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ABSTRACT 

The global confectionary market was valued at $184 billion in 2015, and is projected to 

reach $232 billion by 2022. The industry directly employs 55,000 people domestically, and more 

than 400,000 jobs in agriculture, retail, transportation and other industries rely in part on the sale 

and manufacture of confections. However, many available analytical methods for measuring the 

quality of confections are relatively expensive, time consuming, and difficult to operate or 

maintain, therefore, it is unrealistic for small/medium confection manufacturers to use those 

methods. The objective of this study was to develop fast-measuring and affordable analytical 

methods for some important quality related properties. In addition, the developed methods were 

used to study the properties of confections and compare them with traditional methods, seeking 

their potential applications in confection quality assurance for small/medium confection 

manufacturers and other researchers. Two capacitance-based thermal analysis (CTA) methods 

were developed to study the glass transition and melting properties of different boiled candies 

and chocolates respectively. Three particle size measurement methods were tested for 

characterizing cocoa particle size distribution in the refining/conching process. The 



microstructure of cocoa particles was also studied by scanning electron microscopy (SEM). 

Flavor development and volatile compounds profiles of cocoa during roasting and 

refining/conching processes were studied by electronic nose. The results provide better 

understandings about quality related properties, such as glass transition, melting, and particle 

size, of confection by using non-traditional methods. The potential applications of fast-

measuring and affordable analytical methods were tested and several of the methods were proved 

to be useful for small/medium confection manufacturers.  

INDEX WORDS:    confection, phase transition, volatile compound, capacitor thermal analysis, 

electronic nose, particle size analysis, refining/conching, roasting 
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CHAPTER 1 

INTRODUCTION 

Candy is a confection that features sugar as a principal ingredient. The production of 

candy started in Persia between the 6th to 4th centuries BCE. Today, the categories of candy 

include hard candies, soft candies, caramels, marshmallows, taffy, and other candies, all of 

which use sugar as the primary ingredient. Commercially, sugar candies are usually classified 

according to the amount of sugar they contain and their chemical structure (Richardson 2008). 

Chocolate is a complex suspension system of solid particles (cocoa, sugar, milk 

components, additives) in a continuous fat phase that consists of cocoa butter, milk fat and 

emulsifiers (Afoakwa et al., 2008a, Beckett 2000, Chetana et al., 2013). The history of chocolate 

started roughly one thousand years ago in Central America.  In the early years, it was mainly 

consumed in beverages and medicines up until the 1800s when solid chocolate became more 

popular than liquid chocolate (Grivetti and Shapiro 2011). Chocolate can be a snack, special 

treat, or delicacy to be sampled and evaluated much like wine, in addition, chocolate is an 

important industry with an estimated global market value of more than $98 billion (World Atlas 

2016). 

In the confection industry, advanced analytical methods for quality related properties 

such as phase transition temperature, particle size, and volatile compound profiles, are relatively 

expensive and time consuming. These methods include differential scanning calorimetry (DSC), 

rheometry, scanning electron microscopy (SEM), laser scatting particle size analysis, and gas 
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chromatography-mass spectrometry (GC-MS), which can be difficult to operate and maintain. 

Therefore, it can be difficult for small/medium confection manufacturers to perform much-

needed quality inspection and product development. This research was undertaken to develop 

fast-measuring, portable, and inexpensive analytical methods that could be used to determine the 

quality related properties of confections (boiled candy and chocolate). The development of 

corresponding electronic devices, data acquisition methods, and a data processing algorithm 

were also included in the studies as a natural extension. Measurements conducted by the 

proposed methods were compared to the ones obtained by existing methods.  

In Chapter 2, the literature review begins with a broad introduction about the candy and 

chocolate industry. This includes information about chocolate fermentation and tempering. 

Chocolate roasting and refining/conching are then discussed as they are to the studies in Chapter 

5, 6 and 7. Following that, information on the glassy state, glass transition and cocoa butter 

crystallization are introduced. The working principles of current standard analytical methods and 

research related to phase transition detection are discussed. These include DSC, thermal 

rheometry and dielectric analysis (DEA), and are presented in reference to the capacitor based 

thermal analysis (CTA) that is presented in Chapter 3 and 4. The basis of the proposed CTA 

consists of two important parts: the device and the algorithm. Therefore, detailed information 

about the capacitor (device) and genetic algorithm (GA) are provided following the introduction 

of standard methods.  

Evaluating analytical methods that can be used for chocolate particle size measurement is 

the main topic in Chapter 5. The following parts of the literature review introduce the process of 

refining/conching, where the particle size reduction of chocolate is achieved, and the 

microstructure and volatile compounds profiles are developed. Comprehensive reviews about 
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particle size measurements methods and scanning electron microscopy (SEM) are provided after 

introduction of cocoa refining/conching.  

The subsequent sections of the literature review discuss the roasting process of cocoa and 

the development of volatile compounds during roasting. The proposed method for studying the 

volatile compounds developed both in refining/conching and roasting processes uses an 

electronic nose system. Therefore, in last two sections of the literature review, the electronic 

nose (device) and the algorithm (artificial neural network (ANN) are discussed. 

Chapter 3 and Chapter 4 present two newly developed capacitor thermal analysis (CTA) 

methods to determine the glass transition of boiled candies and the melting properties of 

chocolates. Measurements obtained by using DSC and rheometry for the same samples are used 

as a reference. Chapter 5 examines particle size reduction and the microstructure of cocoa during 

refining and conching. Three particle size measurement methods were compared to laser 

scattering methods. The application of an electronic nose in determining the roasting degree of 

cocoa beans are presented in Chapter 6. In Chapter 7, the application of the e-nose in 

characterizing the refining/conching process of cocoa is presented.    
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CHAPTER 2 

LITERATURE REVIEW 

Candy and chocolate processing 

Candy processing is typically divided into two steps. The first step is dissolving sugar in 

water or milk to form a syrup and the second is the boiling of the ingredients until they reach the 

desirable concentration or caramelization occurs. The type of candy produced depends on the 

ingredients and the cooking temperature of the candies before they are allowed to cool. Candy 

comes in a wide variety of textures, from soft and chewy to hard and brittle. In general, higher 

temperatures and greater sugar concentrations result in hard, brittle candies, while lower 

temperatures result in softer candies (Cakebread 1975). The cooking temperatures of boiled 

candies and their corresponding expected textures are shown in Table 2.1 (Hartel and Hartel 

2014). 

The manufacture of chocolate includes harvesting, fermentation, roasting, cracking, 

winnowing, refining, conching, tempering, transporting and storing. Each unit operation greatly 

influences the final quality of the chocolate. Even today, the harvesting of cocoa pods relies 

heavily on human labor, which includes cutting them from cocoa trees using a machete or 

knocking them off the tree with sticks. After harvesting, the pulp is removed from the pods and 

the beans are placed in piles or bins where microorganisms begin the fermentation process. 
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Cocoa fermentation is one of the most important stages in post-harvest processing that is 

related to product quality. Fermentation remains empirical and does not give rise to beans of 

consistent quality, forcing processors continuously to make changes of their formulations. It also 

helps to trigger biochemical changes inside the beans that reduce bitterness and astringency, and 

to the development of flavor precursors. The schematic of a microbial succession during cocoa 

bean fermentations is shown in Figure 2.1 (Schwan and Wheals 2004). The open boxes indicate 

the periods during the fermentation when a particular microbial group is most abundant and/or 

important.  

After fermentation, cocoa beans must be roasted to improve quality and develop flavor. 

Cocoa roasting is a dry heating method that uses different heat sources (hot air, flame, and hot 

plate) to cook cocoa beans. Roasting also makes the cracking and winnowing much easier by 

decreasing the moisture content in the beans and helping separate the husk from nibs. 

Refining/conching includes crushing, mixing, and agitating the cocoa with other ingredients such 

as sugar, milk protein, and cocoa butter, by extreme friction and high heat. This process reduces 

the particles size of the ingredients and delivers a smooth texture by developing the 

microstructure of the particles. 

The final process of making chocolate is called tempering. This process controls the 

crystallization of cocoa butter by manipulating temperature. Both the type and the size of the 

crystals are influenced by the tempering process. The typically desired texture of chocolate is 

uniform sheen and crisp bite, and this is achieved by consistently producing small cocoa butter 

crystals during tempering process. Table 2.2 summarizes the melting temperature (Tm) and the 

texture of 6 type of cocoa butter crystals. And type V crystal is usually desirable because it 

delivers glossy, firm, and best snap texture. 
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Glassy state 

In nature, the commonly known states of materials are solid, liquid, and gas. The main 

difference among these states is their molecular mobility. The solid state has the lowest 

molecular mobility and the molecules in solids are fixed in their position. The crystalline state is 

a well-known solid state having molecules well arranged in a regular lattice. However, solids can 

exist in another state where the arrangement of the molecules are randomly distributed, or in 

other words, a disordered arrangement. This is called a glassy state or amorphous state. The 

name appears to have originated from glass manufacturing (Debenedetti and Stillinger 2001). 

Glassy states are usually formed by rapidly decreasing the temperature of molten liquids 

to a certain temperature range. Because of this drop in temperature, the molecules in the liquid 

don’t have sufficient time to undergo the association and change in orientation to form to well-

arranged crystalline state. Therefore, the molecules are ‘frozen’ in their original position. The 

glassy state is characterized by its amorphous molecule distribution, which is similar to 

molecules in liquid state, and extremely high viscosity, just like solids (Kivelson et al., 1996; 

Weeks, et al 2000; Johari and Goldstein 1970). 

If the liquids are cooled down slowly below their melt temperatures, the molecules form 

crystals and the liquids solidify. The transition from liquid to solid is a thermodynamic process, 

as when the temperature is below the melt temperature of the material, the crystal state is 

energetically more favorable than the liquid. In contrast, the formation of a glass is purely 

kinetic, where the disordered glassy state does not have enough kinetic energy to reach the 

potential energy threshold for the movement of its molecules to pass one another. Therefore, 

molecules of the molecules are fixed in their original locations but in disordered arrangement. 
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Although, as mentioned before, the molecules in glassy state materials are disordered, it 

can have short-range molecular order like molecules in a crystalline solid (Yu 2001). One single 

molecule in glassy solid has similar number of neighbor molecules and similar distance to the 

nearest neighbor molecule as single molecule in a crystalline structure. However, this short-range 

order may only vary over a few angstroms. Unlike crystalline structures, the glassy solid doesn’t 

have long range translational orientational symmetry that characterizes a crystal (Hancock and 

Zografi 1997; Simatos et al., 1995; Johari 1982). 

Glass transition and glass transition temperature (Tg) 

Glass transition, is a name given to the phenomenon that glass is changed into a 

supercooled liquid, or the reverse transformation (Meste et al., 2002). The transition of glass to 

supercooled liquid is usually driven by heating (Rahman 1999; Bhandari and Howes 1999). The 

main difference between glass and supercooled liquid is short-range vibration and rotation in 

glass, and long-range translation and rotation in supercooled liquid (Schmidt 2004). 

For food materials, there are two commonly known phase transitions: first-order and 

second order transition. The main difference is absorption or release of latent heat during 

transition. Transitions include melting, crystallization, evaporation, and condensation are first 

order transitions. A certain amount of latent heat is released or absorbed to make the transition 

isothermal. In contrast, second order transitions occur without the release or absorption of latent 

heat. However, glass transition is typically called a state transition rather than a phase transition 

because of the nonequilibrium nature of the glass (Schmidt 2004). In addition, glass transitions 

occur over a temperature range rather than a fixed temperature and the transition is dependent on 

the experimental condition. Therefore, it is commonly called a kinetic and relaxation transition, 

rather than a second-order transition (Liu et al., 2006). 
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Currently, the knowledge about the glass transition in food materials is 

phenomenological, as little is known about its theoretical aspect (Champion et al., 2000). Tg is 

the temperature range corresponding to the transition of glass-liquid. Unlike melting temperature 

(Tm), Tg is a kinetic parameter, depending on the temperature scanning rate and the material’s 

thermal history. When the temperature is between Tg and Tm, the material can be a viscous 

liquid, and this state is called a ‘rubbery’ state.  

Cocoa butter crystalline states 

Cocoa butter is the main structural material in chocolates and the fat content in chocolates 

is about 30%. Milk fat and protein can also serve as structuring materials in some chocolates 

such as milk chocolate or white chocolate. The basic lipid form for cocoa butter is triglycerides 

(TAG), which are known to crystallize in a number of different polymorphic forms depending on 

processing conditions such as temperature, force, and mass (Sato et al., 1999; Sato 2001). Six 

different polymorphs of cocoa butter have been identified in in chocolate. The name of each 

polymorphic form is γ α, β2’, β1’ β2 β1. Alternately, the six different polymorphs can be 

represented by roman numerals I-VI for γ α, β2’, β1’ β2 β1 respectively. The melting temperature 

ranges for type γ, α, β’, β are -5-5℃, 17-22 ℃, 20-27 ℃, 29-34 ℃ respectively. Real-time 

powder X-ray diffraction has been used by other researchers to study the structure of cocoa 

butter polymorphism. The results reported by other researchers suggested that the unstable γ 

(orthorhombic subcell) and α (hexagonal subcell) phases, as well as the more stable β2 

(orthorhombic subcell) phase, can crystallize directly from the chocolate melt. However, the 

stable β (triclinic) polymorph can only be obtained via phase transformation from the β2 form 

(Van Malssen et al., 1999; Van Malssen et al., 1996; Loisel et al., 1998). In most cases, β2 form 

is desirable for chocolate manufacturers because this type of crystal is stable at room temperature 
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and melts at body temperature, which brings smooth mouth feel to consumers. However, in some 

cases, less stable form such as form α is required for making chocolate fillings or chocolate 

fountains. 

All long-chain compounds, including fats and lipids, in nature show polymorphism. TAG 

is a glycerin fatty acid ester that usually possesses three polymorphs. The crystallization behavior 

of TAG depends on the molecular structure of TAG and on several external factors such as 

temperature, pressure, solvent, rate of crystallization, and levels of impurities (Sato 2001). The 

arrangements of TAGs in crystals is amorphous-like for α, bulky shape for β’ and needle shape 

for β. The structure of α, β’, β polymorphs are based on subcell structures, which define cross-

sectional packing modes of the zigzag aliphatic chain and single-crystal structure of tricaprin β 

form (Larsson 1966; Jensen and Mabis 1966). Aliphatic chain conformation in form α is 

disorder, however, form β’ has intermediate packing and β has the densest packing. Therefore, 

the Gibbs free energy (G) values are highest in α, intermediate in β’ and lowest in β. In other 

words, β is the most stable form, whereas, α is the least stable form (Sato 2001). 

The melting properties, microstructure, and crystallization of cocoa butter has been 

intensively studied by many researchers. Marangoni and McGauley (2003) have correlated the 

microstructure obtained by polarized light microscope to crystallization behavior. Loisel et al. 

(1998), Fessas et al. (2005), Dhonsi and Stapley (2006), Lambelet (1984) and Foubert et al. 

(2003) used differential scanning calorimetry (DSC) to study the phase transition temperature, 

crystallization kinetics, and solid/fat content of chocolates. Pérez-Martínez et al. (2007), 

Brunello et al. (2003), and Sterling and Wuhrmann (1960) did comprehensive research on the 

relationship between crystal microstructure and rheological/mechanical properties. 
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Melting is a physical process that results in phase transition from solid phase to liquid 

phase. The transition is driven by the increase of internal energy, typically, introduced by heat, 

friction or pressure (Atkins and Jones 2007). Except using DSC, and dynamic viscoelastic 

analysis, there are several other available methods can be used to determine the melting 

properties, namely, the melting temperature of chocolates. Capillary method is one popular 

methods for melting point determinations. A thin glass capillary tube containing a compact 

column of the substance to be determined is introduced into a heated stand in close to a high 

accuracy thermometer. The temperature in the heating stand is ramped at constant fixed rate until 

the sample in the tube transitions into the liquid state. This method is relative low-cost; however, 

it needs the visual observation of users which is sometime inconsistent and biased.  Melting 

collapse tests conducted by home-made devices can be useful for the determination of melting 

temperature of materials. The devices perform the melting collapse test, in which a static force is 

applied on the chocolate sample while a temperature ramp is performed (Dicolla 2008). 

Thermometer and thermal couple are also implemented by many chocolate manufacturers for 

melting point measurements. The measurements are based visual observation of the users which 

brings uncontrolled deviation and inconsistency.    

Phase transitions determined by differential scanning calorimetry (DSC) 

DSC is a thermal analysis technique that measures the change of heat capacity of 

materials at different temperature and differentiate it with reference (e.g., air). Alternatively, 

DSC measures the heat required to raise the temperature of the materials by unit degree. A 

sample of known mass is heated or cooled and the changes in its heat capacity are tracked as 

changes in the heat flow. During phase transition, denaturation transitions, bio-macromolecule 

unfolding process, the heat capacity of different materials exhibit different responses to 
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temperature scan. Since most materials exhibit some sort of transition, DSC is used in many 

industries, including pharmaceuticals, polymers, food, paper, printing, manufacturing, 

agriculture, semiconductors, and electronics (Spink 2008; Freire 1995; Höhne et al., 1996). 

Chalikian et al. (1999), Cooper and Johnson, (1994) Freire, (1994), Makhatadze and 

Privalov, (1995), and Plum and Breslauer (1995) studied the unfolding of protein and nucleic 

acids. They not only found thermodynamic data for the denaturation transitions, but also a better 

understanding of the underlying complexity of the unfolding process. DSC was also used to 

study the phase transition of lipid membranes and model membrane systems (Ali et al., 1989; 

Huang and Li, 1999; Mason, 1998). 

The application of DSC in studying the thermodynamic of food material is very broad. 

Privalov (1974), Brandts (1964), Jackson and Brandts (1970) used DSC to determine the 

denaturation of proteins. Donovan, (1979), Biliaderis et al. (1980), Eberstein et al. (1980), and  

Eliasson (1980) did comprehensive studies on the phase transitions and gelatinization in starch 

by DSC. Tan and Kerr 2017, Ohkuma et al. (2008) and Afoakwa et al. (2008a) studied the phase 

transition of candies, frozen foods and chocolates by DSC. 

Phase transitions determined by rheometry  

The rheological properties of the materials that undergo phase transitions exhibit 

anomalous trends to non-transition states due to the changes in physical/chemical properties such 

as viscosity, structure, strength of intermolecular bonds and volume. Many researchers (Lai et 

al., 1999; Xue et al., 2008; Aguilera 1995; Krog and Larsson 1968; Laaksonen and Roos 2000; 

Cocero and Kokini 1991; Roos and Karel 1991) have used rheometry to study the phase 

transitions in food materials, including chocolate, starch, whey protein, monoglycerides, wheat 



13 

dough, glutenin, polysaccharide and sugar. Their results show that rheological properties can 

serve as good indicators for glass transition, melting, and crystallization in food materials.  

Determination of rheological properties are usually conducted by dynamic mechanical 

thermal analysis (DMTA) and mechanical spectroscopy, which obtain mechanical modulus data 

of food materials as a function of temperature.  Mechanical properties can be obtained from the 

materials by periodically changing the stress or stain that are applied in samples under shear, 

blending, tension or torsion (Ross-Murphy1994). 

The distinctive property of glass forming materials is the dramatic slowing down of 

relaxation and flow with decreasing temperature. The dynamical range of this phenomenon is 

probably one of the most spectacular in physics: viscosity may increase by about 15 orders of 

magnitude for a mere 30% decrease in temperature (Ediger et al., 1996; Debenedetti and 

Stillinger 2001; Liu and Nagel 2001). Tarjus et al. (2005) used a simple Arrhenius equation to 

describe the viscosity of a glass forming material as a function of temperature: 

ŋ≈ŋ∞ 
eE∞/kBT

where ŋ is the viscosity of the materials, ŋ∞ is the viscosity at infinite high temperature, and T is 

temperature in Kelvin. At low sufficiently temperature, this exponential function shows a linear 

trend. However, at glass transition temperature, the dynamical properties of a liquid change from 

an ‘ordinary,’ Arrheniuslike temperature dependence to an ‘anomalous,’ stronger than Arrhenius 

(or super-Arrhenius) one. Conventionally, the point at which the viscosity takes a given value of 

1013 poise is defined as glass transition temperature. 

To better use the Arrhenius equation to describe the dynamic mechanical properties of 

different materials, Ngai et al. (1985) introduced the notion ‘fragility,’ which characterizes the 
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degree of super-Arrhenius behavior, the more fragile the glassformer the greater the super-

Arrhenius character. The simple Arrhenius equation was then modified to Vogel-Fulcher-

Tammann formula: 

ŋ≈ŋ∞ 
e

DT0
T-T0  

where D is the measurement of fragility. An alternative method to represent the data is focused 

on the effective activation energy: 

E(T) = kBT ln (η/η∞) 

Phase transitions determined by dielectric analysis (DEA) 

Dielectric analysis (DEA) refers to a group of techniques that measure the polarization, 

permittivity, and conductivity of materials as a function of temperature or frequency. The 

reorientation of dipoles and the translational diffusion of charged molecules caused by oscillating 

electric fields. The basis of the analysis based on alternating-current (AC) dielectric methods 

principally involve measurements of the complex permittivity (dielectric constant ε’ and 

dielectric loss ε’’) in the frequency or time domain and at constant or varying temperature 

(Vassilikou-Dova and Kalogeras 2009). The dielectric constant and polarizability of the 

molecules in materials undergo great changes during phase transitions including glass transition, 

melting, and crystallization, and these changes are easier to detect than enthalpy, volume, or heat 

capacity. Since the mid-1970s, DEA has received wide recognition as a powerful thermal 

analysis method, and its applications cover linear-polymers, numerous macromolecular systems 

with complex molecular architectures such as comb like and branched structures, stars, cycles, 

copolymers, hyperbranched polymers, and dendrimers (Kremer 2002). 
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The most common sample configuration for dielectric analysis involves placing the 

sample in a parallel-plate capacitor. An alternating voltage of angular frequency ω is applied to 

the parallel plates. Then the dielectric properties of the sample can be described as its 

capacitance and conductance: 

C(ω) = ε0ε’(ω)S/d; G(ω) = ε0ε’’(ω)S/d 

where S and d are the sample’s cross-sectional area and thickness, and ε0 is the permittivity of 

vacuum. The frequency depended parameters ε’ and ε’’ are the real and imaginary part of the 

complex dielectric permittivity function: 

ε*(ω) = ε’(ω)-iε’’(ω) 

where i2 = -1. The real part of the complex permittivity expresses the ability of the dielectric 

material to store energy, while the imaginary part of the complex permittivity describes the 

energy losses due entirely to the material medium (Macdonald 1987; Jonscher 1999). 

In frequency domain, the real part of the dielectric permittivity ε′(ω), shows 

a dispersion. On the other hand, dielectric losses ε′′(ω), in the idealized case, exhibit a bell-

shaped curve with a full width at half-height of 1.14 decades and a maximum occurring at 

log(ωmaxτ) = 0. The loss peaks for most polymeric materials are broad and distorted 

(asymmetric). The loss tangent δ(ω) = ε"(ω)/ε'(ω) was also frequently used to characterize 

polymers for many electrical and engineering applications. δ is the phase lag between the 

alternating electric field E(t) = E0eiωt and the dielectric induction D(t) = D0ei(ωt – δ), and is a 

measure of system’s polarization inertia with respect to the electric stimulus (McCrum et al., 

1967). 

Dielectric relaxation is the momentary delay (or lag) in the dielectric constant of a 

material. This is usually caused by the delay in molecular polarization applied with alternating 
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electric field in a dielectric medium. Dielectric relaxation in changing electric fields could be 

considered analogous to hysteresis in changing magnetic fields. Relaxation in general is a delay 

in the response of a linear system, and therefore dielectric relaxation is measured relative to the 

expected linear steady state (equilibrium) dielectric values. The time lag between electrical field 

and polarization implies an irreversible degradation of Gibbs free energy (Williams and Watts 

1970). 

In physics, dielectric relaxation refers to the relaxation response of a dielectric medium to 

an external, oscillating electric field. This relaxation is often described in terms of permittivity as 

a function of frequency, which can, for ideal systems, be described by the Debye equation. On 

the other hand, the distortion related to ionic and electronic polarization shows behavior of 

the resonance or oscillator type. The character of the distortion process depends on the structure, 

composition, and surroundings of the sample (von Hippel and Morgan 1995). 

The single relaxation time model of Debye (Debye 1921) was used to describe the 

dependency of complex permittivity on relaxation time: 

ε*(ω)= εu+ 
εr-εu

1+iωτ
=εu+

εr-εu

1+ω2τ2 -i
εr-εu

1+ω2τ2

where εr is the permittivity at the high frequency limit, εu is the static, low frequency 

permittivity, and τ is the characteristic relaxation time. 

The application of DEA in studying the properties of food materials is very broad. Lu and 

Fuji (1998) conducted DEA by coaxial line reflection to study the denature of hen egg white, and 

they reported that the denatured gels were stored at 5°C for 13 days to be subjected to a 

dehydration process that led to a corresponding decrease in dielectric constant and conductivity. 

Laaksonen and Roos (2000) compared the performance of three methods (DSC, DMA, DEA) for 
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determining phase transition of wheat dough. They found that the DEA method is an effective 

method to detect phase transition in wheat dough, and in fact, t was able to detect several more 

transition regions than DMA and DSC. They later used the same methods to study the wheat 

dough with sugar, salt and acid, and were able to determine that relaxation temperatures (α, β and 

γ) increased with increasing frequencies if NaCL was added into the wheat dough (Laaksonen 

and Roos 2001). Moran et al. (2000) studied the structure and dynamics of sugar/water solution 

in both the viscous liquid and the glassy state, and they verified that the dielectric response was 

dominated by the large dipole moment of the water molecule. Both the structural relaxation and a 

secondary β process were observed. Feng et al. (2002) did a study on how moisture content 

influences the dielectric properties of microwaved dried apple, and they found that decrease in 

moisture content resulted in a decrease in ε’ and ε’’.  

Capacitors 

The most basic device for DEA is a parallel plate capacitor (Stuchly and Stuchly 1980). 

A capacitor is an electronic device that has the ability to store energy in the form of an electrical 

charge, producing a potential difference across its conductors. Its working principal is similar to 

a rechargeable battery. The conductor may be a foil, thin film, sintered bead of metal, or 

an electrolyte. The most basic form of a capacitor consists of two or more parallel conductive 

plates which are not connected or touching each other, but the plates are separated either by air 

or by an insulating material such as wood, plastic, or rubber. The insulating layer between a 

capacitors plates is commonly called the dielectric materials or medium (Poynting 1908). 

The ability of a capacitor to store charge on its conductors in the form of an electrostatic 

field is called the capacitance of the capacitor. By applying a voltage to a capacitor and 

measuring the charge on the plates, the ratio of the charge Q to the voltage V will give the 
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capacitance value of the capacitor. Ideally the capacitance C of a capacitor is sufficiently 

characterized by: 

C = 
Q

V

In practical devices, charge build-up sometimes affects the capacitor mechanically, causing its 

capacitance deviated from its ideal form. In this case, capacitance is defined in terms of 

incremental changes: 

C=
dQ

dV

When a capacitor is not in a circuit, theoretically, its capacitance is calculated by 

C=εrε0
A

d

where A is the area of overlap of the two plates, in square meters, εr is the relative static 

permittivity (sometimes called the dielectric constant) of the material between the plates (for a 

vacuum, εr = 1), ε0 is the electric constant (ε0 ≈ 8.854×10−12 F⋅m−1) and d is the separation 

between the plates, in meters. There are also many other types of capacitors such as coaxial 

cable, pairs of parallel wires, concentric sphere, circular disc, and sphere. The calculation of 

capacitance for different types of capacitor vary accordingly (Houldin 1967). 

In a DC (source voltage V0) circuit where one capacitor and one resistor is in series, 

Kirchhoff's voltage law can be applied and the relation between capacitance and V0 is 

RC
dt(i)

d(t)
+i(t)=0 

while in a AC circuit where one capacitor and one resistor is in series, A capacitor connected to a 

sinusoidal voltage source causes a displacement current to flow through it. In the case that the 

voltage source is V0cos(ωt), the displacement current can be expressed as: 
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I=C
dV

dt
=-ωCV0sin(ωt) 

where, I is current, C is capacitance, and ω is frequency of the AC voltage that being applied to 

the capacitor. 

Genetic algorithm (GA) 

The Genetic algorithm is an adaptive heuristic search method based on natural selection 

of gene, and GA was firstly introduced by John Holland in the early 1970s (Tsoukalas and Uhrig 

1997). Usually the selection is started with a set of solutions called the first generation. The 

solutions in genetic algorithms are called chromosomes or strings. The population size is either 

preserved or varied throughout each generation depending on the designed strategy. At each 

generation, fitness of each chromosome is evaluated through a pre-set fitness function, and then 

the chromosomes with high fitness values are probabilistically favored to be inherited to the next 

generation. The next generation is generated by selecting chromosomes as ‘parent’ and they 

randomly mate and produce offspring. When producing the next generation, crossover and 

mutation randomly occurs according to the settings of GA. Because chromosomes with high 

fitness values have high probability of being selected in the long term, chromosomes of the new 

generation may have higher average fitness value than those of the old generation. The process 

of evolution is repeated until the termination criteria is satisfied. The termination criteria can be 

any chromosome reaching certain fitness value, certain number of generation is generated, or the 

pre-set time for running the GA is up (Lee and Kim 2005). 

The traditional procedure of GA includes initiation, selection, reproduction, and 

termination. The initial generations are randomly generated and the population size depends on 

the nature of the problem, varying from tens to thousands. The selection is usually conducted by 

a fitness-based process, where fitter solutions are typically more likely to be selected. Certain 
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selection methods rank the fitness of all individuals and preferentially select the best solutions. 

Other methods rate only a random sample of the population, as this process may be very time-

consuming. The reproduction is conducted by two GA operators: crossover and mutation. There 

are many crossover methods such as single point, two points, uniform, half uniform and adaptive 

crossover. The selection for crossover method varies by case. Although reproduction methods 

that are based on the use of two parents are more common, some research suggests more than 

two “parents” are better for the production good quality children (Eiben et al., 1994). 

GA and its upgraded algorithms have many applications including management, robotic, 

image processing, decision making, and game strategies. Gong and Yang (2001) applied genetic 

algorithms for stereo image processing. Yasuda and Takai (2001) applied genetic algorithms for 

sensor-based mobile robot path planning under unstructured environment in real-time. Madureia 

et al. (2002) suggested genetic algorithms for the resolution of real world scheduling problems, 

and proposed a coordination mechanism. Potter et al. (1994) used GA to solve a “snake in box” 

problem and found good solutions. Some researchers (Magnier and Haghighat 2010) also applied 

GA to improve building designs. 

Chocolate refining/conching 

Chocolate manufacturing usually includes procedures of mixing, refining and conching. 

Chocolate refining is the process of reducing the particle sizes of both cocoa solids, sugar 

crystals and other ingredients (proteins, flavors, milk fat, and liquor etc.,) in finished chocolate. 

The goal is to reduce the particle size somewhere in the range of 15-25 microns because human 

tongue loses its ability to determine texture and grittiness at around 30 microns. On the other 

hand, when the particle size is less than about 10 microns the chocolate can get gummy. In 
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addition, the particle size of the processed ingredients significantly influences the rheological 

and melting properties of the final products (Beckett 2011; Beckett 2000). 

Typically, refining is conducted by a combination of two- and five-roll refiners. Four 

grinding rolls are aligned vertically, while the feed roll is placed at an angle to the lowest stack 

roll. The main factor that determines the throughput and the final fineness of chocolate is the 

feeding rate, and the feeding rate is adjusted by changing the feed roll gap at a constant roll 

speed or by changing the roll speed at a constant gap (Ziegler and Hogg 2009). Also, the 

pressure on the rollers is another critical factor that influences the fineness of the particles 

(Ripani et al., 1986). Many other studies have reported other refining methods/equipment for 

chocolate processing. Lucisano et al. (2006) and Alamprese et al. (2007) have used ball mill to 

refine the ingredients of chocolate, studying the influence of formula and processing variables on 

the rheological properties of dark, milk, and compound chocolate. Hammer mill and disc mill 

were also reported as the equipment for chocolate refining (Kurt 1995; Hendry 1952; Zoumas et 

al., 2004). A malenger can also be used for chocolate refining. A traditional melanger has a 

rotating pan, often with a granite bed, on which two granite rollers rotate. Scrapers ensure mixing 

by directing the material under the rollers. The modern requirement for continuous higher 

throughput methods has often led to the mixing, grinding, even conching being carried out 

separately (Beckett 2011). 

