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problem in computational biology, but computing an optimal MSA isNP-hard. It is
therefore necessary to devel op heuristics to come as close to the optimum as possible but
operate within reasonabl e time and space bounds. In this thesis, an approach pioneered by
Korostensky and Gonnet is developed and tested extensively. Theideaisto apply a
Traveling Salesman Problem (TSP) agorithm to find an optimal circular order to build an
MSA progressively. The sum-of-pairs (SP) scoreis used for computing pairwise
alignments and eval uating the quality of an MSA. Using the reference alignments from
the benchmark alignment database BALISBASE, the performance of my program,
tspMSA, was eval uated extensively with more than 60 reference data sets. Except for one
test case, the SP scores obtained from the TSP algorithm are significant better than the
scores obtained from two popular progressive alignment programs, PILEUP and
CLUSTALW. The SP scores of MSAs built from different starting points and different
directions of an optimal circular order are studied.
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CHAPTER 1
BACKGROUND

Two fundamental building blocks of living creatures are DNA (deoxyribonucleic
acid) and proteins, which are long linear chains of chemical components. The DNA
molecule is made up of four different nucleotides, each denoted by one of the letters A,
C, Gor T. Proteins are made up of 20 different amino acids (or residues) which are
denoted by 20 different letters of the aphabet. So, the sequence of either aDNA or a
protein molecule can be simply viewed as a string of |etters.

Alignment of DNA and protein sequences is one of the most important primitive
operations in computational biology, serving as a basis for many other more complex
manipul ations. The basic concept of this operation is conceptually ssimple. However, the
problem of computing an optimal solution is NP complete (13). It is therefore necessary
to develop heuristics that come as close to the optimum as possible but operate within
reasonabl e time and space bounds.

1. Definition of sequence alignment

Seguence alignment is the procedure of comparing two or more sequences by
looking for a series of individual characters or character patterns that are in the same
order in the sequences. If we align two sequences, the operation is called a pair-wise
alignment; if the number of sequences to be aligned is more than two, the operation is

called a multiple sequence alignment.



To align sequences by hand, they are written across a page in rows. Identical or
similar characters are placed in the same column, and non-identical characters can either
be placed in the same column as a mis-match or opposite a gap in one of the other
sequences. In an optimal alignment, non-identical characters and gaps are so placed to
bring as many identical or similar characters as possible into vertical agreement. Two
types of sequence alignment have been recognized, global and local, asillustrated below.

2. Global and local alignment of protein sequences

Global alignment compares sequences over their entire lengths, and is appropriate
for application to sequences that are expected to share similarity over the whole length. In
global alignment, an attempt is made to maximize regions of similarity and to minimize
gaps.

Local alignment finds subsequences of the input sequences which align at the
highest score. In other words we are ready to ignore any del etions which happen at the
beginning or end of any of the aligned fragments. A fragment is a consecutive
subsequence (or substring) of a sequence. In local alignment, stretches of sequence with
the highest density of matches are given the highest priority, thus generating one or more
islands of matches in the aligned sequences.

Figure 1.1 illustrates a global alignment and alocal alignment of two hypothetical
protein sequences (24). Vertical bars between the sequences indicate the presence of
identical amino acids. Dashes indicate fragments that are not included in the alignment.

The global alignment is stretched over the entire sequence lengths to include as

many matching amino acids as possible. Although there is an obvious region of identity



in this example (the sequence FGKG), a global alignment may not align such regions in

order to favor matching more amino acids along the entire sequence lengths.

Theloca alignment of the same sequences tends to stop at the ends of regions of

identity or strong similarity. A much higher priority is given to finding these local regions

than to extending the alignment to include more neighboring amino acid pairs. Thistype

of alignment favors finding conserved amino acid motifsin related protein sequences.

LGPSTKQFGKGSSSRI VDN

| L
LNQ ERSFGKGAI MRLGDA gl obal ali gnnent

| R
LNQ ERSFGKGAI MRLGDA

...... FKG -------- | ocal alignnent

Figure 1.1. Alignnment of two protein sequences.

3. Why perform sequence alignments?

Multiple sequence alignments are usually undertaken in order to perform a

function such as one of the following:

Determination of consensus regions of several sequences,
Characterization of protein families by identifying shared regions;
Molecular evolution analysis of a gene/protein family;

Prediction of the secondary and tertiary structures of new sequences;

Prediction of the function of new sequences.



There ae many other functions that might be the goal of a multi ple sequence
alignment. For example, by making a multi ple sequence alignment, we can find that two
or more sequences are similar. If many charadersin ore sequence aein the same order
asthey are in the other sequence, then we say they are similar. We know 1) or 2) may be
true for similar sequences: 1) the sequences may share a ©mmon aigin - a ommon
ancestor sequence. If the similarity is sufficiently convincing or if we have alditional
evidencefor an evolutionary relationship, then we say that the sequences are
homologous. 2) the sequences may have the same or related structure and function. The
stronger the di gnment between sequences, the more likely they areto berelated. Very
similar sequences that are dmost identica along their lengths amost certainly have the
same function. Sequences that are only weekly similar may or may not be related, and no
firm conclusions can be drawn abou their relationship.

4. Algorithmsfor multiple sequence alignment

Thisthesisis devoted to global alignment of multi ple protein sequences, so
heredter the terms alignment and MSA mean global alignment of multiple protein
sequences.

Definition: Global Multi ple Sequence Alignment (MSA)

Given aset of sequences S={sy, s, ..., s} with s O =" where > isafinite
alphabet, a multi ple sequence dignment isaset of sequencesA =< a, &, ..., & > with
a 02" wheres’ =2 0 {“-"}and {*-"} 0 =. All sequencesin A have some mmmon
length n and therefore can be aranged in amatrix of k rows and n columns. The sequence

obtained from g [0 A by removing all “-" gap charadersisequal to s.



The problem of finding an MSA can be solved by either a dynamic programming
(DP) agorithm or a heuristic algorithm.

4.1. Dynamic programming algorithm

Basically, dynamic programming is a method for successively optimizing the
alignments of all pairs of prefixes of the two sequences, adding just one new character at
atimeto aprefix.

Needleman and Wunsch (26) first used dynamic programming in the comparison
of two protein sequences. This agorithm sets up a 2-dimensional matrix where each
sequenceis placed along the sides of the matrix. Each element in the matrix represents
the two residues of the sequences being aligned at that position. To calculate the score in
position (i, j), one looks at the alignment that has already been made up to that point, and
finds the best way to continue. Having gone through the entire matrix in this way, one
can go back and trace which way through the matrix gives the best alignment.

To evaluate the quality of an alignment, we need some scoring scheme. A popular
scoring scheme is the so-called sum-of-pairs (SP) function, which adds up the scores of
each pair of aligned residues. For the SP score function, the higher the score, the better
the quality of an alignment. So, the optimal alignment is an alignment with the
maximum SP score.

