0 currently consists of 142 reference alignments, containing over

1000 sequences. Those high-quality alignments are organized into 8 reference sets that

represent some of the most common problems currently encountered when aligning real

families of proteins.

• Reference set 1 contains alignments of equi-distant sequences, i.e., the percent

identity between two sequences is within a specified range.

• Reference set 2 aligns up to three "orphan" sequences (less than 25% identical) from

reference set 1 with a family of at least 15 closely related sequences.

• Reference set 3 consists of up to 4 sub-groups, with less than 25% residue identity

between sequences from different groups.

• Reference set4 contains alignments of up to 20 sequences with N/C-terminal

extensions (up to 400 residues),

• Reference set 5 contains alignments of sequences with internal insertions (up to 100

residues).

• Reference set 6 contains alignments of sequences with repeated fragments.

METHODOLOGY

To assess the the quality of an alignment, the sum-of-pairs score is calculated.

The higher the SP score of a MSA, the better the quality of the MSA.

A program, � ��� , was implemented to calculate the SP score of a MSA. Also, the

� ��� program parses the input reference alignment file to extract the original protein

sequences and saves these sequences into an output file of FASTA format. Later on, the

 34

resulting file can serve as the input for my program, � � ������� , or the programs that I want

to compare with, such as 	�
 �
����	 and ���
��������� � .

RESULTS AND DISCUSSION

1) Performance of TSP Solver

An efficient TSP Solver, which can find the optimal circular order in reasonable

time and computer memory, is critically important for my program, � � ������� .

The TSP3 program from Drs. Donald L. Kreher and Douglas R. Stinson is based

on a branch-and-bound TSP algorithm . To evaluate it, I generated random instances of

the TSP problem on n cities. The distances between any pair of cities were randomly

chosen integers between 0 and MAX. The time of computation and the number of nodes

in the state space trees are shown in Table 5.1.

cities(n) MAX nodes Time (s)

10 200 74 0.01

15 200 1082 0.19u

20 200 31203 2.29u

25 200 105975 63.14

30 200 1167178 1072.68

10 2000 108 0.01

15 2000 3450 0.37

20 2000 50028 14.45

25 2000 1109759 544.1

30 2000 5766607 3890.56

10 20000 280 0.02

15 20000 4771 0.63

20 20000 205071 55.91

25 20000 1361174 699.46

30 20000 6446124 6000

Table 5.1 The number of nodes in the state space trees and the running time to find the optimal

route on random instances of the TSP problem.

 35

 The results show that TSP Solver can find an optimal solution on an instance of

30 cities with MAX of 2000 in 3890.56 seconds and the number of nodes in the state

space trees is 5766607. If we assume a node takes 1 byte, we need 5.8 mega bytes, which

is not a problem for most computers. I also tested � � ������� on a real problem with 162

protein sequences and MAX of 4000 for 100 minutes. The number of nodes was 8916700

when the program was terminated, not yet having reported an optimal solution.

 In fact, I found that TSP Solver, ��	�
�� , never reported an optimal solution within

100 minutes on instances of more than 50 cities. Some researchers report that optimal

solutions can be calculated within a few hours for up to 1000 cities and in a few seconds

for up to 100 cities (29). However their code was not available for experimentation

 2) Execution times and quality of solutions

 For large scale problems, it is unrealistic to ask for optimal solutions with limited

computer memory and time. However, there are heuristics for large scale problems that

calculate near optimal solutions that are within 1% to 2% of the optimum (9, 29).

To evaluate the performance of TSP Solver on large scale data sets, I explored the

relationship of the execution time and the quality of the solution. The results are

summarized in the Table 5.2.

 The results showed that, after running for 20 minutes, TSP Solver found a near

optimal solution for the instances of up to 300 cities. For instances of MAX =20000, the

costs obtained by running either 20 or 100 minutes were very close or exactly same,

while the number of nodes increased by 150% up to 660%. For other instances, the cost

obtained by running 20 minutes decreased at most 4.5% compared with that obtained by

running 100 minutes, while the number of nodes increased by 40% up to 450%.

