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Abstract

The goal of this dissertation is to formulate statistically appropriate estimators for the

seed dispersal distribution function when data are collected in traps from multiple sources,

both with and without genotyping, after accounting for other relevant factors, such as tree

fecundity. Work along these lines has been attempted previously, under idealistic assump-

tions, for non-genotyped data, but this dissertation will give more general and practical

results for this case. There has been almost no statistical work done on the genotyped case,

so such results will be new and useful. Finally, and most important for ecologists who will in

coming years have much data of these types, we propose to find a statistically appropriate

estimator for the seed dispersal distribution function when the data consist of a combination

of non-genotyped and genotyped seeds.
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Chapter 1

Introduction

Scientists have been studying the seed dispersal distribution for certain trees and plants for

almost 100 years. Clearly, the distribution of such seeds is an important determinant of the

rate of spread of a species in an area, and this information would be of considerable use to

botanists, agronomists, ecologists, and others. Other things being equal, plants which can

disperse their seeds over a wider range of area would have a greater chance of passing on their

genetic characteristics than would plants with a smaller average dispersal area. Of course,

‘other things’ are rarely equal; other important characteristics of species spread include the

total number of seeds produced by a plant, the typical viability of the dispersed seeds, the

ability of the dispersed seeds to settle in places favorable for growth, competition from other

plants, and the effects of further dispersal by animals, birds, or other means. Indeed, the

‘natural’ seed dispersal which we discuss here corresponds only to the small loop at the

bottom center of the complete seed dispersal cycle, as described by Wang and Smith [22]

and displayed in Figure 1.1.

Nonetheless, understanding the ‘natural’ seed dispersion characteristics of a plant species

is certainly a fundamental step in understanding that species’ spread history. Unfortunately,

estimating seed dispersal distributions has proven to be much more difficult than one might

have imagined. In the four sub-sections below, we describe four common situations in which

dispersal distributions might be estimated. Except for the first case, however, the estimation

is not simple, and there is a lack of consensus among experts concerning how to analyze

results. The four cases examined are: (1) Single source with complete collection, (2) Single

source with sampling, (3) Multiple sources with seed traps, and (4) Multiple sources with

1
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Figure 1.1: The Seed Dispersal Cycle

seed traps and genotyping. In all four cases, results could be obtained (and estimates made)

from one season’s worth of data, but more reliable estimates would arise from combining the

results of several seasons of data, assuming that one believed that the general form of the

dispersion distribution for a particular species was the same from year to year. In fact, as

we shall see, this assumption is not always tenable for many real-life data sets.

1.1 Single Source with Complete Collection

This is the simplest, although somewhat unrealistic, method from which to estimate the

natural seed dispersal distribution. A seed-producing plant or tree of the species of interest

is planted (or observed by chance) in an area where no other plants or trees of this type are

located. Every seed dispersed by this tree or plant during the seed dispersal season (most

trees and plants disperse only during certain months of the year) is followed and its distance
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from the source is recorded. For this method to be feasible, seeds must be large enough to

be located by the naked eye, the terrain must be such that all seeds can be located easily,

and one must be sure that the search area is large enough to contain all possible dispersed

seeds from the tree or plant in question, but none from any neighboring plants or trees of this

species. As one can easily imagine, the conditions necessary for such estimation are not at all

likely to be met in nature, except for a few species which disperse almost all seeds (initially)

at the base of the tree or plant in question. Even for such species, although the ‘natural’

dispersion function may be easy to estimate, the eventual dispersion (due to animals, birds,

rain runoff, etc.), which is of much more practical interest, is incalculable. For most species,

even obtaining the natural dispersion by this procedure is not practical, unless one were

growing the plant in a greenhouse or other artificial climate, in which case the natural effects

of wind would not likely be reproduced. If one were able to collect data of this sort, however,

estimating the dispersal distribution would be relatively trivial. One could bin the data in

some convenient units measuring distance from the base of each plant or tree and attempt to

fit various two-dimensional parametric functions to the data. Unless one had strong reason

to believe that there were a directional component to the data (for example, if there were

a strong NW wind prevailing during the dispersal season), one would typically fit isotropic

models; that is models which were a function of the distance, r, of a seed from its source, but

not of direction. Clearly, more observations from different plants/trees of the same species

within the same season or of the same plants/trees over different seasons would allow one to

obtain tighter confidence intervals on the dispersal functions so estimated. If a parametric

form were used, one could easily estimate both the cumulative distribution function for any

distance r from the base, F (r), as well as the dispersal density, f(r), at any point. Of course,

one need not assume any parametric form at all, and one could still estimate F (r) using the

empirical cumulative distribution function. Examples of all of these methods are given in

Section 3.3.
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1.2 Single Source with Sampling

The major drawback of the ‘Single Source, Complete Collection’ method is the ‘complete

collection’ assumption. In a natural environment, it is very hard to locate all of a tree/plant’s

seeds. One would usually sample in some systematic way. The best theoretical procedure for

wind-dispersed seeds is to randomly sample seeds as they are dispersed, but unless one has

some very accurate and fine-scale camera to record randomly selected seeds’ flights paths,

this will not be possible. What most investigators do in such a situation is ‘line transect

sampling’. A small strip (several inches to one foot wide) is followed from the source tree’s

base to a distance far from the tree, and all seeds which land in that strip are enumerated,

along with their associated distance from the source tree’s base. It is typical to construct

four line transects, in the North, South, East, and West directions. From data collected

in this manner, it is fairly easy to construct parametric distribution and density estimates

in the manner described above. The situation is slightly more complex than above in that

there are typically many fewer seeds present than under complete collection, and because

one must weight the sample to account for the decreased proportional radial area surveyed

as the transect progresses further from the base of the tree. This weighting, combined with

typically small numbers of observed seeds far from the base of the tree, can sometimes cause

instability in the estimation of the dispersal function, especially if non-parametric functions

are used. Parametric functions are less subject to such instability, but should be checked to

see if the parametric form assumed is compatible with the data obtained. Of course, as is

always the case in evaluating tail behavior of distributions, unless the sample size is huge,

there will be few observations available from which to validate tail behavior.

As with the complete collection method of Section 1.1, this estimation method is rel-

atively straight-forward, but often infeasible. For it to work, one must be able to follow

the transects far enough to insure that all possible seeds could be caught. This maximum

possible distance is usually unknown, and is typically under-estimated. Some instability in

long-distance estimates can be removed by using wedge-shaped transects rather than line
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transects (so as to keep the radial angle constant), but this procedure will become unfea-

sible as the distance increases. In addition, as one increases this distance, one also increases

the chance that the transect includes seeds from another nearby source. In a densely popu-

lated forest or other regions, it may be impossible to avoid such a situation, leading to the

estimation strategy described next.

1.3 Multiple Sources with Seed Traps

In many natural settings, it is almost impossible to find sources that are sufficiently separated

from one another so that seeds found on a line transect can be uniquely attributed to the

nearest source. In such settings, researchers have turned to a different sampling method

– seed trap networks. When such a plan is used, researchers typically carefully survey a

designated plot of land, recording the location and size (DBH = diameter at breast height)

of all plants or trees of interest. Later, a seed trap network is set up in the vicinity of the

trees. Seeds are collected over a period of time (usually the entire dispersal season) from each

trap. Of course, one does not know which seeds originated from which tree, but one can make

certain assumptions about the dispersal function and the number of seeds produced per tree

to estimate the dispersal function. This procedure, called ‘inverse modeling’ by ecologists,

has been an area of intense research in recent years, and is discussed in the literature review

section of this dissertation.

There are many factors which enter into the construction of inverse models, with some

of the most fundamental being the following:

(a) Specification of a functional form for the dispersal function

(b) Assumptions made about the number of seeds produced per source tree

(c) Sampling corrections to account for placement of traps relative to trees

(d) Corrections for seeds which might have been dispersed from off-site trees
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From reviewing the literature, it appears that those conducting research in this area have

spent the majority of their time discussing topic (a), although it appears that corrections

due to factors (b), (c), or (d) may completely dominate many proposed functional form

improvements. As is the case with any of these methods, statistical verification for proposed

models can be provided by demonstrating that the same model, with appropriate random

error terms, will fit the data for several different seasons of data. Unfortunately, in many

cases, this does not appear to be what happens, thus demonstrating inadequacies with many

of these models. If no good general model can be found, or if the random component due to

individual tree effects or season effects is too large, one might argue that it does not really

make much sense to estimate any ‘dispersal function’ for a species. Sections 4.1-4.3 illustrate

some of the above topics for a data set collected over 16 years from a biological research

station operated in Panama by the Smithsonian Tropical Research Institute.

1.4 Multiple Sources with Seed Traps and Genotyping

The major difficulty encountered in progressing from single plant sources to multiple plant

sources is that one does not know which seeds in a trap are associated with which source tree.

However, in recent years, this situation has changed. Using micro-satellite DNA data, one

can genetically identify (usually uniquely) all source trees within a certain area. Similarly,

one can genotype the maternal tissue attached to trapped seeds and match them to sources,

thus determining exactly how far each trapped seed traveled, and presumably improving

upon the estimation of the dispersal distribution. Of course, many of the same problems

noted above are still present, but perhaps to a lesser extent. For example, one must still deal

with difficulties caused by the inclusion of seeds from off-site (non-genotyped) sources, but

one now has an idea of how often this occurs.

The idea of using micro-satellite DNA to match seeds to sources is relatively new and

has been done only a few times (as of 2007), but there is no doubt that it will become

more common, especially as the cost of genotyping decreases and more technicians become
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proficient at doing it. There are certainly difficulties associated with genotyping, among which

are cost (in terms of time and money) to sample sources and seeds, decisions concerning

which micro-satellite loci to use in identifying unique individuals, and difficulties involved

with extracting DNA from seeds and matching it to the possible parent library. Nonetheless,

this is clearly the future wave of seed dispersal research, and it behooves statisticians to

become involved at an early stage in formulating procedures to use such data in seed dispersal

distribution estimation.

1.5 Goals of Dissertation

A goal of this dissertation is to formulate statistically appropriate estimators for the seed

dispersal distribution function when data are collected in traps from multiple sources, both

with and without genotyping, after accounting for other relevant factors, as described above.

Work along these lines has been attempted previously, under idealistic assumptions, for non-

genotyped data, but this dissertation will give more general and practical results for this

case. There has been almost no statistical work done on the genotyped case, so such results

will be new and useful. Finally, and most important for ecologists who will in coming years

have much data of these types, we propose to find a statistically appropriate estimator for the

seed dispersal distribution function when the data consist of a combination of non-genotyped

and genotyped seeds. We will illustrate our methods with two of the first data sets of this

type ever collected, as explained in further detail in Section 3.2.



Chapter 2

Literature Review of Seed Dispersal Modeling

Dispersal influences many key aspects of plant biology, including population dynamics, evo-

lution of population, metapopulation dynamics, biological invasions, and the dynamics and

diversity of ecological communities (Cain et al. [2]). Understanding these effects requires

descriptions of dispersal at local and regional scales and statistical models that permit esti-

mation (Clark et al. [4]). Two challenges hinder prediction of dispersal within natural com-

munities ([4]). The first is finding models which accurately describe dispersal across a range

of spatial scales. The second is the development of statistical methods for estimation and

model testing. Seed dispersal studies have often used curve-fitting techniques to estimate dis-

persal kernels based on seed collections made at known locations in the field (Portnoy and

Willson [18]; Willson [23]; Nathan and Muller-Landau [16]). There are a number of methods

available for determining seed dispersal curves, but by far the most economical is the inverse

modeling approach pioneered by Ribbens et al. [19]. Under this approach, maximum likli-

hood methods are used to estimate the terms of the dispersal function. The inverse modeling

approach has now been used in a number of different studies, but with disagreement among

practitioners over the most appropriate functional form of the dispersal curve. Many func-

tional forms have been used to describe how offspring abundances vary with distance from

the parent tree. A general functional form which characterizes many of these distributions

was introduced by Clark et al. [5] :

f(r) =
1

N
exp

[
−
(

r

α

)c]
(2.1)

8
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where r is the distance traveled, α is a dispersion parameter, c is a dimensionless shape

parameter, and N is the normalization constant obtained by integrating arc-wise and with

distance:

N =
∫ ∞

0

∮
2π

exp
[
−
(

r

α

)c]
rdrdθ

= 2π
∫ ∞

0
exp

[
−
(

r

α

)c]
rdr =

2πα2Γ(2/c)

c
,

where

Γ(α) =
∫ ∞

0
zα−1e−zdz

is the gamma function. The kernel can be concave at the source and fat tailed (c ≤ 1) or

convex at the source and platykurtic (c > 1). This flexible density includes as special cases

almost all common simple dispersal models with modes at the origin. The (2-dimensional)

exponential corresponds to c = 1 (Willson [23])

f(r) =
1

2πα2
exp

[
− r

α

]
, (2.2)

with c = 2 corresponding to the 2-dimensional Gaussian Distribution

f(r) =
1

πα2
exp

[
−
(

r

α

)2
]
. (2.3)

Clark et al. [5] used the Gaussian model (c=2), with fecundities assumed proportional to

basal area, to fit a number of tree species in Southern Appalachian forests.