The procedure after refining is conching, however, by using certain equipment, such as 

melanger, the two steps are conducted at almost the same time. Chocolate conching is basically a 

process of stirring and agitating the chocolate for an extended period of time at 

temperature >50 ℃ (Jolly et al., 2003; Beckett 2000). Conching is not very well understood. It is 

believed that conching contributes many things that improve the flavor and texture of chocolates. 
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Babin (2005) described the conching as a three-step process. At the first stage, the ingredients 

are crushed but still dry. At the second stage, melted cocoa butter are released from the cells of 

cocoa and chocolate paste is generated. In the last stage, the ingredients become liquid like, and 

this stage is called liquid conching. In the early stages of conching, the moisture is reduced, 

certain undesirable flavor-active volatiles such as acetic acid are removed, and interactions 

between disperse and continuous phase are promoted. In later stages, conching rounds off the 

particulates within the chocolate through the use of friction. In addition, the high heat allows 

volatile oils and other ingredients to evaporate. Desirable flavors are developed during conching, 

as it allows the flavor components to permeate the cocoa butter more fully (Afoakwa et al., 

2007). The time needed for conching varies from several hours to days depending on the 

processing requirements, what type of equipment is used, and the formula of chocolates (Awua 

2002; Chaveron et al., 1987). 

As mentioned above, during conching, the physical and chemical properties of chocolate 

undergo great changes. The texture, rheological properties, and volatile compounds profiles of 

chocolate are developed during conching. Schnermann and Schieberle (1997) have studied the 

key odorants in milk chocolate and cocoa mass by aroma extract dilution analysis (AEDA). They 

found that 13 odorants had great contribution to the overall chocolate flavor. These odorants are 

3-methylbutanal (malty); 2-ethyl-3,5-dimethylpyrazine (potato chip-like); 2- and 3-

methylbutanoic acid (sweaty); 5-methyl-(E)-2-hepten-4-one (hazelnut-like); 1-octen-3-one 

(mushroom-like); 2-ethyl-3,6-dimethylpyrazine (nutty, earthy); 2,3-diethyl-5-methylpyrazine 

(potato chip-like); (Z)-2-nonenal (green, tallowy); (E,E)-2,4-decadienal (fatty, waxy); (E,E)-2,4-

nonadienal (fatty); R-δ-decalactone (sweet, peach-like); and 2-methyl-3-(methyldithio)furan. 

Based on their study, Counet et al. (2002) carried out comparison between the odorants before 
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and after conching. The results indicated that although no new key odorant is synthesized during 

the conching process, levels of 2-phenyl-5-methyl-2-hexenal, Furaneol, and branched pyrazines 

are significantly increased while most Strecker aldehydes are lost by evaporation. Owusu et al. 

(2012) used dynamic headspace sampling/gas chromatography-mass spectrometry (GC-MS) to 

isolate and identify aroma volatiles in cocoa before and after conching at low and high 

temperatures. They reported that at high temperature (80℃), conching didn’t significantly 

change the volatile compound profiles. They also found that no conching or short conching time 

results in higher concentrations of most aroma compounds. These aroma compounds include 

acetic acid, 2,5-dimethylpyrazine (popcorn) and 2-ethyl-5-methylpyrazine (roasted, coffee) and 

2,3,5-trimethylpyrazine (fried potato), 2- and 3-methylbutanal, 5-methyl-2-phenyl-2-hexenal 

(sweet/cocoa/roasted), aldehydes, 1,2/3-butanediol and benzyl acetate. 

Rheological properties of chocolate are developed by conching mainly because of 

particle size reduction, releasing of cocoa butter and the development microstructure of the 

ingredients source. Afoakwa et al. (2008b) did comprehensive studies on how particle size 

distribution influence the rheology properties (apparent viscosity and yield stress) plus textural 

parameters (firmness, index of viscosity and hardness) and melting properties (duration or time) 

of dark chocolate, indicating that those parameters are all highly positively correlated to the 

particle size of the chocolate. Findings from other researchers including Glicerina et al. (2013), 

Do et al. (2007), Sokmen. and Gunes (2006) and Ziegler et al. (2001) echoed the conclusions 

claimed by Afoakwa et al. (2008b). 

Methods for particle size analysis  

Particle size analysis is very important for the food industry, as particle size controls the 

taste and feel (chocolate), viscosity (chocolate, emulsions), dissolution rate (milk, coffee), 
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freeze-drying rate (coffee), creaming/flocculation (e.g. milk/cream), stability (cream liqueurs) of 

products. In addition, particle size characterizes emulsification (shear rate), indicator of 

(unwanted) processes (e.g. creaming), phase separation, crystallization (e.g.sugar), QC control 

parameters (Servais et al., 2002). The application areas for particle size analysis in the food 

industry include milk products (powders/liquid), chocolate, coffee (dry), sugar (dry, 

crystallization), emulsions (dairy cream liqueurs, ice cream, margarine, butter, mayonnaise etc.). 

There are additional methods available for sizing particles in many different fields. These 

methods include physical methods based on sieving, sedimentation, electrical properties, and 

impactors, imaging methods based on microscopy, photography and holography images, light 

scattering methods based on laser light. 

The particle size for a spherical particle can be described using a single number, the 

diameter for every dimension is identical. For non-spherical particles, the particle size can be 

described by using multiple length and width measurements such as horizontal and vertical 

length. Although these descriptions provide better accuracy, complexity of the measurement also 

increase greatly. Thus, many techniques are based on the assumption that all the particles being 

measured are a perfect sphere for convenience. The reported value is typically an equivalent 

spherical diameter. This is essentially taking the physical measured value such as scattered light 

and determining the size of the sphere that could produce the data. Although this approach is not 

perfectly accurate, the shapes of particles generated by most industrial processes are 

unproblematic. There will be problems if the measured particles have a very large aspect ratio, 

such as fibers or needles. In addition, shape factor causes disagreements when particles are 

measured by different type of particle size analyzers. Different particle size analysis techniques 

are based on different physical principles. For example, sieving will tend to emphasize the 
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second smallest dimension because in order to pass through the mesh opening, the particles must 

orient themselves (Konert and Vandenberghe 1997). A sedimentometer measures the rate of fall 

of the particle through a viscous medium, and the surrounding particles plus the container walls 

tend to slow the dropping speed of the particles. Flaky or plate-like particles tend to orient to 

maximize drag while sedimenting, resulting the measurements of particle size in the smaller size 

than their real size (Allen 2013). A light scattering device will average the various dimensions as 

the particles flow randomly through the light beam, producing a distribution of sizes from the 

smallest to the largest dimensions (Eshel et al 2004). The only techniques that implement 

multiple values to describe the particle size are image analysis including microscopy. The 

parameters such as the longest and shortest diameters, perimeter, projected area, and equivalent 

spherical diameter are used by image analysis to describe the particle size of non-spherical. 

When reporting a particle size distribution, the most common format used for image analysis 

systems is equivalent spherical diameter on the x axis and percent on the y axis. It is only for 

elongated or fibrous particles that the x axis is typically displayed as length rather than 

equivalent spherical diameter. 

Laser scattering based particle size analyses are currently most widely used in food 

industry because they provide comprehensive information about the particle size distribution of 

food materials. Because of the nature of the laser, it is particularly useful for determining particle 

size information based on properties of scattered light. Properties that make the laser a useful 

tool include nearly planar wave front, its monochromatic nature, coherence and spectral power 

(Black et al., 1996). Laser diffraction measures particle size distributions by measuring the 

angular variation in intensity of light scattered as a laser beam passes through a dispersed 

particulate sample. The principle of Laser diffraction is based on the Fraunhofer 
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diffraction theory, stating that the intensity of light scattered by a particle is directly proportional 

to the particle size (Mudroch et al., 1996). Large particles scatter light at small angles relative to 

the laser beam and small particles scatter light at large angles (McCave et al., 1986). The 

Fraunhofer approximation is accurate for large particles (~50 um), however, for measuring 

smaller particles, Mie theory needs to be applied. Mie theory calculates the particle size 

distribution, assuming a volume equivalent sphere model. And Mie theory requires knowledge of 

the optical properties (refractive index and imaginary component) of both the sample being 

measured, along with the refractive index of the dispersant. Usually the optical properties of the 

dispersant are relatively easy to find from published data, and many modern instruments will 

have in-built databases that include common dispersants. 

There are many types of particle diameter used to specify the size of particles. This is 

because of the variety of situations encountered by those using particle-size measurement 

systems. For different processes, different parameters of the size distribution are important. In 

addition, the methods being used to conduct the particle size measurements decide which 

diameters being reported (Azzopardi 1979). Laser-based particle analyzers generally determine 

the distribution of the equivalent spherical particle sizes. Commonly used diameters for this 

method include arithmetic mean dl0, Normal average particle diameter of the size distribution; 

surface mean d20, Diameter of a sphere with the average surface area of the particles in the size 

distribution; volume mean d30, Diameter of a sphere with the average volume of the particles in 

the size distribution; Sauter mean d32, diameter of a sphere with the equivalent surface to volume 

ratio as all the particles in the size distribution; weight mean d34, Diameter of a sphere having the 

average weight of all the particles in the size distribution. In addition, dxx is also used to 

describe the xx% of the particles are smaller than dxx, such as, d10, d50 and d90. Some of the 



27 

diameters obtained by other measurement methods are sieve diameter ds, the width of the 

minimum square aperture through which the particle will pass; Martin’s diameter dM, the mean 

chord length of the projected outline of the particle; Feret’s diameter dF, the mean value of the 

distance between pairs of parallel tangents to the projected outline of the particle; project area da, 

diameter of a circle having the same area as the projection of the particle; Stoke’s diameter dst, 

diameter of a sphere of similar density having the same freefall velocity as the particle (Irani and 

Callis 1963). 

Particle size measurement is involved in many previous research projects and it is critical 

for characterizing the properties of food materials. The selection of particle size measurement 

method depends on the properties of the samples. Qian and McClements (2011), Huang et al. 

(2001), Kim and Morr (1996), Mirhosseini et al. (2008) used laser scattering particle size 

analyzer to measure the particle size distribution of nanoemulsions. Tan and Kerr (2015), Ahmed 

et al. (2000), Sato and Cunha (2009), Corredig et al. (2001) conducted studies that involve 

particle size measurements for vegetable/fruit puree and pulp. Sieves were also used by many 

researchers (Peyron et al., 2004; Olthoff et al., 1984) as the principal particle size measurement 

method for peanut, almond, pistachio cauliflower, radish, chili pepper, and carrot powders. Van 

der Bilt et al. (1993) introduced an optical scanning method for particle size measurement for 

food materials and compared the methods to sieving methods. In industry, other methods such as 

micrometer, Hegman gauge are used by small food manufacturers producing chocolate, candy, 

peanut butter and almond milk. Those methods are currently not standardized and the 

applications rely on individual experience. 
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Microstructure obtained by scanning electron microscopy (SEM) 

The microstructure of chocolate has been well studied by previous researchers. A 

stereoscopic binocular microscope was used by Afoakwa et al. (2008c) to study the 

microstructure of dark chocolate. Confocal scanning laser microscopy (CSLM) methods have 

also been developed to identify fat and protein in milk chocolate and milk powders by Auty et al. 

(2001) and Svanberg et al. (2011). Hodge and Rousseau (2002) applied atomic force microscopy 

(AFM) and powder X-ray diffraction (XRD) to study the surface microstructure and 

polymorphic behavior of milk chocolate. James and Smith (2009) have compared the 

performance of X-ray photoelectron spectroscopy, cyro-scanning electron microscopy and 

environmental scanning electron microscopy in studying the surface of blooming chocolate. 

However, no study has investigated the microstructure of cocoa solid because of the difficulty in 

separating the cocoa solids alone from fat phase. 

Unlike traditional light microscope, SEMs use an electron beam instead of a beam of 

light, which is directed towards the specimen under examination. SEM is a type of electron 

microscope that produces images of a sample by scanning the surface with a focused beam 

of electrons. The electrons interact with atoms from the surface of the sample, producing various 

signals that contain information about the sample's surface topography and composition (Stokes 

2008). Prior to the examination, the specimens need to be dried or frozen below -80℃ and then 

coated by a thin layer (5-20 nm) of gold that provides electric conductivity unless using back 

scatter. During examination, an electron gun located at the top of the device shoots out a beam of 

highly concentrated electrons. There are two main types of electron guns used by SEMs. The 

first is called a thermionic gun, which heats a filament until electrons stream away. The second 

electron gun is field emission gun, which rips electrons away from their atoms by generating a 
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strong electrical field (Kaláb et al., 1995). The microscope is composed of a series of lenses 

within a vacuum chamber and the vacuum environment prevents collision between electron and 

other molecules. Lenses direct the electrons towards the specimen in order to maximize 

efficiency. Greater magnification is achieved by more using more electrons. When a specimen is 

hit with a beam of the electrons known as the incident beam, it emits X-rays and three kinds of 

electrons: primary backscattered electrons, secondary electrons and Auger electrons. The SEM 

uses primary backscatter electrons and secondary electrons to construct images that include 

information about the surface topography and composition. An electron recorder picks up the 

rebounding electrons and records their imprint. This information is translated onto a screen 

which allows three-dimensional images to be represented clearly. For traditional SEMs, the 

images generated are not color images (Bozzola and Russell 1999; Reimer 2013). 

The application of SEM is very common in studying the microstructure of food materials. 

Kalab and Harwalkar (1973) and Verheul and Roefs (1998) have studied the structure of a 

variety of food gels by SEM. They reported that heat-induced milk gels consisted of casein 

micelles linked together by short, thin fibers. Such fibers were not in acid-heat gels, which were 

composed of expanded protein particles closely attached to each other forming thick chains and 

networks. Renneted milk gels contained a high proportion of long fibers, and casein micelles 

were fused together. SEM has also been applied by Rosenberg et al. (1985) and Dalgleish et al. 

(2004) for the morphological study of various microcapsule systems. They reported that SEM is 

a useful tool for the selection of wall materials. The core materials distribution in microcapsules 

can be observed in SEM images, and the images elucidate the mechanisms of capsule formation 

and the effects of water-vapor uptake on microcapsule properties. Tatsumi et al. (1991), Roman-

Gutierrez et al. (2002), Caldwell et al. (1992), and Zounis et al. (2002) have done comprehensive 
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research on the surface structure of carrot, wheat power, ice cream and wheat dough by SEM. 

They reported that the surface structure can be used as a tool to monitor the quality related 

properties such as rheology, and texture of food materials. 

Cocoa roasting and flavor development 

The cocoa roasting procedure usually happens after cocoa fermentation and before 

cracking and winnowing. Roasting is a heating method that uses different heat source (hot air, 

flame, and hot plate) to cook the food. The food is cooked evenly on all sides with temperatures 

of at least 150 °C (~300 °F) by radiation, conduction and convection (Martins et al., 

2000). Roasting is a very critical step in chocolate processing. It is believed that roasting 

accomplishes many things. Firstly, roasting helps separate the outer husk from the inner bean and 

makes lateral steps such as cracking and winnowing much easier. Secondly, it also kills 

microorganisms in the cocoa beans. This is important as the conditions in which cocoa beans are 

fermented are naturally full of bacteria, fungi and molds. There is a "quantifiable" risk of 

infection from unroasted cocoa beans. By roasting, the fermentation is terminated and 

deterioration is prevented. Various chemical reactions also occur when cocoa beans are roasted 

and proper roasting is integral to the production of chocolate with good flavor. The vinegar smell 

(acetic acid) from fermentation is driven off by the high heat introduced by roasting (Jinap et al., 

1998; Ramli et al., 2006). 

Maillard reactions play a major role in the formation of the flavors of cocoa beans during 

roasting (Ziegleder 1991). The Maillard reactions involve the reaction between free amino acids 

and reducing sugars, which develop during fermentation ((Ziegleder and Biehl 1988). Keeney 

(1972) reported that the roasting process not only generates new volatile compounds for specific 

flavor through pyrolysis of sugars, but also loss of minor compounds such as acids and 
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polyphenol that influence the final flavor of chocolate products. It was reported that roasting 

produces approximately 400–500 chemical compounds (Dimick 1983) including pyrazines, 

aldehydes, ethers, thiazoles, phenols, ketones, alcohols, furans and esters (Paul and Jeanne 

1981). Aldehydes and pyrazines are the major compound groups formed during roasting, and the 

chemical reactions involved in their formation are Maillard reaction and Strecker degradation of 

amino acids and sugars during roasting (Heinzler and Eichner 1992). Strecker degradation is a 

chemical reaction, which converts an α-amino acid into an aldehyde containing the side chain by 

way of an imine intermediate (Schonberg and Moubacher 1952).  

A study conducted by Jinap et al. (1998) indicated that over different compounds can be 

identified in roasted cocoa beans by using simultaneous distillation extraction based GC-MS. In 

total, 14 pyrazines, 20 esters, 3 carbonyls, 3 phenols, 3 alcohols, 2 hydrocarbons, 2 ketones, 2 

acids, 2 monoterpenes hydrocarbons, 1 benzenoid hydrocarbons, and 1 furan were identified, it 

was reported that the number of pyrazines present in nib increase with longer roasting time. In 

contrast, the amount of esters present in the nibs seems to be more affected by roasting 

temperature rather than roasting time, while alcohols and phenols were decreased by both 

increasing roasting temperature and time. Ramli et al. (2006), however, identified 28 major 

compounds by gas chromatography using a mass selective detector. The identified compounds 

include nine pyrazines (2,5-dimethyl-, 2,3-dimethyl-, 2-ethyl-6-methyl-, trimethyl-, 3-ethyl-2, 5-

dimethyl-, tetramethyl-, 2-ethenyl-6-methyl- and 3,5-dimethyl-2- methylpyrazine); five 

aldehydes (5-methyl-2-phenyl-2-hexenal, benzaldehyde, benzalacetaldehyde and a-ethyliden-

benzenacetaldehyde); one methyl ketone (2-nonanone); two alcohols (linalool and 2-heptanol); 

and two esters (4-ethylphenyl acetate and 2-phenylethyl acetate). Serveral of the compounds, 

specifically, benzaldehyde, 2-nonanone, linalool and 2-phenylethyl acetate, aldehydes, ketones, 



32 

alcohols, esters trimethyl- and tetramethylpyrazine can be used as indicators of the roasting 

process. Hashim and Chaveron (1994) also reported that methylpyrazine can be used as good 

indicator of the roasting process. They concluded that the amount of monomethyl-; 2,3-

dimethyl-; 2,5-dimethyl-; 2,6-dimethyl-; trimethyl- and the tetramethylpyrazine in unroasted 

beans were significantly different from the ones in roasted beans. 

In addition to mapping volatile compounds by GC-MS systems and classifying the 

roasting degree based on that, other methods have been implemented in classifying the roasting 

degree of cocoa beans. Stark et al. (2005), Stark and Hofmann (2005) and Jinap et al. (2004) 

conducted sensory evaluation tests on cocoa beans with different roasting degree. They 

correlated compounds such as quercetin, naringenin, luteolin, apigenin, catechin theobromine 

and caffeine, to certain sensory perception such as astringent mouthfeel. Although training 

sensory panels has been widely accepted for detecting the roasting degree of cocoa, they are 

inconsistant, as human smell assessment is affected by many factors. Bias within panels is 

inevitable and the panelists may be affected by poor physical and mental health as well as 

fatigue. In addition, sensory tests may take hours for testing and it may take months to train the 

panel (Pearce et al., 2006). Krysiak (2006) correlated the color of cocoa nibs to the roasting 

condition of cocoa beans. He concluded that roasting of cocoa beans at 110 °C resulted in the 

least advanced brown pigments and more pronounced changes in pigment content was achieved 

during roasting at 135 and 150 °C. 

Electronic nose (E-nose) 

An e-nose system is a combination of gas sensors that give a fingerprint response to a 

given odor and pattern recognition software that performs odor identification, classification and 

discrimination. The e-nose is a cost-effective, unbiased, and fast-measuring solution to the 
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problems associated with sensory panels and with chromatographic and mass-spectrometric 

techniques. The portable form of e-nose can accommodate real time performance in the field and 

it may be operated remotely (Arshak et al., 2004). 

The e-nose attempts to simulate mammalian olfactory responses to aromas by using gas 

sensors. The e-nose usually has a sealed chamber where gas sensors are distributed in the space 

created by the chamber. The odor molecules are drawn into the e-nose chamber by pumping, 

headspace sampling, diffusion methods, bubblers or pre-concentrators, where they interact with 

the gas sensors (Pearce et a., 2006). The reaction between gas sensors and the odor molecules 

induces a reversible physical and/or chemical change in the sensing material, which causes an 

associated change in electrical properties, such as conductivity. And the measurement of 

conductivity of the sensors are typically obtained by measuring the output voltages of the gas 

sensors since they are linearly correlated. (Harsányi 2000). Each gas sensor behaves just like a 

receptor by responding differently in sensitivity to different odors. The responses of the gas 

sensor are transduced into electrical signals (voltage, current, capacitance, etc.) and collected by 

data acquisition system. Finally, the overall response patterns of the gas sensors are processed by 

designed recognition models for discrimination, classification, and identification (Shurmer, and 

Gardner 1992; Gardner et al., 1992; Röck et al., 2008). 

The response of a gas sensor when exposed to target gases is considered to be a first 

order time response. In this first stage of measurement conducted by gas sensors, reference gas, 

usually fresh air, is introduced and reacts with gas sensors to obtain baselines. Then sensors are 

exposed to the target gases, which causes changes in its output signal until the sensor reaches 

steady-state. The odorant is finally flushed out of the sensor by using the reference gas and the 

responses of gas sensors return back to baseline. Several important parameters are used to 
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describe the sensor response as a function of time. The parameters include response time, the 

time during which the sensor is exposed to the odorant; relaxation time or recovery time, the 

time it takes the sensor to return to its baseline; peak value, the maximum response that the 

sensor exhibited during exposure to the target gases. 

Pearce et al. (2006) suggested three data processing methods to remove any noise or drift 

by sensor response manipulation with respect to the baseline. The first one is Differential: the 

baseline xs(0) is subtracted from the sensor response xs(t) to remove any noise or drift δA present. 

The baseline manipulated response ys(t) is determined by: 

ys
(t)=(x(t)+δA)-(xs(0)+δA)

ys
(t)=x(t)-xs(0)

Relative: the sensor response is divided by the baseline. By doing this, multiplicative drift δM is 

eliminated and a dimensionless response ys(t) is obtained. 

ys
(t)=

x(t)(1+δA)

x(0)(1+δA)
=

x(t)

x(0)

Fractional: combine differential and relative methods, the baseline is subtracted from the 

response xs(t) and then divided by the baseline xs(0) from the sensor response which provides a 

dimensionless, normalized response ys(t) that can compensate for inherently large or small 

signals. 

ys
(t)=

x(t)-x(0)

x(0)

The selection of baseline depends on the type of gas sensor and also the preference of 

researchers. However, the selection of certain manipulation techniques mainly depends on sensor 

type (Arshak et al., 2004). As mentioned before, different gas sensors have different sensitivities 

to different target gas. The sensitivity is defined as the change in output of a sensor (e.g. voltage) 
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for a change in the input (target gas concentration) (Fraden and Rubin 1994; Johnson 1993; Boll 

and Overshott 2008). In the case of e-nose sensors, the sensitivity of the sensor (S) to the odorant 

is the change in the sensor output parameter (y) results from change of the concentration of the 

odorant (x): 

S=
∆y

∆x

Some other researchers use different values to measure the sensitivity, usually calculated from 

baseline-manipulated data. 

The commonly used gas sensors are conductivity sensor, piezoelectric sensor, optical 

sensor, and MOSFET sensors. In the food industry, conductivity sensor is widely used and it 

have been proved to be a good tool for food quality examination. Conducting polymer 

composites, intrinsically conducting polymers (ICP) and metal oxides semiconductor (MOS) are 

three of the most commonly utilized classes of sensing materials in conductivity sensors. The 

basic working principle for these three type of conductivity sensors is the same: a change in 

some property of the material resulting from interaction with a gas/odor leads to a change in 

resistance in the sensor. However, the mechanisms that lead to these resistance changes are 

different for the three conductivity sensors. 

Conducting polymer composites consist of conducting particles such as polypyrrole and 

carbon black interspersed in an insulating polymer matrix (Albert et al., 2000). When the 

conducting polymer composites are exposed to target gas, the change of resistance is led by 

percolation effects or more complex mechanisms in the case of polypyrrole filled composites. 

The vapor permeates into the polymer and causes the polymer film to expand. The vapor-

induced expansion of the polymer composite causes an increase in the electrical resistance of the 
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polymer composite because the polymer expansion reduces the number of conducting pathways 

for charge carriers (Munoz et al., 1999). ICP have linear backbones composed of unsaturated 

monomers, such as, alternating double and single bonds along the backbone, that can be doped as 

semiconductors or conductors (Heeger 2001). The principle of operation for ICP e-nose sensors 

is that the odorant is absorbed into the polymer and alters the conductivity of the polymer. 

Intrachain conductivity, intermolecular conductivity, and ionic conductivity are affected in 

intrinsically conducting polymers. Intrachain conductivity is changed because the conductivity 

along the backbone is altered. The changes of intermolecular conductivity is due to electrons 

hopping to different chains. Ionic conductivity is affected by proton tunneling induced by 

hydrogen bond interaction at the backbone and also by ion migration through the polymer 

(Albert et al., 2000; Charlesworth et al., 1993; Dickinson et al., 1998). 

MOS type gas sensors are widely used because they have high precision, low cost, and 

good repeatability. Many metal oxides are suitable for detecting combustible, reducing, or 

oxidizing gases by conductive measurements. The following oxides show a gas response in their 

conductivity: Cr2O3, Mn2O3, Co3O4, NiO, CuO, SrO, In2O3, WO3, TiO2, V2O3, Fe2O3, 

GeO2, Nb2O5, MoO3, Ta2O5, La2O3, CeO2, Nd2O3 (Kanazawa et al., 2001). There are two 

types of metal oxide sensors. The first one is n-type which is made from zinc oxide, tin dioxide, 

titanium dioxide or iron (III) oxide. The n-type sensor responds to reducing gases such as H2, 

CH4, CO, C2H5 or H2S. However, the p-type which is made from nickel oxide, cobalt oxide, 

which respond to oxidizing gases like O2, NO2, and Cl2 (Pearce et al., 2006). The sensing 

mechanism of a MOS type gas sensor is mainly due to the trapping of electrons at adsorbed 

molecules and band bending induced by these charged molecules. This phenomenon is 

responsible for the change in conductivity. The negative charge trapped in these oxygen species 
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causes an upward band bending and thus a reduced conductivity compared to the flat band 

situation. The reactions occurring at the surface of the MOS sensor is described as: 

1

2
O2+e-→ O-(s)

R(g)+O-(s)→RO(g)+e 

where R(g) is the reducing gas and g and s are the surface and gas, respectively, e represent 

electron from the oxide (Pearce et al., 2006; Albert et al., 2000). 

The application of e-nose in food industry is very broad. Foods are characterized by the 

presence of a large number of different chemical species, many of them are responsible of the 

qualitative differences existing in terms of taste and aroma and in terms of edibility as well. In 

the past, electronic noses have been developed for the classification and recognition of a large 

variety of foods. Gardner et al. (1992) used twelve tin oxide sensors to sense the headspace of 

coffee packs and achieved success rate of 95.5% in discriminating and classifying 90 samples. 

Pardo et al. (2000) classified 12 types of coffees by principal component analysis (PCA) based e-

nose and achieved 87.5% classification performance. Di Natale et al. (1996) and García et al. 

(2006) reported that e-nose can discriminate between for different types of wine and the same 

wine from different locations. They use (PCA) and probabilistic neuronal network (PNN) as 

discrimination tools. The quality of meat and meat products can be also determined by e-nose 

technology. Many researchers (Winquist et al., 1993; Rajamäki et al., 2006; El Barbri et al., 

2008) reported accurate rates of identification, discrimination and classification achieved by an 

e-nose based system. Quality related properties of cheese (Drake et al., 2003; Benedetti et al., 

2005), vegetable oil (Hai and Wang 2006), vinegar (Zhang et al., 2006), and fruit (Brezmes et 

al., 2000) have all been studied using e-nose technologies and the accuracy of these e-nose 

systems tends to be excel 90%. 



38 

Artificial neural network (ANN) 

A neural network is a computing system made up of a number of simple, highly 

interconnected processing elements, which process information by their dynamic state response 

to external inputs (Caudill 1987). ANN is computational model used in machine learning, 

computer science and other research disciplines, mimicking the neuronal structure of the 

mammalian cerebral cortex but on much smaller scale. The learning and training process of 

ANN is similar to human cognitive process. Like the human cerebral cortex, a ANN consist of 

layers of artificial neurons, or simply “neurons” or “nodes”. The number of neurons and layers, 

theoretically, can be infinite. However, the time needed for running ANNs with huge number of 

neurons and layers is too long and large systems are not typically necessary to solve most 

problems. In a most basic mathematical model of the ANN, the effects of the synapses are 

represented by connection weights that modulate the effect of the associated input signals, and 

the nonlinear characteristic exhibited by neurons is represented by a transfer function. The 

neuron impulse is then computed as the weighted sum of the input signals, transformed by the 

transfer function. The learning capability of an artificial neuron is achieved by adjusting the 

weights in accordance to the chosen learning algorithm (Abraham 2005). 

In a most simplified process of ANN, from the first layer (input layers) of neuron (inputs) 

x1, ..., xn is considered to be unidirectional, which are indicated by forward or backward 

detection. The output Oi of the first layer is the sum of each input that connected to the output 

node multiplied by the weight of the connection. 

Oi=f( ෍ ωjxj

n

j=1

) 
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where ωj j is the weight vector, and the function f is referred to as an activation (transfer) 

function such as tansig, logsig, and purelin. 

tansig(x)=
2

1+e-2x -1 

logsig(x)=
1

1+e-x 

purelin(x)=x 

 𝑂௜ must be greater than a threshold before it can be transferred to the next layer. Once threshold 

value is reached, 𝑂௜ become the input for the next layer and this process keeps going until the 

values of the nodes in the last layer (output layer) are calculated. This process is called feed-

forward networks, and it consists of three types of neuron layers: input, hidden, and output 

layers. The signal flow is from input to output units, strictly in a feed-forward direction. Contrary 

to feed-forward networks, there is feedback ANN where is signals can flow backward before 

being transferred to the last layers. In addition to that, there are several other neural network 

architectures such as adaptive resonance theory maps, and competitive networks (Bishop 1995). 

Learning or training of a ANN is based on the modification of the weights on synaptic 

connections between neurons. The basic idea is that if two neurons are active simultaneously, 

their interconnection must be strengthened. The perceptron is a single layer neural network 

whose weights and biases could be trained to produce a correct target vector when presented 

with the corresponding input vector. The principles underlying this statement have become 

known as Hebbian Learning. Backpropagation (BP) is one basic training method and one BP 

process stated as follows: first, start with random weights for the connections. Second, select an 

input vector x from the set of training samples. If output is not equal to desirable output, which is 

yk ≠ d(k), modify all connections weight wi according to: δwi = η(dk − yk)xi; (η = learning rate). 

Go back to second step until termination criteria is reached. There are many other training 
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methods such as Levenberg-Marquardt, scaled conjugate gradient, Fletcher-Powell conjugate 

gradient, and resilient backpropagation. The selection of training algorithm depends on the 

problem need to be solved and preference of the researchers. In addition, the performance of the 

ANN is heavily depending on factors such as the number of node, layer, transition function, and 

parameter setting for each training method (Yegnanarayana 2009; Dayhoff and DeLeo 2001; 

Fyfe 2005). The application of ANN is very broad. ANN has been used to solve classification, 

optimization, feature detection, data compression, approximation, prediction, control, association 

and pattern completion. 