 36

Based on these results, I set the default execution time of � � ������� to 20 minutes.

MAX n Exec Time (min.) Cost Nodes
50 5 217 410375
50 10 206 777771
50 20 194 1454733
50 100 194 2633672

100 5 284 371897
100 10 283 683685
100 20 283 1175990
100 100 278 5326311
300 5 infinity 15690
300 10 267 63122
300 20 262 205490

100

300 100 258 1131275
50 5 4806 396718
50 10 4646 673568
50 20 4646 917608
50 100 4428 4350398

100 5 5356 162302
100 10 5356 388742
100 20 5257 722723
100 100 5129 2737193
300 5 infinity 15690
300 10 7057 66729
300 20 7003 241179

2000

300 100 7003 1080409
50 5 54027 490154
50 10 54027 948164
50 20 54027 1420971
50 100 54006 5710316

100 5 60288 258405
100 10 60168 487423
100 20 60168 874483
100 100 60164 3498741
300 5 infinity 15690
300 10 73203 74273
300 20 73203 254773

20000

300 100 73203 1690807

 Table 5.2 Execution time, cost, and nodes

 The cost infinity indicates that no TSP tour was found; This only happened when

the time was limited to 5 minutes.

 37

3) Comparison with SP scores of MSAs generated by other programs

 To evaluate my � � ������� on multiple sequence alignments, I selected some

reference data sets from the BALIBASE (version 2.0) and fed them to my � � ������� and

	�

� �����
 � 1.8. These reference data sets were multiple sequence alignments generated

by ���

��� � .

 The SP scores and execution times are shown in Table 5.3. Using the reference

data sets, the SP scores obtained by my � � ������� were higher than those obtained by either

���

��� � or
	�

� �����
 � , except for only one case, ref5: kinase53. We should note that

some sequences of that exceptional case have long internal insertions, which might cause

the SP scores to be decreased. More experiments were carried out on this data set to

explore the order of sequences to be aligned and the SP score (see later in this section,

and in section 6).

 The versions of ���

��� � availabe at University of Georgia is installed at the

Research Computing Resource (RCR). However, I could not test the execution time

because all tasks on RCR are submitted to a task queue and no value on the execution

time is returned. Therefore in Table 5.3 the execution times of ���

��� � are not included.

 38

SP score on MSAs and Execution Time data set feature
(n, s--l)1 ��� ������� 	 ����

����� � � � �
�
��

Ref1: 1ubi 4, 76--94 2376 3158 (0.16s) 3205 (0.09s)
 1pfc 5, 116--108 9823 9955 (0.47s) 10002 (0.16s)
 1fmb 5, 98--104 6040 6044 (0.26s) 6061 (0.10s)
 1pii 4, 246--252 11969 12081 (1.63s) 12274 (0.41s)
 1thm 5, 269--279 15573 15594 (1.82s) 15630 (0.44s)
 gal4 5, 335--395 20983 23683 (4.42s) 23777 (1.01s)
 1bgl 4, 938--991 50835 51024 (22.75s) 51287 (3.35s)
 1gpb 5, 796--828 82666 82351 (22.58s) 82860 (4.34s)
Ref2: 1csy 19, 75--99 112407 112507 (1.80s) 115971 (172.81s)
 kinase2 18, 257--287 344437 344283 (22.82s) 353901 (703.24s)
 1cpt 20, 347--389 330650 333998 (24.79s) 334700 (21.54s)
Ref3: 1wit 19, 85--102 115898 119723 (2.12s) 121146 (1193.71s)
 kinase3 23, 243--312 518529 523320 (30.69s) 537566 (303.05s)
 1ped 21, 324--388 592142 595400 (34.65s) 607333 (1200s+)
Ref4: kinase41 7, 289--481 43234 45446 (10.93s) 48939 (5.43s)
 kinase42 18, 257--631 145749 137424 (76.23s) 184349 (1193.71s)
Ref5: kinase51 5, 285--358 21599 22285 (4.75s) 22429 (2.39s)
 kinase53 19, 256--384 331007 315367 (30.53s) 320587* (1159.77s)
Ref6: deah 22, 578--2176 1145541 1179323 (105.93s) 1237392 (1200s+)
 ion 53, 496--2039 2352858 2453544 (134.70s) 2508615 (1200s+)

