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ABSTRACT 

 Due to its marine biodiversity, the Sunda Banda Seascape (SBS) is one of the 

largest marine ecoregions of Indonesia requiring conservation management. However, 

the SBS is under severe threat due to unsustainable development and climate change. 

There is neither comprehensive regional spatial data nor peer-review research of the SBS 

available. This study is the first-ever work using satellite remote sensing, machine 

learning and dynamic model-assimilated data to delineate biophysical environments of 

the SBS, and classifies it into eight biophysically meaningful regions. The SBS also 

contains mangrove forests with some of the highest mangrove diversity and biomass of 

the world. Mangroves are critical for their ecological functions and services to human 

welfare. Based on the biophysical regions, this study uses bioclimatic models derived 

from the fifth report of the Intergovernmental Panel on Climate Change (IPCC) to 

estimate mangrove biomass through 2070. This study will inform conservation practices 

of the SBS. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Background 

The Coral Triangle (CT, Figure 1.1) geographically refers to a roughly 5.7 million 

km
2
 triangular area of the tropical marine waters of Indonesia, Malaysia, Papua New 

Guinea, Philippines, Solomon Islands and East Timor (aka Timor-Leste) (Veron 1995). It 

has been long recognized as the global apogee of marine biodiversity and called the 

"Amazon of the seas" because it has 605 zooxanthellate coral species of which 66% are 

common to all eco-regions (Hoeksema 2007, Veron et al. 2009), as well as 52% of Indo-

Pacific reef fishes (Allen 2008). The Indo-Malaysian region of CT has 48 mangrove 

species (Duke, Ball and Ellison 1998), which is the highest species diversity of mangrove 

anywhere in the world. Indonesia itself covers 22.6% of the world’s mangrove forests 

(Giri et al. 2011), which is two times larger than Australia— the second largest area of 

mangrove cover. The CT covers 5.7 million km
2
 of ocean waters and sustains the lives of 

over 138 million people with its biological resources. Located in the center of CT, the 

Sunda Banda Seascape (SBS) is second largest marine ecoregion in Indonesia, and is 

home to 76% of known coral species, more than 3,000 fish species, and is among the 

highest mangrove biomass regions of the world (Hutchison et al. 2013). 

However, marine ecosystems, such as coral reefs and mangroves, are currently 

threatened by local stressors such as overfishing, destructive fishing, coastal development 

and pollution worldwide. Globally, about 35% of mangrove were lost from 1980 to 2000 
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(MA 2005), which have been declining faster than coral reefs or tropical rainforests 

(Duke et al. 2007). An estimated 95% of coral reefs in CT are considered to be at 

medium or higher threat by human activities, especially related to overfishing (Burke et 

al. 2011). When the influence of climate change is combined with local threats, the health 

of coral reefs and mangroves are even more worrisome. In order to address these urgent 

threats, the Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security (CTI-

CFF), a multilateral partnership including six countries, was formed in 2007. The CTI-

CFF has become one of the largest conservation initiatives in the marine world.  

 

Figure 1.1. The Coral Triangle and the Sunda Banda Seascape, Indonesia. 

 

Recently, the governments of the region and international nature conservation 

organizations increased allocation of conservation resources to the SBS. However, SBS is 

an information-poor region, where no comprehensive regional data and peer-review 

journal articles documenting critical research are available. Existing studies are either: 1) 

global in scale with coarse resolution, imagery and data that are not sufficient to set up a 
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baseline and inform regional conservation practices; or 2) studies have been very local 

with focus on individual marine protected areas (MPA). Unfortunately, those MPA may 

not be representative or suitable to inform marine conservation activities at the regional 

scale. The SBS is large in size, compared to the MPA field measurement-based research 

areas (150 million km
2
 compared to several km

2
, respectively). Importantly, SBS is 

remote in location and relatively inaccessible. Geospatial modeling and analysis 

including remote sensing and spatiotemporal modeling offers an ideal set of technical 

approaches to delineate the biophysical marine and coastal environments of this region. 

Biophysical environments refer to physical (such as salinity, sea surface temperature and 

ocean currents) and biochemical (such as chlorophyll a) environmental conditions. 

Understanding biophysical environments are essential for conservation and management 

because they are essential for shaping marine biodiversity. 

Meanwhile, deforestation is the second largest source of anthropogenic CO2 

emissions, contributing12-20% of the total (IPCC 2007, Hutchison et al. 2013). Biomass 

is carbon-based biological material derived from living, or recently living organisms. As 

an energy source, biomass can either be used directly via combustion to produce heat, or 

indirectly after converting it to various forms of biofuel. Due to the declining status of 

mangrove forests, geospatial modeling and predicting spatial patterns of mangrove 

biomass in the context of climate change can help improve mangrove management 

practices, formulate conservation activities, refine climate models, and update mitigation 

and adaptation policies. 

Based on the unique location of SBS, the alarming threats to coral reefs and 

mangroves in marine and coastal environments, and the impact of climate change, there 
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is great room for using geospatial modeling and analysis to assess the marine and coastal 

environments and then inform conservation activities.  

 

1.2 Research Objectives 

The overarching research question of this thesis asks how geospatial modeling 

and analysis can be used to facilitate marine and coastal environment studies and inform 

conservation practices for information-poor regions in the context of climate change. 

Developing a methodology for understanding the biophysical environments of an 

information-poor area permits the establishment of a baseline for any further research and 

conservation practices - often the first step of ecological assessment and marine spatial 

planning. Therefore, the first article of this manuscript-style thesis uses machine learning 

to delineate the biophysical environments of the SBS through satellite remote sensing and 

dynamic model-assimilated data. Geospatial modeling and predicting mangrove biomass 

in the context of climate change facilitates monitoring of extent, health and ecological 

functions of mangroves. This methodology also assists effective and efficient mangrove 

management. Hence, the second article of this manuscript-style thesis uses bioclimatic 

models to estimate spatial distribution of mangrove biomass in 2070 (the latest 

forecasting scenario) based on the fifth report of the Intergovernmental Panel on Climate 

Change (IPCC). 

This thesis includes two main objectives, each of which addresses an important 

abovementioned problem of marine and coastal environmental studies by applying 

cutting-edge machine learning algorithms or models that are implemented with geospatial 

analysis. More specifically, these two objects are: 
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(1) To identify variables which directly influence marine biodiversity and classify 

the SBS into biophysically meaningful and practically manageable regions using the 

machine-learning method, self-organizing map (SOM); 

(2) To predict spatial patterns of mangrove biomass in 2070 using bioclimatic 

models derived from the fifth report of IPCC. 

This thesis research is the first-ever study of this kind in the SBS. It provides a 

baseline for multiple interdisciplinary research. It also potentially informs conservation 

practices and investments for both international nature conservation organizations and 

local authorities.  

 

1.3 Literature Review 

1.3.1 Marine Ecosystems, Coral Reefs and Mangroves 

Marine waters cover two-thirds of the surface of the Earth and marine ecosystems 

are among the largest of Earth's aquatic ecosystems. They usually include oceans, salt 

marsh and intertidal habitats, estuaries and lagoons, mangroves and coral reefs, the deep 

sea and the sea floor (Barange et al. 2010). Based on a prevailing marine management 

scheme— the marine ecoregion of the world (MEOW) (Spalding et al. 2007), the world’s 

coastal and shelf Areas are categorized into nested system of 12 realms, 62 provinces, 

and 232 ecoregions. MEOW is based on experts’ opinions and globally comparable on a 

biogeographic basis, for example floral and faunal composition. Regarding the ecological 

value of marine ecosystems, coral reefs provide nutrition and shelter to the highest levels 

of marine diversity in the world; coastal habitats account for roughly 1/3 of all marine 
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biological productivity; and salt marshes, sea grasses and mangrove forests are among the 

most productive regions on the planet (Barange et al. 2010). 

Coral reefs refer to colonies of tiny animals in oceans. They cover less than 0.1% 

of the world's marine environment; but they are home to 25% of all marine species 

(Spalding and Grenfell 1997, Spalding, Ravilious and Green 2001). Coral reefs provide 

ecosystem services to tourism and fisheries. The global economic value of coral reefs has 

been estimated to be between US$ 29.8 billion (Cesar, Burke and Pet-Soede 2003) and 

US$ 375 billion per year (Costanza et al. 1997). They also protect shorelines by 

absorbing wave energy, a function for which many small islands owe their existence. 

However, coral reefs are very fragile and under threats from both nature (e.g., climate 

change, oceanic acidification, etc.) and the activities of human beings (e.g., overfishing, 

unbalanced coastal development, water pollution, etc.). 

Mangroves are an assembly of woody halophytes (salt tolerant trees and shrubs) 

that are fundamental species distributed in the estuaries, lagoons and littoral zone 

between 30°N and 30°S of the world (Alongi 2009, Tomlinson 1986). They grow in 

harsh biophysical conditions such as high salinity, high temperature, extreme tide, high 

sedimentation and muddy anaerobic soils (Giri et al. 2011); their distribution is driven by 

major ocean currents (Alongi 2009). Mangrove forests sequestrate carbon, support 

biodiversity through their variable structure and potentially reduce hurricane impacts 

(Alongi 2002). The primary productivity in mangroves can be compared to the 

productivity of tropical rainforests (Alongi 2002). Litters of mangrove forests provide 

nutrients and food for marine species, which are linked to increased fish populations 

(Mumby et al. 2004). These ecosystem goods and services are estimated as much as 
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about US$ 100,000 per hectare per year and US$ 170 billion globally per year (Costanza 

et al. 1997). Figure 1.2 and Figure 1.3 show the distribution of coral reefs and mangrove 

forests with in the CT, respectively and are adopted from the CTI-CFF 

(http://www.coraltriangleinitiative.org/). 

 

Figure 1.2. Coral species map of the Coral Triangle. 

 

 

Figure 1.3. Mangrove species map of the Coral Triangle. 
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1.3.2 Remote Sensing of Marine Environments and Mangroves 

 The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is a key 

instrument aboard the Terra (in 1999) and Aqua (in 2002) remote sensing satellites. 

Together the instruments image the entire Earth every 1 to 2 days. MODIS are designed 

to provide measurements in broad-scale global dynamics including changes in Earth's 

cloud cover, radiation budgets and processes occurring in the oceans, on land, and in the 

lower atmosphere. Bands information of MODIS data (Level 2) is summarized in Table 

1.1. Level 3 data of MODIS usually provide 16-day composite datasets that are freely 

available via the USGS National Map. MODIS is playing a vital role in the development 

of validated, global, interactive Earth system models able to accurately predict global 

change to assist policy makers in making sound decisions concerning the protection of 

our environment.  