ANN was introduced to study food materials many years ago. Doganis et al. (2006) 

applied ANN to forecast the sale of milk products. Garcı́a-Gimeno et al. (2002), Argyri et a., 

(2010) and Geeraerd et al. (1998) used ANN as the tool to predict bacteria growth in chilled food 

products and beef fillet. Research conducted by Goni et al. (2008) reported that ANN can predict 

freezing and thawing times of foods. The neural network had an average absolute relative error 

of less than 10%. Some researchers have combined ANN and electronic nose to study the quality 

of food materials such as olive oil (Cosio et al., 2006), beef (Panigrahi et al., 2006) and honey 

(Benedetti et al., 2004). Overall, electronic nose based ANN have achieved high accuracy 

(>90%) in these studies. 



41 

References 

Abraham, A., 2005. Artificial neural networks. Handbook of measuring system design. 

Afoakwa, E. O., Paterson, A. and Fowler, M., 2007. Factors influencing rheological and textural 

qualities in chocolate-a review. Trends Food Sci. Technol., 18(6), pp.290-298. 

Afoakwa, E. O., Paterson, A., Fowler, M. and Vieira, J., 2008a. Characterization of melting 

properties in dark chocolates from varying particle size distribution and composition using 

differential scanning calorimetry. Food Res. Int., 41(7), pp.751-757. 

Afoakwa, E. O., Paterson, A., Fowler, M. and Vieira, J., 2008b. Relationship between 

rheological,textural and melting properties of dark chocolate as influenced by particle size 

distribution and composition. Eur. Food Res. Technol., 227(4), pp.1215-1223. 

Afoakwa, E. O., Paterson, A., Fowler, M. and Vieira, J., 2008c. Effects of tempering and fat 

crystallisation behaviour on microstructure, mechanical properties and appearance in dark 

chocolate systems. J. Food Eng., 89(2), pp.128-136. 

Aguilera, J. M., 1995. Gelation of whey proteins: Chemical and rheological changes during 

phase transition in food. Food Technol., 49(10), pp.83-89. 

Ahmed, J., Shivhare, U. S. and Raghavan, G. S. V., 2000. Rheological characteristics and 

kinetics of colour degradation of green chilli puree. J. Food Eng., 44(4), pp.239-244. 

Alamprese, C., Datei, L. and Semeraro, Q., 2007. Optimization of processing parameters of a 

ball mill refiner for chocolate. J. Food Eng., 83(4), pp.629-636. 



 

42 
 

Albert, K. J., Lewis, N. S., Schauer, C. L., Sotzing, G. A., Stitzel, S. E., Vaid, T. P. and Walt, D. 

R., 2000. Cross-reactive chemical sensor arrays. Chem. Rev., 100(7), pp.2595-2626. 

Allen, T., 2013. Particle size measurement. Springer. 

Ali, S., Lin, H.N., Bittman, R. and Huang, C. H., 1989. Binary mixtures of saturated and 

unsaturated mixed-chain phosphatidylcholines. A differential scanning calorimetry 

study. Biochemistry, 28(2), pp.522-528. 

Argyri, A. A., Panagou, E. Z., Tarantilis, P. A., Polysiou, M. and Nychas, G. J., 2010. Rapid 

qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared 

spectroscopy data and artificial neural networks. Sens. Actuators, B, 145(1), pp.146-154. 

Arshak, K., Moore, E., Lyons, G. M., Harris, J. and Clifford, S., 2004. A review of gas sensors 

employed in electronic nose applications. Sens. Rev., 24(2), pp.181-198. 

Atkins, P. and Jones, L., 2007. Chemical principles: The quest for insight. Macmillan. 

Auty, M. A., Twomey, M., Guinee, T. P. and Mulvihill, D. M., 2001. Development and 

application of confocal scanning laser microscopy methods for studying the distribution of fat 

and protein in selected dairy products. J. Dairy Res., 68(03), pp.417-427. 

Awua, P. K., 2002. Cocoa Processing and Chocolate Manufacture in Ghana: The success story 

that demolished a myth. Saffron Walden, UK: David Jamieson and Associates. 

Azzopardi, B. J., 1979. Measurement of drop sizes. Int. J. Heat Mass Transfer, 22(9), pp.1245-

1279. 



43 

Babin, H., 2005. Colloidal properties of sugar particle dispersions in food oils with relevance to 

chocolate processing (Doctoral dissertation, University of Leeds). 

Beckett, S., 2000. The science of chocolate (Vol. 22). R. Soc. Chem.. 

Beckett, S. T. ed., 2011. Industrial chocolate manufacture and use. John Wiley & Sons. 

Benedetti, S., Sinelli, N., Buratti, S. and Riva, M., 2005. Shelf life of Crescenza cheese as 

measured by electronic nose. J. Dairy Sci., 88(9), pp.3044-3051. 

Benedetti, S., Mannino, S., Sabatini, A. and Marcazzan, G., 2004. Electronic nose and neural 

network use for the classification of honey. Apidologie, 35(4), pp.397-402. 

Bhandari, B. R. and Howes, T., 1999. Implication of glass transition for the drying and stability 

of dried foods. J. Food Eng., 40(1), pp.71-79. 

Biliaderis, C. G., Maurice, T. J. and Vose, J. R., 1980. Starch gelatinization phenomena studied 

by differential scanning calorimetry. J. Food Sci., 45(6), pp.1669-1674. 

Bishop, C.M., 1995. Neural networks for pattern recognition. Oxford University Press. 

Black, D. L., McQuay, M. Q. and Bonin, M. P., 1996. Laser-based techniques for particle-size 

measurement: a review of sizing methods and their industrial applications. Prog. Energy 

Combust. Sci., 22(3), pp.267-306. 

Brandts, J. F., 1964. The thermodynamics of protein denaturation. I. The denaturation of 

chymotrypsinogen. J. Am. Chem. Soc., 86(20), pp.4291-4301. 

Brezmes, J., Llobet, E., Vilanova, X., Saiz, G. and Correig, X., 2000. Fruit ripeness monitoring 

using an electronic nose. Sens. Actuators, BSens. Actuators, B, 69(3), pp.223-229. 



44 

Brunello, N., McGauley, S. E. and Marangoni, A., 2003. Mechanical properties of cocoa butter 

in relation to its crystallization behavior and microstructure. LWT--Food Sci. Technol., 36(5), 

pp.525-532. 

Boll, R. and Overshott, K. J., 2008. Sensors, Magnetic Sensors (Vol. 5). John Wiley & Sons. 

Bozzola, J. J. and Russell, L. D., 1999. Electron microscopy: principles and techniques for 

biologists. Jones & Bartlett Learning. 

Cakebread, S., 1975. Sugar and chocolate confectionery. Oxford University Press. 

Caldwell, K. B., Goff, H. D. and Stanley, D. W., 1992. A low-temperature scanning electron 

microscopy study of ice cream. I Techniques and General Microstructure. Food Structure, 11(1), 

p.1. 

Caudill, M., 1987. Neural networks primer, part I. AI expert, 2(12), pp.46-52. 

Champion, D., Le Meste, M. and Simatos, D., 2000. Towards an improved understanding of 

glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends 

Food Sci. Technol., 11(2), pp.41-55. 

Chalikian, T. V., Völker, J., Plum, G. E. and Breslauer, K. J., 1999. A more unified picture for 

the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and 

volumetric techniques. Proceedings of the National Academy of Sciences, 96(14), pp.7853-7858. 

Charlesworth, J. M., Partridge, A. C. and Garrard, N., 1993. Mechanistic studies on the 

interactions between poly (pyrrole) and organic vapors. J. Phys. Chem., 97(20), pp.5418-5423. 



 

45 
 

Chaveron, H., Pontillon, J., Billon, M., Adenier, H. and Kamoun, A., Clextral, 1987. Process for 

preparing a chocolate paste. U.S. Patent 4,713,256. 

Cocero, A. M. and Kokini, J. L., 1991. The study of the glass transition of glutenin using small 

amplitude oscillatory rheological measurements and differential scanning calorimetry. J. 

Rheol., 35(2), pp.257-270. 

Corredig, M., Kerr, W. and Wicker, L., 2001. Particle size distribution of orange juice cloud after 

addition of sensitized pectin. Food Chem.J. Agric. Food Chem., 49(5), pp.2523-2526. 

Cooper, A. and Johnson, C. M., 1994. Differential scanning calorimetry. Microscopy, optical 

spectroscopy, and macroscopic techniques, pp.125-136. 

Cosio, M. S., Ballabio, D., Benedetti, S. and Gigliotti, C., 2006. Geographical origin and 

authentication of extra virgin olive oils by an electronic nose in combination with artificial neural 

networks. Analytica Chimica Acta, 567(2), pp.202-210. 

Counet, C., Callemien, D., Ouwerx, C. and Collin, S., 2002. Use of gas chromatography- 

olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples 

before and after conching. J. Agric. Food Chem.., 50(8), pp.2385-2391. 

Dalgleish, D. G., Spagnuolo, P. A. and Goff, H. D., 2004. A possible structure of the casein 

micelle based on high-resolution field-emission scanning electron microscopy. Int. Dairy 

J., 14(12), pp.1025-1031. 

Dayhoff, J. E. and DeLeo, J. M., 2001. Artificial neural networks. Cancer, 91(S8), pp.1615-1635. 

Debye, P., 1921. Molecular forces and their electrical interpretation. Phys. Z., 22, pp.302-308. 



46 

Debenedetti, P. G. and Stillinger, F. H., 2001. Supercooled liquids and the 

glasstransition. Nature, 410(6825), pp.259-267. 

Di Natale, C., Davide, F. A., D'Amico, A., Nelli, P., Groppelli, S. and Sberveglieri, G., 1996. An 

electronic nose for the recognition of the vineyard of a red wine. Sens. Actuators, B, 33(1-3), 

pp.83-88. 

Dickinson, T. A., White, J., Kauer, J. S. and Walt, D. R., 1998. Current trends inartificial-

nose'technology. Trends Biotechnol., 16(6), pp.250-258. 

Dicolla, C. B., 2008. Characterization of Heat Resistant Milk Chocolates. 

Dimick, P. S., 1983. Development of flavour in chocolate. Proceedings Towards Better 

Acceptance of Malaysian Cocoa, pp.15-21. 

Do, T. A., Hargreaves, J. M., Wolf, B., Hort, J. and Mitchell, J. R., 2007. Impact of particle size 

distribution on rheological and textural properties of chocolate models with reduced fat 

content. J. Food Sci., 72(9), pp.E541-E552. 

Dhonsi, D. and Stapley, A. G. F., 2006. The effect of shear rate, temperature, sugar and 

emulsifier on the tempering of cocoa butter. J. Food Eng., 77(4), pp.936-942. 

Doganis, P., Alexandridis, A., Patrinos, P. and Sarimveis, H., 2006. Time series sales forecasting 

for short shelf-life food products based on artificial neural networks and evolutionary 

computing. J. Food Eng., 75(2), pp.196-204. 

Donovan, J. W., 1979. Phase transitions of the starch-water system. Biopolymers, 18(2), pp.263-

275. 



47 

Drake, M. A., Gerard, P. D., Kleinhenz, J. P. and Harper, W. J., 2003. Application of an 

electronic nose to correlate with descriptive sensory analysis of aged Cheddar cheese. LWT--

Food Sci. Technol., 36(1), pp.13-20. 

Eberstein, K., Höpcke, R., Konieczny‐Janda, G. and Stute, R., 1980. DSC‐Untersuchungen an 

Stärke Teil I. Möglichkeiten thermoanalytischer Methoden zur Stärkecharakterisierung. Starch‐

Stärke, 32(12), pp.397-404. 

Ediger, M. D., Angell, C. A. and Nagel, S. R., 1996. Supercooled liquids and glasses. J. Phys. 

Chem., 100(31), pp.13200-13212. 

Eiben, A. E., Raue, P. E. and Ruttkay, Z., 1994, October. Genetic algorithms with multi-parent 

recombination. In International Conference on Parallel Problem Solving from Nature (pp. 78-87). 

Springer Berlin Heidelberg. 

El Barbri, N., Llobet, E., El Bari, N., Correig, X. and Bouchikhi, B., 2008. Electronic nose based 

on metal oxide semiconductor sensors as an alternative technique for the spoilage classification 

of red meat. Sensors, 8(1), pp.142-156. 

Eliasson, A. C., 1980. Effect of water content on the gelatinization of wheat starch. Starch 

Stärke, 32(8), pp.270-272. 

Eshel, G., Levy, G. J., Mingelgrin, U. and Singer, M. J., 2004. Critical evaluation of the use of 

laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J., 68(3), pp.736-743. 

Fyfe, C., 2005. Artificial neural networks. In Do Smart Adaptive Systems Exist? (pp. 57-79). 

Springer Berlin Heidelberg. 



 

48 
 

Feng, H., Tang, J. and Cavalieri, R. P., 2002. Dielectric properties of dehydrated apples as 

affected by moisture and temperature. Trans. ASAE, 45(1), pp.129-136. 

Fessas, D., Signorelli, M. and Schiraldi, A., 2005. Polymorphous transitions in cocoa butter: a 

quantitative DSC study. J. Therm. Anal. Calorim., 82(3), pp.691-702. 

Foubert, I., Vanrolleghem, P. A. and Dewettinck, K., 2003. A differential scanning calorimetry 

method to determine the isothermal crystallization kinetics of cocoa butter. Thermochim. 

Acta, 400(1), pp.131-142. 

Fraden, J. and Rubin, L. G., 1994. AIP Handbook of Modern Sensors. Physics Today, 47, p.74. 

Freire, E., 1994. Statistical thermodynamic analysis of differential scanning calorimetry data: 

Structural deconvolution of heat capacity function of proteins. Methods Enzymol., 240, pp.502-

530. 

Freire, E., 1995. Differential scanning calorimetry. Protein Stability and Folding: Theory and 

Practice, pp.191-218. 

García, M., Aleixandre, M., Gutiérrez, J. and Horrillo, M. C., 2006. Electronic nose for wine 

discrimination. Sens. Actuators, B, 113(2), pp.911-916. 

Garcı́a-Gimeno, R. M., Hervás-Martınez, C. and de Silóniz, M. I., 2002. Improving artificial 

neural networks with a pruning methodology and genetic algorithms for their application in 

microbial growth prediction in food. Int. J. Food Microbiol., 72(1), pp.19-30. 

Gardner, J. W. and Bartlett, P. N. eds., 1992. Sensors and sensory systems for an electronic 

nose (Vol. 212, p. 303). Kluwer Academic. 



 

49 
 

Gardner, J. W., Shurmer, H. V. and Tan, T. T., 1992. Application of an electronic nose to the 

discrimination of coffees. Sens. Actuators, B, 6(1-3), pp.71-75. 

Geeraerd, A. H., Herremans, C. H., Cenens, C. and Van Impe, J. F., 1998. Application of 

artificial neural networks as a non-linear modular modeling technique to describe bacterial 

growth in chilled food products. Int. J. Food Microbiol., 44(1), pp.49-68. 

Glicerina, V., Balestra, F., Dalla Rosa, M. and Romani, S., 2013. Rheological, textural and 

calorimetric modifications of dark chocolate during process. J. Food Eng., 119(1), pp.173-179. 

Gong, M. and Yang, Y. H., 2001. Multi-resolution stereo matching using genetic algorithm. 

In Stereo and Multi-Baseline Vision, 2001. (SMBV 2001). Proceedings. IEEE Workshop on (pp. 

21-29). IEEE. 

Goni, S. M., Oddone, S., Segura, J. A., Mascheroni, R. H. and Salvadori, V. O., 2008. Prediction 

of foods freezing and thawing times: Artificial neural networks and genetic algorithm 

approach. J. Food Eng., 84(1), pp.164-178. 

Grivetti, L. E. and Shapiro, H. Y., 2011. Chocolate: history, culture, and heritage. John Wiley & 

Sons. 

Hai, Z. and Wang, J., 2006. Electronic nose and data analysis for detection of maize oil 

adulteration in sesame oil. Sens. Actuators, B, 119(2), pp.449-455. 

Hancock, B. C. and Zografi, G., 1997. Characteristics and significance of the amorphous state in 

pharmaceutical systems. J. Pharm. Sci., 86(1), pp.1-12. 

Harsányi, G., 2000. Polymer films in sensor applications: a review of present uses and future 

possibilities. Sens. Rev., 20(2), pp.98-105. 



50 

Hashim, L. and Chaveron, H., 1994. Extraction and determination of methylpyrazines in cocoa 

beans using coupled steam distillation-microdistillator. Food Res. Int., 27(6), pp.537-544. 

Hartel, R. W. and Hartel, A., 2014. Candy Bites: The Science of Sweets. Springer Science & 

Business Media. 

Heeger, A. J., 2001. Semiconducting and metallic polymers: the fourth generation of polymeric 

materials (Nobel lecture). Angew. Chem., Int. Ed., 40(14), pp.2591-2611. 

Heinzler, M. and Eichner, K., 1992. The role of amodori compounds during cocoa processing–

formation of aroma compounds under roasting conditions. Z. Lebensm.-Unters.-Forsch, 21, 

pp.445-450. 

Hendry Jr John, L., Pederson Richard R, 1952. Process of Comminuting Food Products. U.S. 

Patent 2,583,697. 

Hodge, S. M. and Rousseau, D., 2002. Fat bloom formation and characterization in milk 

chocolate observed by atomic force microscopy. J. Am. Oil Chem. Soc., 79(11), pp.1115-1121. 

Houldin, J. E., 1967. Fundamentals of Electronics. Phys. Bull., 18(10), p.354. 

Höhne, G. W. H., Hemminger, W. and Flammersheim, H. J., 1996. Theoretical Fundamentals of 

Differential Scanning Calorimeters. In Differential Scanning Calorimetry (pp. 21-40). Springer 

Berlin Heidelberg. 

Huang, X., Kakuda, Y. and Cui, W., 2001. Hydrocolloids in emulsions: particle size distribution 

and interfacial activity. Food Hydrocolloids, 15(4), pp.533-542. 



 

51 
 

Huang, C. H. and Li, S., 1999. Calorimetric and molecular mechanics studies of the thermotropic 

phase behavior of membrane phospholipids. Biochimica et Biophysica Acta (BBA)-Reviews on 

Biomembranes, 1422(3), pp.273-307. 

Irani, R. R. and Callis, C. F., 1963. Particle size: measurement, interpretation, and 

application (Vol. 3). New York: Wiley. 

James, B. J. and Smith, B. G., 2009. Surface structure and composition of fresh and bloomed 

chocolate analysed using X-ray photoelectron spectroscopy, cryo-scanning electron microscopy 

and environmental scanning electron microscopy. LWT--Food Sci. Technol., 42(5), pp.929-937. 

Jensen, L. H. and Mabis, A. J., 1966. Refinement of the structure of β-tricaprin. Acta 

Crystallogr., 21(5), pp.770-781. 

Jinap, S., Rosli, W. W., Russly, A. R. and Nordin, L. M., 1998. Effect of roasting time and 

temperature on volatile component profiles during nib roasting of cocoa beans (Theobroma 

cacao). J. Sci. Food Agric., 77(4), pp.441-448. 

Jinap, S., Jamilah, B. and Nazamid, S., 2004. Sensory properties of cocoa liquor as affected by 

polyphenol concentration and duration of roasting. Food Quality and Preference, 15(5), pp.403-

409. 

Jolly, M. S., Blackburn, S. and Beckett, S. T., 2003. Energy reduction during chocolate conching 

using a reciprocating multihole extruder. J. Food Eng., 59(2), pp.137-142. 

Johnson, C. D., 1993. Process Control Instrumentation Technology. Prentice Hall PTR. 



52 

Kalab, M. and Harwalkar, V.R., 1973. Milk gel structure. I. Application of scanning electron 

microscopy to milk and other food gels. J. Dairy Sci., 56(7), pp.835-842. 

Kaláb, M., Allan-Wojtas, P. and Miller, S. S., 1995. Microscopy and other imaging techniques in 

food structure analysis. Trends Food Sci. Technol., 6(6), pp.177-186. 

Kanazawa, E., Sakai, G., Shimanoe, K., Kanmura, Y., Teraoka, Y., Miura, N. and Yamazoe, N., 

2001. Metal oxide semiconductor N2O sensor for medical use. Sens. Actuators, B, 77(1), pp.72-

77. 

Keeney, P. G., 1972. Various interactions in chocolate flavor. Journal of the American Oil 

Chemists Society, 49(10), pp.567-572. 

Konert, M. and Vandenberghe, J. E. F., 1997. Comparison of laser grain size analysis with 

pipette and sieve analysis: a solution for the underestimation of the clay 

fraction. Sedimentology, 44(3), pp.523-535. 

Kremer, F., 2002. Dielectric spectroscopy–yesterday, today and tomorrow. J. Non-Cryst. 

Solids, 305(1), pp.1-9. 

Krog, N. and Larsson, K., 1968. Phase behaviour and rheological properties of aqueous systems 

of industrial distilled monoglycerides. Chem. Phys. Lipids, 2(1), pp.129-143. 

Krysiak, W., 2006. Influence of roasting conditions on coloration of roasted cocoa beans. J. Food 

Eng., 77(3), pp.449-453. 

Kim, Y. D. and Morr, C. V., 1996. Microencapsulation properties of gum arabic and several food 

proteins: spray-dried orange oil emulsion particles.  J. Agric. Food Chem., 44(5), pp.1314-1320. 



53 

Kivelson, D., Tarjus, G., Zhao, X. and Kivelson, S. A., 1996. Fitting of viscosity: Distinguishing 

the temperature dependences predicted by various models of supercooled liquids. Phys. Rev. 

E, 53(1), p.751. 

Kurt, W. H., 1955. Apparatus for the Production of Chocolate Paste. U.S. Patent 2,711,964. 

Jackson, W. M. and Brandts, J. F., 1970. Thermodynamics of protein denaturation. Calorimetric 

study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy 

of the two-state approximation. Biochemistry, 9(11), pp.2294-2301. 

Johari, G. P. and Goldstein, M., 1970. Viscous liquids and the glass transition. II. Secondary 

relaxations in glasses of rigid molecules. J. Chem. Phys., 53(6), pp.2372-2388. 

Johari, G. P., 1982. Effect of annealing on the secondary relaxations in glasses. J. Chem. 

Phys., 77(9), pp.4619-4626. 

Jonscher, A. K., 1999. Dielectric relaxation in solids. J. Phys. D: Appl. Phys., 32(14), p.R57. 

Laaksonen, T. J. and Roos, Y. H., 2000. Thermal, dynamic-mechanical, and dielectric analysis of 

phase and state transitions offrozen wheat doughs. J. Cereal Sci., 32(3), pp.281-292. 

Laaksonen, T. J. and Roos, Y. H., 2001. Dielectric relaxations of frozen wheat doughs containing 

sucrose, NaCl, ascorbic acid and their mixtures. J. Cereal Sci., 33(3), pp.331-339. 

Lai, V. F., Huang, A. L. and Lii, C. Y., 1999. Rheological properties and phase transition of red 

algal polysaccharide–starch composites. Food Hydrocolloids, 13(5), pp.409-418. 

Lambelet, P., 1984. Comparison of NMR and DSC methods for determining solid content of 

fats. Application to cocoa butter and its admixtures with milk fat. Nestle Research News. 



 

54 
 

Larsson, K., 1966. Classification of glyceride crystal forms. Acta Chem. Scand, 20(8), pp.2255-

2260. 

Lee, W. and Kim, H. Y., 2005. Genetic algorithm implementation in Python. In Computer and 

Information Science, 2005. Fourth Annual ACIS International Conference on (pp. 8-11). IEEE. 

Liu, A. J. and Nagel, S. R. eds., 2001. Jamming and rheology: constrained dynamics on 

microscopic and macroscopic scales. CRC Press. 

Liu, Y., Bhandari, B. and Zhou, W., 2006. Glass transition and enthalpy relaxation of amorphous 

food saccharides: a review.  J. Agric. Food Chem., 54(16), pp.5701-5717. 

Loisel, C., Keller, G., Lecq, G., Bourgaux, C. and Ollivon, M., 1998. Phase transitions and 

polymorphism of cocoa butter. J. Am. Oil Chem. Soc., 75(4), pp.425-439. 

Lu, Y. and Fujii, M., 1998. Dielectric analysis of hen egg white with denaturation and in cool 

storage. Int. J. Food Sci. Technol., 33(4), pp.393-399. 

Lucisano, M., Casiraghi, E. and Mariotti, M., 2006. Influence of formulation and processing 

variables on ball mill refining of milk chocolate. Eur. Food Res. Technol., 223(6), pp.797-802. 

Magnier, L. and Haghighat, F., 2010. Multiobjective optimization of building design using 

TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Build. Sci., 45(3), 

pp.739-746. 

Marangoni, A. G. and McGauley, S. E., 2003. Relationship between crystallization behavior and 

structure in cocoa butter. Cryst. Growth Des., 3(1), pp.95-108. 



55 

Martins, S. I., Jongen, W. M. and Van Boekel, M. A., 2000. A review of Maillard reaction in 

food and implications to kinetic modelling. Trends Food Sci. Technol., 11(9), pp.364-373. 

McCave, I. N., Bryant, R. J., Cook, H. F. and Coughanowr, C. A., 1986. Evaluation of a laser-

diffraction-size analyzer for use with natural sediments: research method paper. J. Sediment. 

Res., 56(4). 

McCrum, N. G., Read, B. E. and Williams, G., 1967. Anelastic and dielectric effects in 

polymeric solids. 

Makhatadze, G. I. and Privalov, P. L., 1995. Energetics of protein structure. Adv. Protein 

Chem., 47, pp.307-425. 

Mirhosseini, H., Tan, C. P., Hamid, N. S. and Yusof, S., 2008. Optimization of the contents of 

Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity 

index and density in orange beverage emulsion. Food Hydrocolloids, 22(7), pp.1212-1223. 

Moran, G. R., Jeffrey, K. R., Thomas, J. M. and Stevens, J. R., 2000. A dielectric analysis of 

liquid and glassy solid glucose/water solutions. Carbohydr. Res., 328(4), pp.573-584. 

Mason, J. T., 1998. Investigation of phase transitions in bilayer membranes. Methods 

Enzymol., 295, pp.468-494. 

Meste, M. L., Champion, D., Roudaut, G., Blond, G. and Simatos, D., 2002. Glass transition and 

food technology: a critical appraisal. J. Food Sci., 67(7), pp.2444-2458. 

Macdonald, J. R., 1987. Impedance Spectroscopy (Vol. 11). New York etc: Wiley. 



56 

Mudroch, A., Azcue, J. M. and Mudroch, P., 1996. Manual of Physico-Chemical Analysis of 

Aquatic Sediments. CRC Press. 

Munoz, B. C., Steinthal, G. and Sunshine, S., 1999. Conductive polymer-carbon black 

composites-based sensor arrays for use in an electronic nose. Sens. Rev., 19(4), pp.300-305. 

Ngai, C. A. K. and Wright, G. B., 1985. Relaxation in Complex Systems, US Govt. Printing O 

ce, Washington DC. 

Ohkuma, C., Kawai, K., Viriyarattanasak, C., Mahawanich, T., Tantratian, S., Takai, R. and 

Suzuki, T., 2008. Glass transition properties of frozen and freeze-dried surimi products: effects 

of sugar and moisture on the glass transition temperature. Food Hydrocolloids, 22(2), pp.255-

262. 

Olthoff, L. W., Van Der Bilt, A., Bosman, F. and Kleizen, H. H., 1984. Distribution of particle 

sizes in food comminuted by human mastication. Arch. Oral Biol., 29(11), pp.899-903. 

Owusu, M., Petersen, M. A. and Heimdal, H., 2012. Effect of fermentation method, roasting and 

conching conditions on the aroma volatiles of dark chocolate. J. Food Process. Preserv., 36(5), 

pp.446-456. 

Panigrahi, S., Balasubramanian, S., Gu, H., Logue, C. and Marchello, M., 2006. Neural-network-

integrated electronic nose system for identification of spoiled beef. LWT--Food Sci. 

Technol., 39(2), pp.135-145. 

Paul, S. D. and Jeanne, M. H., 1981. Chemico-physical aspects of chocolate processing–a 

review. Can. Inst. Food Sci. Technol. J., 14(4), pp.269-282. 



 

57 
 

Pardo, M., Niederjaufner, G., Benussi, G., Comini, E., Faglia, G., Sberveglieri, G., Holmberg, 

M. and Lundstrom, I., 2000. Data preprocessing enhances the classification of different brands of 

Espresso coffee with an electronic nose. Sens. Actuators, B, 69(3), pp.397-403. 

Pearce, T. C., Schiffman, S. S., Nagle, H. T. and Gardner, J. W. eds., 2006. Handbook of 

Machine Olfaction: Electronic Nose Technology. John Wiley & Sons. 

Pérez-Martínez, D., Alvarez-Salas, C., Charó-Alonso, M., Dibildox-Alvarado, E. and Toro-

Vazquez, J. F., 2007. The cooling rate effect on the microstructure and rheological properties of 

blends of cocoa butter with vegetable oils. Food Res. Int., 40(1), pp.47-62. 

Peyron, M. A., Mishellany, A. and Woda, A., 2004. Particle size distribution of food boluses 

after mastication of six natural foods. J. Dent. Res., 83(7), pp.578-582. 

Plum, G. E. and Breslauer, K. J., 1995. Calorimetry of proteins and nucleic acids. Curr. Opin. 

Struct. Biol., 5(5), pp.682-690. 

Poynting, J. H. and Thomson, J. J., 1908. A Text-book of Physics. C. Griffin, limited. 

Potter, W. D., Robinson, R. W., Miller, J. A., Kochut, K. and Redys, D. Z., 1994, May. Using the 

Genetic Algorithm to Find Snake-in-the-Box Codes. In IEA/AIE (pp. 421-426). 

Privalov, P. L., 1974. Thermal investigations of biopolymer solutions and scanning 

microcalorimetry. FEBS letters, 40, pp.S133-S139. 

Qian, C. and McClements, D. J., 2011. Formation of nanoemulsions stabilized by model food-

grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food 

Hydrocolloids, 25(5), pp.1000-1008. 



 

58 
 

Rahman, M. S., 1999. Glass transition and other structural changes in foods. Food Science and 

Technology-New York-Marcel Dekker-, pp.75-94. 

Rajamäki, T., Alakomi, H.L., Ritvanen, T., Skyttä, E., Smolander, M. and Ahvenainen, R., 2006. 

Application of an electronic nose for quality assessment of modified atmosphere packaged 

poultry meat. Food control, 17(1), pp.5-13. 

Ramli, N., Hassan, O., Said, M., Samsudin, W. and Idris, N. A., 2006. Influence of roasting 

conditions on volatile flavor of roasted Malaysian cocoa beans. J. Food Process. Preserv., 30(3), 

pp.280-298. 

Reimer, L., 2013. Transmission Electron Microscopy: Physics of Image Formation and 

Microanalysis (Vol. 36). Springer. 

Richardson, T., 2008. Sweets: a history of candy. Bloomsbury Publishing USA. 

Ripani, S. and Serafini, G., Carle & Montanari SPA, 1986. Control System for Controlling the 

Pressure on Chocolate Refining Machine Roll Bearings. U.S. Patent 4,620,477. 

Roman-Gutierrez, A. D., Guilbert, S. and Cuq, B., 2002. Description of microstructural changes 

in wheat flour and flour components during hydration by using environmental scanning electron 

microscopy. LWT--Food Sci. Technol., 35(8), pp.730-740. 

Ross-Murphy, S. B., 1994. Rheological methods. In Physical Techniques for The Study of Food 

Biopolymers (pp. 343-392). Springer US. 

Roos, Y. and Karel, M., 1991. Phase transitions of mixtures of amorphous polysaccharides and 

sugars. Biotechnol. Prog., 7(1), pp.49-53. 



59 

Rosenberg, M., Kopelman, I. J. and TALMON, Y., 1985. A scanning electron microscopy study 

of microencapsulation. J. Food Sci., 50(1), pp.139-144. 

Röck, F., Barsan, N. and Weimar, U., 2008. Electronic nose: current status and future 

trends. Chem. Rev., 108(2), pp.705-725. 

Sato, K., Ueno, S. and Yano, J., 1999. Molecular interactions and kinetic properties of fats. Prog. 

Lipid Res., 38(1), pp.91-116. 

Sato, K., 2001. Crystallization behaviour of fats and lipids-a review. Chem. Eng. Sci., 56(7), 

pp.2255-2265. 