Table 5.3 The SP scores and execution times obtained from different alignment programs

1 ‘n’, ‘s’, and ‘ l’ mean the number of sequences, the shortest sequence, and the
longest sequence in the data set;
* The SP score is lower than that obtained by ��� ������� .
+No optimal solution is returned.
Ref 1: equi-distant sequences with various levels of conservation;
Ref 2: families aligned with a highly divergent "orphan" sequence;
Ref 3: subgroups with < 25% residue identity between groups;
Ref 4: sequences with N/C-terminal extensions;
Ref 5: sequences with internal insertions (up to 100 residues);
Ref 6: sequences with repeated fragments.

 39

 4) Execution times and SP scores

 For some reference data sets, I did not obtain an optimal circular order when

� � ����� �
 was executed up to 20 minutes. To evaluate the quality of MSAs built from near

optimal circular orders, I ran
� � �������

 on the following data sets for certain times. The SP

scores of these MSAs were calculated and listed in Table 5.4.

Time(s)

data set

120 300 600 1200 6000

Ref3:1ped 603648 607333 607333 607333 608008

Ref4:kinase42 187054 189141 189141 194349 200114

Ref5:kinase53 332338 329297 320587 320587 320587

Ref2:1cpt 335678 334700 334700 334700 334700

Ref6:ion 2508615 2508615 2508615 2508615 2508615

Ref6:deah 1233887 1237185 1237392 1237392 1230908

big.seq 8091586 8094191 8094191 8094191 8099394

Table 5.4. The SP cores of MSAs obtained from different execution times

The results show that the relative difference of SP scores obtained from 20

minutes and 100 minutes is within a range of -0.5% to 2.9%. This indicates that the

default execution time (20 minutes) is reasonable. The negative values indicate that a

better TSP tour does not always promise a better alignment.

5) Starting point and direction of the circular order and SP score of the MSA

Basically, the TSP circular order is a heuristic method of determining a linear

order in which to apply progressive alignment to the given sequences. From an optimal

circular order, we only get a near optimal MSA.

 40

To investigate the effect of assembling order on the SP score, I tested to see if we

could increase the SP score by starting at different points in the circular order and going

different directions.

First, I selected the Ref2:kinase2 as a normal test case. The optimal circular oder

for this data set is [0,1,17,16,2,3,4,6,8,9,11,12,15,5,7,13,14,10]. The results are shown in

Table 5.5.

starting point SP score (Forward) SP score (Backward)

0 353901+ 353772+

1 352383+ 351338+

17 349806+ 345276+

16 352713+ 347244+

2 354526*+ 343670

3 350964+ 343786

4 350077+ 343913

6 348867+ 348273+

8 351661+ 347753+

9 348754+ 348398+

11 345526+ 351753+

12 347820+ 353480+

15 345785+ 348929+

5 350113+ 353745+

7 347738+ 350068+

13 345460+ 350216+

14 346159+ 345670+

10 352734+ 346129+

Table 5.5. Starting points, directions of the circular order and SP scores of the MSAs

for Ref2:kinase2

 41

* The SP score of this MSA is higher than that of the MSA built from an optimal TSP circular order;

+ The SP score of this MSA is higher than that of the MSA generated by either ��� ������� or

� ���
	��
��� � .

The results show that, when the ref2:kinase2 was tested, among the all possible

combination of starting points and directions , only one starting point (indicated by the *)

with the forward direction led to a higher SP score than the SP score of the MSA starting

from the first sequence in the optimal circular order. All MSAs built from TSP orders

with the forward direction, no matter where they start, have a higher SP score than that of

MSAs generated by either ��� ���
��� or �������
����� ��� The circular orders in backward

direction led to lower SP scores than that from the optimal TSP order, no matter starting

from which sequence. In some cases, the SP scores were lower than that of MSA

generated by either ��� ����� � or �
���
���
��� � .

