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ABSTRACT

Although many programs exist for generating simulated alignments of DNA sequences, no pro-

gram combines the robust GTR substitution model with a model of indel formation. To correct this

gap, the application, Dawg, was created. Dawg is the first program to provide the option of pro-

ducing indels under the power-law model, which is the model most consistent with biological data.

Some authors have suggested that the power-law distribution of indel lengths make logarithmic

gap costs the preferred method of sequence alignment. Utilizing Dawg, the utility of logarithmic

gap costs is investigated in pairwise global alignments. They are shown to be poor performers

when compared to the standard affine methods. Furthermore, a model for calculating gap costs is

developed which explains why affine costs are a better option than logarithmic costs.

The third study investigates the antagonism between local dispersal and self-incompatibility

systems in a continuous plant population. This antagonism is shown to affect the fine-scaled genetic

structure of the population and depend on the linkage of markers and self-incompatibility loci.

Furthermore, gametophytic and sporophytic self-incompatibility are show to not be much different

than obligate outcrossing.

INDEX WORDS: Evolution, Simulation, Alignment, Logarithm, Self-Incompatibility,
Local Dispersal, Plant Mating System, Dissertations, Theses (academic)
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CHAPTER 1

INTRODUCTION

Theoretical research is very central to the practice of science. Modern science depends on the-

oretical research, whether mathematical, statistical, or computational, to develop methodologies

and predictions that can be employed in experimental research. Theoretical research has been very

important to the study of genetics since the early part of the twentieth century. The theoretical

research of Sewall Wright, R.A. Fisher, and J.B.S. Haldane served as the foundation of the mod-

ern synthesis of evolution and genetics. Today, out of all the life sciences, evolutionary biology is

probably the strongest in generating and utilizing theoretical research.

In the three studies presented in this dissertation, I extend the theoretical evolutionary genetics.

In the first study I develop a portable application that can simulate sequence evolution using the

robust GTR+Γ+I model of sequence substitution and the power-law model of indel lengths. In the

second study, I apply this simulation to the question of logarithmic gaps costs for global pair-wise

alignments. I show that, despite some suggestions in the literature, logarithmic gap costs are a

horrible way to align sequences. Furthermore, I develop a model for gap costs that can explain

why logarithmic gap costs do not derive from indel sizes that obey a power-law. In the third study

I change course from studying molecular evolution and look at a topic in population genetics: the

antagonism between self-incompatibility systems and local dispersal. I show that gametophytic

and sprophytic self-incompatibility have approximately the same effect on inbreeding and gene

dispersal.

1



CHAPTER 2

LITERATURE REVIEW

2.1 SEQUENCE SIMULATION

Many tools and procedures exist that can reconstruct sequence alignments, estimate phylogenetic

relationships, or estimate evolutionary parameters from extant data. These tools and procedures

are required because true phylogenies and alignments are known in only very rare, experimental

instances (e.g. Bull et al., 1993; Hillis et al., 1992, 1994). “Obvious” phylogenies and alignments,

although helpful, cannot provide the same level of precision as simulated phylogenies. Because we

rely on tools to infer alignments, phylogenies, and evolutionary parameters, the accuracy of these

tools is an issue that biologists take seriously. In the absence of known data with true phyloge-

nies, we are left using simulations to test the accuracy of bioinformatic procedures (e.g. Blanchette

et al., 2004; Hillis et al., 1994; Kuhner and Felsenstein, 1994). Simulations can produce flaw-

less sequence alignments derived from known (i.e. user specified) phylogenies and evolutionary

parameters. Using such simulated sequences, researchers can determine the accuracy of proce-

dures for estimating the alignment, phylogeny, or evolutionary parameters. Because many of these

procedures assume certain models of evolution, evolving simulated sequences using such models

provides a measure of accuracy in ideal cases. Using models of evolution that deviate from ideal

cases can, in turn, demonstrate the robustness of the procedures. Parametric bootstrapping using

simulations can also be used to produce confidence intervals for procedures.

Sequences evolve through changing existing residues, adding new residues, or removing ex-

isting residues. Therefore, proper simulation of molecular evolution of DNA should involve nu-

cleotide substitution, insertion, and deletion. However, existing tools for simulating sequence evo-

lution (Table 3.1) either do not include indels, like Seq-gen (Rambaut and Grassly, 1997) or evolver

2
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(Yang, 1997), include an underived model of indel formation, like Rose (Stoye et al., 1998), or are

designed for a particular purpose and are inflexible like (Hall, 2005). In my first study, I develop a

robust simulation to fill in these gaps.

2.2 LOGARITHMIC ALIGNMENTS

Sequence alignments are essential to the study of molecular biology and systematics. Alignments

are necessary because during evolution sequences can gain and lose residues. Alignments reveal

such gaps in sequence data. Researchers usually need to align sequences before they can study

them. For example, most algorithms that construct phylogenetic trees from sequences require a

sequence alignment (Swofford, 2002). Since alignments are intended to tell researchers something

about the evolutionary history of sequences, the quality of the inferences we make from alignments

depends on the quality of the alignments themselves.

Studies on the distribution of indel lengths have revealed that they obey a power-law (Benner

et al., 1993; Chang and Benner, 2004; Gu and Li, 1995; Zhang and Gerstein, 2003). This observa-

tion suggests that sequences should be aligned using logarithmic gap costs, i.e. Cg (x) = a+c ln(x)

(Gu and Li, 1995). However, the standard method of sequence alignment uses affine gap costs,

i.e. Cg (x) = a + bx (Gotoh, 1982). Affine gap costs are popular because they are efficient (Go-

toh, 1982) and model the fact that gaps “cost” more to start then they do to extend. However,

researchers cannot adapt Gotoh’s algorithm to logarithmic gap costs. Instead researchers must use

the more computationally expensive candidate list method of Waterman (1984) as optimized by

Miller and Myers (1988). Although, affine gap costs are efficient, my second study seeks to deter-

mine whether this efficiency comes with a cost to accuracy.

2.3 SELF-INCOMPATIBILITY AND ISOLATION-BY-DISTANCE

Many taxa of angiosperms employ Mendelian mating-types to prevent self-fertilization. These

“self-incompatibility” systems come in two forms: gametophytic and sporophyic. In gametophytic

self-incompatibility (GSI), the mating-type of the pollen is determined by the pollen haplotype,
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and stigmas reject any pollen bearing either one of their alleles. Two gametophytic systems have

been studied molecularly: Papaveraceae (e.g. poppy) and Solanaceae (e.g. nightshade, potato, to-

bacco) (Igic and Kohn, 2001; Nasrallah, 2005; Takayama and Isogai, 2005). In sporophytic self-

incompatibility (SSI), the mating-type of the pollen is determined by the pollen-donor’s genotype,

and stigmas will only accept pollen produced by plants that share none of the stigmas’s alleles. One

sporophytic system has been studied molecularly: Brassicaceae (e.g. cabbage, broccoli, Arabidop-

sis) (Igic and Kohn, 2001; Nasrallah, 2005; Takayama and Isogai, 2005). These SI systems are

controlled by a single highly polymorphic Mendelian locus, the S Locus, which contains several

tightly linked genes. This tight linkage results from both close physical association on the chro-

mosome and reduced recombination rate in the area (Kamau and Charlesworth, 2005). Because

recombination rates are reduced and S loci experience strong balancing selection, genes near the S

loci will exhibit more diversity and longer coalescent times than they would otherwise (Awadalla

and Charlesworth, 1999; Charlesworth, 2006; Charlesworth et al., 2006; Hagenblad et al., 2006;

Kamau and Charlesworth, 2005; Schierup et al., 2000).

The function of the S Locus is to prevent pollen from fertilizing flowers of genetically similar

plants. The primary result is that self-fertilization is impossible, and the secondary result is that

matings between relatives are reduced. The S Locus evolves under classical frequency-dependent

sexual selection (Wright, 1939), resulting in high fitness for rare and novel alleles. Plants with rare

alleles can pollinate more plants than can plants with common alleles.

Although a species may inhabit a geographically contiguous region with no physical barriers to

gene flow, the species may not be panmictic. The physical distances separating two individuals may

prevent them from mating freely, and instead individuals are more likely to mate with individuals

that are near them than individuals that are far away from them. This is known as “isolation-

by-distance” (Wright, 1943). Wright (1946) studied isolation-by-distance further and developed

the concept of “neighborhood size” to compare how different mating systems affect isolation-by-

distance. In a continuous population, isolation-by-distance creates fine scaled genetic structure

because individuals near one another are expected to be more closely related than individuals
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farther apart. Therefore, alleles can often show a patchy distribution with respect to geography

(Epperson, 1990; Rohlf and Schnell, 1971; Sokal and Wartenberg, 1983; Turner et al., 1982).

Self-incompatibility systems promote outbreeding while local dispersal promotes inbreeding.

Therefore, an antagonism exists between the two processes. Furthermore, this antagonism will

manifest differently in makers linked to the S locus than in markers that are unlinked to the S

locus. Several studies have looked at the effect of population subdivision on allelic diversity of

S loci (Muirhead, 2001; Neuhauser, 1998; Schierup, 1998; Schierup et al., 2000; Wright, 1939).

Furthermore, two studies have looked at the effect of isolation-by-distance on self-incompatibility

loci (Brooks et al., 1996; Neuhauser, 1998). However, none of those studies have looked at the

antagonism directly, which is the goal of my third study.
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CHAPTER 3

DNA ASSEMBLY WITH GAPS (DAWG): SIMULATING SEQUENCE EVOLUTION1

1Cartwright, R.A. (2005) Bioinformatics. 21 Suppl 3:iii31-iii38.
Reprinted here with permission of publisher.
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3.1 INTRODUCTION

Many tools and procedures exist that can reconstruct sequence alignments, estimate phylogenetic

relationships, or estimate evolutionary parameters from extant data. These tools and procedures

are required because true phylogenies and alignments are known in only very rare, experimental

instances (e.g. Bull et al., 1993; Hillis et al., 1992, 1994). “Obvious” phylogenies and alignments,

although helpful, cannot provide the same level of precision as simulated phylogenies. Because we

rely on tools to infer alignments, phylogenies, and evolutionary parameters, the accuracy of these

tools is an issue that biologists take seriously. In the absence of known data with true phyloge-

nies, we are left using simulations to test the accuracy of bioinformatic procedures (e.g. Blanchette

et al., 2004; Hillis et al., 1994; Kuhner and Felsenstein, 1994). Simulations can produce flaw-

less sequence alignments derived from known (i.e. user specified) phylogenies and evolutionary

parameters. Using such simulated sequences, researchers can determine the accuracy of proce-

dures for estimating the alignment, phylogeny, or evolutionary parameters. Because many of these

procedures assume certain models of evolution, evolving simulated sequences using such models

provides a measure of accuracy in ideal cases. Using models of evolution that deviate from ideal

cases can, in turn, demonstrate the robustness of the procedures. Parametric bootstrapping using

simulations can also be used to produce confidence intervals for procedures.

Sequences evolve through changing existing residues, adding new residues, or removing ex-

isting residues. Therefore, proper simulation of molecular evolution of DNA should involve nu-

cleotide substitution, insertion, and deletion. However, existing tools for simulating sequence evo-

lution (Table 3.1) either do not include indels, like Seq-gen (Rambaut and Grassly, 1997) or evolver

(Yang, 1997), include an underived model of indel formation, like Rose (Stoye et al., 1998), or are

designed for a particular purpose and are inflexible like (Hall, 2005). I developed Dawg to fill these

gaps.

Dawg is the first sequence simulation program to combine the popular general time reversible

model, gamma and invariant rate heterogeneity, and a model of indel formation. Dawg has several

different ways to model the distributions of the sizes of insertions and deletions. Most importantly,
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Table 3.1: Comparison of simulation programs
Seq-Gen (Rambaut and Grassly, 1997); Evolver (Yang, 1997); Rose (Stoye et al., 1998);
EvolveAGene (Hall, 2005)

Seq-Gen Evolver Rose EvolveAGene Dawg
1.32 3.14a 1.3 2.3 1.0.0

GTR Yes Yes No No Yes
Rate Heterogeneity Γ+I Γ Γ+I No Γ+I

Recombination Yes No No No Yes
Indels No No Yes Yes Yes

Indel Parameter Estimation N/A N/A No No Yes
Input Format Switch File File Menu File

Unix Yes Yes Yes No Yes
Mac OS X Yes Yes Yes Yes Yes

Win32 Yes Yes No No Yes

Dawg is the first program that can explicitly model indel sizes via a power-law distribution, which

has been found in both nucleotide and protein sequences (Benner et al., 1993; Chang and Benner,

2004; Gu and Li, 1995; Zhang and Gerstein, 2003). Additionally, Dawg can simulate recombina-

tion by using different phylogenies for different sections of the sequence. Dawg restricts recombi-

nation and indel formation to blocks of nucleotides of a constant width. Deletions remove whole

blocks, while insertions and recombination occur between blocks. In most uses of the program, the

blocks are one nucleotide wide. Although the underlying model of evolution is neutral DNA, the

evolution of coding sequences can be approximated by setting blocks to be three nucleotides wide

and specifying different rates of evolution for the positions in the block.

The utility of any simulation lies in its ability to generate biologically realistic data. To that

end, researchers can use standard phylogenetic packages to estimate most of the parameters of the

model. A helper script written in Perl, lambda.pl, is provided with Dawg to allow researchers to

estimate parameters of indel evolution from biological data, facilitating biologically meaningful

simulations of indel formation.
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3.2 SYSTEMS AND METHODS

Dawg is a command line program written in standard C++, GNU Bison, and GNU Flex for portabil-

ity. It is packaged using the GNU autoconf and GNU automake tools and will compile on systems

which support them, including most popular derivatives of Unix like Linux, FreeBSD, and Mac-

intosh OS X. It can be compiled in Windows using the minimalist GNU for Windows (MinGW)

or using Microsoft Visual Studio .Net 2003 with ports of GNU Bison and Flex. The document IN-

STALL explains how to compile and install the package for most systems. Development took place

on a variety of machines, including a Windows XP workstation, a FreeBSD server, an Irix server,

a Linux cluster, and a Macintosh OS X desktop. A Perl script, lambda.pl, is distributed with Dawg

and can be used to estimate parameters for the indel model from an alignment and a phylogeny

with branch lengths. A few other utility scripts are also included.

Dawg is configured by an input file, an example of which is in Figure 3.1. One of the design

goals of Dawg is to offer a robust DNA simulation package, and thus there are a wide range of

options. New options and features may be added in future versions of the program. Currently

options include controlling the phylogeny, substitution model, indel model, and program output.

3.3 ALGORITHM

Dawg’s algorithm for simulating evolution supports substitution, rate heterogeneity, indel forma-

tion, and recombination. There is no limit on the length of sequences or size and structure of phylo-

genies, except those imposed by hardware and time. The complexity of the algorithm is O(NLR),

where N is the number of nodes in the phylogeny, L is the average sequence length, and R is the

number of repetitions. Similarly, the memory requirement is O(NL). Simulation of Figure 3.1 with

ten thousand repetitions took 10.5 seconds on an Intel Xeon 3.06GHz, Windows XP workstation

and consumed less than a megabyte of memory.
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# example.dawg

Tree = ((AY727331:0.001359,AY727330:0.001359):0.084512,

(AY727327:0.006116,AY727326:0.006116):0.079756);

Model = "GTR"

Params = {1.08031, 2.45581, 0.44452,

1.09145, 4.06519, 1.00000}

Freqs = {0.353470, 0.143681, 0.178206, 0.324643}

Length = 300

Lambda = 0.143120

GapModel = "NB"

GapParams = {1, 0.753247}

Format = "Clustal"

File = "example.aln"

Seed = 1981

Figure 3.1: Example.dawg, a sample input file derived from biological data. The parameters were
derived from the sequences of chloroplast trnK introns of four Rosid species. The initial sequence
length was shortened and a seed was added for reproducibility. The output, example.aln, can be
found in Figure 3.3. See Example Usage (subsection 3.3.11) and Results (section 3.5) for more
detail.

3.3.1 SUBSTITUTION

Dawg produces descendent sequences from ancestral sequences via a two-step evolutionary model.

The first step simulates substitution via the general time reversible model with gamma and invari-

ant rate heterogeneity (GTR+Γ+I; Felsenstein, 2004; Lanave et al., 1984; Rodríguez et al., 1990;

Tavaré, 1986; Waddell and Steel, 1997; Yang, 1994, 1993). The second step simulates indel for-

mation via a continuous-time, length-dependent model derived for Dawg.