Sato, A. C. K. and Cunha, R.L., 2009. Effect of particle size on rheological properties of 

jaboticaba pulp. J. Food Eng., 91(4), pp.566-570. 

Schmidt, S. J., 2004. Water and solids mobility in foods. Adv. Food Nutr. Res., 48, pp.1-103. 

Schnermann, P. and Schieberle, P., 1997. Evaluation of key odorants in milk chocolate and 

cocoa mass by aroma extract dilution analyses.  J. Agric. Food Chem., 45(3), pp.867-872. 

Schonberg, A. and Moubacher, R., 1952. The Strecker Degradation of α-Amino Acids. Chem. 

Rev., 50(2), pp.261-277. 

Schwan, R. F. and Wheals, A. E., 2004. The microbiology of cocoa fermentation and its role in 

chocolate quality. Crit. Rev. Food Sci. Nutr., 44(4), pp.205-221. 

Shurmer, H. V. and Gardner, J. W., 1992. Odour discrimination with an electronic nose. Sens. 

Actuators, B, 8(1), pp.1-11. 



 

60 
 

Servais, C., Jones, R. and Roberts, I., 2002. The influence of particle size distribution on the 

processing of food. J. Food Eng., 51(3), pp.201-208. 

Stark, T., Bareuther, S. and Hofmann, T., 2005. Sensory-guided decomposition of roasted cocoa 

nibs (Theobroma cacao) and structure determination of taste-active polyphenols.  J. Agric. Food 

Chem., 53(13), pp.5407-5418. 

Stark, T. and Hofmann, T., 2005. Structures, sensory activity, and dose/response functions of 2, 

5-diketopiperazines in roasted cocoa nibs (Theobroma cacao).  J. Agric. Food Chem., 53(18), 

pp.7222-7231. 

Sterling, C. and Wuhrmann, J. J., 1960. Rheology of cocoa butter. I. Effect of contained fat 

crystals on flow properties. J. Food Sci., 25(4), pp.460-463. 

Stokes, D., 2008. Principles and Practice of Variable Pressure: Environmental Scanning Electron 

Microscopy (VP-ESEM). John Wiley & Sons. 

Stuchly, M. A. and Stuchly, S. S., 1980. Coaxial line reflection methods for measuring dielectric 

properties of biological substances at radio and microwave frequencies-A review. IEEE Trans. 

Instrum. Meas., 29(3), pp.176-183. 

Simatos, D., Blond, G. and Perez, J., 1995. Basic physical aspects of glass transition. Food 

Preserv. Moisture Control, pp.3-31. 

Sokmen, A. and Gunes, G., 2006. Influence of some bulk sweeteners on rheological properties of 

chocolate. LWT--Food Sci. Technol., 39(10), pp.1053-1058. 

Spink, C. H., 2008. Differential scanning calorimetry. Methods Cell Biol., 84, pp.115-141. 



61 

Svanberg, L., Ahrné, L., Lorén, N. and Windhab, E., 2011. Effect of sugar, cocoa particles and 

lecithin on cocoa butter crystallisation in seeded and non-seeded chocolate model systems. J. 

Food Eng., 104(1), pp.70-80. 

Tan, J. and Kerr, W. L., 2017. Determination of glass transitions in boiled candies by capacitance 

based thermal analysis (CTA) and genetic algorithm (GA). J. Food Eng., 193, pp.68-75. 

Tatsumi, Y., Watada, A. E. and Wergin, W. P., 1991. Scanning electron microscopy of carrot 

stick surface to determine cause of white translucent appearance. J. Food Sci., 56(5), pp.1357-

1359. 

Tarjus, G., Kivelson, S. A., Nussinov, Z. and Viot, P., 2005. The frustration-based approach of 

supercooled liquids and the glass transition: a review and critical assessment. J. Phys.: Condens. 

Matter, 17(50), p.R1143. 

Tsoukalas, L. H. and Uhrig, R. E., 1997. Fuzzy and Neural Approaches in Engineering (Adaptive 

and Learning Systems for Signal Processing, Communications and Control Series. NYUSA: 

John Wiley and Sons, Inc. 

Van der Bilt, A., Van Der Glas, H. W., Mowlana, F. and Heath, M. R., 1993. A comparison 

between sieving and optical scanning for the determination of particle size distributions obtained 

by mastication in man. Arch. Oral Biol., 38(2), pp.159-162. 

Van Malssen, K., Peschar, R. and Schenk, H., 1996. Real-time X-ray powder diffraction 

investigations on cocoa butter. I. Temperature-dependent crystallization behavior. J. Am. Oil 

Chem. Soc., 73(10), pp.1209-1215. 



62 

Van Malssen, K., van Langevelde, A., Peschar, R. and Schenk, H., 1999. Phase behavior and 

extended phase scheme of static cocoa butter investigated with real-time X-ray powder 

diffraction. J. Am. Oil Chem. Soc., 76(6), pp.669-676. 

Vassilikou-Dova, A. G. L. A. I. A. and Kalogeras, I. M., 2009. Dielectric analysis (DEA). 

In Thermal analysis of polymers: Fundamentals and applications (pp. 497-613). John Wiley, 

Hoboken, New Jersey. 

Verheul, M. and Roefs, S. P. F. M., 1998. Structure of whey protein gels, studied by 

permeability, scanning electron microscopy and rheology. Food hydrocolloids, 12(1), pp.17-24. 

von Hippel, A. R. and Morgan, S. O., 1955. Dielectric materials and applications. J. 

Electrochem. Soc., 102(3), pp.68C-68C. 

Winquist, F., Hornsten, E. G., Sundgren, H. and Lundstrom, I., 1993. Performance of an 

electronic nose for quality estimation of ground meat. Meas. Sci. Technol., 4(12), p.1493. 

Williams, G. and Watts, D. C., 1970. Non-symmetrical dielectric relaxation behaviour arising 

from a simple empirical decay function. Trans. Faraday Soc., 66, pp.80-85. 

Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. and Weitz, D. A., 2000. Three-

dimensional direct imaging of structural relaxation near the colloidal glass 

transition. Science, 287(5453), pp.627-631. 

Xue, T., Yu, L., Xie, F., Chen, L. and Li, L., 2008. Rheological properties and phase transition of 

starch under shear stress. Food Hydrocolloids, 22(6), pp.973-978. 



 

63 
 

Yasuda, G. I. and Takai, H., 2001. Sensor-based path planning and intelligent steering control of 

nonholonomic mobile robots. In Industrial Electronics Society, 2001. IECON'01. The 27th 

Annual Conference of the IEEE (Vol. 1, pp. 317-322). IEEE. 

Yegnanarayana, B., 2009. Artificial neural networks. PHI Learning Pvt. Ltd.. 

Yu, L., 2001. Amorphous pharmaceutical solids: preparation, characterization and 

stabilization. Adv. Drug Delivery Rev., 48(1), pp.27-42. 

Zhang, Q., Zhang, S., Xie, C., Zeng, D., Fan, C., Li, D. and Bai, Z., 2006. Characterization of 

Chinese vinegars by electronic nose. Sens. Actuators, B, 119(2), pp.538-546. 

Ziegleder, G. and Biehl, B., 1988. Analysis of cocoa flavour components and flavour precursors. 

In Analysis of Nonalcoholic Beverages (pp. 321-393). Springer Berlin Heidelberg. 

Ziegleder, G., 1991. Composition of flavor extracts of raw and roasted cocoas. Z. Lebensm.-

Unters. -Forsch. A, 192(6), pp.521-525. 

Ziegler, G. R., Mongia, G. and Hollender, R., 2001. The role of particle size distribution of 

suspended solids in defining the sensory properties of milk chocolate. Int. J. Food Prop., 4(2), 

pp.353-370. 

Ziegler, G. R. and Hogg, R., 2009. Particle size reduction. Industrial Chocolate Manufacture and 

Use, Fourth Edition, pp.142-168. 

Zoumas, B. L., Azzara, C. D. and Bouzas, J., 2004. Chocolate and cocoa. Kirk-Othmer 

Encyclopedia of Chemical Technology. 



 

64 
 

Zounis, S., Quail, K. J., Wootton, M. and Dickson, M. R., 2002. Studying frozen dough structure 

using low-temperature scanning electron microscopy. J. Cereal Sci., 35(2), pp.135-147. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

Figures 

Figure 2.1. Schematic of a microbial succession during cocoa bean fermentations. 
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Tables 

Table 2.1. Cooking tempering of candies of different stages 

Stage Cooking temperature (°C) Sugar contents 

Thread (e.g., syrup) 110-112 80% 

Soft ball (e.g., fudge) 112-116 85% 

Firm ball (e.g., soft caramel ) 118-120 87% 

Hard ball (e.g., nougat) 121-130 90% 

Soft crack (e.g., salt water taffy) 132-143 95% 

Hard crack (e.g., toffee) 146-154 99% 

Clear liquid 160 100% 

Brown liquid 170 100% 

Burnt sugar 177 100% 
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Table 2.2. Melting temperature and texture of different type cocoa butter crystalline 

Type Tm (°C) Texture 

I (γ) 17 Soft, crumbly, melts too easily 

II (α) 21 Soft, crumbly, melts too easily 

III (β1’) 26 Firm, poor snap, melts too easily 

IV (β2’) 28 Firm, good snap, melts too 
easily

V (β2) 34 Glossy, firm, best snap, melts 
near body temperature (37 °C)

VI (β1) 36 Hard, takes weeks to form 
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CHAPTER 3 

DETERMINATION OF GLASS TRANSITIONS IN BOILED CANDIES BY CAPACITANCE 

BASED THERMAL ANALYSIS (CTA) AND GENETIC ALGORITHM (GA)1

________________________________ 

1 Tan, J. and Kerr, W.L., 2017. Journal of Food Engineering, 193, pp.68-75. 
Reprinted here with permission of the publisher.   
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ABSTRACT 

The glass transition temperature (Tg) is an important property that influences the 

processing and textural characteristics of candy. Measurement of Tg is done by comparably 

expensive and complex instruments. In this study, we tested a new system which uses 

capacitance thermal analysis (CTA) of candy trapped between stainless plates, as the system is 

caused to heat at an uncontrolled rate. The data of capacitance as a function of temperature were 

processed by a genetic algorithm (GA), and fitted to a three-section model to determine Tg. Tg 

of the candies were independently measured by DSC as a reference. The results showed that 

when the Tg of the candy was below ~15 ℃, the measurement from the GA-CTA was higher (2-

3 ℃) than that from DSC. However, if Tg of the candy was higher than 15 ℃, the two methods 

gave similar values. GA based CTA provides a feasible new way to measure phase transitions in 

candies with relatively inexpensive equipment, and with less need for user interpretation of data. 

Keywords: Glass transition, capacitance, genetic algorithm, three-section model 
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1. Introduction

Candies, or sugar confections, are popular food products characterized by relatively high 

sugar content. This definition may encompass several distinctly different items such as 

chocolate, boiled sweets, and chewing gum. Confectionery foods are popular throughout the 

world and have been consumed for thousands of years. Some studies date the first production of 

candy to ca. 2000 BC in ancient Egypt (Richardson, 2003). In the past, candies have served a 

medicinal role, as in the relief of sore throats, and were often only accessible to wealthy 

individuals. In the United States, sugar confections became more available to the general public 

in the 1830s. This coincided with the increase in sugar production in Louisiana and the West 

Indies, and the greater availability of cocoa beans. In addition, the industrial age had provided 

technological advances that allowed for mass production of sugary sweets. While the production 

and types of candies has increased since those times, much of the basic composition has 

remained much the same. 

The texture, appearance, and storage stability are very importance factors which can 

influence consumer perception of candy. A unique feature of candies is that they can appear in 

many physical and structural forms, which in turn have a profound impact on their perceived 

texture. Candies containing only sugar (or glucose syrup) can manifest as chewy caramels or 

solid hard candies. The former are often present as rubbery states with no crystalline material, 

although graining or whipping may be used to create small sugar crystals that shorten the texture. 

Hard candies are usually produces as clear amorphous glassy states, although some confections 

such as rock candy may have sucrose crystals. Other confections incorporate gelling agents such 

as pectin to create very chewy products such as gummy bears and jelly beans. Of course, a very 
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prominent category of candy are chocolates. These contain fine dispersions of sugar and cocoa 

mass particles trapped in a solid fat phase. 

The glass transition temperature (Tg) is one of the important factors that determines the 

physical properties of candies. A glassy state can be defined as an amorphous solid, or the 

amorphous portion of a semi-crystalline solid. Upon heating, the temperature at which a glassy 

solid transform into a rubbery state is defined as the glass transition temperature (Tg). At 

temperatures below Tg, molecules exist in an amorphous solid with limited motion. At a 

macroscopic level, such materials are often clear and have a relatively hard, brittle structure. At 

temperatures above Tg, molecules can undergo rotational and translational movement in a 

‘rubbery’ or liquid amorphous state. These materials can be fairly viscous or malleable, 

properties that influence the chewability of candies. 

Controlling the physical states of candy is critical in the confection industry as desirable 

characteristics, texture, and storage stability are influenced by these states (Hartel et al., 2011). In 

general, food materials maintain better physical and chemical stability in the glassy state than in 

the rubbery state (Humagai and Kumagai 2002). Ergun and Hartel (2009) summarized some of 

the desirable states for confections, and indicated that hard candies should have a Tg which is 

much higher than room temperature, so that it can maintain its desired brittleness and hard 

texture over a range of ambient temperatures. Some other candies including ungrained caramels, 

chewy nougats, and marshmallows have a Tg lower than room temperature, thus exhibit a chewy 

texture. 

To make glassy candies, both glass-formers and modifiers are needed. In addition, the 

candies need to be rapidly cooled down from a molten state so that crystals do not have time to 

form. The most common glass-formers are sugar (sucrose) and glucose syrup (Smidova et al., 
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2003). Other components such as maltodextrin, gum, color, and flavor serve either as glass-

formers working to adjust the Tg of the candy glass, or as additives, changing the appearance and 

flavor. For most candy production, water is used as a plasticizer that can break down the network 

connectivity of glass-formers. Plasticizers lower the Tg by increasing the free volume in which 

molecules are free to move. The agents soften the material but may decrease chemical stability. 

Therefore, it is important to control the ratio of plasticizers to glass-formers, so that the candies 

can be made into desirable forms. Previous studies (Ergun et al., 2010; Tananuwong and Reid, 

2004; Labuza and Labuza, 2004; Lourdin el al., 1997; Forssell et al., 1997) indicated that water 

content has great influence on the Tg, and lowering the water content of foods such as starchy 

materials, dried foods, confections, and frozen foods leads to a greater than linear increase in Tg. 

In addition, several studies (Bhandari and Howes, 1999; Roos and Karel, 1991; Roos, 1993) have 

shown that the molecular weight of the primary glass-former has a major impact on Tg, with 

higher molecular weight compounds producing greater Tg values. The influence of the weight 

ratio of different components (glass-former and plasticizer) on Tg of food materials has been 

summarized by the Gordon-Taylor equation (Roos, 1995): 

Tg=
ω1Tg1+kω2Tg2

ω1+kω2
(1) 

where, ω1 and ω2 are the weight fractions of components 1 and 2 while Tg1 and Tg2 are the glass 

transition temperature of each component. The constant k is related to the difference in specific 

heat values for the two components between glass and fluid state (k = ∆CP1/∆CP2). 

Differential scanning calorimetry (DSC) is one of the most commonly used methods to 

determine glass transition temperatures. Thermodynamic transitions are classified as first- or 

second-order. In a first-order transition, there is a transfer of latent heat between system and 

surroundings, and the system undergoes an abrupt volume change. In a second-order transition, 
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often called a continuous phase transition, there is no change in latent heat but the heat capacity 

does change. First-order transitions occur, for example, between the solid and melted states of 

crystalline sucrose. Glass transitions are second-order, as the greater motional freedom in the 

rubbery state give it a greater heat capacity than in the glassy state. In some systems, a material 

may undergo more than one glass transition, such as α and β relaxations. The DSC compares the 

relative heat flow of a sample and reference (such as an empty pan) during a linear temperature 

scan (Roos, 1995). The glass transition presents as a step in the heat-flow baseline. The change is 

not usually abrupt, but occurs over a temperature range. Thus, glass transitions are often 

characterized by onset, endset and midpoint temperatures (Hartel et al., 2010).  

Another common approach to measure glass transitions is through rheological tests. 

Typically, this involves measurement of an elastic or viscous property as the sample temperature 

is gradually increased. This often involves small amplitude oscillations of the sample, with 

measurements of the phase lag between the stress and strain, from which the storage (E’ or G’) 

or loss (E” or G”) moduli are derived. Generally, the oscillation frequency can be varied to 

mimic process conditions, or to adjust the relative stiffness of the material. Cocero and Kokini 

(1991), Kasapis et al (2003) and Madeka and Kokini (1996) measured rheological properties of 

different food materials over various temperature ranges, and found that at Tg there was a drastic 

drop of storage modulus G’ and viscosity. In addition, a peak of loss modulus G’’ appears when 

the samples reach Tg. Other existing methods to determine Tg include dilatometry (Biliaderis et 

al., 1986), which measures the volume change during a temperature scan, and nuclear magnetic 

resonance (NMR) or electronic paramagnetic resonance (EPR), which measure the mobility of 

nuclei (mainly 1H and 13C) or spin probes (Ruan and Chen, 1997).  
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Yet another method for determining Tg is dielectric thermal analysis (DETA), which 

measures the variations of the dielectric constant as a function of temperature or frequency. This 

technique was demonstrated as particularly effective for the study of secondary relaxations in 

products with low water content (Champian et al., 2000). The typical DETA consists of parallel 

metal plates with a small gap between the plates to accommodate the sample being tested. As 

with DSC and thermal rheological methods, the sample temperature can be increased 

systematically as it moves from the glassy to rubbery states. The frequency dependence can also 

be investigated, typically over the range of 1mHz to 1 MHz, allowing researchers to determine 

different electrical properties that manifest at different frequencies (Räsänen et al., 1998). The 

instrument measures the stored electrical energy component (the dielectric constant ε’) as well as 

that lost as heat (the dielectric loss ε”). As with dynamic rheological methods, the ratio tan δ 

(ε”/ε’) may help identify and characterize changes in material properties. The peak of tan δ that 

appears in some isochronal tan δ vs temperature plots is defined as Tg (Laaksonen and Roos, 

2000). Some researchers have suggested that DETA is a more sensitive measurement than 

dynamic rheology, as often only one transition can be seen by rheological tests (Rotter and 

Ishida, 1992). As Tg measured by DETA varies substantially with frequency, it is important to 

specify and understand the measurement frequency before comparing results. 

DSC, DETA and dynamic rheological thermal analyzers are relatively expensive 

instruments and require substantial user training to ensure reliable results. In addition, each 

require careful consideration of the data curves to determine Tg parameters, an exercise that may 

allow individual interpretations to bias the results. Thus, such approaches are often available 

only to large candy manufacturers. 
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The objective of this research was to construct and test a simple and relatively 

inexpensive device that could be used to measure glass transitions in candies. The device 

consisted of a parallel metal plate assembly to hold the sample, which was then frozen in a 

commercial freezer. The temperature of the sample was increased by bringing it to a constant 

temperature environment. While this does not allow linear increase in temperature, it greatly 

simplifies the instrument construction. As a measure of the increased mobility of molecules as 

temperature increased, the capacitance was monitored using an inexpensive capacitance meter. 

Capacitance is the ability of a subject to store electrical charge, and the capacitance of a parallel-

plate capacitor can be determined as: 

C=ε’ε0
A

d
    (2)

where ε’ is the dielectric constant or permittivity of the sample between the parallel-plates, ε଴ is 

the dielectric constant when the medium is air, 𝐴 is the overlap area of the two parallel plates, 

and 𝑑 is the distant between the plates. While related to the complex moduli measured by DETA, 

the capacitance is only a measure of the storage moduli and at a fixed frequency. Again, this 

approach greatly simplified and reduced the cost of the instrument. 

A general description of capacitance may help describe the operation of the cell. A 

capacitor consists of two conductors (here the metal plates), separated by a dielectric material 

(the candy samples), causing the conductors to develop opposite charges and a potential 

difference between them. Thus, the plates can store charge because of the influence of the 

dielectric material. The potential difference between plates filled with a dielectric increases by a 

factor , compared to the same plates in vacuo. That is, more charge can be stored at a given 

potential difference because of increased capacitance. In general, this best occurs for dielectric 

media that are polarizable or contain permanent dipoles. When an electric field (Eo) is applied, 
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dipoles align with the field, causing an opposing electric field (Ei). The net field is E = E0 - Ei, 

thus the charges on the plate are somewhat shielded by the effects of the dielectric. 

To test the system, candy samples were prepared to different moisture levels, and thus 

had differing Tg values, as well as different physical states at ambient temperature. Data was 

collected of the capacitance versus temperature as the sample temperature increased. To deal 

with the data interpretation, and to reduce the need for user input, a genetic algorithm (GA) was 

developed to determine the glass transition regions. A genetic algorithm is an adaptive heuristic 

search algorithm based on the evolutionary ideas of natural selection and genetics (Sivaraj et al., 

2011). The initial “generation” starts with a selection of random solutions (say 100). These are 

tested as to their fitness, for example through standard regression statistics such as the coefficient 

of determination. The best-fitting solutions are retained as bit-strings of 0s or 1s. In addition, new 

solutions are generated by using these “individuals” and allowing them to pass on their “genes”, 

typically though crossover or mutation methods, or mixtures of both. In the former, sections of 

the bit string array are transferred between “parent” solutions. In the latter method, parts of the 

array are randomly changed. As the generations pass, the members of the population should get 

fitter and fitter (Goldberg, 1990). After a set number of generations, a best-fitting solution is 

determined. The advantage of the GA approach is that a good-fitting function can be obtained 

relatively quickly, as all possible solutions to the problem do not have to be considered. 

In this study, a three-section model was defined based on capacitance versus temperature 

data, which contained two linear sections for the pre- and post- glass transition temperature 

range, and one exponential section for the transition temperature range. Two demarcation points 

for the three sections were determined by a genetic algorithm, which determined the best 

demarcation points to provide the best overall fitting for the three-section model. 
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2. Materials and Methods 

2.1 Materials 

Granulated sugar (Domino Foods Inc.), high-fructose light corn syrup (ACH Food 

Companies Inc.) and commercial hard candies (Kroger Starlight mints and Kroger Butterscotch 

Disks) were purchased from Kroger at Athens Georgia.  

2.2 Candy preparation 

Boiled sugar candies were made with 450g sucrose, 134g light corn syrup and 100g 

deionized water. The ingredients were mixed in a stainless pan (18 cm in diameter and 14 cm in 

depth) before being heated on a stove (Model BP90W, Profile, General Electric Company, Inc.). 

The cooking temperature was 220℃ and the moisture contents of the samples were controlled by 

their boiling temperature, which was measured by a thermometer (Model TCF400, CDN, 

Component Design Northwest, Inc.). In this study, six candies with different water contents were 

made by controlling their boiling temperatures range from the firm ball stage (125℃) to the hard 

crack stage (150℃). Details of the candies are summarized in Table 1. 

When the specific end temperature was reached for each candy, the pan was removed 

from the burner, and approximately 2 ml of the sample transferred to the parallel-plate capacitor 

cell, and the gap adjusted to 1 mm. The assembly was then placed in a walk-in freezer at -5°C 

and left for ~2 h. The remaining candy sample was placed into metal pouches, sealed and kept 

frozen for subsequent moisture and DSC analyses. Samples of commercial hard candies were 

also tested. These were first broken into small pieces with a rubber hammer, then melted directly 

on the lower metal plate by heating it on the stove. All treatment groups were prepared in 

triplicate, with sample measurements repeated three times. 
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2.3 Capacitor Based Thermal Analysis (CTA) 

The parallel-plate capacitance cell was built at the University of Georgia Instrument Shop 

in Athens, Georgia. The cell consisted of two separate 50 mm diameter stainless steel plates (Fig. 

1). Each plate had a 4 mm hole drilled into the side in which a screw was provided. Single 

stranded silver-plated copper wire (18 gauge) was wrapped around the screw. The two wires 

were used to connect the sensor with a capacitance meter (RadioShack 46-range Digital 

Multimeter with PC interface). An 8 mm diameter hole cut into the center of the upper plate 

allowed a nylon screw to pass through and be screwed into the lower plate. A 1 mm hole was 

drilled part way into the the upper plate, allowing a thermocouple to measure the temperature 

near the surface of the sample. A ring spacer for the parallel-plate capacitor was made from cast 

nylon rod (Model 1UPX9, Grainger, Lake Forest, IL). The spacer had an outer diameter of 5 cm, 

an inner diameter of 4.2 cm, and a height of 6 mm. The inner faces of the parallel plates that 

touched the samples were trimmed by 4 mm in diameter and 2 mm in depth, so the spacer could 

be fixed between the two the parallel plates.  

To operate the CTA, sample was placed between the plates and the plates to give a 4 mm 

gap. The samples were cooled to ~ 0 ℃ before the tests were commenced. A hot plate was set to 

105℃ and used to heat the CTA cell. The capacitance meter and a thermocouple were connected 

to the cell and the signals directed to a data logger (Model XL100, Omega) set to collect data at 1 

point/s. Typically, samples had finished the transition between glassy and rubbery states between 

50 and 70°C, depending on the sample. The capacitance data were recorded at 1 point/s and 

transferred to a laptop computer using LabView software (National Instruments, Austin, TX). 
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2.4 Tg determined by differential scanning calorimetry (DSC) 

The glass transition temperature of each sample was determined using a differential 

scanning calorimeter (Model DSC 3, Mettler-Toledo International Inc., Columbus, OH). 

Approximately 12 mg of each sample was sealed into a 40 ul aluminum pan. An empty pan was 

used as a reference sample. Dry nitrogen gas was used to minimize water condensation in the 

measuring cell environment. The temperature scan for each sample was from -5℃ to 70 ℃ at a 

heating rate of 5℃ per minute. Before each scan the sample was heated to 85℃ and held for 1 

min, then cooled to 25℃ and held an additional 1 min. This helped eliminate any differences 

in morphology of each sample, and so that the material would have good contact with the bottom 

surface of the pan. Also, some previous studies (Angell, 2002) reported that sugar glasses are not 

completely static, and many of them may exhibit a phenomenon known as enthalpic relaxation 

(Schmidt and Lammert, 1996). Therefore, melting the sample before undergoing a temperature 

scan could help eliminate enthalpic relaxation peaks and makes transitions more evident. The 

data acquired by the DSC were analyzed by STARe Thermal Analysis software (version 3.1., 

Mettler-Toledo, Columbus, OH) to determine the onset and endset glass transition temperatures. 

2.5 Genetic algorithm development 

Data of capacitance versus temperature of each sample from the CTA test was processed 

by a GA program using Matlab (2013b, MathWorks, Natick, MA). In the GA, there were 100 

individuals in each generation, that is, sets of solutions to be tested as to how well they fit the 

data. Each individual solution carried one ‘gene’ represented by a 14-bit string. The first 7 bits 

and the last 7 bits represented the position of the two demarcation points (in binary numbers), for 

three regions of the data curve (see Figure 3). For example, 00001110000111 indicates that the 

7th temperature data point collected is the onset Tg, while the 14th point collected is the endset 
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Tg. The fitness function was 3-(R1
2+ R2

2+ R3
2), where the three Ri

2 are the R-square value of 

each section by fitting the data to each solution. The first and third sections of the data curves 

were fitted to a linear model while the second section was fitted to an exponential model. In 

addition, punishments were applied during the calculation of fitness value of each ‘individual’ if 

they had either of two violations: (1) if less than 8 data points were used to fit the model in any 

section in the capacitance versus temperature data and (2) if any of the three sections had R-

square values less than 0.9 after fitting to the model. If a violation was triggered, the fitness value 

was set to the maximum so that the individuals that triggered the violation were very likely to be 

excluded in the next generation.  

Other parameters for the GA were: the population size ‘n’ of each generation was 100, 

the crossover fraction pc was 0.6, and the mutation rate pm was 0.005. The ‘Tournament’ 

procedure was used as the selection method to select the ‘parents’ to produce ‘children’, that is 

the next set of solutions. A tournament selects each parent by choosing certain individuals at 

random; in this study, the size tournament for one time was 4. Among the selected tournament 

groups, the best individual was picked to be one of the parents. The crossover method for the GA 

was the ‘scatter’ procedure. The procedure creates a random binary vector. It then selects the 

‘genes’ where the vector is a 1 from the first parent, and the genes where the vector is a 0 from 

the second parent, and combines the genes to form the child (a new solution). Also, performance 

of the algorithm was improved by using ‘elitism’ with a value of 2. This means that the two best 

individuals in one generation were bypassed to the next generation. This reduces the chance of 

reusing previously discovered partial solutions. Each sample’s capacitance versus temperature 

data were processed by the GA 10 times, and the one with the minimum value of the fitness 

function was chosen as the final result.  
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2.6 Moisture content  

To determine the relationship between Tg and moisture, the moisture content of each 

sample was determined. Each sample (~ 4g) was dissolved in deionized water at a ratio of candy 

–to-water weight of ~ 1:2. After allowing the candy to dissolve 18h in a sealed container, the 

sugar content of the resultant solution was determined by a refractometer (model PR-201, 

ATAGO CO., LTD). The Brix reading was converted to dry solids content using standard curves 

generated by the RI-DS software program (Version 4, Corn Refiners Association, Washington 

DC). The moisture content (% in g H2O per 100g sample) was then calculated by: 

    𝜔% = ቀ1 − 𝑚௦ −
௠ೢ

௠ೢା௠೚
ቁ ∗ 100    (3) 

where ms is the mass of sugar in solution determined by refractometry, mo is the initial mass of 

candy, and mw the mass of water added. 

2.7 Statistical methods 

All measurements were repeated at three times on samples prepared in triplicate. The 

results were displayed as mean of the measurements ± standard deviation. Measurements were 

compared by one-way ANOVA using SAS 9.3 (SAS Institute Inc., Cary NC). The different 

methods for determining Tg were the main factors. The level of significance was set at p ≤ 0.05. 

3. Results and discussion 

3.1 Tg determined by DSC versus moisture content 

Values of the onset and endset Tg versus moisture content, as determined by DSC, are 

shown in Fig. 2. The data were fit to a second-order polynomial of the form: 

   Tg=a*ω%
2 +b*ω%+c    (4) 
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where the derived constants a, b and c are shown in Table 2. The onset Tg values ranged from 

28°C at 0.8% moisture to 2°C at 13.5% moisture. As noted in previous studies (Nowakowski, 

2000; Roos and Karel, 1991, Noel et al., 1991), a small percent difference in moisture content 

can cause a large difference in Tg when the moisture content is relatively low (less than 5 %). All 

candies in this study had a Tg,onset < 35℃. In our samples, the major constituent of the candy was 

sucrose (>77%) which has a Tg in the dry state about 62-70℃ (Ergun et al. 2010). As the candies 

were mixtures of different sweeteners and carbohydrates, low molecular weight molecules 

including fructose (Tg of 5℃) (>13%) and glucose (Tg of 31℃) may have further reduced the Tg 

of the candies. 

There are several theories to explain the influence of moisture content on Tg. Water can 

serve as a plasticizer, thus increasing the free volume amongst larger molecules. Thus, these 

glass forming components have a greater spatial volume in which to move. In addition, the water 

molecules may help shield attractive forces amongst the larger molecules. While the overall 

mobility of the system is reduced in the glassy state, small molecules such as water still possess 

some mobility, and their mobility will increase drastically when temperature increases 

(Fennema, 1996, Slade and Levine, 1995). 

3.2 Tg determined by GA based CTA  

Examples of how the measured capacitance varied with temperature during heating are 

shown in Fig. 2. In all cases, the capacitance was quite low in the glassy state with values below 

~10 pF. As the temperature increased, and the system entered the glass transition zone, the 

capacitance began to increase. The figure, showing curves for hard crack candy (HC) and a 

commercial hard candy, also demonstrates how the three-section model was applied to determine 

the Tg values. Thus, the three arrows represent regions of the curve represented by the optimized 
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fitness function. The GA generates a population of solutions for fitting the curve using a linear, 

exponential and linear region. From these, individual solutions are selected and serve as 

“parents” for the “children” of the next generation. That is, solutions with low values of the 

fitness function are selected, and then subject to random mutations of the bit string, or cross-over 

of bits with other solutions. Generally, but not always, the new generation of solutions have 

better fitness than the previous generation. After ten generations, the optimized boundaries of the 

transition region provide the onset and endset Tg values. 