As we will see, for many populations it is clear that no simple functional form will

work uniformly. The primary reason for this is that there is a certain proportion of seeds

which appear to be dispersed at much greater distances than others. How to model this

long distance dispersal (LDD) has become a major concern of those involved with inverse

modeling. Clark [3] discussed the fact that some proportion of LDD is needed to account for

the fast spread of species noted from palaeontological data. A kernel that accurately describes
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dispersal at both local and long-distance scales is obtained by characterizing the seed shadow

as a composite process, summarized by a continuous range of dispersal parameters α. So a

mixture of Gaussian (c=2) and ‘fat tail’ (c=0.5) can explain historical data, even with a

very low mixing proportion. Of course, from a statistical point of view, estimating mixture

distributions can become very tricky, with many combinations of functional forms and mixing

functions yielding almost equivalent fits. Ribbens et al. [19] used a special case with c = 3 and

a lower kurtosis to yield a simple functional form which might fit data observed in practice

without the need to resort to mixture distributions. The mixture of Gaussian and ‘fat tail’

is a reasonable model for a restricted set of conditions. And it loosely fits field data for most

of the tree species(Clark [3]). But the model is most sensitive to seeds dispersed over short

distances, and it fails to describe sporadic seed dispersed over long distances: the tail of the

kernel is essentially overlooked. So Clark et al. [4] modified the model of (2.1), so that a prior

distribution for the dispersion parameter α is used, thus allowing more flexibility. With

A ≡ u

α2

where A is gamma-distributed with shape parameter p:

f(A; p) =
Ap−1e−A

Γ(p)
,

the new kernel becomes

f(r) =
∫ ∞

0
f(r|A)f(A)dA =

p

πu
[
1 + r2

u

]p+1 . (2.4)

However, this so-called ‘2-dimensional-t’(2Dt) model, like all of the above, also assumes

that the mode of the distribution occurs at the point of origination (r = 0). While this seems

to be a reasonable assumption, there are many cases where it does not yield the best fit. The

2Dt is unstable at extreme values of p, and instability occurs when data are sparse (animal-

dispersed types) and when data are of limited extent (Clark et al. [4]). Stoyan & Wagner [20]

claimed the 2Dt was superior to the Weibull. Meanwhile, other authors have simply adopted

one or another of these functions, intuiting, perhaps, that they will perform about equally
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well. Nonetheless, the choice of the function is critical; as noted by Nathan & Muller-Landau

[16], some functions have fat tails that are too thin to permit meta-population persistence.

A possibly serious deficiency of curve-fitting techniques, including inverse modeling

methods (Ribbens et al. [19]; Clark et al. [5]; Clark et al. [4]), is that low frequency LDD

events can be masked, and therefore underestimated, by the high frequency of short distance

dispersal events (Turchin [21]). Failure to detect LDD events will generally cause one to

underestimate the tail of the dispersal distribution. Use of molecular genetic markers is one

of the new techniques that have great potential to facilitate direct measurement of actual

dispersal (Wang and Smith [22]). The most beneficial aspect of using genotyped data is the

fact that it will allow immediate identification of seeds which have dispersed far from their

sources, greatly aiding in the estimation of the LDD component.

The development of molecular markers has provided the study of dispersal with new,

potentially powerful tools (Ouborg [17]). There are several molecular markers, with differing

degrees of variability, which, when analyzed, can yield different levels of resolution. The

application of highly variable molecular markers, such as microsatellites, has facilitated the

development of so-called ‘direct’ genetic methods. If all the potential parents in a plant

population can be sampled, parentage analyses can be performed whereby the parents of

individual seeds or seedlings can be determined. This technique, although potentially time

and energy intensive, is extremely powerful – it provides a direct method of measuring indi-

vidual dispersal events. Godoy and Jordano [10] performed this analysis for Prunus mahaleb

trees and seeds. By sequencing the woody endocarp of the dispersed seeds and comparing

those sequences to the genotypes of all the potential parent trees in the population, they were

able to find unambiguous matches for 78 of the 95 seeds (82%) analyzed. Furthermore, their

results indicate that strong distance limitation of seed delivery combined with infrequent

long-distance dispersal events can cause extreme heterogeneity in the landscape pattern of

genetic makeup, and a marked mosaic of multiple parentage for the seeds delivered to a par-

ticular patch. Even when it is not feasible to sample all potential parents, direct methods can



12

still be applied via assignment tests that assess the likelihood that an individual originated

from each of the sampled source populations (Wang and Smith [22]).

Genotyping errors occur when the genotype determined after molecular analysis does not

correspond to the real genotype of the individual under consideration. In practice, genotyping

errors are defined as the differences observed between two or more molecular genotypes

obtained independently from the same sample (Bonin et al. [1]). Virtually every genetic data

set includes some erroneous genotypes. They can be generated at every step of the genotyping

process and by a variety of factors. For some microsatellites, the main source of errors is allelic

dropout (Constable et al. [7]; Jeffery et al. [12]; Creel et al. [8]), but human factors are non-

negligible error generators. Therefore, tracking genotyping errors and identifying their causes

is necessary to clean up data sets and validate the final results according to the precision

required.



Chapter 3

Problem Description

3.1 Notation

As noted in Section 1.5, our focus in this dissertation will be on the general situation where

there are multiple sources, with multiple traps collected over multiple time periods. This

applies to the situation described in Sections 1.3 and 1.4 of this document, with the funda-

mental difference being that in Section 1.4, some proportion of the seeds collected in each

trap is subjected to genetic analysis, so that matches to parents can be made. Let us use the

following notation:

Let the index i, i = 1, 2, ...I refer to the known sources in the area of collection.

Let the index j, j = 1, 2, ...J refer to the traps in the area of collection.

Let the index t, t = 1, 2, ...T refer to the seasons (usually years) over which data are

collected.

Let the index k, k = 1, 2, ...K(t) refer to the kth seed examined in season t. This index

is relevant only when the seeds are genotyped.

The (x, y) coordinates of each known source and trap are assumed to be known, so let

dij represent the Euclidean distance from source i to trap j.

Let S(j, t) represent the number of seeds caught in trap j during season t.

If one is dealing with completely unambiguously genotyped seed data, then one can

express

S(j, t) =
I∑

i=0

S(i, j, t) (3.1)

where S(i, j, t) represent the number of seeds caught in trap j during season t, which have

been genotyped to match source i. The ′i = 0′ term reflects the seeds whose genotypes do

13
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not match any of the known sources and are thus believed to have originated from unknown

sources outside the study area.

3.2 Motivating Example

To illustrate the above in an actual example, consider the case of FDP (Forest Dynamics

Plot), a biological research station on Barro Colorado Island (BCI), Panama operated by

the Smithsonian Tropical Research Institute (STRI). Since 1985, a 50ha (1000m × 500m)

rectangular plot has been surveyed periodically to record all shrubs or trees whose stems are

greater than 1 cm diameter at breast height (‘DBH’) in this preserve. Each shrub or tree is

identified by species, and various characteristics such as (x, y) location coordinates, DBH,

canopy cover, etc. are recorded. A complete census of the 50ha region was performed in 1982

and has been re-performed every 5 years from 1985 to 2005. Since 1986, a 200-trap trap-

network has been established on the FDP site. Each trap is an 0.5m2 nylon net situated about

1.5m above the ground to collect wind-blown, bird-dispersed and some animal-dispersed

seeds. The distribution of the traps throughout the 50ha area is shown in the plot in Figure

3.1. Note that the traps are not evenly spread throughout the region; they tend to be near

trails for ease of collection. The traps are inspected weekly by employees of the FDP, who

then sort the seeds by species. In the main example which is illustrated in this document, we

consider seeds collected from Jacaranda copaia (Bignoniaceae) at the FDP site. The traps

denoted by ‘x’ are 98 ‘gap-traps’ that are not part of the offical FDP network. These were

set up in 2000; their use will be explained later.

Jacaranda copaia is a large canopy tree (up to 45m tall) and is a characteristic species

of Neotropical moist forests ranging from Belize to Brazil and Bolivia (Croat [9]). The small

wind dispersed seeds (< 2mg) are produced in large woody capsules in the canopy of adult

trees (≥ 200mm DBH). Over the 16-year period for which data are available, 389 Jacaranda

trees have been observed in the FDP, of which 236 achieved reproductive adult status. The

population of J. copaia on the BCI FDP had 264 individuals ≥ 10mm DBH in the census of
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Figure 3.1: Plot of Traps on FDP (200 Network + 98 Gap Traps)

2000. Jacaranda shows a skewed size distribution with many large adults and a long lower

tail containing a few small individuals. Such distributions typically occur in species that are

shade-intolerant (Wright et al. [24]).

J. copaia trees thrive in the conditions present at FDP. On the 50ha site, according

to the 2000 census, there were 264 Jacaranda trees, 199 of which were considered adult

(DBH> 200mm). In 2000, there were another 91 adult Jacaranda trees that are not part

of the official 50ha FDP site, but which are known to be located in a 100m ‘buffer zone’

surrounding the 50ha region. Figure 3.2 displays these trees with respect to the FDP and

buffer zone. There appear to be fewer than 355 trees in the plot because of a number of high

density clusters, which display on the plot as only 2-3 trees.
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Figure 3.2: Plot of Jacaranda Trees on FDP and 100m-wide Buffer Zone

Of course, not all 290 adults in the FDP and buffer zone produce seeds every year, but

many do so, as evidenced by the data shown in Table 3.1. This table displays the number of

Jacaranda seeds collected by month in all 200 traps for the years 1987-2002. Several facts are

immediately apparent. First, as is well known, Jacaranda seeds’ dispersion occurs primarily

from July to November, with the peak in September. This corresponds to the rainy season

in Panama. Secondly, the total number of Jacaranda seeds collected varies tremendously

from year to year. It seems almost as if there is a two-year cycle, consistent with behavior

sometimes noted with tropical trees. In our analysis, we pooled the data into eight 2-year (‘bi-

year’ periods) to smooth it out, although there is still much variability by bi-year as shown

in Table 3.2. Finally, although obvious, it should be reiterated that the number of seeds
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month 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
01 . 2 0 0 36 0 95 0 93 8 39 71 0 64 0 0
02 . 0 0 0 19 0 8 0 12 0 11 3 0 5 0 0
03 . 1 0 0 3 0 0 0 1 0 9 0 4 0 1 0
04 . 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0
05 . 0 0 0 1 0 0 0 0 0 0 1 10 6 0 0
06 0 6 0 0 1 17 0 24 0 1 1 0 1 0 0 0
07 1 508 0 77 3 1786 0 1194 3 93 179 0 82 0 3 3
08 86 3245 7 1996 1 16004 0 7082 101 917 6751 32 1540 245 57 188
09 265 1488 145 3918 1 3984 0 4409 1697 3797 4186 28 7235 611 104 2994
10 2 51 114 781 0 1112 0 1125 384 2579 630 8 2330 214 18 661
11 5 5 0 224 10 669 0 629 12 356 183 0 595 42 1 116
12 1 1 0 74 0 124 0 115 8 112 272 0 98 3 0 15

Total 360 5307 266 7070 76 23696 103 14578 2311 7863 12264 143 11895 1190 184 3977

Table 3.1: Count of Jacaranda Seeds Collected on FDP by Month and Year(1987-2002)

collected per year is a small fraction of those produced on FDP, since the traps themselves

cover only 0.2% of the entire FDP area.

bi-year Total Seeds

A 1987-1988 5667
B 1989-1990 7396
C 1991-1992 23815
D 1993-1994 14684
E 1995-1996 10130
F 1997-1998 12359
G 1999-2000 13072
H 2001-2002 4161
Total 91286

Table 3.2: Total Number of Jacaranda Seeds Collected by Bi-year Period

The variation in seed numbers by traps is also large, even after pooling by bi-year. There

are certain traps which tend to collect more seeds than others year after year, so one suspects

that they are near trees which produce many seeds each bi-year. However, as shown in Table

3.3, the variation, both absolutely and relatively, is large. Table 3.3 displays the top 20

among the 200 traps over the 16-year period, where the traps are sorted by average rank

over the 16-year period. Note that the rank by this sorting is not the same as the rank by

total number of seeds collected, nor the ranking by sum of log(seeds), which correspond to
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Rank by Rank by Rank by
Trap 87-88 89-90 91-92 93-94 95-96 97-98 99-00 01-02 Avg(Rank) Avg(S) Avg(log(S))

85 8.5 3 8 9 7 1 4 1 1 1 1
173 1 12 9 11 10 8 2 4 2 4 2
136 63.5 7 5 1 5 24 1 17 3 2 3
32 6 6 7 15 4 7 11 68 4 6 5

172 16 16 10 16 27.5 5 28 7 5 11 7
30 10 5 15 19 1 11 7 68 6 7 6

184 14 4 14 6 8 19.5 22 55.5 7 10 9
156 2 1 3 8 15 13 5 116 8 5 4
71 4 11 2 2 83.5 14 27 26 9 8 11
84 17.5 23 57 21 16 27 6 2 10 14 8

186 19.5 9 22 10 12 40 18 41 11 15 13
135 87.5 19 6 4 25 36.5 12 20.5 12 12 14
146 45 15 32 51 11 33 19 20.5 13 28 18
155 3 2 1 3 54 6 15 143.5 14 3 10
37 15 29.5 16 49 50 4 23 45.5 15 20 17
83 47.5 24 39 33 24 19.5 42 5 16 27 15
25 13 8 23 20 17.5 88 59 11 17 23 16
36 5 29.5 17 56 43 16 10 63 18 21 19

176 124.5 38 28 5 9 3 33 3 19 9 12
180 52 48.5 51 14 48 17 20 10 20 24 20

Table 3.3: Top Twenty Traps by Average Rank of Seeds per Bi-Year Period

the arithmetic and geometric means, respectively. Although there is some variation between

the three ranking methods, all three contain approximately the same top 10 traps. However

as one moves down the columns of Table 3.3, one observes less agreement between the three

methods, and this disparity increases for the other traps not shown in the table.

