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ABSTRACT 

Self-organization involves the coordination of cell behavior to generate structures many orders of 

magnitude greater than the individual cells. Self-organization is a hallmark of embryonic 

development, is central to the immune response, and is involved in tumor metastases. The 

multitude of possible behavioral cues, the presence of redundant systems, and high levels of noise 

obscure coordination mechanisms in self-organizing processes. This dissertation proposes a 

framework to overcome the challenges of studying self-organizing systems by utilizing in vivo time-

lapse fluorescent imaging of moving cells and their environment to constrain computer simulations 

to experimental results. A simple nearest-neighbor sampling technique is described to 

parameterize simulations with experimental data, eliminating the need for broad assumptions or 

detailed knowledge about the underlying mechanisms generating cell behavior and behavioral 

cues. The resulting simulations provide a framework for testing hypotheses that are challenging, 

costly, or impossible to test via traditional biological experiments. Using this framework, a unified 

understanding of the cell behavior and behavioral cues required for development in the bacterium 

Myxococcus xanthus was identified, and previously unknown cell behaviors required for 

development were discovered. These results revealed that decreased cell motility inside the 

aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells and 



in a radial direction to the nearest aggregate are behaviors that enhance M. xanthus development. 

The simulations also indicated that aggregation is generally robust to perturbations in these 

behaviors and identified possible compensatory mechanisms. The framework can be applied to 

answer new questions about M. xanthus self-organization using the same fluorescent tracking and 

simulation framework to compare mutant cell behavior to that of the wild type. 

INDEX WORDS:  Self-organization, Bacteria, Collective Movement, Image Processing, 

Myxococcus xanthus, Time-Lapse Imaging, Fluorescent Imaging, Cell 

Communication, Nearest-Neighbor Interpolation, Simulation, Modeling 
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CHAPTER Y 

INTRODUCTION 

Preface 

Motile cells self-organize into elaborate and remarkably functional structures during embryonic 

development, tumor metastases, the immune response, and wound healing. The three-dimensional 

structure emerges from cues passed between cells and simple behaviors encoded within the cellular 

machinery. The resulting complexity is astounding and found all over the biological spectrum. 

Examples range from the bacterium Myxococcus xanthus, which utilizes motility to generate high 

cell-density mound structures without any known long-range signals (Yang and Higgs, WXYg), to 

the large-scale rearrangements of cells during gastrulation (Keller, WXXe) and neural crest 

development (Theveneau and Mayor, WXYW). Even cancer metastasis is driven in part by cooperative 

behaviors between individual cancer cells to increase their ability to move out of the original cancer 

node (Marongiu et al., WXYW; Paul et al., WXYZ). The cues guiding individual cell behaviors within 

these systems span a broad range of mechanisms consisting of soluble chemical and protein factors 

(Rogers and Schier, WXYY), cell surface modification (Friedl and Mayor, WXYZ), electrical (Cortese et 

al., WXYg), and physical signals (Charras and Sahai, WXYg). Often, specific quantitative biochemical 

measurements are available for ligand/receptor interactions, binding efficiencies, and the 

downstream cellular systems these signals interact with, such as transcription machinery. How 

these individual interactions combine to generate robust coordination at size scales many times 

larger than the individual cells, however, is often not clear from individual measurements. 

Identifying the driving factors of biological self-organization requires concurrent understanding of 

how cells move within their environment, how physical factors affect cell movement, and how cells 
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transmit and respond to coordinating information. Each of these factors represents a unique 

challenge to quantify experimentally, confounding the overall challenge of understanding self-

organization.  

To overcome dataset complexity, this work combines in vivo quantification of individual cell 

behavior and the surrounding environment with computational models of self-organization fully 

driven by the experimental data. By driving models directly from experimental data, model 

parameterization is explicitly defined by the experimental data collected, greatly reducing the need 

for prior knowledge and experimental analysis. With the model parameterized early in the 

experimental process, hypotheses on how self-organization occurs and what biological features are 

necessary can then be tested in the simulation space. Coordinated dissection of the environmental 

cues and cell behaviors can then be performed in a controlled manner and quantitatively compared 

with experimental results. 

Eukaryotic self-organization 

Types of Cell Motility 

With the exception of a few cell types, such as swimming sperm and ciliated paramecia, eukaryotic 

motility is generated by asymmetric shape change of the cell body through cytoskeleton 

rearrangement (Keren et al., WXXc; Lauffenburger and Horwitz, Yffd). The asymmetry required to 

produce movement can occur by random fluctuations in the concentrations of proteins within the 

cell body or formed from asymmetric activation of receptor proteins on the surface of the cell by 

external factors, such as during chemotaxis (Charras and Sahai, WXYg; Rogers and Schier, WXYY). 

While the underlying machinery is conserved, the resulting motility phenotype spans a broad range 

of behaviors. Movement is typically categorized into one of two major types based on cell 

morphology, amoeboid or mesenchymal. Amoeboid movement is defined by a rounded or ellipsoid 

cell shape and a lack of strong surface attachments (Lämmermann and Sixt, WXXf). During 
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amoeboid migration, force is generated either by filopodia protruding along the leading edge of the 

cell that transiently attach to the underlying substrate, or by cytoskeletal rearrangements which 

allow cytosolic pressure to form blebs on the trailing edge of the cell membrane that push the cell 

forward. Amoeboid movement can generate cell speeds as high as g µm/min (Condeelis and Segall, 

WXXb). A second type of movement, known as mesenchymal migration, involves the extension of 

pseudopods from the leading pole of the cell followed by contraction of the cell body to generate 

forward movement. Mesenchymal movement is primarily used in dense tissues and is tightly 

coupled with proteolytic rearrangement of the surrounding extracellular matrix (ECM) to generate 

a path for the cell to move through (Condeelis and Segall, WXXb). Mesenchymal movements are 

much slower than amoeboid movement, with average speeds between X.Y-Y µm/min (Palecek et al., 

YffZ).  

Eukaryotic cell movement can be broadly defined as single or collective cell movement. Single 

cell movement is associated with the lack of strong connections to neighboring cells, allowing them 

to move in independent directions relative to their neighbors. While lacking concrete connections, 

single cell movement can still exhibit coordinated behaviors via cell-to-cell contact. Migrating cells 

extend filopodia up to YXX µm from the cell body that interact with neighboring migrating cells and 

provide movement cues (Teddy and Kulesa, WXXg). During collective movement, cells create tight 

cell-to-cell junctions that bind the cells together and give a more concrete structure to the ordering 

of the cells (Friedl and Gilmour, WXXf; Friedl and Mayor, WXYZ; Haeger et al., WXYe). Collective 

movement can take the form of W-D sheets which move as monolayers across an underlying tissue, 

such as the movement of a sheet of epidermal cells during wound healing (Chi and Trinkaus-

Randall, WXYb), or as b-D strands through a tissue, such as during the creation of vascular, lymphatic, 

or mammary ducts (Mayor and Etienne-Manneville, WXYd). Cells moving collectively often 

differentiate their movement depending on their location within the structure, particularly in 
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defining the leading edge of the group. Leader cells, so named for their location at the leading edge 

of the collective movement, sense most of the motility cues within the environment as well as 

generate most of the motility force. Follower cells are not passive, however. Tight junctions between 

cells allow them to participate in generating pulling forces (Trepat et al., WXXf) and help stabilize 

the polarization of leader cells (Stramer et al., WXYb; Theveneau and Mayor, WXYY). The interactions 

observed between cells during single and collective cell movement define the building blocks of 

eukaryotic self-organization.  

Physical Effectors of Cell Motility 

To achieve a self-organized state, cells must stay attached to each other or to a shared ECM. The 

ECM varies widely in terms of pore size, rigidity, and adhesiveness depending on the tissue type. 

Consider, for example, the relative rigidity of bone, cartilage, and brain tissues. Best studied in 

artificial b-D collagen matrices, eukaryotic cell velocities can span several orders of magnitude, from 

a few microns per hour to greater than YX microns per minute, depending on the collagen matrix 

makeup. Cell adhesion to the ECM is the major factor in defining motility speeds. Cell speeds are 

highest with intermediate levels of adhesion. When adhesion is low, a lack of traction against the 

ECM reduces motility, while at high adhesion, decreased detachment from the ECM at the lagging 

pole limits speed (DiMilla et al., YffY; Hakkinen et al., WXYX). The major effectors of cell-ECM 

adhesion are integrin availability, ECM stiffness, and ECM pore size. Integrins are responsible for 

the majority of adhesion. These cell surface receptors bind to all major eukaryotic ECM components 

including collagens, laminins, and fibronectin (Campbell and Humphries, WXYY; Hynes, WXXW). 

Integrin adhesion is modulated by integrin density at the cell surface-ECM junction and integrin 

receptor affinity. Integrin binding affinity is proportional to the amount of force exerted on the 

bond, with increased force causing conformation changes in the protein’s structure that increase 

affinity (Jin et al., WXXg). Maximum cell adhesion is then, in part, defined by the amount of force 
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the ECM can withstand before bending. Rigid ECM enhances integrin clustering (Paszek et al., 

WXXf) and allows the cell to exert higher motility forces, increasing integrin receptor affinity. 

Conversely, lowered rigidity decreases adhesion though reduced integrin recruitment and integrin 

receptor affinity. ECM rigidity is dependent on collagen content, fiber thickness, and the extent of 

fiber cross-links within the tissue (Shoulders and Raines, WXXf). ECM pore size affects migration 

by modulating the amount of contact the cell has with its environment and through size exclusion. 

Migration efficiency is optimal in b-D matrices with pore sizes equal to the size of the cell (Friedl 

and Wolf, WXYX). As ECM density is decreased, pore size becomes larger. When pore size exceeds 

the size of the cell, the decrease in cell-ECM adhesion slows motility (Harley et al., WXXc). As pore 

size decreases below the size of the cell, the need to rearrange the cell shape to squeeze through 

pores become the dominating motility-inhibiting force. Cells can squeeze through pore sizes down 

to approximately the size of the nucleus, which cannot be compressed (Wolf et al., WXYb).  

Without consideration of cell state or other biochemical cues that may be acting on the cell, 

the ECM makeup introduces a complicated, multidimensional landscape of inter-dependent 

variables that can coordinate behaviors and must be considered when studying self-organizing 

systems. Quantification of how these factors effect cell-cell coordination is complicated by non-

linear motility responses to changes in ECM makeup (Carey et al., WXYW; Han et al., WXYW; Wolf et 

al., WXYb) and the ability of cells to proteolytically modify the environment. Recent developments 

in b-D migration assays using reconstituted ECM enable independent control of matrix pore size, 

rigidity, and ligand density within an experiment (Hoffmann and West, WXYb; Mason et al., WXYb; 

Zaman et al., WXXd). Systematically varying each variable and quantifying cell motility changes 

under each condition could be used to generate a multi-dimensional phase space of cell behavior. 

However, extracting knowledge from resulting multi-dimensional, non-linear, datasets is currently 

left to the skill and prior knowledge of the experimentalist.  
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Coordination Through Cell-to-Cell Signaling  

In addition to effects of physical cues, cell motility is affected by active enzymatic modification of 

the environment to transmit spatially- and temporally-specific information between cells. Perhaps 

the most widely known form of such cell coordination is chemotaxis. Broadly defined, chemotaxis 

is a biased movement along the concentration gradient of a chemical substance. Chemotaxis can 

lead to biased movement up a concentration gradient in the case of attractant molecules, or 

movement biased down a concentration gradient in the presence of repellants. In eukaryotic cells, 

the large cell size allows gradient detection via gradated receptor activation along the cell body in 

proportion to the underlying gradient. Polarized receptor activation causes polarization of the 

cytoskeletal components, driving motility along the gradient (Swaney et al., WXYX). Chemotaxis can 

be used by cells in an independent manner, such as towards a food source in unicellular eukaryotes. 

However, by generating the active chemicals themselves, cells can use chemotaxis as a form of 

communication and coordination, such as the utilization of cyclic-AMP gradients to localize 

spatially scattered, amoeboid cells, to a central location to form a multicellular fruiting body during 

Dictyostelium discoideum development (Loomis, WXYg).  

A diffusible gradient is not the only mechanism by which cells coordinate motility. 

Coordination can also arise by direct interactions between cells or their environment. While such 

mechanisms are less explored, there are a few concrete examples. Cells in environments containing 

an adhesion gradient will exhibit higher speeds in the direction of higher adhesion. This speed bias 

leads to biased movement up the adhesion gradient, a behavior known as haptotaxis (McCarthy et 

al., Yfcb). In a similar fashion, the enhancement of motility by increased ECM rigidity is also strong 

enough to bias cell movement preferentially up stiffness gradients, a behavior termed durotaxis 

(Discher et al., WXXe; Lo et al., WXXX). Contact inhibition of locomotion causes motile eukaryotic 

cells to retract their membrane protrusions when they come into contact with protrusions of 
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another cell (Abercrombie and Heaysman, Yfeb; Mayor and Carmona-Fontaine, WXYX). The 

contractions inhibit motility in the direction of the neighboring cell. Contact-inhibition contributes 

to the coordination of neural crest migration. Neural tube border cells inhibit the formation of 

membrane protrusions, forcing the neural crest cells to stay within the tube. At the same time, 

neighboring neural crest cells inhibit motility on contact, forcing cells to move down the tube, away 

from the main cluster of neural crest cells (Theveneau and Mayor, WXYY). Coordinated behaviors can 

also emerge through the intrinsic nature of the cell shape, motility parameters, and environment. 

Similar to the creation of sand dunes or the periodic structure of crystals, complex multicellular 

structures may emerge by completely physical interactions between cells (Darnton et al., WXYX; 

Vedula et al., WXYb). For example, cells placed within prefabricated channels of varying width display 

changes in velocity, direction of motion, and type of motility based on channel size (Vedula et al., 

WXYW). When channel sizes are small, cells exhibit directed collective movement in a single 

direction. As channel sizes are increased, movement becomes less collective, with the formation of 

cell vortexes and random movement. These density-dependent changes are reminiscent of physical 

systems, where increasing particle density leads to a phase change to a more ordered regime. While 

often overlooked in favor of chemical systems, physical mechanisms of self-organization are 

sufficient to coordinate cell behavior.   

Evidence for cell-to-cell signaling as a coordinating mechanism dates back to early experiments 

in embryology. Examples include work in invertebrates, in which excision of a portion of the 

cockroach tibia causes the tibia to elongate back to the correct size (French et al., YfZd), and 

diffusible signal gradients along the body of the hydra that control head formation and cell behavior 

along the length of the body (Bode, WXYY; Meinhardt, WXXf; Wolpert, Yfdf). These and many other 

examples (Meinhardt, WXXf; Oppenheim and Yang, WXXe; Restrepo et al., WXYg; Swaney et al., WXYX) 

suggest that cell fate is not hard coded. Instead, cells access cues within their local environment to 
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determine behavior and fate. Even before the discovery of the underlying biochemistry, models of 

diffusive molecules, termed morphogens, were proposed to provide the cell-cell communication 

required to relay positional information (Crick, YfZX; Stumpf, Yfdd; Wolpert, Yfdf). By gradating 

morphogen concentration in space, local morphogen concentrations can provide sufficient 

positional information for cells to determine their location within the gradient field. Such a gradient 

can be formed by secretion of the morphogen from a source tissue or cell and diffusion throughout 

the surrounding tissue. Cells do not need to sense the direction of the concentration gradient for 

coordination, a mechanism as simple as a predetermined concentration threshold is sufficient to 

determine position. In such systems, high concentration thresholds would be activated in cells near 

the source of the gradient, while progressively lower thresholds would be activated further away 

from the source. Periodic patterns such as spots and stripes, or non-periodic patterns similar to the 

red, white, and blue stripes that make up the French flag could be formed depending on 

concentration threshold levels (Green and Sharpe, WXYe; Wolpert, WXYY, WXYd). In the French flag 

example, with three separate cell types spatially arranged like the red, white, and blue stripes on 

the flag, a gradient of morphogen spanning the length of the flag would be detected by cells that 

have programmed behaviors based on the local morphogen concentration. Predetermined 

morphogen concentration cutoffs equal to the concentration at distances one-third and two-thirds 

across the length of the flag would provide sufficient information to generate different cell 

behaviors in the red, white, and blue portions of the flag. Stops or stripes could be formed in a 

similar manner, with periodic concentration-behavior dependencies. These positional information 

(PI) models, however, do not explain how patterns can generate from random initial conditions. 

The positional signal must be generated outside the pattern, such as by periphery “anchor” cells, 

which are not part of the process. 
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Reaction-diffusion (RD) models of patterning (Gierer and Meinhardt, YfZW; Meinhardt, WXXf; 

Meinhardt and Gierer, YfZg, WXXX; Turing, YfeW) forgo the need for periphery cells, instead 

providing a framework in which patterns can spontaneously form without external cues. The 

general underlying principle is the interaction of two diffusible molecules, a long-range inhibitor 

(𝑣) and a short-range activator (𝑢). Stable, non-random, patterns of inhibitor and activator 

concentrations can form with the addition of a few simple rules: (Y) The short-range activator 

stimulates production of itself as well as production of the inhibitor, (W) The activator has a lower 

diffusion coefficient (𝐷$) than the inhibitor (𝐷%), and (b) the inhibitor inhibits production of the 

activator. These interactions can be written in just two partial derivatives, commonly known as 

reaction diffusion equations, 

 ∂𝑢
∂𝑡
∂𝑣
∂𝑡

= 𝐷$ 0
0 𝐷%

Δ𝑢
Δ𝑣

+
F(𝑢, 𝑣)
G(𝑢, 𝑣)

,  

where functions F and G fulfill requirements (Y) and (b) above. Remarkably, by varying only the 

activation and inhibition rates of the two molecules, it is possible to generate a number of patterns 

that look like those found in biology, including stripes, spots, and waves of varying size from initial 

random concentrations of the activator and inhibitor. 

Positional information and reaction diffusion models provide evidence for how simple 

mechanisms can coordinate complex patterns similar to those seen in biological systems. Whether 

most biological mechanisms underlying biological patterns utilize PI or RD mechanisms is still 

unknown. While clear evidence for the use of morphogen gradients to convey positional 

information exists in a number of developmental systems (Bode, WXYY; Dormann and Weijer, WXXd), 

PI and RD usually fail to capture complexities of gradient generation, diffusion, and sensing. For 

example, neither mechanism directly explains the ability of many developmental systems to 

correctly scale to varying embryo size. Scaling is exemplified in classical experiments in which 
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embryos surgically reduced in size recover to generate small, but well-proportioned and correctly-

patterned, animals (Cooke, YfZe, YfcY; Wolpert, WXYY). To account for scaling, currently accepted 

models require both gradated positional information and oscillations in gene expression (Cooke 

and Zeeman, YfZd; Oates et al., WXYW). Furthermore, many known morphogens have complex 

feedback mechanisms that modify diffusion rates and clearance, affecting the final concentration 

gradient (Rogers and Schier, WXYY). Examples of morphogens forming complexes such as dimers or 

higher order structures (Eaton, WXXc), interacting with antagonists (Yan et al., WXXf; Zakin and 

Robertis, WXYX), or being post-translationally modified (Callejo et al., WXXd) also exist. The presence 

of a gradient also does not guarantee that it is utilized to encode positional information, such as 

the gradient of retinoic acid in limb buds (Rhinn and Dollé, WXYW), or the graded distribution of the 

protein Caudal in Drosophila embryos (Mlodzik and Gehring, YfcZ; Mlodzik et al., Yfce), which 

have no known patterning role or do not require a gradient to be active, respectively. Coordination 

mechanisms also change as the environment changes. For example, in early tissue development, 

where the cell environment is often soft and amorphous, chemotaxis and growth factors coordinate 

most cell behaviors. As tissue structure forms and the ECM becomes more rigid, examples of 

mechanical cues become more prevalent (Haeger et al., WXYe). Some cell inputs may also dominate 

over others, with the secondary input only driving behavior in outlier situations or by acting as a 

redundancy mechanism (Zaman et al., WXXd). For example, up-regulation of ECM-degrading 

enzymes allow cancer cells to transition from non-motile to mesenchymal movement. The 

transition is typically a key event in the invasion and migration of tumor cells (Wolf et al., WXXb). 

However, blocking the proteolytic enzymes required to generate a path through the ECM required 

for mesenchymal motility does not completely inhibit metastasis. As a substitute, cells perform 

amoeboid type movement and search for paths already present within the ECM. 