Table 1.1 Bands information of MODIS sensor 
B WL (nm) R(m) Primary Use B WL (µm) R (m) Primary Use 

1 620–670 250 Land/Cloud/Aerosols 

Boundaries 

20 3.660–3.840 1000 

Surface/Cloud 

Temperature 

2 841–876 250 21 3.929–3.989 1000 

3 459–479 500 

Land/Cloud/Aerosols 

Properties 

22 3.929–3.989 1000 

4 545–565 500 23 4.020–4.080 1000 

5 1230–1250 500 24 4.433–4.498 1000 Atmospheric 

Temperature 6 1628–1652 500 25 4.482–4.549 1000 

7 2105–2155 500 26 1.360–1.390 1000 
Cirrus Clouds 

Water Vapor 
8 405–420 1000 

Ocean Color/ 

Phytoplankton/ 

Biogeochemistry 

27 6.535–6.895 1000 

9 438–448 1000 28 7.175–7.475 1000 

10 483–493 1000 29 8.400–8.700 1000 Cloud Properties 

11 526–536 1000 30 9.580–9.880 1000 Ozone 

12 546–556 1000 31 10.780–11.280 1000 Surface/Cloud 

Temperature 13 662–672 1000 32 11.770–12.270 1000 

14 673–683 1000 33 13.185–13.485 1000 

Cloud Top 

Altitude 

15 743–753 1000 34 13.485–13.785 1000 

16 862–877 1000 35 13.785–14.085 1000 

17 890–920 1000 
Atmospheric 

Water Vapor 

36 14.085–14.385 1000 

18 931–941 1000     

19 915–965 1000     

B refers to Band; WL refers to Wavelength; R refers to Resolution. Source: 

http://modis.gsfc.nasa.gov/ 

 

http://modis.gsfc.nasa.gov/


 

- 9 - 

In the context of marine environments, satellite remote sensing data acquired by 

sensors such as MODIS document Earth surface spectral heterogeneity at a regional level 

suitable for providing geographically comprehensive marine information. Ocean optical 

and thermal remote sensing is highly correlated to the processes in the entire water 

column (Brando and Dekker 2003, Oliver and Irwin 2008, Longhurst 2010). Hence, 

delineating biophysical environments through satellite remote sensing is not only 

effective for the benthic (bottom) systems, but also valuable for the pelagic (ocean water) 

system studies. 

The recent advancements of satellite remote sensing data and algorithms have 

been successfully applied to mapping the extent and change of mangrove forests at 

different scales (Heumann 2011). However, remote sensing to estimate mangrove forests 

biomass often requires data fusion among Synthetic-aperture Radar (SAR), very high 

resolution (VHR) imagery and Light Detection and Ranging (LiDAR) for the need of 

vegetation structure mapping, which is an essential (Heumann 2011).  

The SBS is located in a tropical area where clouds are heavy and limit the 

performance of optical remote sensing, including VHR image data. Importantly, SAR, 

VHR and LiDAR are often costly to acquire and this financial burden reduces their 

access to developing countries, including Indonesia. Therefore, rather than relying on 

remote sensing, alternative ways of geospatial modeling and analysis should be 

considered for mangrove biomass mapping in the SBS. 

1.3.3 Self-Organizing Maps (SOM) 

A number of classification approaches have been used to analyze geospatial data 

and extract features in marine environment, including supervised and unsupervised 
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algorithms (Miller and Han 2009). One type of those algorithms is machine learning, 

which is a branch of artificial intelligence that concerns the construction and study of 

algorithms and systems that can learn from data. Recently, machine learning has been a 

strong driver in a number of branches of artificial intelligence such as computer vision, 

natural language processing and anti-spam (Bishop and Nasrabadi 2006). Among 

different machine learning approaches, neural networks are usually used to model 

complex relationships between inputs and outputs, to find patterns in data. They are 

inspired by the structure and functional aspects of biological neural networks. In a neural 

network, computations are structured in terms of an interconnected group of artificial 

neurons (Hagan, Demuth and Beale 1996). 

Self-organizing maps (SOM) is a flexible, unsupervised neural network for data 

analysis and clustering (Kohonen 1982, Kohonen 2001, Kohonen 2013).  Theoretically, 

SOM outperforms traditional statistical clustering methods and is more appropriate for 

large nonlinear data sets with high dimensionality. Traditional statistical clustering 

methods, such as k-means and ISODATA, require an a priori hypothesis of the data 

distribution (Miller and Han 2009); however most datasets contain hidden and 

unexpected information. SOM does not make a priori assumptions about the data sets 

and is a possible tool for automated knowledge discovery from high dimensional 

variables. Several performance studies have illustrated the advantages of SOM over other 

clustering methods (Ultsch, Vetter and Vetter 1995, Zhong et al. 2006), and SOM has 

drawn great attention for geographic information science (Agarwal and Skupin 2008) for 

spatial and temporal modeling and analysis (Ji 2000, Zhong et al. 2006, Goncalves et al. 
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2008, Kalteh, Hjorth and Berndtsson 2008, Hu and Weng 2009, Jensen, Thompson and 

Schmidlin 2012, Hagenauer and Helbich 2013).  

 

1.3.4 Biophysical Environments and Biomass 

The biophysical environments that have shaped ecosystem structure not only 

influence ecosystem dynamics but also how these ecosystems will respond to changes in 

patterns of resource use and conservation interventions. Oceanographic conditions, such 

as temperature, dictate the range and persistence of marine organisms. For example, sea 

surface temperature (SST) is a fundamental driving factor on coral reef ecosystems, 

where temperature variability results in coral morality and subsequent reduction in coral 

cover. Ocean currents transport larvae and juveniles between distant patches of suitable 

habitat so ocean currents determine the population connectivity for many marine species 

(Treml et al. 2008, Treml and Halpin 2012, Cowen, Paris and Srinivasan 2006). Sea 

salinity is a limiting factor for photosynthesis, and is used to estimate species richness 

and abundance of fishes (Mellin et al. 2010, Fraser and Currie 1996). Chlorophyll a 

concentration is a proxy for phytoplankton biomass (Gove et al. 2013, Sathyendranath, 

Prieur and Morel 1989, Shang et al. 2013, Sapiano et al. 2012). 

Biomass is carbon based and is composed of a mixture of organic molecules. 

Plants construct biomass by absorbing carbon from the atmosphere as CO2 and using 

energy from the sun. As an energy source, biomass can either be used directly via 

combustion to produce heat, or indirectly after converting it to various forms of biofuel. 

An alarming fact is that about 35% of mangroves were lost from 1980 to 2000 (MA 

2005), which have been declining faster than coral reefs or tropical rainforests (Duke et 
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al. 2007). Therefore, quantifying the amount and spatial pattern of biomass within 

mangroves is necessary for property managers to make informed decisions about the 

value and use of mangroves (Gleason and Im 2012),  refining global climate models and 

developing policy responses (Hutchison et al. 2013). 

 

1.4 Thesis Structure 

The thesis structure is organized into four chapters. Chapter 1 covers the 

background and objectives of the thesis research, and literature review of topics including 

background knowledge in marine ecosystems, coral reefs and mangroves, facts of remote 

sensing of marine environments and mangroves, and introduction of self-organizing map 

(SOM). The following two chapters are separate articles to be submitted to journals for 

peer-review publication. In Chapter 2, a SOM-based framework is proposed to delineate 

the biophysical environments and inform marine conservation in the SBS. In Chapter 3, 

bioclimatic models are used to predict spatial patterns of mangrove biomass in the SBS in 

the 2070. Chapter 4 provides conclusions of this thesis and shows the future work. 
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DELINEATING BIOPHYSICAL ENVIRONMENTS TO INFORM MARINE 

CONSERVATION IN THE SUNDA BANDA SEASCAPE, INDONESIA
1
 

 

  

                                                 
1 Wang, M. et al. To be submitted to PLOS ONE 



 

- 20 - 

Abstract 

The Sunda Band Seascape (SBS), located in the center of Coral Triangle—the 

“amazon of the sea”, is a global center of marine biodiversity, ecosystem vulnerability 

and conservation priority. We proposed the first-ever biophysical environmental 

delineation of the SBS using globally available satellite remote sensing and model-

assimilated data to categorize this area into unique and meaningful biophysical classes 

based on a suite of biophysical conditions. Specifically, the SBS were partitioned into 

eight biophysical classes characterized by similar sea surface temperature patterns, 

chlorophyll a concentration, currents, and salinity. Areas within each class were expected 

to have similar habitat types and ecosystem functions. Our work supplemented prevailing 

global marine management schemes by providing up-to-date regional information in the 

finest spatial resolution. It also set up a baseline for academic research, ecological 

assessment and would facilitate marine spatial planning and conservation activities. The 

framework and methods of delineating biophysical environments we presented can be 

expanded in the whole Coral Triangle and replicated to support research and conservation 

in other parts of the world. 
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2.1 Introduction 

Coastal areas provide food resources, sustain trade, and promote tourism. More 

than 2.2 billion people reside within 100 km of coastlines; this density is much higher 

than the global average population density of all coastal and non-coastal lands combined 

(Small and Nicholls 2003). If current rates of population growth are maintained, the 

number of humans living near coastlines is expected to increase from 2.3 billion in 2000 

to 3.1 billion in 2025 (Kaiser et al. 2005). Many of these coastal inhabitants rely directly 

on the wealth of natural resources and ecosystem services provided by marine ecosystems 

for subsistence and as a source of income. The steady increment of coastal populations 

poses a challenge to coastal and marine managers tasked with conservation and 

preservation of natural areas undergoing threats from development and changing 

climates. Although resources need to be allocated to sustain local livelihoods, coastal 

ecosystems need to be protected to secure their ecological function and availability in the 

future.  Therefore, understanding coastal and marine biophysical environments is critical 

to make more informed decisions about how and where to allocate those resources and 

intervene in support of conservation. 

In recent decades, studies of marine environments have described the dynamic 

range of environmental heterogeneity in tropical ecosystems (Chollett et al. 2012, 

Freeman et al. 2012, Ando and McPhaden 1997, Glynn and Ault 2000, Zhang 1996). 

Biophysical environments refer to physical (such as salinity, sea surface temperature and 

ocean currents) and biochemical (such as chlorophyll a) environmental conditions. They 

dictate the structure and function of marine ecosystems, serve as proxies for the 

distribution of species and habitats, and facilitate conservation. When prioritizing 
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conservation activities on a broad spatial scale, there are often gaps of information about 

the habitats and ecosystems present in the area. A classification of biophysical 

environments using remote sensing can be a useful first step towards a comprehensive 

understanding of the region of focus (Zacharias et al. 1998, Chollett et al. 2012). 

The biophysical environmental conditions that have shaped ecosystem structure 

not only influence ecosystem dynamics but also how these ecosystems will respond to 

changes in patterns of resource use and conservation interventions. Oceanographic 

conditions, such as temperature, dictate the range and persistence of marine organisms. 

For example, sea surface temperature (SST) is a fundamental driving factor in coral reef 

ecosystems, where temperature variability results in coral morality and subsequent 

reduction in coral cover (Freeman et al. 2012). With direct atmosphere-ocean surface 

exchange of heat, water, mass and momentum, ocean currents transport coral larvae and 

juvenile fish and shell fish between distant patches of suitable habitat, so ocean currents 

determine the population connectivity for many marine species (Treml et al. 2008, Treml 

and Halpin 2012, Cowen, Paris and Srinivasan 2006). Sea salinity is a limiting factor for 

photosynthesis, and is used to estimate species richness and abundance of fishes (Mellin 

et al. 2010, Fraser and Currie 1996). Chlorophyll a concentration is a proxy for 

phytoplankton biomass (Gove et al. 2013, Sathyendranath, Prieur and Morel 1989, Shang 

et al. 2013, Sapiano et al. 2012), and has also been applied to modeling of primary 

production and the ocean carbon cycle (Nair et al. 2008). 