In Section 1.3 we discuss how one might estimate the seed dispersal distribution from

data collected over time from a seed-trap network with multiple sources. Some difficulties

with these approaches are illustrated with the 1987-2002 FDP Jacaranda data set described

above. A major difficulty, as will soon be seen, is that S(j, t), the number of seeds caught in

trap j during period t, is observed, but S(i, j, t), the number of such seeds which originated

from tree i, is not. Botanists and ecologists have long wished that such data were available to

them, but until recently, cost and technological limitations did not allow it. Wang and Smith

[22] have written an interesting article discussing the use of genetic markers to definitively
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identify the maternal source (which is the appropriate source for dioecious species such as

Jacaranda) of seeds dispersed within a mapped area, thus allowing exact determination of

distances traveled for all seeds which can be matched to a parental source. The first published

study employing such methods appears to be Godoy and Jordano (2002) [10], in a study of

an animal-dispersed tree species in Spain.

At UGA, the Statistical Consulting Center was contacted in August 2003 by F. Andy

Jones, then a Ph.D. Student in Plant Biology, and his major professor, Dr. Steve Hubbell,

about lending statistical assistance to part of Andy’s Ph.D. dissertation dealing with estima-

tion of the seed dispersal distribution of Jacaranda from genotyped data. In 2000, Andy had

obtained leaf samples from all 199 adult Jacaranda trees on the FDP site, from 15 near-adult

juveniles within the FDP, as well as from 91 adults in the 100 meter buffer zone surrounding

the FDP site. The microsatellite DNA for these 305 trees at 11 micro-satellite loci were

analyzed using di-nucleotide tandem repeats (DNTR) in a process described in Jones and

Hubbell [13]. The idea was to find loci at which there were many different allele types (where,

in this case, an allele type is a length of consecutive di-nucleotide tandem repeats) present

in the population. Of the 11 loci examined, there appeared to be four which, when the allele

patterns were examined jointly, determined almost uniquely the identity of the trees. For

the 305 trees using alleles at these four loci, 280 unique patterns were found, with 262 of

these occurring exactly once. Of the 18 allele patterns which occurred more than once, most

belonged to pairs or triplets of trees which were very near one another.

Thus, in theory, one could collect Jacaranda seeds from the 200 traps on the FDP, subject

them to genetic analysis at the four loci of interest to determine (almost surely) which parent

had contributed the seed, and, thus, the exact distance traveled by all collected seeds. This

greatly simplifies the estimation of the seed distribution function, in effect reducing the

problem from the multiple unknown source problem discussed in Section 1.3 to a multiple

version of the known source problem discussed in Section 1.2. Andy Jones indeed attempted

to do just this in 2000-2002, but the analysis is not nearly as simple as the previous sentences
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might suggest. The first difficulty is that some years do not produce many seeds, as noted

in Table 3.1. For example, in 2001, there were so few seeds trapped relative to other years

that Dr. Jones did not bother to genotype any seeds for that year. In the years 2000 and

2002, a sufficient number of seeds were obtained (1190 and 4138, respectively), but there was

neither time nor physical resources to genotype them all, so sampling was used. The actual

resolution of the genotyping process is shown in Table 3.4 below.

year
2000 2002 Total

Seeds collected 1190 4138 5228
Seeds sub-sampled 384 480 864
-extract/PCR fail -103 -35 -138
Seeds genotyped 281 445 726
parent located 243 373 616
parent unknown 38 72 110

Table 3.4: Jacaranda Seeds Collected and Genotyped in Traps by Year

First, a sample of seeds had to be selected from those available, since the maximum

number of seeds which were able to be genotyped per year was about 400-500. Secondly,

a certain proportion of seeds did not contain enough genetic material for the extraction

process to succeed. Thus, as noted in Table 3.4, only 726 seeds of the 864 seeds sampled

were successfully genotyped. Of these, 616 matched with one of the 306 parents in the FDP

and buffer zone, so their true dispersal distances were known. (Except for the few cases

where the genotyping yielded one of the 18 non-unique allele patterns, in which case the

seed was assigned to the parent of that type nearest to the trap in which the seed was

located.) Another 110 seeds (15% of the total genotyped) did not match any of the 280 allele

patterns observed in the tree population and thus were inferred to have originated from a

source outside the buffer zone. (The number of matches noted above is from a final careful

analysis; earlier analyses yield as many as 119 unmatched seeds.)

These data were analyzed in Summer 2004, as part of a STAT 8000 consulting project

undertaken by UGA Statistics graduate students JiEn Chen and Guo-Jing Weng, advised
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by Jaxk Reeves and YiMei Cai. Some of their results as they apply to this dissertation are

contained in Section 5.2. Much of this work has been incorporated into Jones et al. [14],

published in The American Naturalist.

One possible criticism of the results found in the above paper is that the authors blindly

assume that the assignment of seeds to trees is correct. There is certainly a possibility that

a seed which is assigned to a parent on the FDP actually belongs to a parent with the same

genotype elsewhere on the FDP (for the 18 multiple-tree allele patterns) or outside the buffer

zone (for any type), but the probability of this occurring is small. A more severe error, whose

occurrence was previously deemed remote, now appears to be more likely. That is, some of

the 110 seeds classified as ‘no match’ may, in fact, have originated from parents in the FDP

and buffer zone, but have been classified as ‘no match’ because of genotyping errors. Such

errors may not be uncommon, as discussed in Bonin et al. [1]. Implications of corrections

for genotyping errors in the Jacaranda data set are discussed at great length in Chapter 6

of this dissertation.

3.3 Estimation via Inverse Modeling Techniques

If one assumes a parametric density f(r; Θ) for the seed dispersal function, where r is the

distance and Θ represents the parameter(s), then the expected number of seeds caught in

trap j during year t is:

λjt = E[S(j, t)] = c
I∑

i=0

A(i, t) ∗ f(dij, Θ), (3.2)

where dij is the distance from tree i to trap j, A(i, t) is the total number of seeds dispersed

by tree i during year t, c is a normalization constant adjusting for the trap size relative to

the unit of measurement, and i = 0 is a generic notation to represent all trees not included

within the I which have been previously mapped.

While the above expectation is correct, it is not particularly useful as stated. Recall that

the S(j, t)’s are observed and the dij’s are known for all j, for i = 1, ..., I. One might then be
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tempted to use some sort of maximum likelihood technique to solve for the parameters Θ that

maximize the likelihood of obtaining the observed sample. Unfortunately, even if one were to

make simple assumptions about the functional form f(r, Θ), the model as stated above will

not be identifiable, since there are no observations at the tree level. Various assumptions,

some more realistic than others, have been made in order to make the model identifiable. A

number of these are discussed below.

(i) Assume that A(i, t) is constant.

While this makes the MLE solution relatively tractable, it does not agree well at all

with current knowledge, since there are clearly huge variations in seed numbers from

year to year as shown in Tables 3.1 and 3.2.

(ii) Assume that A(i, t) = A(t).

This eliminates the problem noted in (i) by allowing the seed magnitude to vary by

year, but it make the assumption that all trees in the mapped area are equally fecund.

This also disagrees with past ecological research; larger mature trees are generally more

fecund than smaller younger trees.

(iii) Assume that A(i, t) = A(t) ∗ B(i), where B(i) is a function of the diameter at Breast

Height for tree i, DBH(i).

This is the most common assumption made in inverse modeling, and the most com-

monly assumed form for B(i) is that it is proportional to the square of DBH(i). Slightly

more sophisticated models make B(i) proportional to DBH(i)2, conditional on DBH(i)

exceeding some minimum threshold of maturity. (This same result can be obtained by

restricting the range I of mapped trees to those which are ‘adult’, by some definition.)

The assumption of (iii) has more credibility than those of (i) or (ii), although there is

only marginal evidence to show that it is reasonable. A few researchers (Godoy and

Jordan [10], F. A. Jones [13]) have collected seed capsules from beneath trees during
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the seed dispersal season and fit regressions of these counts to DBH or DBH2, ratio-

nalizing that total seeds produced by a tree during one year should be proportional to

the number of capsules collected on the ground beneath the tree. Such fits offer limited

support for the hypothesis that B(i) is proportional to DBH(i) or DBH(i)2, or more

generally to DBH(i)g for 1 ≤ g ≤ 2.

(iv) Assume a log-linear model for A(i, t).

Many statisticians, if they actually observed A(i, t), would consider a linear model of

the following type:

ln[A(i, t)] = µ + αt + βi + eit, (3.3)

where αt and βi are main effects due to year(t) and tree(i), and where eit is a random

error, typically assumed to be independently and identically distributed from some

Normal(0, σ2) distribution. A slightly more sophisticated but similar approach is to fit

a generalized linear model to the A(i, t) using a log-link, the main-effects linear model

shown in equation(3.3), and a Poisson distribution function. Of course, the linear or

generalized linear model described above can not really be fit with the data at hand,

since the A(i, t) are not actually observed. One approach is to set the eit = 0 and to

solve for the µ, αt, βi which yield the MLE estimate when equation (3.3) is substituted

into equation (3.2). As stated, this procedure is not well-defined, since equation (3.2)

gives an expected value, rather than a statistical model for S(j, t) themselves. A logical

approach is to assume that the S(j, t) are, in fact, Poisson distributed with intensity

λjt given by equation (3.2). Assuming this and substituting (3.3) (with eit ≡ 0) into

(3.2) yields

ln(λjt) = µ + αt + ln[
I∑

i=0

eβi ∗ f(dij, Θ)]. (3.4)

Without further information about either βi or Θ, the model of equation 3.4 is not iden-

tifiable. From the raw S(j, t) data, using either a linear model applied to ln (S(j, t)) or a

generalized linear model applied directly to the S(j, t), it is easy to obtain estimates for µ,
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αt, or for the expression:

γ̂j = ln[
I∑

i=0

eβi ∗ f(dij, Θ)]. (3.5)

However, the estimates of β̂i or Θ̂ are not separably estimable if both are unknown. Most

typically, one assumes that the βi’s are proportional to DBH(i)2, and then proceeds to find

the Θ̂ for given functional form, f(r, Θ) which minimizes the SSE for the γj’s . This is typically

evaluated for several functional forms (which corresponds to changing the parameter, c, in

Clark’s hierarchy of dispersal functions, as given by equation (2.1)), and the f(r, Θ̂) which

yields the best fit is declared to be the best-fitting model. If one tried to fix f(r, Θ) and solve

for βi’s by some sort of non-linear modeling, except in the rare case where I << J , one finds

that the model is over-parameterized. Practical ramifications of this are discussed in Section

4.3 .

3.4 Estimation by Direct Modeling Techniques

In Section 3.3, we examined the approaches which one might use if one were in the classical

seed trap situation where one knew the locations of all traps and all (within-site) sources, but

did not know which seeds caught in a trap originated from which source. As demonstrated

by the example of the previous section, seed dispersal density estimates can be obtained in

such cases, but they are highly dependent upon assumptions which can not be checked in

the classical case. We now explore improvements which can be made in the estimation if one

is able to match seeds to sources.

If each seed in a trap could be correctly genotyped and uniquely matched to its source,

one would then be able to observe S(i, j, t), the number of seeds from source i caught in

trap j during period t. Of course, in most practical situations, this will be a very sparse

array containing mostly zeroes, since most seeds caught in a trap are from nearby trees.

Nonetheless, one would likely assume that S(i, j, t) followed a Poisson distribution with

intensity parameter given by

λijt = E[S(i, j, t)] = c ∗ A(i, t) ∗ f(dij, Θ), (3.6)
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using the same notation as used in equation (3.2) above. The same problems with respect

to observing/estimating the A(i, t) as were noted in Section 3.3 are present here. Assuming

they can be resolved, one could use generalized linear models with a Poisson distribution

and log-link to obtain the MLE, Θ, of the assumed parametric distribution, f(r, Θ). The key

linear model equation is

ln(λijt) = µ + αt + ln(Bi) + ln[f(dij, Θ)]. (3.7)

This approach seems straightforward, but is fraught with difficulties. Among these are

the following:

(i) Generalized linear models when applied to data sets with many zero counts can behave

very erratically. The best way to avoid such problems is to collect very large sample so

that zero counts are rare. Unfortunately, seed genotyping was previously quite expen-

sive and time-consuming, so that the observed S(i, j, t)’s of available data sets are

not large. This difficulty will diminish somewhat in the future as genotyping becomes

cheaper, although the general problem of sparseness, in the statistical sense, will still

occur. The major difficulty with sparse data arises in estimating goodness of fit. If one

naively performs a G2/df calculation and enumerates the degrees of freedom in the

standard way, the fit will appear to be excellent, since one is gaining zero contribution

to the fit statistic for the empty cells, while counting all such cells in the denominator.