The following is an example of pairwise sequence alignment using
Needleman/Wunsch techniques. Two sequences to be globally aligned are:
sequence l1=GAATTCAGTTA,andsequence2=GGATCGA

A simple scoring scheme is assumed where



* §;=1if theresidue at position i of sequence 1 isthe same asthe residue at
position j of sequence 2 (match score); otherwise

¢ S =-1(mismatch score)

* g=-2(gap penalty)

In the dynamic programming algorithm, alignment is performed in three steps:

1) Initialization

Create amatrix with m + 1 columns and n + 1 rows where m and n correspond to
the lengths of the sequences to be aligned (Figure 1.2). The first row and first column of

the matrix arefilled with Os.

T & & TTOCAGTT
O 0 (O {00 (@0 0 (0 (0|0

o I B B ol = L
o|lo|lo|la|lala|o|o

Figure 1.2. Initialized matrix
2) Matrix fill (scoring)
For each position, M is defined to be the maximum score at position ij;
i.e, Mjj=max{ Miyj1+S; (match/mismatch in the diagonal),
Mij1+g (gapin sequence 1),
Mi.1; + g (gap in sequence 2) }
Optionally, an arrow is placed to point back to the cell that led to the maximum

score. The filled matrix is shown below (Figure 1.3).
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Figure 1.3. Score Matrix with pointers for tracing back

3) Traceback (alignment)

The traceback step determines the actual alignment that resulted in the maximum
score. This step beginsin the (n, m) position. It takes the current cell and looks to the
neighbor cells that could be direct predecessor. This means it looks to the neighbor to the
left (gap in sequence 2), the diagonal neighbor (match/mismatch), and the neighbor above
it (gap in sequencel). Since we have kept pointers back to all optimal predecessors, the
traceback step issimple. At each cell, we just need to find where we move next according
to the pointers. In the example here, we can get the two possible paths shown in Figure
14.

G & A TTOCAEGTT & g A & TTOC A GTT A

Figure 1.4. Traceback step

The alignments corresponding to these two paths are:
GAATTCAGTTA GAATTCAGTTA

R N I I I | I
GGA_TC_G_ _A GGAT_C_G_ _A



This method also has been extended directly to the comparison of three sequences
using areduced three-dimensional matrix by Murata et al (25) with O(n*) computational
complexity, where n isthe longest length of sequences to be aligned.

The dynamic programming a gorithm guarantees an optimal MSA on a set of
given sequences. However, the space complexity is O(n*) and the time complexity is
O(k?2"n") if we use the sum-of-pairs score, where k is the number of sequencesand nis
the longest length of the sequencesto be aligned.

In 1989, Lipman, Altschul, and Kececioglu implemented a more refined version
of thisalgorithm in their program "M SA". This program in practice is restricted to
aligning 5-7 protein sequences of 200-300 residues each (21).

4.2. Heuristic algorithms

Since searching for the optimal MSA using a DP agorithm is not realistic for
more than 10 sequences, a number of heuristic algorithms have been developed to carry
out amultiple global alignment in a reasonable amount of time with a reasonable chance
of finding a near-optimal aignment.

These algorithms are heuristic in that they are not guaranteed to find an optimal
solution. But they run fast, use reasonable memory in practice, and get MSAs with good
quality at most cases.

4.2.1 Progressive Alignment

This approach begins with the alignment of the two most closely related
sequences (as determined by pairwise analysis) and subsequently adds the next closest

seguence or sequence group to thisinitial pair (4, 5). This process continuesin an



iterative fashion, adjusting the positioning of indelsin all sequences. Anindel isan
insertion or a deletion which appears in any aligned sequence.

The major shortcoming of this approach is that a bias may be introduced in the
inference of the ordered series of motifs (homologous parts) because of an over-
representation of a subset of sequences.

A concrete implementation of the progressive a gorithm was devel oped by Feng
and Doolittlein 1987 (5). The steps can be summarized as follows:

a) Calculate an above the diagonal matrix of k(k-1)/2 pairwise distances between al pairs
of sequences s, S, ...,Sn using the dynamic programming pairwise sequence alignment
(PSA) agorithm (26),

b) These similarity scores are used to create a clustering order that can be represented as a
dendrogram. The clustering strategy represented by the dendrogram is called UPGMA,
which stands for unweighted pair-group method using arithmetic averages (32).

¢) Construct a guide tree from the distance matrix computed in step b);

d) Build the multiple alignment by first aligning the most similar pair of sequences, then
the next most similar pair and so on. Once an alignment of two sequences has been made,
then it is fixed and can only be modified by the insertion of common gaps;,

€) Repeat step d) until all sequences have been aligned.

A program called “ PILEUP” (a component of the GCG software package) creates
aMSA using the progressive aignment method of Feng and Doolittle (4-6).

CLUSTALW is another widely used progressive MSA program. It isvery similar to

the Feng-Dooalittle agorithm and works as follows:
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a) Construct a distance matrix of all k(k-1)/2 unordered pairs of sequences by pairwise
sequence alignment. Then convert the similarity scores to evolutionary distances using a
specific model of evolution proposed by Kimurain 1983 (14);
b) Construct a guide-tree from this matrix using a clustering method called neighbor-
joining proposed by Saitou and Nei in 1987 (30);
c¢) Progressively align nodes of the tree in order of decreasing similarity.

The time complexity of either progressive aignment algorithm is O(k?n?).

4.2.2. Divide-and-Conquer Alignment

The Divide-and-Conquer Alignment is afast heuristic algorithm for multiple
sequence alignment which provides near-to-optimal results for sufficiently similar
sequences (33, 37). Themain ideais first to cut the sequences several times at certain
points to reduce the length of the sequences, second to align the fragments, and third to
concatenate the multiple alignments. The method needs time O(k™™) and space O(k’n?) .

5. Scoring matricesfor sequence alignments

Early sequence alignment programs used a simple scoring function that scores all
matches the same and penalizes all mismatches the same. This approach ignores protein
evolution and structure. Construction of biologically significant alignments should take
into account the fact that protein evolution is constrained by the chemical properties of
amino acids, and by the degeneracy of the genetic code. Chemically conservative
replacements tend to occur more frequently than replacements with amino acids that are
chemically different. For example, it isfar more likely that Leucine will be replaced with
Isoleucine (both of which are non-polar), than with Aspartic acid (which is negatively

charged).
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Many scoring matrices have been constructed to replace the simple scoring
functions described above. The commonly used scoring matrices are substitution matrices
based on evolutionary distances. Substitution matrices are constructed by observing the
frequencies of amino acid replacementsin large samples of protein sequences.