The Coral Triangle (Figure 2.1) refers to a roughly triangular area of the tropical 

marine waters of Indonesia, Malaysia, Papua New Guinea, Philippines, Solomon Islands 

and East Timor (aka Timor-Leste) (Hoeksema 2007). The 5.7 million km
2
 area is 
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recognized as an epicenter of tropical marine biodiversity (Allen 2008). The ecosystem 

services of the Coral Triangle sustain over 120 million people, for they rely on its coral 

reefs for food, income, and protection from storms. Worldwide, 60% of reefs are 

currently threatened by local stressors such as overfishing, destructive fishing, coastal 

development and pollution. In the Coral Triangle, however, this value is as high as 85%. 

The most widespread local threat in the region is overfishing (Burke et al. 2011). Much 

of the fishing that occurs is unsustainable and jeopardizes people’s livelihoods. 

Moreover, a changing climate— changes in ocean chemistry, warming temperature, 

increased frequency of storms— is exacerbating anthropogenic disturbances on the 

ecosystems. When the influence of climate change is combined with local threats, the 

percentage of reefs threatened in the region increases to a worrisome value of 90% 

(Burke et al. 2011). In order to address these urgent threats, the Coral Triangle Initiative 

on Coral Reefs, Fisheries and Food Security (CTI-CFF, 

http://www.coraltriangleinitiative.org), a multilateral partnership including six countries 

including Indonesia, was formed in 2007. The CTI-CFF has become one of the largest 

conservation initiatives in the marine world. 

Recently, the governments of the region and international nature conservation 

organizations, such as World Wildlife Fund, The Nature Conservancy, and Conservation 

International, increased allocation of conservation resources to the Sunda Banda 

Seascape (SBS), the central part of the Coral Triangle in Indonesian waters (see Figure 

2.1). The SBS has been designated as the second most important marine ecological 

region in Indonesia in terms of its biodiversity, providing habitat for 76% of known coral 

species and more than 3,000 fish species. However, similar to the Coral Triangle as a 
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whole, the SBS is threatened by climate change and human activities related to 

unsustainable development. 

The SBS covers an area of almost 1.57 million km
2
 and encompasses 

considerable environmental and biological heterogeneity. In order to expedite marine 

conservation planning in this area, a systematic classification of the region in terms of 

biophysical environments is needed. Although information on marine provinces is 

available at a global scale (Olson and Dinerstein 1998, Spalding et al. 2007), there is not 

comprehensive regional information available for the SBS at a spatial resolution that is 

meaningful for management. Here, the goal of this research was to develop an approach 

using globally available satellite remote sensing and model-assimilated data to categorize 

this area into unique and meaningful classes based on a suite of biophysical conditions. 

Specifically, the SBS should be partitioned into biophysical classes characterized by 

similar sea surface temperature patterns, chlorophyll a concentration, currents, and 

salinity. These classes were expected to have similar habitat types and ecosystem 

functions. Our work is the first of this kind in the SBS, and will help set priorities in 

conservation planning and inform marine conservation practices.  

 

Figure 2.1: Coral Triangle and Sunda Banda Seascape. 
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The world base map is courtesy of ESRI. The boundary of the Coral Triangle and 

the Sunda Banda Seascape were obtained from The Coral Triangle Atlas 

(http://ctatlas.reefbase.org/). Administrative boundaries were acquired from GADM 

database of Global Administrative Areas (http://www.gadm.org/). 

 

2.2 Materials and Methods 

The Sunda-Banda Seascape (SBS) study area is located in the central portion of 

the Coral Triangle in eastern Indonesia (Figure 2.1). Sunda Banda is a terminology 

referring to a geological area, as well as geographical, of a landscape covering marine 

area and islands from Bali to Nusa Tenggara area, Southeast Maluku, Kupang and up to 

the north covering the southern part of Sulawesi Island. The SBS has a very high level of 

marine biodiversity, a big conservation opportunity and vulnerability. 

A number of biophysical variables were considered for characterizing the marine 

environment of the SBS and geospatial data sources for these variables were identified. 

Salinity and sea surface temperature are fundamental determinants of global distribution 

of many marine habitats and ecosystems (Kleypas, McManus and AB MEÑEZ 1999). In 

the Pacific region, ranges and extremes of sea surface temperature (SST) and chlorophyll 

a (Gove et al. 2013) controls coral reef ecosystems. Hydrodynamic conditions, such as 

ocean currents, can ultimately determine both location and extent of marine habitats. For 

example, the distribution of mangrove ecosystems are driven by major ocean currents 

(Alongi 2009). Therefore, biophysical variables applied in this study include SST, 

chlorophyll a, currents and salinity. 

http://ctatlas.reefbase.org/
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The SST and chlorophyll a concentration data employed in this study were 

derived by the U.S. National Aeronautics and Space Agency (NASA) from remote 

sensing imagery acquired by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) on NASA’s Aqua Satellite. MODIS mapped data (Level 3), at a 4 km spatial 

resolution, was acquired over the period from July 2002 to June 2013. The monthly 

averaged nighttime SST data, chlorophyll a data, and climatological SST data were 

downloaded from http://oceancolor.gsfc.nasa.gov. Then, the long-term mean SST (Avg 

SST) was calculated. Maximum and minimum values at pixel level were selected to 

derive variables of highest monthly climatological SST (Max SST) and lowest monthly 

climatological SST (Min SST), respectively. The long-term mean chlorophyll a (Chla) 

concentration (mg/m
3
) was also calculated. 

Daily ocean currents data from May 2008 to July 2013 were obtained from 

Hybrid Coordinate Ocean Model (HYCOM, http://hycom.org/), a multi-institutional 

effort sponsored by the U.S. National Ocean Partnership Program (Halliwell 2004). We 

used global data-assimilative runs at 1/12 ° equatorial spatial resolution and 10 m depth. 

For this study, the long-term mean of current speed (m/s) was used. Daily salinity data at 

10 m depth from May 2008 to July 2013 were also obtained from HYCOM, and the long-

term mean salinity was used as input for the classification analyses. 

Data processing included the retrieval and cropping of the global datasets into the 

region of interest (113°E to 135°E and 0°to 13°S). HYCOM derived currents and salinity 

data were resampled into 4 km spatial resolution using bicubic interpolation in order to 

match MODIS derived datasets of Avg SST, Max SST, Min SST and Chla (Figure 2). 

Land masses were identified using MODIS data and were excluded from the analysis 
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(shown as black areas in Figure 2.2). All six selected environmental variables (Avg SST, 

Max SST, Min SST, Chla, Currents and Salinity) were checked to ensure any two of 

them were not correlated. Then they were standardized to scale the data (Legendre and 

Legendre 2012), allowing an equal contribution of the variables to the classification 

analysis. 

 

Figure 2.2: Input variables for classifying the Sunda Banda Seascape into biophysical 

regions.  

(A) Average sea surface temperature (Avg SST); (B) maximum monthly climatological 

sea surface temperature (Max SST); (C) minimum monthly climatological sea surface 

temperature (Min SST); (D) chlorophyll a concentration (Chla); (E) ocean currents 

(Currents); (F) sea salinity (salinity). 

 

 The classification approach selected for this research, Self-organizing map 

(SOM), is a flexible, unsupervised neural network for data analysis and clustering 
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(Kohonen 2001, Kohonen 2013, Kohonen 1982). Several performance studies have 

illustrated the advantages of SOM over other clustering methods. SOM is more 

appropriate for large, nonlinear data sets with high dimensionality (Zhong et al. 2006, 

Ultsch, Vetter and Vetter 1995), and draws great attention in geographic information 

science (Agarwal and Skupin 2008) for spatial and temporal modeling and analysis (Ji 

2000, Zhong et al. 2006, Goncalves et al. 2008, Kalteh, Hjorth and Berndtsson 2008, Hu 

and Weng 2009, Jensen, Thompson and Schmidlin 2012, Hagenauer and Helbich 2013). 

In the field of marine science, there are few examples in the literature of SOM 

applications of extracted spatial patterns and classified environmental regions. The 

existing studies using SOM in marine environments are for the Atlantic Ocean (Saraceno, 

Provost and Lebbah 2006) and the Caribbean Sea regions (Chollett et al. 2012). 

 SOM requires users to predefine the desired number of clusters (neurons) and the 

spatial arrangement of clusters (aka, neuron topology, such as linear, rectangular or 

square) before it runs. We produced and assessed classifications with 4 to 25 clusters 

with all possible bi-dimensional topologies (e.g. for 12 clusters 12x1, 3x4 and 4x3). Our 

goal was to produce an “optimal” number of clusters. Hexagonal grid topologies were 

applied in this study because they provide a better visualization of the results and 

smoother transitions among clusters. The neighborhood size was set to 3 samples and the 

training steps were set to 1,000 iterations. Link distance was used for distance metric for 

its straightforward meaning and easy implementation. The full description of the 

algorithm and mathematical illustration can be found in (Kohonen 2001). 

 Upon completion of a neural network classification of a data set into the desired 

number of clusters, it is necessary to validate the clusters in terms of statistical separation, 
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and therefore usefulness for ecologically meaningful classification. There are several 

commonly used internal validation indices in clustering analysis, such as Silhouette Index 

(Rousseeuw 1987), Davies-Bouldin Index (Davies and Bouldin 1979), Calinski-Harabasz 

Index (Caliński and Harabasz 1974) and Dunn Index (Dunn 1973). Silhouette Index (SI) 

provides a succinct graphical representation of how well each object lies within its cluster 

and has demonstrated its superior performance when compared to other indices 

(Kaufman and Rousseeuw 2009). The SI is calculated using Equation 1. The scenario that 

maximizes the average SI determines the best partition. 

max( , )

i i
i

i i

b a
SI

a b


 (1) 

For each pixel, ia is the average distance from the i th pixel to all the other pixels 

in the same cluster as i , and ib is the minimum average distance from the i th pixel to all 

pixels in a different cluster. After all iSI  values have been calculated, the average SI for 

all clusters is calculated for each scenario. SI ranges between -1 and 1, with SI values 

close to 1 signaling a better clustering (with compact classes, well separated from the 

rest). Validation indices do not only identify the optimal number of clusters, but also the 

optimal spatial arrangement of clusters (topology of neurons).  

 

2.3 Results 

The best classification of biophysical marine environments from the total 43 

scenarios considered was selected by comparing the goodness of the clustering structure 

via SI. The best scenario of classification was found with 9 clusters and linear topology 

(Figure 2.3).  
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Figure 2.3 Silhouette index used to identify the best classification scenario. 

X and Y denote neuron arrangements in the 2-D plates. The number of classes 

equals to X*Y. 

  

The selected scenario classified the biophysical environments of the study area 

into 9 clusters (Figure 2.4), where each cluster indicates a distinctive environmental 

region. One of these clusters (i.e. Class 3) was in the bounding box of study area, but not 

within the SBS. Although no explicit geographic information was provided when training 

the SOM, the classification procedure produced clusters with well-defined boundaries. 