The fitness values of all samples were smaller than 0.1607, indicating that for all samples 

the GA-fit three-section model had an R2 value greater than 0.946. The logic of the three-section 

model is supported by other studies. When the temperature is below the glass transition 

temperature of a material, generally, the molecules have little if any translational mobility and 

retain only limited rotational and vibrational mobility (Hancock et al., 1995). In this region, there 

may be some increase in the rotational and vibrational mobility of the molecules, and perhaps 

some minor translational movement of water, which cause a small increase in capacitance with 

temperature. While undergoing a glass transition, Debenedetti and Stillinger (2001) indicated 

that there is a decoupling between translational and rotational mobility at a temperature around 

1.2Tg. Thus, in our results, the region between the onset and endset Tg may arise from the 

initiation of translational and rotational mobility, leading to an exponential increase in 

capacitance. At temperatures above the endset Tg, a full rubbery state is developed. In this stage, 

the inter-molecular forces are greatly reduced, so that both translational and rotational mobility 

increase as a function of temperature. This in turn leads to a more dramatic increase in 

capacitance with temperature. 
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Components of the candies do have dipole moments. Thus, crystalline sucrose has a 

dielectric constant of s = 3.6 (Reiser, 1994), while water has a value of w = 80. In the glassy 

state, there is only limited ability for sugar molecules to rotate and orient with an electric field. 

Thus, the sample does not create a significant opposing electric field, and capacitance is low. 

With the transition region, rotational freedom becomes more available allowing molecular 

dipoles to align with the field, and the capacitance increases. At even higher temperatures, the 

degrees of motion are even greater and the capacitance continues to rise. At some point, 

however, excess thermal energy would tend to counter the tendency for field alignment. 

Others have used capacitance sensors to study the Tg of carbohydrate solutions containing 

NaCl (Kilmartin et al., 2004; Kilmartin et al., 2000), although these studies measured transitions 

from the frozen maximally-freeze concentrated state. Their work showed a large (10,000 x) 

increase of capacitance when samples underwent a glass transition. For the candy systems, we 

found only a 5- to 6- fold increase in capacitance. This can be attributed to the relatively low 

moisture content of the hard candy systems. The mobility of small molecules, especially water, is 

much greater than larger sucrose and polysaccharides. In the candies, increasing temperature 

results in a viscous rubbery state, while in the high-moisture system there is a transition to a very 

mobile system. In addition, in the frozen system ice has a much lower dielectric constant (3.2) as 

compared to the liquid water (80) that develops with melting (Hallikainen, 1977). Finally, the 

frozen food model systems also contained NaCl. Once a Tg and incipient melting began, these 

could become highly mobile and contribute to electrical conductivity. 

3.3 Comparison of DSC and GA based CTA  

Tg values determined by DSC and GA based CTA are shown in Table 3.3. For samples 

with relatively low Tg (FB, SC and SC1), there were differences between the onset Tg acquired 
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by DSC and the GA based CTA. Typically, onset Tg values were 2 to 3 degrees higher when 

measured by the CTA system compared to the DSC. Some researchers (Kalichevsky et al., 1992; 

Biliaderis et al., 1999) have concluded that Tg measured by traditional DEA or DSC may have 

different measured Tg values. The methods measure different physical properties, and couple 

different structural units (each with particular relaxation times). Thus, the thermal or electrical 

responses may differ in how they respond with the imposed perturbations, and how these change 

with temperature.  

The factors that cause disparity in the Tg measured by traditional DEA and DSC might 

also apply to the different Tg values measured by CTA and DSC. However, not every pair of Tg 

measured by the two methods exhibited a significant difference. Thus, for samples with higher 

Tg values, the two methods agreed more closely, with difference less than 1°C. Differing heating 

rates may also cause some disparity in the Tg values. The DSC scans were conducted at 5°C/min, 

while the heating in the CTA was not controlled by a feedback system. For the CTA system, 

heating rates were greatest when the cell temperature was relatively low (0 - 5°C). As the 

temperature of the CTA increased, the heating rate slowed (Fig. 4). For the first few minutes, the 

heating rate was ~15°C/min, about 3 times greater than that for the DSC. At longer times, the 

heating rate decreased to ~4°C/min. The relatively faster heating rate may have contributed to 

the Tg measured by CTA to be higher, if the Tg of the candies were in the temperature range 

where the heating rate of the CTA was greater than the DSC. 

In addition, Tg values are known to vary with frequency. The DSC does not apply 

oscillatory heating, thus occurs at relatively low rates. However, the CTA system operated at a 

frequency of 22kHz. Kilmartin et al. (2004) and Kilmartin et al. (2000) found that capacitance 
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meters employing high frequency (>1000Hz) acquired lower Tg values than at lower frequency 

(50Hz), the latter which resulted in Tg values closer to those measured by DSC.   

4. Conclusion 

The GA based CTA introduced in this study was found to be a viable alternative to 

measuring glass transitions in sugar candies. Tg values found by the CTA method were similar to 

those determined by DSC, particularly at high Tg values. Onset temperatures varied at most by a 

few degrees, and in a practical setting the CTA could be calibrated to match DSC values if 

desired. The advantage of the CTA method is that it is relatively inexpensive and easy to use. 

This is made possible by using relatively large sample sizes (1-2 ml), a property (capacitance) 

that is easy to measure, and relying on a simplified heating system. In addition, difficulties 

incurred because of user interpretation of data is bypassed by using a robust modeling system to 

determine the transition temperatures. This was based on a genetic algorithm procedure which 

uses iterative procedures, but which more quickly finds an optimal fit based on evolutionary 

procedures. The algorithm requires no additional input from the user. In the future, the system 

may be improved by optimizing sample size and area requirements. In addition, we hope to test 

the system or other food items that undergo glass transitions. 
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Figures 

Figure 3.1. Capacitance cell used for measuring Tg values of candies. 
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Figure 3.2. Influence of water content on the glass transition temperature as determined by DSC. 

Figure 3.3. Temperature dependence of capacitance for heating candy through the glass 
transition, analyzed by a three-section genetic algorithm model. 
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Figure 3.4. Sample temperature versus time during heating of a candy sample in the CTA 
capacitance cell. 
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Tables 

Table 3.1 Range of candy samples used for study of Tg values. 

Label Texture Boiling 
Temperature 

Moisture 

(gH2O/100g) 

FB Firm ball 125℃ 13.3 

SC Soft crack 130℃ 8.63 

SH1 135℃ 4.18 

SH2 140℃ 3.21 

SH3 145℃ 2.90 

HC Hard crack 150℃ 0.92 

1Hard candies were produced from 450g sucrose, 134g light corn syrup and 100 g deionized 
water 

Table 3.2. Parameters of second-order polynomial model for glass transition temperature versus 
moisture content. 

a b c R2 

Onset Tg (℃) 0.138 -4.2349 41.154 0.9336 

Endset Tg (℃) 0.1143 -3.851 33.321 0.9291 
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Table 3.3. Glass transition temperature determined by calorimetry (DSC) and GA based 
capacitance (CTA) methods.  

 

gH2O/100g 

FB 

13.3 

SC 

8.63 

SH1 

4.18 

SH2 

3.21 

SH3 

2.90 

HC 

0.92 

COM1 COM2 

Capacitance based          

Onset Tg (℃) 5.1b 11.1b 16.4b 25.3a 26.5a 28.4a 44.0a 46.4a 

Endset Tg(℃) 8.9c 14.8c 21.6c 31.2b 32.1b 36.6c 56.8c 57.2c 

Fitness 0.1183 0.0563 0.1607 0.0568 0.1083 0.0225 0.1297 0.1547 

Calorimetry (DSC)         

Onset Tg (℃) 2.4a 8.7a 14.9a 25.1a 25.8a 27.9a 44.5a 46.5a 

Endset Tg (℃) 9.3c 15.0c 21.5c 31.7b 32.8b 35.4b 54.3b 55.6b 
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CHAPTER 4 

DETERMINATION OF CHOCOLATE MELTING PROPERTIES BY CAPACITANCE 

BASED THERMAL ANALYSIS (CTA)2

________________________________ 

2 Tan, J. and W.L Kerr. Submitted to Journal of Food Measurement and Characterization. 
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ABSTRACT 

Melting properties are important to the quality of manufactured chocolate products. Their 

measurement is often done by expensive and sophisticated equipment including differential 

scanning calorimetry, rheological and dielectric thermal techniques.  In this study, a capacitance 

thermal analysis (CTA) was designed and tested for measuring the melting properties of 

chocolates. Chocolates with different fat content and particle size distribution (PSD) were placed 

between stainless steel plates, while capacitance and temperature were monitored between 20 to 

60°C. The PSD did not influence the Tonset (~25℃) and Tpeak (33℃) measured by DSC. 

However, samples with finer particles had lower Tend than those with coarser particles (36.59 - 

37.28°C). Varying fat content did not result in differences in the DSC melting curves. Samples 

with smaller particle sizes had lower temperatures at peak capacitance than those with larger 

particles, with peak temperatures ranging from 30.84 to 39.29℃, while higher peak capacitance 

values (2.61 - 2.84 10-11 F) were measured by CTA. Samples with higher fat content had lower 

peak temperatures (range 34.7 to 39.71 ℃) but higher peak capacitance values (range 3.29 to 4.3 

10-11F). Values from the CTA were correlated with DSC.   

Keywords: chocolate; melting properties; capacitance; thermal analysis 



 

99 
 

1. Introduction 

Chocolate is a complex semi-solid suspension of fine particles containing cocoa, sugar, 

and sometimes dairy ingredients in a continuous fat phase (Afoakwa et al., 2007). Chocolates are 

categorized as dark, white, or milk chocolate based on the content of cocoa mass, dairy 

ingredients and cocoa butter. The production of chocolate starts from raw cocoa beans, which are 

then subjected to fermentation, roasting, milling, winnowing, refining, and tempering. The 

melting properties of chocolates are critical to their quality because they greatly influence 

consumer acceptability, appearance and storage stability of the product. Improper processing can 

lead to undesirable melting temperatures and crystal states, along with loss of glossy appearance 

or formation of fat bloom during storage (Afoakwa et al., 2009; Stapley et al., 1999; Dhonsi and 

Stapley 2006).  

One important factor that influences melting properties is the crystal form of the fat phase 

in chocolate. The fat crystals may exhibit polymorphism, that is they may have more than two 

distinct crystalline forms in the same sample (Afoakwa et al., 2009). At least six polymorphic 

forms have been identified, designated Forms I through VI in the Roman numeral system 

(Schenk and Peschar 2004). The forms have different melting temperatures: 16-18℃ for Form I, 

22-24℃ for Form II, 24-26℃ for Form III, and 26-28℃ for Form IV.  Although, the most stable 

form is VI (m.p 34-36℃), that form is difficult to generate unless the chocolates go through 

lengthy storage. The preferred polymorph is Form V (m.p 32-34℃) in most cases (Wille and 

Lutton 1966). 

Particle size distribution and fat content of the chocolate are also important factors 

influencing appearance, consumer acceptance, and processing properties. The influence of these 

factors on the rheological properties, texture and consumer evaluation of chocolates have been 
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well studied. Afoakwa et al. (2008) found that higher fat content and smaller particle size 

decreased the plastic viscosity of molten dark chocolate. Some researchers have noted that 

relatively large particle size of the cocoa mass can lead to sensations of grittiness or coarseness 

in the mouth (Servais et al., 2002). Do et al. (2007) studied how fat content and particle 

distribution of chocolate liquor influence the hardness and heat resistance of solid chocolates. 

They also found that chocolates with higher fat content need longer heating times to be 

completely melted. In addition, chocolates with finer particles exhibited relatively long melting 

times. However, the influence of fat content and particle size distribution on melting 

temperatures has been barely studied. 

Differential scanning calorimetry (DSC) is one of the most commonly used methods to 

determine the melting properties of chocolates. The DSC compares the relative flow of heat 

between a sample and empty reference pan during a constantly changing temperature. Large 

changes in heat flow are indicative of increases in specific heat related to phase transitions 

(Afoakwa et al., 2008). Often the heat flow change during a phase transition is not a specific 

point, but associated with a temperature range. Therefore, there are several ways to characterize 

melting properties. That is, starch gelatinization, fat melting and other first-order transitions can 

be characterized by an onset temperature (Tonset), peak temperature (Tpeak), ending temperature 

(Tend) and enthalpy of melting (∆Hmelt) (Vasanthan and Bhatty 1996). 

The melting properties of chocolates have also been studied by dynamic thermal rheology 

(Glicerina et al., 2013). These instruments measure the storage modulus (G’) or loss modulus 

(G”). As cocoa butter melts, the firm chocolate becomes softer and may begin to flow. Thus, G’ 

is a good indicator to show the beginning and the end of chocolate melting. Generally, G’ is on 

the order of 103 – 104 Pa for the solid and diminishes to 100 – 101 Pa once melted. 



 

101 
 

Dielectric thermal analysis (DETA) is another method to study phase transitions of food 

materials. DETA is carried out by a dielectric analyzer, which measures the change of dielectric 

constant ε’ and dielectric loss ε’’ of a food material as a function of temperature or AC 

frequency. The ε’ is the ability of a material to store energy in response to an applied electric 

field. In contrast, ε’’ describes the ability of one material to dissipate energy in response to an 

applied electric field, and that typically results in heat generation (Wang et al., 2003). The 

dielectric loss of a food material reaches a peak value when it reaches the second-order transition 

temperature, as with a glass transition. On the other hand, when a food material undergoes a 

first-order transition such as melting, the dielectric constant will increase greatly (Laaksonen and 

Roos 2000).  

Capacitance is an electrical property dependent upon the dielectric properties of the 

medium. However, it is an easier property to measure as it does not require determination of both 

the real and imaginary components of ε*. In addition, many capacitance measuring instruments 

determine values at discrete frequencies. Thus, they are much simpler to build and less expensive 

than full-scale network analyzers. In this study, a capacitance based thermal analysis (CTA) 

system was proposed to study the melting properties of chocolate. The apparatus was constructed 

at the University of Georgia using metal plates and a relatively inexpensive capacitance meter. 

Capacitance is the ability of a subject to store electrical charge, and the capacitance of a parallel-

plate capacitor can be determined as: 

 C=ε’ε0
A

d
 (1) 

where ε’ is dielectric constant or permittivity of the medium between the parallel-plates, εo is the 

dielectric constant when the medium is air, 𝐴 is the overlap area (completely and exclusively 

filled with medium) of the two parallel plates, and 𝑑 is the distant between the two plates. The 
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variables related to the dimensions (A and d), as well as ε଴, remain relatively constant over a 

moderate temperature range. A medium such as food, particularly when undergoing a phase 

transition, will have an ε’ and capacitance that changes substantially with temperature.  

A few studies have used capacitance sensors similar to the CTA to study the glass 

transition and melting temperatures of frozen carbohydrate and NaCl solutions (Kilmartin et al., 

2004). They found transition temperatures similar to those measured by differential scanning 

calorimetry. A similar system has been successful for measuring glass transitions in soft and hard 

sugar candies (Tan and Kerr 2017). In this study, a system is described to study the melting 

properties of chocolates with different fat content, particle size distribution and cocoa mass 

content. DSC and viscoelastic properties were also measured for comparison.  

Frozen or glassy aqueous systems containing salts or low molecular weight compounds 

such as sugars and acids undergo a relatively large change in ε’ when transitioning from solid to 

liquid. In contrast, high fat systems have comparatively smaller differences in ε’ between solid 

and liquid states. Thus, the cell was modified from previous versions (Tan and Kerr 2017) to 

enhance the measured differences between states. The modified CTA consists of one smaller 

upper plate and one larger base plate. During a temperature scan, the chocolate sample (with 

larger area than the upper plate but smaller than the base plate) melts and collapses when the 

temperature reaches its melting point. The composition of the medium between the parallel 

plates changes from chocolate only to layers of chocolate and air. The capacitance of the layered 

medium is given by: 

 C=(θ(T)ε’+(1-θ(T))ε0)ε0
A

d
 (2) 

where 𝜃(𝑇) is the fraction of chocolate in the medium at different temperature.   
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The objective of this research was to evaluate the use of a modified CTA system to 

measure melting transitions in chocolate. In addition, samples with differing cocoa mass particle 

size and fat content were tested to determine if these had an influence on the measured 

properties. 

2. Materials and Methods

2.1 Materials 

Cocoa mass containing 70.4% cocoa solids was purchased from Callebaut (Wieze, 

Belgium). Raw organic cocoa butter was purchased from Saaqin (Hicksville, New York). Raw 

cocoa nibs were provided by Cocoatown (Roswell, Atlanta). Commercial chocolates were 

purchased from a Kroger grocery in Athens, Georgia. 

2.2 Preparation of chocolate samples   

Chocolate samples with different fat content were produced by mixing raw cocoa butter 

with cocoa mass in percentages of 10%, 20%, 30%, 40%, and 50% by weight. Each mix was 

treated in a tempering machine (Model Revolution 2, ChocoVision Corp., Poughkeepsie, New 

York). The program heating schedule included a gradual rise to 46℃ followed by a slow 

decrease to 27℃. At that point Form V chocolate seed crystals were added followed by an 

increase in temperature to 31℃ with a hold for 5 min. The well-tempered chocolate was poured 

into to 5cm χ 5cm χ 1.5 cm chocolate molds (Wilton INC. Woodridge, Illinois) and held 

overnight.   

 Particle size of the chocolate samples was controlled by varying the grinding time. Raw 

cocoa butter was mixed with cocoa nibs in a percentage of 10% and processed by a double-

conical stone grinding conche (Model ECGC05, Cocoatown, Roswell, Atlanta). About 5 ml 

cocoa liquid was taken from the mix for particle size analysis every 15 min for the first 2 hours, 
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and every 1 h thereafter. Five different batches of cocoa butter and mass were processed in the 

conche for 15 min, 30 min, 1 h, 2 h, 4 h, and 12 h, respectively. The final chocolate liquor from 

each batch was used to make chocolate samples using the tempering method described above. 

2.3 Particle size distribution  

The particle size distribution was determined by laser diffraction using a Malvern 

Mastersizer (Model MSS, Malvern Instruments Ltd., Malvern, England). The presentation was 

selected as “Custom” with refractive indices of n(CH3)2CHOH = 1.378 and nparticle = 1.590.  

About 2 g of chocolate sample was melted and dispersed with 30 ml isopropanol in a 50 ml 

centrifuge tube, then mixed with a vortex mixer for 2 min. The samples were then introduced 

into the Mastersizer dispersion mixer until an obscuration of 20% was reached. Between 

samples, the detector and laser were aligned and backgrounds were calibrated. The size 

distribution was expressed as the relative volume of particles in each size range (Malvern 

MasterSizer Micro Software v 2.19). Several particle size distribution parameters were 

determined including largest particle size (d90), mean particle volume (d50), smallest particle 

size (d10), Sauter mean diameter (d3,2) and volume mean diameter (d4,3). 

2.4 Capacitance based thermal analysis (CTA) 

The parallel-plate capacitor cell (Figure 4.1) was built at the University of Georgia 

Instrument Design and Fabrication Shop (Athens, GA).  It consisted of one 100 mm diameter 

stainless base plate, two 60 mm diameter stainless upper plates, one Teflon spacer, one Teflon 

cap and one stainless screw (12.5 mm in diameter). The base plate had a 4 mm hole drilled into 

the side to provide connection with a banana or needle plug. A cylinder spacer was made from 

Teflon with outer diameter 100 mm, inner diameter 80 mm and 100 mm in height. The lower 

side was fixed to the base plate by a groove on the base plate, while the upper side of the spacer 
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was fixed with a Teflon plate cap (100 mm in diameter). A stainless screw penetrated the Teflon 

cap at the center of the cap and both sides of the screw were welded with a stainless upper plate. 

The upper plate also had a 4 mm hole drilled into the side for connection.  

Each chocolate sample was placed on the base plate and the upper plate lowered until it 

contacted the sample. The base plate was then heated by a Thermolyne Nuova hotplate at 

constant temperature (80℃). The measurement of capacitance was done with an LCR meter (NI 

PXI 4072, National Instrument Corporation, Austin, Texas) attached to a PXI chassis (NI PXI 

1042, National Instrument Corporation, Austin, Texas). A T-type thermocouple (Probe 1/16’’ 

diameter, OMEGA Engineering, Stamford, Connecticut) penetrated the base plate to just make 

contact with the sample on one side. Temperature data was collected with a data acquisition 

board (NI 9219, National Instrument Corporation, Austin, Texas). The virtual instrument 

interface and data collection were accomplished with LabVIEW software (Version 2015, 

National Instrument Corporation, Austin, Texas).   

2.5 DSC 

The melting temperature of each sample was determined by differential scanning 

calorimetery (Model DSC 1, Mettler-Toledo International Inc., Greifensee, Switzerland). 

Approximately 12 mg of each sample was sealed into a 40 ul aluminum pan. An empty pan was 

used as a reference sample. Dry nitrogen gas was used to minimize water condensation in the 

measuring cell. The temperature was scanned from 0℃ to 60 ℃ at a heating rate of 5℃ per 

minute. The onset temperature (Tonset), peak temperature (Tpeak), end temperature (Tend) and 

enthalpy of melting (∆Hmelt) were calculated using the STARe Thermal Analysis Software. The 

melting index (Tindex) was computed as (Tend -Tonset). Each sample was analyzed in triplicate and 

mean values and standard deviations reported. 
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2.6 Dynamic rheological analyses 

The viscoelastic properties of the samples as a function of temperature were measured 

with a dynamic rheometer (Model Discovery HR-2, TA Instrument Inc., New Castle DE). Before 

the tests were initiated, the samples were melted and tempered in the rheometer. Approximately 

4g of each chocolate sample was placed on the temperature-controlled stage below a 40 mm 

cone and plate probe (1.997°), then raised to 48°C at a rate of 5℃/min. The sample was then 

cooled to 26.7℃ at a rate of 2℃ /min. After a 5 min rest period, the temperature was raised to 

31.6℃ at a rate of 2℃/min. After the solid chocolate was formed, the sample was then cooled to 

10℃ at a rate of 15℃/min. The instrument was run in the small-strain oscillatory mode, with 

dynamic strains set to 1%. The temperature ramp was set at 10 to 60°C at a rate of 5°C/min.   

2.7 Statistical methods 

All tests were repeated at least three times and results presented as the mean and standard 

deviation. The results were compared by one-way ANOVA using SAS 9.3 (SAS Institute Inc., 

Cary NC) to determine the effects of the fat content and the particle size distribution of the 

chocolate sample on the melting properties measured by DSC and CTA. Tukey’s HSD was used 

to determine significant differences amongst treatments at the 95% level of confidence.    

3. Results and Discussion

3.1 Particle size reduction and particle size distribution 

The largest particle size (d90) for a typical cocoa mix (fat and nibs) is shown in Figure 

4.2 as a function of grinding time. A compilation of the size and distribution measurements (d10, 

d50, d90, d32, d4,3) is shown in Table 4.1. Most of the particle size reduction was achieved 

within the first 2 hours of grinding. The initial d90 was 77 µm, which was reduced to 15.4 µm 

within 2 h, and finally reached a constant value of ~8 µm (Figure 4.2). As shown in Table 4.1, 

the d90 and d4,3 were significantly smaller after 15 min, 30 min, 4 h and 8 h. The smallest 
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diameter particle (d10), however, did not decrease after 15 min. This indicates that the stone 

grinding is most effective at reducing the size of large particles, but a point is reached at which 

no further reduction in particle size is achieved. 

 A few researchers have studied the effects of particle size on the properties of chocolate 

products. Bolenz and Manske (2013) researched the impact of fat content during grinding on 

particle size distribution in chocolate milk. Afoakwa et al. (2008b) reviewed the role that particle 

size distribution and ingredients have in determining rheological and sensory properties of dark 

chocolate. In these cases, the researchers used a three-roller refiner followed by sifting to control 

particle size distribution, thus quickly creating fairly uniform particle size distributions with one 

peak. In our case, particle properties were determined solely by the grinding time. This is more 

reflective of industry practices, where stone grinding is often used to create small and uniform 

particle sizes after relatively long grinding times. 

Figure 4.3 shows how the full particle size distribution changed during refining. Initially, 

there is a trimodal distribution with sizes centered around 1 µm, 12 µm and 190 µm. During 

grinding, the peak with largest particles diminished, and disappeared within 4 h. In conjunction, 

the middle peak shifted to smaller sizes, with the peak value going from 12 µm to 9 µm. The 

volume fraction of the medium size particles also increased with time, suggesting that this 

fraction grew at the expense of the larger particles. 

3.2 DSC measurements of chocolate melting 

The melting temperatures of chocolate samples measured by DSC are shown as a 

function of the refining time (Table 4.2) or fat content (Table 4.3). In general, particle size did 

not greatly affect the melting temperature as measured be either Tonset and Tpeak. Samples with 

smaller particles had slightly higher Tonset and slightly lower Tend (and therefore smaller Tindex). 
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The differences were small, however, with Tend ranging from 36.59 to 37.28℃ and Tindex 

from 11.13 to 12.68℃. Other researchers have seen similar trends (Afoakwa et al., 2009; Beckett 

2000), suggesting that in chocolate, PSD has only a small influence on melting properties. They 

concluded that chocolates with finer particles would take relatively longer time to melt than their 

corresponding products with larger particles. There is no particular reason that the lipid phase 

would have differing properties due to the cocoa mass particles. Thus, any measured differences 

in melting behavior might be attributed to different crystal sizes or polymorphs, or more likely 

due to differences in heat transfer rates in samples with different size particles. 

Differences in fat content (10 to 50%) resulted in slightly different Tonset, Tpeak and Tend 

values. Tonset varied from 25.70 to 26.11°C with increasing fat content, while Tend varied from 

36.33 to 37.47°C. Thus, Tindex (reflective of peak width) increased from 10.22 to 11.77°C. Again, 

this may reflect differences of heat transfer rates in the samples. In addition, samples with more 

fat will take longer to melt, and this plays out even as the calorimeter temperature is constantly 

increasing. Previous studies have shown that the melting properties can be influence by PSD, 

crystallization form (Svanberg et al., 2013, Loisel et all., 1997), lipid types, additives, and 

composition (Loisel et al., 1998) of chocolates. Others have suggested that the amount of fat in 

dark chocolates influences the degree of crystallinity and crystal size distribution (CSD) of the 

samples (Lonchampt and Hartel 2004). 

3.3 Dynamic rheological analyses of chocolate melting 

Changes in the dynamic rheological properties during temperature scans of chocolate 

were best characterized by the storage modulus (G’) (Table 4.4). In general, G’ in the solid state 

was ~103 – 104 Pa and decreased over a short temperature range corresponding to melting, to 

values near 101 Pa in the molten state. The beginning of melting was characterized as Tonset, 
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where the gradient of this temperature point is at least 3 times greater than the previous three 

data points. The end of melting was characterized as Tend, where the gradient after Tend was less 

than 10% less than its previous three data points. The Tindex of each sample was calculated as Tend 

– Tonset.  

As found with the DSC results, increasing fat content resulted in larger Tindex values, 

indicating samples with higher fat content had a broader temperature range over which they 

melted. In addition, the Tonset and Tendset measured by the rheometer were similar to DSC 

measurements, but did have slightly greater Tonset values. The difference may be attributed to the 

differing sample sizes (~ 3g vs ~10mg) required by the rheometer and DSC, respectively, and 

that different physical phenomena are being measured by the two instruments. 

However, rheometric measurements did show a greater range in Tonset (25.33 to 28.11°C) 

than measured by DSC, and greater statistical significance amongst values measured for samples 

with differing fat levels.  

3.4 CTA measurements of chocolate melting  

Figure 4.4 shows a representative figure of how capacitance changes with temperature for 

chocolate samples in the CTA device. In general, capacitance values were in the picofarad range 

for samples in the solid state. As the temperature increased there was a slight increase in the 

capacitance, followed by a decrease after melting had commenced. The initial increase is likely 

due to an increase in the dielectric constant ε’ as temperature increased, stemming from 

increased molecular mobility. However, changes would only be slight for molecules in the solid 

phase. There are different lipid fractions in cocoa butter, and some may begin to melt at lower 

temperatures. For example, Torbica et al. (2006) showed that cocoa butter had a solid fat content 

of 82%, 76%, 51% and 8% at temperatures of 20, 25, 30 and 35°C, respectively.  
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At a critical temperature, the capacitance began to drop. This coincided with melting of 

the chocolate, and its flow into the outer chamber, which began to reduce the volume of 

chocolate between the plates. The voids were replaced by air, which has a much lower dielectric 

constant (1.00059 at 20°C), and thus the measured capacitance began to decrease. 

The particle size distribution (PSD) of the samples significantly influenced the 

temperature at peak capacitance, which ranged from 30.84 to 39.29℃ (Table 4.6), while peak 

capacitance values ranged from 26.1 to 28.4 pF. That is, finer PSD resulted in lower peak 

capacitance temperature and greater peak capacitance value. As previously noted, larger cocoa 

mass particle size can produce chocolate that is more difficult to melt. This likely resulted in 

higher peak temperatures for the CTA. In addition, and by design, the heating rate in the CTA 

was not carefully regulated, and this also resulted in slower melting. 

It has also been observed that PSD influences the rheological properties of chocolate. 

Samples with larger PSD yielded lower apparent viscosity and lower yield stress (Afoakwa et al., 

2007, Do et al., 2007, Mongia and Ziegler 2000). Changes in such properties may influence how 

the melted chocolate spreads away from the capacitance plates, and thus affects the measured 

transition temperature. However, this would be expected to give lower measured transition 

temperatures. Thus, the influence of particle size on heat transfer and the resulting rate of 

melting are likely to be the predominant factors. 

Table 4.7 shows how the peak capacitance temperature varied with fat content in the 

chocolate. Samples with greater fat content resulted in lower peak capacitance temperature 

(range 34.7 to 39.71 ℃). This may be attributed to the fact that chocolates with greater fat 

content have lower apparent viscosity and yield stress, again making them easier to flow (Yanes 

et al., 2002, Sokmen and Gunes 2006). These observations concurred with results from the 
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dynamic rheology, which also indicated that higher fat content in chocolate samples produced 

lower Tonset.  

Overall, samples with finer particles or lower fat content had lower peak capacitance 

values than those with larger particles and more fat. One of the critical factors that influences 

capacitance is the dielectric constant ε’ of the medium. The ε’ of cocoa butter (ε’~2.5) is higher 

than cocoa mass (ε’~1.5), so that higher fat content in chocolate samples will lead to higher 

absolute capacitance values. The way in which particles influence the dielectric properties of 

inhomogeneous media is complex. Several models have attempted to predict the complex 

permittivity of such media (Kiley et al., 2012). These models typically incorporate the ε’ and ε” 

values for each phase, the volume fraction (), and in some cases the shape or size factors of 

suspended media. In general, increasing the volume fraction would tend to emphasize the 

properties of the suspended phase. Experimental studies suggest that these models perform better 

at lower , and fail at some critical value at which percolation behavior becomes dominant. This 

critical value is thought to be dependent on particle size and shape. 

3.5 Comparison of CTA, DSC and rheological data 

DSC and dynamic thermal rheological techniques have been widely used to study melting 

behavior. The former measures changes in specific heat during warming, the latter changes in 

mechanical relaxation for samples subject to oscillating shear stresses. Both require significant 

capital investments and user training to obtain useful results. The CTA device was proposed as a 

relatively inexpensive alternative for measuring melting behavior, and which requires minimal 

user skill. 

The fat content and particles size had only a limited influence on melting temperatures as 

measured by DSC. Only the Tindex provided some information as to the fat content and PSD of 

the samples. In contrast, CTA measurements were more sensitive to variations in fat content and 
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PSD. Rheological assessments of melting behavior were also more dependent on fat content and 

PSD. These observations reflect that melting has a thermodynamic component as well as a time-

dependent element dependent on rates of heat transfer. Thus, the rheometer and CTA both 

require samples of greater mass as compared to that for DSC. Thus, DSC might be expected to 

give transition temperatures with greater precision, but may not totally reflect melting behavior 

as experienced by real world users of a product. 

