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The construction of multiple sequence alignments (MSAs) is a fundamental 

problem in computational biology, but computing an optimal MSA is NP-hard. It is 

therefore necessary to develop heuristics to come as close to the optimum as possible but 

operate within reasonable time and space bounds. In this thesis, an approach pioneered by 

Korostensky and Gonnet is developed and tested extensively. The idea is to apply a 

Traveling Salesman Problem (TSP) algorithm to find an optimal circular order to build an 

MSA progressively. The sum-of-pairs (SP) score is used for computing pairwise 

alignments and evaluating the quality of an MSA. Using the reference alignments from 

the benchmark alignment database BALISBASE, the performance of my program, 

tspMSA, was evaluated extensively with more than 60 reference data sets. Except for one 

test case, the SP scores obtained from the TSP algorithm are significant better than the 

scores obtained from two popular progressive alignment programs, 
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. The SP scores of MSAs built from different starting points and different 

directions of an optimal circular order are studied. 
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CHAPTER 1 

BACKGROUND 

 Two fundamental building blocks of living creatures are DNA (deoxyribonucleic 

acid) and proteins, which are long linear chains of chemical components. The DNA 

molecule is made up of four different nucleotides, each denoted by one of the letters A, 

C, G or T.  Proteins are made up of 20 different amino acids (or residues) which are 

denoted by 20 different letters of the alphabet. So, the sequence of either a DNA or a 

protein molecule can be simply viewed as a string of letters. 

Alignment of DNA and protein sequences is one of the most important primitive 

operations in computational biology, serving as a basis for many other more complex 

manipulations. The basic concept of this operation is conceptually simple. However, the 

problem of computing an optimal solution is NP complete (13). It is therefore necessary 

to develop heuristics that come as close to the optimum as possible but operate within 

reasonable time and space bounds.  

1. Definition of sequence alignment 

Sequence alignment is the procedure of comparing two or more sequences by 

looking for a series of individual characters or character patterns that are in the same 

order in the sequences. If we align two sequences, the operation is called a pair-wise 

alignment; if the number of sequences to be aligned is more than two, the operation is 

called a multiple sequence alignment. 
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To align sequences by hand, they are written across a page in rows. Identical or 

similar characters are placed in the same column, and non-identical characters can either 

be placed in the same column as a mis-match or opposite a gap in one of the other 

sequences. In an optimal alignment, non-identical characters and gaps are so placed to 

bring as many identical or similar characters as possible into vertical agreement. Two 

types of sequence alignment have been recognized, global and local, as illustrated below. 

2. Global and local alignment of protein sequences 

Global alignment compares sequences over their entire lengths, and is appropriate 

for application to sequences that are expected to share similarity over the whole length. In 

global alignment, an attempt is made to maximize regions of similarity and to minimize 

gaps.  

Local alignment finds subsequences of the input sequences which align at the 

highest score. In other words we are ready to ignore any deletions which happen at the 

beginning or end of any of the aligned fragments. A fragment is a consecutive 

subsequence (or substring) of a sequence. In local alignment, stretches of sequence with 

the highest density of matches are given the highest priority, thus generating one or more 

islands of matches in the aligned sequences.  

Figure 1.1 illustrates a global alignment and a local alignment of two hypothetical 

protein sequences (24). Vertical bars between the sequences indicate the presence of 

identical amino acids. Dashes indicate fragments that are not included in the alignment.  

The global alignment is stretched over the entire sequence lengths to include as 

many matching amino acids as possible. Although there is an obvious region of identity 
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in this example (the sequence FGKG), a global alignment may not align such regions in 

order to favor matching more amino acids along the entire sequence lengths.  

The local alignment of the same sequences tends to stop at the ends of regions of 

identity or strong similarity. A much higher priority is given to finding these local regions 

than to extending the alignment to include more neighboring amino acid pairs. This type 

of alignment favors finding conserved amino acid motifs in related protein sequences. 

        LGPSTKQFGKGSSSRIWDN 
        |      ||||   |  |     
        LNQIERSFGKGAIMRLGDA  global alignment 
        |      ||||   |  |     
        LNQIERSFGKGAIMRLGDA 
 
 
        -------FGKG-------- 
                     
        ------FGKG---------  local alignment 
              ||||      
        ------FGKG--------- 
 

 
Figure 1.1. Alignment of two protein sequences. 

         
3. Why perform sequence alignments? 

Multiple sequence alignments are usually undertaken in order to perform a 

function such as one of the following:  

• Determination of consensus regions of several sequences;  

• Characterization of protein families by identifying shared regions; 

• Molecular evolution analysis of a gene/protein family; 

• Prediction of the secondary and tertiary structures of new sequences;  

• Prediction of the function of new sequences. 
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There are many other functions that might be the goal of a multiple sequence 

alignment. For example, by making a multiple sequence alignment, we can find that two 

or more sequences are similar. If many characters in one sequence are in the same order 

as they are in the other sequence, then we say they are similar. We know 1) or 2) may be 

true for similar sequences: 1) the sequences may share a common origin - a common 

ancestor sequence. If the similarity is suff iciently convincing or if we have additional 

evidence for an evolutionary relationship, then we say that the sequences are 

homologous. 2) the sequences may have the same or related structure and function. The 

stronger the alignment between sequences, the more likely they are to be related. Very 

similar sequences that are almost identical along their lengths almost certainly have the 

same function. Sequences that are only weakly similar may or may not be related, and no 

firm conclusions can be drawn about their relationship.  

4. Algorithms for multiple sequence alignment 

This thesis is devoted to global alignment of multiple protein sequences, so 

hereafter the terms alignment and MSA mean global alignment of multiple protein 

sequences.  

 Definition: Global Multiple Sequence Alignment (MSA) 

 Given a set of sequences S ={ s1, s2, …, sk} with  si  ∈ Σ∗  where  Σ∗ is a finite 

alphabet, a multiple sequence alignment is a set of sequences A = < a1, a2, …, ak > with 

ai  ∈ Σ’ ∗  where Σ’ = Σ ∪ { “ -” } and {“ -” } ∉ Σ.  All sequences in A have some common 

length n and therefore can be arranged in a matrix of k rows and n columns. The sequence 

obtained from ai  ∈ A by removing all  “ -” gap characters is equal to si. 
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The problem of finding an MSA can be solved by either a dynamic programming 

(DP) algorithm or a heuristic algorithm.  

 4.1. Dynamic programming algorithm 

Basically, dynamic programming is a method for successively optimizing the 

alignments of all pairs of prefixes of the two sequences, adding just one new character at 

a time to a prefix.  

Needleman and Wunsch (26) first used dynamic programming in the comparison 

of two protein sequences. This algorithm sets up a 2-dimensional matrix where each 

sequence is placed along the sides of the matrix. Each element in the matrix represents 

the two residues of the sequences being aligned at that position. To calculate the score in 

position (i, j), one looks at the alignment that has already been made up to that point, and 

finds the best way to continue. Having gone through the entire matrix in this way, one 

can go back and trace which way through the matrix gives the best alignment.  

To evaluate the quality of an alignment, we need some scoring scheme. A popular 

scoring scheme is the so-called sum-of-pairs (SP) function, which adds up the scores of 

each pair of aligned residues. For the SP score function, the higher the score, the better 

the quality of an alignment. So, the optimal alignment is an alignment with  the 

maximum SP score. 