 

Figure 2.4: Biophysical region classification of the Sunda Banda Seascape with 9 classes. 
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MEOW denotes marine ecoregion of the world (Spalding et al. 2007). Five-digit 

codes refer to marine ecoregions: 20140—Arnhem Coast to Gulf of Carpenteria; 

20139—Arafura Sea; 20131—Banda Sea; 20144—Exmouth to Broome; 20129—

Halmahera; 20132—Lesser Sunda; 20126—Palawan/North Borneo; 20130—Papua; 

20128—Sulawesi Sea/Makassar Strait; 20119—Southern Java; 20117—Sunda Shelf/Java 

Sea. 

 The number of pixels of each class was not evenly distributed in the SBS. Class 2, 

Class 4, and Class 5 included the largest number of pixels; and Class 3 was totally 

outside the SBS. The average and standard deviation for each biophysical variable in 

each class are listed in Table 2.1. 

Table 2.1. Percentage area covered by each of the 9 classes in the study area and SBS; 

Average and standard deviation of 6 biophysical variables for the 9 Classes. 

Class SBS (%) 
Avg SST 

(°C) 

Max SST 

(°C) 

Min SST 

(°C) 
Chla (mg/m

3
) 

Currents 

(m/s) 
Salinity (PSU) 

1 2.40 26.61±0.70 28.79±0.83 24.78±0.64 1.33±1.84 0.16±0.11 34.04±0.26 

2 32.30 27.68±0.29 29.49±0.24 25.81±0.32 0.36±0.29 0.19±0.06 34.23±0.13 

3 0 27.23±0.52 30.50±0.48 25.15±0.50 1.54±1.25 0.06±0.05 34.59±0.15 

4 13.30 28.06±0.21 30.18±0.30 26.37±0.21 0.33±0.44 0.14±0.05 34.42±0.13 

5 34.80 28.23±0.20 29.59±0.20 26.74±0.37 0.23±0.10 0.33±0.06 33.99±0.18 

6 12.90 28.29±0.25 29.59±0.23 27.23±0.33 0.31±0.45 0.19±0.09 33.50±0.25 

7 2.90 28.79±0.36 29.40±0.26 27.94±0.53 0.48±0.89 0.19±0.09 34.24±0.12 

8 1.30 29.06±0.35 29.81±0.32 28.42±0.40 0.41±0.92 0.20±0.08 33.51±0.21 

9 0.10 28.55±0.23 29.65±0.23 27.71±0.34 1.40±2.89 0.11±0.07 32.54±0.30 

 

Figure 2.5A shows how the overall distinctiveness of nine classes is related to 

their neighbors. The darker color indicates greater difference, such as Class 8 and Class 

9, while the lighter color shows less difference, such as Class 5 and Class 6, which are 

relatively similar. Figure 2.5B shows how each biophysical variable contributes to each 

class, where darker color indicates greater and lighter one indicates less. None of the 

weight patterns of input variables are very similar to one another, indicating these 
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variables are not correlated. The biophysical environments of the SBS are further 

summarized in Table 2.2 for better management purpose. 

 

Figure 2.5. SOM topology showing the distances between neighbors and the input 

weights. 

(A) SOM Neighbor Weight Distance. The blue hexagons represent the classes; the 

red lines connect neighboring classes; the colors in the regions containing the red lines 

indicate the distances between classes, where the darker colors represent larger distances 

(more differences) and the lighter colors represent smaller distances (less differences). 

(B) Weight from each input biophysical variables. Lighter and darker colors represent 

smaller and larger weights, respectively. 

 

Table 2.2. Characteristics of biophysical environments of the SBS. 

Biophysical 

Class 
Avg SST Max SST 

Min 

SST 
Chla Currents Salinity 

1 L L L M M M 

2 M M L L M M 

3 L H L H L H 

4 M H L L L H 

5 M M M L H M 

6 M M M L M L 

7 H L H L M M 

8 H M H L M L 

9 H M H H L L 

L= Low; M= Medium; H= High 
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2.4 Discussion and Conclusions 

 We delineated the environments of the SBS and classified the region into 8 

distinctive biophysical classes. Each of them represents a unique systematic combination 

of biophysical conditions. Classifying the marine environments into meaningful and 

manageable regions is the initial step to set priorities in marine conservation in different 

marine planning and management schemes (Lourie and Vincent 2004). Our delineation of 

the biophysical environment of the SBS supplements those prevailing marine 

management schemes, such as the marine ecoregion of the world (MEOW) (Spalding et 

al. 2007). MEOW is defined on experts’ opinions and globally comparable on a 

biogeographic basis, for example floral and faunal composition, but it is targeted at the 

world’s coastal and shelf areas. Our biophysical classification is based on bio-

physiochemical environmental conditions; biophysical classes defining regions with 

similar biophysical features, enabling comparisons among regional patterns and processes 

(Table 2). Moreover, it provides more details at the regional level and the most up-to-date 

in the past ten years (Figure 4). Instead of only two ecoregions (i.e. 20131 and 20132) 

delineating the study area by MEOW, our classification with 8 classes should better 

explain patterns of biodiversity and organismal distribution. Importantly, smaller regions 

should be more suitable for conservation practice. With comprehensive coverage, the 

classification result can serve many research and conservation requirements in the area. 

Datasets we employed here are globally available so the systematic approach applied here 

can be replicated to the whole Coral Triangle with other spatiotemporal resolution and 

can be transferred to other remote sensing derived and model-assimilated environmental 

variables.  
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As previously mentioned, the species diversity and abundance in the SBS have 

been threatened by both climate change and human activities (Roberts et al. 2002, Burke 

et al. 2011). Specifically, studies have pointed out the alarming decline of coral cover 

(Bruno and Selig 2007, Carpenter et al. 2008). The Max SST and Salinity of Class 3 over 

the past ten years rank the highest among all classes, following by Class 4. Both Avg SST 

and Min SST of Class 8 rank the highest among all classes, following by Class 7. 

Because temperature and salinity are the ultimate determinants of coral reef ecosystems 

and Class 3 is outside of the SBS, it is advised to prioritize conservation practices within 

Class 4, Class 7 and Class 8. Class 3 ranks the highest in Chla, following by Class 9 and 

Class 1. Chla is not only the proxy for phytoplankton biomass, but also the bridge 

between terrestrial and aquatic ecosystems. High values of Chla in water are known to be 

caused by high nutrient levels of nitrogen and phosphorus resulting from water pollution 

due to human activities such as agricultural runoff, aquaculture or untreated sewage. 

Hence, it is advised to keep monitoring water quality and studying human demography in 

areas mapped as Class 1 and Class 9. Class 5 is weighted highest by Currents, which is 

regarded as the dominant driver of mangrove forests (Alongi 2009). Ecosystem goods 

and services that mangroves provided are estimated as much as about 100,000 USD per 

hectare per year (Costanza et al. 1997). The coverage of mangroves in Indonesia ranks 

the first in the world (Giri et al. 2011); however, they are declining due to aquaculture 

and coastal settlement. It is urgent to take actions in areas mapped as Class 5, for the 

sustainable future of mangrove forests. 

Our delineation of the biophysical environments of the SBS can also be applied to 

serve marine resources management under the CTI-CFF in several ways: The 8 identified 
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biophysical environmental classes can: (1) serve as proxies for species distribution; (2) 

help stratifying rapid-assessment and monitoring activities in the field in a cost-effective 

manner; (3) help determining areas of priority for conservation in conjunction with 

existing habitat data —such as areas likely to be more resilient to climate change and 

coral reef bleaching (Mumby et al. 2011, Maynard et al. 2010). 

There are increasing investments in marine conservation in the SBS, including a 

high level of intergovernmental supports for establishing representative marine protected 

areas (MPA). MPA are regions whose surrounding waters, ecosystems, and any cultural 

or historical resources may require preservation or management  (Kelleher 1999). In an 

ecosystem-based management strategy through multilateral agreements, MPAs play the 

central role in balancing biodiversity protection with natural resource utilization (Halpern 

et al. 2012). For example, MPA connectivity to other ecosystems that serve as “sources” 

for coral larva are more likely to be “seeded” to replenish depleted populations (Botsford 

et al. 2009). MPA proximity to other productive ecosystems that serve as nursery habitat, 

breeding grounds, and foraging grounds have been demonstrated to enhance fish 

abundance and diversity (Roberts et al. 2001). To design a network of MPAs with the 

lowest trade off among biodiversity conservations and fisheries benefits will be one of 

those major conservation purposes of the SBS. Our biophysical environments 

classification will serve as a baseline for initiatives such as this. 

To summarize, our approach for the delineation of biophysical marine 

environments of the SBS not only fills a gap by bringing comprehensive data into this 

region, but also facilitates planning of marine conservation activities. Our work 
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contributes to the framework for coastal and marine spatial planning, which is potentially 

helpful to research and conservation practice in the Coral Triangle. 

 

2.5 Future work 

 Phylogeography studies the historical processes that may be responsible for the 

contemporary geographic distributions of individuals (Avise 2000). In the future, 

phylogeographic research can be incorporated to see any relationship between genetic 

breaks of individual key species with our biophysical classifications. Although this 

biophysical environmental delineation is meant to be useful for all marine ecosystems, 

coastal and pelagic, if connectivity patterns of species are of special interest for 

conservation planning, then our results can be integrated with multi-species population 

connectivity outputs. Studies can be also conducted in terms of how the East Asian 

monsoon variability affects the delineation of  SBS environments (Gordon 2005). It will 

refine our understanding of the SBS environment and provide more guidance of marine 

spatial planning and conservation activities. Finally, in the context of climate change and 

sea level rise, how to refine the SBS biophysical classification information adaptively to 

inform the establishment of dynamic MPA (Game et al. 2009) deserves more attention. 
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CHAPTER 3 

PREDICTING MANGROVE BIOMASS PATTERNS IN THE CHANGING CLIMATE 

OF THE SUNDA BANDA SEASCAPE, INDONESIA
2
 

 

  

                                                 
2 Wang, M. et al. To be submitted to Ocean &Coastal Management 
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Abstract 

 Mangrove forests are essential to ecosystem but declining at an unprecedented 

rate. Modeling and predicting spatial patterns of mangrove biomass in the context of 

climate change are critical to improve the understanding the role of mangrove in coastal 

carbon budgets, inform mangrove resource management and guide conservation 

practices. The Sunda Banda Seascape (SBS), Indonesia, located in the center of the Coral 

Triangle, is among the world’s richest regions of mangrove biomass as well as marine 

biodiversity. We estimated mangrove biomass in current (1950-2000), Last Inter-glacial 

Period (LIP) and 4 Representative Concentration Pathways (RCPs) in 2070 with 

bioclimatic model. The relative extent and growth rate between below-ground biomass 

and above-ground biomass were revealed as they were negatively associated with latitude 

for all scenarios. Change detection analysis showed that with the increase of CO2 

concentration, mangrove biomass generally increased but spatial variance was enlarged. 