 The transition temperatures measured by CTA were generally greater than those 

measured by DSC or rheometric techniques. This indicates that a sudden change in capacitance 

did not occur immediately upon reaching the Tm. As noted, the major change in capacitance 

probably did not occur until flow away from the plate had manifested. However, a correlation 

between CTA values and the other methods could be achieved. Both a linear model 

(z=P0+PxX+PyY) and second order polynomial model (z=P0+PxX+PyY+ PxxX2+ PxyXY) were 

applied, with results shown in Table 4.8 for comparisons of the CTA and rheology data. The 

results showed that there were strong correlations (R2>0.95 and SSE< 0.025) between 

measurements from the CTA and rheometer.  

4. Conclusions

The CTA device introduced in this study could measure melting temperatures in 

chocolate with good repeatability. The device also showed some sensitivity to the effects of 

cocoa particle size and fat content on melting behavior. The instrument was relatively 

inexpensive as it was built from metal plates connected to a capacitance meter, and did not 

require precise control of temperature ramping as used with DSC or dynamic thermal 

rheometers. While the measured temperatures were not identical to those from DSC or 

rheometric techniques, they could be easily correlated with those values if required. 
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Figures 

Figure 4.1. Configuration parellel-plate capacitor cell for CTA. 
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Figure 4.2. Particle size of chocolate mix (mass and butter) over time during conching. 

 

 

 

 

Figure 4.3. Particle size distribution of sample processed by different conching time. 
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Figure 4.4. Capacitance change of capacitor cell as a function of temperature. 
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Table 4.1. Particle size distribution of samples as a function of conching time. 

d10(um) d50(um) d90(um) d(3,2) (um) d(4,3) (um) 

15 min 1.13b 11.63c 146.41d 2.94b 39.46d 

30 min 0.84a 7.64b 30.67c 2.73b 15.98c

4 h 0.71a 5.93a 15.50b 2.06a 7.25b 

8 h 0.68a 5.16a 11.75a 1.95a 5.85a

Table 4.2. DSC melting temperatures as a function of conching time. 

Tonset Tend Tpeak Tindex 

15min 24.60a 37.28b 32.97a 12.68b 

30min 25.04ab 37.05b 32.86a 12.01b 

4h 25.50b 36.62ab 32.94a 11.12a

8h 25.46b 36.59a 32.83a 11.13a

Table 4.3. DSC melting temperatures of samples with different fat content. 

Fat content (%) Tonset Tend Tpeak Tindex 

10 26.11b 36.33a 33.19a 10.22a

20 25.90ab 37.02b 33.40a 11.12b 

30 25.68a 37.19b 33.80a 11.51c

40 25.61a 37.23b 33.57a 11.62cd 

50 25.70a 37.47b 34.28a 11.77d 
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Table 4.4. Melting temperatures as a function of conching time as measured by dynamic 
rheometry. 

  Tonset Tend Tindex 

15min 28.39d 37.12a 9.08a 

30min 26.17c 37.96ab 11.79b 

4h  25.56ab 38.31b 12.75c 

8h 25.11a 38.93c 13.82d 

 

 

 

Table 4.5. Melting properties of samples with different fat content determined by dynamic 
rheometry.  

Fat content (%) Tonset Tend Tindex 

10 28.11d 37.19a 9.08a 

20 27.19c 37.66ab 10.47b 

30  26.23bc 37.91b 11.68c 

40 26.11b 38.23c 12.12d 

50 25.33a 38.91d 13.58e 

 

 

 

Table 4.6. CTA transitions as a function conching time. 

 Capacitance peak temperature (℃) Peak capacitance (10-11F) 

15min 39.29d 2.84d 

30min 36.14c 2.75c 

4h 32.45b 2.66b 

8h 30.84a 2.61a 
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Table 4.7. CTA transitions for samples with different fat content. 

Fat content (%) Capacitance peak temperature (℃) Peak capacitance (10-11F) 

10 39.71c 3.29a

20 37.46b 3.70b 

30 36.45b 4.11c

40 35.49ab 4.16c

50 34.70a 4.30d 

Table 4.8. Correlation modeling between CTA and rheometric data. 

P0 Px Py Px2 Pxy SSE R2 

Linear 

 x1,y1 vs z1 14.97 -2.596 0.3373 0 0 0.1215 0.974 

 x1,y1 vs z2 34.58 4.663 0.05447 0 0 0.0485 0.971 

 x2,y2 vs z3 44.41 0.923 -0.1836 0 0 0.0820 0.952 

 x2,y2 vs z4 5.54 0.2432 0.5765 0 0 0.2651 0.958 

Polynomial 

 x1,y1 vs z1  -13.52 835.4 1.172 -160 -21.88 5.98x10-27 1 

 x1,y1 vs z2 63.87 -199.8 -0.6764 50.22 4.949 5.05 x10-28 1 

x1: added fat content, y1: Tm of samples with different fat content measured by CTA, z1: endset Tm of samples with 
different fat content measured by Rheometer, z2: onset Tm of samples with different fat content measured by 
Rheometer, x2: grinding time (min), y2: Tg of samples with different grinding time measured by CTA, z3: endset Tm 
of samples with different grinding time measured by Rheometer, z4: onset Tm of samples with different grinding 
time measured by Rheometer  
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CHAPTER 5 

PARTICLE SIZE MEASUREMENTS AND SCANNING ELECTRON MICROSCOPY (SEM) 

OF COCOA PARTICLES REFINED/CONCHED BY CONICAL AND CYLINDRICAL 

ROLLER STONE MELANGERS3 

________________________________ 

3 Tan, J. and, B.M. Balasubramanian. Accepted by Journal of Food Engineering. 
Reprinted here with permission of the publisher.   
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ABSTRACT 

The particle size distribution (PSD) and the microstructure of the non-fat particles in 

chocolates are very important to the appearance, mouth feel and texture of the chocolate. 

Refining/conching is critical to chocolate processing because most particle size reduction is 

made and the microstructure of the particles is developed in this process. Currently, the 

commonly used comprehensive measurement method for chocolate products is using a laser 

scattering particle size analyzer, which is relatively expensive for small manufacturers. In this 

study, three potential alternative methods (micrometer, light microscopy image analysis and 

Hegman gauge) for the laser scattering method were used to measure the size of cocoa particles 

at different stages of refining/conching. Also, the influences of the sample weights of cocoa and 

melanger configuration (conical roller and cylindrical roller) on the efficiency of 

refining/conching were studied. The performances of the two melangers were similar, however, 

cylindrical roller stones tend to generate thin and flat particles during the first 4 h of refining. 

Varying sample weights only influenced particle size reduction at early stages of refining. From 

the SEM images, a decreasing trend in the number of large spherical particles and an increasing 

trend in the number of small flat irregularly shaped particles were observed. The particle size 

measurements by the micrometer of cocoa particles refined for 0.5 h was greater than all other 

methods. However, the particle size measurements by the micrometer of particles refined for 2 h, 

4 h, and 24 h were smaller than the measurements made by any other methods. Except for cocoa 

being refined for 0.5 h, the particle size measurements tested by light microscopy image analysis 

for all cocoa samples were much greater than other measurement methods.  

Keywords: cocoa; PSD; refining/conching; microstructure 
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1. Introduction 

Cocoa originated in Central America over 1000 years ago, but its popularity and 

production has spread all over the world (Grivetti and Shapiro 2011). Chocolate is a complex 

suspension system of solid particles (cocoa, sugar, milk components, additives) in a continuous 

fat phase which consists of cocoa butter, milk fat and emulsifiers (Afoakwa et al., 2008a, Beckett 

2000, Chetana et al., 2013). Chocolate can be a snack, special treat, or delicacy to be tested and 

evaluated much like wine to some people. For many people around the world, chocolate is an 

important industry. By 2016, the global chocolate market worth $98.3 billion (Worldatlas 2016). 

The manufacture of chocolate generally includes procedures such as fermentation, 

roasting, cracking, winnowing, grinding, refining, conching, tempering, transporting and storing. 

Each procedure greatly influences the final quality of the chocolate. Refining and conching are 

very important because they determine the particle size distribution (PSD), suspension 

consistency and viscosity of chocolates, to yield specific textural and sensory qualities (Afoakwa 

et al., 2007). Refining is a step following grinding, where the particle size of chocolate is greatly 

reduced, producing an extremely smooth texture in which no grit can be detected by the tongue 

(Lucisano et al., 2006). Conching is a long process of continuous mixing, agitating, and aerating 

the heated chocolate liquid. During this process, undesirable flavors and bitter substances, along 

with water vapor evaporate away from the chocolate liquid (Capodieci 1993). In many cases, 

refining and conching were combined into one process. For example, when using a melanger to 

process raw cocoa nibs, the cocoa nibs were crushed and sheared along with mixing and 

agitating.  

The PSD and the microstructure of the non-fat particles in chocolates are two very 

important factors that influence the flow behavior (Fischer, 1994; Mongia and Ziegler 2000) and 
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sensory quality of the chocolate (Ziegler et al., 2001). Inhomogeneous particles tend to give a 

pasty chocolate that is harder to manipulate in the mouth (Beckett, 1994). It has been 

hypothesized that the finer the chocolate, the sweeter the taste, because small crystals dissolve 

faster than larger crystals. However, there was no published systematic research on the effect of 

particle fineness on the flavor of chocolate (Ziegler and Hogg, 2009).  

The measurements of the PSD and microstructure of chocolate particles are conducted by 

relatively expensive equipment, such as laser particle size analyzers (Glicerina et al., 2014; 

Bolenz et al.,2014; Hahn et al., 2015; Toker et al., 2016) and scanning electron microscopy 

(SEM) image analysis (Luo et al., 2013; Börjesson et al., 2014). However, small/medium 

chocolate manufacturers have limited access to this type of equipment. In addition, the usage and 

maintenance of the equipment is costly and complicated. Therefore, developing fast and 

inexpensive methods for measuring PSD is very critical for small/medium chocolate 

manufacturers. A previous study (Meghwal and Goswami, 2013) used a sieve to determine the 

PSD of black pepper, however, the sieve is not applicable to paste-like samples, such as cocoa 

paste, because of the high viscosity of the paste.  

In this study, three particle size measurement methods using a micrometer, Hegman 

gauge, and light microscopy image analysis were developed. The measurement methods were 

used to monitor the PSD profile of cocoa during the refining/conching process and compared to 

measurements conducted by a laser scattering particle size analyzer.  

The refining and conching procedure usually takes about 12-24 h before reducing the 

particle size to around 20 ums (Afoakwa et al 2007). The time needed for these processes 

depends mainly on the amount of material being refined and the configuration of the 

refining/conching equipment. The efficiency of refining and conching is very critical for 
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chocolate manufacturers, because the energy cost and time expended may influence the profit of 

the manufacturers. In this study, two configurations of grinding roller stones (conical and 

cylindrical) were tested with different sample weights (1 kg, 1.5 kg and 2 kg) and the particle 

size profiles of the materials were monitored as a function of time. 

As mentioned before, the shape of the cocoa particles in chocolate products is a very 

important factor for the texture of the products. In this study, SEM images of the cocoa samples 

were used to study the change in shape of the particles during the refining/conching process with 

different grinding roller stones. 

2. Materials and methods 

2.1 Sample preparation 

 Raw cocoa beans (Frastero) were roasted by a mini drum roaster (Model SS, 

CocoaTown, Roswell, Georgia, USA) (30 min roasting per kg batch of cocoa beans). 50 kg 

roasted cocoa beans were prepared. The roasted beans were immediately chilled by a tray cooler 

(CocoaTown, Roswell, Georgia, USA) after roasting and then cracked by a manual mini cracker 

(CocoaTown, Roswell, Georgia, USA). A mini vacuum winnower separated the husk and nibs 

(CocoaTown, Roswell, Georgia, USA). 

The refining and conching was done by feeding cocoa nibs into a melanger (Model 

ECGC-12SL, CocoaTown, Roswell, Georgia, USA) and refining for 24 hours. The melanger was 

equipped with either a double conical roller stone or a double cylindrical roller stone to crush and 

refine the cocoa nibs. Both of the cylindrical stones were 10 ± 0.5% cm in diameter and 5 ± 0.5% 

cm in height. Both of the conical stones were 2 ± 0.5% cm and 12 ± 0.5% cm in diameter on 

each side respectively, and the height was 10 ± 0.5% cm. In this study, cocoa samples with three 

different sample weights were processed by the melanger equipped with each configuration 
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respectively. During the refining/conching process, about 5 ml cocoa paste was taken from the 

melanger after the process began for 15 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h and 24 h.  

2.2 PSD analysis by micrometer and Hegman gauge 

Cocoa paste samples were first mixed with vegetable oil at a ratio 1:1. Then, one drop of 

the mix was transferred to the anvil face of a digital micrometer (model: H-2780, Mitutoyo 

America Cooperation, Aurora, IL, USA). Next, the spindle was lowered until a ‘click’ sound 

indicated the measurement was finished.   

One Hegman gauge (Model: PB-40, Precision Gage & Tool Co., Dayton, OH, USA) was 

also used to measure the particle size of the cocoa paste samples. The Hegman gauge 

measurements were conducted according to the standard method described by ASTM (2005).   

2.3 PSD analysis by light microscopy image analysis 

Samples were melted by a hair dryer and mixed with isopropanol alcohol (99% pure) into 

a suspension solution with a ratio of 1:20 in a 20ml glass tube. The mixture was then 

homogenized by a vortex mixer (Fisher Scientific, Hampton, NH, USA). Two drops of the 

mixture were transferred to a glass slide by a transfer pipette and covered with a cover glass. The 

slide was then observed under a 40X-2500X LED digital trinocular lab compound microscope 

(OMAX, Kent, WA, USA). The microscope was coupled with a 5MP camera (OMAX, Kent, 

WA, USA) and the magnification of the objective lens was 10χ. Five pictures were taken at 

different locations randomly for each sample. 

ImageJ (Version 1.47) was used to process the light microscopy images according to the 

following steps. First, the picture was loaded into the software. Then the ratio of the real distance 

versus unit distance on the picture was provided. Next, thresholding was conducted to highlight 
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the objects from the background and erosion was conducted, followed by dilation to eliminate 

noise. Finally, segmentation was performed to separate particles from each other and calculate 

the area of each detected particle. The diameter of each detected particle was calculated from the 

its area by taking each particle as a perfect circle. Parameters including d10, d50, d90 and dmean for 

each sample were calculated, where dxx indicated xx% of the particle size (in diameter) was 

smaller than dxx. 

2.4 PSD measurement by laser scattering 

The PSD of all samples was measured by a Malvern Mastersizer (Model MSS, Malvern 

Instruments Ltd., Malvern, England) as a reference. The presentation was selected as “Custom” 

and set n(CH3)2CHOH = 1.378, nparticle = 1.590). About 2 g of cocoa paste sample was melted and 

dispersed with 30ml isopropanol in a 50ml centrifuge pipe, stirring by an analog vortex mixer for 

2 min. Then, samples were introduced into a stirred tank filled with isopropanol until an 

obscuration of 20% was reached. Between each measurement, the detector and laser were 

aligned and the background was calibrated. Size distribution was quantified as the relative 

volume of particles in size bands presented as size distribution curves (Malvern MasterSizer 

Micro Software v 2.19). PSD parameters obtained included largest particle size (d90), mean 

particle volume (d50), smallest particle size (d10), Sauter mean diameter d(3,2) and volume mean 

diameter d(4,3). 

2.5 SEM image analysis 

SEM was used to obtain information about the surface morphology of the cocoa particles. 

The sample preparation for the SEM followed the method suggested by Chatana et al (2013) 

with some modifications. The cocoa paste sample was first defatted with isopropanol and then 

the isopropanol was removed by vacuum filtration. The remaining cocoa solids were placed on 
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the sample holder with the help of double scotch tape and then, the powder was sputter-coated 

with gold/palladium (2 min, 2 mBar) where it was observed at 15 kV, and examined with the 

SEM (model:1450 EP, Carl Zeiss MicroImaging Inc, Thornwood, NY, USA). At least 5 pictures 

for each sample were taken at randomly selected locations.  

2.6 Statistical method 

All tests were repeated at least three times and results were displayed as mean of the 

measurements ± standard deviation. Measurements were compared by one-way ANOVA using 

SAS 9.3 (SAS Institute Inc., Cary NC) to determine the effect of the fat content and the particle 

size distribution of the chocolate sample on their melting properties measured by DSC and 

contact based CTA. Tukey multiple comparisons at 95% significance determined differences 

between factor levels.  

3. Results and discussion

3.1 Particle size measurements of cocoa conducted by laser scattering method and the influences 

of the melanger configuration  

One of the main aims of the refining/conching process was to reduce the particle size of 

cocoa solids so that the final particles are small enough to not be detected on the tongue. 

Refining/conching also reduce unpleasant flavors and develops chocolate aroma by a mechanism 

combining particle size reduction, heating, and shearing (Beckett 2009). The diagram or 

configuration of the refining equipment has great influences on the physical properties of the 

chocolate products and the efficiency of the refining/conching process. The most predominant 

configuration of melangers that chocolate manufacturers are currently using is cylindrical roller 

stones (Lucisano et al., 2006; Bolenz et al., 2003), while some manufacturers also select conical 

roller stones for refining. Many studies provided the performance of different types of mills 
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during the grinding process of food materials. For example, Meghwal and Goswami (2014) 

provided comprehensive studies comparing particle size reduction of black pepper and fenugreek 

conducted by hammer, pin, rotor and ball mill.  

Figure 5.1 shows the change of particle size (d90 measured by laser scattering method) of 

cocoa solids as a function of time in cylindrical and conical roller stone melangers. The particle 

size reduction made by the melanger equipped with conical roller stones was greater than the 

melanger equipped with cylindrical roller stones for the first 4 hours of refining. However, after 

4 hours of refining, the reductions made by the two melangers were not significantly different. 

This was because big cocoa particles were much more likely being crushed and sheared by the 

roller stones than small particles at the beginning stage of refining. At the later stages, small 

particles (<20 um) prevailed and they were missed by the roller stones because of relatively 

small size of the particles, and the particle size reduction made by shearing was relatively slow 

compared to crushing. The measurements conducted by laser scattering methods were based on 

the volumes of the particles. Therefore, at the beginning stage, conical roller stones tend to make 

smaller particle clusters than cylindrical roller stones. As many previous studies (Imai et al., 

1995; Servais et al., 2002; Afoakwa et al., 2008b; Carvalho-da-Silva et al., 2013) indicated, well 

refined smooth chocolates should have particle size, in terms of d90, less than 20 ums. In this 

case, it took both melangers more than 8 hours to reach that goal, which implied that although 

greater particle size reduction can be made by the melanger equipped with conical roller stones, 

the efficiency for finishing the refining/conching process was the same for the two melangers.  

The particle size profiles of cocoa samples with different initial sample weights were 

shown in Figure 5.2. The profiles indicated that the particle size reductions of samples with 

different sample weights were similar after 2.5 hours of refining, which implied that as long as 
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the sample weight of cocoa nibs did not overfill the drum of the melanger, the times needed for 

finishing the refining/conching process, in terms of matching particle size requirement, were not 

significantly different.   

3.2 SEM image analysis 

In Figure 5.3, the images show cocoa particles observed by SEM microscope. Many large 

spherical particles with diameters greater than 200 um, along with many small shards can be seen 

in the images of the 30 min refined cocoa sample. From the images of the cocoa samples refined 

for 2 hours and 4 hours, fewer large spherical particles can be observed compared to the images 

of the 30 min refined sample. In addition, the diameters of the large spherical particles were 

decreased to ~120 um for 2 h refined particles and ~100 um for 4 h refined particles. Except for 

the large spherical particles, most of the particles observed were flat irregular small pieces of 

cocoa solids and their clusters. The size of the flat irregular small pieces was around 10 um and 

the quantity of these particles increased as a function of refining time. After 24 h of refining, the 

flat irregular small pieces of cocoa solids predominated. Barely any spherical particles were 

observed. The formation of the flat irregular pieces was due to the repeated crushing and 

shearing by the roller stones. When refining was ongoing, the roller stones spanned at fast speed 

(120 rpm), smashing and rolling over the cocoa particles, thus, creating great crushing and 

shearing force on the particles. The speed gradient between cocoa paste at different locations of 

the melanger, however, also resulted in shearing force between the cocoa particles. The 

influences of the shearing force on the microstructure of particles had two side, it tore the 

particles into small piece, on the other hand, it pushed the particles to form clusters due to steric 

hindrance between particles.   
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Some previous studies (Hoskin and Dimick 1980; Beckett 1995) also observed the 

phenomena that refining made spherical cocoa particles into small flat pieces. For most chocolate 

products, texture is very important. The desired texture gives a smooth mouth feel when 

chocolate melts on the tongue. This smooth mouth feel is created by many factors including the 

shape, size and homogeneity of chocolate particles (Viaene and Januszewska 1999; Engelen et al 

2005., Do et al., 2007). Kilcast and Clegg (2002) directly related thickness of cocoa particles to 

the smoothness of the chocolate. The flat irregular small particles created by refining and 

observed by SEM microscopy in this study were similar to the cocoa particles described by 

previous studies for making high quality chocolate.  

3.3 Comparison of the PSD measurement methods 

Figure 5.4 shows the particle size of the same samples described in 3.1, but the 

measurements were conducted by the micrometer. The essential element of measuring 

instruments operating on the micrometer principle is amplifying small distances into large 

rotations of the screw that are big enough to read from a scale. The screw of the micrometer is 

integrated with the measuring spindle, whose face establishes the measuring contact with the 

object. The distance of that contact face from a fixed datum constitutes the measuring length, 

which is then displayed by the scale graduations of the micrometer (Lanz and Molina 1820).  

By Comparing the trendlines in Figure 5.4 to the measurements in Figure 5.1 and Figure 

5.2, similar conclusions as in 3.1, about the influences of the sample weight of cocoa on the 

particle size reduction profiles can be drawn. Varying the sample weights only resulted in 

different amounts of particle size reduction at the first 2.5 hours of refining. After 2.5 hours of 

refining, there were no significant differences between samples with different sample weights in 

terms of particle size. However, based on the measurements conducted by the micrometer, the 
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conclusion of the influences of the configurations of the melangers on the particle size reduction 

of cocoa was different from the conclusion based on the measurements conducted by the laser 

scattering method. The particle size reduction achieved by the cylindrical roller stones melanger 

was greater than the reduction made by the melanger equipped with conical roller stones for the 

first 4 hours of refining. However, after 4 hours of refining, the particle size of the samples 

processed by the two melangers were not significantly different.  

Unlike measuring the diameters of the particles based on their two-dimensional areas or 

volumes, the micrometer measured the thickness of the particles and the particle clusters. In 

Figure 5.5, the linear speed gradients of cocoa paste in different melangers were displayed. With 

rollers running at constant rotational speed, the linear speed of the cocoa paste at the outer edge 

of the cylindrical roller stones was much faster than the linear speed of the paste at the inner edge 

of the roller stones due to the difference in the distances between the two edges of the stones to 

the center of the drum. Therefore, there was a great linear speed gradient between the cocoa 

paste at the center and the cocoa paste at outer space of the drum. As mentioned in 3.2, the 

gradient introduced shearing force between particles and generated particle clusters. The clusters 

had greater volume than single particles and they were more likely being crushed by the roller 

stone. Therefore, the thickness of the particles was decreased by repeating crushing. In addition, 

the shearing force also tore the particles into small pieces, which also decreased the size of the 

particles. . On the other hand, the linear speed gradients created by conical roller stones at 

different locations of the drum were much smaller than the one made by cylindrical roller stones. 

The shearing force introduced by conical roller stones to the cocoa particles was much smaller 

than the shearing force introduced by cylindrical roller stone. Therefore, it took more time for the 

conical roller stone than the cylindrical roller to tear the particles into small particles by shearing 
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force. In addition, weak shearing force introduced by conical roller stones took more time to 

form clusters which can be crushed by roller stones. This theory explained why the 

measurements conducted by the micrometer were different from the measurements using the 

laser scattering method.     

The particle size of samples refined by the melanger equipped with double conical roller 

stones at 4 different stages (30 min, 2 h, 4 h and 24 h) of refining was measured by 4 different 

methods (laser scattering, micrometer, Hegman gauge and light microscopy image analysis) and 

the measurements were summarized in Table 5.1. The particle size measurement conducted by 

the micrometer for 30 min refined cocoa particles was greater than the measurements made by 

using all other method, because the micrometer measured the size of the biggest particles in the 

sample. However, other methods measured the d90 of the particles, which is not necessarily the 

size of the biggest particle in the sample. The particle size measurements conducted by the 

micrometer for cocoa particles refined for 2 h, 4 h, and 24 h were smaller than the measurements 

provided by any other methods. The SEM image analysis for cocoa particles indicated that as 

cocoa particles were refined for more time, more small flat particles were created. The 

measurements conducted by the micrometer were actually measuring the thickness of the clusters 

of small flat particles, rather than the two-dimensional diameter of the biggest particle in the 

samples, while most of the spherical particles were deformed to flat particles. Therefore, the 

measurements produced by the micrometer were much smaller than measurements produced by 

other methods for samples from later stages of refining/conching.  

Figure 5.6 shows how raw images from the light microscope processed by ImageJ and 

how the particle size of cocoa solids was calculated. From Table 5.1, generally, except for 

measurements of 30 min refined cocoa sample, the measurements conducted by light microscopy 
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image analysis for all other samples were much larger than the measurements made by other 

methods. One theory to explain this phenomenon would be that the light illuminated the small 

thin particles (<10 um) and partially penetrated the thin small particles, which decreased the 

intensity of the pixels that represented the small particles in the images. In addition, the number 

of particles that can be detected from the images should be great enough (>80 particles) that the 

particle size distribution of the samples can be calculated. Thus, the magnification of the 

objective lens should not be greater than 10 χ. With 10 χ magnification objective lens, the size of 

small particles shown in images were relatively small. Therefore, some of the small particles 

were very likely to be filtered out along with background noise during image thresholding and 

erosion. In addition, the number of particles that could be captured by the camera in one image 

was ~100, which is relatively small compared the number of particles captured by using laser 

scattering. With the number of small particles greatly decreased, the values of d90 were closer to 

the size of the bigger particles.  

The measurements conducted by Hegman gauge were presented as the size of the 

smallest particle - the biggest particle in the samples and the measurements were shown in Table 

5.1. The gauge consists of a steel block with a series of very small parallel grooves machined 

into it. The grooves decrease in depth from one end of the block to the other, according to a scale 

stamped next to them (McKay 1994). Generally, the measurements tested by Hegman gauge 

were not meaningful in this study, because cocoa samples were cocoa solids in continuous fat 

phase and the viscosity was very high. Therefore, the small particles can still fill the deep groove 

on the gauge by accumulation, which increased the ceiling of the particle size range of the 

samples. In addition, the fat phase of the paste also filled up the shallow side of the groove, 

which decrease the threshold of the particle size range.      
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4. Conclusion

Based on the measurements conducted by laser scattering methods, the efficiency of 

refining by using the melanger equipped with double conical roller stones was higher than using 

the cylindrical roller stone melanger at the beginning stage of refining. However, at later stages 

(>4 h), both melangers showed similar efficiency in terms of particle size reduction. Based on 

the measurements conducted by the micrometer, the cylindrical roller stone melanger had higher 

efficiency than the conical roller stone melanger at the beginning stage. Similarly, the sample 

weight only influenced the particle size reduction at the beginning stage. Therefore, the sample 

weight and the type of melanger were not critical to the efficiency of refining since refining 

usually takes more than 12 hours. Both the micrometer and light microscopy image analysis 

methods can be used to monitor the particle size of cocoa solids during refining. However, the 

Hegman gauge failed to provide meaningful information due to the incorrect measurements of 

the boundary values of the particle size. Although, the micrometer and light microscopy image 

analysis methods did not provide as comprehensive information of PSD as the laser scattering 

method, they provided useful information from different angles, concerning how the particle size 

of cocoa solids changed over time during the refining/conching process. The measurements 

provided by the two methods can serve as a good alternative to the particle size measurements 

provided by the laser scattering method. 
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Figures 

Figure 5.1. Particle size of cocoa solids refined by different melanger as a function of time. 

Figure 5.2. Particle size of cocoa solids with different initial weights as a function of time. 
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Figure 5.3. SEM images of 0.5 h, 2 h, 4 h and 24 h refined cocoa solids (from up to bottom) by 
different refiner (left: by conical roller stone, right: by cylindrical stone). 
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Figure 5.4. Measurements conducted by micrometer for particle size of cocoa solids with 
different initial weights and processed by different melanger as a function of time. 

Figure 5.5. Gradients of linear speed of cocoa paste in melangers equipped with cylindrical roller 
stone and conical roller stone. 
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Figure 5.6. Light microscopy image processing by ImageJ. 
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Table 5.1. The particles size measurements done by 4 different methods at after cocoa solids 
being refined for 0.5h, 2h, 4h and 24h. 

 0.5h (um) 2h (um) 4h (um) 24h (um) 

Laser scattering 134.90a 39.01a 25.35a 20.83b 

Micrometer 219c 38a 23a 6a 

Light 
microscopy 

image analysis 

206.61b 

 

184.12b 

 

133.66b 

 

51.48b 

 

Hegman gauge 21-190 15-172 15-166 11-120 
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CHAPTER 6 

DETERMINING DEGREE OF ROASTING IN COCOA BEANS BY ARTIFICIAL NEURAL 

NETWORK (ANN) BASED ELECTRONIC NOSE SYSTEM AND GAS 

CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)4 

________________________________ 

4 Tan, J. and W. L. Kerr. Submitted to LWT-Food Science and Technology 
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ABSTRACT 

Roasting is a critical step in chocolate processing, where moisture content is decreased and 

unique flavors and texture are developed. The determination of the degree of roasting in cocoa 

beans is important to ensure the quality of chocolate and helps determine the commercial value of 

cocoa beans collected from cocoa farmers. Determining the degree of roasting relies on human 

specialists or sophisticated chemical analysis that are inaccessible to small manufacturers and 

farmers. In this study, an electronic nose system was constructed consisting of an array of gas 

sensors and used to detect volatiles emanating from cocoa beans roasted at 0, 20, 30, and 40min. 

The several signals were used to train a three-layer artificial neural network (ANN). Headspace 

samples were also analyzed by GC-MS with 23 select volatiles used to train a separate ANN. Both 

ANNs were used to predict the degree of roasting of cocoa beans. The electronic nose had a 

prediction accuracy of 94.4% using signals from TGS 813, 826, 820, 880, 830, 2620, 2602 and 

2610 sensors. In comparison, the GC-MS predicted the degree of roasting with an accuracy of 

95.8%.  Roasting is an essential step in the conversion of cocoa beans into chocolate, but there are 

no simple techniques for processors to determine the extent of flavor development. This work 

shows how relatively inexpensive gas sensors can be used to monitor roasting, with a computer 

program used to correlate the several sensors output with the extent of roasting. The electronic 

nose system is able to predict the extent of roasting as well as a more sophisticated approach using 

gas chromatography-mass spectrometry. 

Keywords: cocoa beans, roasting, electronic nose, neural network 
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1. Introduction 

Cocoa belongs to the family of Sterculiaceae and the genus Theobroma, and originated in 

Central and Southern America (Nair, 2010). It is the key raw material of chocolate, the basis of 

confections that are popular around the world. In addition, cocoa exporting has become an 

important part of the economy in several countries, including Ghana, Togo and Cote d’Ivoire 

(Afoakwa et al., 2011; Krähmer et al., 2015). In 2016, the global chocolate market produced 

4,400,000 tons of cocoa beans worth $98.3 billion. The seeds of the cocoa, known as cocoa 

beans, are collected from the pods. There are typically 30-40 seeds imbedded in a mucilaginous 

pulp (Lima et al., 2010; Schwan and Wheals, 2004). The seeds must be subject to several post-

harvest processing steps to make them suitable for chocolate, including fermentation, roasting, 

winnowing and conching. 

Although there are many indicators used to judge the quality of cocoa beans, the most 

important factor is the volatile flavor profile (Magi et al., 2011). The flavors and flavor 

precursors that develop depend on the processing steps. With total polyphenolic content about 

6% to 8% by weight of dried fermented cocoa beans, using unroasted cocoa beans to make 

chocolate will lead to unpleasant bitterness and astringency. The predominant polyphenolic 

compounds in unroasted cocoa beans are flavanols, which significantly decrease during roasting 

because they are heat labile (Crozier et al., 2011). Moreover, the procedure of roasting can also 

greatly reduce the moisture content in cocoa beans, which helps prevent blooming during 

chocolate storage (Kothe et al., 2013). 