I also did same experiment on the test case Ref5:kinase53 (which my � � �! �
� did

not beat ��� ��� �). The result is shown in Table 5.6. Please notices that: the first 5

sequences in Ref5:kinase53 have long internal insertions at different points. The optimal

circular order is [0,2,1,4,5,6,3,7,12,16,11,10,17,13,14,18,15,9,8].

The result is interesting. With the forward direction, when two or more sequences

with long insertions were assembled first, we certainly got a bad SP score (Table 5.6

column 2, rows 1, 2, 3, and 19). When normal sequences were assembled first, the SP

scores became significantly higher (Table 5.6 column 2, rows 5 to 18, except for row 16).

When I simply put all sequences with long insertions to the end of the input file, and the

SP score was 338152, which is significantly higher than that of MSA generated by either

��� ���
� � or �������
����� � .

 42

The circular orders in backward direction led to MSAs with higher SP scores,

which were not only higher than that of MSA from optimal TSP order, but also higher

than that of MSA generated by either ��� ������� or �	���	
��
��� � except for 1 case (Table 5.8

row 10).

starting point SP score (Forward) SP score (Backward)

0 320587 339409*+

2 328447* 335280*+

1 328512* 336359*+

4 333175*+ 332506*+

5 334498*+ 338266*+

6 336012*+ 334328*+

3 334659*+ 335849*+

7 340500*+ 335529*+

12 340590*+ 333311*+

16 339501*+ 328601*

11 338732*+ 335556*+

10 340863*+ 335648*+

17 337537*+ 339418*+

13 334937*+ 339717*+

14 334937*+ 336997*+

18 330978* 332875*+

15 336679*+ 338785*+

9 332193*+ 338889*+

8 314934 339202*+

Table 5.6. Starting points, directions of the circular order and SP scores of the MSAs

for Ref3:kinase53

* The SP score of this MSA is higher than that of the MSA built from an optimal TSP circular order;

 43

+ The SP score of this MSA is higher than that of the MSA generated by either ��� ������� or

� ���
	��
��� � .

One possible explanation is that: when MSA was built from the optimal TSP

order, we, by chance, started from a sequence with long insertions (sequence 0), and

subsequently we added more sequences with long insertions (sequences 2, 1, and 4). This

led to more gaps in overall MSA, and thus we get a lower SP score. However, when

using the reversed optimal TSP order, although we started with sequence 0, we added

sequences with long insertions after we added normal sequences, therefore we got a

higher SP score (Table 5.6 column 3, row 1). The SP score will tend to lower if we align

more sequences with long insertions before we do other normal sequences (Table 5.6

column 3, rows 2, 3 and 4). This result suggests that, when we have sequences with long

insertions, in order to get a higher SP score, we should avoid to build MSA from an order

that has more than one sequences with long insertions at the beginning.

The progressive alignment follows the rule, “once a gap, always a gap”. If we

start alignment with sequences containing long insertions, the gaps derived from

insertions will propagate in the susequent process. If we start alignment with normal

sequences and add sequences with long insertions at the end of alignment, we will get

fewer gaps and a higher SP score.

For the future improvement, we can design a step to select the maximum SP score

of MSAs built from all possible circular orders, because after finding the optimal circular

order (the most time-consuming step), to assemble the MSA only takes about 3 seconds.

6) Random order progressive alignments

 To explore whether a randomly generated linear order could lead to a better SP

score than the optimal circular order generated by TSP algorithm does, I implemented a

 44

random sequence generating function and tested 500 randomly generated orders aligning

the Ref2:kinase2 data set. I found only 1 case out of 500 that gave a higher SP score than

the one derived from the optimal circular order generated by TSP.

 The running time for building an MSA from an optimal circular order generated

by TSP is 703.24 seconds, and the running time for building an MSA from a randomly

generated circular order is much shorter (3.80 seconds). However, within the same time

used by the TSP strategy, it is unlikely that a better score will be found using the random

strategy.