Our findings provided a baseline for mangrove studies in the SBS.  In conjunction with 

biophysical regions classification of the SBS, our study can be regarded as a tool for 

assessing conservation priorities and highlighting hotspots for mangrove management 

investments. The framework of predicting mangrove biomass presented here can be 

expanded to the whole Coral Triangle and has broader impact to inform mangrove studies 

and conservation activities in other areas of the world.   
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3.1. Introduction 

Mangroves are an assemblage of woody, facultative  halophytes (salt tolerant 

plants adapted to exclude or excrete salt ) that are fundamental species distributed in the 

estuaries, lagoons and littoral zone between 30°N and 30°S of the world (Alongi 2009, 

Tomlinson 1986). They grow in harsh biophysical conditions such as high salinity, high 

temperature, extreme tide, high sedimentation and muddy anaerobic soils (Giri et al. 

2011); their distribution is driven by major ocean currents (Alongi 2009) and affected by 

geomorphological and biotic factors (Ellison 2002, Duke, Ball and Ellison 1998). 

Because mangroves provide critical ecosystem services, they are essential to the 

ecosphere of the earth as well as human beings. According to MA (2005), ecosystem 

services include: supporting services (nutrient cycling, soil formation, primary 

production); provisioning services (food, fresh water, wood and fiber, fuel); regulating 

services (climate, food, disease, water purification); and cultural services (aesthetic, 

spiritual, educational, recreational). Primary productivity can be regarded as the rate at 

which plants (mangroves) produce organic compounds in an ecosystem. The primary 

productivity in mangroves can be compared with tropical rainforests (Alongi 2002). 

Primary productivity is positively associated with biomass. Using energy from the sun, 

plants (mangroves) construct biomass by absorbing from the CO2 from atmosphere. 

Mangrove biomass provides both direct and indirect ecosystem services. Mangrove 

forests sequestrate carbon, support biodiversity through their structure and potentially 

reduce hurricane impacts (Alongi 2002). Litters of mangrove forests provide nutrients 

and food for marine species, which have linked to increased fish populations (Mumby et 

al. 2004). These ecosystem goods and services are estimated to be as much as about 
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100,000 USD per hectare per year and 170 billion USD globally per year (Costanza et al. 

1997). Mangroves, however, are declining unprecedentedly worldwide. According to 

Spalding, Blasco and Field (1997), the estimation of global mangrove forests is less than 

half of what it was and the remaining is under severe degradation. About 35% of 

mangrove were lost from 1980 to 2000 (MA 2005), which have been declining faster 

than coral reefs or tropical rainforests (Duke et al. 2007). A more disappointing fact is 

that by developing the highest resolution (30m) global mangrove map with satellite 

remote sensing, Giri et al. (2011) revealed that mangrove forest distribution is 12.3% 

smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of 

the United Nations (FAO 2007). 

Mangroves are threatened by several natural and anthropogenic factors. For 

example, climate change, such as change in precipitation and temperature, exacerbates 

the loss of mangroves and other coastal habitats in the future (Gilman et al. 2006, Duke et 

al. 2007). More importantly, mangroves are degraded by coastal development and human 

settlements. Currently, more than 2.2 billion people reside within 100-km of the coastline 

(Small and Nicholls 2003). If current rates of population growth are maintained, the 

number of humans living near the coast will increase to 3.1 billion in 2025 (Kaiser et al. 

2005). Mangroves are removed for aquaculture, agriculture, urbanization and impaired by 

contamination (Valiela, Bowen and York 2001, Nguyen 2014). Including mangroves, 

tropical deforestation accounts for 12-20% of the total anthropogenic carbon dioxide 

emissions (IPCC 2007). Delineating and predicting the spatial patterns of mangrove 

biomass in the context of climate change and human development/aquaculture can help 
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improve mangrove management practices, formulate conservation activities, refine 

climate models, and update mitigation and adaptation policies. 

Understanding the role of mangrove in coastal carbon budgets is critical, because 

mangroves are among the most carbon-rich forests in the tropics (Donato et al. 2011). 

Through their biomass, mangroves provide those abovementioned ecosystem services. 

Effective and efficient mangrove management requires regional monitoring of extent, 

health and ecological functions. Efforts have been made to estimate global carbon storage 

and flux (Avitabile et al. 2012), and those from mangroves in particular (Twilley, Chen 

and Hargis 1992, Donato et al. 2011, Alongi 2009, Hutchison et al. 2013). In the context 

of climate change and see level rise, it is even more important to project future mangrove 

biomass and adaptively make conservation and management strategies. We must take it 

seriously because our current knowledge of organic carbon in tropical mangroves is not 

yet complete (Kristensen et al. 2008), and methods in estimating mangrove carbon fluxes 

and storage are evolving (Rivera-Monroy et al. 2013). 

The Coral Triangle (CT, aka Coral Triangle Initiative Implementation Area, See 

Figure 3.1) in the Pacific Ocean is recognized as the epicenter of tropical marine 

biodiversity (Allen 2008). It is also one of the most threatened areas, due to population 

and poverty pressures faced by the communities that depend on its resources (Allen and 

Werner 2002), which supports more than 150 million people (Green and Mous 2005). CT 

is defined as a geographical term so named as it refers to a roughly triangular area of the 

tropical marine waters of Indonesia, Malaysia, Papua New Guinea, Philippines, Solomon 

Islands and East Timor (aka, Timor-Leste)  (Hoeksema 2007). The Sunda Banda 

Seascape (SBS, See Figure 3.1) is located in the center of CT. Because it has a high level 
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of marine biodiversity and tremendous conservation opportunity, as well as vulnerability, 

the SBS has been ranked as the second most important region by the Ministry of Marine 

Affairs and Fisheries, Indonesia. Overall, the Indo-Malaysian region of CT has 48 

mangrove species (Duke et al. 1998), which is the highest species diversity of mangrove 

anywhere in the world. Indonesia itself covers 22.6% of the world’s mangrove forests 

(Giri et al. 2011), which is two times larger than Australia, the second largest country in 

mangrove cover. In terms of total above-ground biomass (AGB), it reaches about 730 

million tons in Indonesia, which is two times more than in Brazil, the second largest 

country in mangrove AGB (Hutchison et al. 2013). Therefore, delineating and predicting 

mangrove biomass in the SBS in the context of climate change are not only meaningful 

for management, conservation and policy-making in this region, but also helpful to 

inform marine and coastal management in the whole CT. 

 

Figure 3.1: Coral Triangle and Sunda Banda Seascape. 
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 The recent advancement of satellite remote sensing data and algorithms has been 

successfully applied to mapping the extent and change of mangrove forests at different 

scales. However, remote sensing to estimate mangrove forests biomass often requires 

data fusion among Synthetic-aperture Radar (SAR), very high resolution (VHR) imagery 

and Light Detection and Ranging (LiDAR). The SBS is located in a tropical area, where 

clouds are heavy, limiting the performance of optical remote sensing, including VHR. 

Importantly, SAR, VHR and LiDAR are often costly to acquire and the financial burden 

confines their access to developing countries, including Indonesia.  

As an alternative to delineating mangrove distributions using remotely sensed 

data, predicted mangrove distribution and biomass can be modeled based on known 

existing mangrove distributions and output from climate change models. Most climate 

model projections are based on inputs of temperature and precipitation which are 

universally recognized, historically recorded and globally accessible. Their metrics are 

often used to generate biologically meaningful variables and used in ecological niche 

modeling. Moreover, they are also the most self-evident factors representing the changing 

climate. In the situation of changing climate and diminishing mangrove forests, 

bioclimatic models can explain how annual trends, seasonality and extreme or limiting 

climatological features contribute to predicting the past, current and future mangrove 

biomass directly and inform conservation priorities and practices accordingly. Finally, 

they are financially easy to monitor compared to remote sensing based models, thus 

especially applicable to developing and underdeveloped countries. 

Recently, Hutchison et al. (2013) created the first-ever global map of current 

mangrove AGB by linking mangrove distribution with climate data. In this study, we first 
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expanded the bioclimatic models to predict mangrove biomass in the SBS from the past 

(i.e. last inter-glacial period, a.k.a. LIP; ~120,000 - 140,000 years BP) to current (1950 —

2000) and future (2070, according to the Fifth Assessment IPCC report). Next, mangrove 

biomass patterns were coupled with the SBS biophysical regions (Wang et al., 2014, to 

be submitted to PLOS ONE) and coastal development to identify areas of greatest risk, 

inform mangrove management and promote conservation activities. This study can assist 

in developing mitigation and adaptation strategies in the context of climate change; 

prioritizing conservation investment, improving carbon budgets and appreciating the 

compressive utilization of ecosystem goods and services provided by mangroves in the 

SBS and the whole CT.  

 

3.2. Materials and Methods 

3.2.1 Bioclimatic data, model and metrics 

Current bioclimatic information was acquired from the WorldClim Bioclim 

database at 30 arc-second (~1km) spatial resolution (www.worldclim.org). The database 

includes 19 bioclimatic variables using monthly temperature and rainfall data from 1950 

to 2000 through global geospatial sensor networks (Hijmans et al. 2005). Past bioclimatic 

information was downscaled to the LIP (Otto-Bliesner et al. 2006), because widespread 

evidence of a 4–6-m increment of sea-level high-stand during the LIP (Marine Isotope 

Stage 5e) has led to warnings that modern ice sheets will deteriorate owing to global 

warming and initiate a rise of similar magnitude by AD 2100 (Blanchon et al. 2009). 

Future bioclimatic variables are derived from the GISS-E2-R model, provided by the 

Goddard Space Flight Center, National Aeronautics and Space Administration (NASA), 

http://www.worldclim.org/
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U.S.A, which is one of the most recent global climate projections that are used in the 

Fifth Assessment IPCC report (Schmidt et al. 2012, Nazarenko 2013). It contains global 

climate models for four representative concentration pathways (RCPs). RCPs are four 

greenhouse gas concentration trajectories adopted by the Fifth Assessment IPCC report. 

RCPs depend on the emission of greenhouse gases in the years to come, simulating four 

possible climate futures. The four RCPs scenarios, RCP2.6, RCP4.5, RCP6.0, and 

RCP8.5, are named after a possible range of radiative forcing values in the year 2100 

relative to pre-industrial values (+ 2.6, + 4.5, + 6.0, and + 8.5 W/m
2
, respectively). 

 Mangrove AGB and below-ground biomass (BGB) predication models (Equation 

1 and Equation 2) were adopted from (Hutchison et al. 2013), where models were 

validated from peer-reviewed journal articles with meta-analysis. 