GTR is a ten parameter model (eight free, two dependent) which represents nucleotide substi-

tution in continuous time. The parameters are the four stationary nucleotide frequencies, ϕi, and

the six symmetric, relative, instantaneous rates of substitution, σi j. These parameters combine to

form the instantaneous substitution rate matrix
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Q =



qAA σACϕC σAGϕG σAT ϕT

σACϕA qCC σCGϕG σCT ϕT

σAGϕA σCGϕC qGG σGT ϕT

σAT ϕA σCT ϕC σGT ϕG qT T


where qii =−∑ j 6=i σi jϕ j. Many common models (Felsenstein, 1981, 1984; Hasegawa et al., 1985;

Jukes and Cantor, 1969; Kimura, 1980, 1981; Tamura and Nei, 1993) can be expressed as special-

izations of GTR. See Felsenstein (2004) for a recent and detailed description of the GTR model.

3.3.2 HETEROGENEOUS RATES

The Γ+I model of heterogeneous rates of nucleotide evolution allows for the rate of evolution to

vary among sites, with a set proportion of sites remaining unchanged (Waddell and Steel, 1997).

Under this model, the relative rates of substitution at each position are independent and identically

distributed by the hierarchal distribution,

f (r|α, ι) =


0 : r < 0

ι : r = 0

(1− ι) (αr)α e−αr

rΓ(α) : r > 0

where 0 ≤ ι ≤ 1 is the proportion of invariant sites, α > 0 is the shape parameter, and Γ(α) is

the complete gamma function. The expected value of this distribution is 1− ι , and the variance is

(1− ι)(γ + ι), where γ = α−1 is the coefficient of variance. The coefficient of variance is preferred

over the shape parameter for describing the Γ+I distribution. If γ = 0, the distribution becomes

discrete, and a site either evolves in step with the branch length (r = 1) or remains unchanged (r =

0). The simulation holds constant each site’s relative rate of substitution, and daughter nucleotides

inherit their parent’s rate. Dawg extends the basic Γ+I model by allowing each position in a block

to have different γ and ι parameters. Each position also has a relative scaling parameter, s, to allow

some positions to evolve relatively faster than others.
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3.3.3 RESCALING

Dawg calculates the probability that nucleotide j substitutes for nucleotide i at site n with relative

rate rn and relative scale sn over time t as the (i, j) entry of matrix

Pn (t) = ekQsnrnt

where k is a correction factor. The expected number of substitutions for block position w is

E (Y |t,w) = ∑
i={A,C,G,T}

−kϕi,wqii,wsw (1− ιw) t

where k is the rescaling constant, ϕi,w is the frequency of nucleotide i for block position w, qii,w

is the (i, i) entry of the GTR matrix for position w, sw is the relative scalar for position w in a

block, and ιw is the proportion of invariant sites for position w. Therefore, the expected number of

substitutions per site given time t is

E (Y |t ) =
1

W

W

∑
w=1

E (Y |t,w)

where W is the block width. As Felsenstein (1981) and Yang (1994) suggest, Dawg rescales the

substitution matrix such that the branch lengths represent the expected number of substitutions per

site. Thus, since E (Y |t ) = t,

k =
W

W
∑

w=1
∑

i={A,C,G,T}
−ϕi,wqii,wsw (1− ιw)

Since the GTR parameters are the same for all block positions, the correction factor simplifies to

k =−W

(
W

∑
w=1

sw (1− ιw)

)−1(
∑

i={A,C,G,T}
ϕiqii

)−1

This rescaling to substitution time is important for interpretation of the indel model.
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Because the calculation of Pn (t) involves finding the eigenvalues and eigenvectors of kQ, Dawg

implements a Jacobi transformation (Press et al., 1992, pages 463-469) optimized for a four-by-

four matrix. Although Jacobi transformations are simple, accurate, and numerically stable, they

only work on symmetric matrices, and kQ is not symmetric. Dawg utilizes a mathematical trick to

find the eigensystem of a symmetric matrix related to kQ and to convert the results to the eigen-

system of kQ (Yang, 1995). The matrix S = Φ1/2kQΦ−1/2 is symmetric and has the same eigen-

values as kQ, where Φ1/2 = diag
(

ϕ
1/2
A ,ϕ

1/2
C ,ϕ

1/2
G ,ϕ

1/2
T

)
. If VS are right eigenvectors of S, then

VkQ = Φ−1/2VS are the right eigenvectors of kQ. Once the eigensystem is found, Pn (t) can be cal-

culated and used with the state of the ancestral nucleotide to randomly draw the donor nucleotide

for the position.

3.3.4 INDEL FORMATION

Dawg implements a novel model of indel formation. Like substitutions, indels occur in continuous

time. The model treats insertions and deletions as different processes, and each one has its own

distribution of sizes and instantaneous rate of formation. The model assumes that there is a fixed,

instantaneous rate of indels occurring at any site at any time; therefore, indels are more probable in

longer sequences and over longer time intervals. To satisfy this assumption, Dawg uses a Poisson

process that is linearly dependent on the length of the sequence. Table 3.2 shows some differences

between Dawg’s model and other indel models.

In this model indel formation is restricted to a certain block width, e.g. 1 for nucleotides and 3

for codons. Indel formation occurs in substitution time, and when the block width is 1, the instan-

taneous rates of formation approximately represent the ratio of insertions or deletions to substitu-

tions. An indel is identified by two parameters: a location and a length. The location represents the

place where nucleotides are inserted or the place at which a deletion begins. The length represents

the number of blocks inserted or deleted.

Insertions are rather simple to model. If ` is the number of blocks in the subsequence being

evolved, then there are `+ 1 possible locations for an insertion to occur, including both ends of
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Table 3.2: Comparisons of indel formation models. TKF91 (Thorne et al., 1991); TKF92 (Thorne
et al., 1992); Rose (Stoye et al., 1998); McAlign (Keightley and Johnson, 2004); Long Indel (Mik-
lós et al., 2004)

TKF91 TKF92 Rose McAlign Long Indel Dawg
Poisson Process Yes Yes No No Yes Yes

Length Dependent Yes Yes Yes Yes Yes Yes
Time Dependent Yes Yes Yes Yes Yes Yes

In Substitution Time No No No Yes No Yes
Multiresidue Indels No Yes Yes Yes Yes Yes

Overlapping Ends N/A Yes No No Yes Yes
Time Reversibility Required Yes Yes No Yes Yes No

Immortal Link Yes Yes No No Yes Yes
Insertion-Deletion Differences Yes Yes Yes No Yes Yes

Gaps can overlap N/A No Yes No Yes Yes
Alignment Algorithm Yes Yes No Yes Yes No
Simulation Algorithm No No Yes No No Yes

the sequence. The sequence thus has an “immortal link” (Thorne et al., 1991), ensuring that an

insertion can occur if ` = 0. If λI is the rate of insertion per location, then the waiting time until an

insertion occurs is exponentially distributed with mean (λI`+λI)
−1. Inserted nucleotides are ran-

domly drawn from the stationary base frequencies and heterogeneous rate distribution. Insertions

are right oriented, which means that, if an insertion occurs at a recombination point, the insertion

becomes associated with the rightmost section.

Deletions are more difficult to model because the ends of the subsequence have to be taken

into account. A deletion that starts in a region preceding a sequence may still delete part of the se-

quence. To account for this, I first assume that the subsequence being modeled exists inside a larger

sequence of size N blocks, such that N � `. I also assume that the maximum size of a deletion is M

blocks, such that N �M. This allows the ends of the larger sequence to be ignored and the ends of

the smaller sequence to be considered. A deletion of size u that occurs in the larger sequence will

delete part of the subsequence if it begins at one of the ` nucleotides of the subsequence or at one

of the u−1 nucleotides preceding the subsequence. Therefore, if deletions occur uniformly along
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the larger sequence, then the probability that a deletion in the larger sequence of size u removes

some part of the smaller sequence is simply (u−1+ `)/N. If fD (u) is the discrete distribution of

the size of deletions, then the total probability that a deletion in the larger sequence removes some

part of the smaller sequence is

M

∑
u=1

u−1+ `

N
fD (u) =

1
N

[
M

∑
u=1

u fD (u)+(−1+ `)
M

∑
u=1

fD (u)

]
=

ūD−1+ `

N
(3.1)

If λD is the rate of deletion per location, then the total rate of deletion in N is λDN. From

this and Equation 3.1, the waiting time until a deletion occurs in the subsequence is exponentially

distributed with mean [λD (ūD−1)+λD`]−1. Because N cancels out, we can consider both it and

M to be infinite, allowing more flexibility in the choice of fD (u).

3.3.5 INDEL-SIZE DISTRIBUTIONS

In Dawg the length of an indel is represented by the number of blocks that it covers. Dawg has

three different ways to model the distribution of indel lengths. The first method allows users to

specify the exact discrete distribution of indel lengths. This is referred to as the user model. The

second method models indel lengths using a negative binomial distribution. This model takes two

parameters, an integer (r) and a proportion (q), and has the probability mass function,

f (l) =
(

r + l−2
l−1

)
(1−q)r ql−1

where l = 1,2, ... is the length of an indel. The mean of this distribution is 1+ rq/(1−q). If r = 1,

the distribution is geometric.

The third and most important method models indel lengths via a power-law or Zipf distribution.

Indel lengths have been found to approximately obey this distribution (Benner et al., 1993; Chang

and Benner, 2004; Gu and Li, 1995; Zhang and Gerstein, 2003), and some theory supports it

(Benner et al., 1993). In a Zipf distribution, the probability that an indel has length l = 1,2, ... is
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f (l) =
l−a

ζ (a)

where a > 1 is the parameter of the distribution and ζ (a) is the Riemann Zeta function:

ζ (a) =
∞

∑
k=1

k−a

If a > 2, the mean of a Zipf distribution is ζ (a−1)/ζ (a), and if a > 3, the variance is

ζ (a−2)/ζ (a)− (ζ (a−1)/ζ (a))2. Otherwise, the mean and variance are infinite. Because the

tail of a Zipf distribution is often fat, Dawg truncates the distribution to a user specified, maximum

indel-size, M.

3.3.6 RECOMBINATION

Dawg can produce simulated sequences from phylogenies that contain recombinations. This fea-

ture is optional and is enabled when a user specifies a phylogeny of multiple trees in the input file.

Other software, e.g. ms (Hudson, 2002), can be used to simulate such tree sets from demographic

parameters. Dawg combines trees into a recombinant phylogeny by splitting the sequences at each

node in the phylogeny into multiple sections. Each section corresponds to a separate tree and has

its own ancestral node. If two or more sections have the same ancestral node, then their distance to

that ancestor is specified by the last tree in the group.

Recombination occurs when different sections in the same node are descended from different

ancestors. A recombinant sequence is assembled from donor sequences, and each donor sequence

is associated with an ancestral node. If node A is ancestral to section N of the descendant sequence,

then section N of the descendant sequence is copied from section N of donor sequence A. Donor

sequences are produced by evolving ancestral sequences over the distance separating the ancestor

from the descendant. Figure 3.2 describes this process.
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((C:0.2)A:0.1,(D:0.1,E:0.1)B:0.2)R;

((C:0.2,E:0.2)A:0.1,(D:0.1)B:0.2)R;

(a) A pair of Newick trees specifying a recombinant phylogeny

R
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B

E D

R

A

C E
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D

(b) A visualization of these trees

R

A

C E

B

E D

(c) A visualization of the recombinant phylogeny,
where solid branches are found in both trees and
dashed branches are found in only one tree

R1 R2

A1 A2 B1 B2

C1 C2 D1 D2E1 E2

(d) A graph of how Dawg simulates evolution on the recombinant tree. Boxes, pairs of boxes, and
gray boxes represent sections, sequences, and donor respectively. Arrows indicate where evolution
occurs, and lines indicate where donor sections are copied to descendant sections

Figure 3.2: Recombination
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3.3.7 SIMULATION

Dawg simulates this model of indel formation using a Gillespie algorithm (Gillespie, 1977). For

the algorithm, the total event rate is

λT (`) = (λI +λD)`+λDūD +λI−λD

and the probability that an event is an insertion is p(`) = (`+1)λI/λT (`). Under the algorithm the

waiting time until an event occurs is drawn from an exponential distribution with mean λT (`)−1.

When an indel is formed, it is randomly drawn as an insertion or deletion, with probabilities p(`)

and 1− p(`) respectively. The length of the indel is drawn from its indel-size distribution, and its

position is drawn uniformly from the pool of all possibilities, given the indel size. The algorithm

cycles, updating the length of the sequence each round, until the sum of the waiting times is greater

than the branch length.

Using these models of evolution, Dawg can construct the sequence for every node in the phy-

logeny from the root node. The sequence of the root node can be either specified by the user or

randomly constructed from the stationary distribution of nucleotide frequencies and the heteroge-

neous rate model.

3.3.8 ALIGNMENT

Dawg maintains the indel history of each nucleotide for reconstruction of the true alignment of

sequences. The indel history has one of four states: root, insertion, deletion, and deleted insertion.

When a descendant sequence is constructed from its ancestors, the indel states of parent nucleotides

are copied to daughter nucleotides. In this way sequences at the tips of the phylogeny will contain

information about their lineage from the root.

When nucleotides are inserted in the sequence, their indel state is marked as being insertions.

When nucleotides are deleted in a sequence, they are not actually removed, but rather are marked
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as being deletions. (Dawg skips deletions when evolving sequences.) If an inserted nucleotide is

subsequently deleted, it is marked to distinguish it from a deleted root nucleotide.

The alignment algorithm uses the history of sequences to construct their alignment, adding

gaps to sequences opposite of insertions and deleted insertions. In the alignment, insertions are

once again right-oriented, which means that if an insertion occurs at the same location as a previous

deletion, then it will be to the right of that deletion in the alignment.

3.3.9 TRANSLATION

Dawg can also translate aligned nucleotide sequences into amino acid sequences, using a newly

developed and extremely efficient algorithm. In the 7-bit portable ASCII code set each letter in the

alphabet is represented by a specific number, e.g. “A” is 65. In the table-lookup method (Altschul

et al., 1990; Pearson and Lipman, 1988), a 128-entry array is used to convert 7-bit numbers rep-

resenting nucleotides into 2-bit numbers. Three 2-bit numbers are combined to form a single 6-bit

index for the 64-entry array, which serves as a lookup table for the genetic code (amino acids and

stop codons). Here I present an improved translation method for unambiguous nucleotides that

relies on a novel algorithm and only requires a 64-entry array.

This algorithm relies on a fortuitous property of the standard ASCII numeric representations

of nucleotide letters Table 3.3. If we specify four logical groups of nucleotide letters (A/a, C/c,

T/t/U/u, and G/g), then the second and third least significant bits are the same in each group and

different between groups Table 3.3. Therefore, we are able to use only two binary operations, a

mask and a shift, to reduce each nucleotide group to 0, 1, 2, and 3, respectively Table 3.3. This new

method is called “mask-shift.”
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Table 3.3: Binary Manipulation of Nucleotide Encoding Characters. aMasked by 6 (0000 0110)
bShifted right by 1

Decimal Hexadecimal Binary Maskeda Shiftedb Result
A 65 0x41 0100 0001

0000 0000 0000 0000 0
a 97 0x61 0110 0001
C 67 0x43 0100 0011

0000 0010 0000 0001 1
c 99 0x63 0110 0011
T 84 0x54 0101 0100

0000 0100 0000 0010 2
t 116 0x74 0111 0100
U 85 0x55 0101 0101
u 117 0x75 0111 0101
G 71 0x47 0100 0111

0000 0110 0000 0011 3
g 103 0x67 0110 0111
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Table 3.4: Results of Speed Tests for Mask-Shift Algorithm. aArithmetic implementation
System Compiler Approximate Speed in Seconds

Processor OS Version Flags Mask-Shift Table-Lookup Time Saved
AMD Athlon XP 2100+ Windows XP GCC 3.4.3 -O3 -march=athlon-xp 23.95 33.80 30%

Apple PowerPC G4 867MHZ Mac OS X GCC 3.3 -fast -mcpu=7450 19.94 26.53 25%
Apple PowerPC G5 2.0GHZ Mac OS X GCC 3.3 -fast 4.75 7.39 36%

IBM Power4+ 1200MHZ AIX 5.2 XLC 6.0 -O5 -qarch=pwr4
-qlanglvl=stdc99

18.16a 25.07a 28%

Intel Itanium 2 1300MHZ Linux 2.4.21 ICC 8.1 -fast -mcpu=itanium2 11.86 22.32 47%
Intel Xeon III 866MHZ Freebsd 5.3 ICC 8.1 -O3 51.81a 58.75 11%

Intel Xeon 3.06GHZ Windows XP ICL 8.1 -O3 -QxN -Qipo
-Qc99

6.97a 8.06a 14%

MIPS R12000 300MHZ Irix 6.5 GCC 3.2 -O3 -mips4 93.51 122.36 24%
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Since an index for a 64-entry array can be constructed using masks, shifts, and inclusive ors,

these two processes can be efficiently merged, producing the following remarkably compact C

algorithm:

const char csStd[] = "KNNKTTTTIIIMRSSRQHHQPPPPLLLLRRRR"\

"*YY*SSSSLFFL*CCWEDDEAAAAVVVVGGGG";

void Translate(char *csOut, const char *csIn, const char *csCode) {

for(;*csIn; csIn += 3)

*csOut++ = csCode[((csIn[0]&6) << 3)

|((csIn[1]&6) << 1)

|((csIn[2]&6) >> 1)];

*csOut = '\0';

}

This function takes three parameters: the character string for the resulting amino acid transla-

tion, the character string containing the nucleotides to be translated, and a character string contain-

ing the genetic code. If the first two parameters are identical then the string is translated in-place.