The PAM (Point Accepted Mutations) matrices are the most commonly used
scoring matrices. They were proposed by Margaret Dayhoff in 1978 (2, 31). Dayhoff
carefully aligned all of the proteinsin severa families of proteins and then constructed
phylogenetic trees for each family. Each phylogenetic tree was examined for the
substitutions found on each branch. This leads to atable of the relative frequencies with
which amino acids replace each other over ashort evolutionary period. Thistable and the
relative frequency of occurrence of the amino acids in the proteins studied were
combined in computing the PAM family of scoring matrices. Therefore, PAM matrices
show probability scores of replacement of amino acids by each other based on natural
mutation ratesin related protein families. For a given replacement, the PAM valueis
proportional to the natural log of the frequency with which that replacement was
observed to occur. A positive score assigned to two amino acids indicates that these two
replace each other more often than expected by chance aone, i.e., they are functionally
exchangeable. A negative score indicates that the two amino acids are rarely
interchangeable. One PAM unit is defined as the amount of evolutionary change that
yields, on average, one substitution in 100 amino acid residues. The traditiona PAM
matrix, the PAM 250 matrix (Figure 1.5), often referred to as the Dayhoff Matrix,
assumes the occurrence of 250 point mutations per 100 amino acids or 300 nucleotidesin

the gene.
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Figure 1.5. PAM 250 matrix

The BLOSUM (Blocks Substitution Matrix) series of matrices are also commonly
used. BLOSUM s are substitution matrices derived from the observed frequencies of
amino acid replacements in highly conserved regions of ungapped local alignments. The
data for the substitution scores in these matrices come from about 2000 blocks of aligned
sequence segments characterizing more than 500 groups of related proteins (11).

Substitution matrices have theoretical advantages over alternative methods of
scoring schemes. From abiological point of view, substitution matrices are based on
observed mutations. Thus they contain information about the processes that generate
mutations as well as the criteriathat are important in selection and in fixing a mutation
within a population. From a statistical point of view, substitution matrices are the most
accurate description of the changesin amino acid composition that are expected after a
given number of mutations that can be derived from the data used in creating the
matrices. Thus the highest scoring alignment is the statistically most likely to have been

generated by evolution rather than by chance.
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6. Gap Penalty

A gap penalty is designed to reduce the score when an alignment has been broken
by an insertion in one of the sequences. The value should be small enough to allow a
previously accumulated alignment to continue with an insertion in one of the sequences
but should not be so large that this previous alignment score is removed completely. The
gap penalty scheme is often used to have alarger gap opening penalty followed by a
much smaller gap extension penalty. Thus, the score becomes larger as alinear function
of gap length. One extremeisto alow a constant gap penalty regardless of gap length.

The gap penalty used in this study is the same value used by PILEUP and

CLUSTALW.



CHAPTER 2
RELATED WORK

Multiple sequence alignment analysis has become an essential tool that enables
biologists to find characteristic motifs and conserved regionsin protein families,
determine evolutionary linkage, and predict secondary and tertiary structure. With the
explosive increase in the number of known protein sequences, notably from the genome
seguencing projects, searching protein databases for homol ogous sequences, followed by
the alignment of a new sequence with alarge closely related group is now standard
practice. The development of accurate, reliable multiple alignment programs capabl e of
handling these divergent sets of data is therefore of major importance. Although a
dynamic programming algorithm (10) guarantees a mathematically optimal alignment,
the method is limited to a small number of short sequences because the computing power
required for larger data sets becomes prohibitive. To overcome this problem, various
heuristic approaches have been devel oped leading to a variety of programs based on very
different algorithms. This chapter summarizes some of the most commonly used
programs.

1. Softwar e implementing a dynamic programming appr oach: MSA

MSA isagloba optima multiple sequence alignment program originally written
by John Kececioglu, Stephen Altschul, David Lipman, and Robert Miner and distributed
in 1989 (21). Credit for improvementsin release 2.0 of the code belong to Sandeep K

Guptaand Algjandro A Schaffer with some guidance from John Kececioglu (10).

14
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MSA utilizes avariant of amulti-dimensiona dynamic programming to produce
an optimal global alignment between severa sequences. MSA implements a branch-and-
bound technique together with avariant of Dijkstra’s shor test path algorithm to greatly
reduce the amount of space required to solve the the basic dynamic programming
problem. Generally speaking, MSA will produce better alignments than other multiple
sequence alignment programs such as CLUSTALW or PILEUP. The drawback to using
MSA isthat it requires an enormous amount of both computer time and memory to align
more than a few distantly related sequences. The size of the problems solved by MSA are
directly related to the sequence lengths, the number of sequences, and the amount of
sequence diversity. At the Pittsburgh Supercomputing Center (PSC,
http://www.psc.edu/general/software/packages/msa), there are three versions of MSA
compiled for problems of different sizes:

* msa_50 150 - Align fewer than 50 sequences. Each sequence has fewer than 150
residues,

* msa_25 500 - Align fewer than 25 sequences. Each sequence has fewer than 500
residues,

* msa_10 1000 - Align no more than 10 sequences. Each sequence has fewer than
1000 residues.

MSA restricts the amount of memory needed by computing bounds that
approximate the center of a multi-dimensional hypercube. The first bound is producing
by computing pairwise alignments between the set of sequences. Weights are applied to
this value to produce the lower bound used by the program. Next a heuristic alignment is

produced for the sequences. Weights are applied to this value to produce the upper bound
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used by the program. A delta value is then computed as the difference between these two
values. The epsilon for each sequence pair may be input by the user or estimated. An
heuristic alignment is computed and the epsilons are taken to be the differences between
the projected and pairwise costs. The delta and epsilon values are preliminary measures
of the divergence between the set of sequences. Thus, closely related sequences will have
low epsilons and deltas while distantly related sequences will have high epsilons and
deltas.

Even though MSA reduces the space required to produce a multiple alignment
dramatically, it is still uses much more memory than the progressive pairwise technique.

2. Softwar e implementing the progressive pairwise approach

The progressive pairwise approach relies on exhaustive pairwise alignments
between all of the sequences to produce a measure of sequence relatedness. From this
measure, an algorithm (UPGMA in PILEUP, Neighbor Joining in CLUSTALW) is used to
develop ajoining order. Thisjoining order corresponds to atree that is used to produce
the multiple sequence alignment. It should be noted that thistreeis not an evolutionary
tree. After the joining order has been determined, sequences close to each other are
aligned first.

(a) PILEUP

PILEUP creates a multiple sequence alignment from a group of related sequences
using progressive, pairwise alignments. It implements asimplification of the progressive
alignment method of Feng and Doolittle (4-6). The method used is similar to the method

described by Higgins and Sharp (12). PILEUP is usualy distributed as part of the
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Wisconsin Package from the Genetics Computer Group (GCG) (http://www.gcg.com),
which is licensed to numerous bioinformatics services on the Internet.

PILEUP begins by doing pairwise alignments that score the similarity between
every possible pair of sequences. Each pairwise alignment in PILEUP uses the method of
Needleman and Wunsch. These similarity scores are used to create a clustering order that
can be represented as a dendrogram. The clustering strategy represented by the
dendrogram is called UPGMA, which stands for unweighted pair-group method using
arithmetic averages (32).

PILEUP uses this clustering order and first aligns the two most-related sequences
to each other in order to produce the first cluster. It then aligns the next most related
sequence to this cluster. Alignments continue in a progressive fashion until all sequences
have been included in the final alignment.

Asagenera rule, PILEUP can align up to 500 sequences, with any single
sequence in the final alignment restricted to a maximum length of 5,000 characters
(including gap characters inserted into the sequence by PILEUP to create the alignment).