AGB (t/ha) = 0.295*X1+0.658*X2+0.234*X3+0.195*X4-120.3 (Equation 1) 

BGB (t/ha) = 0.073*AGB
1.32

 (Equation 2) 

(X1 denotes mean temperature of warmest quarter (°C), X2 denotes mean temperature of 

coldest quarter (°C), X3 denotes precipitation of wettest quarter (mm); and X4 denotes 

precipitation of driest quarter (mm)) 

 Biomass metrics were then developed to better interpret the bioclimatic modeling 

results. Total biomass (TB, t/ha) was defined as AGB + BGB; Ratio was defined 

BGB/AGB; and derivative biomass (DB) was defined as d (BGB)/d (AGB) were also 

constructed to illustrate the relative growth rate between BGB and AGB. In order to 

compare the biomass change in the changing climate, δTB was defined as the different 

between TB in LIP or four RCPs in 2070 and that in the current situation. 
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3.2.2 Mangrove distribution and data preprocessing 

Mangrove species distribution data are acquired from (IUCN 2013). The 2013 

IUCN Red List of Threatened Species contains assessments for over 70,000 species 

globally, of which about 43,000 has spatial data. The spatial data collection is for most of 

the comprehensively assessed taxonomic groups, including mangroves. Mangrove 

species data are in ESRI shapefile format as polygons. ESRI ArcMap 10.1 was used to 

crop the global dataset into study area coordinates (0 ~ 13°S, 113°E ~135°E, See Figure 

1), and polygons of 46 different mangrove species were dissolved to obtain the mangrove 

distribution map. 

Six scenarios (LIP, Current and 4 RCPs of 2070) of bioclimatic data were 

downloaded globally in raster (geotiff) format and cropped by the study area coordinates 

(0 ~ 13°S, 113°E ~135°E). Because the extracted mangrove distribution map covers the 

ocean area, while all bioclimatic data are only available to land area, spatial extrapolation 

is required to match all the bioclimatic models and metrics in 2.1 to the mangrove 

distribution map. Here a spatial extrapolation method named the spring metaphor was 

used, for the balance of accuracy and computational efficiency (D'Errico 2012). In spring 

metaphor, springs (with a nominal length of zero) is assumed to connect each pixel with 

every neighbor (horizontally, vertically and diagonally). Since each pixel tries to be like 

its neighbors, spatial extrapolation is as a constant function where, this function is 

consistent with the neighboring pixels. Along with spatial extrapolation, all bioclimatic 

data, model and metrics in 2.1 were preprocessed in MATLAB® 2012a. 

3.2.3 Population density data and costal development 
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Gridded Population of the World Version 3 (GPWv3) (CIESIN 2005) and Global 

Rural-Urban Mapping Project Version 1 (GRUMPv1) (CIESIN 2011) were downloaded 

from the Center for International Earth Science Information Network of Columbia 

University (http://ciesin.columbia.edu/). In GPWv3, the UN-adjusted population densities 

in 2000 population density data were downloaded at 2.5 arc-minutes (~2.5km) spatial 

resolution in ESRI Arc Grid format. In GRUMPv1, major cities are in ESRI shapefile 

format. Both data were cropped to the study area using ESRI ArcMap 10.1. 

 

3.3. Results and Discussion 

 Based on the bioclimatic data and models in 3.2.1 and mangrove distribution in 

3.2.2, the LIP and current mangrove total biomass (TB) of SBS are mapped in Figure 3.2 

and Figure 3.3, respectively. We see the patterns of TB distribution are associated with 

latitude both in LIP and current, where TB increases when it approaches to the equator. 

These maps support Twilley et al. (1992), in which linear regression is developed 

between mangrove AGB and latitude and mangrove AGB is negatively correlated to 

latitude. They also support Giri et al. (2011) , where the global distribution of mangrove 

decreases from the equator to subtropical areas (~25°N and ~25°S) of both hemispheres. 

There are not major differences between TB in LIP and that in Current scenarios, which 

can give us a baseline for projecting future TB scenarios in the context of climate change. 

http://ciesin.columbia.edu/
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Figure 3.2. Bioclimatic modeled patterns of total biomass (TB) per unit area in Last Inter-

glacial Period (LIP). 

 

 

Figure 3.3. Bioclimatic modeled patterns of total biomass (TB) per unit area in current 

stage (1950-2000). 

 

Based on bioclimatic metrics in 3.2.2, the average ratio between BGB and AGB is 

calculated for all of six scenarios (Table 3.1), compared to the global mean ratio of 0.39 
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(Hutchison et al. 2013). The lowest ratio in the current scenario of the SBS is 0.35, which 

is 25% greater than that for global tropical forests (Saatchi et al. 2011). This highlights 

the importance of the below ground portion of mangrove biomass, which is easily 

neglected and undervalued during mangrove management practices. The derivative 

biomass (DB) of all of six scenarios is calculated to inform the relative growth rate 

between BGB and AGB (Table 3.1). 

Table 3.1. Descriptive summary of Ratio (BGB/AGB) and DB (d (BGB)/d (AGB)) for all 

scenarios. 

Scenario Ratio DB 

 Mean Max Min Mean Max Min 

Current 0.38 0.45 0.35 0.51 0.60 0.46 

LIP 0.38 0.45 0.34 0.50 0.60 0.44 

RCP 2.6 0.39 0.46 0.35 0.51 0.60 0.46 

RCP 4.5 0.39 0.46 0.35 0.52 0.61 0.47 

RCP 6.0 0.39 0.46 0.35 0.52 0.61 0.47 

RCP 8.5 0.39 0.47 0.36 0.52 0.62 0.47 

 

On average, there are no significant differences among the six scenarios in terms 

of the ratio and DB, which could result from the relative portion between BGB and AGB 

stabilizing across time in the SBS. Moreover, the growth rate of BGB is commensurate 

with that of AGB. These findings may facilitate the mangrove monitoring and 

management practices, because monitoring above-ground characteristics of mangrove is 

easier than doing so for below-ground characteristics. We further analyzed the ratio 

patterns by grouping them according to latitude (Figure 3.4). Similar to patterns of TB in 

Figure 2 and Figure 3, the Ratio of mangrove decreases from the equator to the southern 

hemisphere for all of the six scenarios. Generally, the Ratio in current is higher than those 

in LIP at all locations, except at 3°S and 6°S. The Ratio of RCPs are greater than those in 

current, suggesting that in the context of climate change and increase of CO2 
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concentration (RCP 8.5 > RCP 6.0 >=RCP 4.5 >RCP 2.6 in all locations), BGB may be 

more sensitive than AGB with a greater rate of increment. The analysis results of DB 

were similar to those of Ratio for all six scenarios. 

 

Figure 3.4. Portion of below-ground biomass versa above-ground biomass (Ratio) for all 

six scenarios. 

 

Change detection between TB in LIP and that in current was conducted. δTBLIP 

(i.e. TB LIP / TB Current) ranges from 0.73 to 1.17, with an average number of 0.96, which 

means there is a slight increase of mangrove biomass in the SBS at present compared to 

the LIP. δTB of LIP is mapped in Figure 3.5. Unlike the patterns of Ratio, the pattern of 

δTB of LIP is highly associated with longitude. It increases as longitude increases from 

113°E to 130°E and then it decreases as longitude increases from 130°E to 135°E. By 

aggregating the δTBLIP based on longitude, this trend is even more obvious in Figure 

3.6, where polynomial curve fitting (Adjusted R
2
 = 0.98, RMSE =0.01) is applied.  
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Figure 3.5. Total biomass change of Last Inter-glacial Period (LIP) compared to current 

(1950-2000). 

 

 

Figure 3.6. Longitudinal trends of total biomass change of Last Inter-glacial Period (LIP) 

compared to current (1950-2000). 
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Change detection of TB among four RCPs and that in current is also mapped in 

Figure 3.7. Generally, in the context of climate change (the growth of CO2 

concentration), mangrove biomass increases at SBS. Specifically, as CO2 concentration 

grows, TB in 0° to 5°S decreases, while TB in 5°S to 13°S increases. The more CO2 

concentration is; the more divergent that the δTB distribution is. These suggest that there 

is no one rule fit all to summarize the impact that climate change poses to mangrove 

biomass. In the context of changing climate, spatial patterns of mangrove biomass are 

redistributed. Figure 3.7 aggregated δTB of four RCPs based on latitude and longitude, 

respectively. In the direction of latitude (Figure 3.8A), δTB of four RCPs decreases from 

0° to roughly 4°S and then increase with a larger extent from there to 13°S. In the 

direction of longitude (Figure 3.8B), δTB of four RCPs fluctuates severely. However, in 

both directions, the higher the CO2 concentration is (from RCP 2.6 to RCP 8.5), the 

greater the fluctuation. 
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Figure 3.7. Total biomass change from simulated 2070 compared to current (1950-2000). 

 A denotes scenario of Representative Concentration Pathway (RCP) 2.6; B denotes 

scenario of Representative Concentration Pathway (RCP) 4.5; C denotes scenario of 

Representative Concentration Pathway (RCP) 6.0; D denotes scenario of Representative 

Concentration Pathway (RCP) 8.5. 

 

 

Figure 3.8. A: Latitudinal trends of total biomass change of all Representative 

Concentration Pathways (RCP) compared to current (1950-2000). B: Longitudinal trends 

of total biomass change of all Representative Concentration Pathways (RCP) compared 

to current (1950-2000). 
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Mangrove distribution is intersected with the biophysical region classification of 

the SBS and overlaid with population density data in 3.2.3 (Figure 3.9). The study area 

(Figure 1) was classified into nine distinctive biophysical meaningful regions, based on 

unique combination of sea surface temperature metrics, chlorophyll a concentration, 

ocean currents and sea salinity (Chapter 2). With the exception of Class 3, mangrove is 

present in all other biophysical classes, though its distribution is highly unbalanced. Two 

dominant classes, Class 2 (30.8%) and Class 5 (29.9%) occupy more than 60% mangrove 

coverage in SBS. Class 1, Class 7, Class 8 and Class 9 together occupy less than 10%. 

 

Figure 3.9. Mangrove distribution in the biophysical regions (Chapter 2). 

 

Combining Figure 3.7 and Figure 3.9, Table 3.2 shows how average δTB of four 

RCPs aligned with the nine biophysical classes in the study area. The average δTB of 

four RCPs in Class 2 rank the highest while those in Class 7 rank the lowest, which may 

suggest in the context of climate change, mangroves in Class 2 are more susceptible to 

change while mangroves in Class7 are more resistant to change. 
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Table 3.2. Summary of average δTB in four RCPs with nine biophysical classes in 

the study area. 

Biophysical 

Class 
1 2 3 4 5 6 7 8 9 

RCP 2.6 1.04 1.05 1.06 1.05 1.04 1.05 1.01 1.02 1.03 

RCP 4.5 1.07 1.08 1.08 1.08 1.06 1.07 1.03 1.02 1.05 

RCP 6.0 1.08 1.10 1.09 1.09 1.06 1.08 1.03 1.01 1.04 

RCP 8.5 1.11 1.14 1.13 1.13 1.09 1.11 0.99 1.06 1.08 

 

Combining Figure 3.7 and Figure 3.10, we see areas of high population density 

and major cities are associated with areas with higher mangrove biomass in all of four 

RCPs. These areas may be more vulnerable to human activities than the rest of places. 

Based on the increasing trend of coastal settlement and urban sprawl, land within or near 

the SBS will be more populated by 2030. Therefore, it is time to make proper adaptation 

management solutions now. 

 

Figure 3.10. Mangrove distribution overlaid with major cities and population density. 