Restricting the denominator count to those cells with observed seeds causes G2 to

behave more like a Chi-squared statistic if the null hypothesis of a correct model is

true, but that alone will not make the asymptotic Chi-squared approximation valid.

(ii) The assumption that B(i) can be well-approximated is not currently warranted. (An

analysis discussed later in this section effectively assumes that B(i) is constant for all

trees; not particularly realistic.) The most common assumption, as noted in Section 3.3,

is that B(i) is a function of DBH(i), usually proportional to DBH(i)2. In the example
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examined in Chapter 5, the investigator actually obtained (for most sources), proxy

counts for B(i), but this would be unusual in most studies.

(iii) The linear model in equation (3.7) does not specify how to handle seeds which are not

matched to any sources and are thus putatively assigned to sources outside the region

of study. For these seeds, dij is not known, or more precisely, dij is censored, since it

is known to be greater than the distance from trap j to the nearest boundary. One

could invent fictitious sources at the boundary for these seeds, but that would bias the

estimates of the dispersal function in the low direction. Standard imputation procedures

would also be difficult to employ, since the locations of the off-site adult Jacaranda

trees are unknown. A better, but certainly more complicated, analysis method is to

use techniques for dealing with censored data to handle these situations. This approach

is examined in Section 5.2 of this dissertation.

(iv) The model assumes that the S(i, j, t) is a complete correct count. In fact, since geno-

typing is expensive, one does not typically genotype all seeds caught within a trap

during a time period. There is statistical variation due to seeds chosen to be geno-

typed, but that is generally not a problem given that the S(i, j, t) themselves represent

a random sample of possible observations. More crucial, however, is the assumption

that the genotype assignment correctly matches the seed to its true source. Tradition-

ally, those performing genetic analysis have been concerned about the Type I error,

the probability that a seed will be classified as belonging to source i when it really

is from another source. This typically occurs when too few loci are sampled, so that

two sources which are actually different display the same allele pattern. By increasing

the number of loci sampled (and choosing loci with multiple alleles), geneticists have

usually been able to make the Type I error in most experiments very small. Of course,

as is well-known to statisticians, decreasing the probability of a Type I error, without

making other changes to an experiment, will increase the probability of a Type II

error. For many genetics experiments, this Type II error was believed to be of no real



27

consequence. However, in recent years, more concern has been focused on such errors,

frequently called ‘genotyping errors’. For the purposes of the current research, small

probabilities of misclassification of alleles could have major implications, since if even

one allele among the 2v genotyped at the v loci is misgenotyped, the resulting allelic

pattern will generally not match that of any of the known sources, thus resulting in

an over-estimate of the proportion of seeds originating from off-site sources, and, of

course, seriously affecting seed dispersal density estimates. This situation is investi-

gated in detail in Chapter 6.



Chapter 4

Application Using Historical Trap Data

4.1 Combined Analysis

In this section, we will demonstrate the use of the techniques developed in Section 3.3 for

non-genotyped data on the historical Jacaranda data collected at the FDP site from 1987-

2002. As previously mentioned, we have collapsed this data into 8 ‘bi-years’ to somewhat

moderate the influence of year-to-year variability, although the effects are still large, as shown

in Table 3.2. Thus, our data consist of the 200 ∗ 8 array of seed counts, S(j, t), caught in

trap j during bi-year t. These range from a maximum of 1132 in trap 155 in 1991-92 to a

minimum of 0 in 54 of the 1600 cells. If we fit a generalized linear model to these data, with

Poisson distribution, log link, and additive relationship:

ln(λjt) = µ + αt + γj (4.1)

one finds that µ̂ = 3.1660, and that the σ̂α = 0.5606 over the 8 years and σ̂γ = 1.3299

over the 200 traps. This model is very over-dispersed relative to a Poisson (over-dispersion

factor=21.3472), suggestting that even if one could disentangle the non-identifiability

between the tree effects (β(i)’s) and the dispersion density, f(r, Θ), there is still extra

variability (relative to Poisson variability) that can not be explained by either year or trap

effects.

A similar analysis applied directly to the transformed data:

ln(S(j, t)) = µ + αt + γj + ejt (4.2)

assuming a linear model yields: µ̂ = 2.9205, σ̂α = 0.6595, and σ̂γ = 1.3274, with σ̂e = 0.8229.

These results are very similar to the Poisson model above, with the RMSE of this model

28
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perhaps being slightly easier to interpret. For example, suppose that we were attempting to

predict the number of seeds found in a ‘typical’ trap in a ‘typical’ bi-year, so that αt and

γj are both approximately zero. Then the predicted amount (in log-scale) is 2.9205, with an

approximate 95% prediction interval of 2.9205± 1.96(0.8824) = [1.19, 4.65]. Exponentiating,

we obtain a point estimate of about 19 seeds for the trap, but the 95% prediction interval

ranges from 3 seeds to 104 seeds! The analysis using the more sophisticated Poisson assump-

tions is equally bad, as shown by the dispersion factor of 21.35, meaning that the typical

spread is 4.62 times what should be observed under Poisson assumptions. This serious uncer-

tainty in predicting seed counts should not be under-appreciated. It is a problem which will

be present no matter how correctly the seed dispersal function f(dij, Θ) or tree fecundity

function Bi are estimated.

Using γj’s as calculated by either equation 4.1 or equation 4.2, one can attempt to

estimate the f(r, Θ) function that best fits, based on assumptions about the tree fecundities,

Bi. The results in Table 4.1 below display these results using the estimated γj’s from the

transformed linear model of equation 4.2 for four possible functions, f(r, Θ):

(a) Origin-mode two-dimensional gaussian (c = 2 in Eq. (2.1))

(b) Origin-mode two-dimensional exponential (c = 1 in Eq. (2.1))

(c) Origin-mode two-dimensional heavy-tail (c = 0.5 in Eq. (2.1))

(d) Two-dimensional log-normal (r in log-scale)

Function (d) is not a member of Clark’s class of models, since it does not assume that the

mode occurs at the point of origination. Each of the four potential density functions is further

estimated under four different assumptions on the tree fecundities:

(A) Null model

(B) All trees equally fecund
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(C) Fecundity proportional to DBH2

(D) Fecundity proportional to DBHg (with ‘g’ estimated from data)

(a) (b) (c) (d)
Tree Fecundity OM2DG OM2DE OM2DH 2DLN

(A) Null Model 358.1 358.1 358.1 358.1
(B) Equally Fecund 172.4 160.1 159.2 155.2
(C) Fecundity ∼ DBH2 131.3 100.5 90.4 89.3
(D) Fecundity ∼ DBHg 121.4 95.0 88.7 87.3

MODEL D α 35 15 1.61 0.98 (µ = 3.06)
MODEL D g 1.15 1.44 1.67 1.62
MODEL D median dist. 29m 25m 22m 21m
MODEL D mean dist. 31m 30m 32m 35m
MODEL D P (d > 100m) .0003 .0098 .0459 .0575

Table 4.1: Sum-of-Squared Error for Predicting γj

From Table 4.1, we can clearly see that assuming fecundity proportional to DBH2 is much

better than assuming all trees are equally fecund, which is, of course, much better than the

null model assumption that all traps, on average, catch the same number of seeds, but not as

good as the more general fecundity model in (D). In fact, the fecundity models (rows) of the

table form a hierarchy of increasing generality going from A→ D, so that, for a fixed distance

function (column), the SSE decreases as one progresses down the table. The best (Row D)

estimates of the distance scale parameter (α) and fecundity parameter (g) for the best fitting

models are shown at the bottom of Table 4.1. Obviously, the form of the distance function

chosen has a large effect on the fit and on the median distance. Of the Clark dispersal models,

the c=0.5 distribution appears to perform best, and there appears to be some advantage in

allowing a more general form for fecundity than making it proportional to DBH2. Indeed as

Table 4.2 below shows, the Clark heavy-tail model with c=0.5, α=1.61 and the 2-dimensional

log-normal model with α=0.98 and µ=3.06 have very similar percentiles, at least over the

middle range of the data. Both predict about the 5% of seeds to be dispersed greater than

100m (LDD), as opposed to about 1% for LDD for the Exponential and virtrully no LDD

for the Gaussian. In the two tails, they are quite different, but the data set from which these
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data were collected definitely do not contain many observations in the left-hand tail, since

traps are rarely placed within 5m of a tree. There might be observations in the right-hand

tail, but one does not know for sure unless one has genotyped data. For non-genotyped data,

inverse modeling procedures tend to underestimate the occurrence of long-distance events.

(c=0.5, α=1.61) (µ=3.06, σ=0.98)
Percentile Heavy-Tail Log-Normal
99% 163m 209m
95% 97m 107m
90% 72m 75m
75% 42m 41m
50% 22m 21m
25% 10m 11m
10% 5m 6m
5% 3m 4m
1% 1m 2m

Table 4.2: Comparison of Percentiles of Best-fitting Heavy-Tail and Log-Normal Distributions

Of course, none of the models in Table 4.1 fit very well, since even the best of them,

with an SSE of approximately 87 units over 200 traps, yields a RMSE of 0.68 (in log-scale

units), which means that answers could easily be incorrect by a factor of 2 in predicting the

number of seeds in a particular trap for a given year. The point of Table 4.1 is not to provide

a good model for the expected number of seeds per trap in a given year, but, rather, to give

some intuition as to what sort of fecundity and distance functions are most likely to fit the

data when it is not combined so crudely as was done here. Sections 4.2 and 4.3 provide more

careful analyses of the complete data set, with Section 4.2 examining each bi-year separately

and Section 4.3 pooling the data more carefully than was done here.

4.2 Separate Bi-year Analyses

The analysis provided in Section 4.1 suffers from the drawback that it attempts to fit the

same model to each year, simply scaling each year’s data to adjust for the seed intensity

in that year. This might be too crude. In this section, we will attempt to analyze each

bi-year separately. Of course, the intercepts of these models for different bi-years will be
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quite different, reflecting the wide variation in the bi-year intensities, as noted in Table 3.2.

However, we will be able to use the actual seed counts, S(j, t) for trap j in bi-year t as our

response variable, rather than the estimated γj’s used in Section 4.1. Similarly, rather than

using an average DBH for each tree and selecting only the trees which were, on average,

adults during the 16-year period, we can use those which were adult in a given year, along

with a more precise estimate of each DBH. (Recall that DBH’s are obtained from censuses

only once every 5 years, so some interpolation is necessary, but this is still more precise than

what was done in Section 4.1.) A more important benefit of modeling each bi-year separately

is that we can obtain some idea of how robust our parameter estimates are over the 8 bi-year

periods.

Table 4.1 displays results from fitting 13 different models (null model plus (3 fecundities

* 4 distance functions)) for the combined data. Based on these results, we decided to fit

models of the following form to our data (separately for each bi-year, t):

S(i, j, t) ∼ Poisson(λ) (4.3)

ln(λ) = β0 + β1 ∗ qij + β2 ∗ ln(DBHi) (4.4)

where qij =
√

dij.

This is equivalent to (row D, column c) of Table 4.1, where β1 = −1/α and β2 = g. Thus,

we might expect (β1,β2) for the 8 different bi-years to be near (−0.62, 1.67), if this model is

consistent over time.

The major difficulty with fitting the above model, as noted previously, is that we do

not actually observe the S(i, j, t) (the number of seeds from tree i which landed in trap

j during bi-year t), but, rather, S(j, t), the total for trap j during that time period. The

easiest way around this difficulty is to use the E-M algorithm. In this case, this is equivalent

to creating fictitious (not necessarily integer-valued) S(i, j, t) values such that
∑

i S(i, j, t) =

S(j, t), finding the MLE’s of (β0,β1,β2) under that configuration (M-Step) and then using

the expected values for S(i, j, t) (for the given MLE’s) subject to the summation constraint
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(E-step), and to iterate until the process converges. The (β̂0,β̂1,β̂2) found by this procedure

are the true MLE’s, although one must be careful about interpreting the goodness-of-fit

statistics (G2), since the evaluation is over such a sparse subset of the entire possible tree-

trap population. The values G2
I and G2

J might be a bit more interpretable as Chi-squared fit

statistics. The former is the likelihood statistic calculated for each adult tree and summed

over the trees, while the latter is the same calculated over the traps. That is,

G2 = 2×
I∑

i=1

J∑
j=1

S(i, j)× ln

(
(S(i, j)

E(S(i, j))

)
(4.5)

G2
I = 2×

I∑
i=1

 J∑
j=1

S(i, j)× ln

( ∑J
j=1 S(i, j)∑J

j=1 E(S(i, j))

) (4.6)

G2
J = 2×

J∑
j=1

(
I∑

i=1

S(i, j)× ln

( ∑I
i=1 S(i, j)∑I

i=1 E(S(i, j))

))
(4.7)

For the ungenotyped data case here, where the S(i, j) are not actually observed, but are

imputed by the E-M algorithm, it is easy to see that G2
J = G2; this will not be true for the

genotyped data case of Chapter 5. Under the E-M algorithm, the fictitious S(i, j, t)’s are best-

possible-fit values subject to the trap constraint and are thus more consistent with a proposed

model than could be obtained if the S(i, j, t) were actually observed. This distinction is

discussed more in Chapter 5, where the S(i, j, t)’s are observed.