The following is an example of pairwise sequence alignment using 

Needleman/Wunsch techniques. Two sequences to be globally aligned are: 

sequence 1 = G A A T T C A G T T A, and sequence 2 = G G A T C G A    

A simple scoring scheme is assumed where  
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• Si,j = 1 if the residue at position i of sequence 1 is the same as the residue at 

position j of sequence 2 (match score); otherwise  

• Si,j = -1 (mismatch score)  

• g = -2 (gap penalty)  

In the dynamic programming algorithm, alignment is performed in three steps: 

1)  Initialization  

Create a matrix with m + 1 columns and n + 1 rows where m and n correspond to 

the lengths of the sequences to be aligned (Figure 1.2). The first row and first column of 

the matrix are filled with 0s.  

 

Figure 1.2. Initialized matrix 

2) Matrix fill (scoring)  

For each position, Mi,j is defined to be the maximum score at position i,j; 

i.e.,  Mi,j = max{ Mi-1, j-1 + Si,j   (match/mismatch in the diagonal),   

     Mi,j-1 + g  (gap in sequence 1),   

     Mi-1,j + g (gap in sequence 2) } 

Optionally, an arrow is placed to point back to the cell that led to the maximum 

score. The filled matrix is shown below (Figure 1.3). 

0 
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Figure 1.3. Score Matrix with pointers for tracing back 

3) Traceback (alignment)  

The traceback step determines the actual alignment that resulted in the maximum 

score. This step begins in the (n, m) position. It takes the current cell and looks to the 

neighbor cells that could be direct predecessor. This means it looks to the neighbor to the 

left (gap in sequence 2), the diagonal neighbor (match/mismatch), and the neighbor above 

it (gap in sequence1). Since we have kept pointers back to all optimal predecessors, the 

traceback step is simple. At each cell, we just need to find where we move next according 

to the pointers. In the example here, we can get the two possible paths shown in Figure 

1.4. 

    
Figure 1.4. Traceback step 

 
 The alignments corresponding to these two paths are: 
     G A A T T C A G T T A  G A A T T C A G T T A 
     |   |   | |   |     |  |   | |   |   |     | 
     G G A _ T C _ G _ _ A  G G A T _ C _ G _ _ A 

0 
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This method also has been extended directly to the comparison of three sequences 

using a reduced three-dimensional matrix by Murata et al (25) with O(n3) computational 

complexity, where n is the longest length of sequences to be aligned.  

The dynamic programming algorithm guarantees an optimal MSA on a set of 

given sequences. However, the space complexity is O(nk) and the time complexity is 

O(k22knk) if we use the sum-of-pairs score, where k is the number of sequences and n is 

the longest length of the sequences to be aligned.  

In 1989, Lipman, Altschul, and Kececioglu implemented a more refined version 

of this algorithm in their program "MSA". This program in practice is restricted to 

aligning 5-7 protein sequences of 200-300 residues each (21). 

4.2. Heuristic algorithms  

Since searching for the optimal MSA using a DP algorithm is not realistic for 

more than 10 sequences, a number of heuristic algorithms have been developed to carry 

out a multiple global alignment in a reasonable amount of time with a reasonable chance 

of finding a near-optimal alignment.  

These algorithms are heuristic in that they are not guaranteed to find an optimal 

solution. But they run fast, use reasonable memory in practice, and get MSAs with good 

quality at most cases. 

4.2.1 Progressive Alignment 

This approach begins with the alignment of the two most closely related 

sequences (as determined by pairwise analysis) and subsequently adds the next closest 

sequence or sequence group to this initial pair (4, 5). This process continues in an 
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iterative fashion, adjusting the positioning of indels in all sequences. An indel is an 

insertion or a deletion which appears in any aligned sequence.  

The major shortcoming of this approach is that a bias may be introduced in the 

inference of the ordered series of motifs (homologous parts) because of an over-

representation of a subset of sequences. 

A concrete implementation of the progressive algorithm was developed by Feng 

and Doolittle in 1987 (5). The steps can be summarized as follows: 

a) Calculate an above the diagonal matrix of k(k-1)/2 pairwise distances between all pairs 

of sequences s1, s2, …, s n using the dynamic programming pairwise sequence alignment 

(PSA) algorithm (26), 

b) These similarity scores are used to create a clustering order that can be represented as a 

dendrogram. The clustering strategy represented by the dendrogram is called UPGMA, 

which stands for unweighted pair-group method using arithmetic averages (32).  

c) Construct a guide tree from the distance matrix computed in step b);  

d) Build the multiple alignment by first aligning the most similar pair of sequences, then 

the next most similar pair and so on. Once an alignment of two sequences has been made, 

then it is fixed and can only be modified by the insertion of common gaps; 

e) Repeat step d) until all sequences have been aligned. 

 A program called “
��� �������

” (a component of the GCG software package) creates 

a MSA using the progressive alignment method of Feng and Doolittle (4-6).  

 	�
���
�����
 �  is another widely used progressive MSA program. It is very similar to 

the Feng-Doolittle algorithm and works as follows:  
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a) Construct a distance matrix of all k(k-1)/2 unordered pairs of sequences by pairwise 

sequence alignment. Then convert the similarity scores to evolutionary distances using a 

specific model of evolution proposed by Kimura in 1983 (14);  

b) Construct a guide-tree from this matrix using a clustering method called neighbor-

joining proposed by Saitou and Nei in 1987 (30);  

c) Progressively align nodes of the tree in order of decreasing similarity. 

 The time complexity of either progressive alignment algorithm is O(k2n2).  

 4.2.2. Divide-and-Conquer Alignment  

The Divide-and-Conquer Alignment is a fast heuristic algorithm for multiple 

sequence alignment which provides near-to-optimal results for sufficiently similar 

sequences (33, 37). The main idea is first to cut the sequences several times at certain 

points to reduce the length of the sequences, second to align the fragments, and third to 

concatenate the multiple alignments. The method needs time O(kn-1) and space O(k2n2) . 

5. Scoring matrices for sequence alignments 

Early sequence alignment programs used a simple scoring function that scores all 

matches the same and penalizes all mismatches the same. This approach ignores protein 

evolution and structure. Construction of biologically significant alignments should take 

into account the fact that protein evolution is constrained by the chemical properties of 

amino acids, and by the degeneracy of the genetic code. Chemically conservative 

replacements tend to occur more frequently than replacements with amino acids that are 

chemically different. For example, it is far more likely that Leucine will be replaced with 

Isoleucine (both of which are non-polar), than with Aspartic acid (which is negatively 

charged).  
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Many scoring matrices have been constructed to replace the simple scoring 

functions described above. The commonly used scoring matrices are substitution matrices 

based on evolutionary distances. Substitution matrices are constructed by observing the 

frequencies of amino acid replacements in large samples of protein sequences.  