 YY 

Modeling Emergent Behavior 

Characterizing and predicting cell behavior requires analysis of high-dimension variable spaces 

which include internal, external, physical, and biochemical effectors that are dynamic in both space 

and time. Computational and mathematical models provide opportunities to summarize these high 

dimension variable spaces by identifying variables and regions of variable space that lead to the 

emergence of collective behavior. Models should directly test clearly stated hypotheses about the 

system under study, be verified by in vivo experiments, and provide predictions that guide future 

experiments. Models can be broadly categorized into two types: (Y) partial differential equations 

(PDE) and (W) agent based (AB) models. In PDE models, equations describing how a system changes 

on average over time are used to predict the state at a desired time, location, or both. Perhaps the 

most well-known model is the RD model discussed earlier.  The RD equations model the change in 

spatial concentration of diffusible morphogens over time. When used to model biological systems 

at the phenomenological level, as in RD, PDE models can reproduce phenotypic changes with 

striking accuracy. For example, zebrafish have a set of horizontal stripes that run along their long 

axis. Mutation in just one gene (leopard) causes the formation of spots in place of the stripes. This 

striped to spotted transition can be explained by the modification of only one variable in RD models 

(Asai et al., Yfff). Furthermore, the RD model correctly phenocopies the shape and size of the spots 

for leopard mutants with graded levels of activity and correctly predict the pattern that regenerates 

after laser ablation of a section of the stripes (Yamaguchi et al., WXXZ). The breadth of detailed 

knowledge already present for PDE systems from the fields of physics and mathematics can also be 

used to study emergent behaviors in living systems. Well-studied thermodynamic models can  

explain some complex biological systems using a few simple terms. These works, for example, show 

that by modeling cell movement as the temperature variable in thermodynamic models, large scale 
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patterns form within the systems without the need for long range signaling (Takatori and Brady, 

WXYe). 

Phenomenological level PDE models provide evidence for mechanisms that create complex 

patterning through very simple interactions, but provide little insight into the underlying biology. 

Current experimental data related to the formation of zebrafish stripes, for example, suggest direct 

cell-to-cell contacts between local cells activate pigment formation, while longer-range contacts via 

long cell membrane projections inhibit pigmentation (Watanabe and Kondo, WXYe). These results 

suggest stripe formation in zebra fish follows the overarching theme of short-range activators and 

long-range inhibitors found in RD models, but forgoing any diffusible agents. As such, care must 

be taken in imparting biological meaning to phenomenological models that recreate biological 

patterns. When more detailed experimental measurements are present, PDE models are beneficial 

in situations where processes and flow are the major elements of interest such as modeling 

diffusion, receptor occupancy, or internal signaling networks (Lai et al., WXXg; Saha and Schaffer, 

WXXd).  

Agent-based models employ a finite number of interacting entities, known as agents. Agents 

within the model can represent whole organisms, cells, and/or individual molecules depending on 

the model scale. Instead of modeling the average change of systems over time and space, as done 

in PDE models, each of the agents in AB models are individually modeled by thresholds, if-then 

rules, or non-linear interactions (Bonabeau, WXXW). Such interactions are found throughout self-

organized biological systems and their non-linear nature are challenging to capture as in 

differential equations required for PD models. Furthermore, AB models provide an intuitive model 

of biological systems, which may be easier to communicate across disciplines.   

Both AB and PDE modeling techniques require parameterization through experimental data 

collection. However, the sheer number of possible environmental parameters and cell responses 
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make it unclear which variables should be studied, or what the important ranges of the variables 

are (Charras and Sahai, WXYg; Doyle et al., WXYb). A workaround technique is to utilize models to 

estimate what range or relative proportional scales parameters must take to reproduce 

experimental results. Ancillary experimental measurements, such as the shape or size of the 

pattern, can then be used to fit the unknown variables to match the model (Reeves et al., WXXd). 

These experiments try to bridge the gap between phenomenological models and models of 

individual cells or systems. Such models are useful for exploring what might be possible within a 

biological system, but still require extensive testing of model predictions to confirm model 

assumptions. Furthermore, even in the best-studied model organisms, key experiments, for 

example, increasing or decreasing the strength of a chemical gradient, may not be possible. 

Myxococcus xanthus Self-Organization. 

Self-organization is not only found in eukaryotic systems. The bacterium Myxococcus xanthus 

evolved towards a multicellular lifecycle in which cells work together to feed and survive famine 

(Shimkets, Yfff). M. xanthus is typically found within biofilms containing millions of cells many 

layers thick, an environment similar to the high cell density and complex ECM environments of 

eukaryotic self-organizing systems. During starvation conditions, cells within the biofilm move in 

a coordinated manner into aggregates of high cell density. A portion of the cells convert into 

metabolically dormant spores inside the aggregates. The challenges of understanding biological 

self-organization are well exemplified by the state of understanding of M. xanthus development. 

Similar to eukaryotic systems, M. xanthus cells have diverse signaling cascades and behavior cues 

that could contribute to self-organization. The genome is enriched for signaling systems and 

secondary metabolites. M. xanthus has access to WdW two-component signaling systems, eW of which 

are up-regulated during development (Whitworth, WXYe), and WY chemoreceptors, of which Yb create 

altered developmental phenotypes when deleted (Moine et al., WXYg). M. xanthus also dedicates c% 
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of its genome to secondary metabolite production (Bode and Müller, WXXd), suggesting a large 

capability for the production of unique compounds, most of which are unknown or not well 

characterized. Like eukaryotic self-organizing systems, M. xanthus development defies explanation 

using typical experimental techniques. For example, (Shi et al., WXXc) chose Wb of the eb up-

regulated two-component signaling systems to examine. Despite their up-regulated state, 

suggesting a role in development, Yd (ZX%) were not required for cells to generate aggregation 

patterns visually indistinct from wild type. Furthermore, some secondary metabolites have 

complicated phenotypes when modified. For example, the major pigment responsible for the yellow 

color of M. xanthus, DKxanthene, affects the speed of aggregation as well as spore maturation 

(Meiser et al., WXXd). The large capability for signaling available to M. xanthus, and the lack of clear 

experimental evidence to challenge hypotheses gives rise to many hypothetical coordinating 

mechanisms.  

Motility 

M. xanthus cells lack flagella and are unable to swim in liquid. They are capable of moving along 

their long axis on solid or semi-solid surfaces with an average speed of about e μm/min (Jelsbak 

and Søgaard-Andersen, Yfff, WXXW). Motility direction reverses periodically, leading to a back and 

forth movement pattern. Individual cells on agar pads reverse direction approximately once every 

Z minutes (Kearns and Shimkets, Yffc; McCleary et al., YffX). Propulsion is accomplished by two 

independent motility systems. Adventurous (A) motility produces force via the translocation of 

focal adhesion points along the long axis of the cell (Faure et al., WXYd). Direct attachment to the 

surface allows A-motility to propel the cell forward in the absence of other cells. Social (S) motility 

is driven by the extension and retraction of type IV pili from the leading pole of the cell. The system 

is similar to the type IV pili utilized for twitching motility in Pseudomonas aeruginosa and Neisseria 

species (Burrows, WXYW; Miller et al., WXYb). Extended pili attach to extracellular polysaccharides 
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excreted by neighboring cells (Li et al., WXXb). This attachment provides an anchor point by which 

the cells pull themselves forward. A-motility provides a mechanism for individual cell movement 

and is most active on rigid surfaces. S-motility requires the presence of other cells, but allows the 

cells to move efficiently on soft surfaces (Youderian et al., WXXb). 

Chemotaxis 

Biased motility along a chemotactic gradient is performed by modulation of the tumble (for 

swimming bacteria) or reversal (for gliding bacteria) frequency. Cells moving up an attractant 

gradient change motility direction less often than when moving down the gradient. Modulating the 

direction-change frequency causes cells to randomly explore all directions of the gradient on short 

timescales, but an overall biased movement up the gradient on longer timescales. The opposite 

behavior is observed in the case of a repellent gradient. 

The archetypical chemosensory system involves the Che proteins in Escherichia coli and 

Salmonella enterica. Sensing is performed by methyl-accepting chemotaxis proteins (MCP) 

(Nishiyama et al., Yfff). The MCP is a single protein consisting of an extracellular receptor 

connected via a transmembrane region to a cytoplasmic α-helical coiled-coil domain (Kim et al., 

Yfff; Yeh et al., Yffd). CheA, a histidine protein kinase, reversibly binds to the cytoplasmic end of 

the MCP with the help of the CheW adapter protein (Bourret et al., Yffb; Levit et al., Yfff; Morrison 

and Parkinson, YffZ). When a ligand binds to the receptor domain of the MCP, conformational 

changes in the MCP propagate the signal to the bound CheA, activating CheA self-phosphorylation 

(Levit et al., Yfff). The phosphate group is then transferred to the cytoplasmic CheY response 

regulator (Stewart et al., WXXX; Welch et al., Yffc). CheY is responsible for transmission of the signal 

to the motility machinery by diffusion through the cytoplasm. Phosphorylated CheY directly binds 

to the flagellar motor to increase the probability of a tumble event (Sagi et al., WXXb).  
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Attractant or repellent gradients are sensed by calculating the time derivative of the local 

chemical concentration. The presence of a time-based chemosensory system is best exemplified by 

excitation-adaptation experiments (Alon et al., Yfff; Macnab and Koshland, YfZW). When 

swimming cells are presented with an abrupt, but uniform, increase in the concentration of an 

attractant, the cells exhibit an immediate suppression of tumbles, as if they were moving up an 

attractant gradient. Despite a constant concentration of attractant, tumbling frequency reverts 

back to the pre-stimulus level within approximately Yg minutes. The adaptation to the presence of 

the attractant is mediated by methylation of the MCP (Weis and Koshland, Yfcc). In E. coli, ligand 

binding to the MCP suppresses CheA self-phosphorylation (Levit et al., Yfff), leading to a decrease 

in phosphorylated CheY; thereby reducing the probability of a tumble. Adaptation of the tumble 

frequency back to basal levels is caused by methylation of the MCP’s cytoplasmic coiled-coil helix 

domain by CheR, a methyltransferase (Springer and Koshland, YfZZ; Weis and Koshland, Yfcc). 

Methylation causes conformational changes in the MCP that reset CheY self-phosphorylation to a 

basal level in the presence of the higher ligand concentration, returning the cell to a default tumble 

frequency.  

Chemotaxis is a balance between ligand binding and MCP methylation. In E. coli, when cells 

are moving up an attractant gradient, ligand binding to the MCP causes suppression of reversals 

through reduced CheA/CheY phosphorylation. Increased ligand binding causes CheR to methylate 

the MCP, resetting CheY activity. The reset causes any new decrease in local concentration from 

the current level to stimulate tumbles (through increased CheY phosphorylation) or suppress 

tumbles (through suppression of CheY phosphorylation) in the presence of even higher attractant 

concentrations. Adaptation when moving from higher to lower attractant concentrations occurs in 

reverse. Lower MCP receptor occupancy causes demethylation via the methylesterase CheB (Anand 

et al., Yffc; Kehry and Dahlquist, YfcW). Response to repellents is the reverse process to that of 



 YZ 

attractants. Binding of repellents to an MCP causes increased CheA/CheY phosphorylation, leading 

to an increased probability of tumbling. Adaptation to a repellent is performed by removal of 

methyl groups from the MCP by CheB (Toews et al., YfZf), resetting CheA activity. This adaptation 

mechanism is sensitive enough for E. coli cells to detect a concentration change of only a few 

molecules in the presence of background concentrations spanning about five orders of magnitude 

(Sourjik and Berg, WXXW).  

The role of chemotaxis in M. xanthus development is unclear. In early experiments (McVittie 

and Zahler YfdW; Lev Yfeg), developing myxobacterial cells were covered with a thin layer of agar 

or dialysis membrane followed by another layer of myxobacteria. The top layer of myxobacteria 

developed aggregates at approximately the same locations as the bottom layer. Glass beads in place 

of the underlying layer of developing cells did not affect the locations of the upper layer aggregates, 

ruling out physical cues and suggesting that positional information diffused through the permeable 

barrier. Dworkin and Eide (Yfcb) argued that the slow speed of M. xanthus relative to the speed of 

small diffusing molecules would cause the gradient to equalize faster than the cell could move up 

it. They also provided experimental evidence that M. xanthus does not respond to moderate 

concentration gradients of cyclic-AMP – a diffusible molecule key to D. discoideum development, 

to amino-acids – a major food source for myxobacteria, or to soluble lysates of vegetative or 

developing M. xanthus cells.  

Of the WY chemoreceptors in the M. xanthus genome, FrzCD appears to play a central role in 

reversal control. The frzCD gene is flanked in the genome by a full complement of Che homologues, 

together known as the Frz system (Blackhart and Zusman, Yfce). Cells with a defective Frz system 

rarely reverse (McBride et al., YffW), do not develop (Zusman, YfcW), and are unable to correctly 

respond to chemoattractants (Kearns and Shimkets, Yffc). Like the MCPs in E. coli, FrzCD is 

methylated in the presence of chemoattractants, such as food sources (Shi et al., Yffb), and 
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demethylated in the presence of repellents, such as small chain alcohols (McBride et al., YffW). It is 

unclear how FrzCD responds to such a broad range of signals. In E. coli, each chemoreceptor 

contains a sensing domain specific to a molecule or molecule family (Falke and Hazelbauer, WXXY). 

Unlike E. coli homologues, FrzCD is a soluble cytoplasmic protein (McBride et al., YffW), truncated 

just before the transmembrane region (McBride et al., Yfcf). The lack of an external sensing domain 

suggests signals may be transduced through protein-protein interactions with one or more 

unknown partners, or directly through an uncharacterized sensing domain.  

More recently, M. xanthus was shown to chemotactically respond to phosphatidylethanolamine 

(PE) and diacylglycerol (DAG) lipids (Kearns and Shimkets, Yffc). These large, low-solubility 

molecules generate gradients on agar surfaces (Kearns and Shimkets, Yffc).  The slow diffusion rate 

of PE and DAGs generates sharp, slow moving, concentration gradients that may be more suitable 

for the slow motility of M. xanthus. Sensing is specific to the chemical structure, suggesting the 

response evolved to sense specific cues. Of the known active PE molecules, Yd:Yωec/Yd:Yωec 

(hereafter referred to as Yd:Y)  occurs naturally within the M. xanthus membrane, but is rare in other 

cultured soil bacteria (Curtis et al., WXXd). Interestingly, M. xanthus is only sensitive to Yd:Y as a 

chemoattractant under developmental (starvation) conditions. However, when all straight chain 

fatty acids synthesis is inhibited, leading to only Y/YX the normal concentration of Yd:Y PE in the 

cells, growth and development is not affected (Bode et al., WXXd). This result suggests there is no 

required role for Yd:Y in development. 

C-signaling 

An important gene in the study of M. xanthus self-organization is csgA. Cells lacking the csgA gene 

are unable to develop on their own, with developmental gene expression stopping at or before that 

of non-motile cells (Kim and Kaiser, YffX). When mixed with wild-type (WT) cells, csgA cells 

sporulate at approximately the same rate as WT (Kim and Kaiser, YffX), suggesting csgA cell 
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development is rescued by the presence of WT cells. Purified extracts of the CsgA protein added 

back to csgA cells also rescues development and is sufficient to induce sporulation in non-motile 

cells (Kim and Kaiser, YffX). Together, these results led to the hypothesis that CsgA passes between 

cells, or acts as a ligand on the surface of cell that activates a cognate receptor on neighboring cells 

during cell-to-cell contact (Jelsbak and Søgaard-Andersen, WXXX). In conflict with this hypothesis, 

CsgA is found associated with the inner membrane (Simunovic et al., WXXb), suggesting that CsgA 

is shielded from contact with neighboring cells by the outer membrane. The contact-dependent 

CsgA rescue hypothesis also fails to consider enzymatic activity. CsgA is homologous to members 

of the short-chain alcohol dehydrogenase (SCAD) family of proteins (Baker, Yffg). Overexpression 

of another SCAD,  socA, in csgA cells is able to rescue development (Lee and Shimkets, Yffd), and 

the enzymatic activity of CsgA is required for development (Lee and Shimkets, Yffd). 

CsgA oxidizes the W’-OH group of the glycerol backbone of cardiolipin (CL) and 

phosphatidylglycerol (PG) (Boynton and Shimkets, WXYe). The resulting enzymatic product is 

unstable, quickly breaking down to diacylglycerol (DAG), dihydroxyacetone, and orthophosphate 

derivatives. As expected, SocA is also able to catalyze the same reactions, but with an approximately 

YX-fold reduction in efficiency. These results suggest csgA cells are blocked in lipid metabolism of 

CL and PG species found in the inner membrane of the cell (Orndorff and Dworkin, YfcX). In 

agreement, partial glycerides – consisting of monoacylglycerols and DAG – extracted from 

developing WT cells restore aggregation and sporulation when added to csgA cells (Boynton and 

Shimkets, WXYe). Rescue is specific to partial glyceride extracts from developing cells, extracts from 

vegetative WT or csgA cells do not rescue csgA development (Boynton and Shimkets, WXYe).  

Modeling M. xanthus self-organization 

The challenges of modeling self-organizing systems are well manifested in M. xanthus research. A 

diverse and often conflicting range of computational models exist for M. xanthus development. 
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With many possible mechanisms for coordination of cell movement and a lack of experimental 

results to constrain hypotheses, the length-to-width ratio of cells (Starruß et al., WXXZ), cell 

alignment (Sliusarenko et al., WXXZ; Starruß et al., WXXZ), active turning of cell direction (Hendrata 

et al., WXYY), density-dependent speed reduction (Sliusarenko et al., WXXZ), physical jamming 

(Holmes et al., WXYX; Igoshin et al., WXXg; Sozinova et al., WXXe), and streaming (Holmes et al., WXYX; 

Sozinova et al., WXXe) have all been hypothesized to drive M. xanthus development. Each of these 

examples is backed with a mathematical model that qualitatively replicates aggregation. That is to 

say, the models generate areas of high cell density that are visually similar in shape and size to M. 

xanthus aggregates. Quantitative analyses comparing simulation to experimental results are rarely 

performed. When a quantitative analysis was performed for the density-dependent speed reduction 

model in (Sliusarenko et al., WXXZ), simulations failed to capture the correct aggregation rate and 

aggregate count (Zhang et al., WXYY). These past experiences reveal the need for an experimental 

and modeling framework that is constrained by quantitative experimental results. The most 

desirable approach would implicitly model cell systems that are unknown or cannot be feasibly 

quantified. 

Proposal of a Data Driven Experimental and Modeling Paradigm 

Mathematical and computational models are often used to identify and summarize the important 

aspects of complicated biological experiments. Typically, these models are developed to test 

hypotheses that are generated by post experimental analysis. Under this paradigm, experimentalists 

must glean insight directly from the experimental results prior to design, parameterization, and 

validation of the models. The paradigm fails when traditional experimental techniques are unable 

to provide clear results due to: (Y) noise and non-linear dependencies between cues and behaviors 

obscuring data trends, (W) results that are ambiguous, routinely resulting in no change or 

abolishment of the self-organization, and (b) a lack of tools to identify, quantify, and manipulate 
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the key variables in the system. The challenges of understanding biological self-organization 

intersect the challenges of the typical modeling paradigm due to the large number of possible 

hypotheses, conflicting experimental results, or the sheer number of free parameters requiring 

experimental quantification. These challenges help explain the lack of biological self-organization 

modeling approaches that are experimentally constrained and quantitative.  

This dissertation defines an experimental framework that utilizes in vivo imaging of individual 

cell behavior and the surrounding environment to both parameterize and constrain models of M. 

xanthus development to experimental data. Instead of defining simulations based on experimental 

conclusions and hypotheses, the framework defines the simulation based on empirical observations 

from in vivo imaging, such as basic cell movement, then drives the simulations with data extracted 

from quantification of the empirical observations. In this way, simulations are driven by 

quantitative experimental results while still implicitly modeling cell-systems that are unknown or 

cannot be feasibly quantified. With the model parameterized early in the experimental process, 

hypotheses on how self-organization occurs and what biological features are necessary can be 

tested in the simulation space. The outline of the dissertation is as follows: Chapter W defines the 

experimental framework and applies it to M. xanthus development to identify the cell behaviors 

and cues that drive aggregation. Chapter b then concludes by discussing the known signaling and 

sensing systems within M. xanthus in light of the identified cell behaviors and cues used during 

development.  
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Abstract 

Collective cell movement is critical to the emergent properties of many multicellular systems 

including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer 

metastasis. However, even the best studied systems lack a complete picture of how diverse physical 

and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known 

for its social developmental cycle, the bacterium Myxococcus xanthus utilizes coordinated 

movement to generate b-dimensional aggregates called fruiting bodies. Despite extensive progress 

in identifying genes controlling fruiting body development, cell behaviors and cell-cell 

communication mechanisms that mediate aggregation are largely unknown. We developed an 

approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven 

models. A novel feature of this approach is the ability to identify cell behaviors affecting the 

observed aggregation dynamics without full knowledge of the underlying biological mechanisms. 