(b) cLUSTALW

CLUSTALW is one of the most popular multiple nucleotide or protein sequence
alignment programs. It uses a progressive alignment approach (35).

CLUSTALW uses a neighbor-joining method to construct aguide tree. This
determines the order in which the sequences are incorporated into the alignment.
Progressive multiple alignments are created by first aligning the most similar of a set of
sequences and then incorporating less similar sequences successively into the alignment.

A comparison of multiple sequence alignment programs reveal ed that CLUSTALW
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performs well when aligning equidistant sequences of asimilar length and when aligning
small to large families of similar sequences, in which afew divergent sequences are also
included in the alignment (36). In both cases, the performance of CLUSTALW was
maintained from short sequences of less than 100 residues to those of over 400 residues.
CLUSTALW is available on several Internet servers, such as the European

Bioinformatics Institute (EBI) (http://www?2.ebi.ac.uk/clustalw/).

3. Other software

In addition to the software packages mentioned above, numerous new alignment
algorithms have recently been developed which offer fresh approaches to the multiple
alignment problem. A common point of interest has been the application of iterative
strategies to refine and improve the initial alignment. The PRRP program (8) optimises a
progressive, global alignment by iteratively dividing the sequences into two groups,
which are subsequently realigned using a global group-to-group alignment algorithm.
SAGA (27) uses a genetic algorithm to select from an evolving population the alignment
which optimizes the COFFEE Objective Function (OF) (28). The OF is ameasure of the
consistency between the multiple alignment and a library of CLUSTALW pairwise
alignments. Hidden Markov models (HMMs) have aso been used as statistical models of
the primary structure consensus of a sequence family (1, 18). The program HMMT (3)
uses a simulated annealing method to maximize the probability that an HMM represents

the sequences to be aligned.



CHAPTER 3
DESIGN OF ALGORITHMS

Adapting an approach pioneered by Korostensky and Gonnet (13), | have
developed a heuristic method for multiple sequence alignment (M SA) which provides
near-optimal results for protein sequences. It is assumed that the sequences are related to
each other. To compute an MSA, this method first cal culates the pairwise sum-of-pairs
scores for each pair of sequences using the dynamic programming algorithm. Then the
resulting scores are converted to a cost matrix and sent to a Traveling Salesman Problem
(TSP) solver. Finally the circular tour determined viathe TSP solver is used to provide a
linear order to assemble the MSA. | will describe these steps in detail below.

Step 1. Calculating pairwise sum-of-pairs score

The Needleman-Wunsch dynamic programming algorithm (26) is used to find the
optimal alignment of two sequences. This algorithm ensures the optimal global alignment
by exploring al possible alignments and choosing the best. In a pairwise alignment, two
sequences are padded by gaps to achieve the same length and to display the maximum
similarity/conservation on a character-by-character basis.

To find the optimal alignment of two sequences, we first need to fill a score
matrix by the following algorithm.
fillMatrix (s, t)

/I Input: apair of sequencessand t

// Output: a score matrix ajm, n|

19
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m — length (s)
n — length (t)
for i « Otomdo
di,0 -0
for j « Otondo
a0,j] - 0
for i « 1tom
for j —« 1tondo
ai, j] — max (ai-1,j] +g, &i-1,j-1] +w(, ), &i,j-1]+9)
I1'w(i, j) is the score from the substitute matrix, g is the gap penalty

return a[m, nj

Then, we traceback the matrix to print out the optimal alignment by calling
traceback(m, n, len), where len = max(m, n).
traceback(i, j, I)
/I Input: a score matrix with pointers
// Output: an alignment in sequences align-s and align-t with length len
if i =j =0then
return
eseif di, j] =4i-1,j] + g then
traceback(i-1, j, len-1)
dign-glen] « i]

aign-tflen] — -
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dseif ai, j] = ali-1, j-1] + w(i, j) then
traceback(i-1, j-1, len-1)
align-sflen] — i
align-tflen] — t[j]

dseif di, j] = i, j-1] + g then
traceback(i, -1, len-1)
align-flen] ~ -

dign-t[len]  t[j]

An optimal alignment is an alignment which has an optimal sum-of-pairs score.
The sum-of-pairs (SP) score is defined as the sum of all scores between al pairs of letters
in the columns of the pairwise alignment.

For apairwise alignment a(s, t) made of a pair of sequences sand t and with the

same length len, the SP score is calculated by:

len

SP(a) = JZ:1W(S[J'], tlil)

where §[j] or t[j] isaresidue in sequence s or t, and w(gj], t[j]) is the score from
the substitute matrix if §j] and t[j] form amatch or a mismatch. Otherwise w(g[j], t[j]) =
gap penalty.

The SP-score of each optimal pairwise alignment is calculated and saved into an
kxk distance matrix (where n isthe number of sequences to be aligned). Since the matrix
is symmetric and has O’s on the diagonal, we just store the k* (k -1)/2 entries which lie

above the diagonal.
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Step 2. Constructing a cost matrix

Initi ali ze akxk cost matrix (where k isthe number of sequencesto be digned);

Find the largest value SRy« in the distance matrix;

Fill the cost matrix with the function: cost(i,j) = SRnax — SHi, j) +1.

Step 3. Finding the order of M SA by TSP algorithm

Using the symmetric Traveling Salesman Problem (TSP agorithm, an ogimal
circular order based onthe distances between the given sequences can be found.This
optimal circular order can be used to construct aM SA (15).

In TSP, we ae given amatrix M that contains the k* (k-1)/2 distances of n cities,
and we ned find the shortest tour where ead city isvisited orce In ou case, the dties
correspondto the sequences and the distances are the scores of the pairwise dignments.
However, we ae interested in the longest, na shortest tour, aswe ae interested in the
maximum SP-score for aMSA. To be aleto use aty avail able TSPalgorithm, we built
anew cost matrix with the function cost(i,j) = SPnax — SR, j) +1in Step 2.

The Traveling Salesman Problem is NP hard (20, pp.115). But it is very well
studied and ogimal solutions can be caculated within afew hours for upto 1000cities
andin afew secndsfor upto 100cities (16). For red appli cations we have seldom more
than 100sequences to compare simultaneously. In my software, the branch-and-bound
tedhnique is used to solve the TSP. The dgorithm and source @de wme from Drs.
Donald L. Kreher and Douglas R. Stinson (17, pp.127143).

Step 4. Assembling the M SA

Asauming the optimal circular order is{s;, S, ... S}, ah MSA isassembled

progressvely. First, doan optimal alignment of sequences s; and s, using the Needleman-



23

Wunsch algorithm. The sequences in this alignment with the gaps are called t; and t;,
Then, align the remaining sequences one-by-one against previously aligned sequences
until al n sequences are in the MSA. In detail, the procedure to add a sequence sq+; into a

partialy aligned MSA A" = <ay, ay, ..., &> can be done in the following two steps (15):

1) Take sequence s and calculate an optimal pairwise alignment with the next
sequence S+1. The sequencesin this alignment with the gaps are called t, and

tk+1.