A string for the standard genetic code is included in the algorithm above, but nonstandard genetic

codes are easy to implement.

This algorithm has five advantages: 1) it is inherently insensitive to case; 2) it naturally treats

“T” and “U” equally; 3) it can easily translate using alternate genetic codes; 4) it avoids costly

logical branching statements; and 5) it avoids a 128-entry lookup table which costs both memory

and speed.

Speed tests show that our algorithm can save as much as 47% of the time taken by the simplified

table-lookup translation algorithm (Table 3.4). For some architectures and/or compilers, replacing

the binary left-shifts and inclusive ors with equivalent arithmetic operations may result in faster

binaries (e.g. “* 8” for “<< 3,” “* 2” for “<< 1,” and “+” for “|” in the C code above).

3.3.10 PARAMETER ESTIMATION

I supply a Perl script, lambda.pl, with Dawg. This script contains a simple algorithm to estimate

parameters for Dawg’s indel model from a nucleotide sequence alignment and a rooted phylogeny

with branch-lengths that represent the expected number of substitutions per site. The script does
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not estimate parameters for the richest model of indel formation possible with Dawg. Instead it

treats insertion and deletion as equal processes and estimates the total rate of indel formation,

λID = λI +λD = 2λI = 2λD. It can be shown that, assuming a block width of 1, the total number of

unique indels in a phylogeny, N, is approximately distributed by a Poisson distribution with mean

λIDL̄T , where L̄ is the average length of the sequences and T is the total branch-length of the

rooted phylogeny. If L̄ and T are known, a maximum likelihood estimate of λID is λ̂ID = N/T L̄.

The script calculates T and L̄ from the supplied alignment and rooted phylogeny. It then estimates

N as the number of unique gaps in the alignment. Although λ̂ID is a maximum likelihood estimator

for the approximate distribution, its statistical significance to the actual distribution is unknown. I

have simulated Dawg and lambda.pl together and verified that λ̂ID is consistent with λID (results

not shown). The largest magnitude of deviation, −3%, occurred when λID equaled 1 indel per

substitution, which for nonrepetitive DNA is an extremely high and biologically unrealistic value.

The Perl script goes beyond estimating the instantaneous rate of indel formation per site. It

also calculates the distribution of indel sizes (user-input model) and fits this distribution to three

other models: negative binomial, geometric (NB with r = 1), and power-law. The parameters for

the geometric and negative-binomial models are estimated via maximum likelihood. The power

law model is fitted via linear regression of the first five indel size frequencies on a log-log scale

(Jones and Handcock, 2003). This has been shown to be a very good estimator of power law

distributions (Goldstein et al., 2004). These models can be distinguished via maximum likelihood

for probability, minimum Akaike information (Akaike, 1974) and Bayesian information (Schwarz,

1978) for parsimony, and χ2 for goodness-of-fit.

It is worth noting that the most popular way to align sequence pairs is with affine gap penal-

ties (Gotoh, 1982). Alternatively, the algorithm of Miller and Myers (1988) can align sequences

globally using logarithmic gap penalties.
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3.3.11 EXAMPLE USAGE

As an example of how to use Dawg and lambda.pl, I estimated the rate of indel formation of a set

of sequences and then parametrically bootstrapped the estimate via Dawg. I used sequences from

the intron of the chloroplast trnK gene of four plant species: Hibiscus mechowii, H. cannabinus,

Prunus nigra, and P. virginiana (Genbank accession numbers AY727326, AY727327, AY727330,

and AY727331 respectively; Shaw et al., 2005). The genera are both Rosids, but Prunus is a eu-

rosid I and Hibiscus is a eurosid II. Insertions and deletions are known to be prevalent in chloroplast

sequences (Clegg et al., 1994), and the trnK intron almost certainly evolves neutrally and without

recombination.

I first aligned these sequences using ClustalW 1.81 (Thompson et al., 1994) and corrected the

alignment where necessary. Next, I used Paup* 4.0 (Swofford, 2002) to estimate the phylogeny

and substitution parameters of the sequences for a GTR and molecular clock model. I then used

lambda.pl to estimate the indel parameters from the phylogeny and aligned sequences. From the

estimates, I constructed a parameter file for Dawg and simulated a thousand sequences evolving

under the conditions estimated from the actual data. For each of these simulated sequences sets, I

estimated phylogenetic trees and the rate of indel formation using Paup* and lambda.pl.

3.4 IMPLEMENTATION

Dawg is run on the command line. It is controlled through input files and a few command-line

switches, which control the processing of the input files. Input files can be processed together or in

succession. The structure of an input file is a series of statements in the form of “variable = value.”

There are several types of values: strings, booleans, numbers, trees, and vectors of values.

The default output is to stdout in Fasta format. Output can also be to a file; Phylip, Nexus,

and Clustal formats are also supported. Dawg can return multiple sequence sets, and a Perl script,

outsplit.pl, is provided to retrieve single alignments from outputs.
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3.5 RESULTS

The rounded, average length of the biological sequences was 741. Their estimated phylogeny

was ((AY727331: 0.001359, AY727330: 0.001359): 0.084512, (AY727327: 0.006116, AY727326:

0.006116): 0.079756). The estimated stationary frequency of adenine was 0.353470, cytosine

0.143681, guanine 0.178206, and thymine 0.324643. The symmetric instantaneous rate of sub-

stitution for adenine and cytosine was estimated to be 1.08031, adenine and guanine 2.45581,

adenine and thymine 0.44452, cytosine and guanine 1.09145, cytosine and thymine 4.06519, and

guanine and thymine 1.0. The indel-size distribution was estimated to be geometric with a q of

0.753247.

The estimated rate of indel formation was 0.143120, and bootstrapping via Dawg gave a 95%

confidence interval of 0.078530 to 0.213560. In biological terms, this is 8 to 21 indels per 100

substitutions. The phylogenies produced from the simulated data during bootstrapping were con-

sistent with the biological data, having in every case the same topology as the biological phylogeny.

Furthermore, the biological phylogeny had a total tree length of 0.179218, and the simulated phy-

logenies had an average total tree length of 0.180075 and standard deviation of 0.017993.

Figure 3.1 shows an input file, example.dawg, for Dawg, which was derived from the biological

data mentioned above. The sequence length was shortened from 741 to 300, and a random number

seed was added to make the results suitable for publication. Figure 3.3 shows the resulting output

file, example.aln, of Dawg.

3.6 DISCUSSION

Although a geometric model was found to best fit the gap sizes in the trnK intron alignment, this

may be due to the small sample size of indels. However, the gap size distribution has little impact

on bootstrapping the rate of indel formation.

Table 3.1 compares Dawg to three other published sequence simulation programs. How-

ever, it is important to go into some detail about the differences between Dawg and two previ-
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CLUSTAL multiple sequence alignment (Created by DAWG Version 1.0.0)

AY727326 TTCGAAAATATGTTAGTACTCAATATGAATTCTTTGAGTTAAAAAAGATAAAGCAAA--A

AY727327 TTCGAAAATATGTTAGTACTCAATATGAATTCTTTGAGTTAAGAAAGATAAAGCAAA--A

AY727330 TTCAAAAATATGCTAGGACTGAATATGAATTCTTAAAGTTAAGAAAGATAAAGAAAAACA

AY727331 TTCAAAAATATGCTAGGACTGAATATGAATTCTTAAAGTTAAGAAAGATAAAGAAAAACA

AY727326 ATACATAATGTGATTTCAATATTCCAATTACCTAACAATACGGCTATCAATTAAACGATT

AY727327 ATACATAATGTGATTTCAATATTCCAATTACCTAACAATACGGCTATCAATTAAACGATT

AY727330 GTACATAATGTAAA----TTATTGCAA---------AAAACGGCTAACAATTAGACGATT

AY727331 GTACATAATGTAAA----TTATTGCAA---------AAAACGGCTAACAATTAGACGATT

AY727326 TTAGGATTACACCGACAAATATTAGGCCGATATGAATTTAACATCATGTTGTATTTAGAT

AY727327 TTAGGATTACACCGACAAATATTAGGCCGATATGAATTTACCATCATGTTGTATTTAGAT

AY727330 TTAGGATTACGCTGACAAATATTAGGATGATATTAATTTA------TCTTGTATTTAGAT

AY727331 TTAGGATTACGCTGACAAATATTAGGATGATATTAATTTA------TCTTGTATTTAGAT

AY727326 GCTGTCTTTTATTAACATTCATCATTAAAT-TTGGAACCTTTTGCATTTAAGAAGTACAT

AY727327 GCTGTCTTTTATTAACATTCATCATTAAAT-TTGGAACCTTTTGTATTTAAGAAGTACAT

AY727330 GCTGTCTTTTATCAACATTCATCACTAGATATTGGAACCTATTGCATCTAAGAAGTACAT

AY727331 GCTGTCTTTTATCAACATTCATCACTAGATATTGGAACCTATTGCATCTAAGAAGTACAT

AY727326 GTTTAATAGTGTTTAAAA-TATATATGAAATTGATCATAAGGA---TCTATAAATGCGGT

AY727327 GTTTAATAGTGTTTATAA-TATATATGAAATTGATCGTAAGGA---TCTATAAATGCAGT

AY727330 GTTTAATAGGGTT-AAAACTATATATGAAGTCGATTATAAGGAATTTCTATAAATGTAGC

AY727331 GTTTAATAGGGTT-AAAACTATATATGAAGTCGATTATAAGGAATTTCTATAAATGTAGC

AY727326 TCTTCAATTTCTTG

AY727327 TCTTCAATTTCTTG

AY727330 TCTTCAATTTCCTA

AY727331 TCTTCAATTTCCTA

Figure 3.3: Example.aln, an example output file produced from example.dawg (Figure 3.1)
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ously published applications for simulating evolution with indels: Rose (Stoye et al., 1998) and

EvolveAGene (Hall, 2005).

Stoye and colleagues do not derive Rose’s model of indel formation, which differs from the

model that I have derived for Dawg. In Rose, a binomial distribution with parameters T L and vp

describes the number of insertions and deletions that occur along a branch. The parameter T is

the branch length rounded to the nearest integer. Any branch length less than 0.5 will turn off

insertions and deletions, which is a problem for estimates from standard nucleotide models which

require branch lengths to be in substitution time. The parameter L is the length of the sequence at

the bottom of the branch; unlike Dawg, Rose does not update the sequence length as new indels

form along the branch. The p is the proportion of nucleotides that have a mutation rate greater

than 1; Dawg does not associate the indel model with rate heterogeneity. The parameter v is the

insertion or deletion threshold, which is similar to Dawg’s parameter λ . Although both models can

be made to produce similar distributions, Dawg’s model is derived from a simple Poisson process

and thus is consistent with the derivation of models for continuous-time substitution.

For indel size distributions, Rose only provides a user-based model. Dawg provides two models

in addition to a user-based model: negative-binomial and power-law. Using power-law distributions

for indel sizes is advantageous for researchers because they are biologically realistic. The basic

substitution model in Rose is PAM, which was developed for protein sequences. For substitutions,

Dawg uses GTR+Γ+I, which was developed for nucleotide sequences. Perhaps the most important

difference between these two models is the meaning of the branch lengths. In PAM a branch length

of 1 means that sequences have 1% divergence, whereas in GTR it means that each site is expected

to have had one substitution.

Hall (2005) developed EvolveAGene using a methodology significantly different than the one

employed here to develop Dawg. Whereas Dawg models the process of substitution, EvolveAGene

models the separate processes of mutation and acceptance. EvolveAGene simulates the muta-

tion of coding sequences based on the spontaneous mutational spectrum of Escherichia coli.

EvolveAGene would need to be modified if another mutational spectrum is desired. Relying on



32

mutation spectra can be restrictive for researchers studying organisms for which the mutation spec-

tra are unknown. Furthermore, EvolveAGene does not allow users to specify their own phylogenies

and restricts tree topology to balanced, bifurcating trees. EvolveAGene is rather inflexible when

compared to the many options available for Dawg.

Dawg also comes with a way to estimate parameters of indel formation setting it apart from

Rose and EvolveAGene. This ability may prove useful for researchers interested in studying indel

formation or using gaps to aid in estimating phylogenies. The parameter estimator is not perfect.

It can be improved by assigning alignment gaps to individual branches. Furthermore, it estimates

a net indel rate, instead of separating insertion and deletion into separate processes. Researchers

interested in additional biological realism should consider separating the indel rate into insertion

and deletion rates, favoring the deletion rate. For example, Zhang and Gerstein (2003) found that

deletions occurred roughly three times more often than insertions in neutral DNA. This result

suggests that λI = (1/4)λID and λD = (3/4)λID would be biologically realistic parameters.

Although the model of indel formation implemented in Dawg is an improvement over pre-

vious models, it does not take into consideration several biological features of indel formation.

For instance, indel formation in Dawg is content independent, whereas natural indel formation is

heavily influenced by repetitive sequences. Since repetitive sequences create indel hotspots, they

also violate the assumption of uniform insertion and deletion rates. Modeling indel formation with

extreme biological realism is hard at this time because many of the factors influencing hotspots

remain unknown. However, despite these reservations Dawg’s model of indel formation offers

fruitful avenues for researchers who need to model sequence evolution.

Some researchers are reconstructing extinct genomes and are using simulations to test their

methodology (Blanchette et al., 2004; Pennisi, 2005). Dawg is not designed explicitly to simulate

genomes but can be utilized in that fashion. It contains many of the features described in genome

simulations used by Blanchette and colleagues. Additionally, it can simulate recombination, which

may prove useful in some contexts of studying genome reconstruction. However, it does not have
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the ability to distinguish transposons from other indels or treat CpG regions differently than other

sections of DNA. It also lacks a model of chromosomal rearrangement.

There are many possible features that can be added to Dawg. To improve realism, repetitive

DNA and hotspots should be eventually included. Another important feature would be to allow

separate GTR models for each block position just as separate Γ+I models are currently allowed.

Another possibility is to allow each section of a sequence to evolve with a different evolutionary

model. Furthermore, because Zipf distributions often have infinite means, incorporating a Lavalette

distribution (Lavalette, 1996; Popescu, 2003; Popescu et al., 1997), which is a non-linear extension

to a Zipf distribution, is probably more appropriate for indel lengths. I suspect that a Lavalette

distribution may fit empirical indel size distributions better than a Zipf distribution. Incorporating

inversions into Dawg’s model of molecular evolution may be useful to some researchers. Other

researchers might find the addition of protein models of evolution into the program to be quite

useful. Other possible places for improvement are the estimation of parameters for indel formation

and developing the option for Dawg to have time reversible models of indel formation.