The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our 

modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward 

aggregate centroids, and alignment among neighboring cells and in a radial direction to the nearest 

aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed 

that aggregation is generally robust to perturbations in these behaviors and identified possible 

compensatory mechanisms. The resulting approach of directly combining behavior quantification 

with data driven simulations can be applied to more complex systems of collective cell movement 

without prior knowledge of the cellular machinery and behavioral cues. 

Introduction 

Collective cell migration is essential for many developmental processes including fruiting body 

development of myxobacteria (WXYg) and Dictyostelium (Bretschneider et al., WXYd), embryonic 

gastrulation (Aman and Piotrowski, WXYX; Solnica-Krezel and Sepich, WXYW), and neural crest 
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development (Theveneau and Mayor, WXYW). Conversely, cancer cell metastases represent 

detrimental migratory events that disseminate dysfunctional cells (Friedl and Gilmour, WXXf). In 

all these processes, a population of cells leaves its current location and migrates in a coordinated 

manner to new locations where motility becomes reduced. Remarkable progress has been made in 

studying the intracellular machinery of these organisms (Park et al., WXYd). Much less is known 

about the system-level coordination of cell migration. Cell movement in these systems is a three-

dimensional, dynamic process coordinated by a combination of diverse physical and chemical cues 

acting on the cells (Aman and Piotrowski, WXYX; Delgado and Torres, WXYd; Theveneau and Mayor, 

WXYW). Recent developments in tracking individual cell movement in vivo have provided 

unprecedented detail and revealed surprising levels of heterogeneity (Park et al., WXYd; Theveneau 

and Mayor, WXYW). Reverse engineering how these individual cell movements lead to collective 

migration patterns has proven difficult. While computational models are able to test whether a 

given set of ad-hoc assumptions lead to emergence of observed patterns, these models usually 

ignore heterogeneity of cell responses, overlook complex behavior dynamics, and rarely perform 

quantitative comparisons with in vivo results (Iber and Zeller, WXYW; Masuzzo et al., WXYd; 

Schumacher et al., WXYd; Szabó and Mayor, WXYd). Therefore, a data-driven modeling framework 

that integrates multiple levels of experimental observation with quantitative hypothesis testing is 

needed to uncover the interactions required for emergent behavior. We explored this possibility 

using a simple bacterial model system. 

Emergent behaviors are a central feature of the life cycle of Myxococcus xanthus, which 

occurs within a biofilm many cell layers thick. Cells inside the biofilm are capable of signaling 

(Kuspa et al., YffW) and exchanging outer membrane material (Pathak et al., WXYW). Cells are flexible 

rods that move along their long axis within the biofilm (Mauriello et al., WXYX). Periodic reversals 

in direction of movement and a high length-to-diameter aspect ratio allows cells to align with 
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neighbors, move in groups, and follow paths taken by others (Balagam and Igoshin, WXYe; Berleman 

et al., WXYd; Lux et al., WXXg). When faced with amino-acid limitation, cells self-organize into 

aggregates much taller than the surrounding biofilm called fruiting bodies (Lux et al., WXXg; Xie et 

al., WXYY). Aggregation begins with a burst of cell motility during which cells coalesce into unstable 

towers a few layers thicker than the surrounding biofilm (Curtis et al., WXXZ). Within an hour, 

towers begin to form spatially stable aggregation centers. While some aggregates mature into spore-

filled fruiting bodies, many of initially stable aggregates disseminate back into the biofilm (Zhang 

et al., WXYY). Little data exists on the cues and cell behaviors that lead to these emergent behaviors. 

Cell tracking experiments revealed that motility increases outside aggregates (Curtis et al., WXXZ; 

Jelsbak and Søgaard-Andersen, WXXW; Thutupalli et al., WXYe) and decreases inside (Sliusarenko et 

al., WXXZ; Thutupalli et al., WXYe) while statistical image analysis revealed that the area of the 

aggregate solely determines whether an aggregate will disappear or mature into a fruiting body (Xie 

et al., WXYY). On their own, these observations have been unsuccessful in explaining how cells 

coalesce to form stable aggregates.  

Biochemical and genetic experiments have identified systems that could play a role in 

governing cell behavior during aggregation. Cells chemotax towards specific lipids by suppressing 

reversals when moving up the chemical gradients (Kearns and Shimkets, Yffc), creating a biased 

walk. Exopolysaccharides, a major component of the extracellular matrix also inhibit cell reversals 

in a concentration dependent manner (Zhou and Nan, WXYZ). However, inhibiting cellular 

production of known lipid chemoattractants does not diminish aggregation (Bode et al., WXXd; 

Kearns et al., WXXY), and it is unclear whether exopolysaccharides act as chemoattractants. 

Induction of developmentally related genes when cells are tightly packed and aligned, but not for 

randomly positioned cells (Kim, YffX), suggest possible contact-based intercellular signaling. In 

agreement, cells at low cell densities decrease reversal frequency as group size increases (Shi et al., 
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Yffd). However, this reversal suppression does not directly scale to the cell densities typically used 

in assays of development (Jelsbak and Søgaard-Andersen, WXXW). Thus, while cells undergo 

behavioral changes indicative of intercellular signaling, conflicting results obscure what these 

signals are, or how they coordinate cell behaviors to drive aggregation. Computational modeling 

has frequently been used to bypass the lack of specific mechanistic details but has been largely 

unsuccessful in spanning the realm between fact and fancy. 

While computational approaches have been extensively used in hypothesizing models of 

aggregation (Hendrata et al., WXYY; Holmes et al., WXYX; Igoshin et al., WXXg; Sliusarenko et al., WXXZ; 

Sozinova et al., WXXe, WXXd; Starruß et al., WXXZ), the lack of quantitative data sets describing cell 

movement during aggregation has left the cell behaviors that drive the process conjectural. As a 

result of these models, cell length to width ratio (Starruß et al., WXXZ), cell alignment (Sliusarenko 

et al., WXXd; Starruß et al., WXXZ), active-turning (Hendrata et al., WXYY), density-dependent speed 

reduction (Sliusarenko et al., WXXd), physical jamming (Holmes et al., WXYX; Igoshin et al., WXXg; 

Sozinova et al., WXXe), and streaming (Holmes et al., WXYX; Sozinova et al., WXXe), have been 

introduced as cell behaviors required to generate aggregates in simulations. Quantitative 

comparisons between simulations and experimental results are needed to evaluate whether these 

simulations fully capture the characteristics of aggregation, but such comparison are rarely 

performed. For example, Zhang et al’s (Zhang et al., WXYY) analysis of the model in which aggregation 

is driven by cell alignment and reduced cell speed inside aggregates (Sliusarenko et al., WXXZ) 

revealed that the simulations fail to quantitatively capture the correct aggregation rate, aggregate 

distribution, and aggregate count. Despite this wealth of work, neither biological experiments nor 

mathematical models have so far identified the cell behaviors that mediate aggregation. 

Here, in the absence of knowledge about the mechanistic basis of the cues directing cells, 

we identify motility parameters affecting the emergence of aggregates. We developed an approach 
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that couples multi-level cell tracking (at the level of individual cells within the biofilm and the level 

of the growing aggregates) with simulations driven by the cell behavior data. Directly including 

quantified cell behaviors in simulations, rather than averages or artificially generated behavior 

distributions, allowed full integration of heterogeneity and complex correlations in cell responses. 

Hypotheses about the cell behaviors driving aggregation were tested in increasingly complex 

simulations by quantitatively comparing simulations with in vivo results. This iterative process 

allowed us to identify cell behaviors that are sufficient and necessary to match the observed 

aggregation dynamics and creates opportunities for more powerful comparisons of mutant/parent 

behavioral differences in future studies.  
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Results 

Cells decrease movement inside aggregates  

To quantify cell behavior during development, we used time-lapse microcinematography to 

measure biofilm cell density, determine aggregate boundaries using a cell-density threshold, and 

follow individual cells within the biofilm (Figure W.Y). Under our conditions, aggregation begins YY 

to YW hours after spotting the cells on starvation media. We selected an approximately e-hour 

window that began just prior to the initiation of aggregation through the period when stable 

aggregates form (Figure W.Y A). The beginning of this window was designated time point zero. About 

Y hour into this time span aggregation becomes evident. Stable aggregates appear by Y.e hours with 

a few of the smaller aggregates disappearing by e hours. Aggregation was not compromised by the 

use of strains expressing fluorescent proteins or prolonged fluorescent imaging (Figure W.Y D,E). 

Cell tracking algorithms were developed to track individual fluorescent cells over the e-hour 

window (Figure W.Y B). Cell trajectories were subdivided into three movement states: persistent 

forward, persistent backward, or non-persistent. A persistent state was assigned to trajectory 

segments in which cells were actively moving along their long axis. To account for cell reversals, 

persistent movements were then further classified as backwards or forwards relative to the direction 

observed at beginning of the trajectory. The non-persistent state was assigned when we 

encountered a velocity too small (less than approximately Y μm/min) or reversal period too high 

(greater than approximately Y reversal/min) to accurately detect persistent movement at the spatial 

and temporal resolution of the time-lapse images. The resulting assignments divide a trajectory 

into segments. The vector from the beginning of one segment to the next was defined as a run 

vector (Figure W.Y C). As such, a new run begins each time a cell changes its movement state. In 

what follows, we use run vectors to quantify cell motility behavior and to define the behavior of 

agents in agent-based simulations. 
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Figure 8.4: Overview of individual cell and aggregate tracking. A) Representative images from time-
lapse microcinematography of developing M. xanthus cells highly expressing tdTomato mixed 
Y:WeXX with cells weakly expressing eYFP. Cell density is proportional to eYFP fluorescence intensity 
while, in the same image, individual tdTomato cells are bright enough to detect and track . Detected 
aggregate boundaries are indicated with dashed green ellipses for stable aggregates and red ellipses 
for unstable aggregates. Bar represents YXX μm. B) Increased magnification of the image area inside 
the white box in (A). Line follows a single cell trajectory from the prior gX minutes to the shown 
frame. Line color indicates detected cell state. Blue is persistent forward, red is persistent 
backwards, and yellow is non-persistent movement. Bar represents YX μm. C) Cell trajectories were 
segmented into continuous states, the vector pointing from one state to the next is defined as a run 
vector. Colors are as in B.  Run vector distance, speed, duration, distance to nearest aggregate 
boundary (𝐷1), angle between two consecutive run vectors (θ3), and the angle between the nearest 
aggregate centroid and the ending (ϕ356) of the previous and beginning β3  of the run vectors are 
representative of the variables calculated. All angles are in the interval [−π, π) where −π = π. D) 
Mixtures of LSbdWf and LSbfXc on plates containing IPTG and vanillate (left panel) or DKYdWW cells 
without IPTG or vanillate (right panel) produced similar aggregate profiles. Images taken gc hours 
post starvation at Wex magnification. Bar represents eXX μm. E) Aggregation profiles were similar 
after e hours of fluorescent imaging (left) and without any fluorescent imaging (right). The phase 
images were taken at the same time point and magnification as the e Hr panel in A. Bar represents 
YXX μm.  
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To determine how aggregates affect cell behavior, runs were binned as starting inside or 

outside the aggregates. In both bins, the speed, duration, and distance of the runs are highly 

variable (Figure W.W A-C). Within aggregates, cells move with only a modest average speed decrease 

of Y.Y-fold relative to outside the aggregates (Figure W.W A, blue stars). However, the probability for 

a cell to transition to a non-persistent state at the end of the run increases Y.c fold (Figure W.W D). 

Moreover, the average duration of non-persistent runs doubles inside the aggregates (Figure W.W B, 

red stars). Average persistent run duration also decreases inside aggregates by approximately Y.e-

fold (Figure W.W B, blue stars). These effects lead to a combined (persistent and non-persistent) W-

fold decrease in average run distance inside the aggregates vs. outside (Figure W.W C, magenta 

circles). These results are in agreement with other work suggesting that cells reduce movement 

inside aggregates (Sliusarenko et al., WXXZ) and provide much more quantitative detail.  

Previous observations indicated that cells increase their movement when aggregation 

initiates (Curtis et al., WXXZ; Jelsbak and Søgaard-Andersen, WXXW; Thutupalli et al., WXYe). To 

quantify these effects, the mean and fe% confidence intervals for distance, duration, and speed of 

persistent state runs were calculated in a WX-minute sliding window over the length of the 

experiment (Figure W.W E, F, and G). Early in aggregation (c.a. X-Y.e hours), the mean persistent run 

duration outside the aggregates increases approximately Y.c-fold (Figure W.W F, blue lines), causing 

an increase in run distance (Figure W.W G, blue lines). At approximately Y.e hours, run duration 

transiently returns to levels seen prior to the onset of aggregation. Soon after, a second transitory 

increase in run duration occurs.  As aggregates mature, run duration gradually decreases back to 

pre-aggregation levels. Inside the aggregates, speed and duration remain constant (Figure W.W E, F, 

and G black lines). Non-persistent run behaviors are also relatively constant, with run distance 

varying less than Y.e µm over the length of the experiment (Figure W.b A-C). The probability of 

transitioning to a non-persistent state remains about the same, with the exception of a transitory  
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Figure 8.8: Run behaviors are dynamic in time and space. A-C) Time integrated distributions of 
persistent (blue) and non-persistent (red) run speed (A), duration (B), and distance (C) inside (In) 
and outside (Out) of the aggregates. Horizontal lines inside the boxes indicate distribution median. 
Tops and bottoms of each box indicate Zeth (qb) and Weth (qY) percentiles, respectively. Whiskers 
extend to the highest and lowest points or qb + Y.e(qb - qY) and qY - Y.e(qb - qY), whichever is closer to 
the median. Stars indicate average. Circles indicate combined (persistent and non-persistent) 
average. D) Time integrated probability of choosing a non-persistent run after a persistent run 
inside (In) or outside (Out) of the aggregates. E-F) Mean (solid lines) and bootstrapped fe% 
confidence intervals (dashed lines) for run speed (E), duration (F), distance (G), and probability of 
choosing a non-persistent run after a persistent run (H) calculated in a WX-min. sliding window. 
Blue lines indicate runs starting outside the aggregates, black lines, runs inside the aggregates. 
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Figure 8.?: Experimental non-persistent run behaviors as a function of time. A-C) Non-persistent 
average run (solid lines) speed (A), duration (B), distance (C) inside (black lines) and outside (blue 
lines) the aggregates. Average was performed in a WX-minute sliding window. Dashed lines indicate 
fe% confidence intervals. 
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increase outside the aggregates coinciding with the first peak in run duration (Figure W.W H). Again, 

our measurements not only confirm earlier observations but provide greater quantitative detail to 

facilitate mathematical modeling. 

Density-dependent motility decrease is not sufficient for aggregation  

To identify the cell behaviors most important to timely and complete aggregation, we developed a 

data-driven, agent-based simulation technique that couples individual agent behavior with 

experimentally recorded cell-tracking statistics and biofilm level dynamics. Agents move in a series 

of straight lines with properties (persistent vs. non-persistent, duration, speed, and turning angle 

relative to the previous run) sampled from the experimentally measured run distributions. Given 

that run speed and duration were correlated (Spearman’s 𝜌 = 0.2 for persistent runs, 𝜌 = −0.5 for 

non-persistent runs), they were sampled as a pair from a joint distribution containing the values 

from each experimental run. In the simplest model form, agents choose their run states, speeds, 

durations, and turning angles randomly from a distribution of all experimentally measured run 

behaviors independent of their location, cell density, or other factors. Since motility of the agents 

in this model is uncorrelated with their environment, the model does not generate any aggregates. 

Cells instead approach a steady state of uniform density (Figure W.g A). For aggregates to form, cells 

must coordinate their behavior through external cues.  

To model behavior dependent on external cues, agent behavior was chosen conditional on 

the cell density at their location measured in the fluorescent cell microcinematography 

experiments. As a consequence, agents behave as if they are within the density profiles from the 

tracking experiments. This technique facilitates directly comparing different cell-behavior 

dependencies to the experimental results. Varying the enforced run behavior conditions in 

simulations can then test different hypotheses on the cues coordinating cell behavior. If the correct 

cell behavior dependencies are included in the simulations, aggregates should appear at the same  
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Figure 8.X: Open-loop simulation controls. A) Comparison of experimental results with 
simulations in which agents are not dependent on any external variables. Representative time 
courses of experientially observed (Observed) and simulation (Simulated) cell densities over the 
course of the experimental time window. B) Average run distance in a W cells/μmW sliding window 
for simulations in which agent behavior is dependent on local cell density (blue lines) and 
experimental results (red lines). Dashed lines indicated bootstrapped fe% mean confidence 
intervals. C) Average (solid) and standard deviations (dashed lines) of the percent of cells inside 
aggregates for experimental (red lines) and simulations in which agent’s behavior is driven by time 
since the beginning of the experiment and local cell density (blue lines) or only local cell density 
(black lines). D) Average run duration in a WX-minute sliding window for all runs (persistent and 
non-persistent) from experimental results inside (black lines) and outside aggregates (blue lines) 
and open-loop simulations in which agent behaviors were chosen dependent on time since the 
beginning of the experiment. Green lines indicate agents outside aggregates, red lines, inside. 
Dashed lines as in B. E) Average run distance in a YX μm sliding window for simulations in which 
agent behavior depends on orientation to nearest aggregate. Purple (experimental results) and blue 
(simulation results) lines indicate runs oriented toward (cos	(β3) > 0, see	Figure	2.1	C) the nearest 
aggregate centroid. Green (experimental results) and black (simulation results) lines indicate runs 
pointed away (cos	(β3) < 	0) from the nearest aggregate centroid. Negative distances indicate that 
the run began inside the aggregate. Dashed lines indicated fe% bootstrap confidence intervals. F) 
Average (solid) and standard deviations (dashed lines) of the percent of cells inside observed 
aggregate boundaries for experimental (red lines) and simulations with a biased walk and with (blue 
lines) or without (green lines) time since the begging of the experiment as a dependence for 
choosing the agent’s run state, speed, and duration. G) Average (solid lines) and standard deviations 
(dashed lines) of percent of cells inside the aggregates in simulations (black lines) in which agents 
chose their run state, duration, and speed dependent on orientation and distance to the nearest 
aggregate when the agent was inside an aggregate (CY) or within We μm (CW), eX μm (Cb), or YXX 
μm (Cg) of the aggregate boundary. When outside the cutoff distance (CY-Cg), no aggregate 
dependence was used to choose agent behaviors.  Blue lines indicate simulations in which aggregate 
distance and orientation is always included in choosing agent behaviors. Red lines indicate 
experimental results.  
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locations, at the same rate, and to the same extent as the respective movie. We call this simulation 

type “open-loop” to denote that agent behavior is defined solely by the external density profile 

extracted from a microcinematography experiment (Figure W.e, blue box). 

Previous hypotheses of the mechanistic basis for aggregation predicted that decreased cell 

movement inside aggregates was the major driver of aggregate growth (Gejji et al., WXYW; Igoshin et 

al., WXXg; Sliusarenko et al., WXXZ; Sozinova et al., WXXe; Zhang et al., WXYY). We tested the 

hypothesis that the observed decrease in cell movement at the higher cell densities inside 

aggregates is sufficient to drive aggregation by incorporating density dependence into the 

simulations. Agents choose their run state, speed, and duration conditional on the experimentally 

measured local cell density at the beginning of their run. With the addition of this conditionality, 

agents exhibit a relationship between average run distance and local cell density similar to that of 

experimental runs (Figure W.g B). In the resulting simulations, aggregates appear at nearly all 

expected locations (Figure W.e B, right panel). However, the fraction of cells within the aggregate 

boundaries by the end of the e hr window is three-fold smaller in simulations compared to 

experimental results (Figure W.e B, left panel). Addition of time-dependence when choosing the 

state, speed, and duration (Figure W.W E-H) does not improve the rate or completeness of 

aggregation in simulations (Figure W.g C,D). These results are in agreement with another report 

indicating that simulations driven solely by local cell density fail to correctly reproduce the number, 

growth rate, and size of aggregates (Zhang et al., WXYY). 