Roasting of cocoa is also essential for the formation of the typical chocolate aroma from 

the precursor compounds formed during fermentation (Arlorio et al., 2008). The flavor 

developed during roasting results from some 400-500 compounds including thiazoles, phenols, 
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ketones, alcohols, pyrazines, aldehydes, ethers, furans and esters. The major compounds formed 

during roasting are aldehydes and pyrazines. Most are formed by the Maillard reaction and 

Strecker degradation of amino acids and sugars at high heat (Dimick and Hoskin, 1981; Heinzler 

and Eichner, 1992). Some studies (Ramli et al., 2006) have revealed that there are significant 

differences in flavor compounds formed due to different roasting times and temperatures. Major 

flavor components include aliphatic and alicyclic groups such as 3-methylbutanal and 

phenylacetaldehyde, and heterocyclic groups such as 2,3-diethyl-5-methylpyrazine. Some 

researchers have suggested that compounds such as trimethylpyrazine, tetramethylpyrazine and 

5-methyl-2-phenyl-2-hexanal are useful indicators to evaluate how well beans have been roasted.  

Determining the appropriate extent of fermentation or roasting is usually accomplished 

by sensory tests or empirical methods conducted by trained personnel (Emmanuel et al., 2012; 

Hamid and Lopez, 2000). The initial grading may be done by a “cut” test, in which the 

percentage of good and defective beans is assessed. Determining the appropriate endpoint for 

roasting is complicated as the development of flavor compounds depends on the variety, type of 

roaster, and time and temperatures used for roasting. In research settings, the extent of roasting 

of cocoa beans has been determined by GC-MS (gas chromatography mass spectrometry) and 

near infrared spectrometry (Bonvehí, 2005; Pätzold and Brückner, 2006; Frauendorfer and 

Schieberle, 2008; Schenker et al., 2002). However, instruments such as GC-MS are generally 

expensive and complicated to operate, leaving them outside the purview of many small/medium 

chocolate manufacturers and cocoa bean producers.  

An electronic nose or “e-nose” is an instrument consisting of an array of weakly specific 

or broad-spectrum chemical sensors that mimic the human olfactory system, by converting 

sensor signals to digital data which are then analyzed by appropriate software (Gardner and 



151 

Bartlett, 1994; Keller, 1995). There are many types of gas sensors available including metal 

oxide semiconductors (MOS), metal oxide semiconductor field effect transistors (MOSFET), 

conducting organic polymers (CP), and bulk acoustic wave (BAW) devices. The most popular 

are the MOS-type gas sensor because of its high sensitivity and low cost (Wilson and Baietto, 

2009). MOS sensors consist of a round or flat ceramic substrate heated by a wire and coated with 

a metal oxide semiconducting film. The metal oxide coating may be either of the n-type, such as 

zinc oxide, tin dioxide, or titanium dioxide which respond to oxidizing compounds, or of the p-

type (mainly nickel oxide or cobalt oxide) which respond to reducing compounds. These 

reactions may change the resistance of the gas sensors, and therefore influence the output 

voltages of the circuits with the gas sensors (Mielle, 1996).  

Currently, the food industry is the biggest market for the implementation of electronic 

nose systems. Researchers have studied the application of e-noses to tomato shelf-life (Gómez et 

al., 2008), wine quality (García et al., 2006), coffee analysis (Pardo and Sberveglieri, 2002), 

honey discrimination (Escriche et al., 2012) and pecan quality (Xu et al., 2017). Olunloyo et al., 

(2012) used an electronic nose to distinguish good from bad cocoa beans. Hashim and Plumas 

(1999) showed that gas phase sensors would respond to aromas emanating from cocoa beans 

roasted at different temperatures. Radi et al. (2016) used an electronic nose system to predict the 

degree of coffee been roasting but were not able to distinguish between light, medium, and dark 

roasted beans. However, little has been done to develop simple methods to detect and analyze 

changes in cocoa bean volatiles during roasting.  

One challenge is that e-noses generate several time-varying voltage signals which must 

be analyzed and interpreted to provide useful information. One approach to such complex data 

problems is artificial neural network (ANN) analyses, which is based on the cognitive process of 
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the human brain. Mathematical functions, the “neurons”, are linked together to build a network 

that mimics the human nervous system (Persaud and Pelosi, 1992). A weight is randomly 

assigned to each neuron and then adjusted by means of an iterative or ‘learning’ process such as 

error back-propagation until an optimized output is achieved. The resultant set of weights and 

functions is then saved as a ‘neural network’. 

In this study, an electronic nose system was developed and tested to see if it could 

monitor changes in volatile compounds during roasting of cocoa beans. Cocoa beans were 

roasted to different levels, and the gas phase sampled using nine gas sensors. Outputs from the 

sensors were analyzed by statistical methods and with an artificial neural network in conjunction 

with data collected by GC-MS. This allowed us to understand chemical changes in the beans as 

they were roasted, which and how many of the e-nose sensors were needed to make a successful 

model, and whether an ANN trained e-nose could perform as well as a GC/MS-based system.  

2. Materials and Method 

2.1 Sample preparation 

Dried and fermented ‘Forastero’ cocoa beans (Theobroma cacao) were obtained from 

Scharffen Berger (San Francisco, CA). Three batches of cocoa beans were roasted in 1 kg 

batches using a drum roaster (Model CocoaT Junior Roaster CS, CocoaTown, Roswell, Georgia, 

USA). The beans were tumbled in a rotating chamber at ~3 times per second, and heated at 

135°C for 20, 30 or 40 min respectively. The roasted beans were immediately chilled by a tray 

cooler (CocoaTown, Roswell, Georgia, USA) after roasting. Chilled samples were packaged in 

heat sealed aluminum laminated pouches (10.2 x 15.2 x 6.35cm) and stored at -40℃ prior to 

subsequent testing. 
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2.2 Electronic nose system 

The diagram of the e-nose system is shown in Figure 6.1. The system consisted of three 

major components, including a gas injector (syringe pump and syringe), e-nose (gas sensors and 

chamber), and data collection boards. The e-nose chamber was built from a 10cm χ 10cm χ 5cm 

nylon box with a 1.5cm thick Teflon top. The sensor sockets were inserted into the outer top of 

the chamber, while the gas sensors were inserted into the sockets from inside the chamber. The 

sensor array had nine gas sensors purchased from Figaro USA, INC (Arlington Heights, IL) 

including the TGS 821, TGS 813, TGS 822, TGS 830, TGS 823, TGS 826, TGS 2602, TGS 

2610, and TGS 2620. The target gasses for each type of sensor is summarized in Table 1.  

For testing, the roasted cocoa beans (15 g) were preheated to 70℃ in an incubator for 

5min, and then quickly loaded into an air-tight 60 ml syringe equipped with a Luer-Lock 

mechanism. The beans were held for 30 s to let the volatile compounds fill the space of the 

syringe. The syringe pump (Model 200 series, Kd Scientific INC, Holliston, MA) then injected 

the gas in the syringe into the e-nose chamber (constant temperature of 27.5℃) at 3 ml/s for 10 s. 

The injected gas reacted with the gas sensors and the signals (output voltage as a function of 

time) were collected by two data acquisition boards (Model NI9219, National Instruments, 

Austin, TX). A program was developed using LabView software (Version 2014, National 

Instruments, Austin, TX) to collect data from the DAQ boards and to provide a visual 

representation of voltage versus time for each channel. 

The peak value minus the baseline values of each sensor were calculated and defined as 

the relative peak. The ‘relaxation time’ of each sensor was defined as the time that the output 

voltage decreased from the peak value to 10% of the relative peak value. Both the relative peak 

values and the relaxation time of each sensor were used as input data for ANN training. There 
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were 60 repetitions at each level of roasting, of which 30 repetitions were used for training the 

ANN while the rest were used for prediction validation. 

2.3 GC-MS analysis 

The GC-MS system used to analyze the volatile compounds of cocoa bean samples 

consisted of a Clarus 680 gas chromatograph (PerkinElmer, Waltham, MA) and a Clarus SQ8T 

mass spectrometer (PerkinElmer, Waltham, MA). The roasted cocoa beans were ground and 2 g 

transferred into a capped glass vial. An internal standard of 4-picoline was applied to the cocoa 

liquor. A polydimethylsyloxane divinylbenzene (PDMS-DVB) SPME fiber was used for 

extraction of volatile compounds. The fiber was inserted through a rubber septum and exposed to 

the contents of the vial for 30 min, while the vial was kept at a constant 60°C. The fiber was 

transferred to the GC injection port fitted with an SPL-1 splitless injector. The compounds were 

analyzed on a Rtx5 cross-bond diphenyl dimethyl polysiloxane capillary column, using a helium 

carrier gas at 30 ml/min. The injector temperature was maintained at 250 ℃ and the column 

programmed from 40 ℃ (5 min) to 200 ℃ at 5 ℃ /min for 5 min, following the method described 

by Hashim et al. (1998). The chromatographic peaks were identified based on their molecular ion 

patterns, using the Autobuild software. The quantity of each compound was calculated by 

dividing the peak area by the sum of the peak areas of all identified compounds. These relative 

peak areas of the identified compounds were used to train the ANN. The extractions and GC/MS 

runs were repeated 24 times for samples at each degree of roasting, of which 14 repetitions were 

used for training the ANN while the rest of 10 repetitions were used for prediction validation.  

2.4 ANN training and prediction validation 

The training and predictive models of the ANN were constructed using the MATLAB 

(Version R2015b, MathWorks, Natick, MA) neural network toolbox. During the training 
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process, the signals (relative peak values and relaxation times) collected from each sensor were 

scaled and used as input data. The target data were then scaled for the degree of roasting with 0, 

0.5,0.75, and 1 representing roasting times of 0, 20, 30, and 40 min respectively. The network 

was a feed-forward type with back propagation. Performance of the network was judged by the 

MSE and R values. During training, initial weights between 0 to 1 were randomly assigned. 

Training was done using a backpropagation function, which updates weight and bias values 

according to the Levenberg-Marquardt optimization. Settings for the routine are shown in Table 

2. The parameter “mu” is part of the training function and is used to tune how roots of

differentiable equations are determined. The values of “mu-dec” or “mu-inc” specify how this 

factor can be decreased or increased, allowing it to be adjusted to most quickly reach an 

optimized solution. Hyperbolic tangent sigmoid (“tansig”) functions were used for hidden layers 

and output layers. The “validation check” parameter allows the training to be stopped early if the 

network performance fails to improve. After the training was finished, 36 sets of new signals (9 

sets for each degree of roasting) were used to validate the trained ANN. The accuracy of the 

trained ANN was calculated by the number of correct predictions over the number of all 

predictions. A similar procedure was used to develop an ANN trained with values obtained from 

the normalized peaks of volatile compounds detected by GC-MS.  

2.5 Statistical methods 

Principal component analysis (PCA) was used to identify the major volatile compounds 

and sensor responses related to the degree of roasting. Scores obtained from each PCA were 

analyzed by a one-way analysis of variance (ANOVA) to test for significant differences between 

samples. All the statistical analyses were performed by Matlab (Version R2015b, MathWorks, 

Natick, MA). 
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3. Results and discussion

3.1 Volatile composition and PCA analysis of cocoa beans 

Some 43 volatile compounds were identified by GC-MS from the SPME headspace 

extraction of the roasted cocoa beans. In comparison, Frauendorfer and Schieberle (2008) 

observed 42 “odor-active” volatile compounds in both roasted and unroasted Criollo cocoa beans 

using aroma extract dilution analysis (AEDA), combined with GC-olfactory analyses. Ducki et 

al. (2008) also found 43 volatile compounds in cocoa and chocolate powders by GC-MS after 

extraction with SPME. Other researchers observed more volatile compounds, however. For 

example, Jinap et al. (1998) identified 53 volatile compounds in Theobroma nibs using a steam 

distillation procedure. Rodriguez-Campos et al. (2012) found 58 compounds in ‘Forastero’ beans 

using solid phase micro-extraction in the headspace (SPME-HS). Bonhevi (2005) showed there 

are 9 compounds common to cocoa powders regardless of their geographic origin. 

Table 6.3 shows 24 volatile compounds found in this study, and as reported by others, to 

be good indicators of cocoa roasting (Ramli et al., 2008, Bonvehí and Coll, 2002, Krist et al., 

2004; Hernández and Rutledge, 1994). The table also shows how the relative concentrations of 

these compounds changed during roasting. Some compounds, such as acetic acid and 3-methyl-

1-butanol acetate decreased over time, while others such as 2-ethyl-6-methyl-pyrazine increased 

with roasting. 

Principal component analysis (PCA) was used to determine the effects of roasting time 

on the composition of volatile compounds in cocoa beans and showed that the first two 

components explained 49.1 and 14.8% of the variance, respectively. The PCA loading plots are 

shown in Figure 6.2. Clusters of those compounds with loading factors (LF) greater than 0.2 are 

highlighted and are those that explained the greatest variance due to roasting time. In general, 
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those compounds that had an LF > 0.2 were those that increased during the roasting process (see 

also Table 3). These included 2-ethyl-6-methylpyrazine; dimethyl disulfide; 2,3-diethyl-5-

methylpyrazine; trimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine. Compounds with LF < -0.2 

were those that decreased during roasting and included acetic acid and benzaldehyde.  

Researchers such as Hashim and Chaveron (1994) have identified a variety of compounds 

formed during roasting. These include monomethyl-; 2,3-dimethyl-; 2,5-dimethyl-; 2,6-

dimethyl-; trimethyl- and tetramethylpyrazine. Some of these are present in small amounts in 

unroasted, fermented beans and develop to greater levels during roasting. This is particularly true 

for fermented beans, as the fermentation process helps develop reducing sugars. Some pyrazines 

can form during fermentation through conversion by lactobacilli. Others develop in the process 

of Maillard reactions between proteins and reducing sugars, a reaction enhanced by the high 

temperatures and intermediate moistures incurred in roasting. Compounds such as benzaldehyde 

are present in the raw bean and contribute to a beany almond-like aroma. Acetic acid develops 

during the fermentation of the beans. Both of these volatile compounds are gassed out from the 

beans during roasting. 

A few compounds had high LF along the negative PC2 axes. These included 2-heptanol 

acetate and 3-methyl butanoic acid. These are compounds that were present in the unroasted 

beans, decreased slightly during intermediate roasting, then increased slightly at 40 min of 

roasting. Several compounds had low LF values and thus contributed little to the variance. This 

included compounds such as 2-heptanone and 2-nonanone. Some aldehydes and ketones are 

formed as part of the Strecker reaction. These may be volatilized in roasting or become part of 

reactions leading to the formation of pyrazines. Interestingly, tetramethyl-pyrazine was present at 

relatively high levels in the unroasted beans, then decreased by only small amounts during 
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roasting. Others have noted that this compound is present in relatively high levels in both 

unroasted and roasted cocoa beans (Hashim and Chaveron, 1994). 

3.2 PCA analysis of gas sensors 

Examples of how each sensor responded to the gasses generated by cocoa beans with 

different roasting times are shown in Figure 6.4, with details of the responses (peak values and 

relaxation times) summarized in Table 6.4 and 6.5. Generally, varying the roasting time of cocoa 

beans did not significantly change the relative peak values of TGS sensors 821, 830 or 2610. As 

shown in Table 6.1, these sensors were targeted towards hydrogen, halocarbons and 

butane/propane. However, the roasting time significantly influenced the relative peak values of 

the five other sensors. With regards to relaxation time, all sensors showed significant changes 

due to roasting time. This indicates that both measured responses can be used as indicators for 

the degree of roasting.    

PCA was also used to determine the effect of roasting time of cocoa beans on the 

response signals (relative peak value and relaxation time) generated by gas sensors (Figure 6.3a-

b). PC1 explained 41.62% of the total variation of the sensor signals listed in Table 6.1, PC2 

24.17% and PC3 10.20%. The positive side of the PC1 axis was influenced by peak values and 

relaxation time of TGS sensor 823, 830 and 2620, while the positive side of PC2 was influenced 

by the sensors 822, 813, 821 and 2602. PC3 was mostly influenced by sensor 2610.  

The relative peak values and relaxation times formed two major clusters in the loading 

plots. This suggests that each group of sensors has overlapping sensitivities to a particular class 

of aromatic compounds. Thus, TGS sensors 823, 830 and 2620 are more sensitive to alcohols, 

alkyls, ketones and related organic solvents. These are either volatile compounds generated by 
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roasted/unroasted cocoa beans or products of those compounds and oxygen that develop during 

roasting. TGS sensors 822, 813, 821 and 2602 are more sensitive to combustible and low 

molecular weight gasses such as hydrogen, methane, ammonia and sulfide gasses.  

3.3 ANN training and prediction  

Table 6.6 shows the performance parameters of the two neural networks as trained by e-

nose signals or GC-MS detected volatile compounds. Overall, the ANN trained by e-nose had a 

slightly lower accuracy (94.4%) as compared to that trained by the GC-MS volatiles (95.8%). 

Both models had 100% prediction at 0 or 20 min roasting time. At 30 min, the e-nose system 

accurately predicted 8 out of 9 cases, the GC/MS system 6 out of 6. The two systems are not 

expected to behave identically, however. While the GC-MS is able to detect and discriminate 

many volatile compounds, the e-nose sensors are sensitive to particular classes of compounds 

and may have overlapping detection on more than one sensor. For example, TGS sensors 823 

and 822 responded to 3-ethyl-2,5-dimethyl-pyrazine; 2,3-diethyl-5-methyl-pyrazine and 

tetramethylpyrazine similarly. In addition, the GC/MS created substantially more data points at a 

given roasting time, namely the concentrations of 24 compounds, while the e-nose system relied 

on signals from 8 sensors providing 2 measurements (peak and relaxation times). In general, a 

system with more inputs can be better fit by an ANN, although over-fitting can sometimes be a 

concern. 

Both systems did predict the extent of roasting with reasonable accuracy. The e-nose 

system does offer several advantages. First, the sample preparation was less complicated and less 

time consuming than GC-MS based system. In the e-nose system, the cocoa beans were just pre-

heated prior to injection into the sensor chamber, and the readings were taken within 5-10 min. 

The GC-MS requires substantial grinding and extraction of volatile compounds by the SPME 
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fiber. Second, the cost of building an e-nose system is much less than purchasing a GC-MS 

based system. The materials cost of the e-nose system can be confined to a few hundred dollars 

while GC-MS instruments may cost $60,000 or more. Third, the detection and analysis for the e-

nose based system were much faster and less complicated. Typically, 15 min was required for 

the e-nose system and only two parameters for each sensor was required to be collected. 

However, the GC-MS takes ~1h for sample preparation, an additional 30-60 min to run and 

additional extra time to identify and analyze many peaks. It should also be noted that, while not 

attempted in this study, the e-nose lends itself to on-line applications. 

4. Conclusion

Both GC-MS and e-nose systems could be trained by ANN to predict the stage of 

roasting of cocoa beans. Both systems work as the volatile components emanating from the 

samples are continuously changing. The former senses these as several specific compounds, the 

latter senses these as categories of volatile compounds. As noted, the e-nose system is a much 

simpler and inexpensive system to use. While not attempted in this study, it is anticipated that the 

e-nose could be adapted to collect and analyze gases on-line and in real time.  

The volatile composition originating from cocoa beans can be an indicator of the quality 

of cocoa beans and products. Thus, the combination of an e-nose system with ANN might be 

useful for determining whether beans are rotten or not, the grade of the beans, the degree of 

fermentation and the degree of roasting. Future studies will be focused on these applications.  
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Figures 

 

 

 

 

Figure 6.1. Diagram of the electronic nose system for sampling roasted cocoa beans. 
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Figure 6.2. Principal component analysis loading plots for select volatile compounds: PC1 and 
PC2 components. 
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(b) 

Figure 6.3. Principal component analysis loading plots for gas sensor data (R: Relaxation time, 
P: Peak voltage value): (a) PC1 and PC2 components and (b) PC1 and PC3 components. 
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Figure 6.4. Individual gas sensor response when exposed to volatile compounds from cocoa beans 
roasted for (a) 0, (b) 20, (c) 30 and (d) 40 min. 
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Table 6.1. Sensitivity of the gas sensors used in the electronic nose system. 

Sensors Target gas 

TGS821 Hydrogen 

TGS813 Methane, propane, butane 

TGS2602 VOCs, NH3, H2S 

TGS822 Organic solvent, alcohols 

TGS2610 Butane, propane 

TGS2620 Alcohol, solvent vapors 

TGS830 R11, R113, other halocarbons 

TGS823 Organic solvent, methane, hexane 

Table 6.2. Initial settings for training the artificial neural network (ANN) 

Mu Mu-dec Mu-inc Iterations Validation check 

0.001 0.1 0.1 1000 5000 
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Table 6.3. Relative concentrations of select volatile compounds from cocoa beans roasted at 
135°C for 0 to 40 min. 

Volatile compound Relative concentration (%) 

 0 min  20 min  30 min   40 min 

Acetic Acid 23.65d 24.64c 10.98b 6.99a

Disulfide, dimethyl 0.00c 0.00c 0.55b 0.99a

1-Butanol, 3-methyl-, acetate 1.39c 1.28bc 1.03b 0.70a

2-Heptanone 1.23b 1.33b 0.85a 0.96ab 

Butanoic acid, 3-methyl- 7.64b 6.77a 6.92a 8.37c

Butanoic acid, 2-methyl- 4.33ab 4.02a 4.56b 4.61c

Trisulfide, dimethyl- 0.00a 0.77c 1.46d 0.46b 

Benzaldehyde 3.37d 2.85c 0.80b 0.60a

Pyrazine, 2-ethyl-6-methyl- 0.00a 0.04a 0.69b 1.20c

Pyrazine, trimethyl- 0.00a 0.98b 3.23c 5.21d 

2-Heptanol, acetate 0.65b 0.56ab 0.41a 0.57ab 

Benzeneacetaldehyde 1.68b 1.60b 0.60b 0.35a

2-Isobutyl-4,5-dimethyl-3-oxazoline 0.00a 1.01c 2.15d 0.43b 

Pyrazine, 3-ethyl-2,5-dimethyl- 0.00a 0.48b 2.81c 4.54d 

Pyrazine, tetramethyl- 17.13c 14.20b 14.38b 13.54a

2-Nonanone 5.01b 4.72a 4.91ab 5.03b 

Benzeneethanol 4.68a 5.18ab 7.76c 5.98b 

Pyrazine, 2,3-diethyl-5-methyl- 0.00a 0.00a 0.20b 0.42c

Pyrazine, 3,5-diethyl-2-methyl- 1.46a 1.66a 2.48b 2.99c

Octanoic acid, ethyl ester 2.47c 1.53b 1.43b 1.16a

Acetic acid, 2-phenylethyl ester 3.38b 3.38b 2.98ab 2.54a

Benzeneacetaldehyde, α-ethylidene- 0.00a 2.47b 2.86b 3.00c

1-Tetradecanol 0.00a 0.08b 2.09d 1.36c

Benzeneacetaldehyde, α-(2-methylpropylidene)- 0.52a 0.76b 1.87c 1.95c
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Table 6.4. Peak values of gas sensor responses to volatile compounds from cocoa beans roasted 
from 0 to 40 min. 

TGS821 TGS813 TGS2602 TGS822 TGS2610 TGS2620 TGS830 TGS823 

0 0.002a 0.029b 0.110c 0.089a 0.012a 0.048ab 0.004a 0.060b 

20 min 0.001a 0.024a 0.084b 0.082a 0.011a 0.042a 0.003a 0.052a

30 min 0.004ab 0.029b 0.105c 0.101b 0.014b 0.055b 0.004a 0.066c

40min 0.005b 0.026ab 0.068a 0.087a 0.012a 0.046a 0.003a 0.057b 

Table 6.5. Relaxation time of gas sensor responses to volatile compounds from cocoa beans 
roasted from 0 to 40 min. 

TGS821 TGS813 TGS2602 TGS822 TGS2610 TGS2620 TGS830 TGS823 

0 104.6ab 70.1a 33.6ab 145.1b 114.0a 140.6ab 91.6a 153.8a 

20 min 145.3c 137.4c 50.3c 287.2c 211.0b 253.2c 144.7c 309.4b 

30 min 130.1b 73.4a 28.6a 145.4b 119.9a 145.3ab 86.8a 158.6a 

40 min 89.4a 84.1b 38.1b 129.2a 114.9a 134.4a 98.0b 143.7a 

Table 6.6. Performance of E-nose trained ANN and Volatile compounds trained ANN. 

E-nose trained ANN Volatile compounds trained ANN 

Roasting time 
(min) 

Correct 
prediction 

False 
prediction 

Correct 
prediction 

False prediction 

0 9 0 6 0 

20 9 0 6 0 

30 8 1 6 0 

40 8 1 5 1 

Overall Accuracy 94.44% 95.83% 
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CHAPTER 7 

CHARACTERIZING COCOA CONCHING AND REFINING PROCESSES BY KERNEL 

DISTRIBUTION MODEL (KERNEL MD) BASED ELECTRONIC NOSE5 

________________________________ 

5 Tan, J. and W. L. Kerr. To be submitted to Journal of Food Engineering 
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ABSTRACT 

Refining and conching are two important processes for chocolate manufacturing. It is 

believed that refining/conching process contributes to the improvement of flavor and texture of 

chocolates. However, the traditional analytical methods, such as gas chromatography-mass 

spectrometry (GC-MS), for volatile compounds mapping are relative expensive and time 

consuming. In this study, one electronic nose was built and placed in the headspace of cocoa 

samples, monitoring the volatile compounds profiles during refining/conching process. The 

responses of the e-nose were characterized by trained Kernel DM models and three parameters, 

Parea, Ppeak and Pwidth. The three parameters were able to detect the overall influence of roasting 

and sample weight on the volatile compound profile of cocoa, however, they failed to 

characterize the influences introduced by single factor. On the other hand, the trained Kernel DM 

models were able to characterize the total volatile compounds profiles of samples with different 

treatment. Classification and discrimination based on volatile compounds profiles were correctly 

conducted by trained Kernel DM models. 

Keywords: cocoa, refining/conching, e-nose, Kernel DM 
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1. Introduction 

The history of chocolate started approximately one thousand years ago in Central 

America and since then, chocolate was mainly consumed as drinks and medicines up until 1800s 

when solid chocolate became more popular than liquid chocolate (Grivetti and Shapiro 2011).  

Today, chocolate is almost everywhere in this world. Chocolate production has increased 

exponentially since 1990. This grows in chocolate production is driven by growing demands 

from developing countries in Asia, Africa and Latin America. In 2000, the consumption of 

chocolate confectionary was 5.6 million tons and the value of the chocolates was $51.314.5 

million. The consumption of chocolate confectionary increased to 7.15 million tons in 2013 and 

the values of the chocolates doubled to $109,991.5 million (Squicciarini and Swinnen 2016; 

Afoakwa 2016). 

The chocolate processing typically includes the following steps: harvesting, drying, 

fermentation, roasting, cracking, winnowing, refining, conching, tempering, molding, packaging, 

transportation and storage (Saltini et al., 2013, Afoakwa 2010). Each step in the processing plays 

important role in determining the final qualities of the chocolate products. The refining or 

grinding of chocolate usually is defined as one process where ingredients such as cocoa nibs, 

sugars, and proteins together are mixed and agitated by repeating crushing and shearing, 

delivering smooth fluid paste with uniform and small particle sizes (< 30um) (Carvallo et al., 

2001). And chocolate conching is one procedure that the post-refining ingredients are evenly 

agitated and heated for certain time (varied from several hours to days) to yield well 

homogenized liquid chocolate. In this process, the flavor of the chocolate is developed, along 

with many changes in physical and chemical properties, such as, the viscosity, the moisture 

content and the morphology of chocolate particles (Beckett 2011, Fryer and Pinschower 2000). 
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Beckett (2000) divided the chocolate conching process into two distinct stages that take place in 

the same conching machine. In the first stage, some undesirable flavor compounds such as acetic 

acids are greatly removed and the flavor compounds and precursors which developed by roasting 

and fermentation are further developed to bring pleasant taste. The second stage turns the thick 

or flaky chocolate paste into smooth liquid paste by evenly distribute the fat to coat the solid 

cocoa particles so that chocolate particles can slide pass each other.  

The refining and conching processes are considered two individual processes or one 

combined process depending on what kind of the equipment is being used to conducts the 

processes. Many manufacturers use a multi-roller mill to refine the ingredients first and then use 

a conche to proceed the conching process (Owusu et al 2012). Some manufacturers are using 

melangers to conduct refining and conching at the same time (Prawira and Barringer 2009). As 

mentioned above, the time needed for finishing conching varies from several hours to days 

depending on the equipment being used and the demands of the manufacturers, for example, 

many chocolate manufacturers leave the conching process ongoing for days just to ensure the 

undesirable flavors were removed and the texture of the chocolate paste become smooth and 

liquid like. However, by letting the conching process ongoing for days, the energy cost increase 

greatly and the equipment are more likely to be damaged due to the wearing of their parts. In 

some cases, it is not necessary to trade days of conching just for small improvement in the 

texture and flavor of the products. Also, the conching process can also decrease the 

concentrations of desirable flavor compounds which developed from fermentation and roasting, 

vary by bean varies (Beckett 2009, Jolly et al., 2003). It is very important for many 

manufacturers, who wish to keep the special flavors in their products, to control the time for 
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conching process. Therefore, tracking the changing of the overall flavor compounds and predict 

the volatile compounds profiles in ongoing refining/conching process are potentially useful.  

The analytical method that can provide comprehensive information about the volatile 

compounds profile of cocoa product is using a GC-MS system coupled with corresponding 

flavor extraction methods. Many researchers (Ducki et al., 2008, Rodriguez-Campos et al., 2011, 

Bonvehí 2005, Jinap et al., 1998, Schnermann and Schieberle 1997) have studied the influence of 

roasting time, drying condition, variety, fermentation condition, and formulation on the volatile 

compounds profile of cocoa beans, chocolates, and cocoa power. Owusu et al. (2012) have 

studied how the conching conditions influence the volatile compounds of chocolate and Counet 

et al. (2002) have compared the volatile compounds in chocolate with and without conching. 

However, no previous research have been done to characterize the volatile compounds profiles of 

chocolates in the refining/conching process. The reason for the lack of information is manifold. 

Firstly, it requires analyzing at least hundreds of samples from one ongoing conching process at 

different time before characterizing the profiles of volatile compounds because one 

refining/conching process typically runs for more than 12 hours. Secondly, the volatile 

compounds analysis conducted by GC-MS for one sample takes about an hour and the extraction 

for volatile compounds in cocoa paste is relatively complicated and time consuming. In addition, 

the GC-MS analysis provides the concentrations of tens of volatile compounds which makes it 

even more complicated to select the right compounds as indicators to characterize the profiles. 

Therefore, the traditional method is unable to provide fast measurements for volatile compounds 

and construct the overall volatile compounds profile of a lengthy continuous process such as 

chocolate refining/conching.  
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Electronic nose (E-nose) is an array of gas sensors which give fingerprint responses to a 

given odors, and the responses are used to perform odor identification and discrimination 

(Arshak et al., 2004). One of the most widely used type of gas sensor is metal oxide 

semiconductor (MOS) gas sensor due to its inexpensive price, lightweight, high sensitivity, and 

fast response (Fine et al., 2010). When target odors interact with the surface of a metal oxide film 

(generally through surface adsorbed oxygen ions), and it results in a change in charge carrier 

concentration of the material. The conductivity of the material, however, is depending on the its 

carrier concentration. The change of conductivity of the sensor is reflected by the change of 

output voltage of the sensor and the characteristics of the voltage response is used for 

determining the concentrations and categories of target gases (Pearce et al., 2006, Harsányi, 

2000). 

There are many researchers have conducted comprehensive studies to implement the e-

nose for food quality determination. García et al. (2006), Lozano et al. (2005) and Buratti et al. 

(2007) have used e-nose to evaluate the quality of wines based the aroma profile of wines. 