The results of applying the E-M algorithm with the Poisson model of (4.1) and (4.2) to

the separate bi-year data yields the results shown in Table 4.3. The left-hand side of the table

displays observed characteristics of the data for the given bi-year. As noted previously, the

number of seeds trapped in a bi-year varies considerably, from a low of 4161 in bi-year H to

a high of 23815 in bi-year C. The third column, NZ Traps, displays the number (among 200

possible) of non-zero (i.e. non-empty) traps. Even in the least abundant bi-year, at least 180

of the 200 traps caught at least one seed. The fourth column displays the number of adult

trees observed during the bi-year, where ‘adult’ is defined to mean DBH ≥ 200mm. This

number rises more-or-less monotonically from 251 to 290 over the 16-year period, although
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the actual number of unique trees considered is over 300, since a few trees died while some

younger trees matured.

Bi-Year Seeds NZ Traps Adult Trees β0 β1 β2 G2 = G2
J G2

I NZ trees
A 5667 189 251 5.5685 -0.7150 0.9620 2872 993 197
B 7396 192 252 5.3496 -0.6544 1.4315 5126 1438 213
C 23815 200 274 6.6688 -0.7008 1.5519 6635 6551 246
D 14684 191 267 6.4661 -0.7265 1.1139 9488 3021 231
E 10130 196 282 6.1188 -0.7407 0.9486 8739 4630 230
F 12359 199 290 5.8578 -0.6559 0.7485 9852 4094 252
G 13072 199 289 6.3602 -0.7472 1.0266 8651 4504 244
H 4161 180 290 5.8282 -0.8521 0.0000 5353 3681 178

Table 4.3: Bi-year Models

The right-hand side of Table 4.3 displays some fit statistics for the model (4.4) fit to each

bi-year. The intercepts, as noted previously, vary approximately as ln(S(t)), although the

relationship is not perfect. The estimated β1 coefficients range from −0.65 to −0.82, which

is more negative than the −0.62 obtained from the crude combined analysis of Section 4.1.

Except for bi-year H, which has some unusual aspects, the β2 estimates are in the range

[0.75, 1.55], which is lower than the 1.67 predicted from the combined analysis. The G2 value

is the deviance statistic for the fit, although its interpretation is questionable given that the

S(i, j, t)’s are fictitious. As can be noted, in every bi-year, the ratio of G2
J to the number

of non-zero traps indicates over-dispersion of a major degree, from a factor of about 5.0 for

bi-year A to over 26 for bi-year C. The last column, NZ trees, is the number of adult trees,

which, under the model, are expected to have at least one seed caught in a trap during the

bi-year. Of course, under the model, every tree-trap combination has a positive E(S(i, j)),

but one can calculate the probability that the actual observed sum for a particular tree (i)

summed over all traps (j) is zero and use this to calculate NZ trees. Note that the number

of NZ trees range from about 61% of all adult trees (for Bi-year H) to 90% of adult trees

(for Bi-year C), a range that may be larger than realisitc.
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4.3 Bi-year X Analysis

Since neither the combined data models nor the separate bi-years appear to fit the data too

well, we investigated this more carefully, to see what aspects of the model could be improved

upon to yield a better fit. To do this, we returned to the full data set to create a bi-year

‘X’, which is a fictitious average cohort of seeds. Thus, this analysis will be similar to that of

Section 4.1, but with one cohort of a ‘typical’ size rather than the sample of >91000 seeds

which one obtains from pooling all the data as was done in Section 4.1. The value of S(j)

used for bi-year X is the geometric mean of the 8 S(j, t)’s, provided that they are all > 0.

Any S(j, t)’s which were equal to zero were replaced by (1/e) before the geometric mean was

calculated. The S(j)’s thus calculated were then rounded to the nearest integer to yield a

plausible typical year’s data set. This procedure yielded a total of 9087 seeds for bi-year X,

with the 200 trap-sums varying from a minimum of 1 (for 16 of the traps) to a maximum

of 451 (for trap #85). The trees chosen for the bi-year X analysis were those whose median

DBH over the 16-year period was ≥ 200mm, which yielded 291 trees, with each tree’s median

DBH over the 16-year period being used as the ‘true’ DBH for bi-year X. We then used the

E-M algorithm described in Section 4.2 to fit four models to this bi-year X data, as shown in

equations (4.8)-(4.11) below. The motivation for bi-year X is the creation of a sample which

is typical with respect both to annual size of the seed sample, and to the average distance

distribution of seeds from each tree. It does sacrifice a bit with respect to using average

DBH for each tree, rather than using the yearly DBH(i)’s, but the behavior of the fecundity

function, as shown by the β2 estimates in Table 4.3, is not too stable, so this is not much of

a loss. It is hoped that by pooling in this way, we can obtain more stable estimates for both

the distance and fecundity functions, especially the former.

(sl :)

ln(λij) = β0 + β1 ∗ sij + β2 ∗ LDBHi (4.8)
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(dl:)

ln(λij) = β0 + β1 ∗ dij + β2 ∗ LDBHi (4.9)

(ql:)

ln(λij) = β0 + β1 ∗ qij + β2 ∗ LDBHi (4.10)

(el :)

ln(λij) = β0 + βec + β2 ∗ LDBHi, (4.11)

where sij=d2
ij, qij=d

1/2
ij , and LDBH=ln(DBH/423). All four models express fecundity as

a function of LDBH=ln(DBH/423), where ‘423’ was chosen since 423mm is the median DBH

of the 291 trees used in this analysis. The model notation used here and subsequently, is that

the first letter is a short-hand for the type of distance function used (s, d, q, e) while the

second is a short-hand for the type of fecundity fuction used, (‘l’ for LDBH, in this case).

The models differ in their distance functions, with the s, d, q models of 4.8-4.10 referring

to c=2, c=1, and c=0.5, respectively, from Clark’s hierarchy. Equation 4.11 (‘e’ model) is

a detailed ‘empirical’ distance model that divides the data into 24 (mostly equal) distance

classes: 0-5m, 5-10m, ..... 95-100m, 100-150m, 150-200m, 200-400m, > 400m. This allows

us, assuming over-parameterization is not too severe, to see which parametric distance form

really fits the data best for a ‘typical’ year (given ungenotyped data). The results for the

four models are shown in Table 4.4.

Model β0 β1 β2 G2 = G2
J G2

I NZTr E[n|d = 25] P (d > 100)
sl 2.8273 -0.0005 0.9693 6774 1791 195 12.36 .0068
dl 4.5622 -0.0780 1.1185 4909 2556 183 13.63 .0034
ql 6.1621 -0.7665 0.8963 4664 2055 232 10.27 .0530
el 4.6493 0.9785 4305 1634 203 7.68 .0000

Table 4.4: Best Models for Bi-year X

The c = 2.0 (sl model) is woeful and will not be considered further. As noted previously,

the c = 0.5 (ql model) is the best of the Clark models and is not too much worse than the

non-parametric distance (el) model (G2
J is 4664 vs. 4305), although certain characteristics
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of these two models are somewhat dissimilar. For the ql model, about 232 of the 291 trees

are expected to have at least one seed caught in one of the traps during a typical year, with

the expected number of seeds caught in a trap 25 meters from a tree being 10.27, and the

proportion of seeds dispersed > 100m (LDD) being about 5%. For the el model, that are

fewer non-zero trees expected, the expected number of seeds caught in a trap 25m away is

smaller than for the ql model, and no seeds are predicted to be LDD.

The ln(λ) for a typical (DBH= 423mm) tree under the four distance functions for bi-year

X is shown in Figure 4.1. The discontinuous block function is for the el model. It is actually

even jumpier than displayed, since the ‘−5’ shown for 85-90m and > 100m are really negative

infinities caused by zero events being expected for these distance classes. Of course, the el

model is over-parameterized – we do not have enough observations in all of the classes to make

good estimates. If we smooth this distance function a bit, as shown in Fig. 4.2, we see that

it appears to be closer to to the ql function than to the others, up to about 90m. Beyond

that distance, the el function becomes extremely negative. However, we view this latter

result somewhat skeptically, since we have no actual data for the distance classes. Although

there are many tree-trap combinations yielding distances that are > 90m, the el model,

(and, in fact, all four models considered) maximize their likelihoods by making such long-

distance dispersal events rare to non-existent. This phenomenon has been noted previously

and occurs because the MLE criterion is most influenced by the commonly occurring events.

Long-distance dispersal will not be detected by any model unless genotyped data determines

definitively that LDD events occur with probabilities greater than implied by Fig. 4.2.

Model 4.11 (el) fits the distance function part of the intensity about as well as it can be

fit, but the fit by the G2 (or more appropriately, G2
J) is still lacking. Since the distance fitting

can not be improved upon, we considered adjusting the fecundity function to fit better. The

models used heretofore parameterize fecundity as proportional to DBHg. For a few trees,

this causes extremely poor fits. This can be seen from examination of the individual (tree)

components of the G2
I statistic. An obvious way to improve the fit would be to allow each
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Figure 4.1: Log-intensities for Typical Tree for Bi-year X
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Figure 4.2: Log-intensities for Typical Tree for Bi-year X (Smoothed)
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tree to have its own fecundity. Rather than doing this blindly, we did it sequentially, starting

with the dl, ql, and el models of (4.9)-(4.11) and then replacing the worst-fitting tree (as

given by G2
I components) by its own log(fecundity), and continuing sequentially. After 27

trees had been adjusted in this way, the G2
I value was near what one would expect if the

fecundity function were correctly specified. That is, the G2
I statistic was approximatly equal

to the expected number of non-zero trees minus the number of parameters estimated for

each model.

The parameter and fit statistics for these fecundity-adjusted models are shown in Table

4.5. Note that G2 has improved substantially, by about 3000 units for each of the three

models, certainly worth the 27 parameters spent. Of course, forcing a model to fit in this

way is not very satisfying, since it leaves unanswered such fundamental questions as what

characteristics did these 27 trees have which caused them to be adjusted. (Generally, they

are large trees whose fecundities were adjusted downward from the DBHg estimate, but that

is not always true.) In any case, even if the adjustments make the data fit better, such

adjustments are risky, because there is no verifiable evidence that these trees produce more

or less seeds than expected, since the actual S(i, j)’s are not observed for this data set.

Finally, even if we do feel justified in using these fecundity-adjusted models, they still are

not very good, even in the best (el) case. The G2
I value is acceptable (and indeed can be made

to approach zero by allowing more trees to have their own fecundity parameters), but G2

(= G2
J) will not become much smaller than shown in Table 4.5. If the model is adequate, G2

J

should be approximately Chi-squared distributed with 148 df (200 traps −52 independent

parameters estimated). As can be noted in Table 4.5, the G2
J value for this case is about 9

times larger than the df . It is difficult to evaluate G2 precisely since we do not know the true

number of non-zero tree-trap cell counts, but even using a liberal estimate, the G2 value is

about 4 times as large as it should be if the fit were adequate. So, even over-parameterizing

drastically in both the distance and fecundity functions, we will never be able to obtain a

classical (no over-dispersion) Poisson fit for a typical bi-year’s non-genotyped data.
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β0 β1 β2 G2 = G2
J G2

I NZTr E[n|d = 25] P (d > 100)
d 4.1024 -0.0802 1.8240 1572 98 168 8.15 .0030
q 5.7167 -0.7968 2.1240 1623 106 209 5.66 .0433
e 3.5810 1.7380 1337 82 204 5.96 .0000

Table 4.5: Best Models for Bi-year X (27 Trees Adjusted)

In summary, what we have learned about fitting inverse models to non-genotyped seed

trap data sets are the following:

a) Different time periods (seasons of collection) can be modeled separately, assuming

sufficient sample sizes, since year-to-year variation in seeds produced is great.

b) For Jacaranda trees, Clark’s model with c = 0.5 appears to be a reasonable distance

approximation, provided that there are not many long-distance-dispersal (LDD; d >

100m) events.

c) Modeling fecundity as being proportional to DBH2 is reasonable, but more general

models which make fecundity proportional to DBHg will typically estimate g to be

smaller than 2, usually 1 < g < 2.

d) Even if one over-parameterizes by fitting certain influential trees separately, the disper-

sion of the overall model will be at least 9 times as great as that expected under Poisson

conditions, when evaluation is at the trap level; i.e. using G2
J . (Evaluation using G2 is

not appropriate because the value is biased low by the E-M fit. Even more importantly,

because so many of the possible 291 ∗ 200 tree-trap combinations are expected to yield

0 seeds, a straight-forward evaluation of G2 as a deviance statistic is not appropriate.)

e) If one were to obtain genotyped data (and, thus, observed S(i, j) values, as discussed

in Chapter 5), one would no longer need to use the E-M algorithm and G2
J 6= G2.

The maximum likelihood estimates of the parameters would minimize the G2 but not
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the G2
J . Thus, the true G2

J for genotyped data would be worse than is suggested from

non-genotyped data, since the observed S(i, j)’s can not fit as well as the fictitious

S(i, j)’s obtained under the E-M algorithm. On the other hand, genotyped seed data

allows one to see whether the assumptions made to obtain conclusions (b), (c), and (d)

are reasonable.



Chapter 5

Application Using Genotyped Data

5.1 Background

The data set used for this analysis was described in Section 3.2. It is a small subset of the

data analyzed in Section 3.4. For this analysis, the time variable t is not included, since there

were genotyped observations of seeds in only two years, (281 in 2000, 445 in 2002), and they

were combined to achieve a pooled sample of 726 genotyped seeds, as shown in Table 3.4.