Cells perform a biased walk toward the aggregate center 

Biased walks are found in many types of cell patterning (Delgado and Torres, WXYd; Lander, WXYb; 

Morelli et al., WXYW). Though chemotaxis has not been implicated in M. xanthus aggregation, M. 

xanthus can perform biased walks up specific lipid gradients (Kearns and Shimkets, Yffc). Bias is 

created by increasing average run duration when moving up the chemoattractant gradient;  



 gZ 

 

Figure 8.Y: Reduced movement inside aggregates is not sufficient to fully replicate aggregation in 
open-loop simulations. (A) Overview of open-loop (blue) and closed-loop (red) simulations. The 
extra path in the closed-loop model is bolded to highlight that the agent’s positions feed back into 
the density profile of the biofilm, closing the loop between individual and population level 
behaviors. (B) Comparison of experimental results with open-loop simulations in which agents 
reduce average movement proportional to cell density. Left: Average (solid lines) and standard 
deviations (dashed lines) of the percent of cells inside experimentally observed aggregate 
boundaries for experimental (red) and simulation (blue). Right: Comparison of last frame of 
representative experientially observed (Observed) cell density with that observed in a simulation.  
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conversely, cells decrease average run bias when moving down the gradient. We tested whether 

cells change their behavior depending on their direction of movement relative to nearby aggregates. 

Run vectors were quantified with respect to the direction of moment and distance to the nearest 

stable aggregate (Figure W.Y A, green ovals). The results show that persistent runs moving toward 

the aggregate centroid are longer than runs moving away from it (Figure W.d A). This bias is due to 

an increase in run duration rather than run speed (Figure W.d B,C). The probability of transitioning 

to a non-persistent state at the end of the run also depends on the run orientation relative to the 

nearest aggregate (Figure W.d D). Inside the aggregates, non-persistent run durations are Y.e-times 

longer when moving away from the aggregate centroid (Figure W.d E,F). In contrast to a previous 

report of tangential cell movement inside the aggregates (Sager and Kaiser, Yffb), our run durations 

are longest when pointed toward the aggregate centroid (Figure W.Z).  

A biased walk towards aggregates aids in aggregation  

To test the importance of the biased walk in aggregation, simulations were performed in which 

agent’s run state, duration, and speed were chosen conditional on the orientation and distance of 

the agent to the nearest aggregate at the beginning of the run in addition to the local cell density.  

To account for observed time-dependence in the biased walk (Figure W.Z B-D), run state, speed and 

duration were also chosen conditional on time since the beginning of the experiment. As a result, 

run duration dynamics relative to aggregate location in the simulation matched those in 

experiments (Figures W.g E). The inclusion of the biased walk increases aggregation rate and 

completeness, leading to a W-fold increase in the fraction of agents inside aggregates (Figure W.c A). 

Aggregate density (Figure W.c B) and size (Figure W.c C) in simulations were close to the 

experimental values. In models with the biased walk, elimination of time-dependence in run 

properties marginally decreases aggregation (Figure W.g F). In these simulations, it is necessary for  
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Figure 8.Z: Cells perform a biased walk towards aggregates. A-F) Average (solid lines) and 
bootstrapped fe% confidence intervals (dashed lines) of persistent run distance (A), duration (B), 
speed (C), probability of choosing a non-persistent run (D), non-persistent duration (E), and speed 
(F) in a YX μm sliding window around the distance (dist.) to the nearest aggreagte boundary from 
the beginning of the runs. Runs are binned into either pointing toward (cos(βn)	>	0 in A-C,E,F, or 
cos(ϕn-1)	>	0 in D, see Figure SYC) the nearest aggregate centroid (purple lines) or pointed away 
(cos(βn)	<	0	in A-C,E,F, or cos(ϕn-1)	<	0	in D) from the nearest aggregate centroid (green lines). 
Negative distances indicate that the run began inside the aggregate. 
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Figure 8.[: Extended biased walk quantification. A) Average and fe% confidence intervals (dashed 
lines) of persistent run duration as a function of the orientation to the nearest aggregate centroid 
(β in Figure SYC) for runs starting inside (green lines) and outside (blue lines) aggregates. Cos(β) of 
Y indicates running directly towards the aggregate centroid and cos(β) of -Y indicates directly away. 
B-D) Average and fe% confidence intervals (dashed lines) of persistent run duration (B), 
probability of choosing a non-persistent run after a persistent run (C), and non-persistent run 
duration (D). Analysis was binned into Y.e-W.e hours, W.e-b.g hours, and greater than b.g hour bins, 
from front to back, respectively. Purple lines indicate runs oriented toward (cos	(β3) > 0 in 
B,D,	cos	(ϕ156) > 0 in C, see Figure SYC) the nearest aggregate centroid and green lines indicate 
runs pointed away (cos	(β3) < 0	in	B, D, cos	(ϕ156) < 0	in	C) from the nearest aggregate centroid. 
Negative distances indicate run began inside the aggregate. 
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Figure 8.\: A biased walk towards aggregates contributes to aggregation in open-loop simulations. 
A-C) Comparison of experimental results (red) with simulations (blue) in which agents reduce 
movement proportional to cell density and perform a biased walk towards aggregates. A) Left: 
Formatted as in (Figure WB). Right: Representative time courses of experientially observed and 
simulation cell densities over the course of the experimental time window. Grayscale is proportional 
to cell density as in (Figure WB). B) Distribution of average cell density inside aggregates. C) 
Distribution of aggregate area. Box plots formatted as in Figure YA. Line plots indicate mean. All 
bars are YXX μm. 
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agents to choose their next behavior conditional on the orientation and distance to the nearest 

aggregate when up to YXX μm away to achieve full aggregation (Figure W.g G).    

Closed-loop model of aggregation. 

 The open-loop simulations identified behaviors that achieve aggregation comparable to that of 

experimental results. By nature of the technique, aggregate initiation and growth in these 

simulations were enforced through the continued input of measured cell density profiles. To more 

stringently test the effect of cell behaviors on aggregation, we closed the loop between agent 

behavior and the density profile. In contrast to the open-loop simulation’s dependence on 

experimental cell density profile as input, the closed-loop simulations (Figure W.e A, red box) 

estimate the density profile from the agent positions by kernel density estimation (KDE) (Botev et 

al., WXYX). Aggregates were then detected from the agent density profile using the same density 

cutoff as in experiments. The resulting density profile and aggregate boundaries were used to 

choose the agent run characteristics, closing the feedback loop between agent behavior and their 

density profile (Figure W.e A). Except for the change in density estimation, the closed-loop model 

is identical in design to the open-loop model. That is, agents choose their run state, speed, and 

duration conditional on the local agent density, distance and orientation to the nearest aggregate, 

and time since the beginning of the experiment. Closed-loop simulations thereby provide a more 

realistic simulation environment by allowing agents positions to modify the surrounding density 

profile. 

The resulting closed-loop simulations lead to aggregate formation but, as compared to 

experimental results and open-loop simulations, the fraction of cells in aggregates decreased about 

two-fold (Figure W.f A). Although the resulting average cell density inside the aggregates agrees 

with experiments (Figure W.YX A), the aggregate area is smaller than in experimental results (Figure  
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Figure 8.@: Closed-loop simulations reproduce wild-type like aggregation with the addition of cell 
alignment. A) Simulation results in which agents reduce movement proportional to cell density and 
perform a biased walk towards aggregates. Left Panel: Average (sold lines) and standard deviation 
(dashed lines) of the percent of cells inside detected aggregates for experimental (red) and 
simulation (blue) replicates. Right: Comparison of the last frame of a representative experientially 
observed (Observed) cell density with a simulation (Simulated). B) Average (solid lines) and fe% 
confidence intervals (dashed lines) of run vector alignment strength (blue lines) with neighboring 
run vectors that occurred within ±e min and Ye μm. Black lines indicate alignment strength with 
randomly chosen runs. Values may span (-Y,Y) where Y indicates all runs are parallel. Likewise, -Y 
indicates all runs are perpendicular. C) Same as A with the addition that agents in the simulations 
align their orientation with neighboring agents. D) Alignment strength of run vectors (blue lines) 
with vector pointing toward nearest aggregate centroid. Black lines indicate alignment strength 
after randomly shuffling each run’s distance to the nearest aggregate. Negative distances indicate 
that the run began inside an aggregate. Values may span (-Y,Y) as in B. E-H) In addition to the agent 
behaviors from simulations in (A) and (C), agents orient toward the nearest aggregate centroid.  E) 
Left panel: Percent of cells inside aggregates as in (A). Right: Comparison of representative 
experientially observed cell density time progression with that observed in the closed-loop 
simulation. Grayscale is proportional to cell density as in (A). F) Average cell density inside 
aggregates. G) Average aggregate area. H) Aggregate count in each replicate.  Box plots formatted 
as in Figure YA. Lines indicate mean. All bars are YXX μm. 
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Figure 8.4]: Quantification of closed-loop simulations without agent alignment. A and B) 
Distribution of average cell density inside aggregates (A) and aggregate area (B) in closed-loop 
simulations without any turning angle dependencies (blue lines). Experimental data in blue. Box 
plots formatted as described in Figure W.W. C) Points indicate number of aggregates in each 
experimental movie (Obs) or simulation (Sim). Boxes indicate sample standard deviation with the 
white line indicating the sample mean. 
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W.YX B). Therefore, we hypothesized that additional run properties need to be included to facilitate 

complete aggregation. 

Cell trajectories are aligned within the biofilm 

In agreement with other experimental observations (Balagam and Igoshin, WXYe; Berleman et al., 

WXYd; Lux et al., WXXg; Sliusarenko et al., WXXZ; Thutupalli et al., WXYe), visual inspection of cell 

trajectories indicates alignment between neighboring paths (Figure W.YY A, solid boxes). The 

presence of this alignment has previously been proposed to play a role in aggregation, but has not 

been experimentally quantified in the high cell densities used in developmental assays. To quantify 

alignment, we followed (Balagam and Igoshin, WXYe) by calculating nematic alignment strength as 

the correlation of run orientations modulo YcX degrees (with cells moving in the opposite directions 

still considered aligned) among runs that start within a Ye µm radius and ±e min of one another. In 

agreement with visual observations, quantification indicates a correlation in neighboring run 

orientations (Figure W.f B). Furthermore, observations (Figure W.YY, dashed boxes) and 

quantification of the mean run orientation relative to the nearest aggregate ( cos	(2𝛽1 , see Figure 

W.Y C) indicate that run vectors outside the aggregate preferentially orient in a direction radial to 

the nearest aggregate (Figure W.f D). Inside the aggregates, runs are biased toward a more 

tangential orientation. The orientation of cells relative to the aggregates changes with time, with a 

radial run orientation prevalent at the onset of aggregation and becoming less pronounced as the 

aggregates mature. In contrast, run orientation inside the aggregates is random early in aggregation 

and becomes more tangential to the aggregate boundary as the aggregates mature (Figure W.YY B).   

Cell alignment aids in aggregate initiation 

The hypothesis that cell alignment improves aggregation was tested in a closed-loop model. Cell 

alignment was included in simulations by choosing agent turning angles conditional on both the 

average nematic orientation of neighboring agent runs and the time since the beginning of the  
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Figure 8.44: Cell trajectories are aligned. A) Plot of all cell trajectories extracted from the movie 
shown in Figure SY. Trajectories are randomly colored, with colors used multiple times. Ellipses 
indicate aggregate positions at the end of the experiment. Solid boxes indicate examples of 
trajectory alignment; dashed boxes indicate examples of trajectories orientated radial to the nearest 
aggregate boundary. B) Average alignment strength (solid lines) and fe% confidence intervals 
(dashed lines) of run vectors with vector pointing to the nearest aggregate centroid during hours 
Y.e-W.e (blue lines), hours W.e-b.g (red lines), and greater than b.g hours (yellow lines). Dashed gray 
lines indicate fe% confidence intervals of alignment strength of a randomly selected set of N runs 
after randomly shuffling each run’s distance to the nearest aggregate. N was equal to the average 
number of runs in the time bins. 
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experiment. To allow agents time to align prior to their initiation of aggregation, the simulation 

was run for Y.e hours of simulation time using the behavior distribution and turning angles from 

the first YX minutes of the experimental results. During this time, agent alignment approaches that 

seen in the experimental results (Figure W.YW A). After the Y.e-hour prerun, the simulation was 

started using agent positions and orientations from the end of the prerun. Addition of neighbor 

alignment increases aggregation to levels comparable to the open-loop model (Figure W.f C). As a 

control, adding a prerun to simulations without neighbor alignment did not affect aggregation 

(Figure W.YW B), confirming that addition of the prerun does not affect aggregation beyond that of 

aligning the agents.  

 The addition of neighbor alignment in simulations does not cause cells to orient radially 

with the nearest aggregate (Figure W.YW C). To include orientation in the simulations, distance to 

the nearest aggregate boundary and angle to the nearest aggregate centroid were added as 

dependences on choosing the next turning angle. As a result, the closed-loop model displayed 

aggregation rates comparable to those of the experimental results (Figure W.f E). Furthermore, 

aggregate cell density (Figure W.f F), area (Figure W.f G), and aggregate count (Figure W.f H) agree 

with the experimental results. Thus, the closed-loop model revealed one additional feature not 

discovered in the open-loop model, a requirement for cell alignment. It now becomes possible to 

perturb the cell behavior dependences included in the closed-loop model to gauge their relative 

importance. 

Behaviors shaping aggregation dynamics 

By performing simulations in which the behaviors suggested to be required for aggregation are 

removed or modified, it is possible to predict phenotypes. To this end, closed-loop simulations were 

performed in which behaviors identified as necessary to match observed aggregation dynamics 

were systematically modified (Figure W.Yb). Time dependence of the agent’s turning angles was not  
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Figure 8.48: Closed-loop simulation controls. A) Time course of mean (solid lines) and fe% 
bootstrap confidence intervals (dashed lines) of nematic agent alignment with neighboring runs in 
a WX-min sliding window for simulations (blue) and experimental (red). Negative values indicate 
the simulation prerun to provide agents time to align. Black lines indicate analysis performed with 
randomly chosen runs instead of neighboring runs. B) Average (solid lines) and standard deviation 
(dashed lines) of the percent of cells inside aggregates for experimental (red lines) and simulation 
(blue) with a prerun but no turning angle dependencies. C) Average (solid lines) and fe% 
confidence intervals (dashed lines) of mean run vector alignment with vector pointing to the 
nearest aggregate centroid in open-loop simulations without any turning angle dependencies (blue 
lines). Black lines indicate a random distribution as in Figure eD, red lines indicate observed 
experimental alignment. D) Average (solid lines) and fe% confidence intervals (dashed lines) of 
orientation of runs relative to the nearest aggregate centroid. Experimental data in red, closed-loop 
simulations in which distance and orientation to nearest aggregate centroid was included as 
dependence for choosing turning angle in blue.  -Y indicates all runs are tangent to aggregate 
centroid, Y indicates all runs are radial to aggregate centroid. E) Average (solid) and standard 
deviations (dashed lines) of fraction of cells inside aggregates in simulations with (blue) and 
without (black) time as a dependence for choosing the agent’s next turning angle. F) Average run 
distance in a W cell/μmW sliding window for all runs (persistent and non-persistent) that occurred 
during hours Y.e-W hours (blue lines) and W.e-b.g (red lines). Dashed lines as indicate fe% mean 
confidence intervals. 
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included to enable running simulations for times longer than the available experimental data time-

window. Simulations indicate that this change does not affect aggregation dynamics (Figure W.YW 

E). As in open-loop simulations (Figure W.e B), removing the biased walk slows aggregation rate 

(Figure W.Yb B). However, closed-loop simulations can be run longer than in experimental movies 

when the time dependences are not included. When simulations were continued for another e 

hours, agents continue to aggregate, approaching a steady state by YX hours. Even after YX hours, 

the fraction of cells inside the aggregates and aggregate density is approximately bX% lower than 

in experimental results and aggregate boundaries appear less well defined. 

 The two transient increases in run duration at the onset of aggregation (ca. X.e-Y.We hours, 

see Figure W F) and during rapid aggregate growth (ca. W.e-b.g hours) suggest a possible role for 

time-dependent run duration. Outside the aggregates, this increase in duration leads to a combined 

(persistent and non-persistent) average run distance in the earlier time-window that is Y.b times 

longer than the latter (Figure W.YW F). Inside the aggregates, run distances are about the same in 

both time windows (Figure W.YW F). To determine the role of these changes in aggregation dynamics, 

we utilized closed-loop models in which run data only from the Y.e-W hr or only from the W.e-b.g hr 

window was used to drive agents’ behavior for the whole simulation duration. Models based on the 

short run duration window (Y.e-W hr) produced aggregates at a rate and completeness equivalent to 

those of the experimental results (Figure W.Yb C). In contrast, agents in simulations utilizing the 

longer run durations (W.e-b.g hr) aggregate at a faster rate and to a higher level of completeness 

than experimental results (Figure W.Yb D). We wondered whether extending the window of longer 

reversal durations could overcome the need for a biased cell walk. To test this hypothesis, 

simulations were run using the time windows but without a biased walk towards aggregates. Using 

the window with longer run durations, agents formed aggregates comparable to experimental 

results in rate, size, and cell density (compare Figure W.Yb A with Figure W.Yb E). The short run  
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Figure 8.4?: Probing interactions shaping aggregation dynamics in closed-loop simulations A-G) 
Percent cells inside aggregates, aggregate area, cell density inside aggregates, and aggregate count 
from the last time point in simulations (blue) and experimental (red) results. Aggregate density and 
area box plots are formatted as in Figure Y. Aggregate count box plots indicate the standard 
deviation of the replicate counts, white bar indicates the mean count, and each gray dot indicates 
the count from one replicate. A visual image of the last frame of the simulation was created using a 
KDE, shading is the same as in Figure eA. The bar is YXX μm in length. A) Same simulation as in 
Figure eE-H. B) Simulations with run behaviors from the entire experimental time span, alignment 
to neighboring cells and to the nearest aggregate centroid, and without a biased walk towards 
aggregates. C) Simulations with a biased walk, alignment, and run behaviors chosen from a time 
window (Y.e-W hours, see Figure YF) containing short run durations outside of aggregates. D) 
Simulations as in (C) except run behaviors from a time window (W.e-b.e hours) containing longer 
run durations outside aggregates. E) Same as (D) minus the biased walk. F) Same as (C), minus the 
biased walk. G) Same as (E) minus alignment to neighboring runs and the nearest aggregate 
centroid. 
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duration window caused agents to aggregate at a rate and completeness comparable to simulations 

in which behaviors were chosen from the entire movie but without the biased walk (compare Figure 

W.Yb B with Figure W.Yb F). Removing both alignment and the biased walk all but abolished 

aggregation, even when using the longer run duration window (Figure W.Yb G).  
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Discussion 

Identifying cell behaviors that mediate self-organization without a full understanding of the 

underlying signaling network and motility control mechanisms is a daunting task. Here we 

developed a framework that integrates datasets of quantified cell behaviors with computer 

simulations driven by these datasets to reverse-engineer the self-organization process. This 

approach revealed a set of behaviors that appear to mediate complete aggregation in M. xanthus. 

Our results suggest that cells employ a combination of previously proposed behaviors, such as 

reduced cell movement inside aggregates, and previously unknown behaviors, including a biased 

walk toward the aggregate centroid. Remarkably, despite the large heterogeneity observed in 

individual cell behavior (Figure W.W A-C), we found that relatively small changes in average cell 

behavior, such as a Ye% increase in average run duration when moving towards aggregates (Figure 

W.d B), dramatically improved aggregation. At the level of millions of cells, the population can 

tolerate occasional eccentric behavior provided the average cell behavior engages in the common 

activity. Live imaging has revealed unexpected heterogeneity and plasticity in stem cell biology 

(Park et al., WXYd) suggesting that heterogeneity may be more widespread than currently 

appreciated in developmental biology. Large deviation occurs at the expense of resource depletion 

and would be expected to persist only if it provides an evolutionary benefit. The importance of 

small changes in average behavior in the face of large deviations from the mean also highlights the 

utility of large experimental datasets and data-driven simulations to confidently distinguish 

important cell behaviors from background noise.  