The PAM (Point Accepted Mutations) matrices are the most commonly used 

scoring matrices. They were proposed by Margaret Dayhoff in 1978 (2, 31). Dayhoff 

carefully aligned all of the proteins in several families of proteins and then constructed 

phylogenetic trees for each family. Each phylogenetic tree was examined for the 

substitutions found on each branch. This leads to a table of the relative frequencies with 

which amino acids replace each other over a short evolutionary period.  This table and the 

relative frequency of occurrence of the amino acids in the proteins studied were 

combined in computing the PAM family of scoring matrices. Therefore, PAM matrices 

show probability scores of replacement of amino acids by each other based on natural 

mutation rates in related protein families. For a given replacement, the PAM value is 

proportional to the natural log of the frequency with which that replacement was 

observed to occur. A positive score assigned to two amino acids indicates that these two 

replace each other more often than expected by chance alone, i.e., they are functionally 

exchangeable. A negative score indicates that the two amino acids are rarely 

interchangeable. One PAM unit is defined as the amount of evolutionary change that 

yields, on average, one substitution in 100 amino acid residues. The traditional PAM 

matrix, the PAM250 matrix (Figure 1.5), often referred to as the Dayhoff Matrix, 

assumes the occurrence of 250 point mutations per 100 amino acids or 300 nucleotides in 

the gene.  
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Figure 1.5. PAM250 matrix 

The BLOSUM (Blocks Substitution Matrix) series of matrices are also commonly 

used. BLOSUMs are substitution matrices derived from the observed frequencies of 

amino acid replacements in highly conserved regions of ungapped local alignments. The 

data for the substitution scores in these matrices come from about 2000 blocks of aligned 

sequence segments characterizing more than 500 groups of related proteins (11). 

Substitution matrices have theoretical advantages over alternative methods of 

scoring schemes. From a biological point of view, substitution matrices are based on 

observed mutations. Thus they contain information about the processes that generate 

mutations as well as the criteria that are important in selection and in fixing a mutation 

within a population. From a statistical point of view, substitution matrices are the most 

accurate description of the changes in amino acid composition that are expected after a 

given number of mutations that can be derived from the data used in creating the 

matrices. Thus the highest scoring alignment is the statistically most likely to have been 

generated by evolution rather than by chance. 
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6. Gap Penalty 

A gap penalty is designed to reduce the score when an alignment has been broken 

by an insertion in one of the sequences. The value should be small enough to allow a 

previously accumulated alignment to continue with an insertion in one of the sequences 

but should not be so large that this previous alignment score is removed completely. The 

gap penalty scheme is often used to have a larger gap opening penalty followed by a 

much smaller gap extension penalty. Thus, the score becomes larger as a linear function 

of gap length. One extreme is to allow a constant gap penalty regardless of gap length.  

The gap penalty used in this study is the same value used by ��� �������  and 

	 ����

����� � .
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CHAPTER 2 

RELATED WORK 

Multiple sequence alignment analysis has become an essential tool that enables 

biologists to find characteristic motifs and conserved regions in protein families,  

determine evolutionary linkage, and predict secondary and tertiary structure. With the 

explosive increase in the number of known protein sequences, notably from the genome 

sequencing projects, searching protein databases for homologous sequences, followed by 

the alignment of a new sequence with a large closely related group is now standard 

practice. The development of accurate, reliable multiple alignment programs capable of 

handling these divergent sets of data is therefore of major importance. Although a 

dynamic programming algorithm (10) guarantees a mathematically optimal alignment, 

the method is limited to a small number of short sequences because the computing power 

required for larger data sets becomes prohibitive. To overcome this problem, various 

heuristic approaches have been developed leading to a variety of programs based on very 

different algorithms. This chapter summarizes some of the most commonly used 

programs.  

 1. Software implementing a dynamic programming approach: �����   

�����  is a global optimal multiple sequence alignment program originally written 

by John Kececioglu, Stephen Altschul, David Lipman, and Robert Miner and distributed 

in 1989 (21). Credit for improvements in release 2.0 of the code belong to Sandeep K 

Gupta and Alejandro A Schaffer with some guidance from John Kececioglu (10). 
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�����
 utilizes a variant of a multi-dimensional dynamic programming to produce 

an optimal global alignment between several sequences. 
�����

 implements a branch-and-

bound technique together with a variant of Dijkstra’s shor test path algorithm to greatly 

reduce the amount of space required to solve the the basic dynamic programming 

problem. Generally speaking, 
�����

 will produce better alignments than other multiple 

sequence alignment programs such as ���	� ��
�� � �  or 
�� �	����
 . The drawback to using 

�����
 is that it requires an enormous amount of both computer time and memory to align 

more than a few distantly related sequences. The size of the problems solved by 
�����

 are 

directly related to the sequence lengths, the number of sequences, and the amount of 

sequence diversity. At the Pittsburgh Supercomputing Center (PSC, 

http://www.psc.edu/general/software/packages/msa), there are three versions of 
�����

 

compiled for problems of different sizes: 

    * msa_50_150 - Align fewer than 50 sequences. Each sequence has fewer than 150 

residues; 

    * msa_25_500 - Align fewer than 25 sequences. Each sequence has fewer than 500 

residues; 

    * msa_10_1000 - Align no more than 10 sequences. Each sequence has fewer than 

1000 residues. 

�����
restricts the amount of memory needed by computing bounds that 

approximate the center of a multi-dimensional hypercube. The first bound is producing 

by computing pairwise alignments between the set of sequences. Weights are applied to 

this value to produce the lower bound used by the program. Next a heuristic alignment is 

produced for the sequences. Weights are applied to this value to produce the upper bound 
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used by the program. A delta value is then computed as the difference between these two 

values. The epsilon for each sequence pair may be input by the user or estimated. An 

heuristic alignment is computed and the epsilons are taken to be the differences between 

the projected and pairwise costs. The delta and epsilon values are preliminary measures 

of the divergence between the set of sequences. Thus, closely related sequences will have 

low epsilons and deltas while distantly related sequences will have high epsilons and 

deltas.  

Even though �����  reduces the space required to produce a multiple alignment 

dramatically, it is still uses much more memory than the progressive pairwise technique. 

2. Software implementing the progressive pairwise approach 

The progressive pairwise approach relies on exhaustive pairwise alignments 

between all of the sequences to produce a measure of sequence relatedness. From this 

measure, an algorithm (UPGMA in ��� �
	��
� , Neighbor Joining in ���
�������
� � ) is used to 

develop a joining order. This joining order corresponds to a tree that is used to produce 

the multiple sequence alignment. It should be noted that this tree is not an evolutionary 

tree. After the joining order has been determined, sequences close to each other are 

aligned first. 

 (a) ��� �
	����  

��� �
	��
�  creates a multiple sequence alignment from a group of related sequences 

using progressive, pairwise alignments.  It implements a simplification of the progressive 

alignment method of Feng and Doolittle (4-6). The method used is similar to the method 

described by Higgins and Sharp (12).  ��� �
	����  is usually distributed as part of the 
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Wisconsin Package from the Genetics Computer Group (GCG) (http://www.gcg.com), 

which is licensed to numerous bioinformatics services on the Internet.  

��� �������
 begins by doing pairwise alignments that score the similarity between 

every possible pair of sequences. Each pairwise alignment in 
��� �������

 uses the method of 

Needleman and Wunsch. These similarity scores are used to create a clustering order that 

can be represented as a dendrogram. The clustering strategy represented by the 

dendrogram is called UPGMA, which stands for unweighted pair-group method using 

arithmetic averages (32). 

��� �������
 uses this clustering order and first aligns the two most-related sequences 

to each other in order to produce the first cluster. It then aligns the next most related 

sequence to this cluster. Alignments continue in a progressive fashion until all sequences 

have been included in the final alignment.  

As a general rule, 
�	� ���	�
�

 can align up to 500 sequences, with any single 

sequence in the final alignment restricted to a maximum length of 5,000 characters 

(including gap characters inserted into the sequence by 
��� �������

 to create the alignment).  

(b) � ���
��
	�
� �  

� �����	
���� �  is one of the most popular multiple nucleotide or protein sequence 

alignment programs. It uses a progressive alignment approach (35).  

� �����	
���� �  uses a neighbor-joining method to construct a guide tree. This 

determines the order in which the sequences are incorporated into the alignment. 