 7) Large data set

 The last experiment was to test my program with a large data set. I selected 162

protein sequences from BALIBASE and made a test file, big.seq in the modified FASTA

format.

 The result was very encouraging. Using my program, � � ������� , the SP score at 380

seconds was 8094191, at 20 minutes was 8094191, and at 100 minutes was increased to

8099394. When I input the big.seq to �
	��
�����
	 � , the running time was 379.53 seconds

and the SP score was much lower, 930301. This result suggests that my program may

perform much better when dealing with a set containing many sequences.

 45

CHAPTER 6

CONCLUSIONS

The traveling salesman problem algorithm shows promise for the ordering of

multiple protein sequences using pairwise SP scores. Except for one test case, the SP

scores obtained from progressive alignments based on the TSP algorithm were

significantly better than the scores obtained from two popular progressive alignment

programs, ��� ������� and 	
���
�
����� � .

When aligning more than 20 sequences with lengths over 200, my program,

� � �
� ��� , may need a longer execution time to find the optimal circular order to build an

MSA. Usually, by running the TSP Solver for 20 minutes, the MSA obtained by my

program has a higher SP score than that obtained from either ��� ������� or 	��������
��� � .

For a test data set which contains sequences with long internal insertions, a linear

order starting from two or more sequences containing long insertions can lead to a bad SP

score.

Within the same time used by the TSP strategy, it is unlikely that a better score

will be found using a randomly generated order for the progressive alignment.

On a large data set containing 162 sequences, my program performs much better

than 	��������
��� � .

 46

REFERENCES

1. Baldi, P., Y. Chauvin, T. Hunkapiller, and M. A. McClure. 1994. Hidden Markov

models of biological primary sequence information. Proc. Natl. Acad. Sci. USA

91:1059-63.

2. Dayhoff, M., R. Schwartz, and B. Orcutt. 1978. A model of evolutionary change in

proteins, p. 345-352. In M. Dayhoff (ed.), Atlas of Protein Sequence and Structure,

vol. 5. Natl Biomedical Research Foundation, Washington, DC.

3. Eddy, S. R. 1995. Multiple alignment using hidden Markov models. Proc. Int. Conf.

Intell. Syst. Mol. Biol. 3:114-120.

4. Feng, D., and R. Doolittle. 1990. Progressive alignment and phylogenetic tree

construction of protein sequences. Methods Enzymol. 183:375-387.

5. Feng, D., and R. Doolittle. 1987. Progressive sequence alignment as a prerequisite to

correct phylogenetic trees. J. Mol. Evol. 25:351-360.

6. Feng, D. F., and R. F. Doolittle. 1996. Progressive alignment of amino acid

sequences and construction of phylogenetic trees from them. Methods Enzymol

266:368-82.

7. Gonnet, G., C. Korostensky, and S. Benner. 1999. Evaluation measures of multiple

sequence alignments. J. Comput. Biol. 7:261-276.

8. Gotoh, O. 1996. Significant improvement in accuracy of multiple protein sequence

alignments by iterative refinement as assessed by reference to structural alignments.

J. Mol. Biol. 264:823-838.

 47

9. Grotschel, M., and O. Holland. 1991. Solution of large-scale symmetric traveling

salesman problems. Math. Programming 51:141 - 202.

10. Gupta, S., J. Kececioglu, and A. Schaffer. 1995. Improving the practical space and

time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence

alignment. J. Comput. Biol. 2:459-472.

11. Henikoff, S., and J. Henikoff. 1992. Amino acid substitution matrices from protein

blocks. Proc. Natl. Acad. Sci. USA 89:10915-10919.

12. Higgins, D., and P. Sharp. 1989. Fast and sensitive multiple sequence alignments on

a microcomputer. Computer Applications in the Biosciences 5:151-153.

13. Jiang, T., and L. Wang. 1994. On the complexity of multiple sequence alignment. J.

Comp. Biol. 1:337-348.

14. Kimura, M. 1983. The Neutral Theory of Molecular Evolution, Cambridge

University Press, New York.