To uncover the role of each cell behavior in a dataset with multiple correlated and noisy 

variables, the framework utilizes two simulation environments (Figure W.e A). The open-loop 

simulation environment assesses the importance of specific cell behaviors by directly overlaying 

the simulation agents over experimentally measured environments.  This overlay provides a 
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structured way to assess the role of each cell behavior individually. Once the behaviors required to 

achieve quantitative agreement between open-loop simulations and experimental patterns are 

identified, closed-loop simulations in which the simulation agents define and modify their 

environment are employed to study how individual cell behavior shapes the behavior of the 

population. Through systemically adding and removing dependencies driving cell behavior, 

simulation results predict essentiality of various cell behaviors.  

We believe the framework is generally applicable to many types of cell tracking 

experiments. The framework can be further generalized to include any additional data on the cell 

state (e.g. fluorescent gene reporters) or the surrounding environment (e.g. neighboring cells, 

landmarks, or boundaries) that could be correlated with cell behavior. For example, studies aiming 

to understand metastatic cancer cell invasion face challenges similar to M. xanthus development. 

Tumor cell state and migration dynamics are correlated with the local microenvironment, cell 

genetics, and signaling cues (Clark and Vignjevic, WXYe). As in M. xanthus development, correlations 

between these cues and heterogeneity in cell response obscure the relationships between the 

microenvironment, cell state, and migration. Techniques for individual cell imaging and tracking 

in tumor models are more complex, but the resulting datasets are similar to those used here. For 

example, multiphoton microscopy enables tracking of individual cells in vivo while the second and 

third harmonic generation signals from the technique allow imaging of the environment, including 

collagen type I fibers, lipids, and lipid bodies, in the same image. Addition of fluorescent dyes, 

antibodies, and proteins can further enrich the dataset by concurrently providing information 

about individual cell state, in some cases down to individual signaling pathways (Ellenbroek and 

van Rheenen, WXYg). Combining the microscopy and cell tracking data with simulations in which 

the local microenvironments are defined a-priori to identify microenvironment cues of cell 

behavior would be analogous to the open-loop simulations described here. In cases where datasets 
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contain a large number of independent variables, or if no clear hypotheses exist, statistical 

techniques such as correlation analysis, mutual information, or granger causality (Bastos and 

Schoffelen, WXYd; Lock et al., WXYg) could be used to generate an initial hypothesis to test in 

simulations. In systems that have incomplete datasets, hypothesized distributions can be integrated 

into the agent’s behavior. Modification of what defines an agent in the simulation will be specific 

to each case, but is straightforward.   

Application of the framework to development of M. xanthus identified decreased cell 

motility inside the aggregates, a biased walk toward aggregate centroids, alignment with 

neighboring cells, and cell orientation changes with respect to the aggregate boundaries as 

behaviors contributing to aggregation. Surprisingly, longer run durations outside of aggregates can 

compensate for lack of a biased walk towards aggregates (Figure W.Yb E). This observation highlights 

a possible compensatory mechanism that could make M. xanthus development especially robust. 

Such compensatory behaviors could mask phenotypes in traditional gene knockout experiments, 

particularly when relying on visual discriminators such as aggregate area or count at the end of the 

development. Compensation by modulating run durations is a particularly enticing mechanism 

since M. xanthus contains WY chemoreceptors, of which Yb create altered developmental phenotypes 

when deleted (Moine et al., WXYg), and W are thoroughly implicated in both development and 

reversal control (Curtis et al., WXXd; Kearns and Shimkets, Yffc; Xu et al., WXXc). Furthermore, 

these cell reversal control pathways can react in timescales of minutes (Kearns and Shimkets, Yffc) 

instead of the longer timescales required for protein level changes. The active role of 

chemoreceptors in development also suggests the ability to sense chemical gradients, which agrees 

well with the identification of a biased walk towards aggregates. However, given that no 

developmental signals have been found yet to guide aggregation, and considering the evidence of 

contact-mediated reversal control, further studies are needed to unmask the biological mechanisms 
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of the salient cell behaviors.  

This approach could speed up physiological analyses of strains containing genetic 

deficiencies by applying the same framework to analyze the behavior of fluorescently labeled 

mutant cells. Open and closed-loop simulations can then be utilized to test whether behavioral 

differences observed in mutant cells affect aggregation and predict whether these differences 

compensate for the lack of another behavior. This approach creates a clear path of combining data 

acquisition with simulations to formulate hypotheses for future rounds of experiments. In this way, 

the framework can be used to move from a coarse-grain understanding of the behaviors to 

mechanistic understanding of how cellular machinery, signals, and physical integrations guide 

emergent cell behaviors.   
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Methods 

Bacterial strains, plasmids and growth conditions 

All strains and plasmids used in this study are listed in Supplemental Table SY. M. xanthus strains 

were grown in CYE broth (Y% Bacto casitone (Difco), X.e% yeast extract (Difco), YX mM g-

morpholinepropanesulfonic acid (MOPS) (pH Z.d), and X.Y% MgSOg) at bW°C with vigorous 

shaking. Development was induced on YX ml of TPM agar [YX mM Tris HCl, pH Z.d, Y mM 

KH(HW)POg, pH Z.d, YX mM MgSOg, Y.e% agar (Difco)] containing Y mM isopropyl β-D-Y-

thiogalactopyranoside (IPTG) and YXX µM vanillate in YXX mm diameter petri dishes. pLJSYge was 

constructed by PCR cloning tdTomato from ptdTomato with primers containing b’ XbaY and e’ KpnI 

restriction sites and ligated into pMRbgcZ (Iniesta et al., WXYW). pCRCbd was constructed by PCR 

cloning the eYFP from pEYFP with primers containing b’ NdeI and e’ NheI restriction sites and 

ligated into pMRbdWf (Iniesta et al., WXYW). Strains LSbdWf and LSbfXc were constructed by 

electroporation (Kashefi and Hartzell, Yffe) of plasmids pCRCbd and pLJSYge, respectively. 

Following electroporation, transformants were selected on CYE Y.e% agar plates containing eX 

µg/ml kanamycin for pCRCbd or Ye µg/ml oxytetracycline for pLJSYge.  

Fluorescence time-lapse image capture 

Strains LSbfXc and LSbdWf were grown to exponential phase, mixed Y:WeXX (resulting in 

approximately eXX individually trackable tdTomato cells within the field of view), concentrated to 

Y.ZxYXf cells/ml, and be μl of the cell mixture was spotted onto TPM agar then dried uncovered in a 

bW°C incubator. Once dry, the plates were covered, wrapped with parafilm (Bemis Inc., Neenah, 

WI), and incubated in a heated room. Room temperature varied between WZ°C and Wf°C, averaging 

Wc°C. Time-lapse images of the spots were acquired using a Leica DMeeXXB microscope (Leica 

Microsystems, Wetzlar, Germany) in the same heated room beginning at the indicated times in the 

TRITC channel at WXXx magnification every bX seconds; a short enough time frame that cells do 
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not move more than one cell length between images. Data capture was performed using a FlashW.c 

(Hamamatsu Photonics, San Jose, CA) camera, a Phoenix-DgcCL frame grabber (Active Silicon, 

Severna Park, MD), and the µManager software (Edelstein et al., WXYg). The fluorescence intensity 

was set to ee%, camera gain set to Wee, and exposure time was dXX ms. The mercury lamp was 

shuttered when not acquiring an image. Imaging was carried out for approximately d hours. The 

time point at which aggregation began varied by up to one hour between replicates. Replicate 

movies were truncated to synchronize the onset of aggregation and equalize movie length as 

described in the Supplemental Text, resulting in final movie length of e hours. Three replicate 

movies were created and analyzed in parallel as described below. 

Cell Density Estimation 

To account for uneven illumination from the microscope’s mercury bulb and optics, acquired 

fluorescent images were normalized to the intensity of the first frame. Images were then Gaussian 

smoothed to filter the contribution from the individual labeled LSbfXc cells and the images were 

normalized for diminishing fluorescence over the length of the movie by subtracting the mean 

intensity of each frame. To estimate cell density, the detected cell positions (as described in Cell 

Tracking) in the last image from each experimental replicate were used to estimate the cell 

density using a kernel density estimator. Comparing the computed cell density with fluorescence 

intensity values from the last frame indicated a nonlinear correlation between the two (Figure 

W.Yg A). To relate these two estimates of cell density (kernel-density and fluorescence-intensity 

density), a third-degree polynomial was fitted to the data pooled from all three movies using 

MATLAB’s fit function with the robust option set to Bisquare (Figure W.Yg A, red line). The fitted 

polynomial was used to convert fluorescence-density values to cell densities for all images. 

Further details for the filters and chosen parameters used are provided in the Supplemental Text.  
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Figure 8.4X: Cell density estimation and cell detection parameters. A) Correlation between 
individual pixel fluorescence intensity in arbitrary units (A.U.) plotted against cell density 
estimated using a kernel density estimator (KDE) at the same position as the pixel. Red line 
indicates the fitted line used to relate the two. B) Fluorescence intensity cutoff for cell detection 
was chosen as the bottom of the “elbow” created when plotted number of cells detected vs. the 
intensity cutoff. Arrow indicates the cutoff chosen for use in segmentation. 
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Cell Tracking  

To reduce camera sensor noise and fluorescence from the growing aggregates, time-lapse images 

were band-pass filtered as described in the Supplemental Text. Thereafter, MATLAB function 

regionprops was used to identify the centroid and orientation of each cell. The segmentation 

threshold value was chosen by running the segmentation and detection on the first image with 

threshold values between YX and eX in Y unit increments. Plotting the threshold values versus the 

number of cells detected (Figure W.Yg B) indicated that the cell count approaches a constant value 

as the threshold rises above the noise caused by background fluorescence. Visual inspection of the 

cell detections indicated a threshold value on the edge of the “elbow” (Figure W.Yg B, arrow) 

provided a good tradeoff between detection of all the cells and little identification of background 

noise as cells.  

To track cell motility between images, we followed procedures established in (Jaqaman et 

al., WXXc). This technique solves the problem of image-to-image linking of detected cells into 

trajectories by treating the assignments as a linear assignment problem (LAP). In this method, cells 

are assumed to move, disappear, or appear between two consecutive images. In the move case, a 

cell will move to a new position in the time between images. Therefore, its positions in the two 

images should be linked into the same trajectory. If a cell disappears due to leaving the field of view, 

misdetection, or overlapping with another cell, it should not be linked to a cell in the later image. 

In a similar fashion, a cell that appears in the later image should constitute a new trajectory. The 

LAP involves calculating a cost to assigning each of these actions for every cell in the two images. 

The resulting costs are then used to find an optimal assignment for each cell by minimizing the 

total cost of assigning all cells to one of the three options. The process is then repeated 

consecutively for each image from the time-lapse acquisition. We used the Jonker-Volgenant 

Algorithm (Jonker and Volgenant, YfcZ) implemented in MATLAB by (Jaqaman et al., WXXc) to 
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solve the LAP (see Figure Y of (Jaqaman et al., WXXc) for an overview of this process). As in (Jaqaman 

et al., WXXc), a second LAP was then performed to relink broken trajectories. A full definition of the 

cost functions used for linking cells based on the properties of M. xanthus motility is described in 

the Supplemental Materials.  

Cell State Detection  

Confidently detecting whether a cell is actively moving, stopped, or reversing direction is 

complicated by noise in the cell trajectories. This noise arises from inaccuracies in detecting the 

cell position due to the low acquisition magnification and the biological processes that lead to cell 

movement. We observed that this variability created cell trajectories too noisy for one-dimensional 

detection techniques (e.g. using tangential speed to detect reversals or a speed cutoff to detect non-

moving cells). To detect movement characteristics of the cell reliably, a cell state filter was 

developed which employs extended Kalman filters (EKF) to estimate the most probable motion 

model used by the cell between images. 

We assume cells use the same movement models as described for cell tracking: persistent 

forward (𝑖 = 1), persistent backwards (𝑖 = 2), and non-persistent (𝑖 = 3). The EKF estimates state 

vector 𝑠T = 𝑥T, 𝑦T, vX, θT 	consisting of the position (𝑥, 𝑦), orientation along the long axis (𝜃), and 

speed (𝑣) of the cell in image t using the t-N state vector and one of the three movement models (𝑓6 

to 𝑓[ in Table SW). The EKF then uses the deviation between the predicted (𝑠T) state and true cell 

state	in image t to calculate the likelihood that each movement was executed by the cell. The model 

with the maximum likelihood was then assigned as the movement between the two images. A 
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detailed description of the movement models and EKF algorithm is provided in the Supplemental 

Materials. 

Aggregate Detection and Tracking 

A cell density cutoff of W.bW cells/µmW was chosen by visual inspection of aggregate boundaries in 

the last image of each movie. Aggregates were detected in each frame as areas where cell density 

exceeded the cutoff. Aggregate boundaries were approximated as ellipsoids with a centroid, major 

axis, and minor axis calculated using MATLAB’s regionprops function. To track aggregate positions 

from image to image, a LAP was set up similar to that used for cell tracking. Adaptions made to 

track aggregates are provided in the Supplemental Text. 

Run Vectors  

Trajectories were divided into runs, which start at the beginning of one contiguous movement state 

(persistent forward, persistent backwards, non-persistent) and end with the next change of state. 

Trajectory data prior to the first reversal and after the last reversal were discarded. The average 

speed (𝑣), period (𝜏), distance (𝛿), angle to the nearest aggregate centroid (𝜙), distance to the 

nearest aggregate boundary (𝐷), ambient cell density (𝜌), turning angle (𝜃), average nematic 

orientation (explained below) of neighboring runs (𝛾), and time since beginning of the experiment 

(𝑇) were calculated for each run vector (Figure W.Y C). 

Average nematic alignment strength was used to quantify trajectory alignment (Figure W.YY 

A, solid boxes) at the level of a run. The average nematic alignment strength, denoted as < 𝛺1 >, 

is calculated as the average cosine difference between the orientation of run n and all runs within 

a window size of ±e min and Ye µm radius around the start of run n: 

 < 𝛺1 >	=
6
b

cos(2 ∗ (𝜒e∈ge1hig 1 − 𝜒e)).  [Y] 

 In Eq. [Y], N is the number of runs within the window and 𝜒 is the angle of the run relative to the 

x-axis. Due to the lack of motility polarity, the run bearing	𝜒 is in the interval [−π, π) where	−π =
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π. Choosing the window size required balancing an N large enough to reliably evaluate Eq. [Y] while 

avoiding smoothing out local alignment characteristics. Visual inspection of the trajectories 

indicated that alignment was stable in time (Figure W.YY A), allowing the window to be extended in 

the time dimension to increase N while keeping the spatial search radius around the cell small. The 

search radius and time window length were chosen by searching the parameter space of possible 

values and choosing the combination of values that provided the greatest average alignment 

strength (Figure W.Ye A&B).  

Bootstrapping Statistics 

Where indicated, fe% confidence intervals were calculated by pooling the data from all b replicate 

movies and bootstrapping parameters using the adjusted percentile method (Davison and Hinkley, 

YffZ) with YXXX bootstrap samples.  

Data-driven Agent-Based Model  

An agent-based model consisting of YX,XXX agents on a rectangular domain of 986	µm	x	740	µm, 

equal to the microscope field of view, with periodic boundary conditions on each end, was 

implemented in MATLAB. Each agent represents a single cell sampled from a biofilm of the same 

average density as experiments (Y.Y cells/µmW), similar to sampling cell behaviors in the biofilm 

using a small number of fluorescently labeled cells. The random trajectory of a single agent consists 

of the sequence of reversal locations (𝑥e	, 𝑦e), and bearing angles, 𝜒e, connected by run 

vectors,	(𝛥𝑥e	, 𝛥𝑦e), and turning angles, 𝜃e, beginning at time points 𝑇e. The run vector (𝛥𝑥e	, 𝛥𝑦e) is 

constructed from 𝜒e, a run speed, 𝑣e, and a run duration 𝜏e. Since fluorescent images for cell tracking 

were taken at bX-sec intervals, we have adopted the same time discretization in the simulations 

with agent’s positions along their current run vector updated every (𝛥𝑡 = 30𝑠). The agents run 

variables (𝜃e, 𝑣e	, 𝜏e), along with an auxiliary binary variable denoting if the run is persistent or non-

persistent,	𝑠e, are drawnfrom the reversal PDF, 𝑃 𝜃e, 𝑣e	, 𝜏e	, 	𝑠e|		𝑇e, 	𝐷e	, 	𝜌e, 𝜙e56, 𝛾e . Where 𝑇e is the  
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Figure 8.4Y: Cell tracking and quantification parameter estimation. A&B) Parameter search for 
alignment window length and size. A) Mean nematic alignment strength for all runs when 
calculated using the given time window and search radius. B) Mean number of runs used to 
calculate the nematic alignment strength for each run. C) Progression of variable values for cell 
tracking calculated using bootstrapping. Stars: standard deviation of the difference between 
predicted and measured cell position (𝜎v); Open circles: standard deviation of the difference 
between predicted and measured cell position (𝜎wx); Crosses: mean difference between predicted 
and measured cell position in x and y directions. D) Transition probabilities estimated using 
trajectories from manually assigning trajectory segments as either forward, reverse, or non-
persistent movement models. Lines of the same color indicate transition probabilities calculated 
for forward and backwards movement models for continuing persistent movement (red), reversing 
direction (green), transitioning from non-persistent to persistent (black), and transitioning from 
persistent to non-persistent (blue). Cyan line indicates probability of continuing non-persistent 
movement. Crosses indicate values used in transition matrix 𝜋. E) Error between the transition 
probabilities estimated using trajectories with manually assigned movement models and that 
estimated using a Markov chain after a lag of t images. Colors indicate continuing persistent 
movement (red), reversing direction between the two persistent types (green), transitioning from 
non-persistent to persistent (black), transitioning from persistent to non-persistent (blue), 
continuing non-persistent movement (cyan). 
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time since the beginning of the experiment, 𝜌e is the local cell density, 𝛾e is the angle between the 

cell orientation and the average bearing angle of neighboring runs, and 𝐷e and 𝜙e56 are defined in 

Figure W.Y C. We used nearest neighbor methods (Hastie et al., WXXf), to estimate P by drawing 𝜃e, 

a paired (𝑣e,	𝜏e), and 𝑠e from experimentally observed runs conditional on 𝑇e, 𝐷e, 𝜌e	, 𝜙e56, 𝛾e  as 

described in the Supplemental Materials. This approach incorporates directly from the 

experimental run database all the information available about 𝑃 without relying on an explicit re-

construction of 𝑃 on a high-dimensional variable space.  

We implemented two alternative modeling approaches, referred to as the open-loop and the 

closed-loop model, which differ in how the local cell density (𝜌e) at location (𝑥T, 𝑦T) and time t was 

modeled. In the open-loop approach, we used the observed density profile and aggregate locations 

extracted from each of the three fluorescent and trajectory imaging datasets (movies), as described 

in the cell density estimation section. In the closed-loop approach, agent positions were initialized 

from a uniform random distribution. Each time-step,  𝜌e was extracted from the current agent 

positions with a KDE bandwidth of Yg µm. A Yg µm bandwidth provided good agreement between 

the starting density distributions of the agents and that measured from experimental results (Figure 

W.Yd). Aggregate boundaries and centroids were then calculated from the estimated density profiles, 

𝜌e	in the same manner as for the experimental imaging density data. 

The database of experimentally observed runs used to estimate P can comprise of the 

composite of all runs extracted from all trajectories tracked across all three microcinematography 

experiments (movies Y-b) reported here, with	𝑁{= YXW,fZW or else the database may consist only of 

the runs from all trajectories tracked in each microcinematography movie, with 	𝑁{= bd,XYf, bd,bXb 

or bX,deX, respectively. The composite database was used only for the closed-loop simulations. 

Each open-loop simulation utilized only the single-experiment database for the imaging 

experiment from which also the input cell density profile was extracted. 
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Figure 8.4Z: Comparison of distribution of biofilm cell densities seen at each (x ,y) position within 
the field of view in the first image of the experimental replicates (blue) or at the beginning of open-
loop simulations (red). For experiments, the density was estimated from the fluorescent images. 
The blue solid lines indicate mean and dashed lines indicate standard deviation of the density 
distribution from the experimental replicates.  For simulations, the (x,y) location of each of the 
YX,XXX agents was drawn from a WD probability density generated from the density profile of the 
first image of an experimental movie. The biofilm cell density was then estimated from the agent 
positions using a kernel density estimator with a bandwidth of Yg µm. Yb simulation distributions 
were generated per experimental replicate. The red solid lines indicate mean and dashed lines 
indicate standard deviation of the density distribution from the replicates. 
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In open-loop simulations, three independent open-loop simulations were performed for 

each experimental movie. In the closed-loop, three simulations were performed. Each simulation 

started from a different random initial configuration of agents. The results from the replicate 

simulations were then pooled for the subsequent data analyses.  