Progressive multiple alignments are created by first aligning the most similar of a set of 

sequences and then incorporating less similar sequences successively into the alignment. 

A comparison of multiple sequence alignment programs revealed that � ���
��
	�
� �  
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performs well when aligning equidistant sequences of a similar length and when aligning 

small to large families of similar sequences, in which a few divergent sequences are also 

included in the alignment (36). In both cases, the performance of ���������
	�� �  was 

maintained from short sequences of less than 100 residues to those of over 400 residues. 

 �������
��	
� �  is available on several Internet servers, such as the European 

Bioinformatics Institute (EBI) (http://www2.ebi.ac.uk/clustalw/).  

 3. Other software 

In addition to the software packages mentioned above, numerous new alignment 

algorithms have recently been developed which offer fresh approaches to the multiple 

alignment problem. A common point of interest has been the application of iterative 

strategies to refine and improve the initial alignment. The �������  program (8) optimises a 

progressive, global alignment by iteratively dividing the sequences into two groups, 

which are subsequently realigned using a global group-to-group alignment algorithm. 

�
�����
 (27) uses a genetic algorithm to select from an evolving population the alignment 

which optimizes the ���������
�  Objective Function (OF) (28). The OF is a measure of the 

consistency between the multiple alignment and a library of ���������
��� �  pairwise 

alignments. Hidden Markov models (HMMs) have also been used as statistical models of 

the primary structure consensus of a sequence family (1, 18). The program �
 ! #"  (3) 

uses a simulated annealing method to maximize the probability that an HMM represents 

the sequences to be aligned.
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CHAPTER 3 

DESIGN OF ALGORITHMS 

Adapting an approach pioneered by Korostensky and Gonnet (13), I have 

developed a heuristic method for multiple sequence alignment (MSA) which provides 

near-optimal results for protein sequences. It is assumed that the sequences are related to 

each other.  To compute an MSA, this method first calculates the pairwise sum-of-pairs 

scores for each pair of sequences using the dynamic programming algorithm. Then the 

resulting scores are converted to a cost matrix and sent to a Traveling Salesman Problem 

(TSP) solver. Finally the circular tour determined via the TSP solver is used to provide a 

linear order to assemble the MSA. I will describe these steps in detail below. 

Step 1. Calculating pairwise sum-of-pairs score 

The Needleman-Wunsch dynamic programming algorithm (26) is used to find the 

optimal alignment of two sequences. This algorithm ensures the optimal global alignment 

by exploring all possible alignments and choosing the best. In a pairwise alignment, two 

sequences are padded by gaps to achieve the same length and to display the maximum 

similarity/conservation on a character-by-character basis.  

To find the optimal alignment of two sequences, we first need to fill a score 

matrix by the following algorithm. 

fillMatrix (s, t) 

 // Input: a pair of sequences s and t 

 // Output: a score matrix a[m, n] 
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 m ← length (s) 

n ← length (t) 

for  i ← 0 to m do 

 a[i, 0] ← 0 

for  j ← 0 to n do 

 a[0, j] ← 0 

for  i ← 1 to m  

 for  j ← 1 to n do 

  a[i, j] ← max (a[i-1, j] + g,  a[i-1, j-1] + w(i, j),  a[i, j-1]+g)  

  // w(i, j) is the score from the substitute matrix, g is the gap penalty  

 return a[m, n] 

 
 Then, we traceback the matrix to print out the optimal alignment by calling 

traceback(m, n, len), where len = max(m, n). 

traceback(i, j, l) 

 // Input: a score matrix with pointers 

// Output: an alignment in sequences align-s and align-t with length len 

if i = j = 0 then 

 return 

else if a[i, j] = a[i-1, j] + g then 

 traceback(i-1, j, len-1)  

align-s[len] ← s[i] 

align-t[len] ← - 
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else if a[i, j] = a[i-1, j-1] + w(i, j) then 

 traceback(i-1, j-1, len-1)  

align-s[len] ← s[i] 

align-t[len] ← t[j] 

 else if a[i, j] = a[i, j-1] + g then 

 traceback(i, j-1, len-1)  

align-s[len] ← - 

align-t[len] ← t[j] 

 

An optimal alignment is an alignment which has an optimal sum-of-pairs score. 

The sum-of-pairs (SP) score is defined as the sum of all scores between all pairs of letters 

in the columns of the pairwise alignment.  

For a pairwise alignment a(s, t) made of a pair of sequences s and t and with the 

same length len, the SP score is calculated by: 

             len 

SP(a) = ∑ w(s[j], t[j])   
              j =1 
 

where s[j] or t[j] is a residue in sequence s or t, and w(s[j], t[j]) is the score from 

the substitute matrix if s[j] and t[j] form a match or a mismatch. Otherwise w(s[j], t[j])  = 

gap penalty. 

The SP-score of each optimal pairwise alignment is calculated and saved into an 

kxk distance matrix (where n is the number of sequences to be aligned). Since the matrix 

is symmetric and has 0’s on the diagonal, we just store the k*(k -1)/2 entries which lie 

above the diagonal. 
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 Step 2. Constructing a cost matrix 

Initialize a kxk cost matrix (where k is the number of sequences to be aligned); 

Find the largest value SPmax in the distance matrix; 

Fill t he cost matrix with the function:  cost(i,j) = SPmax – SP(i, j) +1. 

 Step 3. Finding the order of MSA by TSP algorithm 

 Using the symmetric Traveling Salesman Problem (TSP) algorithm, an optimal 

circular order based on the distances between the given sequences can be found. This 

optimal circular order can be used to construct a MSA (15).  

In TSP, we are given a matrix M that contains the k*(k-1)/2 distances of n cities, 

and we need find the shortest tour where each city is visited once. In our case, the cities 

correspond to the sequences and the distances are the scores of the pairwise alignments. 

However, we are interested in the longest, not shortest tour, as we are interested in the 

maximum SP-score for a MSA. To be able to use any  available TSP algorithm, we built 

a new cost matrix with the function cost(i,j) = SPmax – SP(i, j) +1 in Step 2.  

The Traveling Salesman Problem is NP hard (20, pp.1-15). But it is very well 

studied and optimal solutions can be calculated within a few hours for up to 1000 cities 

and in a few seconds for up to 100 cities (16). For real applications we have seldom more 

than 100 sequences to compare simultaneously. In my software, the branch-and-bound 

technique is used to solve the TSP. The algorithm and source code come from Drs. 

Donald L. Kreher and Douglas R. Stinson (17, pp.127-143). 

Step 4. Assembling the MSA 

Assuming the optimal circular order is { s1,  s2, …, sn}, an MSA is assembled 

progressively. First, do an optimal alignment of sequences s1 and s2 using the Needleman-
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Wunsch algorithm. The sequences in this alignment with the gaps are called t1 and t2.  

Then, align the remaining sequences one-by-one against previously aligned sequences 

until all n sequences are in the MSA. In detail, the procedure to add a sequence sk+1 into a 

partially aligned MSA A’ = <a1, a2, …, ak> can be done in the following two steps (15): 

 
1) Take sequence sk and calculate an optimal pairwise alignment with the next 

sequence sk+1. The sequences in this alignment with the gaps are called tk and 

tk+1.  

 

 
 

2) Insert all gaps from tk that are not already present in ak into all  previously 

aligned sequences A’  = <a1, a2, …, ak>.  Insert all the gaps that were present 

in ak into both, tk and tk+1, except for the gaps that are already present in tk.  

Add ak+1 to the alignment A’ . 