Dawg is a portable, flexible, and robust program for simulating DNA sequence evolution with

indels. It supports recombination, the general time reversible model, gamma rate heterogeneity,

invariant sites, and indel formation. It is an improvement over existing programs by supporting a

statistically derived model of indel formation.
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CHAPTER 4

LOGARITHMIC GAP COSTS DECREASE ALIGNMENT ACCURACY1

1Cartwright, R.A. (submitted) PLoS Computational Biology.
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4.1 INTRODUCTION

Sequence alignments are essential to the study of molecular biology and systematics because they

purport to reveal regions in sequences that are homologous. Because sequences gain and lose

residues as they evolve, alignments are necessary for revealing such gaps in sequence data. There-

fore, researchers usually need to align sequences before they can be studied. For example, most

algorithms that construct phylogenetic trees from sequences require a sequence alignment (Swof-

ford, 2002). Since alignments are an integral part of many research programs, the quality of the

inferences we make from alignments depends on the quality of the alignments themselves (e.g.

Odgen and Rosenberg, 2006).

There are two main types of alignments: local and global. A local alignment (e.g. BLAST;

ref Altschul et al., 1990) attempts to align only parts of sequences often avoiding gaps, whereas

a global alignment (e.g. CLUSTAL W; ref Thompson et al., 1994) attempts to align entire se-

quences, creating gaps. This study will focus on global alignments. The most common way to

globally align pairs of sequences is through dynamic programming (Gotoh, 1982; Miller and My-

ers, 1988; Needleman and Wunsch, 1970; Waterman, 1984; Waterman et al., 1976). Using dynamic

programming one can find the alignments that have the lowest cost based on costs for matches,

mismatches, and gaps. However, alignment accuracy depends on the assumptions used in picking

these costs. For example, gap costs are typically based on the affine model, where the cost of a

gap of length k is G(k) = a+bk (Gotoh, 1982). This gap cost is easy to implement, fast, and effi-

cient. Furthermore, since nucleotides are deleted or inserted in groups, it is biologically plausible

that gaps should cost more to create than they do to extend, and affine gap costs can model this.

However, some researchers have raised questions about the biological justification for the affine

gap model.

Studies on the distribution of indel lengths have revealed that the size of an indel is linearly

related to its frequency on a log-log scale, and therefore gap-sizes obey a power law (Benner et al.,

1993; Chang and Benner, 2004; Gu and Li, 1995; Zhang and Gerstein, 2003). Under a Zipfian

power-law distribution, the probability that an indel has length k is P(k|z) = k−z/ζ (z), where
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ζ (z) = ∑
∞
n=1 n−z is Reimann’s Zeta function and z > 1. If 1 < z≤ 2, the mean of this distribution

is infinite, and if 1 < z≤ 3, the variance is infinite. The observation that indel lengths obey a power

law suggests that sequences should be aligned using logarithmic gap costs, i.e. G(k) = a+ c ln(k)

(Gu and Li, 1995). However, as mentioned above, the standard method of sequence alignment uses

affine gap costs, i.e. G(k) = a+bk (Gotoh, 1982). However, researchers cannot adapt Gotoh’s al-

gorithm to logarithmic gap costs. Instead researchers must use the more computationally expensive

candidate list method of Waterman (Waterman, 1984) as optimized by Miller and Myers (Miller

and Myers, 1988). Although, affine gap costs are efficient, this study seeks to determine whether

this efficiency comes with a cost to accuracy.

An alignment is essentially a hypothesis about the evolutionary history of the sequences, spec-

ifying formally which residues are homologous to one another. We can define a measurement

of alignment accuracy by comparing the hypothesized alignment to the “true” alignment of the

sequence pair. An alignment consists of a set of columns which provide per residue homology

statements, e.g. residue 100 of sequence A aligns with residue 90 of sequence B. When comparing

two alignment, columns fall into three different categories: 1) columns only appearing in the first

alignment, and 2) columns only appearing in the second alignment, and 3) columns appearing in

both alignments. By counting the number of columns belonging to each category, it is possible to

measure how identical two alignments are to one another:

I =
2×K3

2×K3 +K1 +K2
(4.1)

where Kc is the number of columns in category c. See Figure 4.1 for an example of this measure-

ment. This alignment identity can be used to measure the accuracy of a hypothesized alignment.

Not all sequence pairs are equally easy to align, and the accuracy of a hypothesized alignment

is expected to decrease as sequence pairs become more distantly related due to substitution satu-

ration and indel accumulation. Therefore, an appropriate measure of alignment accuracy for a gap

cost needs to average across multiple branch lengths and multiple sequence pairs. Branch lengths

are often measured in “substitution time”, where a unit branch length is equal to 1 substitution,
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A C G T A C G T
A C G T – – G T

TGCATGCA
––TGTGCAB:

A:
B:
A:

1 2 3 4 5 6 7 8

1 2 3 4 – – 5 6

87654321

––654321

Figure 4.1: Example alignment pair. Numbers identify the residues in the sequences. K3 columns—
A1B1, A2B2, A3B3, and A4B4—are found in both alignments. K1 columns—A5B–, A6B–,
A7B5, and A8B6—are found in only the left alignment. K2 columns—A7B–, A8B–, A5B5, and
A6B6—are found in only the right alignment. Alignment identity is I = (2K3)/(2K3 +K1 +K2) =
(2×4)/(2×4+4+4) = 1/2.

on average, per nucleotide. According to coalescent theory and neutrality, the number of genera-

tions separating any pair of sequences in the same population depends on the effective population

size, Ne, and has an exponential distribution with mean 4Ne (Hein et al., 2005, p24). If µ is the

instantaneous rate of substitution, then the substitution time separating any two sequences has an

exponential distribution with mean θ = 4Neµ . As branch lengths get longer and sequences be-

come more distant, data is lost from the sequences, and thus no alignment algorithm may be able

to recover the true alignment. This limitation can be corrected on a per sequence pair basis by us-

ing relative alignment identities: absolute alignment identities divided by the maximum alignment

identity found for that sequence pair.

4.2 RESULTS

For the set of sequence pairs, the minimum branch length for any pair was 1.83× 10−05 mean

substitutions per nucleotide, and the maximum branch length was 1.76. Furthermore, the distri-

bution of observed gap sizes, plotted on a log-log scale, is shown in Figure 4.2. This distribution

clearly obeys a power-law. The maximum likelihood estimation of the power-law parameter of this

distribution is z = 1.53.

Alignments were classified via their parameter values into three different schemes. All parame-

ter sets belonged to the log-affine scheme. The affine and logarithmic schemes were subsets of the
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Figure 4.2: Gap sizes obey a power law. Log-Log plot of the distribution of gap sizes measured
from the 5000 true alignments. The line is the maximum likelihood fit of a power-law distribution:
ln f (k) = 0.915−1.53lnk

log-affine scheme and consisted of the parameter sets where c = 0 and b = 0, respectively. Analysis

of alignment accuracy was divided into two broad and different questions. How do the best gap

costs for each scheme compare to one another? And how do the maximum alignment accuracy for

each scheme compare to one another for each sequence pair? The first question investigates what

happens if researchers use a single gap cost across many alignments, and the second investigates

happens if researchers optimize gap costs to each alignment.

The best gap costs were identified by having the highest average alignment accuracy, i.e. they

produced alignments that had the highest average identity to the “true” alignments. The best costs

for aligning sequences under the log-affine, affine, and logarithmic schemes were identified re-

spectively as G(k) = 2 + 1/4k + 1/2lnk (average identity of 0.941), GA (k) = 4 + 1/4k (average

identity of 0.925), and GL (k) = 1/8+8lnk (average identity of 0.687). Figure 4.3 shows the graphs
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Figure 4.3: The curves of the best gap costs. A) The entire range of the curves and B) a mag-
nification of the beginning of the curves. The best gap costs were decided for each scheme
based on highest average alignment identity. Log-affine G(k) = 2 + 1/4k + 1/2lnk (solid), affine
GA (x) = 4+1/4k (dashed), and logarithmic GL (k) = 1/8+8lnk (dotted).

of these gap costs, and Figure 4.4 shows the densities of their identities. Log-affine and affine both

peak a little below 100% identity, whereas the logarithmic density is nearly flat for most of the

parameter space before barely peaking below 100% identity. Table 4.1 and Table 4.2 present some

statistical properties of these gap penalties. The best log-affine cost produced alignments that were

only slightly better than the ones produced by the best affine cost. Both log-affine and affine costs

produced alignments that were considerably better than the ones produced by the best logarithmic

cost. In fact, the best log-affine gap cost produced the best alignments for over half the sequence

pairs.

Figure 4.5 looks at the distribution of identities produced by each best cost. Figure 4.5a–c plots

the identities with respect to their branch lengths, transformed to a uniform scale. Figure 4.5d–

f are box-whisker plots of identities grouped into 20 classes based on branch length. The best
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Figure 4.4: Accuracy distribution of best gap costs. Best log-affine (solid), best affine (dashed), and
best logarithmic (dotted). Accuracy is measured via alignment identity. See Figure 4.3 for details
on the exact gap costs.

Table 4.1: Absolute accuracy properties of the best gap costs. Accuracy is measured via alignment
identity. Log-Affine: G(k) = 2+1/4k+1/2lnk. Affine: GA (k) = 4+1/4k. Logarithmic: GL (k) =
1/8+8lnk.

Absolute Identities
Log-Affine Affine Logarithmic

Minimum 0.383 0.324 0.183
1st Quartile 0.926 0.904 0.512

Mean 0.941 0.925 0.687
Median 0.976 0.970 0.717

3rd Quartile 0.994 0.992 0.874
Maximum 1.0 1.0 1.0
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Table 4.2: Relative accuracy properties of the best gap costs. Relative accuracy was calculated
as the alignment identity produced by a gap cost for each sequence pair divided by the largest
alignment identity produced by any gap cost for the same sequence pair. See notes of Table 4.1.

Relative Identities
Log-Affine Affine Logarithmic

Minimum 0.710 0.501 0.193
1st Quartile 0.993 0.971 0.549

Mean 0.992 0.973 0.717
Median 1.0 0.993 0.745

3rd Quartile 1.0 1.0 0.892
Maximum 1.0 1.0 1.0

logarithmic gap cost produces alignments with much lower identities than the best log-affine and

affine costs. As expected, identities decrease as branch length increases; however, unexpectedly,

the largest branch lengths show increasing alignment identity.

To compare the best gap costs on a per sequence pair basis, Figure 4.6 shows the ratio of affine

and logarithmic alignment identities to log-affine alignment identities, plotted via branch length

for each sequence pair. The identities produced by the best log-affine gap cost tend to be higher

than or equal to the identities produced by the pest affine and logarithmic gap costs. However, there

are some sequences for which the best log-affine gap cost produces an alignment that is worse than

the alignment produced by the best affine or logarithmic cost. Nevertheless, the best affine costs

compare rather well to the best log-affine costs, especially at lower branch lengths. However, the

best logarithmic costs do a poor job compared to the best log-affine costs and the best affine costs.

Clearly alignments derived from logarithmic costs are of poor quality, and highly sensitive to the

divergence between sequences.

Instead of trying to find gap costs that have the highest average accuracy, we can find the

gap costs that have the highest accuracy for each sequence. Therefore, an alternative approach to

comparing schemes is to look at the maximum identity produce by each scheme. Similar to Fig-

ure 4.5, Figure 4.7 shows the maximum identities of each scheme plotted by transformed branch
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(c) Logarithmic
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(d) Log-Affine
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(e) Affine
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(f) Logarithmic

Figure 4.5: Accuracies of best costs plotted by divergence. I, IA, and IL are the alignment identities
produced by the best log-affine, affine, and logarithmic gap penalties, respectively. See Figure 3
for more information. a-c) Alignment identities plotted by the branch length of the alignments.
Divergence time is plotted on a uniform scale, u = 1− exp(−t/t̄). d-f) Box-whisker plots of iden-
tities grouped into 20 bins of 250 values. Solid bars are medians. Notches are significant range of
medians. Bars are the mid-range. Whiskers are the range. Circles are outliers.
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Figure 4.6: Accuracies of best costs compared per sequence. Ratio of identities produced by a) best
affine gap cost and b) best logarithmic gap cost to the identities produced by the log-affine gap cost
plotted for each sequence pair by divergence time. See Figure 4.5 for more information.

length, and box-whisker plots of the data. As we saw in the best costs analysis, the maximum

affine identities are similar to maximum log-affine identities, and both are distinct from the max-

imum logarithmic identities. Identities decrease with increasing branch, only to increase with the

largest branch lengths. Furthermore, logarithmic densities are once again very sensitive to increas-

ing branch lengths. Similar to Figure 4.6, Figure 4.8 shows the ratio of maximum identities of affine

and logarithmic to the log-affine schemes. Once again, the affine scheme has identities similar to

the log-affine scheme and the logarithmic scheme does not.

4.3 DISCUSSION

The first issue to consider is whether the parameter space was properly sampled. For log-affine and

affine schemes, the best values were found inside the sampled parameter space, representing local

maxima and perhaps global maxima. However, for logarithmic gap penalties, the best penalty was
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(c) Logarithmic
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(d) Log-Affine
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(e) Affine
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(f) Logarithmic

Accuracies of best costs plotted by divergence

Figure 4.7: Maximum accuracies plotted by divergence. S, SA, and SL are the maximum alignment
identity produced for each sequence pair by log-affine, affine, and logarithmic gap costs respec-
tively. The subfigures are the same as in Figure 4.5.
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Figure 4.8: Maximum accuracies compared per sequence. Ratio of maximum identities produced
by a) affine gap costs and b) logarithmic gap costs to the maximum identities produced by log-
affine gap costs plotted for each sequence pair by divergence time. See Figure 4.5-Figure 4.7 for
more information.

found on the edge of the parameter space. Subsequent expansion of the parameter space confirmed

that G(k) = 1/8+8lnk represents a local maximum for logarithmic gap costs.

In the simulations, branch lengths were randomly drawn based on θ = 4Neµ = 0.2. If the per-

nucleotide mutation rate is µ = 10−9, then the effective population size would be 50 million. This

is high for most populations, but it does produce many branch lengths that can represent species-

species divergence times. When calculating the best gap costs, it is possible to weight the identities

in a way that reflects another distribution of branch lengths. Similar results were obtained when

weighting to produce a θ = 0.002 distribution.

An interesting feature of the data is that alignment identity improves at the longest branch

lengths. This can be attributed to the fact that sequences at long branch lengths, although related,

are saturated with indels and thus have very few nucleotides homologous to one another anymore.
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Therefore, hypothesized alignments that are also dominated by gaps show high identity to the true

alignment.

Clearly from the results, logarithmic gap costs are a poor choice for aligning sequences even

though biological results would seem to suggest them. Logarithmic gap costs perform poorly be-

cause they increase slowly Figure 4.3. This causes logarithmic costs to “cheat” during pair-wise

alignments because two huge gaps, covering the entirety of the sequences may be less costly than

three or more moderate gaps. In fact, many logarithmic costs have bimodal distributions; they ei-

ther work or cheat. However, this may not be a problem because it is easy to tell when logarithmic

costs cheat. Log-affine gap costs are noticeably better than simple affine gap costs, even though

the difference may not be enough to justify wide spread usage given the slower speed of the candi-

date list method. According to the above results, affine gap costs only diverge from log-affine gap

penalties at large branch lengths.

It is definitely surprising that logarithmic gap costs do so poorly compared to affine and log-

affine gap costs, given that initially there seems to be little biological justification for having a

linear component in the gap cost. However, as I show in Appendices 4.A and 4.B, converting a

maximum likelihood search into a minimum cost search introduces a linear component into the

gap cost which can dominate the logarithmic component. In other words, the power law does not

imply that gap costs should be logarithmic, instead it implies that gap costs should be log-affine.

From Appendix 4.A, the log-likelihood of a pairwise, global alignment given sequences A and

B is

lnL(Aln |A,B) = M ln
(

1+3e−4θ/3
)

+R ln
(

1− e−4θ/3
)

+
G

∑
g=1

[
ln
(

eλθ −1
)
− lnζ (z)− z lnkg

]
(4.2)

and from Appendix 4.B the gap cost derived from Equation 4.2 is
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G(k) =
lnζ (z)− ln

(
eλθ −1

)
+ ln

(
1+3e−4θ/3

)
k/2+ z lnk

ln
(
1+3e−4θ/3

)
− ln

(
1− e−4θ/3

) (4.3)

Since θ = 0.2, λ = 0.15, and z = 1.5, Equation 4.2 reduces to

lnL(Aln |A,B) = 1.19M−1.45R−
G

∑
g=1

[4.45+1.5lnkg] (4.4)

and Equation 4.3 reduces to

G(k) = 1.69+0.23k +0.56lnk (4.5)

This gap cost is very close to the top gap cost found in the simulations, G(k) = 2 + 0.25k +

0.5lnk. Furthermore, based on unweighted least squares, the following affine cost bests fits Equa-

tion 4.5, G(k) = 4.17+0.23k (unweighted mean squared error of 0.0722). This cost is very close

to the best affine cost found in the simulations, w′k = 4 + 0.25k. Furthermore, because the linear

component Equation 4.5 dominates the logarithmic component, logarithmic costs costs will clearly

provide worse fits than affine gap costs. Therefore, one can surmise that the linear component to

the gap cost function derives from the conversion of a maximum likelihood search into a min-

imum cost search. Furthermore, this linear component dominates the gap cost allowing the log

component to be removed.