Supplemental Methods 

Alignment of Experimental Replicate Movies  

The time point at which aggregation began in experiments varied by one hour between replicates. 

To normalize for timing variation, the fraction of tdTomato cells inside (cell density > W.bW 

cells/µmW) the aggregates (𝐹T) was calculated for each image (t) in the video. These counts were 

then normalized using  

 
𝐹T∗ =

	𝐹T − maxX∈~
𝐹T

max
X∈~

	𝐹T − minT∈b
𝐹T

 [W] 

where N is all images in the experimental replicate. The normalized 𝐹T∗	counts created curves which 

spanned from X before aggregation began to approximately Y after aggregation stabilized. The 

midpoint of aggregation was identified using the 𝐹T∗ curves by finding the value of 𝑥 that minimized 

the squared error between the 𝐹T∗curve and the function 

 
𝑓 𝑡 =

0 𝑖𝑓	𝑡 < 𝑥
0.5 𝑖𝑓	𝑡 = 𝑥
1 𝑖𝑓	𝑡 > 𝑥

 , [b] 

 where 𝑡 is the image time index. To align the replicates, the first frame of the experimental replicate 

with the minimum 𝑥 was assigned the time point X. The beginning of all other replicates were then 

truncated so that their 𝑥 was equal to the minimum 𝑥. The ends of the aligned replicate were then 

truncated so that all movies were the same length as the shortest replicate. The final replicate movie 

length was efX frames (approximately e hours).  
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Cell Density Estimation  

To account for uneven illumination from the microscope’s mercury bulb and lens optics, acquired 

fluorescent images were normalized by dividing each pixel intensity by the intensity of the 

corresponding pixel in a calibration image. The calibration image was created by taking the average 

intensity for each pixel from the first Ye frames. The resulting image was then smoothed using 

MATLAB’s (Mathworks, version WXYeb) imfilter function with the replicated boundaries option. 

The mean input filter for imfilter was generated by MATLAB’s fspecial function with a radius of 

eXX pixels. After the illumination-normalization, the images were smoothed using imfilter and an 

fspecial generated Gaussian filter with a radius of bX pixels. This smoothing filtered the 

contribution from the individual labeled (LSbfXc) cells in the images. The filtered images were 

then normalized for diminishing fluorescence over the length of the movie by subtracting the mean 

intensity of each frame.  

To estimate cell density, the detected cell positions (as described below) in the last image 

from each experimental replicate were used to estimate a probability-density function using a 

kernel density estimator (KDE) described in (Botev et al., WXYX). Version Y.b of the MATLAB 

function written by the authors was acquired from the MathWorks File Exchange (File ID #YZWXg) 

and modified to allow for a manually set bandwidth of Wb.b µm. This bandwidth was chosen as the 

average of all three experiments estimated as described in (Botev et al., WXYX). To create a cell 

density estimate, the probability density function was multiplied by the estimate of the number of 

cells in the microscope field of view (FOV). Assuming a uniform distribution of cells within the 

biofilm, a constant number of cells, and that no colony expansion occurs in the experiment, the 

number of cells was estimated as  
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 #Cells	in	FOV = 	
FOV	area
Total	area

×	Total	#cells	

= 	
7.3×10�	µm�

5.3×10�µm� ×1.7x10
� cells
ml

×0.035	ml		

= 	8.2×10�	cells. 

[g] 

Here the total area was computed as 𝜋𝑟� = 5.3𝑥10�µm� , where 𝑟 is the estimated the average 

radius of the e spots measured after drying. The cell density estimate was used to covert the 

normalized fluorescent intensity values to cell densities as described in the main text.  

Bandpass Filter  

A bandpass filter was utilized to better identify individual fluorescent cells in each frame by 

removing high frequency pixel noise from the camera sensor and low frequency changes in 

fluorescent due to the growing aggregates. The bandpass filter consisted of separately convoluting 

the image with a Gaussian with a standard deviation of YX pixels (~e μm, the approximate cell size) 

and a boxcar function with a width of Y pixel. To produce the final filtered image, the boxcar filtered 

image were subtracted from the Gaussian filtered image (Crocker and Grier, Yffd).  

Cell Tracking  

To track visually indistinguishable cells from image to image, we need to formulate a cost function 

for linking cells in consecutive frames which relies on the properties of M. xanthus motility. To this 

end, we assume cells use one of three movement models: persistent forward, persistent backwards, 

or non-persistent. The cost of using each of the models in the LAP is then calculated by measuring 

the difference between the detected cell positions (𝑥T�6, 𝑦T�6) and orientation along the long axis 

of the cell (𝜃T�6) and those predicted by the movement models (𝑥T�6∗ , 𝑦T�6∗ , 𝜃T�6∗ ). The predicted 

positions of each cell are computed from their position in image t as follows: 

 𝑥T�6∗

𝑦T�6∗ =
𝑥T
𝑦T 	+ 𝐶�

𝛿𝑥T
𝛿𝑦T

. [e] 
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Here 𝐶� is a coefficient specific to the movement model and is Y for forward, -Y for backwards, and 

X for non-persistent movement. For cells that were tracked in the preceding image, 𝛿𝑥T	𝑎𝑛𝑑	𝛿𝑦T are 

displacements in the previous time interval, i.e.: 

 𝛿𝑥T = 𝑥T − 𝑥T56	

𝛿𝑦T = 𝑦T − 𝑦T56. 
[d] 

 For cells that first appear in the image at time t, the 𝛿𝑥T and 𝛿𝑦T are estimated based on the 

orientation of cell major axis and mean-square-displacement of all tracked cells as follows 

 𝛿𝑥T = 𝑥T − 𝑥T56 � cos	(𝜃T)	

𝛿𝑦T = 𝑦T − 𝑦T56 � sin 𝜃T . 

[Z] 

Here the angle brackets indicate the average from all cell links assigned in t-N to t images. If no 

trajectories contain a t-Y position, the averages were substituted with an alternate constant chosen 

using the bootstrapping technique discussed below. The orientation of cells is assumed to vary little 

between frames and is thus predicted as 𝜃T�6∗ = 𝜃T.  

 The deviations between the measured and predicted cell positions (𝛿��) and orientations 

(𝛿x) each make contributions to the cost of linking cells into the same trajectory. By assuming the 

deviations are independent and normally distributed, the cost is calculated as 

 − log 𝑃 𝛿��, 𝜎�� 𝑃 𝛿x, 𝜎x . [c] 

Here 

 𝛿�� = 𝑥T�6 − 𝑥T�6∗ � + 𝑦T�6 − 𝑦T�6∗ � 

𝛿x =
6
�
𝑎𝑡𝑎𝑛2(sin(2(𝜃T�6 − 𝜃T�6∗ ), cos(2(𝜃T�6 − 𝜃T�6∗ ))) 

[f] 

 where atanW is MATLAB’s four-quadrant inverse tangent function and 𝑃 𝑥, 𝜎  is Gaussian with X 

mean and standard deviation 𝜎 (Challa et al., WXYY): 
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𝑃 𝑥, 𝜎 = 6

� ��
𝑒5

��

���. [YX] 

The standard deviations were calculated using bootstrapping methods discussed below. The cost 

of linking in Eq. [c] is calculated for each movement model for each cell pair between image t and 

t+Y. The minimum of the costs among the three movement models is assigned as the cost of linking 

the cell pair into the same trajectory. The costs associated with a trajectory ending or beginning 

were calculated as described in (Jaqaman et al., WXXc).  

Cells may be misidentified for a short time (Y to e images) due to their overlap with another 

cell or due to segmentation errors. This can lead to the movements of the same cell being split into 

multiple trajectories. To address this, we again follow the work of (Jaqaman et al., WXXc) and 

develop a second LAP to connect split trajectories. In this LAP we assume the end of a trajectory 

could be split due to the errors discussed above or could be a true ending or beginning due to cells 

entering or leaving the FOV. The cost of assigning the beginning and ending of each trajectory to 

one of these possibilities was calculated as described below and used in a LAP to find the optimal 

combination of assignments.  

The cost of linking the end of one trajectory with the beginning of another consists of 

contributions from the distance (𝛿), change in cell orientation (𝜃), the angle enclosed between the 

orientation of the cell and a vector connecting (𝜙), and the time (𝜏) between the end of one 

trajectory and beginning of the other trajectory to be linked. We assume the contributions are 

independent from each other, allowing the cost to be calculated as  

 − log 𝑝v 𝛿, 𝜏 𝑝� 𝜙, 𝜏 𝑝x 𝜃, 𝜏 𝑝�(𝜏) . [YY] 

In Eq. [YY], 𝑝� 𝑥, 𝜏  was calculated from normalized histogram for each length 𝜏 using the previously 

linked trajectories. The number of bins in the normalized histogram was chosen using the 

Freedman-Diaconis rule (Freedman and Diaconis, YfcY). The average gap length was assumed to 
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be	1 and was generated from a Poisson distribution with 𝜆 = 1.  Only gaps lengths (𝜏) less than d 

images were considered for closing.  

The cost associated with not linking trajectories together was calculated as in (Jaqaman et 

al., WXXc). The resulting LAP was solved as discussed previously. Trajectories that spanned less than 

e minutes (YX consecutive images) were then discarded. 

Bootstrapping Unknown Tracking Parameters 

Since little data on the behavior of cells inside the biofilm exists, we bootstrapped the unknown 

standard deviations in Eq. [c] and the alternative displacement for Eq. [Z] from the tracking itself. 

This was done iteratively by performing the tracking, calculating the required variables from the 

results, and then using them in the next round of tracking. Values for the first round of tracking 

were chosen based on visual inspection of the time lapse images. These values were 𝜎x� ¡,x� ¡∗ = �
¢
 

radians and 𝜎 �� ¡,�� ¡ ,(�� ¡∗ ,�� ¡∗ ) = 4	pixels for Eq. [YX], and W.e pixels for the alternative cell 

displacement used in Eq. [Z]. For subsequent tracking rounds the values were generated from the 

trajectories resulting from the previous round. The iterative tracking continued until the deviations 

between rounds was less than Y%. This convergence required less than e rounds of iteration (Figure 

W.Ye C). The values from the eth round were used in the tracking. 

Cell State Detection Movement Models and Detection  

Given a set of state vectors 𝑆T = 𝑠T�6∗ , 𝑠T, 𝑠T56, … , 𝑠6  represeting the movement states of a cell up 

to frame t plus an estimated t+Y state (𝑠T�6∗ ), the probability of each movement model (𝑀T) being 

used between image t-Y and t can be written as 

 𝑃 𝑀T = 𝑖 𝑆T =
1
𝑐
𝑃 𝑆T 𝑀T = 𝑖 𝑃 𝑀T = 𝑖 . [YW] 

Here c is a normalization factor assuring the probabilities of the three movement models sum up 

to Y. By assuming the transitions between movement models are reasonably Markovian (Figure W.Ye 
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D, discussed below), 𝑃 𝑀T = 𝑖 𝑆T  can be approximated recursively (Challa et al., WXYY). Thus, 

𝑃 𝑀T = 𝑖 	is approximated as  

 𝑃 𝑀T = 𝑖 = 	 𝑃 𝑀T56 = 𝑗	 𝜋e,¨
¨©6,�,[

 [Yb] 

with transition probabilities 𝜋, who’s derivation is discussed below. 𝑃 𝑆1 𝑀T = 𝑖  is approximated 

using a Markov chain: 

 𝑃 𝑆1 𝑀T = 𝑖 =	

												 𝑃 𝑠T56 𝑀T56 = ℎ 𝜋«,e𝑃 𝑠T 𝑀T = 𝑖 𝜋e,¨𝑃 𝑠T�6∗ 𝑀T�6 = 𝑗
¨©6,�,[«©6,�,[

 
[Yg] 

where 𝑠T�6∗  is estimated by the EKF using 𝑠T∗ as defined in Table SW. 𝑠T�6∗  augments the estimation 

of 𝑃 𝑆1 𝑀T = 𝑖  to include available future cell state information. For each of the trajectories 

generated from the cell tracking, the conditional probabilities and cell state vectors in Eq.[Yg] were 

estimated using EKFs (Challa et al., WXYY) with the paramaters listed in Table SW and justified below. 

If an EKF predicts a movement in the opposite direction to the measurement, it was assigned a 

probability of X for that step. At each step t, the movement model with the maximum probability 

(𝑃 𝑀T = 𝑖 𝑆1  from Eq. [YW]) is chosen and then used to estimate 𝑠T for the next iteration of the 

EKFs.  

 The EKFs integrates uncertainty into the model likelihood estimation by adding noise to 

the movement (𝑓6 to 𝑓[ in Table SW) and measurement (h in Table SW) functions. The noise is 

assumed to be Gaussian with a mean of zero and covariance Q for movement and covariance R 

measurement functions. This noise models influences on cell movement not accounted for in the 

functions. Typically, these would be developed a-priori using an understanding of how the system 

was measured and how process noise arises. Since little data on the behavior of cells inside the 

biofilm exists, we instead estimated the covariance matrix Q from the deviations between the 
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predicted (𝑥T�6∗ , 𝑦T�6∗ , 𝜃T�6∗ ) and measured (𝑥T�6, 𝑦T�6, 𝜃T�6) variables from the cell movement 

tracking (see Eq. [e]). Q was generated from these deviations as 

 

𝑄� =

< 𝜖�𝜖� > < 𝜖�𝜖� > < 𝜖%𝜖� > < 𝜖x𝜖� >
< 𝜖�𝜖� > < 𝜖�𝜖� > < 𝜖%𝜖� > < 𝜖x𝜖� >
< 𝜖�𝜖% > < 𝜖�𝜖% > < 𝜖%𝜖% > < 𝜖x𝜖% >
< 𝜖�𝜖x > < 𝜖�𝜖x > < 𝜖%𝜖x > < 𝜖x𝜖x >

. [Ye] 

Here 𝜖 is the deviation between the predicted and measured t+Y values that resulted in a linking 

assignment using model m in the LAP, and angle brackets indicates the mean. The deviation in the 

cell speed was calculated as  

 
𝜖% =

1
Δt
	 𝛿�� − 𝑥T − 𝑥T�6

�
+ 	 𝑦T − 𝑦T�6

�
 [Yd] 

where 𝛿�� is from Eq. [f] and Δ𝑡 is the time between images. Seeing as Q was calculated directly 

from the trajectories, which include any measurement noise, the calculation was simplified by 

setting the measurement covariance (R) to X. Since forward and reverse models only differ in the 

direction of the movement, their deviations were pooled to create a single matrix used for both 

their EKFs. 

 The transition matrix 𝜋 was generated by manually assigning the movement model for each 

step from Yf randomly chosen trajectories. 𝜋 was then calculated from these trajectories. Yf 

trajectories were sufficient for the probabilities to stabilize to within +/- X.XXe per trajectory added 

(Figure W.Ye D). We assumed the transitions for persistent forward and backwards models were 

equal. This was asserted by pooling the forward and reverse transition data and calculating one set 

of transitions for both models (Figure W.Ye D, crosses). Model transitions were confirmed to be 

reasonably Markovian by comparing the probability of transitions after a time lag with the Markov 

chain of the same length with transition probabilities 𝜋 (Figure W.Ye E). 
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Aggregate Detection and Tracking  

Aggregates were assumed to keep an approximately constant centroid position (x,y) and major (a) 

and minor (b) axes between images, only deviating by noise. The cost of linking an aggregate in 

image t with an aggregate in image t+Y in the LAP was calculated as the log-likelihood of the 

deviation between the centroids (𝛿��), major (𝛿®), and minor (𝛿¯) axis of the two aggregates: 

 − log 𝑃 𝛿��, 𝜎�� 𝑃 𝛿®, 𝜎® 𝑃 𝛿¯, 𝜎¯ . [YZ] 

In Eq. [YZ] 𝑃 𝑥, 𝜎  is as in Eq. [YX] and the deviations were calculated as: 

 𝛿�� = 𝑥T − 𝑥T�6 � + 𝑦T − 𝑦T�6 � 

𝛿® = 𝑎T − 𝑎T�6 

𝛿¯ = 𝑏T − 𝑏T�6. 

[Yc] 

Since aggregates are reasonably well spaced and move or grow little between images, precise values 

of 𝜎��, 𝜎®, 𝜎¯ were not vital for accurate tracking. Thus, 𝜎�� was set to YX μm and 𝜎®, 𝜎¯ to We μm and 

the resulting trajectories were visually inspected to confirm fidelity.  

The stability of the aggregates also allows forgoing the second LAP round used in cell 

tracking. Instead, aggregates in image t that were not linked to an image in t+Y were propagated to 

image t+Y with the same centroid, major, and minor axis. Propagation was allowed to continue for 

up to e consecutive images. If a propagated aggregate was not linked to a detected aggregate within 

e images the trajectory was ended at the last frame the aggregate was detected. 

 This study focused only on stable aggregates; defined as aggregate that were present at the 

end of the experiment (compare green and red ellipses in Figure W.Y A). Any aggregate that merged 

into a stable aggregate was also included in the analysis. Merge events were detected as aggregate 

centroids in image t that ended within the boundaries of another aggregate in image t+Y. All other 

aggregates that did not fit these criteria were discarded from the analysis.  
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Data-Driven Agent-Based Model 

The agent positions, 𝑥T, 𝑦T  are updated every 𝛥𝑡 = 30𝑠 using: 

 𝑥T�6
𝑦T�6 =

𝑥T
𝑦T  + 

𝑣e	𝛥𝑡	cos(𝜒e)
𝑣e	𝛥𝑡	sin(𝜒e)

. [Yf] 

Here 𝜒e	is the orientation angle of the agent generated from the orientation of the previous run 

(𝜒e56) and the turning angle of the current run by: 

 𝜒e = 		 𝜒e56		 + 		𝜃e		. [WX] 

Note that subscript i denotes the current run, and is only incremented at the end of each run when 

an agent chooses new run variables (𝜃e, 𝑣e	, 𝜏e, and	𝑠e, defined below) whereas t denotes simulation 

time, and is incremented at each simulation time-step.  

The run variables (𝜃e, 𝑣e	, 𝜏e), along with an auxiliary binary variable denoting if the run is 

persistent or non-persistent,	𝑠e, are drawn from the conditional reversal PDF of the general 

functional form 

 𝑃 𝜃e, 𝑣e	, 𝜏e	, 	𝑠e|		𝑇e, 	𝐷e	, 	𝜌e, 𝜙e56, 𝛾e . [WY] 

In other words, 𝑃	is assumed to be conditional upon variables 	𝑇e, 𝐷e, 𝜌e, 𝛾e and 𝜙e56, where 𝑇e is the 

time since the beginning of the experiment, 𝜌e is the local cell density, 𝛾e is the angle between the 

cell orientation and the average bearing angle of neighboring runs, and 𝐷e and 𝜙e56 are defined in 

Figure W.Y C. To calculate 𝛾e we introduce 𝜔1, the average bearing angle of neighboring runs at the 

location of the end of run n-N. 𝜔1 is evaluated using the same window as in Eq. [Y] using: 

 𝜔1 =
6
�
atan( sin 2 ∗ 𝜒ee∈ge1hig , cos 2 ∗ 𝜒ee∈ge1hig ), [WW] 

𝛾1is then the smaller of the two angles between 𝜒156and 𝜔1.  

Given the above definitions of agent behavior, agent positions for each time step are 

calculated using the following g steps for each of the YX,XXX agents: 
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Step Y: Simulation Initialization: The agent’s initial position, (𝑥6	, 𝑦6), is chosen. In closed-loop 

models, (𝑥6	, 𝑦6) is drawn uniformly from the rectangular simulation domain. In open-loop models, 

(𝑥6	, 𝑦6) is drawn from a WD probability density generated from 𝜌 𝑥, 𝑦, 1  from the corresponding 

experimental movie. The run index is initialized to 𝑖 = 1, and a random initial bearing angle 𝜒6, is 

drawn uniformly from the interval [−𝜋, +𝜋).  