Of these 726, 616 were matched to a known source within the FDP and buffer zone, while

110 (15%) did not match and were thus believed to have originated from off-site Jacaranda

trees.

Although one might attempt an analysis along the lines described in Section 3.4, it will

not work well. Recall that there are I=306 known sources (adult and semi-adult Jacaranda

trees) which were genotyped prior to the seed collection. The number of traps used in the

collection of the 726 genotyped seeds was J=298 (the established 200-trap network used

in the historical analysis above was augmented by a special set of 98 traps which Andy

Jones set up in 2000-2002 to more carefully sample source ‘gap’ areas in the FDP). So,

clearly, with only 616 matched observations spread over I ∗ J = 306 ∗ 298 = 91188 tree-trap

combinations, most observed S(i, j) counts will be zero. This extreme sparseness, combined

with the relatively high censoring rate (due to non-matched seeds) renders the approach of

Section 3.4, without many further assumptions, to be worthless.

42
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5.2 Censored Data Approach

A more straight-forward approach, similar to that utilized by JiEn Chen and Guo-Jing Weng

in their Summer 2004 Statistical Consulting (STAT 8000) project, is to assume that the

distances associated with the 726 genotyped seeds represent an independent and identically

distributed sample of size n=726 from the seed dispersal distribution. Of course, this is not

really correct, since the distribution of traps relative to trees yields a pattern of sample

distances which is not equivalent to a simple random sample of all seeds dispersed from all

trees in the region. Nonetheless, one can begin with this assumption to find an approximate

density which can then be adjusted for sampling vagaries.

If one assumes that the distances x1, x2, ..., xn obtained from the n genotyped seeds are a

random sample from a population with pdf= f(x, φ) and cdf= F (x, φ), then the likelihood

function is defined to be:

L(φ, x) =
n∏

i=1

Li(φ|xi) =
n∏

i=1

[f(xi|φ)]1−δi × [1− F (xi|φ)]δi (5.1)

where δi = 0 if xi is a matched seed distance, δi = 1 if xi is an unmatched (right censored)

seed distance.

Then, the log-likelihood has the form:

Log(L) =
∑
i∈O

ln f(xi|φ) +
∑
i∈C

ln[1− F (xi|φ)] (5.2)

where O is the set of indices for matched observations and C is the set of indices for censored

observations. For the data in question, the cardinalities of these two sets are 610 and 116,

respectively. This analysis assumed 116 censored observations, slighty different from the 110

now believed to be correct(see Chapter 6).

Solving the above equation for the maximum likelihood estimates for various parametric

forms is not particularly difficult. Unfortunately, simple parametric models of the type dis-

cussed in Chapter 2 do not fit well at all. In cases like this, especially when one has no real

idea about the true functional form of f(x|φ), it is always useful to plot the empirical distri-

bution function, or more commonly, the Kaplan-Meier survival function. As is well-known,
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this survival function incorporates the censored data (as much as possible) into the estimate.

The K-M empirical survival function for the sample data is shown in Figure 5.1. Note that

all of the censored observations fall between 100m and 350m, since those are the minimum

and maximum possible distances from a trap within the FDP to the edge of the buffer zone

nearest to the trap. There are a few very long non-censored observations in the 350-700m

range, corresponding to genotyped seeds which traveled from a tree in one corner of the plot

to a trap in the opposite corner. Of course, the censored observations might well be in the

350-700m range if they were actually to be observed.

Figure 5.1: Empirical Survival Distribution Function.

In some cases, plotting the empirical survival function s(t), or various transformations

thereof, such as log[s(t)] or log[− log(s(t))] allows one to determine if certain standard para-

metric survival distributions, such as exponential, Weibull, or log-normal are appropriate.

For the plot shown in Figure 5.1, however, none of the standard distributions will work well.

The large mass of censored data between 100-350m, followed by a few observations in the

350-700m range causes this. If there were no observations beyond the censored mass, this

would be the typical situation encountered with right-censoring, and one might have some

0Circles represent the censored data.
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hope that a heavy-tailed failure-time distribution would fit the entire data. In this case, how-

ever, that can not possibly be the case, and the only feasible models would be those which

are a mixture of two different densities. One such fitted density is shown in Figure 5.2, as is

explained below. Slightly different density plots would be obtained under other assumptions,

but the general pattern for all is the same as that shown in Figure 5.2. That is, the data

appear to be a mixture, with a sizeable proportion of the data arising from a distribution

with a mode near 25m and the remainder arising from a less common distribution with

a mode near 350m. Using this information, one returns to the log-likelihood approach of

equation 5.2, but now attempts to maximize over the mixture of two densities:

Log(L) =
∑
i∈O

ln[pf1(x) + (1− p)f2(x)] +
∑
i∈C

ln[1− (pF1(x) + (1− p)F2(x))] (5.3)

where f1 and f2 are the component densities for the left and right humps and p is the

proportion of the sample arising from density 1. The large hump in Figure 5.2, representing

density f1(x|φ), has more observations and can be more reliably estimated than the smaller

hump, which contains most of the censored data. It appears that a log-normal distribution

fits the left-tail portion of the data well. The second hump of the distribution is much more

ambiguous, as is the parameter, p, of the mixing distribution. After fitting a number of

models of the form ‘lognormal + something else’ for the data, Jones et al. [14] concluded

that (f1 ≡ lognormal, f2 ≡ normal) fit reasonably well. The best parameters for this model

for the combined (2000+2002) data set, as well as separately for the two years, are shown in

Table 5.1. Note that the lognormal(f1) mean and variability parameters, as well as the mixing

parameter, p, are relatively stable between the two years and pooled, while the normal(f2)

mean and variability parameters are much less precisely estimated. Indeed, one obtains very

similar log-likelihood scores with many different functional forms for f2. Note that the best

models shown here are not part of the Clark hierarchy of models shown in equation 2.1,

since their polar coordiate adjusted modes are not at r=0. However, the combined estimate

for (µ1, σ1) of the log-normal(µ=3.1060,σ=0.745) is relatively close to the (µ=3.06,σ=0.98)
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Figure 5.2: Estimated pdf vs. Distance

obtained when using the log-normal density for ‘bi-year X’ data in Section 4.3. So, for the

lower tail of the distribution, a log-normal might be appropriate. The key point, that some

sort of mixture model is necessary, is not too surprising to ecologists. A possible explanation

for the undoubtedly complex true situation is that f1 represents the typical dispersion that

most (p) of the seeds experienced, but that a smaller proportion (1 − p) of the seeds are

caught in wind up-drafts and thus dispersed at larger average distances, as given by f2.

Year N* Nobs** Ncens*** p̂ µ̂1 σ̂1 µ̂2 σ̂2

2000 281 238 43 0.791 2.960 0.721 338.462 106.148
2002 445 372 73 0.756 3.210 0.735 393.241 164.389
Combined 726 610 116 0.766 3.106 0.735 375.862 153.332

*N is the total number of seeds genotyped
**Nobs is the number of observations matched to parent trees
***Ncens is the number of censored observations

Table 5.1: MLE’s for the ‘Lognormal + Normal’ Model
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5.3 Direct Estimation Approach

For the ungenotyped seed analyses performed in Chapter 4, it was not necessary for the

models to consider whether an observed seed was ‘matched’ or ‘unmatched’, since seeds were

observed only as totals found per trap. The E-M algorithm used to fit these models attempted

to apportion each seed probabilistically to trees, with nearby trees and larger trees receiving

more weight. These models did not attempt to assign any probability to beyond-the-buffer-

zone trees (primarily because such trees’ locations are unknown), but even if such trees had

been included, given that every such tree is at least 100m from the nearest trap, and given

the very low intensities associated with distances > 100m for all models in the graphs of

Figures 4.1 and 4.2, there is virtually no difference in the fitted models.

For the genotyped data set, however, one must decide how to handle the 110 unmatched

seeds. A simple choice is to ignore these 110 seeds, using only the 616 matched seeds in the

analyses. How ‘wrong’ this is depends on the analyst’s viewpoint. Strictly speaking, for the

direct analysis, it is not wrong at all. From that viewpoint, there is a set of I genotyped

adult trees whose locations have been mapped. In addition, a set of J traps has been set

out at known locations around these traps. This yields a total of N=I ∗ J possible tree-trap

distances at which seed counts can be obtained and used to obtain MLE’s of parameters

for any model desired. There is no requirement that the J traps be placed in any manner

such that each tree has an equal chance of being sampled nor that the seeds collected be a

‘random sample’ from the population of seeds dispersed by the I trees in the population. In

fact, the only randomness necessary, given the design, is that the seeds be randomly sampled

from the J traps over the period of study (or that all seeds be used, if one is willing to believe

that one season’s worth of data is a ‘random sample’ from all that could be observed). It

is true that some trees may tend to have more seeds collected, either because they are very

large or near many traps (or both), but the model accounts for these factors. It might be

that some distance classes are sampled more frequently than others, but that has little effect.

For example, for the design used on the FDP, it is very rare for a trap to be placed within
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5m of any Jacaranda tree, so estimates of distance behavior at that short range may be

problematic. Similarly, since LDD rates are expected to be low, it might be the case that

a very large number of possible tree-trap combinations at long dispersal distances would

need to be observed before reliable estimates of the tail intensity rate could be obtained, but

there is no inherent bias in restricting the analysis to those seeds which originated from the

I genotyped trees and landed in the J traps. The only bias would occur if there had been a

mistake in genotyping, so that either some of the 110 ‘unmatched’ seeds should have been

matches or some of the 616 ‘matches’ included seeds matched to the wrong source tree. The

former occurrence (which is not that uncommon, as we shall see in Chapter 6) would still

not bias the results, assuming that one believed that genotyping errors are made at random,

not associated with any particular distance, dij, from tree to trap, nor with any particular

tree or trap. The latter error, which we will treat as rare for the analyses of this section,

could, as also discussed in Chapter 6, cause serious biases.

Thus, if we proceed to analyze the 616 ‘matched’ genotyped seeds as in Chapter 4,

but without resorting to the E-M algorithm (since each seed is uniquely matched to both

trap and tree), our data set has the characteristics described next. There are n=616 seeds,

theoretically distributed over I=292 adult trees and J=298 traps. However, only 114 of the

292 adult trees yielded at least one sample seed, with 96 seeds originating from one very

fecund tree. Similarly, only 168 of the 298 traps yielded at least one matched seed, with

the most being observed in any one trap being 34 seeds found in Trap #84. Finally, of the

N=292 × 298=87016 possible tree-trap combinations, only 298 actually contained at least

one observation. Hence, as noted previously, this data set is very sparse and will not yield

very precise parameter estimates.

The first three models which we considered for this data set are the same three con-

sidered at the end of Section 4.3 (models 4.9-4.11), using LDBH (= ln(DBH/423)) as the

fecundity measure, and with linear (dij), square-root (qij) or empirical distance class (eij)

as the distance functions. The fit results for these three models are shown in the top panel
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Model β0 β1 β2 G2 G2
I G2

J G2
ec NZTr P (LDD)

dl -0.0753 -0.0371 1.3666 3496 1340 973 619 183 .1153
ql 2.2725 -0.6419 1.3115 3049 1280 876 266 175 .1173
el -0.4688 1.5453 2775 1168 830 0 166 .1023
dn -2.7316 -0.0352 0.7459 2849 701 654 535 141 .1338
qn -0.2739 -0.6241 0.7118 2425 658 567 208 138 .1310
en -1.9707 0.6921 2215 620 558 0 135 .1023

Table 5.2: Best Models for Genotyped Data (Top – LDBH, Bottom – NAFX)

of Table 5.2. Comparing these values to their analogues shown in Table 4.4 for the bi-year

X analysis, we note several items of interest. As with Table 4.4, the fit statistics (G2, G2
I ,

G2
J) improve as one progresses down the (d)−→(q)−→(e) hierarchy of models. As with the

non-genotyped analysis of Table 4.4, the G2
J and G2

I values are more legitimate to use for

Chi-squared goodness-of-fit statistics than is G2, but the G2
J values are no longer identical to

the G2 values. (If one were to use the E-M algorithm procedure and the same three models

to analyze this data set, in effect ignoring the observed counts S(i, j) of seeds from tree i

caught in trap j, and using only the trap-sum counts S(j), one obtains values of G2=G2
J of

833, 823, and 773 for the three models, respectively, substantially less than what is shown for

G2 or G2
J in the top panel of Table 5.2. This is not at all unexpected, and demonstrates that

non-genotyped inverse-modeling approach typically used can give one a false sense of confi-

dence in a model’s fit to the data.) The intercepts (β0) for three models are all much smaller

than for the corresponding bi-year X models, reflecting the large change in magnitude in the

total numbers of seeds observed (n=616 vs. n=9087). The more relevant differences are in

the β1 (distance) and β2 (fecundity) multipliers, with the fecundity multipliers being about

30% to 50% larger for the genotyped data set, and the distance multiplier for the ‘d’ model

being much smaller in magnitude (−.0371 vs. −.0780) while that for the ‘q’ model is some-

what smaller (−.6419 vs. −.7665). The ej values for the two non-parametric ‘e’ models are

not directly comparable, since they depend on their respective models’ intercepts, but their
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general pattern is similar. This can best be seen by comparing Figure 5.3 (Log-Intensities

for a Typical Tree for Genotyped Data – Short Distances) with Figure 4.2 (Log-Intensities

for a Typical Tree for Bi-year X). In both cases, the ej function is a bit jumpy, indicating

possible over-parameterization. As with the non-genotyped data, the square-root distance

function (q) appears to be reasonably close to the empirical class distance function (e) over

the range from 0m-100m. For distances beyond 100m, as shown in the graph of Figure 5.4

(Log-Intensities for a Typical Tree for Genotyped Data - All Distances), the behavior for

non-genotyped and genotyped seeds’ data sets is quite different. From Figure 4.3, for non-

genotyped seeds, the graphs do not extend beyond 100m since the expected event intensity

is so low as to be negligible for the ‘el’ model. For the genotyped data set, from Figure

5.4, however, the situation is quite different beyond 100m, with the log-intensity for the ‘el’

model appearing to level off at a much higher rate than predicted by the ‘dl’ or ‘ql’ models.