From these results I propose that, if a researcher knows θ , λ , and z for a group of sequences

that he wants to align using a match cost of 0 and a mismatch cost of 1, he can estimate a log-affine

gap cost via Equation 4.3. Furthermore, an affine gap cost can be estimated by fitting G(k) = a+bk

to Equation 4.3 via the method of least squares. However, researchers will find more utility if the

procedure outlined in this paper was extended to the models of sequence evolution beyond Jukes-

Cantor. In subsequent research, I hope to apply this procedure to more complex models as well as

to unrooted trees.

This research has demonstrated that logarithmic gap costs, although suggested by biological

data on the surface, are not a good solution for aligning pairs of sequences through dynamic pro-
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gramming. In fact, despite previous suggestions, e.g. Gu and Li (1995), the power law does not

imply that gap costs should be logarithmic, instead it implies that gap costs should be log-affine.

Furthermore, the results find that affine gap costs can serve as a good approximation to log-affine

gap costs. Because affine gap costs are quick, efficient, and currently nearly ubiquitous, this re-

search strengthens the rational for existing practices in molecular biology.

4.4 MATERIALS AND METHODS

Five thousand sequence pairs were generated on unroot trees using the sequence simulation pro-

gram, Dawg (Cartwright, 2005). Dawg is a sequence simulation program that combines the gen-

eral time reversible substitution model with a continuous time indel formation model. It is the

only sequence simulation program capable of using the power-law model for indel lengths. Each

simulation done by Dawg started with a random sequence of 1000 nucleotides. For each ances-

tral sequence, a single descendant sequence was evolved by Dawg based on the branch length

separating the ancestor from the descendant. The branch lengths were drawn from an exponential

distribution with a mean of θ = 0.2. Because sequences were to be aligned using equal costs for

each mismatch type, the sequences were evolved under the Jukes-Cantor substitution model (Jukes

and Cantor, 1969). Indels were created at a rate of 15 per 100 substitutions (Cartwright, 2005),

and their lengths were distributed via a truncated power-law with parameter of 1.5 (Zhang and

Gerstein, 2003) and a cut-off of 1000 nucleotides. The observed distribution of gaps was checked

to see if it obeyed a power-law, and the power-law parameter was estimated using maximum like-

lihood (Goldstein et al., 2004). Dawg recorded the actual alignment of each sequence pair making

it possible to measure the accuracy of alignments generated through dynamic programming.

Pairwise, global alignments were done with Ngila (Cartwright, 2006), an implementation of

the candidate-list dynamic programming algorithm of Miller and Myers (Miller and Myers, 1988)

for logarithmic gap penalties. The cost of a match was 0 and a mismatch 1. Each sequence pair

was aligned using 512 different parameter sets, which specified the coefficients of the gap cost

function, G(k) = a+bk+c lnk. Each coefficient was one of eight values: 0, 1/8, 1/4, 1/2, 1, 2, 4,
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or 8. The alignment identity (Equation 4.1) of each of these 2.56 million hypothesized alignments

was calculated with respect to the appropriate true alignment produced by Dawg. Expansion of the

parameter space to verify the local maximum for logarithmic gap penalties used a = 16.

The statistical software, R (R Development Core Team, 2006), was used to analyze the align-

ment identities and produce most figures. Fitting affine gap costs to the optimal gap costs was done

via the method of least squares for gap sizes 1 to 1000. The squared error was minimized using the

optimization procedure in PopTools 2.7.1 (Hood, 2006).
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APPENDIX 4.A ALIGNMENT LOG-LIKELIHOOD

To find the most likely alignment we need a measurement of the likelihood of an alignment given

the sequence pair, L(Aln |A,B). This likelihood is proportional to the density of the alignment

given the sequence pair:

L(Aln |A,B) ∝ f (Aln |A,B) =
f (Aln,A,B)

f (A,B)
∝ f (Aln,A,B) (4.6)

To calculate Equation 4.6 completely for two sequences related by a common ancestor, one

would have to consider all sequences that could be the most recent common ancestor of A and

B and all possible branch lengths between this ancestor and A and B. However, our simulations

assumed that the tree relating A and B was unrooted, and thus A was considered to be descended

from B, eliminating the need to consider the set of all possible progenitors for both sequences. We

calculate Equation 4.6 based on the evolutionary distance or branch length t between sequences A

and B:

f (Aln,A,B) =
∫

t
f (Aln,A,B, t)dt (4.7)

It is possible to derive Equation 4.7 from an evolutionary process. Specifically the probability

that B gave rise to A over evolutionary distance t with indels to produce alignment Aln.

f (Aln,A,B, t) = f (B→ A, t,Aln) = f (A |Aln,B, t ) f (Aln |B, t ) f (t) f (B) (4.8)

where f (t) = exp(−t/θ)/θ is the density of branch lengths between A and B and f (B) = 4−Lb is

the probability for ancestral sequence B of length Lb. If La, M, and R are respectively the length of

sequence A, the number of matches in the alignment, and the number of replacements, then under

the Jukes-Cantor model,

f (A |Aln, t,B) =

(
1+3e−4t/3

)M (
1− e−4t/3

)R

4La
(4.9)
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The probability that an indel occurs at any position is 1− e−λ t , and, if we ignore the issue of

overlapping indels,

f (Aln |B, t ) =
(

e−λ t
)Lb−N (

1− e−λ t
)N N

∏
g=1

f (kg) (4.10)

where N is the number of indels in the alignment, f (kg) = k−z
g /ζ (z) is the probability that an indel

has a length of size kg, and λ is the instantaneous rate of indel formation per unit branch length.

Putting this all together,

f (Aln,A,B, t) =
e−λ tLb

4La+Lb

(
1+3e−4t/3

)M (
1− e−4t/3

)R

×
(

e−λ t
)−N (

1− e−λ t
)N e−t/θ

θ

N

∏
g=1

f (kg) (4.11)

For simplicity we will not integrate Equation 4.7 to find f (Aln,A,B). Instead, we will approx-

imate it based on the mean value of t:

f (Aln,A,B)≈ f (Aln,A,B|t = t̄) = f (Aln,A,B, t = t̄)/ f (t = t̄)

Upon removing factors that are constant for sequences A and B we get the likelihood for the align-

ment Aln given sequence pair A and B:

L(Aln |A,B) =
(

1+3e−4θ/3
)M (

1− e−4θ/3
)R N

∏
g=1

eλθ −1
ζ (z)

k−z
g (4.12)

The log-likelihood is therefore

lnL(Aln |A,B) = M ln
(

1+3e−4θ/3
)

+R ln
(

1− e−4θ/3
)

+
N

∑
g=1

[
ln
(

eλθ −1
)
− lnζ (z)− z lnkg

]
(4.13)
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APPENDIX 4.B GAP COSTS

As developed in Smith et al. (1981) and extended below, a maximum likelihood search can be

converted to a minimum cost search. Based on a statistical model, the scores of “matches” of

type i, αi, and the penalties of gaps of length k, wk, can be used to calculate the alignment with

maximum log-likelihood:

l = max
{
∑αiηi−∑wk∆k

}
(4.14)

where ηi is the number of residue matches of type i and ∆k is the number of gaps of length k. A

minimum cost analog of Equation 4.14 is

d = min
{
∑βiηi+∑G(k)∆k

}
(4.15)

To begin constructing the minimum cost analog, let βi = (x−αi)/y be the cost of a match of

type i, therefore

− l = min
{
−∑αiηi+∑wk∆k

}
= min

{
∑(yβi− x)ηi+∑wk∆k

}
= ymin

{
∑βiηi−

x
y ∑ηi +∑

wk

y
∆k

}
(4.16)

The lengths of the sequences being aligned, n and m, can be related to the alignment itself via the

equation n+m = 2∑ηi +∑k∆k. Using this relationship, Equation 4.16 can be expressed as
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− l = ymin
{

∑βiηi−
x
2y

(
n+m−∑k∆k

)
+∑

wk

y
∆k

}
=−x(n+m)

2
+ ymin

{
∑βiηi +

x
2y ∑k∆k +∑

wk

y
∆k

}
=−x(n+m)

2
+ ymin

{
∑βiηi +∑

(
xk
2y

+
wk

y

)
∆k

}
=−x(n+m)

2
+ ymin

{
∑βiηi +∑G(k)∆k

}
(4.17)

From this it can be clearly seen that d = min{∑βiηi +∑G(k)∆k} maximizes the likelihood of

the alignment, where G(k) = (xk/2+wk)/y is the cost of a gap of length k. Applying this method

to Equation 4.13 such that the cost of a match is 0 and the cost of a mismatch is 1 produces the

following equation for a gap cost:

G(k) =
lnζ (z)− ln

(
eλθ −1

)
+ ln

(
1+3e−4θ/3

)
k/2+ z lnk

ln
(
1+3e−4θ/3

)
− ln

(
1− e−4θ/3

) (4.18)



CHAPTER 5

ANTAGONISM BETWEEN LOCAL DISPERSAL AND SELF-INCOMPATIBILITY SYSTEMS IN A

CONTINUOUS PLANT POPULATION1

1Cartwright, R.A. (submitted) The American Naturalist.
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5.1 INTRODUCTION

Both local dispersal and self-compatibility systems are common in plant species. Local dispersal

of seeds creates population structures in plant populations such that relatives are likely to be found

near one another. Furthermore, local dispersal of pollen coupled with local dispersal of seeds cre-

ates pollen pools containing relatives. Therefore, local dispersal and can facilitate inbreeding and

geographic differentiation within a population. Furthermore, many plant taxa have also evolved

self-incompatibility systems that prevent selfing. Because these systems are genetically based, rela-

tives are likely to be incompatible. Therefore, self-incompatibility systems, in addition to requiring

outcrossing, also promote outbreeding. Clearly, if a plant population has both local dispersal and

self-incompatibility systems then an antagonism can exist between their evolutionary effects. This

study seeks to investigate this antagonism on on effective population sizes, conditional inbreeding

coefficients, fine-scale genetic structure, and neighborhood sizes via a computational model.

5.1.1 INBREEDING

Inbreeding occurs when related individuals mate more frequently than would be expected if the

population mated randomly. The extreme form of inbreeding is selfing, where individuals fertilize

themselves. A common mating strategy among plants is mixed mating, where individuals can both

self and outcross. Inbreeding does not directly affect allele frequencies, rather it affects genotype

frequencies by increasing the number of homozygotes. This exposes the phenotypes of recessive

alleles, which, if deleterious, can decrease the fitness of individuals, i.e. inbreeding depression.

Inbreeding in a population is measured from the probability that an individual is “identical-by-

descent” at a particular locus, also known as “autozygous.” An individual is identical-by-descent

at a locus if its two copies are descended from the same ancestral copy without any mutations to

change the gene (Malécot, 1975). Clearly inbreeding increases the chance that an individual will

inherit two copies of a gene from a single ancestral copy. Besides inbreeding, other evolutionary

forces like genetic drift or selection can increase the probability that an individual is autozygous.
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5.1.2 ISOLATION-BY-DISTANCE AND NEIGHBORHOOD SIZES

Although a species may inhabit a geographically contiguous region with no physical barriers to

gene flow, the species may not be panmictic. Physical distances separating two individuals may

prevent them from mating freely, and instead individuals are more likely to mate with nearby indi-

viduals than individuals that are far away. Wright (1943) referred to this as “isolation-by-distance”,

and Wright (1946) developed the concept of “neighborhood size” to compare how different mating

systems affect isolation-by-distance. For example, if gametes disperse independently and identi-

cally on the north-south and east-west axes with a normal distribution of mean 0 and variance σ2,

then the eucledian parent-offspring distance, r, will have a Rayleigh distribution:

f (r) =
r

σ2 e
r2

2σ2

Wright (1946) defined neighborhood size, Nb (N in his paper), as a number of individuals having

the same magnitude as the inverse of the probability of self-fertilization. Assuming that parent-

offspring distance obeys the above Rayleigh distribution, he derived the neighborhood size of a

hermaphroditic population as

Nb = 4πσ
2d (5.1)

where d is the density of individuals per unit area. Although σ2 is the variance of dispersal along

the axes, it is one half the mean squared euclidean distance.

Wright’s concept of neighborhood size does not adequately extend to other mating systems

and dispersal types that also produce isolation-by-distance because self-fertilization is not con-

sistently linked with gene dispersal. However, instead of defining neighborhood sizes based on

self-fertilization, it is possible to use Wright’s result, Equation 5.1, to define neighborhood sizes

based on dispersal (Fenster et al., 2003; Vekemans and Hardy, 2004). The advantage of this is

that σ2 is an important component of how identity-by-descent is related to isolation-by-distance

(Rousset, 2000).
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Let Qr be the probability that genes separated by a geographic distance of r are identical-

by-descent, and Qw be the probability within a single individual. Furthermore, the quantity ar ≡

(Qw−Qr)/(1−Qw) will depend in the level of isolation-by-distance. Rousset (2000), drawing on

Rousset (1997) and Sawyer (1977), showed that for a wide range of dispersal functions

ar ≈
lnr

4πσ2d
+ constant (5.2)

One should not confuse the 4πσ2d in Equation 5.2 with Wright’s Nb, which happens to equal

4πσ2d under Gaussian dispersal. However, as Fenster et al. (2003) and Vekemans and Hardy

(2004) have done, one can redefine Nb ≡ 4πσ2d, which can be calculated from a correlegram

of kinship coefficients, Fi j, using Equation 5.2. (The equation for Fi j is defined later.) They have

defined the Sp statistic as

Sp≡ −bln

1−F1

where F1 is the average Fi j for distance class 1 and bln is the slope of the linear regression of Fi j

to ln(r). Under isolation-by-distance 1/Sp = 4πσ2d = Nb, allowing one to estimate neighborhood

sizes from correlegrams (See Fenster et al., 2003; Vekemans and Hardy, 2004, for more informa-

tion.).

Because individuals near one another are expected to be more closely related than individuals

farther apart, isolation-by-distance generates fine-scaled genetic structure where the closer indi-

viduals are geographically, the more likely they have identical alleles. Therefore, alleles can often

show a patchy distribution with respect to geography (Epperson, 1990; Rohlf and Schnell, 1971;

Sokal and Wartenberg, 1983; Turner et al., 1982).

5.1.3 SELF-INCOMPATIBILITY SYSTEMS

Self-fertilization is the most extreme form of inbreeding. Many taxa of angiosperms prevent

self-fertilization via self-incompatibility systems (SI) that are controlled by single genes. Self-
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incompatibility systems have been studied in Brassicaceae (e.g. cabbage, broccoli, Arabidopsis),

Papaveraceae (e.g. poppy), Solanaceae (e.g. nightshade, potato, tobacco), Scrophulariaceae (e.g.

snapdragon), and Rosaceae (e.g. rose, apple, almond) (Igic and Kohn, 2001; Nasrallah, 2005;

Takayama and Isogai, 2005). These SI systems are controlled by a single highly polymorphic

Mendelian locus, the S locus, which contains several tightly linked genes. The function of the S

locus is to prevent pollen from fertilizing flowers of genetically similar plants. The primary result

is that self-fertilization is impossible, and the secondary result is that matings between relatives

are reduced. The S locus evolves under classical frequency-dependent sexual selection (Wright,

1939), resulting in high fitness for rare and novel alleles. Plants with rare alleles can pollinate more

plants than can plants with common alleles.

There are two main types of SI systems: gametophytic and sporophytic. There is a third type,

late-acting, that occurs after seeds are formed, but it has been studied less (Gibbs and Bianchi,

1999; Lipow and Wyatt, 2000; Seavey and Bawa, 1986). In gametophytic self-incompatibility

(GSI), the mating-type of the pollen is determined by the pollen haplotype. Styles reject any pollen

bearing either one of their alleles. For example, a plant with genotype S1S2 produces S1 and S2

pollen. S1 pollen can fertilize S2S3 plants but not S1S2 or S1S3 plants. Likewise, S2 pollen can fer-

tilize S1S3 plants but not S1S2 or S2S3. Furthermore, if we assume panmictic dispersal, an SaSb plant

will accept 1− pa− pb proportion of the pollen pool, where pa and pb are the allele frequencies of

Sa and Sb respectively.