 

 In our study, we assumed that mangrove distribution would remain the same 

across time and did not consider the possibility that different mangrove species might 

react in varied way facing the changing climate. We also excluded the potential impact of 



 

- 64 - 

sea level rise and ocean acidification pose to the mangrove ecosystems. When it is 

accessible, regional habitat delineation from VHR remote sensing is required to provide 

up-to-date detailed mangrove distribution of this region. When it is available, biomass 

estimation from remote sensing data fusion should be used to demonstrate patterns of 

variation of mangrove in finer resolution. In all cases, our study will help to understand 

regional spatial variance drivers and inform projections of potential biomass of degraded 

systems (when they are recovered or restored). The idea of the framework of this study 

can be also replicated to understand mangrove biomass change in the context of climate 

change in other sites and/or at a broader scale. It is also useful if modified to map 

ecosystem services or other habitats, where remote sensing derived metrics are not 

accessible or affordable. 

 Our results do not calculate the anthropogenic degradation of mangroves. 

However, human impacts pose severe threats to mangrove habitats. Mangroves are 

economically valuable, because they have been traditionally used for food, timber and 

fuel (Alongi 2002). Local communities used mangroves as wood for cooking, heating, 

and building houses, fences. Timbers are used for charcoal and resins for industry 

(Kathiresan and Bingham 2001). Mangroves have also been cleared for aquaculture, 

which is claimed as the greatest threat to mangroves worldwide. Pond aquaculture clears 

mangroves immediately; alters natural tidal flows and food webs; increases excess 

nutrients; and reduces water quality. On a finer scale, mangroves have been commercially 

timbered for urban development and informal construction of bridges and levees. 

Overexploitation of fisheries is another direct reason for mangrove decline. Indonesia is 

the world’s largest archipelagic nation and fisheries is an important sector economically 
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and culturally, and also in terms of food security (Bailey et al. 2012). For example, 

Indonesia catches more tuna in its waters than any other country in the world (Ingles, 

Flores and Musthofa 2008). Moreover, coastal settlements usually pour wastes and 

pollution to waterways where mangrove reside. Additionally, climate change poses 

natural influences to mangrove habitats. Globally, mangroves are limited by temperature, 

which is the most obvious impact from climate change. Regionally, mangroves are 

disturbed by cyclones, lightening, tsunami and floods, and often take decades to recover 

(Smith et al. 1994). In areas that mangroves have been severely damaged, our results can 

represent potential biomass. Although our studies based on bioclimatic models derived 

from temperature-and-precipitation-based metrics suggest mangrove total biomass in the 

SBS will generally increase for all RCPs, the highly divergent spatial patterns may 

indicate the system is more sensitive and fragile. Especially in the context of lacking 

comprehensive long-term mangrove observations in this region, we have not fully 

understood the ecological functions of mangroves. If we clear mangrove unrestrictedly in 

the near future, we will lose a valuable natural resource and result in greater ecosystem 

degradation than we can imagine today. 

 

3.4. Conclusions and Conservation Suggestions 

We estimated mangrove biomass in current, LIP and all of four RCPs of 2070 

scenarios by adapting bioclimatic models based on temperature and precipitation derived 

metrics. The ratio (between BGB and AGB) and the change rate (DB, between BGB and 

AGB) are negatively associated with latitude for all six scenarios. These results indicate 

there is a shift in mangrove biomass from above ground to below ground in forests 
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located further south from the equator. Change detection (δTB) showed biomass in LIP 

was greater in the eastern portion of the study area. It also revealed that compared to 

current conditions, with the growing concentration of CO2, the biomass would be greater. 

The spatial variance of mangrove biomass would be also enlarged—i.e., the high would 

become higher while the low would become lower. From the equator to the south, δTB 

for all RCPs decreased first, and then bottomed out at about 3.5° S; while from the west 

to the east, δTB for all RCPs were highly fluctuated. Future threats to mangrove forests 

are expected to continue to include change in climate, increasing coastal settlement and 

development, unrestricted cutting of mangrove trees, aquaculture, and overexploitation of 

fisheries. Therefore, our findings provide a baseline for mangrove studies in the SBS, as 

well as a tool for assessing conservation priorities and highlighting hotspots for 

management investments. For example: 

1) Due to the high spatial variance of simulated mangrove biomass in 2070, there is 

no one-size-fits-all management policy or conservation tactic. For example, 

policy-making based on biophysical region classifications of the SBS provides a 

possible scheme for mangrove monitoring and each biophysical class provides a 

manageable unit for specific policy implementation. 

2) Within the SBS, coordinated systems for mangrove management and conservation 

priorities should be established. For example, Alongi (2002) proposed to assign 

mangroves to the one category of conservation reserve, forest reserve, fisheries 

reserve and alienable mangrove land. Laws and regulations should be enacted for 

different categories. 
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3) Areas with increasing potential mangrove biomass in 2070 should be invested in 

mangrove conservation for higher economic and ecological return; areas with 

decreasing potential biomass in 2070 should be intervened to slow development. 

4) Field surveys and long-term ground-based biological station networks should be 

established to understand the mangrove physiology of 46 species in the SBS. 

Geospatial sensor networks should also be used to provide structural information 

of key mangrove species with finer resolution to help understand mangrove 

ecology at different scales. 

5) Mangrove studies cannot be stand-alone. They should be integrated with studies 

of other habitats, such as coral reefs and sea grasses, for mangroves’ diverse 

ecological functions, include supporting coastal food web.   

Policy implementation is critical to manage mangrove resources and enable 

conservation activities. For all cases, our studies give a regional outlook and baseline of 

mangrove biomass in the past, current and four different scenarios of the future. These 

regional estimates of spatial variance are important for informing broad-scale policy, 

investment, conservation and restoration. It is human instinct to conserve economically 

important natural resources. With the advancement of ecosystem services evaluation 

methods and tools, more additional economic and social benefits that mangroves provide 

will be revealed and accounted. In the context of global change, it is advised to take 

actions and plan for mangroves’ future based on the maps of mangrove patterns. It is also 

the planning of sustainable future of human beings.  

 

  



 

- 68 - 

References 

Allen, G. R. (2008) Conservation hotspots of biodiversity and endemism for 

Indo‐Pacific coral reef fishes. Aquatic Conservation: Marine and Freshwater 

Ecosystems, 18, 541-556. 

Allen, G. R. & T. B. Werner (2002) Coral reef fish assessment in the ‘coral triangle’of 

southeastern Asia. Environmental Biology of Fishes, 65, 209-214. 

Alongi, D. M. (2002) Present state and future of the world's mangrove forests. 

Environmental Conservation, 29, 331-349. 

---. 2009. The energetics of mangrove forests. Springer. 

Avitabile, V., A. Baccini, M. A. Friedl & C. Schmullius (2012) Capabilities and 

limitations of Landsat and land cover data for aboveground woody biomass 

estimation of Uganda. Remote Sensing of Environment, 117, 366-380. 

Bailey, M., J. Flores, S. Pokajam & U. R. Sumaila (2012) Towards better management of 

Coral Triangle tuna. Ocean & Coastal Management, 63, 30-42. 

Blanchon, P., A. Eisenhauer, J. Fietzke & V. Liebetrau (2009) Rapid sea-level rise and 

reef back-stepping at the close of the last interglacial highstand. Nature, 458, 881-

884. 

CIESIN, C. 2005. Gridded Population of the World Version 3 (GPWv3): Population 

Density Grids. In Palisades, NY: Socioeconomic Data and Applications Center 

(SEDAC), Columbia University. Available at 

http://sedac.ciesin.columbia.edu/gpw, ed. C. U. a. C. I. d. A. T. C. Center for 

International Earth Science Information Network (CIESIN). 

CIESIN, I., CIAT. 2011. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): 

Settlement Points. . In Palisades, NY: Socioeconomic Data and Applications 

http://sedac.ciesin.columbia.edu/gpw


 

- 69 - 

Center (SEDAC), Columbia University. Available at 

http://sedac.ciesin.columbia.edu/data/dataset/grump-v1-settlement-points. . 

Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. 

Naeem, R. V. O'Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. van den Belt 

(1997) The value of the world's ecosystem services and natural capital. Nature, 

387, 253-260. 

D'Errico, J. 2012. inpaint_nans 

(http://www.mathworks.com/matlabcentral/fileexchange/4551-inpaintnans) , Last 

Visit 2/2/2014. 

Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham & M. Kanninen 

(2011) Mangroves among the most carbon-rich forests in the tropics. Nature 

Geoscience, 4, 293-297. 

Duke, N. C., M. C. Ball & J. C. Ellison (1998) Factors influencing biodiversity and 

distributional gradients in mangroves. Global Ecology and Biogeography Letters, 

27-47. 

Duke, N. C., J.-O. Meynecke, S. Dittmann, A. M. Ellison, K. Anger, U. Berger, S. 

Cannicci, K. Diele, K. C. Ewel & C. D. Field (2007) A world without mangroves? 

Science, 317, 41-42. 

Ellison, A. M. (2002) Macroecology of mangroves: large-scale patterns and processes in 

tropical coastal forests. Trees, 16, 181-194. 

FAO. 2007. (Food and Agriculture Organization of the United Nations) The world’s 

Mangroves 1980–2005. FAO Rome, Italy. 

http://sedac.ciesin.columbia.edu/data/dataset/grump-v1-settlement-points
http://www.mathworks.com/matlabcentral/fileexchange/4551-inpaintnans


 

- 70 - 

Gilman, E., J. Ellison, V. Jungblut, H. Van Lavieren, L. Wilson, F. Areki, G. Brighouse, 

J. Bungitak, E. Dus & M. Henry (2006) Adapting to Pacific Island mangrove 

responses to sea level rise and climate change. Climate Research, 32, 161-176. 

Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek & N. Duke 

(2011) Status and distribution of mangrove forests of the world using earth 

observation satellite data. Global Ecology and Biogeography, 20, 154-159. 

Green, A. & P. J. Mous. 2005. Delineating the Coral Triangle, its ecoregions and 

functional seascapes. In Report based on an expert workshop held at the TNC 

Coral Triangle Center, Bali Indonesia (April-May 2003), and on expert 

consultations held in June–August. 

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis (2005) Very high 

resolution interpolated climate surfaces for global land areas. International 

journal of climatology, 25, 1965-1978. 

Hoeksema, B. W. 2007. Delineation of the Indo-Malayan centre of maximum marine 

biodiversity: the Coral Triangle. In Biogeography, time, and place: distributions, 

barriers, and islands, 117-178. Springer. 

Hutchison, J., A. Manica, R. Swetnam, A. Balmford & M. Spalding (2013) Predicting 

global patterns in mangrove forest biomass. Conservation Letters, n/a-n/a. 

Ingles, J., J. Flores & I. Musthofa (2008) Getting off the hook: Reforming tuna fisheries 

of indonesia. World Wildlife Foundation, Coral Triangle Initiative. 

IPCC. 2007. Climate change 2007-the physical science basis: Working group I 

contribution to the fourth assessment report of the IPCC. Cambridge University 

Press. 



 

- 71 - 

IUCN (2013) IUCN Red List of Threatened Species. Version 2013.2. 

http://www.iucnredlist.org. 

Kaiser, M. J., M. J. Attrill, S. Jennings, D. N. Thomas, D. K. Barnes, A. S. Brierley, N. 

V. Polunin, D. G. Raffaelli & P. J. l. B. Williams. 2005. Marine ecology: 

processes, systems, and impacts. Oxford University Press Nueva York. 