Step W: Choose Run Variables: In the closed-loop case, the initial density profile, 𝜌 𝑥, 𝑦, 𝑡 , is 

generated from the positions of all YX,XXX agents. In the open-loop case, 𝜌 𝑥, 𝑦, 𝑡 	is the density 

profile from image t of respective experiment. 𝜌e = 𝜌 𝑥T, 𝑦T, 𝑡  is determined for each agent from 

the agent’s position, (𝑥T, 𝑦T). 𝜌 𝑥, 𝑦, 𝑡  is used to determine aggregate locations, if any, including 

their centroids and boundaries. Angle 𝜒e, (𝑥T	, 𝑦T), and any detected aggregate centroid locations 

are used to calculate, 𝐷e and 𝜙e. In the event that 𝜌 𝑥, 𝑦, 𝑡  does not yet exhibit any aggregates, 𝐷e 

and 𝜙e are left undefined. 𝛾e is calculated as described above (Eq. [WW] and surrounding text).  

Given (𝑥T, 𝑦T),  𝜒e56, 𝑇e = 𝑡, 	𝐷e	, 	𝜌e, 	𝛾e, 𝜙e56,	𝛾e for run index	𝑖, a random 	(𝜃e, 𝑣e	, 𝜏e, 𝑠e) from 

is drawn from 𝑃 	𝜃e, 𝑣e	, 𝜏e, 𝑠e|		𝑇e, 	𝐷e	, 	𝜌e, 𝜙e56, 𝛾e	 , using the experimental trajectory-based 

conditional drawing procedure described below. In cases where 𝐷e, and 𝜙e56are undefined, due to 

the absence aggregates in 𝜌 𝑥, 𝑦, 𝑇e , or if no runs have occurred within the last e minutes of 

simulation time and Ye µm of the agent’s position to calculate 𝛾e, their respective conditionalities 

were not enforced in the experimental trajectory-based drawing procedure. 𝜃e was used to calculate 

𝜒e as described in Eq.[WX]. 

Step b: Advance the Simulation: 𝑣e and 𝜒e were used to calculate (𝑥T, 𝑦T) using Eq. [Yf] for time steps 

	𝑡𝑜 𝑡 = 𝑡 + 𝜏e. 

Step g: Checking for Run Termination: If 𝑡 ≤ 	𝑇e + 𝜏e, step b was repeated on the next simulation 

time step. If 𝑡 > 	𝑇e + 𝜏e,	the run index for that agent was advanced from	𝑖	to		𝑖 + 1, (𝑥e�6, 𝑦e�6,  𝜒e, 
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𝑇e�6, 	𝐷e�6	, 	𝜌e�6	, 𝜙e)  were relabeled as  (𝑥e, 𝑦e,  𝜒e56, 𝑇e, 	𝐷e	, 	𝜌e	, 	𝜙e56), and Step W was repeated on 

the next step. Steps W through g were repeated until 𝑡 reached the simulation termination time.  

Choosing an agent’s next run behaviors: For later reference, we need to determine the overall range 

spanned by the state variables in  𝑞1	across the entire database, where  𝑞1 ≡

(𝜃1, 𝑣1, 𝜏1, 𝑠1, 𝑇1, 𝐷1, 𝜌1, 𝜙156, 𝛽1, 𝛾1) for observed runs labeled by 𝑛 = 1,…𝑁{ , with 𝑁{ denoting 

the total number of observed runs in the data base. Here and later, the hat ( ̂) is used to denote 

variables derived from the microcinematography movies when confusion between 

microcinematography and simulation derived variables may exist. We also explicitly define 𝛽1, the 

angle enclosed between 𝜙156 and 𝜃1 (Figure W.Y C). For non-angular, continuous state variables, 

these ranges are defined as: 

 				𝑇· = max
1,�©6,…b¸

|𝑇1 − 𝑇� |	 

𝐷· = max
1,�©6,…b¸

|𝐷1 − 𝐷�| 

𝜌· = max
1,�©6,…b¸

|𝜌1 − 𝜌� | 

[Wb] 

Since angular variables are only defined modulo	2𝜋, we restricted each of them to the interval 

(−𝜋,+𝜋], before taking their differences. Subject to that modification, the ranges of the angular 

state variables are then defined by 

 	𝛽· = max
1,�©6,…b¸

	 |𝛽1 − 𝛽� |		 

𝜃· = max
1,�©6,…b¸

	|𝜃1 − 𝜃� | 

										𝜙· = max
1,�©6,…b¸

|𝜙156 − 𝜙�56 | 

𝛾· = max
1,�©6,…b¸

|𝛾1 − 𝛾� | 

[Wg] 

Note that the resulting range values, 𝛽·, 𝜃· and  𝜙·, are then in fact very close to 2𝜋, since the 

angles whose differences are being maximized typically cover almost their entire allowed range 

from – 𝜋 to +𝜋.  
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The approach also allows us to incorporate additional, more selective hypotheses about the 

structure of 𝑃 and test them against the actually observed collective aggregation behavior. In this 

manner, we can assess in detail whether the real cells are indeed responding significantly to a 

specific set of hypothesized condition variables and, if so, how strongly. The approach will be 

illustrated below for a relatively simple example of assumed dependencies, without any dependence 

on nematic alignment. Adapting this technique to other combinations of dependencies is 

straightforward. The conditionality structure assumed in this example is as follows: 

Conditionality Hypothesis Y: The state of motion variable, 𝑠e,	is conditional upon (𝑇e, 𝐷e, 𝜌e	, 𝜙e56) 

and can be drawn independently of (𝜃e, 𝑣e, 𝜏e) from a conditional PDF, denoted by 𝑃6, of the form 

 𝑃6 	𝑠e 𝑇e, 𝐷e, 𝜌e	, 𝜙e56). [We] 

 

Conditionality Hypothesis W: The random reversal angle variable, 𝜃e,	 is conditional upon 

(𝑠e, 𝑇e, 𝐷e, 𝜙e56) and can be drawn independently of (𝑣e, 𝜏e) from a conditional PDF, denoted by 𝑃�, 

of the form 

 𝑃� 𝜃e 𝑠e, 𝑇e, 𝐷e, 𝜙e56). [Wd] 

 

Conditionality Hypothesis b: The random speed and run period variable pair, (𝑣e, 𝜏e), is conditional 

upon (𝑠e, 𝑇e, 𝐷e, 𝜌e, 𝛽e) and can be drawn from a conditional PDF, denoted by 𝑃[, of the form 

 𝑃[ 𝑣e, 𝜏e 	𝑠e	, 𝑇e, 𝐷e, 𝜌e, 𝛽e). [WZ] 

The overall reversal probability, 𝑃, is then formally expressed in terms of 𝑃6, 𝑃� and 𝑃[ as 

 𝑃 	𝜃e, 𝑣e	, 𝜏e	, 	𝑠e|		𝑇e, 	𝐷e	, 	𝜌e, 	𝜙e56

= 		𝑃6 𝑠e	|	𝑇e, 𝐷e, 𝜌e	, 𝜙e56 			×			𝑃� 𝜃e	|	𝑠e, 𝑇e, 𝐷e, 𝜙e56 	

×			𝑃[ 	𝑣e, 𝜏e	|	𝑠e	, 𝑇e, 𝐷e, 𝜌e, 𝛽e 	. 

[Wc] 
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The actual random draw of (𝜃e, 𝑣e	, 𝜏e	, 	𝑠e) is not executed in a single step following Eq. [Wc].  Rather, 

𝑠e, then 𝜃e, and then (𝑣e	, 𝜏e) will be drawn in three successive steps, denoted by Step W.Y, W.W and W.b 

below, which implement the corresponding sequence of conditionality hypotheses Y, W, and b stated 

above, as follows: 

Given as input are the	values of the conditionality variables 𝑇e, 𝐷e, 𝜌e	, 𝜙e56, 𝛾e, 𝛽e , as stated 

under Step W of the random walk algorithm described above, and the observed run database, 𝑞1 

for 𝑛= 1,… , 𝑁{: 

Step W.Y: Draw 𝑠e from 𝑃6, Eq. [We]: Find the run index 𝑛 in the run database for which the tuple of 

observed variables (𝑇1, 𝐷1, 𝜌1	, 𝜙156)  most closely matches the tuple of simulation conditionality 

variables, (𝑇e, 𝐷e, 𝜌e	, 𝜙e56),	in Eq. [We].  Then set  𝑠e = 𝑠1 and use it as input to Steps W.W and W.b.  

The closest match between the foregoing tuples of observed and simulation conditionality 

variables is determined here by way of a distance cost function defined by 

 
𝐻6 𝑛 = 	

𝑇1 − 𝑇e
𝑇·

+
𝐷1 − 𝐷e
𝐷·

+
𝜌1 − 𝜌e
𝜌·

	+ 	
𝜙156 − 𝜙e56

𝜙·
 [Wf] 

 

where the variable ranges 	𝑇·, 𝐷·, 𝜌·	and 	𝜙· are defined in Eqs. [Wb] and [Wg]. The closest match is 

then defined as the run index	𝑛 which minimizes 𝐻6 𝑛 . In the (very unlikely) event of a tie, with 

multiple 𝑛-values, 𝑛6, 𝑛�	, … , 𝑛¼, say, giving the same minimal value of 𝐻6, the tie is broken by 

drawing the 𝑛-value randomly with uniform probability from the set {𝑛6, 𝑛�	, … , 𝑛¼}. 

 

Step W.W: Draw 𝜃e from 𝑃�, Eq. [Wd]: Find the run index 𝑛 in the run database for which  𝑠1 = 𝑠e and 

the tuple of continuous observed variables (𝑇1, 𝐷1, 𝜙156) most closely matches the tuple of 

continuous conditionality variables, (𝑇e, 𝐷e, 𝜙e56),	in Eq. [Wd].  Then set  𝜃e = 𝜃1. 
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Analogous to Step W.Y, the closest match is defined here as the run index	𝑛 which minimizes 

the metric 

 
𝐻� 𝑛 = 	

𝑇1 − 𝑇e
𝑇·

+
𝐷1 − 𝐷e
𝐷·

+	
𝜙156 − 𝜙e56

𝜙·
 [bX] 

 

subject to the constraint that 𝑠1 = 𝑠e, and with any tie to be broken by a uniformly random draw. 

 

Step W.b: Draw (𝑣e, 𝜏e) from 𝑃[, Eq. [WZ]: Find the run index 𝑛 in the run database for which 𝑠1 = 𝑠e 

and the tuple of continuous observed variables, 𝑇1, 𝐷1, 𝜌1, 𝛽1	 , most closely matches the tuple of 

continuous conditionality variables, (𝑇e, 𝐷e, 𝜌e, 𝛽e),	in Eq. [WZ] Then set  𝑣e, 𝜏e = (𝑣1, 𝜏1). 

Analogous to Step W.W, the closest match is defined here as the run index	𝑛 which minimizes 

the metric 

 
𝐻[ 𝑛 = 	

𝑇1 − 𝑇e
𝑇·

+
𝐷1 − 𝐷e
𝐷·

+
𝜌1 − 𝜌e
𝜌·

	+ 	
		 𝛽1 − 𝛽e 		

𝛽·
 [bY] 

 

subject to the constraint that 𝑠1 = 𝑠e, and with any tie to be broken by a uniformly random draw. 

During the early stages of the simulation the observed or simulated density profiles, 

𝜌 𝑥, 𝑦, 𝑡 , will likely not exhibit any detectable aggregates, thereby leaving the 𝐷-, 𝜙- and 𝛽-variables 

in Eqs. [We]-[bY] undefined. In those cases, we do not enforce the corresponding conditionalities by 

formally letting the normalization factors  𝐷·, 𝜙· and  𝛽· go to infinity in Eqs. [Wf]-[bY], which is 

equivalent to simply dropping the 𝐷-, 𝜙- and 𝛽-terms from the respective expressions on the right-

hand sides of these equations.  

It is imperative here to normalize the absolute difference term of each contributing variable 

in Eqs. [Wf]-[bY], by dividing by the respective variable range from Eqs. [Wb] and [Wg]. For example, 

in Eq. [bY] the four contributing conditionality variables, 𝑇e, 𝐷e, 𝜌e and	𝛽e, are each measured in a 
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different physical unit, and hence they must be non-dimensionalized before they can be added in 

any meaningful way. Using the variable ranges from Eqs. [Wb] and [Wg] as the normalizing divisor 

has the effect of treating the distance contributions from all four variables on an equal footing. If 𝑇e 

falls within the biophysically “reasonable” range, defined by the range of the observed 𝑇1-values, 

then the dimensionless term 𝑇1 − 𝑇e  / 𝑇· in Eq. [bY] falls within the interval [X Y]. The same is true 

for 𝐷1 − 𝐷e  / 𝐷· if  𝐷e falls within the range of the observed 𝐷1-values, and likewise for the terms 

𝜌1 − 𝜌e  / 𝜌·   and    𝛽1 − 𝛽e 	/ 𝛽·. As a consequence, each of the four terms in Eq. [bY] carries a 

priori equal weight in contributing to the cost function 𝐻[ 𝑛 . 
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CHAPTER b 

 CONCLUSIONS  

By constraining computational models of Myxococcus xanthus development to experimental data, 

Chapter W identified four behavior-cue correlation that were sufficient to generate aggregation 

patterns in simulations quantitatively equivalent to that of experiments. These behaviors are: (Y) 

reduced motility inside aggregates, (W) a biased walk toward aggregate centroids, (b) trajectory 

alignment radial to the aggregate boundary, and (g) trajectory alignment among neighboring cells. 

Previous in vivo imaging reported similar observations, including reduced motility inside the 

aggregates (Sliusarenko et al., WXXZ), suppression of reversals outside the aggregates (Jelsbak and 

Søgaard-Andersen, WXXW), and cell alignment within the biofilm (Berleman et al., WXYd; Shimkets 

and Kaiser, YfcW). Chapter W extended these observations with quantitative measurements 

extracted from in vivo imaging and data driven modeling to test hypotheses on how M. xanthus 

cells aggregate. Without knowledge of the mechanism of the biased walk toward aggregate 

centroids, most M. xanthus aggregation models utilized only short-range signaling mechanisms. 

Chapter W indicated that in addition to local information, simulated cells required knowledge about 

the distance and direction to the nearest aggregate to match experimental aggregation patterns. 

Possible mechanisms of aggregation now need to be reevaluated in light of the requirement of long-

range information for complete aggregation in M. xanthus.  

Models of Development 

The lack of an identified long-range signal active during M. xanthus development led to many 

models derivative of the traffic-jam hypothesis (Igoshin et al., WXXY). In the traffic-jam hypothesis, 

the presence of some M. xanthus cells with reduced motility cause other cells to reduce motility as 
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well. Over time, cells build up an aggregate in a fashion like that of a buildup of cars in a traffic-

jam. Derivatives of this model exist, such as the inclusion of cell-to-cell alignment (Sliusarenko et 

al., WXXZ), and short-range direction guidance (Janulevicius et al., WXYe). A lack of quantitative 

comparison to experimental results and differences in free parameters between these models 

impairs any attempt to correlate them with biological results. As such, the reduction of cell motility 

inside of aggregates could be due to several mechanisms.  

The traffic-jam model need not require biological machinery to process and respond to local 

cell density information and accomplish aggregation. Many of the properties of M. xanthus 

aggregation emerge in non-living, self-propelled systems. Alignment between non-living, self-

propelled rods is well described (Baskaran and Marchetti, WXYW; Peshkov et al., WXYW; Ramaswamy, 

WXYX; Sumino et al., WXYW). For example, Sumino et al. (WXYW) used a carpet of dynein molecular 

motors grafted to a glass surface to propel approximately Ye μm long microtubules. With the 

addition of ATP, the dynein motors propelled the microtubules along their long axis across the 

dynein motor carpet. Microtubule movement was random, with no preferred direction detected for 

individual motile microtubules. With a sufficiently high microtubule density (approximately e 

microtubules per YXX µmW), physical interactions between the microtubules led to aligned streams 

and vortexes. Alignment was nematic, with microtubules moving in both directions within the 

streams. Similar stream and vortex like structures are formed in place of aggregates by non-

reversing M. xanthus mutants in some genetic backgrounds (Blackhart and Zusman, Yfce; Zusman, 

YfcW). M. xanthus and self-propelled rods share behavior similarities at low cell densities as well. 

At cell densities low enough that the cells do not completely cover the agar surface, wild type (WT) 

M. xanthus cells generate small clusters of aligned cells. These aligned clusters are also predicted 

to form in low-density, non-living, self-propelled systems as well (Bain and Bartolo, WXYZ; Peruani 

et al., WXYW; Starruß et al., WXXZ). However, clustering is abolished when reversals of motility are 
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added to models of bendable, self-propelled, rods (Balagam and Igoshin, WXYe). Balagam and 

Igoshin (WXYe) hypothesized that slime trails laid down by individual M. xanthus cells while moving 

could promote cluster formation in the presence of reversals. When cells encounter slime trails 

deposited by other cells, they often adopt the path of the slime trail, leading to trail following 

(Burchard, YfcW). When Balagam and Igoshin (WXYe) added slime trails as a trail-following 

mechanism to bendable, self-propelled, rod simulations, streams and clusters of cells formed. 

Whether slime-trail following exists in M. xanthus biofilms, many cell layers thick, is not known. 

However, imaging of the biofilm suggests cells may generate tube-like paths through the 

extracellular matrix (ECM) that could act as a trail-generating mechanism (Berleman et al., WXYd). 

The requirement of trail following to generate aligned clusters in simulations of bendable rods with 

reversing motility show that the behavior of M. xanthus cells must be accounted for when 

comparing aggregation to the behaviors of self-propelled, non-living systems.  

Generation of correctly spaced aggregates may also be possible without biochemical signals.   

Thermodynamic models of self-propelled “matter” (Cates and Tailleur, WXYe; Takatori and Brady, 

WXYe) describe phase-separation like events in which the systems separate into dense (inside an 

aggregate) and dilute (outside an aggregate) phases based on the ratio of the particle run length 

relative to the physical movement constraints from neighboring particles. The presence of 

aggregate-like patterns in these thermodynamic models suggest that aggregation could occur 

without any intercellular signaling, instead being driven by changes in the average reversal 

frequency of the cells and the physical intercellular forces applied between them. It is not known if 

the bendable body of M. xanthus cells and changes in average reversal frequency during aggregation 

affect the outcome of such thermodynamic models. Thutupalli et al. (WXYe) has taken the first steps 

towards unification of M. xanthus behavior and thermodynamic models by showing that non-

reversing cells produce disordered colonies at low cell density that are similar to a gas-like physical 
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state. The addition of reversals transforms the colony into a more liquid like state of stable “streams” 

of cells. 

Generation of a biased walk toward the aggregate centroid without long-range signals may be 

possible as well. McCandlish et al. (WXYW) described the spontaneous generation of lanes of self-

propelled rods, with all rods within a lane moving in the same direction. The spontaneous 

formation of directional streams in self-propelled rod simulations suggest an aggregation model in 

which cells could sort into streams with biased movement in one direction based on physical 

interactions. Aggregates may then form at the intersections of the streams of cells. More work is 

required to learn if biased lanes can emerge when bending along the long axis of the cell and 

direction reversals observed in M. xanthus cells are taken into account.  

Chemotaxis up gradients of self-generated molecules is central to many eukaryotic and bacterial 

aggregation mechanisms (Budrene and Berg, YffY, Yffe; Dormann and Weijer, WXXd; Oppenheim 

and Yang, WXXe). In these systems, cells both secrete and chemotactically sense small-diffusible 

molecules. Random fluctuations in the density of cells cause shallow differences in the 

concentration of the secreted molecule. Diffusion of the molecule away from areas of high 

concentration results in weak concentration gradients within the population. All cells move 

chemotactically up these gradients, increasing cell density at areas of higher chemoattractant 

concentration. As the cells move up the gradient, they also generate the attractant molecule, 

creating a feedback loop. Areas of higher chemoattractant concentration attract more cells, which 

leads to the generation of even higher concentrations of chemoattractant. Evidence against the role 

of a small, highly diffusible molecule in M. xanthus development is perhaps strong enough to 

discount the small-diffusible chemoattractant hypothesis. The questionable ability of M. xanthus 

to detect even moderate gradients of many highly diffusible molecules would only be exacerbated 
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by the shallow gradients expected to be present at the onset of aggregation. It is unlikely cells could 

move up such a gradient in time to reinforce the gradient before it dissipated.  