In sporophytic self-incompatibility (SSI), the mating-type of the pollen is determined by the

pollen-donor’s genotype. Under it, stigmas will only accept pollen produced by plants that share

none of the stigmas’s alleles. (Technically, this is codominant SSI.) For example, a plant with

genotype S1S2 produces S1,2 pollen regardless of whether the pollen grain carries the S1 or S2

allele. S1,2 pollen can fertilize S3S4 plants but not S1S2, S1S3, S1S4, S2S3, or S2S4. Furthermore, if

we assume panmictic dispersal and well-mixing of alleles, a plant with genotype SaSb will accept

1−2pa−2pb + pa pb proportion of the pollen pool.
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The genes of the S locus specify both the male and female mating-type determinants. Because

these determinants must work in unison, they are tightly linked at the S locus. This tight linkage

results from both close physical association on the chromosome and reduced recombination rate

in the area (Kamau and Charlesworth, 2005). Because recombination rates are reduced and S loci

experience strong balancing selection, genes near the S loci will exhibit more diversity and longer

coalescent times than they would otherwise (Awadalla and Charlesworth, 1999; Charlesworth,

2006; Charlesworth et al., 2006; Hagenblad et al., 2006; Kamau and Charlesworth, 2005; Schierup

et al., 2000).

Self-incompatibility has evolved independently multiple times, which reflects a common

adaptive advantage to avoid selfing. Three completely different self-incompatibility mechanisms

have been characterized so far. One belonging to the Brassicaceae, another belonging to the Pa-

paveraceae, and a third belonging to the Solanaceae, Scrophulariaceae, and Rosaceae (Igic and

Kohn, 2001). These are respectively referred to as “brassiciceae-type”, “papaveraceae-type” and

“solanaceae-type” systems, or “b-type”, “p-type”, and “s-type” for short. Since the s-type system

is found in both rosids and asterids (Igic and Kohn, 2001), the system was most likely in the

ancestor of those groups, which lived over 90 million years ago (Nasrallah, 2005). Furthermore,

since brassicacids are rosids, they lost the s-type system and evolved the b-type system.

The brassiciceae-type system is the only sporophytic system that has been characterized ge-

netically. In this system the S locus consists of three genes: S-locus cystein-rich protein (SCR or

SP11), S-locus receptor kinase (SRK), and S-locus glycoprotein (SLG). The male mating type is

determined by SCR, which is secreted by anthers and accumulates in the pollen coat. SRK de-

termines the female mating type and is a membrane-bound protein that is found in stigma papilla

cells. SRK binds SCR which sets off a signaling cascade resulting in pollen rejection. The SLG

proteins are accessory proteins that localize to the cell walls of stigma papilla cells and function to

enhance the SI phenotype of some S locus haplotypes (Igic and Kohn, 2001).

The solanaceae-type system is an ancient, gametophytic system found first in the Solanaceae

family. In this system the S locus consists of two genes: S-RNase, and S locus f-box (SLF or SFB).
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S-RNase is expressed in the style and determines the female mating-type. It enters pollen tubes and

degrades RNA of self-pollen, stopping pollen tube growth. SLF is expressed in pollen tubes and is

hypothesized to act as an inhibitor of non-self-S-RNases, although the nature of the interaction is

still unclear (Igic and Kohn, 2001).

Compared to the other two systems, the gametophytic, papaveraceae-type system has only been

recently studied molecularly. The male determinant is still unknown and the female determinant

goes by the generic name “S protein”. S protein is secreted by the stigma and appears to function

as a ligand for a receptor on the pollen grain (the hypothesized male determinant). Binding of the

ligand to the receptor causes an influx of Ca2+ ions into the pollen tube. This influx inhibits pollen

tube growth and leads to pollen tube death (Igic and Kohn, 2001).

5.1.4 ANTAGONISM

Self-incompatibility systems promote outbreeding while local dispersal can facilitate inbreeding;

therefore, an antagonism exists between the two processes. Furthermore, this antagonism will man-

ifest differently in markers linked to the S locus than in markers that are unlinked to the S locus.

One important motivation for this study is to investigate how unlinked loci are influenced by S

loci. If unlinked loci are strongly influenced by S loci, then studies of plant populations, including

computational models, cannot ignore S loci.

Several studies have looked at the effect of population subdivision on allelic diversity of S

loci (Muirhead, 2001; Neuhauser, 1998; Schierup, 1998; Schierup et al., 2000; Wright, 1939).

Furthermore, two studies have looked at the effect of isolation-by-distance on self-incompatibility

systems (Brooks et al., 1996; Neuhauser, 1998). However, none have studied the effect of isolation-

by-distance and self-incompatibility systems on linked loci.
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5.2 MODEL

5.2.1 GEOGRAPHY

The population is a rectangular lattice of width X and height Y . Each cell in the lattice is a

hermaphroditic, diploid individual.

5.2.2 GENETICS

Each individual has 2N = 2 chromosomes, i.e. diploid organisms with 1 chromosome per haploid

set. The chromosomes contain contained multiple markers and an S locus, ordered such that the

self-incompatibility locus, S, is to the right of all the markers. One crossover occurs each time a

gamete is produced. Each marker locus had a recombination rate with locus S of 2−n, where n is

the marker number. The left-most locus, 1, has a recombination rate of 50% with the S locus. The

second-to-left-most locus, 2, has a recombination rate of 25% with the S locus, etc. (Following this

numbering scheme, the S locus is actually the infinite locus.) On the first generation each locus has

2N alleles, and thus every individual is heterozygous at each locus and no two individuals share

an allele at any locus. The advantage of this formulation is that all homozygotes that occur during

simulations are identical-by-descent. This is atypical but should not bias the results because most

of the allelic diversity is lost in the first hundred generations.

5.2.3 COMPATIBILITY

The model implements four different types of mating-systems: no self-incompatibility (NSI),

physical self-incompatibility (PSI), gametophytic self-incompatibility (GSI), and sporophytic self-

incompatibility (SSI). Under NSI all individuals are compatible with themselves and all other

individuals. Under PSI individuals are obligate out-crossers but there are no genetic mating-types.

Selfing is prevented but fullsib, halfsib, cousin, etc. inbreeding is allowed. Under GSI pollen

can only fertilize plants which do not contain its S-locus haplotype. Under SSI plants can only

pollinate plants which do not share either of its S-locus genes.
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Castric and Vekemans (2004) review some situations that would complicate the above model

of compatibility. There could be dominance relationships among the S alleles in sporophytic self-

incompatibility (Bateman, 1952; Schierup et al., 1997; Uyenoyama, 2000). S alleles may not be

selectively neutral because they could be linked to recessive, deleterious mutations (Uyenoyama,

1997, 2003). S alleles can violate Mendel’s laws by segregating unevenly (Bechsgaard et al., 2004).

Let m and n represent the position of the pollen donor on the x- and y-axes, and let k and

l similarly represent the seed parent. If we define C (k, l,m,n) as the proportion of pollen from

individual mn that is compatible with individual kl, then we can calculate it for each of the four

mating-systems. For NSI, C (k, l,m,n) = 1 for all kl and mn, and for PSI, C (k, l,k, l) = 0 and

C (k, l,m,n) = 1 for kl 6= mn. For GSI, C (k, l,m,n) = 0 if kl and mn have the same SI genotype,

C (k, l,m,n) = 1/2 if kl and mn share one SI allele, and C (k, l,m,n) = 1 if kl and mn share no

SI alleles. For SSI, C (k, l,m,n) = 0 if kl and mn share at least one SI allele and C (k, l,m,n) = 1

otherwise.

5.2.4 DISPERSAL

There are two different types of dispersal: male gametes (pollen) and embryos (seeds). In this

model, both forms of dispersal have a uniform radius and an exponential distance. Exponential

dispersal is leptokurtic, which is common for plant dispersal (Kot et al., 1996). If σ2
d is the variance

of dispersal distance, then the probability density of dispersal is

frθ (r,θ |σd) =
1

2π

e−r/σd

σd

where θ is the angle of dispersal from the positive x-axis and r is the radius of dispersal. The model

allows for seeds and pollen to have different parameters of dispersal, i.e. σd = σs or σd = σp. In

Cartesian coordinates this becomes probability density

fxy (x,y|σd) =
1

2π

e−
√

x2+y2/σd√
x2 + y2σd
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Since the population is structured on a lattice, dispersal to an individual is calculated by integrating

dispersal to its cell. The probability density of dispersal to an individual with offset i j is

fi j (i, j|σd) =
∫ i+1/2

i−1/2

∫ j+1/2

j−1/2
fxy (x,y|σd) dy dx

Seeds and pollen are assumed to be infinite, which allows for dispersal to be simulated back-

wards. For each cell, a mother is drawn from the previous generation based on seed dispersal

centered on the cell and repeated until a valid mother is found. (Invalid mothers are cells that are

off the lattice.) Once a mother is found, a pollen grain is drawn from the previous generation based

on pollen dispersal centered on the mother and Mendel’s laws. If the pollen grain comes from an

invalid (off-lattice) father or if it is incompatible with the mother, the parent pair is rejected and the

process repeats until a valid, compatible pair is chosen. The chosen pollen grain is combined with

a random gamete from the mother to form the daughter cell.

Rejecting a mother if the pollen is invalid or incompatible penalizes females for pollen avail-

ability and pollen compatibility, two processes that can happen in nature. The probability that for

cell i j individual kl is the mother and individual mn is the father is

Pmp (k, l,m,n|i, j) =
1

K (i, j)
C (k, l,m,n) fi j (k− i, l− j|σs) fi j (m− k,n− l|σp) (5.3)

where K (i, j) is the correction factor

K (i, j) = ∑
k

∑
l

∑
m

∑
n

C (k, l,m,n) fi j (k− i, l− j|σs) fi j (m− k,n− l|σp)

When self-fertilization is allowed (under NSI), the probability of self-fertilization is

fi j (0,0)≈ 1− e−1
/√

πσp (5.4)

i.e. pollen comes from the circle with an area of 1 centered on the seed parent.
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By taking the marginal distributions of Equation 5.3, the maternal and paternal distributions

can be calculated for cell i j:

Pm (k, l|i, j) = ∑
m

∑
n

Pmp (k, l,m,n|i, j) (5.5)

Pp (m,n|i, j) = ∑
k

∑
l

Pmp (k, l,m,n|i, j) (5.6)

And finally, the probability that kl is a mother is

Pm (k, l) =
1
N ∑

i
∑

j
Pm (k, l|i, j)

and the probability that mn is a father is

Pp (m,n) =
1
N ∑

i
∑

j
Pp (m,n|i, j)

where N = X×Y is the size of the population.

5.2.5 SIMULATION

A simulation based on this model was written in C++. Thirty-six hundred simulations were run,

one hundred for each of thirty-six different parameter sets. These parameter sets consisted of four

different SI systems—NSI, PSI, GSI, or SSI—by three different seed dispersal levels—σs = 1,

σs = 2, or panmictic—by three different pollen dispersal levels—σp = 2, σp = 4, or panmictic.

The population size was 50×50 = 2500 individuals. The S locus and 15 marker loci were tracked

for 2500 generations. For each locus in each generation, the simulations recorded expected het-

erozygosity (HT ), the actual heterozygosity (HI), the conditional inbreeding coefficient (F), and

the number of alleles (K). The genetic map of the population was recorded on the last generation

and used to measure fine-scale genetic structure.



72

5.3 METHODS

Effective population size was calculated for each simulation using variance in fecundity, VK

(Wright, 1938):

Ne =
4N−2
VK +2

Under this definition, the range of Ne is 1 to 2N− 1, where N is the census size. Since fecundity

is the number of offspring an individual has, populations with larger variations in fecundity will

have larger levels of identity-by-descent and lower effective population sizes. Because variance

in fecundity is essentially constant during a simulation (results not shown), Ne was calculated

from the VK of the final generation. Since each parameter set was represented by 100 simulations,

the distribution of the Ne of each parameter set could be established. Using R (R Development

Core Team, 2006), a t-test with unequal variances was used to compare the Ne distributions of

each pair of parameter sets, and the resulting p-values were corrected for multiple tests using

Holm correction, which is more powerful than Bonferroni correction (Holm, 1979; Shaffer, 1995;

Wright, 1992).

Inbreeding was measured using the conditional inbreeding coefficient (Hardy and Vekemans,

1999; Malécot, 1975; Wright, 1965),

F =
f − θ̄

1− θ̄
=

HT −HI

HT

where f is the probability of identity-by-descent of genes in individuals and θ̄ is the probability of

identity-by-descent for two genes chosen at random in the population. Since in this model, every

homozygote is autozygous, F can be calculated from the expected heterozygosity in the population,

HT , and the actual heterozygosity in the population, HI .

To investigate fine scale genetic structure, Nason’s kinship coefficient, Fi j (Loiselle et al.,

1995), was calculated for all 3.1 million pairs of individuals in each simulation at generation 2500

using SPAGeDi (Hardy and Vekemans, 2002). Fi j for any pair of individuals i and j is defined as
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Fi j =
∑l
[
∑a (pila− pla)

(
p jla− pla

)
+∑a pla (1− pla)/(nl−1)

]
∑l ∑a pla (1− pla)

where pila is the frequency of allele a at locus l in individual i, pla is the frequency of allele a at

locus l in the entire sample, and nl is the number of distinct copies of locus l in the sample. Fi j can

be calculated for each locus separately or for the entire genome. In this study, loci were expected

to show differences in fine-scale genetic structure, and therefore, Fi j was calculated for each locus

separately. Using SPAGeDi, pairs of individuals were divided into ten, roughly equal-sized distance

classes based on the distance separating the individuals. The average Fi j was calculated from the

pairs in each distance class.

Neighborhood size, Nb was calculated for each simulation from the Fi j correlegrams using the

Sp statistic:

Nb =
1
Sp

=
F1−1

bln

where F1 is the average Fi j for distance class 1 and bln is the slope of the linear regression of Fi j to

ln(distance).

5.4 RESULTS

5.4.1 EFFECTIVE POPULATION SIZES

Table 5.1 lists the average Ne for each parameter set in decreasing order along with their 95%

confidence intervals. The confidence intervals have been adjusted for multiple tests (n = 36) using

Bonferroni correction. Table 5.1 also lists the average variance in total, male, and female fecudity

as well as the average covariance of male and female fecudity. Figure 5.1 shows whether two

parameter sets have significantly different average effective population sizes at the α = 0.05 level

with Holm correction for multiple tests (Holm, 1979; Shaffer, 1995; Wright, 1992).

Parameter sets can be classified into different groups based on their associated effective popu-

lation sizes. The two highest groups, A and B, consist of populations that are self-incompatible and
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Table 5.1: Average Effective Population Sizes. For σs and σp, “P” signifies panmictic dispersal.
The 95% confidence intervals of average Ne were estimated using a Student’s t distribution and
have been adjusted for multiple (36) tests using Bonferroni correction.