Labreche et al. (2005) have used e-nose to monitor the shelf life of milk. Eklöv et al. (1998) have 

implemented e-nose to monitor the fermentation of sausages. However, few researches have 

developed a e-nose system that is suitable for characterizing the chocolate conching process or 

other continuous process. In this study, one e-nose system was constructed and attached to a 

melanger, measuring the overall volatile compounds profiles in the headspace of the samples 

undergoing refining/conching process. The responses of the e-nose were used to characterize the 

overall volatile compounds profiles of the complete refining/conching processes.  

One challenge of using e-nose to monitor the volatile compounds profile of a continuous 

refining/conching process is gas distribution in real environment is influenced by turbulent 
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advection introduced by the grinder or conche and such influences are random. The turbulent 

happens randomly and the turbulent flow creates packets of gas that follow chaotic trajectories 

(Shraiman and Siggia 2000). In addition, other factors include temperature variation and random 

flow of winds in the environment can also influence the distribution of the odors. Although make 

an exact description of turbulent flow is difficult at this moment, it is possible to describe 

turbulent gas distribution on average under the assumptions that each measurement from the gas 

sensor is a random variable. By doing that, strong assumption such as perfect environment can 

be avoided (Hinze 1975). In this study, the Kernel Distribution Model (Kernel DM) was 

proposed to characterize the volatile compounds profile in process of refining/conching of cocoa 

based on the responses of the gas sensors (e-nose).  

Kernel DM is a statistical model that treats every measurement as a random variable and 

there are no assumptions about one certain functional form of the model, which indicates that it 

does not assume certain environmental conditions such as a uniform airflow (Lilienthal et al., 

2009). The responds of the e-nose were used to train the Kernel DM model, and the learned 

model characterize the distribution mean of overall volatile compounds as a function of time. 

There were several parameters such as kernel width (σ), which may influence the 

performance of the model. The parameter selection was done by Genetic Algorithm (GA) which 

tried to minimize the error of the learned model. GA is an adaptive heuristic search algorithm 

based on the evolutionary theory of natural selection and genetics. They represent an intelligent 

exploitation of a random search used to solve optimization problems (Sivaraj et al., 2011). The 

key idea of the selection operator is to give preference to better individuals (those that are nearer 

to the solution) by allowing them to pass on their genes to the next generation and prohibit the 

entrance of worst fit individuals into the next generations. The selection operator mainly works 
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at the level of chromosomes and the performance of each individual depends on its fitness. The 

fitness value may be determined by an objective function or by a subjective judgment specific to 

the problem. As the generations pass, the members of the population should get fitter and fitter. 

(Goldberg, 1990)  

2. Materials and methods

2.1 Sample preparation 

Two batch (20kg for each batch) cocoa beans (Frastero) were roasted by a mini drum 

roaster (Model SS, CocoaTown, Roswell, Georgia, USA) for 30 min (well roasting) and 40min 

(dark roasting) respectively. The roasted beans were immediately chilled by a tray cooler 

(CocoaTown, Roswell, Georgia, USA) after roasting. Chilled samples were packaged in heat 

sealed alumina pouches and the pouches were stored in a -40℃ freezer before the tests. 

2.2 Experimental design and electronic nose system 

The refining/conching processes were conducted by one chocolate melanger (Model: 

ECGC12SL CocoaTown, Roswell, Georgia, USA). For each refining/conching process, 700g or 

1000g of well roasted (30 min roasted) or dark roasted (40 min roasted) sample was added into 

the drum of the melanger and two double conical roller stones crushed, sheared and stirred the 

samples for 24 hours. The cocoa samples were transformed from raw cocoa ribs into smooth fine 

cocoa liquid during the refining/conching process. Each combination of different sample weight 

and roasting degree were replicated for 6 time.   

The diagram of the e-nose system was shown in Figure 7.1. Six gas sensors (TGS 821, 

TGS 822, TGS 823, TGS 2602, TGS 2610, TGS 2620) were fixed on a teflon bar 

(20cm*6cm*1cm) and the Teflon bar was fixed above the drum of the melanger, exposing the 
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gas sensors to the volatile compounds released from the drum during refining/conching. The 

responses of the gas sensors were collected by two data acquisition boards (Model NI9219, 

National Instruments, Austin, TX) at a sample rate of 6 second / point. The software being used 

for interface between DAQ boards was Labviews (Version 2014, National Instruments, Austin, 

TX). Also, one thermal couple wire was fixed about 1 cm above the bottom of the drum and the 

temperature of the samples during refining/conching were recorded by a thermal couple DAQ 

module ((Model NI9211, National Instruments, Austin, TX).  

2.3 Data processing and parameters determination  

Unlike many previous studies (Olunloyo et al., 2012; Markom et al., 2009; Bleibaum et 

al., 2002) which used electronic nose to do single measurement for each sample at a time, the 

electronic nose system did continuous measurement on the overall volatile compounds profile of 

cocoa in the whole process of refining/conching. The responses of the gas sensors depended on 

the concentrations of target volatile compounds around the gas sensors and the volatility of the 

cocoa samples determined the concentration of the volatile compounds. Volatility is directly 

related to a substance's vapor pressure. The vapor pressure is a measure of the amount of vapor 

above a liquid. At constant atmospheric pressure, vapor pressure increases with temperature 

(Shoemaker et al., 1962). During the process of refining/conching, temperature was not constant 

because the grinding and shearing generated heat throughout the whole process. Vapor pressure 

(P) of the samples as a function of temperature (T) is given by Clausius-Clapeyron equation 

below: 

P=Ae(
-∆Hvap

RT ) 
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where ∆Hvap is the enthalpy of vaporization of the sample, and R is the gas constant, R = 8.314 J 

K-1 mol-1. A is unknow constant. In this study, the ∆Hvap was set to 50.12 kJ/mol and A was set 

to 1.0. The responds of the gas sensors were divided by their corresponding vapor pressures 

calculated by following the Clausius-Clapeyron equation mentioned above, therefore, eliminated 

the influence of temperature variation to get adjusted ‘raw’ data Ri. Then parameters that 

characterized Ri were extracted. Theses parameters included the relative peak value Rpeak, which 

was the maximum Ri over the baseline (the minimum value amount Ri), Rarea, the area between 

the baseline and the Ri for 1 h, 2 h,3 h,4 h,5 h, and 6 h since the refining/conching process began, 

Rwidth, the time length that Ri was above a certain value (20%, 30%, 40%, 50%, and 60% of the 

Rpeak value).  

2.4 Kernel DM model 

The basic principle of the Kernel DM model is trying to predict the respond (R) of the 

gas sensor at time t during one refining/conching process based on the responds (R1: n) of the 

same gas sensor at adjacent time points (t1: n) or, in another word, time points that close to t, from 

several other refining/conching processes with same treatments combination.  

p(R|t, R1:n, t1:n) 

In this study, refining/conching process with same treatments were replicated for 6 time, 

and three of the repetitions were used to construct or, in another word, train the Kernel MD 

model, while the rest three repetitions were used for validation. In the rest of the paper, ‘training 

data’ was used to represents the data being used to train the models, and ‘validation data’ 

referred to the data being used for evaluating the performances of the models. And the samples 

provided training data were called ‘training group’ and samples provided validation data were 

called ‘validation group’. 
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Before constructing the model, the adjusted ‘raw’ data Ri from both training and 

validating data were first scaled to ri ∈ [0, 1] to compensate for drift issues and individual 

variations between different gas sensors. The scale function was shown below: 

ri=
Ri-min({Ri})

max({Ri})-min({Ri})
 

then an uni-variate Gaussian weighting function N was used to assign the importance of each 

responds ri at different time point ti in grind cell k. The number of k is equal to the number of the 

data point from the refining/conching process for training. Two parameters, Ω(௞), the sum of the 

weights and R(k), the sum of the weighted responds in cell k, was calculated as 

Ω(k)= ෍ N(|ti-t
k|, σ)

n

i=1
 

R(k)= ෍ N൫|ti-t
kห, σ൯×ri

n

i=1
 

where tk was the time point for the predicted respond, n is the number of the time points being 

included in cell k, σ was the parameter for Gaussian weighting function. Then the prediction (r(k)) 

for the respond of the sensor at tk is calculated by: 

r(k)=
R(k)

Ω(k) 

Four Kernel MD models trained by sensor data (from training group) collected during 

refining/conching processes with different treatment combinations (700g/1000g beans with 

well/dark roasted) respectively. Data from validation group were used to check the performance 

of the trained model by calculating the root mean absolute error (RMAE) of the model: 

RMAE= ෍ ඨ|ri
(k)-ri|

n

n

i=1
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where ri
(k) was the predicted respond of the gas sensor at ti, 𝑟௜ was the respond of the same sensor

at ti from validation group.  

2.5 Genetic algorithm setting  

The choice for the value for parameters n, σ were determined by Genetic algorithm (GA) 

to ensure the Kernel MD model yield good performance. One trained model (trained by data 

collected at 700g/well roasted condition). The range for n and σ were 5 to 30 and 0.1 to 1 

respectively. n was integer and σ a multiple of 0.1. The fitness function is the RMAE of the 

model and the goal was trying to minimization the fitness value. The initial value of n and σ 

were randomly given. Each gene only had two units to represent the value of n and σ 

respectively. No crossover for the GA. The mutation of gene followed the following rules: All 

the gene from the initial population had to mutate. From the second generation, if the fitness of 

the gene is better than previous generation, then mutation rates for both n and σ were  

Pm=1-
|fn-fn-1|

fn-1

and if any of n and σ was decided to mutate, the value of n and σ was added or deduced by 1 or 

0.2 respectively at equal possibility. If the fitness of the gene is no better than previous 

generation, then the gene had to mutate by following the same methods just mentioned. The 

population size p was 100 and the GA stopped when 200 generation were created. The GA 

process was executed on Matlab (Version R2015b, MathWorks, Natick, MA). 

2.6 Statistics 

All tests were repeated at least three times and results presented as the mean and standard 

deviation. The results were compared by one-way ANOVA using SAS 9.3 (SAS Institute Inc., 

Cary NC) to determine the effects of the fat content and the particle size distribution of the 
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chocolate sample on the melting properties measured by DSC and CTA. Tukey’s HSD was used 

to determine significant differences amongst treatments at the 95% level of confidence.  

3. Results and discussion 

3.1 Analysis of volatile compounds profile of cocoa refining/conching 

Figure 7.1 shows one example of how the trendlines of the responds of three of the 

selected gas sensors as a function of time in a refining/conching process. Three parameters (Parea, 

Ppeak, Pwidth) were exacted to characterize the responds of gas sensors in refining/conching 

processes.  The parameters for refining/conching processes with different samples were shown in 

Table 7.1-3. Some of the gas sensors only had negligible responds during the process because the 

sensors were not sensitive to the volatile compounds released by cocoa. Therefore, the 

parameters shown in the tables were extracted from the trendlines of the two gas sensors that had 

shown strongest responds. 

Parea can be considered as the amount of volatile compounds being released during a 

refining/conching process, since the headspace of samples were exposed to the environment. The 

amount of volatile compounds can be released in a refining/conching process were greatly 

influenced by the amount volatile compounds that the sample contains. Therefore, it was 

reasonable to see that the increase of the weight of the samples resulted in increase of Parea. Table 

7.1 also indicated that dark roasted samples resulted in higher Parea values than well roasted 

samples did if the sample weights were the same. Previous research (de Brito et al., 2001) 

indicated that roasting increased the number of damaged and disrupted cells, and reduced the 

amount of cytoplasmic material. Also, the level of phenolic compounds decreased markedly. The 

damaged and disrupted cells release volatiles compounds easier because the cell structure to keep 

the compounds were broken. Therefore, damaged and disrupted cells due to roasted may be one 
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factor that resulted in more volatile compounds were released from dark roasted cocoa samples 

than well roasted samples.  

In addition, many other researches (Diab et al., 2014, Bailey et al., 1962, Cambrai et al., 

2010, Frauendorfer and Schieberle 2008) reported that during roasting, Maillard reaction takes 

place. Therefore, the reaction between reducing sugars and amino acids plays important roles. 

Typical Maillard reaction produce products include dicarbonyls (e.g., diacetyl), heterocyclic 

compounds such as pyrazines, pyroles, pyridines, furans and thiazoles), aldehydes (e.g., 

phenylacetaldehyde and benzaldehyde), ketones, esters, and alcohols. In the meantime, Maillard 

reaction significantly reduce the concentration of free amino acids and reducing sugars. The 

volatile compounds generated by Millard reaction and Strecker degradation during roasting may 

also contributed to the increased concentrations of sensor detectable volatiles compounds.  

Table 7.2 shows the Ppeak values of the cocoa samples during refining/conhcing process. 

The Ppeak can be interpreted as the highest concentration of volatile compounds in the headspace 

in a refining/conhcing process. The concentrations of volatile compounds in the sample 

headspace was determined by the volatility of the sample. The volatility of the samples strongly 

relies on the surface area of the samples, the temperature, and the amount of the compounds that 

the samples contained. This theory concurred with the observations shown in Table 7.2, which 

imply that more sample weight and linger roasting time significantly increased the Ppeak value of 

tested samples. Roasting increased the amount of volatile compounds in the samples, while 

greater sample weight increased both surface area and the amount of volatile compounds in the 

samples. In addition, another observation from Table 7.2 was the increase of sample weight from 

700g to 1000g resulted in the Ppeak value of the samples increased from 0.170 to 0.187 for well 

roasted samples, 0.196 to 0.215 for dark roasted sample. On the other hand, the difference 
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between Ppeak values of dark roasted samples and well roasted samples were 0.026 for 700g 

samples, 0.028 for 1000g samples. These observations indicated that roasting may played greater 

role than sample weight in influence the Ppeak value.  

The Pwidth values of samples shown in Table 7.3 may interpreted as the time length 

volatile compounds released by the samples kept the responds of the gas sensors greater than a 

threshold value. Three threshold values (20%, 40% and 60% of the peak value) were selected in 

this study.  Both increasing sample weight and increasing roasting degree resulting in greater 

Pwidth values of all samples, no matter which threshold valued were applied. However, unlike 

Parea and Ppeak values, Pwidth values of all samples were influenced greater by sample weight than 

by roasting time. This observation implied that roasting increased the amount of volatile 

compounds in cocoa samples, however, it made it easier for volatile compounds to be released 

during refining/conching process. As mentioned above, roasting could destroy the structure 

inside cocoa and increased the number of damaged and disrupted cells, thus, decrease the ability 

for the cells to ‘trap’ the volatile compounds. 

The three parameters, Parea, Pwidth and Ppeak may have shown the overall influences 

introduced by sample weight and roasting time on the sensor responds in refining/conching 

processes, however, the three parameters were not able to differentiate the influence of single 

factors. Therefore, it is difficult to use the three parameters to characterize the responds of gas 

sensors and it is also unrealistic to fingerprint the samples based on the three parameters.    

3.2 Kernel MD model analysis 

After running GA for 10 times, the selected setting for Kernel MD were n = 22, σ = 0.3. 

Validation data were used to evaluate the performance of the Kernel MD model trained by 

sensor responses collected during the refining/conching process of 700g well roasted beans and 
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the results were shown in Figure 7.3 as an example. It indicated that if the validation data was 

provided by samples with same conditions (sample weight and roasting degree) as samples being 

used to trained the model, then the RMAE value of the model were much smaller than the 

RMAE values of using validation data collected from samples had at least one condition was not 

the same as samples from training group. The figure also implied that for validation the model, if 

the samples from validation group only have one condition varied from the training samples, 

then the validation samples had different roasting time yielded great RMAE values than 

validation sample had different sample weight. Furthermore, if validation samples had both 

conditions differed from the training samples were used to validate the trained model, then the 

RMAE values was greater than any of the RMAE value achieved by other samples from 

validation group. RMAE value can be interpreted as the difference between the trained model 

and the validation data, or in another word, how the validation data fit the model. From Figure 

7.3, based on the RMAE values, the trained model can be used to do classification and 

discrimination, determining which validation sample had most similar or different condition as 

training samples.  

Figure 7.4 also shows, at different stage of refining/conching, the ratios (ratio1, ratio 2, 

and ratio3) between the RMAE yielded by validation samples who had the same condition as 

training samples, to RMAE values achieved by validation samples had different in sample 

weight, roasting degree and both respectively. Smaller ratio value implied that the validation data 

was less likely to fit the trained model. For better discrimination and classification, small ratio 

values were desirable. From Figure 7.3, it shown that smallest value of ratios shown up at around 

using the first 2h of training data to train the model. Also, from Figure 7.2, it roughly shows that 

most of the differences between the responds of the gas sensor that monitoring different samples 
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being refined and conched appeared at the first two hours of the refining/conching process. 

Therefore, for the performance of other trained model, the evaluations were based on the data 

collected from the first 2h of reefing/conchig process.  

Table 7.4 shown the performances of Kernel MD models trained by different training 

data from training group. Generally, the smallest RMAE values were produced when the training 

group and validation group are same type of samples. If the validation group and training group 

use samples varied in one condition, then differing the roasting made the model produce higher 

RMAE values than using sample varied in sample weight. Furthermore, if the training data are 

from well roasted samples, flip both conditions yielded highest RMAE values. Therefore, the 

models did good job in recognizing samples that had same conditions as training group, also the 

model also provided good discrimination of samples had different conditions.  

4. Conclusion 

Although the overall influences introduced by roasting and sample weight on volatile 

compounds profile were able to be detected by using Parea, Pwidth and Ppeak, they failed to 

characterize the influence introduced by single factor. On the other hand, the trained Kernel DM 

models were able to characterize the total volatile compounds profiles generated by samples with 

same or different treatment. Classification and discrimination for different volatile compounds 

profiles were correctly conducted by trained Kernel DM models. The Kernel DM method is an 

inexpensive and in-line models that can be implemented to chocolate manufacturing, monitoring 

the flavor development during refinling/conching process. Based on the model, chocolate 

manufacturers can make prediction about the time needed for refinling/conching, in addition, 

they can find the affinity between one unknow sample between one known sample. 

 



 

193 
 

References 

Afoakwa, E. O., 2016. Chocolate science and technology. John Wiley & Sons. 

Afoakwa, E. O., 2010. Chocolate production and consumption patterns. Chocolate Science and 

Technology, pp.1-11. 

Arshak, K., Moore, E., Lyons, G. M., Harris, J. and Clifford, S., 2004. A review of gas sensors 

employed in electronic nose applications. Sens. Rev., 24(2), pp.181-198. 

Bailey, S. D., Mitchell, D. G., Bazinet, M. L. and Weurman, C., 1962. Studies on the volatile 

components of different varieties of cocoa beans. J. Food Sci., 27(2), pp.165-170. 

Beckett, S. T. ed., 2011. Industrial chocolate manufacture and use. John Wiley & Sons. 

Beckett, S. T., 2009. Conching. Industrial Chocolate Manufacture and Use, Fourth Edition, pp.19 

Beckett, S., 2000. The science of chocolate (Vol. 22). Royal Society of Chemistry. 

Bleibaum, R. N., Stone, H., Tan, T., Labreche, S., Saint-Martin, E. and Isz, S., 2002. Comparison 

of sensory and consumer results with electronic nose and tongue sensors for apple juices. Food 

Qual Prefer, 13(6), pp.409-422. 

Bonvehí, J. S., 2005. Investigation of aromatic compounds in roasted cocoa powder. Eur. Food 

Res. Technol., 221(1-2), pp.19-29. 

Buratti, S., Ballabio, D., Benedetti, S. and Cosio, M. S., 2007. Prediction of Italian red wine 

sensorial descriptors from electronic nose, electronic tongue and spectrophotometric 

measurements by means of Genetic Algorithm regression models. Food Chem., 100(1), pp.211-

218. 



194 

Cambrai, A., Marcic, C., Morville, S., Sae Houer, P., Bindler, F. and Marchioni, E., 2010. 

Differentiation of chocolates according to the cocoa’s geographical origin using 

chemometrics.  J. Agric. Food Chem., 58(3), pp.1478-1483. 

Carvallo, F. D. L., Hine, W. S. and Helmreich, A. V., Kraft Foods, Inc., 2001. Chocolate refining 

process. U.S. Patent 6,238,724. 

Counet, C., Callemien, D., Ouwerx, C. and Collin, S., 2002. Use of gas chromatography- 

olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples 

before and after conching.  J. Agric. Food Chem., 50(8), pp.2385-2391. 

De Brito, E. S., García, N. H. P., Gallão, M. I., Cortelazzo, A. L., Fevereiro, P. S. and Braga, M. 

R., 2001. Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation, 

drying and roasting. J. Sci. Food Agric., 81(2), pp.281-288. 

Diab, J., Hertz-Schünemann, R., Streibel, T. and Zimmermann, R., 2014. Online measurement of 

volatile organic compounds released during roasting of cocoa beans. Food Res. Int., 63, pp.344-

352. 

Ducki, S., Miralles-Garcia, J., Zumbé, A., Tornero, A. and Storey, D. M., 2008. Evaluation of 

solid-phase micro-extraction coupled to gas chromatography–mass spectrometry for the 

headspace analysis of volatile compounds in cocoa products. Talanta, 74(5), pp.1166-1174. 

Eklöv, T., Johansson, G., Winquist, F. and Lundström, I., 1998. Monitoring sausage fermentation 

using an electronic nose. J. Sci. Food Agric., 76(4), pp.525-532. 

Fine, G. F., Cavanagh, L. M., Afonja, A. and Binions, R., 2010. Metal oxide semi-conductor gas 

sensors in environmental monitoring. Sensors, 10(6), pp.5469-5502. 



 

195 
 

Frauendorfer, F. and Schieberle, P., 2008. Changes in key aroma compounds of Criollo cocoa 

beans during roasting.  J. Agric. Food Chem., 56(21), pp.10244-10251. 

Fryer, P. and Pinschower, K., 2000. The materials science of chocolate. Mrs Bulletin, 25(12), 

pp.25-29. 

García, M., Aleixandre, M., Gutiérrez, J. and Horrillo, M. C., 2006. Electronic nose for wine 

discrimination. Sens. Actuators, B, 113(2), pp.911-916. 

Glicerina, V., Balestra, F., Rosa, M. D., Bergenhstål, B., Tornberg, E. and Romani, S., 2014. The 

Influence of Different Processing Stages on Particle Size, Microstructure, and Appearance of 

Dark Chocolate. J. Food Sci. 79(7), pp.E1359-E1365. 

Goldberg, D. E. (1990). A note on Boltzmann tournament selection for genetic algorithms and 

population-oriented simulated annealing. Complex Syst., 4(4), 445-460. 

Grivetti, L.E. and Shapiro, H.Y., 2011. Chocolate: history, culture, and heritage. John Wiley & 

Sons. 

Harsányi, G., 2000. Polymer films in sensor applications: a review of present uses and future 

possibilities. Sens. Rev., 20(2), pp.98-105. 

Hernandez Bennetts, V., Schaffernicht, E., Pomareda, V., Lilienthal, A. J., Marco, S. and 

Trincavelli, M., 2014. Combining non-selective gas sensors on a mobile robot for identification 

and mapping of multiple chemical compounds. Sensors, 14(9), pp.17331-17352. 

Hinze, J. O., 1975. Turbulence McGraw-Hill. New York, 218. 



 

196 
 

Jinap, S., Rosli, W. W., Russly, A. R. and Nordin, L. M., 1998. Effect of roasting time and 

temperature on volatile component profiles during nib roasting of cocoa beans (Theobroma 

cacao). J. Sci. Food Agric., 77(4), pp.441-448. 

Jolly, M. S., Blackburn, S. and Beckett, S. T., 2003. Energy reduction during chocolate conching 

using a reciprocating multihole extruder. J. Food Eng., 59(2), pp.137-142. 

Labreche, S., Bazzo, S., Cade, S. and Chanie, E., 2005. Shelf life determination by electronic 

nose: application to milk. Sens. Actuators, B, 106(1), pp.199-206. 

Lilienthal, A. J., Reggente, M., Trincavelli, M., Blanco, J. L. and Gonzalez, J., 2009, October. A 

statistical approach to gas distribution modelling with mobile robots-the kernel dm+v algorithm. 

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp. 

570-576). IEEE. 

Lozano, J., Santos, J. P. and Horrillo, M. C., 2005. Classification of white wine aromas with an 

electronic nose. Talanta, 67(3), pp.610-616. 

Markom, M. A., Shakaff, A. M., Adom, A. H., Ahmad, M. N., Hidayat, W., Abdullah, A. H. and 

Fikri, N. A., 2009. Intelligent electronic nose system for basal stem rot disease 

detection. Comput Electron Agric, 66(2), pp.140-146. 

Olunloyo, V. O., Ibidapo, T. A. and Dinrifo, R. R., 2012. Neural network-based electronic nose 

for cocoa beans quality assessment. Agricultural Engineering International: CIGR Journal, 13(4). 

Owusu, M., Petersen, M. A. and Heimdal, H., 2012. Effect of fermentation method, roasting and 

conching conditions on the aroma volatiles of dark chocolate. J. Food Process. Preserv., 36(5), 

pp.446-456. 



197 

Pearce, T. C., Schiffman, S. S., Nagle, H. T. and Gardner, J. W. eds., 2006. Handbook of 

machine olfaction: electronic nose technology. John Wiley & Sons. 

Prawira, M. and Barringer, S. A., 2009. Effects of conching time and ingredients on preference 

of milk chocolate. J. Food Process. Preserv., 33(5), pp.571-589. 

Rodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E. and 

Jaramillo-Flores, M.E., 2011. Dynamics of volatile and non-volatile compounds in cocoa 

(Theobroma cacao L.) during fermentation and drying processes using principal components 

analysis. Food Res. Int., 44(1), pp.250-258. 

Saltini, R., Akkerman, R. and Frosch, S., 2013. Optimizing chocolate production through 

traceability: A review of the influence of farming practices on cocoa bean quality. Food 

Control, 29(1), pp.167-187. 

Shoemaker, D. P., Garland, C. W. and Steinfeld, J. I., 1962. Experiments in physical chemistry. 

New York: McGraw-Hill. 

Sivaraj, R., & Ravichandran, T. (2011). A review of selection methods in genetic algorithm. Int. 

J. Eng. Sci. Res. Technol., 3(5). 

Schnermann, P. and Schieberle, P., 1997. Evaluation of key odorants in milk chocolate and 

cocoa mass by aroma extract dilution analyses.  J. Agric. Food Chem., 45(3), pp.867-872. 

Shraiman, B. I. and Siggia, E. D., 2000. Scalar turbulence. Nature, 405(6787), pp.639-646. 

Squicciarini, M. P. and Swinnen, J., 2016. The Economics of Chocolate. Oxford University 

Press. 



 

198 
 

Figures 

 

 

 

 

 

 

Figure 7.1. Diagram of electronic nose system for monitoring refining/conching. 
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Figure 7.2. The responses of gas sensors during refining/conching. 

Figure 7.3. The responses of the most sensitive gas sensor from the refining/conching processes 

of different samples. 
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Figure 7.4. The performance of trained Kernel DMs in terms of RMAE and ratio. 
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Tables 

Table 7.1. The Parea values for refining/conching processes of different samples.  

 2h 4h 8h 

700wr 372.41a 509.9a 737.15a 

700dr 623.32b 1005.46b 1674.89b 

1000wr 663.65b 1010.15b 1636.72b 

1000dr 788.8c 1167.221c 1806.753c 

wr is “well roasted” sample, “dr” is “dark roasted” sample, and the number represent the sample weight. 

 

Table 7.2. The Ppeak values for refining/conching processes of different samples.  

 Peak valuse 

700wr 0.16989a 

700dr 0.196379c 

1000wr 0.187003b 

1000dr 0.215487d 

wr is “well roasted” sample, “dr” is “dark roasted” sample, and the number represent the sample weight. 

 

Table 7.3. The Pwidth values for refining/conching processes of different samples at different 
thresholding setting.  

 0.2 S0.4 0.6 

700wr 1606a 914a 274a 

700dr 2439b 1113ab 615b 

1000wr 3792c 1872b 801bc 

1000dr 4320d 2172c 1044c 

wr is “well roasted” sample, “dr” is “dark roasted” sample, and the number represent the sample weight. 
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Table 7.4. The performance of different trained Kernel DMs in terms of RMAE when applied to 
different validation groups. 

Training group 700g-WR 1000g-WR 700g-OR 

Validation group 

700g-WR 1.052a 2.927c 5.186d 

1000g-WR 4.527b 1.382a 3.984c

700g-OR 8.163c 1.987b 1.792a

1000g-OR 9.271d 5.765d 2.781b 

wr is “well roasted” sample, “dr” is “dark roasted” sample, and the number represent the sample weight. 
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CHAPTER 8 

SUMMARY 

Determination of glass transitions in boiled candies by capacitance based thermal analysis 

(CTA) and genetic algorithm (GA) 

When the Tg of the candy was below ~15 ℃, the measurement from the GA-CTA was 

higher (2-3 ℃) than that from DSC. However, if Tg of the candy was higher than 15 ℃, the two 

methods gave similar values. GA based CTA provides a feasible new way to measure phase 

transitions in candies with relatively inexpensive equipment, and with less need for user 

interpretation of data. 

Determination of chocolate melting properties capacitance based thermal analysis (CTA) 

PSD of the samples did not significantly influence their melting onset temperature 

(~25℃) and peak temperature (33℃) measured by DSC. However, samples with finer particles 

had lower ending temperatures than those with coarser particles (range 36.59 to 37.28°C). 

Varying fat content in chocolate samples did not result in differences in the DSC melting curves. 

Samples with smaller particle sizes had lower temperatures at peak capacitance than those with 

larger particles, with peak temperatures ranging from 30.84 to 39.29℃, while higher peak 

capacitance values (range 2.61 to 2.84 10-11 F) were measured by contact area based CTA. 

Samples with higher fat content had lower peak temperatures (range 34.7 to 39.71 ℃) but higher 

peak capacitance values (range 3.29 to 4.3 10-11F). While not yielding identical melting 
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temperatures, the values from the CTA system could be correlated with DSC results. In addition, 

the capacitance-based system was much simpler to use and relatively inexpensive to build. 

Particle size measurements and scanning electron microscopy (SEM) of cocoa particles 

refined/conched by conical and cylindrical roller stone melangers 

The performances of the two melangers (conical roller and cylindrical roller) were 

similar, however, cylindrical roller stones tend to generate thin and flat particles during the first 4 

h of refining. Varying sample weights only influenced particle size reduction at early stages of 

refining. From the SEM images, a decreasing trend in the number of large spherical particles and 

an increasing trend in the number of small flat irregularly shaped particles were observed. The 

particle size measurements by the micrometer of cocoa particles refined for 0.5 h was greater 

than all other methods. However, the particle size measurements by the micrometer of particles 

refined for 2 h, 4 h, and 24 h were smaller than the measurements made by any other methods. 

On the other hand, except for cocoa being refined for 0.5 h, the particle size measurements tested 

by light microscopy image analysis for all cocoa samples were much greater than other 

measurement methods. Both the micrometer and light microscopy image analysis can be used to 

monitor the PSD of cocoa particles during refining/conching. However, the Hegman gauge failed 

to provide meaningful measurements. 

Determining degree of roasting in cocoa beans by artificial neural network (ANN) based 

electronic nose system and gas chromatography/mass spectrometry (GC/MS) 

In this study, an electronic nose system was constructed consisting of an array of gas 

sensors and used to detect volatiles emanating from cocoa beans roasted at 0, 20, 30, and 40min. 

The several signals were used to train a three-layer artificial neural network (ANN). Headspace 

samples were also analyzed by GC-MS with 23 select volatiles used to train a separate ANN. Both 
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ANNs were used to predict the degree of roasting of cocoa beans. The electronic nose had a 

prediction accuracy of 94.4% using signals from TGS 813, 826, 820, 880, 830, 2620, 2602 and 

2610 sensors. In comparison, the GC-MS predicted the degree of roasting with an accuracy of 

95.8%.    

Characterizing cocoa conching and refining processes by kernel distribution model (Kernel 

MD) based electronic nose 

The three parameters were able to detect the overall influence of roasting and sample 

weight on the volatile compound profile, however, they failed to characterize the influences 

introduced by single factor. On the other hand, the trained Kernel DM models were able to 

characterize the total volatile compounds profiles of samples with different treatment. 

Classification and discrimination based on volatile compounds profiles were correctly conducted 

by trained Kernel DM models. 