15. Korostensky, C., and G. Gonnet. 1999. Near Optimal Multiple Sequence

Alignments Using a Travelling Salesman Problem Approach. String Processing and

Information Retrieval Symposium & International Workshop on Groupware:105-114.

16. Korostensky, C., and G. Gonnet. 2000. Using traveling salesman problem

algorithms for evolutionary tree construction. Bioinformatics 16:619-627.

17. Kreher, D., and D. Stinson. 1999. Combinatorial Algorithms : Generation,

Enumeration, and Search. CRC Press, Boca Raton.

18. Krogh, A., I. Mian, and D. Haussler. 1994. A hidden Markov model that finds

genes in E. coli DNA. Nucleic Acids Res. 22:4768-4778.

 48

19. Laskowski, R., E. Hutchinson, A. Michie, A. Wallace, M. Jones, and J.

Thornton. 1997. PDBsum: a Web-based database of summaries and analyses of all

PDB structures. Trends Biochem. Sci. 22:488-490.

20. Lawler, E., J. Lenstra, A. Rinnooy Kan, and D. Shmoys. 1985. The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley,

Chichester.

21. Lipman, D., S. Altschul, and J. Kececioglu. 1989. A Tool for Multiple Sequence

Alignment. Proc. Natl. Acad. Sci. USA 86:4412-4415.

22. Madej, T., J. Gibrat, and S. Bryant. 1995. Threading a database of protein cores.

Proteins 23:356-369.

23. McClure, M., T. Vasi, and W. Fitch. 1994. Comparative analysis of multiple

protein-sequence alignment methods. Mol. Biol. Evol. 11:571-592.

24. Mount, D. 2001. Multiple sequence alignment, Bioinformatics: Sequence and

Genome Analysis. Cold Spring Harbor Press, Cold Spring Harbor.

25. Murata, M., J. Richardson, and J. Sussman. 1985. Simultaneous comparison of

three protein sequences. Proc. Natl. Acad. Sci. USA 82:3073-3077.

26. Needleman, S., and C. Wunsch. 1970. A general method applicable to the search for

similarities in the amino acid sequences of two proteins. J. Mol. Biol. 48:443-453.

27. Notredame, C., and D. Higgins. 1996. SAGA: sequence alignment by genetic

algorithm. Nucleic Acids Res. 24:1515-1524.

28. Notredame, C., L. Holm, and D. Higgins. 1998. COFFEE: an objective function for

multiple sequence alignments. Bioinformatics 14:407-422.

 49

29. Padberg, M., and G. Rinaldi. 1991. A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM (The Society for Industrial

and Applied Mathematics) Review 33:60-100.

30. Saitou, N., and M. Nei. 1987. Neighbour Joining. Mol. Biol. Evol. 4:406-425.

31. Schwartz, R., and M. Dayhoff . 1978. Matrices for detecting distant relationships,

pp.353-358. In M. Dayhoff (ed.), Atlas of protein sequence and structure, vol. 5. Natl

Biomedical Research Foundation, Washington DC.

32. Sneath, P., and R. Sokal. 1973. Numerical Taxonomy: The principles and practice

of numerical classification. W.H. Freeman and Company, San Francisco.

33. Stoye, J. 1998. Multiple sequence alignment with the divide-and-conquer method.

Gene 211(2):45-56.

34. Thompson, J., T. Gibson, F. Plewniak, F. Jeanmougin, and D. Higgins. 1997. The

CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment

aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882.

35. Thompson, J., D. Higgins, and T. Gibson. 1994. Clustal w: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

positions-specific gap penalties and weight matrix choice. Nucleic Acids Res.

22:4673-4680.

36. Thompson, J., F. Plewniak, and O. Poch. 1999. A comprehensive comparison of

multiple sequence alignment programs. Nucleic Acids Res. 27:2682-2690.

37. Tönges, U., S. Perrey, J. Stoye, and A. Dress. 1996. A General Method for Fast

Multiple Sequence Alignment. Gene 172:33-41.