It is possible a sufficiently steep gradient of a highly diffusible molecule could be set up by cells 

once the initial aggregate locations were defined. Aggregation clusters could initially form using a 

traffic-jam like model, then further recruit cells to the aggregate foci by production of a diffusible 

molecule. The modeling in Chapter W indicated that a biased walk is not required to generate visible 

aggregates, only to generate aggregates as quickly and to the same internal cell density as in 

experiments. Mutants lacking a diffusible signal that works to further recruit cells to the aggregates 

may display a relatively mild phenotype of slow aggregation. However, the cell movement bias 

extends approximately YXX µm outside the aggregate. At that distance, diffusible signals from 

adjacent aggregates could compete for cells. Larger aggregates would generate stronger 

chemotactic gradients than nearby smaller aggregates, causing cells to move away from the smaller 

aggregate and toward the larger neighbor. In this model, aggregate disappearance would not only 

be correlated with aggreagte size, but also with the distance and number of neighboring aggregates, 

as larger aggregates bias cells away from smaller neighbors. The loss of small aggregates is observed 

late in the aggregation process, but aggregate loss is not correlated with the properties of 

neighboring aggregates. The only predictor of aggregate loss is the size of the aggregate its self 

(Zhang et al., WXYY). In all, experimental and theoretical evidence suggests that it is unlikely a small-

diffusible molecule plays a role in aggregation. 

While gradients established by diffusion of a small molecule followed by chemotactic sensing 

is the typical model of chemotactic aggregation, other models are possible. Cells secreting a non-

diffusing signal would be able to determine their local cell density based on concentration of the 

molecule. A traffic-jam model could emerge if cells reduced motility as a function of the molecule 

concentrations. With the use of a chemosensory system, cells could also sense when they leave an 
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area of high cell density and reverse their motility direction to stay in an aggregation center. How 

such a mechanism would create biased movement toward an area of higher cell density up to YXX 

µm away from the aggregate is unclear. 

A possible middle ground between fast or no diffusion is a slow-diffusing molecule. Such a 

molecule would act locally, keeping cells at high cell density locations, on short time scales. Over 

longer time scales, diffusion of the molecule through the biofilm could lead to biased cell movement 

toward aggregate locations. Such gradients may evolve too slowly to significantly affect the growth 

of surrounding aggregates, explaining why the loss of small aggregates is not correlated with the 

size, distance, or number of neighboring aggregates.  

Determining the viability of aggregation models involving physical interactions, local signaling, 

or long-range signals is best studied using computational models. A general simulation framework 

addressing the principles of cell behavior could be adjusted to test the validity of each of the 

hypothetical aggregation mechanisms. The base configuration of the simulation must be 

parameterized at high cell densities and consider the physical nature of the cells. Specifically, cells 

must be simulated as bendable rods, self-propelled along their long axis, and capable of physically 

interacting with one another. The different aggregation models vary only in definition of the 

environmental factors that affect the probability of stopping and reversing. A model completely 

driven by physical interactions would be expected to generate aggregates in the proposed modeling 

framework by correctly tuning the average reversal frequency and physical interactions of the cells. 

Local and long-range signaling models could be tested by adding appropriate signaling interactions 

between the simulated cells that alter the probability of stopping and reversing. The validity of each 

model could be tested by constraining the parameterization of the cell behavior probabilities to the 

cell run behaviors reported in Chapter W. Successful models would be expected to correctly 

reproduce the individual cell behaviors of cell-to-cell alignment, reduced cell motility inside 
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aggregates, increase in run duration outside of aggregates, and the biased walk toward the 

aggregate centroids. In addition, models should produce the correct number of aggregates with 

quantitatively correct size and shape. Even with cell behaviors constrained to experimental results, 

it is likely multiple models will explain the data. In this case, experimental analyses of mutants 

using the framework described in Chapter W, hopefully guided by the simulation results, will be 

vital to fully distinguish between aggregation models.  

Robustness and Compensatory Mechanisms 

The flat agar surfaces on which developmental assays are performed are significantly different than 

the soil, dung, and ocean environments various myxobacterial species can be found. This plethora 

of substrates on which myxobacteria live may be a driving factor behind the need to keep two 

independent surface motility systems. It stands to reason that if evolutionary pressures exist to 

drive the upkeep of such complicated mechanisms of motility – one optimized for soft surfaces, the 

other optimized for rigid surfaces (Shi and Zusman, Yffb) – similar pressures could drive the upkeep 

of more than one method of aggregation. Simulations in Chapter W demonstrated that an increase 

in cell reversal period outside the aggregates is sufficient to overcome the need for a biased walk, 

and that the biased walk is sufficient to drive aggregation without the need for increased run 

durations outside the aggregates. Increased run duration outside the aggregates is a central 

prediction of aggregation models derived from only physical interactions. The increase in run 

durations is equivalent to an increase in temperature in thermodynamic-backed aggregation 

models, and is a key change required to drive the system into stable and concurrent phases of dilute 

and concentrated cells. Conversely, biased movement toward an aggregate is more conducive to 

models of aggregation relying on chemotaxis. Multiple mechanisms of aggregation may help 

explain why so little about M. xanthus aggregation has been elucidated by mutational studies. Only 

genes that either abolish motility control (such as the Frz system) or are required for all aggregation 
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systems could be easily identified using mutant screens. The possibility of multiple aggregation 

mechanisms further highlights the need for experimental frameworks that allow the quantification 

of cell behavior and cue correlations without the need for global phenotypic changes or 

abolishment of the self-organization.  

Testing models of aggregation 

Scientists often try to fit experimental results to “toy-models”, named for their deliberately 

simplistic nature, ignoring details in an effort to concisely explain an overarching hypothesis about 

the system under study. Analysis of M. xanthus aggregation highlights the caveats of applying toy 

models to self-organizing systems. Even with quantitative knowledge of the behaviors and general 

cues driving M. xanthus development, it is still possible to fit the results to toy-models involving, 

cell-to-cell, slowly-diffusible, or non-diffusible signaling. Previous knowledge of the biochemical 

signaling and motility control mechanisms should help differentiate between hypotheses. However, 

available experimental results generate conflicting evidence, providing multiple points for and 

against each model type. The conflicting experimental results suggest that some of the described 

systems are not related to M. xanthus development, instead playing roles in other unknown 

processes, or represent the presence of redundant aggregation mechanisms. Further 

experimentation under the experimental framework proposed by this thesis must be undertaken to 

identify the correct aggregation hypothesis. The multitude of possible behavior and cue 

combinations that could play a role in aggregation, and the lack of clear conclusions from currently 

available experimental results, make identifying mutants that merit further study a daunting task. 

A few promising leads are discussed below.  

A number of experimental observations tie exopolysaccharide (EPS) regulation and lipid 

sensing to motility control and development. EPS is a key component of the extracellular matrix of 

the M. xanthus biofilm and consists of monosaccharides including galactose, glucosamine, glucose, 
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rhamnose, and xylose (Behmlander and Dworkin, Yffg). EPS is required for cohesion between cells 

(Shimkets, Yfcda), development (Shimkets, Yfcdb), and social motility (Shimkets, Yfcda; Yang et 

al., WXYX). The large-polymer nature and its importance in adhesion between cells suggest it would 

not be naturally diffusible.  

Phosphatidylethanolamine (PE) and diacylglycerol (DAG) are chemoattractants for M. xanthus 

cells (Kearns and Shimkets, Yffc), and are slowly diffusible in agar (Kearns and Shimkets, WXXY). 

The slow diffusion rate may allow these lipids to act in a manner similar to the slow-diffusion model 

of aggregation discussed above. Bioactivity of lipids during development is already documented. 

Cells blocked in the synthesis of isovaleryl-coenzyme A, a precursor for the creation of isoYe:X fatty 

acid, and the triacylglycerol TGY generate aggregate-like mounds of cells but very few spores. 

Aggregation and sporulation can be rescued by co-development with WT cells (Downard et al., 

Yffb; Toal et al., Yffe) or by the addition of isoYe:X or TGY at physiological concentrations (Bhat et 

al., WXYg), suggesting isoYe:X and TGY act as signals during development, but not necessarily as the 

transmitters of aggreagte location information. While these lipids appear to affect sporulation more 

than aggregation, other lipids may also play a role in development. Kearns et al. (WXXY) identified 

the PE molecule Yd:Yωec/Yd:Yωec (hereafter referred to as Yd:Y) as a potent chemoattractant at 

physiological levels. Yd:Y is only active as a chemoattractant under starvation conditions, a key 

trigger of aggregation. However, inhibition of production of all but approximately W% of the normal 

levels of Yd:Y does not eliminate aggregation (Bode et al., WXXd), suggesting it is not an essential 

component of development. While Yd:Y does not appear to be a key component of aggregation, there 

are many untested lipids found in M. xanthus cells during development that could be active (Curtis 

et al., WXXd). 

The recent identification of cardiolipin (CL) and phosphatidylglycerol (PG) as substrates for 

CsgA, and that partial glycerides extracted from developing WT cells restore development to csgA 
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cells (Boynton and Shimkets, WXYe) suggest lipid metabolism may play a role in any csgA cell 

behavior defects and provide an avenue for further study of lipid chemotaxis during development. 

That the partial glycerides rescue development when added uniformly suggests they do not directly 

provide aggregate location information, such as by acting as a chemoattractant. At the very least, 

enzymatic activity downstream of CsgA would be required to locally convert the partial glycerides 

into a specific chemoattractant. 

A key sensory system for both EPS regulation and lipid chemotaxis is the chemosensory system 

Dif (Yang et al., WXXX). The dif operon contains six genes, difABCDEG. DifA, C, E, and D make up a 

typical prokaryotic chemosensory system comprising of a methyl-accepting chemotaxis protein, 

adapter protein, histidine protein kinase, and response regulator, respectively (Bellenger et al., 

WXXW; Yang et al., Yffc). DifG is homologous to a chemotaxis protein not found in E. coli, but 

present in other prokaryotes, such as Bacillus, and typically found in archaeal chemotaxis pathways 

(Rosario and Ordal, Yffd; Szurmant et al., WXXg). DifG may be involved in dephosphorylation of 

CheY homologues (such as DifD) and in adaptation regulation (Wadhams and Armitage, WXXg). 

DifB is homologous to a family of proteins of unknown function (Black and Yang, WXXg). Key 

proteins missing in the operon are the methylesterase and methyltransferase, which are required 

for adaptation to chemoattractants in the typical chemosensory system (Wadhams and Armitage, 

WXXg). Indeed, DifA is not methylated, suggesting the Dif system is unable to directly sense 

concentration gradients (Xu et al., WXXc, WXYY). Mutations in the main sensory complex, DifACE, 

abolish EPS production. Surprisingly, the response regulator, DifD, is not required for EPS 

production. Instead, difD mutants overproduce EPS, suggesting a novel and complex regulatory 

pathway. Since EPS is required for development, mutants lacking a functional DifACE signaling 

system do not form aggregates under starvation conditions. The inability to aggregate can be 

bypassed by the addition of EPS purified from WT cells (Chang and Dworkin, Yffg). EPS is also 
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required for PE sensing (Bonner et al., WXXe; Kearns et al., WXXX). However, the role of Dif in PE 

sensing is more complicated than a lack of EPS, as addition of purified WT EPS to a difA mutant is 

not sufficient to restore PE sensing (Kearns et al., WXXX). DifA, C, and E are also all required for 

methylation of FrzCD in the presence of lipid chemoattractants (Xu et al., WXXc), suggesting 

adaptation to PE concentrations is accomplished through FrzCD methylation. 

EPS and the Dif pathway also have a direct effect on motility control. Deletion of difA, difC, or 

difE leads to a e-fold increase in the single cell basal reversal period from approximately Z min to 

bZ min between reversals (Bonner et al., WXXe). Interestingly, the change in reversal period can be 

fixed by incubating the cells with purified WT EPS prior to performing the reversal assay (Kearns 

et al., WXXX).  

FibA is an extracellular EPS-associated protein homologous to the Mg family of zinc 

metalloproteases. While the function of FibA is unknown, it is required for PE sensing (Kearns et 

al., WXXW). Mutant fibA cells develop normally, with the exception of creating long ridge-like 

aggregates instead of the typical ovals when developed at higher than normal cell densities (Kearns 

et al., WXXW). Individual fibA cells have a W-fold increase in the single cell reversal period relative to 

WT cells. Bonner et al. (WXXd) reported that while mutants lacking either fibA or pilA individually 

create aggregates and spores, a fibA pilA double mutant completely abolishes development. The 

PilA protein is the sole component of pili extended by the type IV pili S-motility system. While 

mutations in many of the type IV pili machinery genes are unable to develop, mutants that allow 

for the extension, but not retraction of pili (e.g. pilT, pilS), or mutants lacking pilA are able to 

generate aggregates and spores (Bonner et al., WXXd; Wu et al., Yffc; Yang et al., WXYX). A notable 

correlation between type IV pili mutants and development is EPS production. Mutants that lack 

pilT and pilS produce at least as much EPS as WT cells. A pilA mutant makes less than half WT 

levels of EPS, but still more than the non-developing mutants (Black et al., WXXd; Wu et al., Yffc; 
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Yang et al., WXYX). Mutants that lack fibA produce WT levels of EPS (Bonner et al., WXXd), suggesting 

a pilA fibA double mutant should be equivalent to a pilA mutant in EPS production. The lack of 

development in the double mutant suggests fibA and pilA cells could be using complementary 

mechanisms to drive development.  

Several lines of evidence inexplicitly tie the csgA null mutation and motility during aggregation: 

(Y) Developmental gene expression is blocked at approximately d hours after starvation for both 

non-motile and csgA cells. This time point is also approximately when cells begin to move into 

aggregation centers. (W) Non-motile developmental gene expression can be rescued by the addition 

of exogenous CsgA protein, suggesting that signaling via CsgA requires motility. (b) The 

methylation of FrzCD during development is contingent on the presence of csgA (Søgaard-

Andersen and Kaiser, Yffd), correlating csgA expression with reversal adaptation. Correlations with 

motility, a possible role in lipid metabolism, and the ability to rescue csgA cells by co-development 

with WT cells (Lee and Shimkets, Yffd), suggest CsgA may be part of a signaling mechanism 

required for cell behavior coordination. While signaling mechanisms in which csgA is deficient in 

a cell-cell contact dependent mechanism was previously proposed (Jelsbak and Søgaard-Andersen, 

WXXX), almost all the reported results on csgA cell behavior are consistent with a general abrogation 

in motility control. Jelsbak and Søgaard-Andersen (WXXW) provided some evidence that csgA 

development is not fully complemented when mixed with WT cells. The authors tracked GFP 

labeled csgA or WT cells mixed into a WT biofilm at a ratio of Y:eXX. The GFP cells were then 

tracked for fX minutes starting at f hours after starvation. By f hours, stable aggregates have 

already formed. In these experiments, the small number of GFP labeled csgA cells are completely 

surrounded by WT cells within the biofilm, providing ample ability for the WT cells to complement 

any defects caused by the csgA mutation. Comparison of the behavior of GFP labeled WT and csgA 

cells indicated csgA cells reversed Y.e times less often than WT cells at f hours into development. 
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While reported experimental error suggests the difference may be significant, Jelsbak and Søgaard-

Andersen (WXXW) interpreted a difference of Y.e times to be within the range of fully complemented 

to WT behavior patterns. Simulations in Chapter W indicate that a Y.e-fold difference in reversal 

frequency is sufficient to overcome the need for a biased walk, suggesting the difference may not 

be WT-like, and could be masking other defects in csgA cell behavior.  

A model of cell signaling during aggregation 

EPS and lipids have strong experimental evidence tying them to motility control, aggregation, and 

chemotaxis. These ideas are combined in the model proposed in Figure b.Y. At the onset of 

development, CsgA participates in the conversion of membrane cardiolipin (CL) and 

phosphatidylglycerol (PG) into DAG. The DAGs are either released by the cell, where they can be 

utilized as a slow-diffusible signal sensed via a FibA, EPS, DifA dependent mechanism, or they 

interact inside the cell with FrzCD to modify the reversal period of the cell (Figure b.Y green arrows). 

As the green arrows suggest, it is also possible DAGs affect FrzCD from both inside and outside the 

cell. The Dif system is also required for EPS production (Figure b.Y, red arrows). The lack of 

development in a fibA pilA double mutant represents a second aggregation mechanism. The 

presence of extended pili is central to this second mechanism. Cells that are able to produce pili are 

unaffected by addition of the fibA mutation. These include WT, or mutants that can extend, but 

not retract pili, for example, pilT (Bonner et al., WXXd; Wu et al., YffZ). Aggregation is abolished by 

the addition of the fibA mutation to backgrounds that make sufficient EPS to develop, but no pili, 

such as pilA and pilH (Bonner et al., WXXd; Wu et al., Yffc). Extended pili could provide an avenue 

for medium range sensing by extending out from the cell to interact with the ECM or nearby cells. 

Extended pili could also change cell motility by acting as a tether to other cells or the ECM. The 

following experiments are suggested to test the validity of the Figure b.Y model. 
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Figure ?.4: Toy model of possible signaling mechanisms utilized during aggregation. 
Exopolysaccharides (EPS) are required for development. EPS production is regulated by the Dif 
chemosensory system via interactions with the type IV pili machinery (red arrows). Green arrows 
represent a chemotactic aggregation model in which CsgA converts membrane 
phosphatidylglycerol (PG) and cardiolipin (CL) into DAG diacylglycerol (DAG), which is then 
transported outside the cell to act as a chemical signal, or interact with FrzCD intracellularly to 
affect the cell reversal period. Extracellular DAGs are sensed via a FibA, ECM, DifA mechanism, 
which affects the cell reversal period though FrzCD. A second, type IV pili dependent aggregation 
mechanism is also proposed (blue arrows).  
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To fully test whether csgA cells are complemented by WT cells, a detailed analysis of cell 

behaviors during the onset of aggregation should be performed. Cell-tracking and modeling 

techniques described in Chapter W should be repeated for fluorescent csgA cells in a csgA biofilm 

and in a WT biofilm. When aggregation is induced in a biofilm consisting of a mixture of eX:eX 

WT to csgA cells, csgA cells sporulate at an approximately Y:Y ratio with WT cells (Lee and 

Shimkets, Yffd). This result suggests two possible mechanisms of complementation. In the first, 

csgA cells randomly enter the aggregates, or are not well-trapped by the aggregates, but are more 

likely to become spores than WT cells. The second possibility is that csgA cells move into, and 

stay in aggregates, at the same rate as WT cells. 

The lack of development in the fibA pilA double mutant suggests fibA or pilA single mutants 

could be using complementary mechanisms to drive development. The importance of FibA in lipid 

chemotaxis suggests a possible chemotactic mechanism. How a PilA mediated mechanism may 

function is less clear. Mutants capable of generating pili do not require fibA to generate aggregates, 

suggesting pili play a role in aggregation beyond inducing EPS production. A complementation 

experiment of adding purified WT EPS to each of the pil mutants that are deficient in EPS 

production would confirm that the lack of EPS is their sole developmental defect. If EPS restores 

development, type IV pili machinery mutants that are unable to generate pili (pili-) may be utilizing 

the fibA aggregation mechanism. In this case, adding purified EPS to pili- fibA double mutants 

would not generate aggregates. The independent aggregation mechanisms hypothesis also suggests 

the possibility of significantly different cell behaviors between pilA, fibA, and WT cells during 

development. Fluorescent-cell tracking of pilA, fibA individual mutants or the double pilA fibA 

mutant during development in homogeneous or mixed into WT biofilms and subsequent data-

driven simulations provide a second avenue of analysis of the aggregation mechanisms. 
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Concluding Remarks 

The framework described in this dissertation proposes a technique to simplify the identification of 

the cell behaviors and behavioral cues coordinating self-organized biological processes. Chapter W 

elucidated the framework and applied it to M. xanthus development. Analysis of M. xanthus 

development confirmed some behavior cue combinations already discussed in the literature, such 

as reduced motility inside the aggregates and cell alignment within the biofilm. The analysis also 

uncovered an unexpected cell behavior, a biased cell walk toward aggregates by cells as far as YXX 

µm away from the nearest aggregate boundary. This discovery identifies the need for analysis of 

self-organized systems which include quantitative analysis of cell behavior within the system and 

simulations of the self-organization tightly constrained to experimental results. The discussion of 

short-range, small-diffusible, and slow-diffusible molecule signaling and related aggregation 

models in this chapter highlight that any of these methods could, in theory, produce the cell 

behaviors and behavioral cues identified in Chapter W. Further analysis using both simulations 

constrained by quantitative experimental data, as well as quantitative analysis of mutant M. xanthus 

strains, will be required to fully uncover the underlying mechanisms of aggregation. 
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