Group SI σs σp Ne
Average Variance of Fecundity
Total Female Male 2Cov

A

PSI 1 2 2692±10.98 1.71 0.79 0.98 −0.06
GSI 1 2 2686±12.55 1.72 0.79 0.99 −0.06
PSI 1 4 2669±11.22 1.75 0.79 1.00 −0.04
GSI 1 4 2661±12.16 1.76 0.79 1.00 −0.03
SSI 1 4 2660±10.81 1.76 0.79 1.00 −0.03
SSI 1 2 2655±11.07 1.77 0.79 0.99 −0.02
SSI 1 P 2646±11.31 1.78 0.78 0.99 0.00
PSI 1 P 2644±12.38 1.78 0.78 1.00 −0.00
NSI 1 P 2641±11.26 1.79 0.78 1.00 0.00
GSI 1 P 2641±11.65 1.79 0.79 1.00 0.00

B

PSI 2 2 2571±12.79 1.89 0.93 0.99 −0.03
PSI 2 P 2566±12.15 1.90 0.91 0.99 −0.01
GSI 2 2 2564±11.24 1.90 0.93 1.00 −0.02
NSI 2 P 2556±10.55 1.91 0.91 1.00 0.00
PSI 2 4 2555±12.07 1.91 0.92 1.00 −0.01
GSI 2 P 2554±12.45 1.91 0.91 1.00 −0.00
SSI 2 P 2550± 9.93 1.92 0.92 1.00 0.00
SSI 2 2 2549±10.80 1.92 0.93 1.00 −0.01
SSI 2 4 2547±12.15 1.93 0.93 1.00 −0.00
GSI 2 4 2546±10.66 1.93 0.93 1.00 −0.00

C NSI 1 4 2523±11.73 1.96 0.79 0.98 0.20

D

GSI P P 2508±11.34 1.99 1.00 1.00 −0.01
PSI P P 2502±10.31 2.00 1.00 0.99 −0.00
NSI P P 2496±11.70 2.00 1.00 1.00 0.01
SSI P P 2494±10.89 2.01 1.00 1.00 0.01

E

GSI P 2 2465±12.62 2.06 1.01 1.01 0.03
PSI P 2 2455±12.31 2.07 1.02 1.02 0.03
SSI P 2 2448±12.69 2.08 1.02 1.02 0.05
SSI P 4 2446±11.80 2.09 1.02 1.02 0.04
GSI P 4 2443±10.49 2.09 1.02 1.02 0.04
PSI P 4 2440±11.80 2.10 1.02 1.03 0.05

F

NSI 1 2 2434±13.57 2.11 0.78 0.96 0.36
NSI 2 4 2399±11.98 2.17 0.92 1.00 0.25
NSI 2 2 2302±11.24 2.34 0.92 0.99 0.44
NSI P 4 2296±12.39 2.36 1.02 1.01 0.33
NSI P 2 2199±12.40 2.55 1.01 1.01 0.53
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Figure 5.1: Pairwise Comparisons of Ne. Gray squares are runs with significantly different (α =
0.05) average Ne.

have local seed dispersal, with σs = 1 for Group A and σs = 2 for Group B. Group C consists of a

a single parameter set: NSI, σp = 1, and σs = 4. Three groups, A-C, are characterized by effective

population sizes that are above the census size, N = 2500. Group D consists of the four parameter

sets in which pollen and seed dispersed panmicticly and is the only group that has an effective pop-

ulation size consistent with the census size. Group E is characterized by populations with panmictic

seed dispersal, local pollen dispersal, and no selfing. Finally, Group F consists of populations with

non-trivial rates of selfing. Groups E and F are characterized by effective population sizes that are

lower than the census size.

5.4.2 INBREEDING

Figure 5.2 shows the average conditional inbreeding coefficients for each locus organized by the

mating system and dispersal regime. In Figure 5.3(a), it is clear that under NSI six different dis-
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persal regimes show positive conditional inbreeding coefficients. From highest to lowest these are

σs–σp = 1–2 (line 1), 2–2 (line 4), Pan–2 (line 7), 1–4 (line 2), 2–4 (line 5), and Pan–4 (line 8). In

Figure 5.3(b), only four different dispersal regimes produce positive inbreeding coefficients under

PSI: 1–2, 1–4, 2–2, and 2–4. Furthermore, the inbreeding levels for PSI are much lower that for

NSI. GSI (Figure 5.3(c)) and SSI (Figure 5.3(d)) begin similar to PSI, but the inbreeding coeffi-

cients decrease as loci get closer to the S locus, switching from inbreeding to outbreeding between

markers 5 and 8 or 3 to 0.4 centimorgans from the S locus.

Figure 5.3 looks at conditional inbreeding coefficients differently. In this figure, the levels of

inbreeding are compared for each mating system on each dispersal regime. Figure 5.4(a) shows

the results for the unlinked locus, and Figure 5.4(b) shows the results for the S locus. The levels of

inbreeding for the unlinked locus are the same for PSI, GSI, and SSI. However, for the S locus, PSI

is significantly different than GSI and SSI. Furthermore, for both loci, the inbreeding coefficients

of GSI and SSI are not significantly different.

5.4.3 FINE-SCALE GENETIC STRUCTURE

The fine-scale genetics structures of the unlinked and S loci are presented as correlegrams in Fig-

ure 5.4. Each locus is split into four subfigures representing the local dispersal regimes and con-

taining correlegrams for four different mating systems. These correlegrams show how kinship (Fi j)

decreases on average as the distance between individuals increases. Populations with more struc-

ture will have higher average kinship for the first distance class and decrease much faster than

populations with less structure. Regardless of the locus or dispersal regime, NSI generates more

structure than the self-incompatible mating systems. Furthermore, there is no significant difference

between GSI and SSI in any of the correlegrams. For the unlinked locus, PSI, GSI, and SSI are

not significantly different, whereas for the S locus, PSI is significantly different than GSI and SSI.

Structure is greatest for 1–2 dispersal, followed by 2–2, 1–4, and 2–4.

Correlegrams for all loci, dispersal regimes, and mating systems can be found in Online

Appendix 5.A. This appendix contains both raw correlegrams and correlegrams corrected for
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Figure 5.2: Conditional Inbreeding Coefficients by Locus. The lines in the figure correspond to
different dispersal regimes. Lines 1–9 respectively correspond to σs–σd of 1–2, 1–4, 1–Pan, 2–2,
2–4, 2–Pan, Pan–2, Pan–4, and Pan–Pan.
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Figure 5.3: Conditional Inbreeding Coefficients by SI with 95% confidence intervals Bonferroni
corrected with n = 4×9×16 = 576. Dispersal represents σs–σp. N, P, G, and S correspond to NSI,
PSI, GSI, and SSI respectively.

non-significant values. In these correlegrams, populations with local dispersal of both seed and

pollen build up fine-scaled genetic structure. Individuals that are near one another are positively

correlated, and individuals that are far apart are negatively correlated. In the absence of self-

incompatibility, all markers show approximately equal levels of kinship (Figures 5.6, 5.7, 5.8, and

5.9), but in the presence of self-incompatibility, kinship decreases from the unlinked loci to the

S loci (Figures 5.10, 5.11, 5.12, and 5.13). As expected, populations with panmictic dispersal in

seeds show no significant level of kinship (Subfigures g–i in Figures 5.7, 5.9, 5.11, and 5.13).

Surprisingly, populations with panmictic pollen dispersal, but local seed dispersal show minute

but significant levels of kinship at the first distance class and no significant kinship after that

(Subfigures c and f in Figures 5.7, 5.9, 5.11, and 5.13).



79

−
0.

02
0.

00
0.

02
0.

04

1 3 5 7 9

G

G

G

G
G

G
G

G
G

G

N

N

N

N

N

N

N

N
N

N

P

P

P

P

P
P

P
P

P
P

S

S

S

S
S

S
S

S
S

S

(a) Unlinked 1–2

−
0.

02
0.

00
0.

02
0.

04

1 3 5 7 9

G

G
G

G G G G G G G

N

N
N

N
N

N N N N N

P

P
P

P
P

P P P P P

S

S
S

S S S S S S S

(b) Unlinked 1–4

−
0.

02
0.

00
0.

02
0.

04

1 3 5 7 9

G

G

G
G

G
G G G G G

N

N

N
N

N
N

N
N

N
N

P

P

P
P

P
P P P P P

S

S
S

S
S

S S S S
S

(c) Unlinked 2–2

−
0.

02
0.

00
0.

02
0.

04

1 3 5 7 9

G

G
G

G G G G G G G

N

N
N

N N N N N N N

P

P
P

P
P P P P P P

S

S
S

S S S S S S S

(d) Unlinked 2–4

−
0.

02
0.

00
0.

02
0.

04

1 3 5 7 9

G

G
G G G G G G G G

N

N

N

N

N

N
N

N
N

N

P

P

P

P
P

P
P

P
P

P

S

S
S S S S S S S S

(e) S Locus 1–2

−
0.

02
0.

00
0.

02
0.

04

1 3 5 7 9

G

G G G G G G G G G

N

N
N

N
N

N N N N
N

P

P
P

P P P P P P P

S
S S S S S S S S S

(f) S Locus 1–4

−
0.

02
0.

00
0.

02
0.

04

1 3 5 7 9

G

G G G G G G G G G

N

N

N
N

N
N

N
N

N
N

P

P

P
P

P
P

P P P P

S

S S S S S S S S S

(g) S Locus 2–2

−
0.

02
0.

00
0.

02
0.

04

1 3 5 7 9

G
G G G G G G G G G

N

N
N

N N N N N N
N

P

P
P

P P P P P P P

S
S S S S S S S S S

(h) S Locus 2–4

Figure 5.4: Correlegrams. The x-axis represents distance class, and the y-axis represents average
Fi j. Each subfigure contains four correlegrams, representing different mating systems for a specific
locus and dispersal level. Lines N, P, G, and S correspond to NSI, PSI, GSI, and SSI. Dispersal is
represented by σs–σp.
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5.4.4 NEIGHBORHOOD SIZES

Figure 5.5 shows the neighborhood sizes of populations with local dispersal of seeds and pollen.

(These are the populations expected to have reasonable values of Nb.) As expected, NSI and PSI

show no effect of linkage to neighborhood size, but GSI and SSI do. Additionally, higher levels of

local dispersal produce higher neighborhood sizes. Finally, the neighborhood sizes for the unlinked

locus do not show any significant effect of mating system.
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Figure 5.5: Average Neighborhood Sizes. Only populations with positive, finite neighborhood sizes
have been included in this analysis. Lines 1–4 refer to σs–σp of 1–2, 1–4, 2–2, and 2–4 respectively.
95% confidence intervals have not been corrected for multiple comparisons.
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5.5 DISCUSSION

5.5.1 EFFECTIVE POPULATION SIZE

Effective population sizes are determined by variances in female and male fecundities as well as

the covariance between them. In this study’s model, these variances are determined by the disper-

sal kernel and mating system. Selfing will cause a large covariance in male and female fecundities

and thus reduce the effective population size. The rate of selfing is determined by both the mating

system and dispersal. Selfing can only happen under NSI, and low values for σp have high self-

ing rates. Alternatively, local dispersal of either pollen or seed decreases the variance in fecundity

because it increases isolation-by-distance, which can turn a continuous population into many dif-

ferent effectively isolated subpopulations. However, local dispersal can also increase the variance

in reproductive success because individuals on the edge of the population may not have the same

opportunities to reproduce as individuals in the middle of the population. They can have both lower

pollen pools and less access to suitable habitat for their offspring.

Of the six identified groups, only Group D, which had panmictic pollen and seed dispersal,

produced effective populations sizes consistent with the census size. Based on the assumptions for

calculating the effective population size, we expect this result for NSI–Pan–Pan; however, we find

that the result also holds for other panmictic mating systems. Therefore, under panmixia the effect

of self-incompatibility on reproduction was weak, which is not surprising since self-fertilization

was rare under panmixia.

Groups A and B produced the highest effective population sizes. These groups were character-

ized by self-incompatibility and local seed dispersal and had a noticeable decrease in the variance

of female fecundity. This decrease in variance can be explained by the decrease of seed shadows

and decrease in the overlap of seed shadows. The differences between Groups A and B are consis-

tent with this explanation because Group A has a lower seed dispersal and thus smaller shadows

than Group B: σs = 1 versus σs = 4. Furthermore, since these groups are self-incompatible, they
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avoid the problem of decreases in local dispersal increasing inbreeding and decreasing the effective

population size.

Group E, which consisted of populations with self-incompatibility, panmictic seed dispersal,

and local pollen dispersal, produced effective population sizes lower than the census size. These

populations have slightly higher variances and covariances of fecundity, which can be attributed to

variation in pollen availability due to edge effects.

Groups C and F consist of populations that are self-compatible with local pollen dispersal

and thus have non-trivial rates of selfing. However, Group C produced effective population sizes

above the census size while Group F produced effective population sizes below the census size.

The difference between these two groups highlights the antagonistic interaction of seed and pollen

dispersal under NSI. Decreasing seed dispersal increases the effective population sizes because

of a decrease in the overlap of seed shadows. However, decreasing pollen dispersal increases the

effective population size because it increases selfing. In Group C, which has low seed dispersal and

high pollen dispersal, the effects of seed dispersal are greater than the effects of pollen dispersal.

However, in Group F, the effects of pollen dispersal are greater than the effects of seed dispersal.

Interestingly, for every dispersal regime PSI, SSI, and GSI are found together in the same group,

suggesting that their effects on effective population sizes are similar. The pairwise comparisons in

Figure 5.1 found significant differences among the effects of PSI, GSI, and SSI in only there per

dispersal comparisons: PSI–2–2 versus SSI–2–2, PSI–1–2 versus SSI–1–2, and GSI–1–2 versus

SSI–1–2. At low pollen dispersals, the effects of SSI appear to diverge from PSI and GSI. For

these SSI populations, the covariance between male and female fecundity is slightly higher than

in their companion PSI and GSI populations. This difference in covariance may be due to SSI

producing slightly stronger balancing selection.

5.5.2 INBREEDING

In Figure 5.2 NSI produces higher conditional inbreeding coefficients than PSI, GSI, and SSI. For

instance, the largest average conditional inbreeding coefficient of the unlinked locus is greater than
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0.20 under NSI but roughly 0.06 in the other three mating systems. From Equation 5.4 the proba-

bilities of selfing expected under NSI are approximately 0.25 when σp = 2 and 0.13 when σp = 4.

Furthermore, the probability of selfing contributes half of its value to the conditional inbreeding

coefficient because half of selfed progeny are autozygous. This is consistent with the differences

observed between the conditional inbreeding coefficients of self-compatible and self-incompatible

mating systems, which are roughly half the above selfing probabilities. In fact, populations with

panmictic seed dispersal and local pollen dispersal, Pan–2 and Pan–4, have positive conditional

inbreeding coefficients only under NSI. The existence and magnitude of these coefficients can be

attributed to the presence of selfing in these populations under NSI and its absence under the other

mating systems.

Because there is an antagonism between local dispersal and self-incompatibility systems, we

expect GSI and SSI to show that inbreeding coefficients depend on linkage to the S locus, which

is confirmed by Figures 5.3(c) and 5.3(d). The more closely linked a marker is to the S locus, the

lower is its inbreeding coefficient, with the markers near the S locus are outbred while markers

farther away are inbred.

From Figure 5.3, we can see that GSI and SSI do not significantly affect conditional inbreeding

coefficients for unlinked loci beyond preventing self-fertilizations because the levels of inbreeding

for the unlinked locus are the same for PSI, GSI, and SSI. However, because GSI and SSI require

the S locus to be outbred, PSI is significantly different than GSI and SSI for the S locus. Surpris-

ingly, no significant difference was detected between GSI and SSI for the inbreeding coefficients.

5.5.3 FINE-SCALE GENETIC STRUCTURE

As seen in Figure 5.4 and section 5.A, NSI generates the greatest genetic structure. Because NSI

allows selfing, pollen disperses less, which in turn generates a more structured population. Un-

linked loci showed little difference between the correlegrams of PSI, GSI, and SSI, which once

again suggests that GSI and SSI only affect unlinked loci by preventing selfing.
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The correlegrams found in section 5.A reveal that populations with local seed dispersal and

panmictic pollen dispersal have positive levels of kinship in their first distance class and no kinship

in the rest of them. Because pollen is panmictic, only seed dispersal generates genetic structure.

Local seed dispersal causes halfsibs to be located near one another, generating small levels of

kinship in the first distance class. These correlegrams are not affected by the self-incompatibility

because self-incompatibility affects pollen dispersal not seed dispersal.

The magnitude of fine-scale genetic structure, although significant, is much lower in these

simulations than what is often found in nature. There are several reasons why the simulations may

be prevented from generating typical magnitudes of genetic structure. The population size, 2500,

may be too small to build up typical levels of fine-scale genetic structure. The habitat size may also

be small relative to dispersal. Furthermore, the model does not include mutation, which prevents

novel mutations from arising and distinguishing areas of the population. These effects can be tested

in subsequent studies.

5.5.4 NEIGHBORHOOD SIZES

As expected, NSI and PSI showed no effect of linkage to neighborhood size, but GSI and SSI do.

Under GSI and SSI balancing selection cause S loci to disperse further than unlinked loci. The

neighborhood sizes for the unlinked locus do not show any significant effect of mating system.

Furthermore, little to no significant difference between GSI and SSI is apparent from the neigh-

borhood sizes. Additionally, higher levels of local dispersal produce higher neighborhood sizes.