 

 
 Step 5. Calculating sum-of-pairs score of MSA 

 The SP score of the resulting MSA is used to evaluate the quality of the MSA. 

The SP score is defined as the sum of all pairwise scores between all pairs of letters in the 

columns of the multiple alignment A, and is calculated by the following algorithm. 
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SPscore(A) 

 // Input: a MSA A = { a1, a2, …, ak} 

 // Output: sop (SP score) of A 

 sop ← 0 

for  j ← 1 to len  

for  i ← 1 to k do 

   sop ← sop + w(ai[h], aj[h]) Figure  
  // w(ai[h], aj[h]) = score from the substitute matrix if match or  

// mismatch. Otherwise w(aih, ajh) = gap penalty  
 
 return sop 
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CHAPTER 4 

SOFTWARE DESIGN AND IMPLEMENTATION 

 Architecture 

 My software package � � �������  is an implementation of the progressive alignment 

of multiple protein sequences using a Traveling Salesman Problem approach. The 

package has five major modules; Sequence Reader, Distance Calculator, TSP Solver, 

MSA Builder, and MSA printer. Its architecture is depicted in Figure 4.1. 

Sequence Reader 
(parses sequences, and builds a string array to 

hold sequences) 

Distance Calculator 
(using a DP pairwise alignment algorithm) 

TSP Solver 
(using a branch-and-bound technique to find an 

optimal circular order for building the MSA) 

MSA builder 
(building the MSA progressively based on the 

TSP order) 

Input file  
(in FASTA format) 

MSA printer 
(Output the MSA in GCG MSF format) 

Figure 4.1. The architecture of � � �������  
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Process Description 

• Input file 

The format for input files is a modified version of FASTA, which is very popular 

and compatible with most software used in biological research. 

A sequence in FASTA format begins with a single line description, followed by 

lines of sequence data. The description line is distinguished from the sequence data by a 

greater than (">") symbol in the first column. An example sequence in FASTA format is:  

> SequenceName description here 
ATGTCGTTACCGTCGTCGGGACCGACCATG 
AGAGCGA 

 

 In order to allow for easy termination of the Sequence Reader, I add two '>' s at 

the end of each input file. The following file is an example input file that contains three 

sequences. 

 

 

 

 

 

 

 

Figure 4.2. A sample of a modified FASTA format file of 3 sequences 

• Sequence Reader 

The input file is parsed, and two string arrays are built from parsed strings. One 

string array, seqt[], is made of sequence titles, each of which comes from the first 

> Randseq1 first randomly generated seq  
GGTGGTTACTAACCGTAAGAGATGATGTCGCCGTGGTCGCGTGGCGCCGCGGACCCAG 
TGTACTTCTCTGAGTCGTTCTAGATCGACCAGTCTTCTAGCTTGCCCGTGAGGTATGG 
AGCCGCATATTGCCCACAAT 
> Randseq2 second randomly generated seq  
GCGACGCGTCTCTACACCAGACGCTTCTGTTGAGGAAGAGTGCCTGAGTGCAGGTCCT 
AGAACCCACTGGAACTTGAAGGGCGCGTCTCACTGGTCGTGAGAAGGCTCCGTCGATA 
AAAGTCCATGCCAAGGACAT 
> Randseq3 third randomly generated seq  
GGCGAGTCTGAACTCACAAATATTGCACGAGAGTTTAGTGTATGTTCCTCTTAGGCTG 
AACAATAGTTTAGTGAGCGGAAATGCAACCGCGAGGCGGTCCCCTGCGCTTGTAATGG 
ACCTGTTGCCCGTCGGATAT 
>> 
 



  27 
 

4 letters of the sequence description. The other string array, seq[], contains protein 

sequences. 

• Distance Calculator 

First, an upper diagonal matrix of k(k-1)/2 pairwise distances between all pairs of 

sequences s1, s2, …, s k is calculated using the dynamic programming pairwise sequence 

alignment algorithm (26). In the distance matrix, each element is the sum-of-pairs score 

of the corresponding pair of sequences. 

In order to use TSP Solver, we need to build a new cost matrix with the function 

cost(i,j) = SPmax – SP(i, j) +1.  Since we are interested in an optimal circular order to 

build an MSA with the maximum SP-score, we need look for the longest with our TSP 

Solver. However, the TSP algorithm used finds an optimal shortest tour. This program is 

easily solved by subtracting each SP score in the distance matrix from a large number 

(here I use the maximum SP score in the distance matrix plus 1).  

• TSP Solver 

The Traveling Salesman Problem is NP hard. But it is very well studied and 

optimal solutions can be calculated within a few hours for up to 100 cities and in a few 

seconds for up to 30 cities. For real applications we seldom have more than 100 

sequences to compare simultaneously. In WVS06$  a branch-and-bound technique is used 

to solve the TSP. The algorithm and source code come from Drs. Donald L. Kreher and 

Douglas R. Stinson (17, pp.127-143). 

• MSA Builder 

Assuming the optimal circular order is {s1,  s2, …, sn}, a MSA is assembled 

progressively. First, do an optimal alignment of sequences s1 and s2 using the Needleman-
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Wunsch algorithm. The sequences in this alignment with the gaps are called t1 and t2.  

Then, align the rest of the sequences one-by-one against the previously aligned sequences 

until all n sequences are in the MSA.  

The SP score of the resulting MSA is calculated and used to evaluate the quality 

of the MSA.  

• MSA printer 

The output file is produced in a format similar to the MSF format. MSF is the 

multiple sequence alignment format of the GCG sequence analysis package. MSF is 

accepted by many bioinformatics software packages. Also, I include the SP score of the 

MSA in the output file generated by my program. These features will be helpful for 

comparing my output with that of others. 
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An example of my output file containing the SP score and the multiple sequence 

alignment is shown below.  

 

!! tspMSA1.0 
Input file: @hsp70.list 
 
  substitution table name: pam250   
 
                   GapWeight: 8 
     GapLengthWeight: 0 
 
Sequences are entered in the following order: 
 1)kcc2   kcc2_orysa 
 2)dmk_   dmk_gcn2 
 3)kpfg   kpfg_human 
 4)daf1   daf1_yeast 
 

-- Compute Pairwise Sum-of-Pair Score -- 
        kcc2    dmk_    kpfg    daf1    
kcc2    0       2100    1975    1944         
dmk_    2100    0       1964    1988         
kpfg    1975    1964    0       1933    
daf1    1944    1988    1933    0           
 
 
 
     -- Compute TSP optimal route -- 
n=4 

 TSP3 with ReduceBound: NODES=6192441 
 Optimal Cost = 6913 

Route = [0,2,1,3] 
 

         aligning......... 
 
**The SUM-OF-PAIRS score of this alignment is: 19560 

 
---- RESULT of Alignment ---- 

 
// 
 
kcc2   NYIFGRTLGA GSFGVVRQAR KLSTNEDVAI KILLKKALQG NNVQLQMLYE 
dmk_   DFEILKVIGR GAFSEVAVVK MKQTGQVYAM KIMNKWDML. KRGEVSCFRE 
daf1   QIRLTGRVGS GRFGNVSRGD YR..GEAVAV KVFNALDEPA FHKETEIF.E 
kpfg   TRKFKVELGR GESGTVYKGV LED.DRHVAV KKLEN..... VRQGKEVFQA 
 
. 
. 
. 