.|.
I
[
|

2) Insert al gaps from ty that are not already present in ay into all previously
aligned sequences A’ =<ay, ay, ..., a>. Insert al the gaps that were present
in ax into both, tx and ty.1, except for the gaps that are already present in ty.

Add a1 to thealignment A’.

H
|

0

|
Ll

1

04 [ ’u..|..|
|
|

0 [ |J_|_||
|

Step 5. Calculating sum-of-pairs score of MSA
The SP score of the resulting MSA is used to evaluate the quality of the MSA.
The SP score is defined as the sum of all pairwise scores between all pairs of lettersin the

columns of the multiple alignment A, and is calculated by the following algorithm.



SPscor e(A)
/' nput: aMSA A={ a;, ap, .., a}
I/ Output: sop (SP score) of A
sop - O
for j — 1tolen
for i — 1tokdo

sop — sop +w(ai[h], g[h]) Figure
Il w(a[h], a[h]) = score from the substitute matrix if match or
/I mismatch. Otherwise w(ain, an) = gap penalty

return sop
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CHAPTER 4
SOFTWARE DESIGN AND IMPLEMENTATION
Architecture
My software package tspMSA is an implementation of the progressive alignment
of multiple protein sequences using a Traveling Salesman Problem approach. The
package has five major modules; Sequence Reader, Distance Calculator, TSP Solver,

MSA Builder, and MSA printer. Its architecture is depicted in Figure 4.1.

Input file
(in FASTA format)

Sequence Reader
(parses sequences, and builds a string array to
hold sequences)

'

Distance Calculator
(using a DP pairwise alignment algorithm)

'

TSP Solver
(using a branch-and-bound technique to find an
optimal circular order for building the MSA)

'

MSA builder
(building the MSA progressively based on the
TSP order)

!

MSA printer
(Output the MSA in GCG M SF format)

Figure 4.1. The architecture of tspMSA

25
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Process Description
* Input file

The format for input filesisamodified version of FASTA, which is very popular
and compatible with most software used in biological research.

A sequencein FASTA format begins with a single line description, followed by
lines of sequence data. The description line is distinguished from the sequence data by a

greater than (">") symbol in the first column. An example sequencein FASTA format is:

> SequenceNane description here
ATGTCGTTACCGT CGT CGGGACCGACCATG
AGAGCGA

In order to allow for easy termination of the Sequence Reader, | add two '>' sat
the end of each input file. The following file is an example input file that contains three

sequences.

> Randseql first randomy generated seq
GGTGGTTACTAACCGTAAGAGAT GATGT CGCCGT GGT CGCGT GGCGCCGCGGACCCAG
TGTACTTCTCTGAGTCGT TCTAGATCGACCAGT CTTCTAGCT TGCCCGT GAGGTATGG
AGCCGCATATTGCCCACAAT

> Randseq2 second randonmy generated seq

GCGACGCGT CTCTACACCAGACCCT TCTGT TGAGGAAGAGT GCCTGAGT GCAGGT CCT
AGAACCCACTGGAACT TGAAGGGCGCGT CTCACTGGT CGT GAGAAGGCTCCGTCGATA
AAAGT CCATGCCAAGGACAT

> Randseq3 third randomy generated seq

GGCGAGT CTGAACTCACAAATATTGCACGAGAGT TTAGTGTATGT TCCTCTTAGCCTG
AACAATAGT TTAGT GAGCGGAAAT GCAACCGCGAGGCGGT CCCCTGCCCTTGTAATGG
ACCTGT TGCCCGT CGGATAT

>>

Figure 4.2. A sample of amodified FASTA format file of 3 sequences
* Sequence Reader
Theinput fileis parsed, and two string arrays are built from parsed strings. One

string array, seqt[], is made of sequencetitles, each of which comes from the first
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4 |etters of the sequence description. The other string array, seq[], contains protein

sequences.

» Distance Calculator

First, an upper diagonal matrix of k(k-1)/2 pairwise distances between all pairs of
sequences sy, S, -..,Sk is calculated using the dynamic programming pairwise sequence
alignment algorithm (26). In the distance matrix, each element is the sum-of-pairs score
of the corresponding pair of sequences.

In order to use TSP Solver, we need to build a new cost matrix with the function
cost(i,j) = SPmax — SP(i, j) +1. Since we areinterested in an optimal circular order to
build an MSA with the maximum SP-score, we need look for the longest with our TSP
Solver. However, the TSP agorithm used finds an optimal shortest tour. This program is
easily solved by subtracting each SP score in the distance matrix from alarge number
(here | use the maximum SP score in the distance matrix plus 1).

» TSP Solver

The Traveling Salesman Problem is NP hard. But it is very well studied and
optimal solutions can be calculated within afew hours for up to 100 citiesand in afew
seconds for up to 30 cities. For real applications we seldom have more than 100
sequences to compare simultaneously. IntgMA  abranch-and-bound technique is used
to solve the TSP. The algorithm and source code come from Drs. Donald L. Kreher and
Douglas R. Stinson (17, pp.127-143).
¢ MSA Builder

Assuming the optimal circular order is{s;, S, ... .}, aMSA isassembled

progressively. First, do an optimal alignment of sequences s; and s, using the Needleman-
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Wunsch algorithm. The sequences in this alignment with the gaps are called t; and t;,
Then, align the rest of the sequences one-by-one against the previously aligned sequences
until al n sequences arein the MSA.

The SP score of the resulting MSA is calculated and used to evaluate the quality
of the MSA.
e MSA printer

The output fileis produced in aformat similar to the MSF format. MSF is the
multiple sequence alignment format of the GCG sequence analysis package. MSF is
accepted by many bioinformatics software packages. Also, | include the SP score of the
MSA in the output file generated by my program. These features will be helpful for

comparing my output with that of others.
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An example of my output file containing the SP score and the multiple sequence

alignment is shown below.

Indicates output staring point

/ and proaram name
'l tspMSAL. O

Input file: @sp70.1ist

substitution table nane: pan?50

GapLengt hWeight: 0

Sequences are entered in the follow ng order:
1) kcc2 kcc2_orysa List of input sequence titles
2)dnk_ dnk_gcn2 « and descriptions
3) kpfg kpf g_human
4)daf 1 daf 1_yeast

-- Conpute Pairwi se Sumof-Pair Score --

kcc2 drk kpfg daf 1 -
kce2 0 2100 1975 1944 — Parwise SPscore
dnk_ 2100 0 1064 1988
kpfg 1975 1964 O 1933

daf 1 1944 1988 1933 0

-- Compute TSP optimal route --
n=4
TSP3 wi th ReduceBound: NODES=6192441
Optinmal Cost = 6913
Route = [0, 2,1, 3]

aligning.........
**The SUM OF- PAIRS score of this alignment is: 19560 4— SPscoreof MSA

---- RESULT of Alignnent ----

MSA itself
/I €———Symbol of header ending Y !

kcc2 NYI FGRTLGA GSFGVYWRQAR KLSTNEDVAI KI LLKKALQG NNVQLOMLYE
drk_ DFEI LKVI GR GAFSEVAVWK MKQTGQVYAM KI MNKWDML.. KRCGEVSCFRE
daf 1 Q RLTCRVGS GRFGNVSRGED YR. . GEAVAV KVFNALDEPA FHKETEI F. E
kpfg TRKFKVELGR GESGTVYKGV LED. DRHVAV KKLEN. . . .. VRQKEVFQA
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I mplementation

My program, tspMSA, described above iswritten in the C language and run under
the UNIX operation system.