Thus, we now have some definite statistical verification of the LDD effect. It is not strong

(as noted by the fact that log-intensity estimates for d > 100m are so low) and not nearly

as pronounced as the bi-modal hump displayed by the density estimate approach of Section

5.2, but is present and statistically significant. An indication of the magnitude of this LDD

effect can be seen by noting from Table 5.2 that all six models predict about 10%-13% LDD.

Let us now examine carefully what we have learned from our study of the non-genotyped

seeds (91000 sampled over 8 bi-years) and the matched genotyped seeds (616 seeds sampled

from 2000-2002). To facilitate matters, let us use the ql models given by equation 4.4, so

that β1 refers to the slope for distance q=
√

d parameters and β2 refers to the slope for

LDBH. Various characteristics of these data sets and fits for this model to these data sets

are displayed in Table 5.3, and Figure 5.5 plots the point estimates of (β1,β2) for these data

sets. The letters A-H in this table and figure refer to bi-years A-H, with the 2nd column of

Table 5.3 using the (minimum. median, and maximum) of each statistic to summarize the

information contained in Table 4.3 of the previous chapter. The ‘X’ refers to the synthetic

cohort ‘X’, which is a type of average of bi-years A-H. The ‘K’ refers to the 616 matched
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Figure 5.3: Log-intensities for Typical Tree for Genotyped Data (Short Distances)

0 200 400 600 800

mdpt

-20

-10

0

dl
ql
el

Figure 5.4: Log-intensities for Typical Tree for Genotyped Data (All Distances)
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seeds analyzed by the direct ML method; i.e. where the distances are known. The ‘J’ refers

to the same data set, but where the analysis is by the indirect E-M method which ignores

the distance data and minimizes G2
J , the deviance over the trap-sums. For data sets X, J,

and K, approximate 95% confidence ellipsoids for (β1,β2) using the profile likelihood method

(adjusting for over-dispersion) are also plotted in Figure 5.5 . The ‘X’ ellipsoid, although

based on a synthetic seed cohort, is highlighted since it represents in some sense what might

be found in a typical bi-year, if one had collected about 9100 non-genotyped seeds and used

the inverse estimation methods of Chapter 4. Indeed, four of the eight bi-years (A, D, F,

and G) have point estimates for (β̂0, β̂1) which fall in the bi-year X confidence ellipsoid.

Under the ql model, each of the bi-year A-H data sets has its own confidence ellipse, of

roughly the same size as that of bi-year X, but they are not displayed in order to maintain

visual clarity. The ‘J’ analysis, although using the 616 matched genotyped seeds, does so

in the manner which one would use if the genotyping were not known. The purpose for

displaying it is to give some idea of how much confidence area variation is due to sample

size, with the sizes of the two samples being 9087 for ‘X’ and 616 for ‘J’. The ‘K’ ellipse is

the one of primary interest, displaying the estimates and joint confidence interval for (β1,β2)

under the ql model of Table 5.2. Although the ‘K’ ellipsoid is larger than that of ‘X’ due

to the disparity in sample sizes, it is not nearly as large as the ‘J’ ellipsoid based on the

same sample. This occurs because genotyping yields direct calculation of actual dispersion

distances, contributing valuable information not available in the bi-year X data set. The

extra information was not enough to completely offset the lack of sample size, since the ‘K’

ellipse still contains much more area than the ‘X’ ellipse. The most important point to garner

from the two ellipses is that the genotyped data set (K) contains fairly convincing evidence

that the β1 coefficient is significantly less negative than is estimated from the ungenotyped

data (X). That is, there is significantly more long-distance dispersion estimated to occur

when the ql model is fit to the genotyped data than when it is fit to the ungenotyped data.

Thus, even with a relatively small sample size (616 genotyped vs. 9087 ungenotyped seeds),
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this effect can be detected. Another salient point which can be noted from all three ellipses

is that it is difficult to estimate β2 (the LDBH multiplier) very precisely. The bi-year X

ellipsoid estimate for β2 ranges from about 0.7 to 1.3, while that for the ‘K’ data set ranges

from about 0.6 to 1.9 . Finally, note that all three ellipses are actually tilted slightly to the

upper right, since there is a positive correlation between the (β̂1,β̂2) estimates in each case,

but it is very small, on the order of r=+0.05.

Bi-Years A-H Bi-Year X Bi-Year X Geno-J Geno-K

# Seeds [4161, 11189, 23815] 9087 9087 616 616
NZ Traps [180, 194, 200] 200 200 168 168
Adult Trees [251, 278, 290] 291 291 292 292
Method Indirect(EM) Indirect(EM) Indirect(EM)(27) Indirect(EM) Direct
β0 [5.35, 5.89, -6.67] 6.16 5.72 2.81 2.24
β1 [-0.82, -0.72, -0.65] -0.77 -0.80 -0.71 -0.64
β2 [-0.84, 1.02, 1.35] 0.90 2.12 0.31 1.31
G2/NZ Tree-Traps [1.48, 3.59, 6.59] 2.69 0.95 1.82 6.50
G2

J/NZ Traps [15.2, 38.9, 49.7] 23.3 8.10 4.10 5.21
G2

I/NZ Trees [5.0, 17.3, 26.6] 8.90 0.46 1.91 7.31
P (LDD) [.030, .072, .109] .053 .043 .076 .118

Table 5.3: Parameter Estimates from ql Model for Various Data Sets

In addition to the improvement in distance function estimation which can be obtained

from the genotyped data due to actual seed dispersal distances being observed, there is

another advantage to this particular genotyped data set. The advantage is that there is

more fecundity information than usual available for this set of genotyped trees. In the years

(2000 and 2002) in which the the genotyped Jacaranda seeds were collected, Andy Jones

also collected some fecundity data more informative than DBH. For 188 of the 292 adult

Jacaranda trees in the FDP in both years, Andy collected data on the number of capsules

found underneath each tree during a 1-month period. This is a better measure of fecundity

than DBH, since the number of seed capsules found is expected to be approximately pro-

portional to the number of seeds released. Of course, it will not be a perfect measure, since

not all capsules contain the same number of seeds, not all seeds in a capsule disperse, the

distribution of capsules over the one-month period may not be representative of the true

seed production, and various other reasons. Nonetheless, it is the best proxy for actual seed
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Figure 5.5: 95% Profile Likelihoods for (β1,β2) from ql Models for Data Sets

counts, and can help determine the relative worth of LDBH as a fecundity measure. In par-

ticular, for each of the 188 trees whose capsules were counted, the new variable, NAFXi, was

created as:

NAFXi = 0.5 ∗ [ln(C2000i) + ln(C2002i)], (5.4)

where C2000i and C2002i represent the capsule counts for tree i in the years 2000 and 2002,

respectively. In the rare cases where either of the capsule count values was zero, the log value

was set to 0. For the 188 trees for which NAFXi is calculable, a simple linear regression was

run to predict NAFXi from LDBHi. The resulting equation was:

NAFXi = 2.5356 + 2.3038 ∗ LDBHi + e (5.5)
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with R2=0.25 and RMSE =1.45. Various other transformations were tried, but none were

significantly better than above. A plot of the data (in the scales used) is shown in Figure

5.6. From this, if we believe that NAFX is a good measure of fecundity, then we have our

first concrete evidence that assuming fecundity proportional to DBH2 might be valid, since

the 95% confidence interval for the LDBH coefficient ranges from 1.70-3.00, containing 2.

Of course, as is evident from the large confidence interval, the relatively small R-squared,

or simple examination of the data plotted in Figure 5.6, there is much individual variation

in tree fecundity that will never be able to captured by anything as simple as a function

of DBH. If one could afford to do what Andy Jones did (measure fecundities for individual

trees), one will, of course, obtain much better fits than one can using DBH alone, as we shall

see next, but one should realize that collection of such information is very unusual.
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Figure 5.6: Plot of NAFX vs. LDBH for 188 Fecundized Trees

To see how much information is gained by using NAFXi rather than DBHg (since the

latter is the best estimate that is typically available), we ran the three models of (4.9-4.11),
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but with LDBHi replaced by NAFXi for the 188 trees for which NAFXi was available. For

the other 104 trees, NAFXi was estimated from eq. (5.5). The NAFXi’s were then used in

Poisson models with these link fucntions:

(dn :)

ln(λij) = β0 + β1 ∗ dij + β2 ∗NAFXi (5.6)

(qn:)

ln(λij) = β0 + β1 ∗ qij + β2 ∗NAFXi (5.7)

(en:)

ln(λij) = β0 + eij + β2 ∗NAFXi (5.8)

The results for these Poisson regression models as applied to the genotyped data are

shown in the bottom panel of Table 5.2. One will note a tremendous improvement in the

G2
I for all 3 models, with each being about one-half as large as found when using the LDBH

fecundity measure. So, clearly, if one has special fecundity information for individual trees,

as we do here, one should use it. On the other hand, such information does not cause G2
I=0,

so the fecundity adjustment of 27 trees used in the bi-year X analysis of Section 4.3 is overly

optimistic. When such specialized information is not available, as is typically the case, our

analyses show that assuming fecundity proportional to DBHg, with g estimated from the

data is reasonable and that ( 1 < g < 2) is a perhaps typical range. Note also that using

the better fecundity estimates (NAFXi) rather than the crude estimates (LDBHi) has very

little effect on the distance function estimates, as the β1 estimates under the paired models

of the two panels of Table 5.2 are very similar. This can also be seen by the fact that G2
e, a

fit statistic over the 24 distance classes, changes relatively little, if at all, between the model

pairs of Table 5.2 – the bulk of the improvement occurs in fitting individual trees. Of course,

even using the best distance function (e) and fecundity function (NAFX), as shown by the

‘en’ model at the bottom of Table 5.2, still yields a G2
J value of 558, quite large for 168

non-zero traps, not even accounting for degrees of freedom lost for estimated parameters.
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dc distance mdpt tree trap match lec len lqn ldn lel lql ldl
1 0-5m 2.5 7 8 0.13 -0.21 0.55 -0.92 -0.47 1.26 -0.17
2 5-10m 7.5 33 67 0.71 -0.33 -0.17 -1.10 0.51 0.51 -0.35
3 10-15m 12.5 48 75 0.45 -0.41 -0.67 -1.27 0.52 0.00 -0.54
4 15-20m 17.5 93 98 0.05 -0.78 -1.07 -1.45 -0.09 -0.41 -0.72
5 20-25m 22.5 88 76 -0.15 -0.79 -1.42 -1.63 -0.31 -0.77 -0.91
6 25-30m 27.5 115 33 -1.25 -1.91 -1.74 -1.80 -1.61 -1.09 -1.10
7 30-35m 32.5 129 55 -0.85 -1.63 -2.02 -1.98 -1.06 -1.39 -1.28
8 35-40m 37.5 153 21 -1.99 -2.63 -2.29 -2.15 -2.11 -1.66 -1.47
9 40-45m 42.5 177 47 -1.33 -2.05 -2.53 -2.33 -1.54 -1.91 -1.65

10 45-50m 47.5 187 12 -2.75 -3.36 -2.76 -2.51 -2.98 -2.15 -1.84
11 50-55m 52.5 193 14 -2.62 -3.33 -2.99 -2.68 -2.88 -2.38 -2.02
12 55-60m 57.5 233 10 -3.15 -3.86 -3.20 -2.86 -3.26 -2.59 -2.21
13 60-65m 62.5 235 13 -2.89 -3.75 -3.40 -3.03 -3.12 -2.80 -2.39
14 65-70m 67.5 239 4 -4.09 -4.70 -3.59 -3.21 -4.30 -3.00 -2.58
15 70-75m 72.5 261 0 . . -3.78 -3.39 . -3.19 -2.77
16 75-80m 77.5 285 5 -4.04 -4.68 -3.96 -3.56 -4.21 -3.38 -2.95
17 80-85m 82.5 282 5 -4.03 -4.65 -4.13 -3.74 -4.28 -3.56 -3.14
18 85-90m 87.5 328 4 -4.41 -5.09 -4.30 -3.91 -4.63 -3.73 -3.32
19 90-95m 92.5 331 3 -4.70 -5.37 -4.47 -4.09 -4.97 -3.90 -3.51
20 95-100m 97.5 329 3 -4.70 -5.37 -4.63 -4.27 -4.90 -4.07 -3.69
21 100-150m 125 4062 18 -5.42 -6.03 -5.44 -5.23 -5.63 -4.90 -4.71
22 150-200m 175 5173 11 -6.15 -6.79 -6.72 -6.99 -6.34 -6.22 -6.57
23 200-300m 250 12740 13 -6.89 -7.55 -8.33 -9.63 -7.10 -7.88 -9.35
24 300-400m 350 13579 10 -7.21 -7.86 -10.14 -13.15 -7.45 -9.74 -13.06
25 400-500m 450 12381 4 -8.04 -8.61 -11.70 -16.67 -8.28 -11.34 -16.77
26 500-600m 550 10476 4 -7.87 -8.40 -13.10 -20.19 -8.10 -12.78 -20.48
27 600-700m 650 8529 1 -9.05 -9.47 -14.38 -23.71 -9.23 -14.09 -24.19
28 700-800m 750 6810 2 -8.13 -8.54 -15.56 -27.23 -8.39 -15.31 -27.90
29 800-900m 850 5155 0 . . -16.66 -30.75 . -16.44 -31.61
30 900-1000m 950 3211 0 . . -17.70 -34.27 . -17.51 -35.32
31 1000-1100m 1050 1037 0 . . -18.69 -37.79 . -18.53 -39.03
32 1100-1200m 1200 117 0 . . -20.08 -43.07 . -19.96 -44.60
33 1200-1300m 1250 0 0 . . -20.53 -44.83 . -20.42 -46.45
34 1300-1400m 1350 0 0 . . -21.39 -48.35 . -21.31 -50.16
35 1400-1500m 1450 0 0 . . -22.23 -51.87 . -22.17 -53.87
36 1500-1600m 1550 0 0 . . -23.03 -55.39 . -23.00 -57.58
37 >1600m 1650 0 0 . . -23.81 -58.91 . -23.80 -61.29

Total 87016 616

Table 5.4: Log-intensity for Typical Tree by Distance Class for Genotyped Data Models
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To examine the 6 different distance functions of Table 5.2 further, consider Table 5.4. The

first 3 columns of the table define 37 different distance classes by boundary and midpoint.