 

Indicates output staring point  
and program name 

Gap penality  

List of input sequence titles 
and descriptions  
 

Symbol of header ending  
MSA itself 

SP score of MSA  

Pairwise SP score  
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Implementation 
 

My program, � � ������� , described above is written in the C language and run under 

the UNIX operation system. 

My implementation includes two free programs, “	�
 � 
�� ” from D. F. Feng and R. 

F. Doolittle (4-6), and “TSP3” from D. L. Kreher and D. R. Stinson (17, pp.127-143), 

which are available for free downloading from: 

http://www-biology.ucsd.edu/~msaier/transport/software.html and 

http://www.math.mtu.edu/~kreher/cages.html 

 ALIGN has the following major functions (Table 4.1): 

Name Function Comment 
 

read_seq( ) Parse input file Only recognizes files in the rarely used 
Old Atlas format 
 

align( ) Pairwise sequence alignment 
 

 

bord( ) Build a distance matrix  
and compute the guide tree  
 

Uses a special scoring function 

mulalign( ) Output MSA 
 

 

main( ) Control data flow  
and assemble MSA 

Adds sequences one-by-one to MSA 
by iteratively calling align( ) 
 

  

 Table 4.1. Functions in 	�
 � 
��

 

 Based on the ALIGN and TSP3, first I integrated TSP3 into ALIGN in order to 

achieve my goal, then I added new functions and improved some existing functions. My 

program, � � ����� 	 , has the following major functions (Table 4.2): 
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Name Function Comment 

read_seq( ) Parse input file, establish string 
arrays which hold sequences. 

Re-implemented from $/,*1  to 
read the most popular format, 
FASTA. 
 

align( ) Do pairwise alignment using 
SP Score. 
 

Modified from $/,*1 . 

distCalc( ) Calculate pairwise SP scores, 
build a distance matrix, build a 
cost matrix. 
  

Re-implemented from $/,*1  to 
compute the distance matrix using 
SP score function. 

tspOrder( ) For a given cost matrix, 
compute the optimal route 
(circular order for building 
MSA). 

Modified from 763� . 
A timer function is added to 
terminate tspOrder() after a certain 
time. 
 

RandomOrder() Generate a randomized order 
of the given sequences. 
 

Implemented to build the MSA from 
a random ordering of the given 
sequences. 

sop( ) Compute the SP score of an 
MSA (also parse the MSF file 
and  convert the aligned 
sequences to FASTA format). 
 

Implemented to evaluate the quality 
of the MSA, to parse the MSF file 
and  convert the aligned sequences 
in FASTA format. 

printMSA( ) Output the MSA. Improved from $/,*1  to output the 
MSA as a GCG MSF format file. 
 

main( ) Control data flow and generate 
the MSA. 
 

Modified from $/,*1 . 

 

 Table 4.2. Funtions in � � �������



 32 

 

 

CHAPTER 5 

EVALUATION OF THE PROGRAM 

TEST DATA 

In order to comprehensively evaluate a new alignment program, we need a large 

number of accurate reference alignments which can be used as test cases. It has been 

shown (23) that the performance of alignment programs depends on the number of 

sequences, the degree of similarity between the sequences, the lengths of the sequences, 

andthe existence of large insertions and N/C-terminal extensions.  

Thompson et al have developed a benchmark alignment database called 

BAliBASE (Benchmark Alignment dataBASE) specifically for evaluating new alignment 

programs (36). It is available on the World Wide Web at http://www-igbmc.u-

strasbg.fr/BioInfo/BAliBASE. The sequences included in this database are selected from 

alignments in either the FSSP  (Fold classification based on Structure-Structure 

alignment of Proteins) database or HOMSTRAD  (Homologous Structure Alignment 

database), or from manually constructed structural alignments taken from the literature. 

The alignments of sequences sharing the same three-dimensional fold have been 

validated to ensure the alignment of functional and other conserved residues. The VAST  

(Vector Alignment Search Tool) Web server (22) is used to confirm that the sequences in 

each alignment are structural neighbors and can be structurally superimposed. Functional 

sites are identified using the PDBsum database (19) and the alignments are manually 
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verified and adjusted, in order to ensure that conserved residues are aligned as well as the 

secondary structure elements.  

BAliBASE2.0 currently consists of 142 reference alignments, containing over 

1000 sequences. Those high-quality alignments are organized into 8 reference sets that 

represent some of the most common problems currently encountered when aligning real 

families of proteins.  

• Reference set 1 contains alignments of equi-distant sequences, i.e., the percent 

identity between two sequences is within a specified range.  

• Reference set 2 aligns up to three "orphan" sequences (less than 25% identical) from 

reference set 1 with a family of at least 15 closely related sequences.  

• Reference set 3 consists of up to 4 sub-groups, with less than 25% residue identity 

between sequences from different groups.  

• Reference set4 contains alignments of up to 20 sequences with N/C-terminal 

extensions (up to 400 residues),  

• Reference set 5 contains alignments of sequences with internal insertions (up to 100 

residues). 

• Reference set 6 contains alignments of sequences with repeated fragments.  

METHODOLOGY 

To assess the the quality of an alignment, the sum-of-pairs score is calculated. 

The higher the SP score of a MSA, the better the quality of the MSA.  

A program, � ��� , was implemented to calculate the SP score of a MSA. Also, the 

� ���  program parses the input reference alignment file to extract the original protein 

sequences and saves these sequences into an output file of FASTA format. Later on, the 



  34 
 

resulting file can serve as the input for my program, � � ������� , or the programs that I want 

to compare with, such as 	�
 �
����	  and ���
��������� � .  

RESULTS AND DISCUSSION 

1) Performance of TSP Solver 

An efficient TSP Solver, which can find the optimal circular order in reasonable 

time and computer memory, is critically important for my program, � � ������� .   

The TSP3 program from Drs. Donald L. Kreher and Douglas R. Stinson is based 

on a branch-and-bound TSP algorithm . To evaluate it, I generated random instances of 

the TSP problem on n cities. The distances between any pair of cities were randomly 

chosen integers between 0 and MAX. The time of computation and the number of nodes 

in the state space trees are shown in Table 5.1.  

cities(n) MAX nodes Time (s) 

10 200 74 0.01 

15 200 1082 0.19u 

20 200 31203 2.29u 

25 200 105975 63.14 

30 200 1167178 1072.68 

10 2000 108 0.01 

15 2000 3450 0.37 

20 2000 50028 14.45 

25 2000 1109759 544.1 

30 2000 5766607 3890.56 

10 20000 280 0.02 

15 20000 4771 0.63 

20 20000 205071 55.91 

25 20000 1361174 699.46 

30 20000 6446124 6000  

 

Table 5.1 The number of nodes in the state space trees and the running time to find the optimal 

route on random instances of the TSP problem.  
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 The results show that TSP Solver can find an optimal solution on an instance of 

30 cities with MAX of 2000 in 3890.56 seconds and the number of nodes in the state 

space trees is 5766607. If we assume a node takes 1 byte, we need 5.8 mega bytes, which 

is not a problem for most computers. I also tested � � �������  on a real problem with 162 

protein sequences and MAX of 4000 for 100 minutes. The number of nodes was 8916700 

when the program was terminated, not yet having reported an optimal solution.  

 In fact, I found that TSP Solver, ��	�
�� , never reported  an optimal solution within 

100 minutes on instances of more than 50 cities. Some researchers report that optimal 

solutions can be calculated within a few hours for up to 1000 cities and in a few seconds 

for up to 100 cities (29).  However their code was not available for experimentation 

 2) Execution times and quality of solutions 

 For large scale problems, it is unrealistic to ask for optimal solutions with limited 

computer memory and time. However, there are heuristics for large scale problems that 

calculate near optimal solutions that are within 1% to 2% of the optimum (9, 29).  