My implementation includes two free programs, “ALIGN” from D. F. Feng and R.
F. Doolittle (4-6), and “TSP3” from D. L. Kreher and D. R. Stinson (17, pp.127-143),
which are available for free downloading from:

http://www-bi ol oqy.ucsd.edu/~msai er/transport/software.html and

http://www.math.mtu.edu/~kreher/cages.html

ALIGN hasthe following major functions (Table 4.1):

Name Function Comment

read _seq() | Parseinput file Only recognizesfilesin therarely used
Old Atlas format

aign() Pairwise sequence alignment

bord() Build a distance matrix Uses a specia scoring function

and compute the guide tree

mulaign() | Output MSA

main( ) Control data flow Adds sequences one-by-oneto MSA
and assemble MSA by iteratively calling align( )

Table4.1. Functions in ALIGN

Based on the ALIGN and TSP3, first | integrated TSP3 into ALIGN in order to
achieve my goal, then | added new functions and improved some existing functions. My

program, tspMSA, has the following major functions (Table 4.2):
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Name Function Comment
read_seq() Parse input file, establish string | Re-implemented from AEN  to
arrays which hold sequences. read the most popular format,
FASTA.
align() Do pairwise alignment using Modified from AKN
SP Score.
distCalc() Calculate pairwise SP scores, | Re-implemented from AKN  to
build a distance matrix, build a | compute the distance matrix using
cost matrix. SP score function.
tspOrder( ) For a given cost matrix, Modified from T8
compute the optimal route A timer function is added to
(circular order for building terminate tspOrder() after acertain
MSA). time.
RandomOrder() | Generate arandomized order Implemented to build the MSA from
of the given sequences. arandom ordering of the given
sequences.
sop() Compute the SP score of an Implemented to evaluate the quality
MSA (aso parsethe MSFfile | of the MSA, to parse the MSF file
and convert the aligned and convert the aligned sequences
sequencesto FASTA format). | in FASTA format.
printMSA() Output the MSA. Improved from AKN  to output the
MSA asa GCG MSF format file.
main() Control data flow and generate | Modified from AKIN
the MSA.

Table 4.2. Funtions in tspMSA




CHAPTERS
EVALUATION OF THE PROGRAM

TEST DATA

In order to comprehensively evaluate a new alignment program, we need alarge
number of accurate reference alignments which can be used as test cases. It has been
shown (23) that the performance of alignment programs depends on the number of
sequences, the degree of similarity between the sequences, the lengths of the sequences,
andthe existence of large insertions and N/C-terminal extensions.

Thompson et al have developed a benchmark alignment database called
BAIIBASE (Benchmark Alignment dataBA SE) specifically for evaluating new alignment

programs (36). It is available on the World Wide Web at http://www-igbmc.u-

strasbq.fr/Biolnfo/BAIiIBASE. The sequences included in this database are selected from

alignmentsin either the FSSP_(Fold classification based on Structure-Structure
alignment of Proteins) database or HOMSTRAD (Homologous Structure Alignment
database), or from manually constructed structura aignments taken from the literature.
The alignments of sequences sharing the same three-dimensional fold have been
validated to ensure the alignment of functional and other conserved residues. The VAST
(Vector Alignment Search Tool) Web server (22) is used to confirm that the sequencesin
each alignment are structural neighbors and can be structurally superimposed. Functional

sites are identified using the PDBsum database (19) and the alignments are manually

32
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verified and adjusted, in order to ensure that conserved residues are aligned as well as the
secondary structure elements.

BAIIBASE2.0 currently consists of 142 reference alignments, containing over
1000 sequences. Those high-quality alignments are organized into 8 reference sets that
represent some of the most common problems currently encountered when aligning real

families of proteins.

Reference set 1 contains alignments of equi-distant sequences, i.e., the percent
identity between two sequences is within a specified range.
* Referenceset 2 aligns up to three "orphan™ sequences (less than 25% identical) from
reference set 1 with afamily of at least 15 closely related sequences.
* Reference set 3 consists of up to 4 sub-groups, with less than 25% residue identity
between sequences from different groups.
» Reference set4 contains alignments of up to 20 sequences with N/C-termina
extensions (up to 400 residues),
» Reference set 5 contains alignments of sequences with internal insertions (up to 100
residues).
» Reference set 6 contains alignments of sequences with repeated fragments.
METHODOLOGY
To assess the the quality of an alignment, the sum-of-pairs score is calcul ated.
The higher the SP score of aMSA, the better the quality of the MSA.
A program, sop, was implemented to calculate the SP score of aMSA. Also, the
sop program parses the input reference alignment file to extract the original protein

sequences and saves these sequences into an output file of FASTA format. Later on, the
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resulting file can serve as the input for my program, tspMSA, or the programs that | want
to compare with, such as PILEUP and CLUSTALW.

RESULTSAND DISCUSSION

1) Performance of TSP Solver

An efficient TSP Solver, which can find the optimal circular order in reasonable
time and computer memory, is critically important for my program, tspMSA.

The TSP3 program from Drs. Donald L. Kreher and Douglas R. Stinson is based
on a branch-and-bound TSP algorithm . To evaluate it, | generated random instances of
the TSP problem on n cities. The distances between any pair of cities were randomly

chosen integers between 0 and MAX. The time of computation and the number of nodes

in the state space trees are shown in Table 5.1.

cities(n) MAX nodes Time (s)
10 200 74 0.01
15 200 1082 0.19u
20 200 31203 2.29u
25 200 105975 63.14
30 200 1167178 1072.68
10 2000 108 0.01
15 2000 3450 0.37
20 2000 50028 14.45
25 2000 1109759 544.1
30 2000 5766607 3890.56
10 20000 280 0.02
15 20000 4771 0.63
20 20000 205071 55.91
25 20000 1361174 699.46
30 20000 6446124 6000

route on random instances of the TSP problem.

Table 5.1 The number of nodesin the state space trees and the running time to find the optimal
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The results show that TSP Solver can find an optimal solution on an instance of
30 citieswith MAX of 2000 in 3890.56 seconds and the number of nodesin the state
space trees is 5766607. If we assume a node takes 1 byte, we need 5.8 mega bytes, which
is not a problem for most computers. | also tested tspMSA on areal problem with 162
protein sequences and MAX of 4000 for 100 minutes. The number of nodes was 8916700
when the program was terminated, not yet having reported an optimal solution.

Infact, | found that TSP Solver, TSP3, never reported an optimal solution within
100 minutes on instances of more than 50 cities. Some researchers report that optimal
solutions can be calculated within afew hours for up to 1000 cities and in a few seconds
for up to 100 cities (29). However their code was not available for experimentation

2) Execution times and quality of solutions

For large scale problems, it is unrealistic to ask for optimal solutions with limited
computer memory and time. However, there are heuristics for large scale problems that
calculate near optimal solutions that are within 1% to 2% of the optimum (9, 29).