Kathiresan, K. & B. L. Bingham (2001) Biology of mangroves and mangrove 

ecosystems. Advances in marine biology, 40, 81-251. 

Kristensen, E., S. Bouillon, T. Dittmar & C. Marchand (2008) Organic carbon dynamics 

in mangrove ecosystems: a review. Aquatic Botany, 89, 201-219. 

MA. 2005. (Millennium Ecosystem Assessment) Ecosystems and human well-being. 

Island Press Washington, DC. 

Mumby, P. J., A. J. Edwards, J. E. Arias-González, K. C. Lindeman, P. G. Blackwell, A. 

Gall, M. I. Gorczynska, A. R. Harborne, C. L. Pescod & H. Renken (2004) 

Mangroves enhance the biomass of coral reef fish communities in the Caribbean. 

Nature, 427, 533-536. 

Nazarenko, L., G.A. Schmidt, R.L. Miller, N. Tausnev, M. Kelley, R. Ruedy, G.L. 

Russell, I. Aleinov, M. Bauer, S. Bauer, R. Bleck, V. Canuto, Y. Cheng, T.L. 

Clune, A.D. Del Genio, G. Faluvegi, J.E. Hansen, R.J. Healy, N.Y. Kiang, D. 

Koch, A.A. Lacis, A.N. LeGrande, J. Lerner, K.K. Lo, S. Menon, V. Oinas, J.P. 

Perlwitz, M.J. Puma, D. Rind, A. Romanou, M. Sato, D.T. Shindell, S. Sun, K. 

Tsigaridis, N. Unger, A. Voulgarakis, M.-S. Yao, and J. Zhang (2013) Future 

climate change under RCP emission scenarios with GISS ModelE2. Journal of 

Advances in Modeling Earth Systems (JAMES), submitted. 

http://www.iucnredlist.org/


 

- 72 - 

Nguyen, H.-H. (2014) The relation of coastal mangrove changes and adjacent land-use: 

A review in Southeast Asia and Kien Giang, Vietnam. Ocean & Coastal 

Management, 90, 1-10. 

Otto-Bliesner, B. L., S. J. Marshall, J. T. Overpeck, G. H. Miller, A. Hu & C. L. I. P. 

members (2006) Simulating Arctic Climate Warmth and Icefield Retreat in the 

Last Interglaciation. Science, 311, 1751-1753. 

Rivera-Monroy, V. H., E. Castañeda-Moya, J. G. Barr, V. Engel, J. D. Fuentes, T. G. 

Troxler, R. R. Twilley, S. Bouillon, T. J. Smith & T. L. O’Halloran. 2013. Current 

Methods to Evaluate Net Primary Production and Carbon Budgets in Mangrove 

Forests. In Methods in Biogeochemistry of Wetlands, eds. R. D. DeLaune, K. R. 

Reddy, C. J. Richardson & J. P. Megonigal, 243-288. Soil Science Society of 

America. 

Saatchi, S. S., N. L. Harris, S. Brown, M. Lefsky, E. T. Mitchard, W. Salas, B. R. Zutta, 

W. Buermann, S. L. Lewis & S. Hagen (2011) Benchmark map of forest carbon 

stocks in tropical regions across three continents. Proceedings of the National 

Academy of Sciences, 108, 9899-9904. 

Schmidt, G., A. Kelley, L. Nazarenko, R. Ruedy, G. Russell, I. Aleinov, M. Bauer, S. 

Bauer, M. Bhat & R. Bleck (2012) Configuration and assessment of the GISS 

ModelE2 contributions to the CMIP5 archive. J. Climate. 

Small, C. & R. J. Nicholls (2003) A global analysis of human settlement in coastal zones. 

Journal of Coastal Research, 584-599. 

Smith, T. J., M. B. Robblee, H. R. Wanless & T. W. Doyle (1994) Mangroves, 

hurricanes, and lightning strikes. BioScience, 256-262. 



 

- 73 - 

Spalding, M., F. Blasco & C. D. Field (1997) World mangrove atlas. 

Tomlinson, P. 1986. The botany of mangroves. Cambridge tropical biology series. 

Cambridge University Press, Cambridge. 

Twilley, R., R. Chen & T. Hargis (1992) Carbon sinks in mangroves and their 

implications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil 

Pollution, 64, 265-288. 

Valiela, I., J. L. Bowen & J. K. York (2001) Mangrove Forests: One of the World's 

Threatened Major Tropical Environments. Bioscience, 51, 807-815. 

 

  



 

- 74 - 

 

 

CHAPTER 4 

CONCLUSIONS 

4.1 Summary and Conclusions 

 As the global center of marine biodiversity facing threats from human activities 

and climate change, the Coral Triangle (CT) draws attention from academia, 

governments, industry and international organizations. The unique location of the Sunda 

Banda Seascape (SBS) in CT requires our understanding of the biophysical 

environments, marine and coastal ecosystems of SBS. These will not only provide a 

baseline of inventory, but also facilitate research, conservation practices and marine 

spatial planning of SBS. Moreover, there is great possibility to expand the framework 

presented in this thesis work into the whole CT and replicate in other marine 

environments of the world. 

Geospatial modeling and analysis, including the applications of remote sensing, 

enable human being to explore the remote and information-poor areas and expand our 

understanding of the Earth. A meta-analysis of global remote sensing research literature  

published between 1991 and 2010 reveals interdisciplinary studies among remote 

sensing, GIS and climate change is flourishing, especially from 2005 to 2010 (Zhuang et 

al. 2013).  This indicates an increasing interest of using remote sensing and geographic 

information science (GIScience) to address climate change problems within the scientific 

community. In the context of climate change, geospatial modeling and analysis can be 

used in monitoring the extent, health and ecological functions of key ecosystems. They 



 

- 75 - 

will also support decision-making processes and contribute to effective and efficient 

resource management. This thesis gives an example answer of how geospatial modeling 

and analysis can be used to facilitate marine and coastal environment studies and inform 

conservation practices for information-poor regions in the context of climate change. 

In Chapter 2, our delineation of the biophysical environments of the SBS can be 

applied to serve marine resources management objectives in the Coral Triangle Initiative 

on Coral Reefs, Fisheries and Food Security (CTI-CFF) in the following ways. The 8 

different classes of biophysical regions can: (1) serve as proxies for species distribution; 

(2) help stratify rapid-assessment and monitor activities in the field; and (3) help 

determining areas of priority for conservation in conjunction with existing habitat data.  

In Chapter 3, spatial patterns of mangrove biomass in current, Last Inter-glacial 

Period (LIP) and all of four Representative Concentration Pathways (RCPs) of 2070 

scenarios were mapped through bioclimatic models. Change detection analysis showed 

compared to current, biomass in LIP generally decreased from the West to the East. It 

also revealed that compared to current, with the growing concentration of CO2, the 

biomass would be greater and the spatial variances of mangrove biomass would be 

enlarged—in other words, the high levels of biomass would become higher while the low 

biomass projections would become lower. These findings provide a baseline for 

mangrove studies in the SBS as well as a tool for assessing conservation priorities and 

highlighting hotspots for management investments for both international nature 

conservation organizations and local authorities. 

In this thesis, geospatial modeling and analysis were used from different angles to 

aid marine and coastal environment studies for information-poor region—the SBS in the 
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context of climate change, and potentially facilitated conservation practices in this region.  

This thesis research is the first-ever study of this kind in the SBS. The framework it 

provided can be replicated in the whole CT and other part of the world. 

 

4.2 Future Work 

Based on the results of this thesis research, recommended future work should 

continue geospatial modeling and analysis to advance marine and coastal environmental 

studies and facilitate environmental planning and conservation practices. As examples, 

three research directions are shown as follows. 

4.2.1Network analysis of habitats and species population connectivity 

Although this delineation of biophysical environments is meant to be useful for all 

marine ecosystems, coastal and pelagic, if connectivity patterns of key habitats and 

species are of special interest for conservation planning, then our results can be integrated 

with multi-species population connectivity outputs (Finn et al. 2014, Thomas et al. 2014, 

Moilanen et al. 2014).  Mangrove and coral reef habitat connectivity studies can improve 

the effectiveness of marine reserves, and heterogeneous landscapes with high-habitat 

connectivity should be viewed as high priorities for conservation (Olds et al. 2013). 

Understanding key habitats and species population connectivity will promote marine 

conservation outcomes and marine spatial planning (Olds et al. 2014, Anadón et al. 

2013).  

4.2.2 Facing climate change and facilitating dynamic Marine Protected Areas (MPA) 

establishment 
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In the context of climate change and sea level rise, spatiotemporal modelling is 

highlighted (Makino et al. 2014) and proposed to be integrated into different marine 

conservation planning frameworks (Magris et al. 2014). Meanwhile, how to refine the 

SBS biophysical classification information adaptively to inform the establishment of 

dynamic MPA deserves more attention (Game et al. 2009, Rassweiler et al. 2014). 

4.2.3 Ecosystem services evaluation of key habitats 

It is human instinct to be more interested in conserving economically important 

natural resources. With the advancement of ecosystem services evaluation methods and 

tools (Jackson et al. 2013, Martín-López et al. 2014), more additional economic and 

social benefits that key habitats (e.g., mangroves and coral reefs) provide will be revealed 

and accounted for (Yee, Dittmar and Oliver 2014, Friess and Webb 2014). 

  

The SBS is one example place where proper conservation management is required 

because the area is under severe threat due to unsustainable development and climate 

change. Geospatial modeling applied in this thesis is just one piece of the pizza of 

GIScience. With the constant development of geospatial techniques, more sites without 

comprehensive data or existing scientific research, just like the SBS, will be revealed, 

studied and understood by our human beings. 
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APPENDIX I 

LIST OF ACRONYMS 

 Acronym Full Description 

A AGB Above-ground Biomass 

 Avg SST Long-term Mean Sea Surface Temperature 

B BGB Below-ground Biomass 

C Chla Long-term Mean Chlorophyll a Concentration 

 CT Coral Triangle 

 CTI-CFF Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security 

D DB Derivative Biomass 

G GIScience Geographic Information Science 

 GPWv3 Gridded Population of the World Version 3 

 GRUMPv1 Global Rural-Urban Mapping Project Version 1 

H HYCOM Hybrid Coordinate Ocean Model 

I IPCC Intergovernmental Panel on Climate Change 

 IUCN International Union for Conservation of the Nature 

 LiDAR Light Detection and Ranging 

L LIP Last Inter-glacial Period 

M Max SST Highest Monthly Climatological Sea Surface Temperature 

 MEOW The Marine Ecoregion of The World 

 Min SST Lowest Monthly Climatological Sea Surface Temperature 

 MODIS Moderate Resolution Imaging Spectroradiometer 

 MPA Marine Protected Areas 

N NASA U.S. National Aeronautics and Space Agency 

R RCPs Representative Concentration Pathways 

S SAR Synthetic-aperture Radar 

 SBS Sunda Banda Seascape 

 SI Silhouette Index 

 SOM Self-organizing Map 

 SST Sea Surface Temperature 

T TB Total Biomass 

U USGS U.S. Geological Survey 

V VHR Very High Resolution 

 