To evaluate the performance of TSP Solver on large scale data sets, I explored the 

relationship of the execution time and the quality of the solution. The results are 

summarized in the Table 5.2. 

 The results showed that, after running for 20 minutes, TSP Solver found a near 

optimal solution for the instances of up to 300 cities. For instances of MAX =20000, the 

costs obtained by running either 20 or 100 minutes were very close or exactly same, 

while the number of nodes increased by 150% up to 660%.  For other instances, the cost 

obtained by running 20 minutes decreased at most 4.5% compared with that obtained by 

running 100 minutes, while the number of nodes increased by 40% up to 450%.  
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Based on these results, I set the default execution time of � � �������  to 20 minutes.  

MAX n Exec Time (min.) Cost Nodes 
50 5 217 410375 
50 10 206 777771 
50 20 194 1454733 
50 100 194 2633672 

100 5 284 371897 
100 10 283 683685 
100 20 283 1175990 
100 100 278 5326311 
300 5 infinity 15690 
300 10 267 63122 
300 20 262 205490 

100 

300 100 258 1131275 
50 5 4806 396718 
50 10 4646 673568 
50 20 4646 917608 
50 100 4428 4350398 

100 5 5356 162302 
100 10 5356 388742 
100 20 5257 722723 
100 100 5129 2737193 
300 5 infinity 15690 
300 10 7057 66729 
300 20 7003 241179 

2000 

300 100 7003 1080409 
50 5 54027 490154 
50 10 54027 948164 
50 20 54027 1420971 
50 100 54006 5710316 

100 5 60288 258405 
100 10 60168 487423 
100 20 60168 874483 
100 100 60164 3498741 
300 5 infinity 15690 
300 10 73203 74273 
300 20 73203 254773 

20000 

300 100 73203 1690807 
 

 Table 5.2 Execution time, cost, and nodes 

 The cost infinity indicates that no TSP tour was found; This only happened when 

the time was limited to 5 minutes. 
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3) Comparison with SP scores of MSAs generated by other programs 

 To evaluate my � � �������  on multiple sequence alignments, I selected some 

reference data sets from the BALIBASE (version 2.0) and fed them to my � � �������  and 

	�

� ����� 
 � 1.8. These reference data sets were multiple sequence alignments generated 

by ��� 

��� � . 

 The SP scores and execution times are shown in Table 5.3. Using the reference 

data sets, the SP scores obtained by my � � �������  were higher than those obtained by either 

��� 

��� �  or 
	�

� ����� 
 � , except for only one case, ref5: kinase53. We should note that 

some sequences of that exceptional case have long internal insertions, which might cause 

the SP scores to be decreased. More experiments were carried out on this data set to 

explore the order of sequences to be aligned and the SP score (see later in this section, 

and in section 6). 

 The versions of ��� 

��� �  availabe at University of Georgia is installed at the 

Research Computing Resource (RCR). However, I could not test the execution time 

because all tasks on RCR are submitted to a task queue and no value on the execution 

time is returned. Therefore in Table 5.3 the execution times of ��� 

��� �  are not included.  
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SP score on MSAs and Execution Time data set feature 
(n, s--l)1 ��� �������  	 ����

����� �  � � �
� 
��

Ref1: 1ubi   4,   76--94 2376 3158               (0.16s)  3205              (0.09s) 
        1pfc   5, 116--108 9823 9955               (0.47s)  10002            (0.16s) 
        1fmb   5,   98--104 6040 6044              (0.26s)  6061              (0.10s) 
        1pii    4, 246--252 11969 12081             (1.63s)  12274            (0.41s) 
        1thm   5, 269--279 15573 15594             (1.82s)  15630            (0.44s) 
        gal4   5, 335--395 20983 23683             (4.42s)  23777            (1.01s) 
        1bgl   4, 938--991 50835 51024           (22.75s)  51287            (3.35s) 
        1gpb   5, 796--828 82666 82351          (22.58s)  82860            (4.34s) 
Ref2: 1csy 19,   75--99 112407 112507           (1.80s)  115971      (172.81s) 
         kinase2 18, 257--287 344437 344283         (22.82s)  353901      (703.24s) 
        1cpt 20, 347--389 330650 333998         (24.79s)  334700        (21.54s) 
Ref3: 1wit 19,   85--102  115898 119723           (2.12s)  121146    (1193.71s) 
         kinase3 23, 243--312 518529 523320         (30.69s)  537566      (303.05s)  
        1ped 21, 324--388 592142 595400         (34.65s)  607333       (1200s+)  
Ref4: kinase41   7, 289--481 43234 45446           (10.93s)  48939            (5.43s) 
        kinase42 18, 257--631 145749 137424         (76.23s)  184349    (1193.71s) 
Ref5: kinase51   5, 285--358 21599 22285             (4.75s)  22429            (2.39s) 
        kinase53 19, 256--384 331007 315367         (30.53s)  320587*  (1159.77s) 
Ref6: deah 22, 578--2176 1145541 1179323     (105.93s)  1237392     (1200s+) 
         ion 53, 496--2039 2352858 2453544     (134.70s)  2508615     (1200s+) 
 

Table 5.3 The SP scores and execution times obtained from different alignment programs 

 

1 ‘n’, ‘s’, and ‘ l’ mean the number of sequences, the shortest sequence, and the 
longest sequence in the data set; 
* The SP score is lower than that obtained by ��� ������� . 
+No optimal solution  is returned. 
Ref 1: equi-distant sequences with various levels of conservation; 
Ref 2: families aligned with a highly divergent "orphan" sequence; 
Ref 3: subgroups with < 25% residue identity between groups; 
Ref 4: sequences with N/C-terminal extensions; 
Ref 5: sequences with internal insertions (up to 100 residues); 
Ref 6: sequences with repeated fragments. 
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 4) Execution times and SP scores 
 

 For some reference data sets, I did not obtain an optimal circular order when 

� � ����� �
 was executed up to 20 minutes. To evaluate the quality of MSAs built from near 

optimal circular orders, I ran 
� � �������

 on the following data sets for certain times. The SP 

scores of these MSAs were calculated and listed in Table 5.4.  

Time(s) 

data set 

120 300 600 1200 6000 

Ref3:1ped 603648 607333 607333 607333 608008 

Ref4:kinase42 187054 189141 189141 194349 200114 

Ref5:kinase53 332338 329297 320587 320587 320587 

Ref2:1cpt 335678 334700 334700 334700 334700 

Ref6:ion 2508615 2508615 2508615 2508615 2508615 

Ref6:deah 1233887 1237185 1237392 1237392 1230908 

big.seq 8091586 8094191 8094191 8094191 8099394 

 

Table 5.4. The SP cores of MSAs obtained from different execution times 

 

The results show that the relative difference of SP scores obtained from 20 

minutes and 100 minutes is within a range of -0.5% to 2.9%. This indicates that the 

default execution time (20 minutes) is reasonable. The negative values indicate that a 

better TSP tour does not always promise a better alignment. 

5) Starting point and direction of the circular order and SP score of the MSA 

Basically, the TSP circular order is a heuristic method of determining a linear 

order in which to apply progressive alignment to the given sequences. From an optimal 

circular order, we only get a near optimal MSA. 
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To investigate the effect of assembling order on the SP score, I tested to see if we 

could increase the SP score by starting at different points in the circular order and going 

different directions.  