To evaluate the performance of TSP Solver on large scale data sets, | explored the
relationship of the execution time and the quality of the solution. The results are
summarized in the Table 5.2.

The results showed that, after running for 20 minutes, TSP Solver found a near
optimal solution for the instances of up to 300 cities. For instances of MAX =20000, the
costs obtained by running either 20 or 100 minutes were very close or exactly same,
while the number of nodes increased by 150% up to 660%. For other instances, the cost
obtained by running 20 minutes decreased at most 4.5% compared with that obtained by

running 100 minutes, while the number of nodes increased by 40% up to 450%.



Based on these results, | set the default execution time of tspMSA to 20 minutes.

MAX n| ExecTime(min.) Cost Nodes
100 50 5 217 410375
50 10 206 777771

50 20 194 1454733

50 100 194 2633672

100 5 284 371897

100 10 283 683685

100 20 283 1175990

100 100 278 5326311

300 5 infinity 15690

300 10 267 63122

300 20 262 205490

300 100 258 1131275

2000 50 5 4806 396718
50 10 4646 673568

50 20 4646 917608

50 100 4428 4350398

100 5 5356 162302

100 10 5356 388742

100 20 5257 722723

100 100 5129 2737193

300 5 infinity 15690

300 10 7057 66729

300 20 7003 241179

300 100 7003 1080409

20000 50 5 54027 490154
50 10 54027 948164

50 20 54027 1420971

50 100 54006 5710316

100 5 60288 258405

100 10 60168 487423

100 20 60168 874483

100 100 60164 3498741

300 5 infinity 15690

300 10 73203 74273

300 20 73203 254773

300 100 73203 1690807

Table 5.2 Execution time, cost, and nodes
The cost infinity indicates that no TSP tour was found; This only happened when

the time was limited to 5 minutes.
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3) Comparison with SP scores of M SAs generated by other programs

To evaluate my tspMSA on multiple sequence alignments, | selected some
reference data sets from the BALIBASE (version 2.0) and fed them to my tspMSA and
CLUSTALW.8. These reference data sets were multiple sequence alignments generated
by PILEUP.

The SP scores and execution times are shown in Table 5.3. Using the reference
data sets, the SP scores obtained by my tspMSA were higher than those obtained by either
PILEUP or CLUSTALW, except for only one case, ref5: kinase53. We should note that
some sequences of that exceptional case have long internal insertions, which might cause
the SP scores to be decreased. More experiments were carried out on this data set to
explore the order of sequencesto be aligned and the SP score (see later in this section,
and in section 6).

The versions of PILEUP availabe at University of Georgiaisinstalled at the
Research Computing Resource (RCR). However, | could not test the execution time
because all tasks on RCR are submitted to atask queue and no value on the execution

timeisreturned. Thereforein Table 5.3 the execution times of PILEUP are not included.
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data set feaure SPscore on MSAs and Exeaution Time
(n, s—-l)l PILEUP CLUSTALW tspMSA
Refl: 1ub 4, 76-94 2376 3158 (0.168) | 3205 (0.0%)
1pc 5,116-108 |9823 9955 (0.47s) | 10002 (0.168)
¥mb 5, 98-104 |6040 6044 (0.265) | 6061 (0.10v)
1pi 4,246-252 (11969 12081 (1.6F) | 12274 (0.419)
Thm 5, 269-279 |15573 15594 (1.8%) | 15630 (0.44%)
ga4 5, 335-395 20983 23683 (4.4%) | 23777 (1.01s)
1yl 4,938-991 |50835 51024 (22.75%) | 51287 (3.3%)
Igpb 5, 796-828 |82666 82351 (22.58&) | 82860 (4.3%)
Ref2: 1csy 19, 75-99 [112407 [112507 (1.805) | 115971 (172.8K)
Knase2 |18, 257-287 |344437 |344283 (22.8%) | 353901 (703.24%)
Ipt 20, 347-389 |330650 (333998 (24.7%) | 334700  (21.5%)
Ref3: 1wit 19, 85-102 (115898 |119723 (2.1%)| 121146 (1193.75K)
Knase3 |23, 243-312 |518529 |523320 (30.6%) | 537566 (303.0%)
ld 21, 324-388 592142 595400 (34.6%)| 60733 (120G
Ref4: kinasedl | 7,289-481 43234  |45446 (10.93) | 48939 (5.43%)
knased42 |18, 257-631 |145749 (137424 (76.23%) | 184349 (1193.75F)
Ref5: kinaseb1 | 5, 285-358 21599 22285 (4.7%5) | 2242 (2.3%)
knase53 |19, 256-384 |331007 |315367 (30.53%) | 320587* (1159.78)
Ref6: dean 22,578-2176 |1145541 (1179323 (105.93) 1237392 (120G")
ion 53, 496-2039 |2352858 [2453544 (134.7B3)| 2508615 (1200s")

Table 5.3 The SPscores and exeaution times obtained from diff erent alignment programs

Ly, ', and ‘I’ mean the number of sequences, the shortest sequence, and the
longest sequencein the data set;
* The SPscoreis lower than that obtained by PILEUP.
*No ogtimal solution is returned.
Ref 1: equi-distant sequences with various levels of conservation;
Ref 2: families aligned with a highly divergent "orphan" sequence
Ref 3: subgroups with < 25% residue identity between groups,

Ref 4: sequences with N/C-terminal extensions;

Ref 5: sequences with internal insertions (upto 100residues);

Ref 6: sequences with repeaed fragments.




4) Execution times and SP scores
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For some reference data sets, | did not obtain an optimal circular order when

tspMSA was executed up to 20 minutes. To evaluate the quality of MSAs built from near

optimal circular orders, | ran tspMSA on the following data sets for certain times. The SP

scores of these MSAs were calculated and listed in Table 5.4.

Time(s) 120 300 600 1200 6000

data set
Ref3:1ped 603648 607333 607333 607333 608008
Ref4:kinase42 187054 189141 189141 194349 200114
Ref5:kinase53 332338 329297 320587 320587 320587
Ref2:1cpt 335678 334700 334700 334700 334700
Ref6:ion 2508615 2508615 2508615 2508615 2508615
Ref6:deah 1233887 1237185 1237392 1237392 1230908
big.seq 8091586 8094191 8094191 8094191 8099394

Table 5.4. The SP cores of MSASs obtained from different execution times

The results show that the relative difference of SP scores obtained from 20

minutes and 100 minutes is within arange of -0.5% to 2.9%. Thisindicates that the

default execution time (20 minutes) is reasonable. The negative values indicate that a

better TSP tour does not aways promise a better alignment.

5) Starting point and direction of thecircular order and SP score of the M SA

Basically, the TSP circular order is aheuristic method of determining alinear

order in which to apply progressive alignment to the given sequences. From an optimal

circular order, we only get anear optimal MSA.
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To investigate the effect of assembling order on the SP score, | tested to seeif we
could increase the SP score by starting at different pointsin the circular order and going
different directions.