Wright (1946) derived neighborhood size as Nb = 4πσ2d, where d is the density of the pop-

ulation. This was derived from the assumption that gametes disperse on the x-axis and y-axis

independently and identically with normal distribution of mean 0 and variance σ2. Because dis-

tance is measured in individuals, the density of this study’s model was 1. In Wright’s model and

the model in this study, σ2 refers to the same thing: one half the mean squared distance of disper-

sal. Because plants disperse pollen and seed instead of male and female gametes, σ2 needs to be

derived from pollen and seed dispersal: σ2 = σ2
s +σ2

p/2 (Crawford, 1984). For NSI we can apply
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this formula directly, resulting in the following neighborhood sizes for the local dispersal regimes:

37.7 for 1–2, 113.1 for 1–4, 75.4 for 2–2, and 150.8 for 2–4. For PSI σ2
p needs to be corrected to

take into account the lack of selfing. Therefore the corrected value is σ2 ′
p = σ2

p +σp/
√

π +1/2π;

note that under Wright’s model σ2 ′
p = σ2

p + 1/2π .Using this correction, the neighborhood sizes

for PSI are as follows: 45.8 for 1–2, 128.3 for 1–4, 83.5 for 2–2, and 166.0 for 2–4.

It is not possible to calculate σ2 for GSI and SSI without knowing the genetic structure of the

population. However, based on the common observation from the simulations that the effects of

PSI, SSI, and GSI are similar for unlinked loci, it is possible to use the estimated σ2 of PSI for

estimations for GSI and SSI. Using the PSI values for GSI and SSI, these values are very good

fits for the neighborhood sizes of unlinked loci estimated from the correlegrams and suggests that

measures for other loci are appropriate. The significance of these fits can be calculated by using

a t-test on the logarithm of the neighborhood sizes and adjusting the p-values using Holm correc-

tion. Out of these significance tests, only NSI 1–4, PSI 1–4, GSI 1–4, and SSI 1–2 have averages

significantly different (α = 0.05) than the expectations calculated above. These dispersal regime

appear to violate slightly but significantly one of the assumptions used to calculate neighborhood

sizes.

5.5.5 CONCLUSION

This study has confirmed that antagonism exists between local dispersal and self-incompatibility

systems. However, loci unlinked to the S locus do not appear to be significantly affected by self-

incompatibility systems beyond the prevention of selfing. This suggests that studies of plant popu-

lations can ignore the genetics of self-incompatibility when studying other aspects of plant biology.

Specifically, computational models can assume obligate outcrossing (physical self-incompatibility)

without the need to model its genetics. Surprisingly, differences between gametophytic and sporo-

phytic self-incompatibility systems were small to non-significant, suggesting that their impact on

plant populations are equivalent. These results suggest that the evolutionary advantage of self-
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incompatibility systems in large populations is the prevention of selfing and does not extend to the

prevention of inbreeding.
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Figure 5.6: NSI Correlegrams. Lines 1-F represent the 15 marker loci with 1 being the unlinked
locus and f being locus 15. Line S represents the S locus. Subfigure labels refer to dispersal, i.e.
σs–σp. The x-axis is distance class, and the y-axis is F̄i j. The scale of the y-axis is different for
panmictic dispersals.
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Figure 5.7: Corrected NSI Correlegrams. Figure 5.6 has been modified such that any F̄i j not sig-
nificantly different than zero is set as zero. Significance is determined by 95% confidence intervals
Bonferroni corrected for 10×9×16 = 5760 trials.
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Figure 5.8: PSI Correlegrams. See Figure 5.6 for a description of the subfigures.
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(i) Pan–Pan

Figure 5.9: Corrected PSI Correlegrams. See Figure 5.6 and Figure 5.7 for descriptions of the
subfigures.
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(i) Pan–Pan

Figure 5.10: GSI Correlegrams. See Figure 5.6 for a description of the subfigures.
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Figure 5.11: Corrected GSI Correlegrams. See Figure 5.6 and Figure 5.7 for descriptions of the
subfigures.
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Figure 5.12: SSI Correlegrams. See Figure 5.6 for a description of the subfigures.



100

−
0.

02
0.

00
0.

02
0.

04

1 2 3 4 5 6 7 8 9 10

1

1
1

1
1

1
1 1 1

1

2

2

2
2 2

2
2 2 2 2

3

3
3

3 3
3 3 3 3

3

4

4
4

4 4 4 4 4 4 4

5

5
5

5 5 5 5 5 5 5

6

6
6

6 6 6 6 6 6 6

7

7
7

7 7 7 7 7 7 7

8

8
8 8 8 8 8 8 8 8

9

9
9 9 9 9 9 9 9 9

A

A A A A A A A A A

B

B B B B B B B B B

C

C C C C C C C C C

D

D D D D D D D D D

E

E E E E E E E E E

F

F F F F F F F F F

S

S S S S S S S S S

(a) 1–2

−
0.

02
0.

00
0.

02
0.

04

1 2 3 4 5 6 7 8 9 10

1

1
1 1 1 1 1 1 1 1

2

2
2 2 2 2 2 2 2 2

3
3 3 3 3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4

5
5 5 5 5 5 5 5 5 5

6
6 6 6 6 6 6 6 6 6

7
7 7 7 7 7 7 7 7 7

8
8 8 8 8 8 8 8 8 8

9
9 9 9 9 9 9 9 9 9

A
A A A A A A A A A

B
B B B B B B B B B

C
C C C C C C C C C

D
D D D D D D D D D

E
E E E E E E E E E

F
F F F F F F F F F

S
S S S S S S S S S

(b) 1–4

−
2 

 e
−

04
2 

  e
−

04
6 

  e
−

04

1 2 3 4 5 6 7 8 9 10

1

1 1 1 1 1 1 1 1 1

2

2 2 2 2 2 2 2 2 2

3

3 3 3 3 3 3 3 3 3

4

4 4 4 4 4 4 4 4 4

5

5 5 5 5 5 5 5 5 5

6

6 6 6 6 6 6 6 6 6

7

7 7 7 7 7 7 7 7 7

8

8 8 8 8 8 8 8 8 8

9

9 9 9 9 9 9 9 9 9

A

A A A A A A A A A

B

B B B B B B B B B

C

C C C C C C C C C

D

D D D D D D D D D

E

E E E E E E E E E

F

F F F F F F F F F

S

S S S S S S S S S

(c) 1–Pan

−
0.

02
0.

00
0.

02
0.

04

1 2 3 4 5 6 7 8 9 10

1

1
1

1 1
1 1 1 1 1

2

2
2

2 2 2 2 2 2 2

3

3
3

3 3
3 3 3 3 3

4

4
4

4 4 4 4 4 4 4

5

5
5

5 5 5 5 5 5 5

6

6
6

6 6 6 6 6 6 6

7

7 7 7 7 7 7 7 7 7

8
8 8 8 8 8 8 8 8 8

9
9 9 9 9 9 9 9 9 9

A
A A A A A A A A A

B
B B B B B B B B B

C
C C C C C C C C C

D
D D D D D D D D D

E
E E E E E E E E E

F
F F F F F F F F F

S
S S S S S S S S S

(d) 2–2

−
0.

02
0.

00
0.

02
0.

04

1 2 3 4 5 6 7 8 9 10

1
1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

3
3 3 3 3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4

5
5 5 5 5 5 5 5 5 5

6
6 6 6 6 6 6 6 6 6

7
7 7 7 7 7 7 7 7 7

8
8 8 8 8 8 8 8 8 8

9
9 9 9 9 9 9 9 9 9

A
A A A A A A A A A

B
B B B B B B B B B

C
C C C C C C C C C

D
D D D D D D D D D

E
E E E E E E E E E

F
F F F F F F F F F

S
S S S S S S S S S

(e) 2–4

−
2 

 e
−

04
2 

  e
−

04
6 

  e
−

04

1 2 3 4 5 6 7 8 9 10

1

1 1 1 1 1 1 1 1 1

2

2 2 2 2 2 2 2 2 2

3

3 3 3 3 3 3 3 3 3

4

4 4 4 4 4 4 4 4 4

5

5 5 5 5 5 5 5 5 5

6

6 6 6 6 6 6 6 6 6

7

7 7 7 7 7 7 7 7 7

8

8 8 8 8 8 8 8 8 8

9

9 9 9 9 9 9 9 9 9

A

A A A A A A A A A

B

B B B B B B B B B

C

C C C C C C C C C

D

D D D D D D D D D

E

E E E E E E E E E

F

F F F F F F F F F

S

S S S S S S S S S

(f) 2–Pan

−
2 

 e
−

04
2 

  e
−

04
6 

  e
−

04

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 56 6 6 6 6 6 6 6 6 67 7 7 7 7 7 7 7 7 78 8 8 8 8 8 8 8 8 89 9 9 9 9 9 9 9 9 9A A A A A A A A A AB B B B B B B B B BC C C C C C C C C CD D D D D D D D D DE E E E E E E E E EF F F F F F F F F FS S S S S S S S S S

(g) Pan–2

−
2 

 e
−

04
2 

  e
−

04
6 

  e
−

04

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 56 6 6 6 6 6 6 6 6 67 7 7 7 7 7 7 7 7 78 8 8 8 8 8 8 8 8 89 9 9 9 9 9 9 9 9 9A A A A A A A A A AB B B B B B B B B BC C C C C C C C C CD D D D D D D D D DE E E E E E E E E EF F F F F F F F F FS S S S S S S S S S

(h) Pan–4

−
2 

 e
−

04
2 

  e
−

04
6 

  e
−

04

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 56 6 6 6 6 6 6 6 6 67 7 7 7 7 7 7 7 7 78 8 8 8 8 8 8 8 8 89 9 9 9 9 9 9 9 9 9A A A A A A A A A AB B B B B B B B B BC C C C C C C C C CD D D D D D D D D DE E E E E E E E E EF F F F F F F F F FS S S S S S S S S S

(i) Pan–Pan

Figure 5.13: Corrected SSI Correlegrams. See Figure 5.6 and Figure 5.7 for descriptions of the
subfigures.



CHAPTER 6

CONCLUSION

In the first study, I developed, Dawg, a portable application capable of simulating sequence evolu-

tion using the robust GTR+Γ+I model of sequence substitution and the power-law model of indel

lengths. This program offers many advantages over existing sequence simulation programs.

In the second study, I applied Dawg to investigate whether logarithmic gap costs could improve

alignment accuracy as has been suggested in the literature. I found that logarithmic gap costs actu-

ally decrease alignment accuracy. Furthermore, this decrease is considerable compared the affine

gap costs. This unexpected result can be explained by the conversion of a maximum likelihood

search into a minimum cost search which introduces a linear component into the cost. This linear

component dominates the logarithmic component that derives from the power-law distribution of

gap lengths. Using the mean distance between sequences, the rate of indel formation, and the dis-

tribution of gap lengths, I derived a model for calculating the gap costs for biological data. This

model could prove useful for tuning alignment parameters to biological data.

In the final study, I investigated the antagonism between self-incompatibility systems and

local dispersal, focusing on the interaction of isolation-by-distance and identity-by-descent.

As expected, populations with local dispersal built up fine scaled genetic structure and self-

incompatibility systems modified the level of structure. Also as expected, self-incompatibility

loci had a stronger effect on closely linked markers than on unlinked loci. However, unexpectedly,

gametophytic and sporophytic self-incompatibility showed no significant differences in their effect

on effective population sizes, neighborhood sizes, conditional inbreeding coefficients, or fine scale

genetic structure.
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APPENDIX A

NGILA: GLOBAL PAIRWISE ALIGNMENTS WITH LOGARITHMIC AND AFFINE GAP COSTS
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Over the last two decades, several molecular studies have demonstrated that the lengths of

indels obey a power-law. Under a power law, a log-log transformation of frequencies is linear.

A Zipfian distribution produces a power-law in discrete data. Under a Zipfian distribution, the

probability that an observation is x = {1,2, . . .} is F (x|z) = x−z/ζ (z), where z > 1 is a parameter

and ζ (z) = ∑
∞
n=1 n−z is Reimann’s Zeta Function. The mean and variance of this distribution are

undefined (i.e. infinite) for z≤ 2 and z≤ 3, respectively.

Based on this power law some researchers have argued that logarithmic gap penalties may

be appropriate for sequences alignments (Gonnet et al., 1992; Gu and Li, 1995; Waterman, 1984).

However, there are no programs available that can align sequences using logarithmic gap penalties,

even though established algorithms like Miller and Myers (1988) show how to do it. Here I present

Ngila, a portable implementation of their algorithm that can globally align pairs of sequences using

logarithmic and affine gap penalties.

Needleman and Wunsch (1970) provided a method of sequence alignment where the maximum

similarity of a pair of sequences was calculated using dynamic programming. Sellers (1974) pro-

vided an alternative approach where the minimum distance of the sequence pair was calculated

instead. These algorithms took O(MN) time and O(MN) space where M and N are the lengths of

the two sequences being aligned. Waterman et al. (1976) generalized Sellers’s metric to arbitrary

gap weights, producing an O(MN(M +N)) algorithm, referred to as WSB. Gotoh (1982) demon-

strated that with affine gap penalties the WSB algorithm can be run in O(MN) time. Waterman

(1984) subsequently modified the WSB algorithm into the candidate list method for concave gap

weights, which could simplify the search process. Waterman’s candidate list method was further

refined by Miller and Myers (1988) into an O(MN) algorithm. In addition, Miller and Myers (1988)

pointed out how their algorithm could be modified using Hirschberg (1975)’s divide-and-conquer

method to produce alignments in O(MNlog(M +N)) time but with O(M) space. Ngila implements

this algorithm in order find a least costly global alignment of two sequences given a gap cost of

wk = a+bk + c lnk.



104

Ngila is controlled through a command-line interface. Switches “-a”, “-b”, and “-c” control

the coefficients of gap cost. Switch “-m” sets the cost of a match, and switch “-r” sets the cost

of a mismatch, whereas switch “-x” specifies a substitution cost matrix. Switch “-f” tells Ngila to

align using cost-free end gaps. Source code for Ngila can be downloaded from its development

website: http://scit.us/projects/ngila/. The source code can be compiled on systems that

support the GNU Autoconfig and Automake tools. This includes most flavors of Unix like Linux

or FreeBSD, the MinGW environment for Windows, and Macintosh OS X. Project files for Mi-

crosoft’s Visual Studio .Net 2003 are also included with the source.

The algorithm in Ngila finds the minimum cost of aligning two sequences (Sellers, 1974) in-

stead of the maximum similarity of aligning two sequences (Needleman and Wunsch, 1970). An

extension of the method of Smith et al. (1981) can be used to convert a maximum search to a min-

imum search. This is important when looking to use Ngila for maximum likelihood alignments.

Based on a statistical model, the scores of “matches” of type i, αi, and the penalties of gaps of

length k, wk, can be used to calculate the alignment with maximum log-likelihood:

l = max
{
∑αiηi−∑wk∆k

}
(A.1)

where ηi is the number of residue matches of type i and ∆k is the number of gaps of length k. A

minimum cost analog of Equation A.1 is

d = min
{
∑βiηi+∑G(k)∆k

}
(A.2)

To begin constructing the minimum cost analog, let βi = (x−αi)/y be the cost of a match of

type i, therefore

− l = min
{
−∑αiηi+∑wk∆k

}
= min

{
∑(yβi− x)ηi+∑wk∆k

}
= ymin

{
∑βiηi−

x
y ∑ηi +∑

wk

y
∆k

}
(A.3)

http://scit.us/projects/ngila/
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The lengths of the sequences being aligned, n and m, can be related to the alignment itself via the

equation n+m = 2∑ηi +∑k∆k. Using this relationship, Equation A.3 can be expressed as

− l = ymin
{

∑βiηi−
x
2y

(
n+m−∑k∆k

)
+∑

wk

y
∆k

}
=−x(n+m)

2y
+ ymin

{
∑βiηi +

x
2y ∑k∆k +∑

wk

y
∆k

}
=−x(n+m)

2y
+ ymin

{
∑βiηi +∑

(
xk
2y

+
wk

y

)
∆k

}
=−x(n+m)

2y
+ ymin

{
∑βiηi +∑G(k)∆k

}
(A.4)

From this it can be clearly seen that d = min{∑βiηi +∑G(k)∆k} maximizes the likelihood

of the alignment, where G(k) = (xk/2+wk)/y is the cost of a gap of length k. This result allows

minimum cost algorithms like Ngila to be used to calculate maximum likelihood alignments.
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