First, I selected the Ref2:kinase2 as a normal test case. The optimal circular oder 

for this data set is [0,1,17,16,2,3,4,6,8,9,11,12,15,5,7,13,14,10]. The results are shown in 

Table 5.5. 

starting point SP score (Forward) SP score (Backward) 

0 353901+ 353772+ 

1 352383+ 351338+ 

17 349806+ 345276+ 

16 352713+ 347244+ 

2 354526*+ 343670 

3 350964+ 343786 

4 350077+ 343913 

6 348867+ 348273+ 

8 351661+ 347753+ 

9 348754+ 348398+ 

11 345526+ 351753+ 

12 347820+ 353480+ 

15 345785+ 348929+ 

5 350113+ 353745+ 

7 347738+ 350068+ 

13 345460+ 350216+ 

14 346159+ 345670+ 

10 352734+ 346129+ 

  
Table 5.5. Starting points, directions of the circular order and SP scores of the MSAs 

for Ref2:kinase2 
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* The SP score of this MSA is higher than that of the MSA built from an optimal TSP circular order; 

+ The SP score of this MSA is higher than that of the MSA generated by either ��� �������  or 

� ���
	��
��� � . 

The results show that, when the ref2:kinase2 was tested, among the all possible 

combination of starting points and directions , only one starting point (indicated by the *) 

with the forward direction led to a higher SP score than the SP score of the MSA starting 

from the first sequence in the optimal circular order. All MSAs built from TSP orders 

with the forward direction, no matter where they start, have a higher SP score than that of 

MSAs generated by either ��� ���
���  or �������
����� ���  The circular orders in backward 

direction led to lower SP scores than that from the optimal TSP order, no matter starting 

from which sequence.  In some cases, the SP scores were lower than that of MSA 

generated by either ��� ����� �  or �
���
���
��� � . 

I also did same experiment on the test case Ref5:kinase53 (which my � �  �! �
�  did 

not beat ��� ��� � ). The result is shown in Table 5.6. Please notices that: the first 5 

sequences in Ref5:kinase53 have long internal insertions at different points. The optimal 

circular order is [0,2,1,4,5,6,3,7,12,16,11,10,17,13,14,18,15,9,8]. 

The result is interesting. With the forward direction, when two or more sequences 

with long insertions were assembled first, we certainly got a bad SP score (Table 5.6 

column 2, rows 1, 2, 3, and 19). When normal sequences were assembled first, the SP 

scores became significantly higher (Table 5.6 column 2, rows 5 to 18, except for row 16). 

When I simply put all sequences with long insertions to the end of the input file, and the 

SP score was 338152, which is significantly higher than that of MSA generated by either 

��� ���
� �  or �������
����� � .  
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The circular orders in backward direction led to MSAs with higher SP scores, 

which were not only higher than that of MSA from optimal TSP order, but also higher 

than that of MSA generated by either ��� �������  or �	���	
��
��� � except for 1 case (Table 5.8 

row 10). 

starting point SP score (Forward) SP score (Backward) 

0 320587 339409*+ 

2 328447* 335280*+ 

1 328512* 336359*+ 

4 333175*+ 332506*+ 

5 334498*+ 338266*+ 

6 336012*+ 334328*+ 

3 334659*+ 335849*+ 

7 340500*+ 335529*+ 

12 340590*+ 333311*+ 

16 339501*+ 328601* 

11 338732*+ 335556*+ 

10 340863*+ 335648*+ 

17 337537*+ 339418*+ 

13 334937*+ 339717*+ 

14 334937*+ 336997*+ 

18 330978* 332875*+ 

15 336679*+ 338785*+ 

9 332193*+ 338889*+ 

8 314934 339202*+ 

Table 5.6. Starting points, directions of the circular order and SP scores of the MSAs 

for Ref3:kinase53 

* The SP score of this MSA is higher than that of the MSA built from an optimal TSP circular order; 
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+ The SP score of this MSA is higher than that of the MSA generated by either ��� �������  or 

� ���
	��
��� � . 

One possible explanation is that: when MSA was built from the optimal TSP 

order, we, by chance, started from a sequence with long insertions (sequence 0), and 

subsequently we added more sequences with long insertions (sequences 2, 1, and 4). This 

led to more gaps in overall MSA, and thus we get a lower SP score. However, when 

using the reversed optimal TSP order, although we started with sequence 0, we added 

sequences with long insertions after we added normal sequences, therefore we got a 

higher SP score (Table 5.6 column 3, row 1). The SP score will tend to lower if we align 

more sequences with long insertions before we do other normal sequences (Table 5.6 

column 3, rows 2, 3 and 4). This result suggests that, when we have sequences with long 

insertions, in order to get a higher SP score, we should avoid to build MSA from an order 

that has more than one sequences with long insertions at the beginning. 

The progressive alignment follows the rule, “once a gap, always a gap”. If we 

start alignment with sequences containing long insertions, the gaps derived from 

insertions will propagate in the susequent process. If we start alignment with normal 

sequences and add sequences with long insertions at the end of alignment, we will get 

fewer gaps and a higher SP score.  

For the future improvement, we can design a step to select the maximum SP score 

of MSAs built from all possible circular orders, because after finding the optimal circular 

order (the most time-consuming step), to assemble the MSA only takes about 3 seconds.  

6) Random order progressive alignments 

 To explore whether a randomly generated linear order could lead to a better SP 

score than the optimal circular order generated by TSP algorithm does, I implemented a 
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random sequence generating function and tested 500 randomly generated orders aligning 

the Ref2:kinase2 data set. I found only 1 case out of 500 that gave a higher SP score than 

the one derived from the optimal circular order generated by TSP. 

 The running time for building an MSA from an optimal circular order generated 

by TSP is 703.24 seconds, and the running time for building an MSA from a randomly 

generated circular order is much shorter (3.80 seconds). However, within the same time 

used by the TSP strategy, it is unlikely that a better score will be found using the random 

strategy. 

 7) Large data set 

 The last experiment was to test my program with a large data set. I selected 162 

protein sequences from BALIBASE and made a test file, big.seq in the modified FASTA 

format.  

 The result was very encouraging. Using my program, � � ������� , the SP score at 380 

seconds was 8094191, at 20 minutes was 8094191, and at 100 minutes was increased to 

8099394. When I input the big.seq to �
	��
�����
	 � , the running time was 379.53 seconds 

and the SP score was much lower, 930301. This result suggests that my program may 

perform much better when dealing with a set containing many sequences.
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CHAPTER 6 

CONCLUSIONS 

The traveling salesman problem algorithm shows promise for the ordering of 

multiple protein sequences using pairwise SP scores. Except for one test case, the SP 

scores obtained from progressive alignments based on the TSP algorithm were 

significantly better than the scores obtained from two popular progressive alignment 

programs, ��� �������  and 	
���
�
����� � . 

When aligning more than 20 sequences with lengths over 200, my program, 

� � �
� ��� , may need a longer execution time to find the optimal circular order to build an 

MSA. Usually, by running the TSP Solver for 20 minutes, the MSA obtained by my 

program has a higher SP score than that obtained from either ��� �������  or 	��������
��� � . 

For a test data set which contains sequences with long internal insertions, a linear 

order starting from two or more sequences containing long insertions can lead to a bad SP 

score.   

Within the same time used by the TSP strategy, it is unlikely that a better score 

will be found using a randomly generated order for the progressive alignment. 

On a large data set containing 162 sequences, my program performs much better 

than 	��������
��� � .
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