First, | selected the Ref2:kinase2 as a normal test case. The optimal circular oder

for thisdatasetis[0,1,17,16,2,3,4,6,8,9,11,12,15,5,7,13,14,10]. Theresults are shown in

Table5.5.
starting point SP score (Forward) SP score (Backward)
0 353901+ 353772+
1 352383+ 351338+
17 349806+ 345276+
16 352713+ 347244+
2 354526* + 343670
3 350964+ 343786
4 350077+ 343913
6 348867+ 348273+
8 351661+ 347753+
9 348754+ 348398+
11 345526+ 351753+
12 347820+ 353480+
15 345785+ 348929+
5 350113+ 353745+
7 347738+ 350068+
13 345460+ 350216+
14 346159+ 345670+
10 352734+ 346129+

Table 5.5. Starting points, directions of the circular order and SP scores of the MSAs

for Ref2:kinase2
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* The SP score of this MSA is higher than that of the MSA built from an optimal TSP circular order;
+ The SP score of this MSA is higher than that of the MSA generated by either PILEUP or

CLUSTALW.

The results show that, when the ref2:kinase2 was tested, among the al possible
combination of starting points and directions, only one starting point (indicated by the *)
with the forward direction led to a higher SP score than the SP score of the MSA starting
from the first sequence in the optimal circular order. All MSAs built from TSP orders
with the forward direction, no matter where they start, have a higher SP score than that of
MSAs generated by either PILEUP or CLUSTALW. The circular ordersin backward
direction led to lower SP scores than that from the optimal TSP order, no matter starting
from which sequence. In some cases, the SP scores were lower than that of MSA
generated by either PILEUP or CLUSTALW.

| also did same experiment on the test case Ref5:kinase53 (which my tspMSA did
not beat PILUP). The result is shown in Table 5.6. Please notices that: thefirst 5
sequences in Ref5:kinase53 have long internal insertions at different points. The optimal
circular order is[0,2,1,4,5,6,3,7,12,16,11,10,17,13,14,18,15,9,8] .

Theresult isinteresting. With the forward direction, when two or more sequences
with long insertions were assembl ed first, we certainly got abad SP score (Table 5.6
column 2, rows 1, 2, 3, and 19). When normal sequences were assembled first, the SP
scores became significantly higher (Table 5.6 column 2, rows 5 to 18, except for row 16).
When | simply put all sequences with long insertions to the end of the input file, and the
SP score was 338152, which is significantly higher than that of MSA generated by either

PILEUP Or CLUSTALW.



The circular orders in backward direction led to MSAs with higher SP scores,

which were not only higher than that of MSA from optimal TSP order, but also higher
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than that of MSA generated by either PILEUP or CLUSTALW except for 1 case (Table 5.8

row 10).
starting point SP score (Forward) SP score (Backward)
0 320587 339409* +
2 32844 7* 335280* +
1 328512* 336359* +
4 333175+ 332506* +
5 334498* + 338266* +
6 336012* + 334328*+
3 334659* + 335849* +
7 340500* + 335529* +
12 340590* + 333311*+
16 339501* + 328601*
11 338732 + 335556* +
10 340863* + 335648* +
17 337537*+ 339418* +
13 334937* + 339717*+
14 334937+ + 336997+
18 330978* 332875*+
15 336679* + 338785*+
9 332193 + 338889* +
8 314934 339202* +

Table 5.6. Starting points, directions of the circular order and SP scores of the MSAs

for Ref3:kinase53

* The SP score of this MSA is higher than that of the MSA built from an optimal TSP circular order;
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+ The SP score of this MSA is higher than that of the MSA generated by either PILEUP or
CLUSTALW.

One possible explanation is that: when MSA was built from the optimal TSP
order, we, by chance, started from a sequence with long insertions (sequence 0), and
subsequently we added more sequences with long insertions (sequences 2, 1, and 4). This
led to more gapsin overall MSA, and thus we get alower SP score. However, when
using the reversed optimal TSP order, although we started with sequence 0, we added
sequences with long insertions after we added normal sequences, therefore we got a
higher SP score (Table 5.6 column 3, row 1). The SP score will tend to lower if we align
more sequences with long insertions before we do other normal sequences (Table 5.6
column 3, rows 2, 3 and 4). This result suggests that, when we have sequences with long
insertions, in order to get a higher SP score, we should avoid to build MSA from an order
that has more than one sequences with long insertions at the beginning.

The progressive alignment follows the rule, “once a gap, dways agap”. If we
start alignment with sequences containing long insertions, the gaps derived from
insertions will propagate in the susequent process. If we start alignment with normal
sequences and add sequences with long insertions at the end of alignment, we will get
fewer gaps and a higher SP score.

For the future improvement, we can design a step to select the maximum SP score
of MSAs built from all possible circular orders, because after finding the optimal circular
order (the most time-consuming step), to assemble the MSA only takes about 3 seconds.

6) Random order progressive alignments

To explore whether arandomly generated linear order could lead to a better SP

score than the optimal circular order generated by TSP agorithm does, | implemented a



random sequence generating function and tested 500 randomly generated orders aligning
the Ref2:kinase2 data set. | found only 1 case out of 500 that gave a higher SP score than
the one derived from the optimal circular order generated by TSP.

The running time for building an MSA from an optimal circular order generated
by TSP is 703.24 seconds, and the running time for building an MSA from arandomly
generated circular order is much shorter (3.80 seconds). However, within the same time
used by the TSP strategy, it is unlikely that a better score will be found using the random
strategy.

7) Large data set

The last experiment was to test my program with alarge data set. | selected 162
protein sequences from BALIBASE and made atest file, big.seq in the modified FASTA
format.

The result was very encouraging. Using my program, tspMSA, the SP score at 380
seconds was 8094191, at 20 minutes was 8094191, and at 100 minutes was increased to
8099394. When | input the big.seq to CLUSTALW, the running time was 379.53 seconds
and the SP score was much lower, 930301. This result suggests that my program may

perform much better when dealing with a set containing many sequences.



CHAPTER 6
CONCLUSIONS

The traveling salesman problem algorithm shows promise for the ordering of
multiple protein sequences using pairwise SP scores. Except for one test case, the SP
scores obtained from progressive alignments based on the TSP a gorithm were
significantly better than the scores obtained from two popular progressive alignment
programs, PILEUP and CLUSTALW.

When aligning more than 20 sequences with lengths over 200, my program,
tspMSA, may need alonger execution time to find the optimal circular order to build an
MSA. Usualy, by running the TSP Solver for 20 minutes, the MSA obtained by my
program has a higher SP score than that obtained from either PILEUP or CLUSTALW.

For atest data set which contains sequences with long internal insertions, alinear
order starting from two or more sequences containing long insertions can lead to a bad SP
score.

Within the same time used by the TSP strategy, it is unlikely that a better score
will be found using arandomly generated order for the progressive alignment.

On alarge data set containing 162 sequences, my program performs much better

than CLUSTALW.
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