The first 23 of these are the same as used in the el and en models, with the 24th class

expanded further for greater clarification. Column 4 (‘tree trap’) of the table lists the number

of tree-trap combinations which fall in each distance class (among the 292×298 tree-trap

combinations considered for the genotyped dataset), while column 5 (‘match’) shows how

many of the 616 matched seeds were assigned to trees in the distance class. The last 6

columns of Table 5.4 give the log-intensity by distance class as estimated by the 6 models for

a ‘typical’ (DBH=423mm) tree. For the nonparametric distance (el and en) models, these are

the log-intensity estimates for the class, while for the parametric q and d models, these are

the log-intensity functions evaluated at the mid-point of each interval (for a ‘typical’ tree).

The column labeled lec is simply ln(match/tree trap), the empirical log-intensity unadjusted

for tree sizes. From the previous discussion, we know that the three n models will outperform

the three l models by the G2 criterion, but that this will not manifest itself in the distance

distribution, and indeed one does observe that ldn∼=ldl, lqn∼=lql, and len∼=lel over most

of the range of the data. The closeness of the first two pairs can be seen from the similarity of

the estimated β1 coefficients of the respective paris in Table 5.2. The similarity between len

and lel can be seen from the plot in Figure 5.7. Within a fecundity measure (n or l), we know

that e and q are fairly similar for the 0-100m distance range, but that for larger distances

both q and d are too negative compared to en or el or ec with respect to estimating events.

That is, even for the genotyped data set (from which all the log-intensity functions shown

in Table 5.4 are estimated), there is a tendency for parametric distance models to under-

estimate the probability of very long dispersal events. The tendency is not nearly as severe

as that caused by using the indirect estimation methods for ungenotyped data, as discussed

in the context of Figure 5.5, but it does occur to some extent. For the 6 models shown in

Tables 5.2 and 5.4, the estimates of LDD (defined as dispersion greater than 100m) are fairly

similar between the models, but this occurs because the ‘d’ and ‘q’ models pile their LDD
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density in the 100-150m and 150-200m categories, while the ‘e’ models have longer tails. For

example, of the 616 matched genotyped seeds, 63, in actuality, were dispersed from trees

more than 100m away from the trap in which they eventually settled. Both the el and en

methods, by definition, yield 63/616=0.1022 as the expected proportion of LDD seeds, given

the tree-trap network of distances and fecundities. The ql and qn models yield expected

proportions of 0.1175 and 0.1310, respectively, for LDD seeds, but cluster more of these

events in the 100−150m class and fewer in the > 400m class than are actually observed for

the 616 matched seeds.

0 50 100 150
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Figure 5.7: Comparison of Log-intensities for Typical Tree Under el and en Models

Thus, we can say in conclusion that both the genotyped and ungenotyped data sets give

some general support to the belief that log-intensity function decays approximately at square-

root of distance rate for dij < 100m, but that the genotyped data gives definite evidence

of some (∼ 10%− 13%) long-distance dispersals, although certainly not nearly as strong as

the censored data approach estimates of Jones, Chen, Weng and Hubbell [14] described in
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Section 5.2. Both the ungenotyped and genotyped data sets lend some support to the idea

that fecundity is proportional to DBHg, with estimates of g varying widely, but generally

being less than the g=2 value often assumed in the inverse modeling literature. In any case,

no matter what model is used, there is much variability in predicting an individual tree’s

fecundity, as displayed both by the necessity to separately adjust fecundity estimates for 27

trees (among 291) for the ungenotyped data set of Section 4.3 and by the relatively low R2

of 0.25 from the regression equation of (5.5). Another way of stating all of this is that even

if we over-parameterize to obtain approximately the best possible fit for distance (which is

what the ‘e’ models attempt to do) and to model individual trees’ fecundities (using the

NAFXi values), we can force G2
e and G2

I to become arbitrarily small, but neither the overall

deviance, G2, nor G2
J , which is the best overall fit to the trap data, will fit adequately by

any standard statistical convention. Thus, there must be at least some interaction between

distance and fecundity; something very difficult to estimate.



Chapter 6

Misclassified data

6.1 Genotyping Errors

Chapter 5 of this dissertation discusses theoretically what new information one expects to

gain from using genotyped seed data rather than the traditionally available non-genotyped

seed-trap data. The findings are that the gains may be substantial, particularly in identifying

the true probability of long-distance dispersal, since most inverse modeling schemes, as noted

in Chapter 4, tend to under-estimate this upper tail of the dispersion distribution. For the

FDP data to which we have devoted so much analysis in this dissertation, both the censored

data approach of Section 5.2 and the direct estimation approach of Section 5.3 confirmed

these results, with both yielding substantially higher probabilities of dispersal events greater

than 100m than given by any of the indirect estimation (‘inverse modeling’) techniques of

Chapter 4 when they were applied to the historical ungenotyped data collected from 1987-

2002. Nonetheless, there is something unsettling about the results from Sections 5.2 and 5.3;

although they both yield much higher estimates of LDD events than do the indirect methods,

they do not come close to agreeing with each other. The censored data approach of Section

5.2 as published in Jones et. al. [14], has a much higher estimate of LDD (>100m) dispersion

than does the direct estimation method of Section 5.3. Specifically, as shown in Table 5.1,

the censored data approach (given the placement of trees and traps in the FDP) predicts

about 23% of all seeds to be dispersed >100m, with the mean dispersal distance for these

LDD seeds to be about 350m. For the best fitting of the direct estimation models of Section

5.3, at most 13% of the seeds are expected to be LDD dispersed, and the mean dispersal

61
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distance for these seeds is much less than 350m, since the bulk of those so dispersed are in

the 100−150m or 150−200m range, as can be seen from Table 5.4.

This is not a minor discrepancy that can be explained by sampling variability, so why

does it occur? The immediately obvious answer is that the discrepancy occurs because the

censored data approach of Section 5.2 used data from all 726 genotyped seeds, while the direct

estimation approach of Section 5.3 used only the data for the 616 matched seeds, omitting

the 110 unmatched seeds. However, as argued in Section 5.3, such omission is correct – if

the 110 seeds arose from trees different than the 306 (292 adult) which were genotyped,

then they are extraneous information, and discarding them is no different than discarding

the many seeds from species other than Jacaranda which were obtained in the seed traps.

One might argue that this is ‘biasing’ the results against LDD events, but it really is not,

as there were plenty of tree-trap combinations at distances greater than 100m among the

tree-traps in the network on the FDP (+buffer zone). Indeed, as shown in Table 5.4, of the

292∗298=87016 such tree-trap combinations, 96% occur at such long distances. It is also true

that only 10% of the 616 matched seeds fell in such traps, with the other 90% falling in the

4% of the traps which were in the non-LDD (<100m) range.

So, perhaps the problem lies in the assumptions of the censored data approach. It was

noted briefly in Section 5.2 that an approximation was made there which might not be quite

valid. Let us re-examine this. For the censored data approach to be correct, the 726 seeds

should be a random sample of all seeds in the area. That is not quite correct, since the seeds

are a sample (probably not quite at random, either) from the 298 traps in the area, and the

200 network traps were not placed at random, but relatively near paths which were accessible.

The 98 ‘gap-traps’ that Andy Jones placed (see Figure 3.1) somewhat attempted to alleviate

this, but also are not truly randomly placed. Nonetheless, this assumption of randomness for

the tree-trap placement is not entirely baseless. If one assumed that the 292 genotyped adult

trees within the FDP(+buffer zone) were fixed in location, and then randomly distributed

the 298 traps within the 1000m∗500m FDP area, the distribution of tree-traps by distance
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class is not much different than what is shown in Table 5.4 for the 87016 tree-trap distances

actually observed. The main difference is that the 0−5m class and the 5−10m class are

under-represented, since the tree-trap network does not place traps directly beneath many

trees. This might make some difference if one were really very interested in estimates at

low distances, or if behavior of the function near the origin had a very large influence on

the upper tail, but that does not seem to be the source of our problem. One might also

argue that even if the trap placement was approximately random with respect to the 292

known genotyped trees, it might not be so with respect to the unknown off-site trees. This

seems very unlikely to be the source of any discrepancy either, especially since there was

no apparent trend to the location of unmatched seeds, such as being predominantly in the

southwest corner of the FDP.

Although not mentioned in Section 5.2 or [14], there is a technical problem with the

censored data likelihood of equation (5.1). That formulation is correct in one dimension, as

if one observes patients from a known time zero until an event happens, but the patients

are occasionally censored at some time t such that we know the event has not occurred

up to time t, but we do not know what happens afterwards. If one thinks of starting with

the seed in a trap and tracing it back to its source, with the wall at the edge of the buffer

zone corresponding to distance censoring, then the analogy seems to make sense. But we

do not really know that the source of the unmatched seed is exactly in the direction of the

nearest boundary, and we actually have more two-dimensional survival information, since

we know that the seed did not match any of the 292 trees in the FDP(+ buffer zone).

Trying to correctly express this 2-dimensional survival function for the censored data points

is extremely difficult. What was actually done in Jones [14] imposes a conservative bound

that causes the (1 − F (xi|φ)) terms in the censored part of the likelihood of equation (5.1)

to be larger than is correct. The overall effect is that the censored distances estimated by

the procedure used in [14] are, if anything, less than the true values! Thus, while there are

technical deficiencies in the censored data approach of [14], it is very unlikely that these
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are responsible for the discrenpancy between their results and those found from the direct

estimation method of Section 5.3.

So, what, then, might be happening? Why is the number of unmatched seeds so incon-

gruent with what we observe among the matched seeds? One possible answer is that at

least some of the 110 unmatched seeds did not really originate from outside the buffer zone.

Instead, they came from a known source, but either they (or the tree of origin) were geno-

typed incorrectly. Recall from Section 3.2 that all seeds which did not exactly match one of

the genotyped trees were considered to have originated from outside the buffer zone. This is

a reasonable assumption if one is sure that genotyping errors are very rare. However, if they

occurred only 2.03% of the time, that alone explains all the discrepancy, since an error rate of

2.03%, if all 8 alleles are genotyped independently, yields an 84.8% of correct genotyping per

seed, in accord with 616 matches out of 726 seeds genotyped. We investigated the literature

on genotyping errors and found it to be somewhat extensive, but not particularly specific,

in that we can not find any source which says “an error rate of X% per allele genotyped is

common”. There are many factors which affect error rates [1]. Two of the most important

are the skill of the person doing the genotyping, and the size of the fragment being used to

obtain the microsatellite DNA. For example, in our case, where both trees and seeds were

genotyped, one suspects that it is much easier to obtain good results from the trees’ leaf sam-

ples, since many are available, than it is from the small amount of material available from

a 2mg seed. Indeed, this seems to be borne out by the data shown in Table 6.1 concerning

‘missing alleles’. A missing allele occurs when neither allele shows up on the gel - a condition

sometimes known as ‘total dropout’ in the genotyping literature. Of the 299 adult trees that

were genotyped, 286 gave results at all 4 loci. In our analyses we used only the 291 which

had either no missing alleles or at most one locus (2 alleles) completely missing. For the 726

seeds, notice that the standards were much lower, with 78 of the 726 seeds having one locus

completely missing. The number of seeds with more alleles missing is not shown explicitly,

although we know from Table 3.4 that 864 seeds were originally examined and 138 of them
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failed to be genotyped, either because of lack of genetic material or because the number

of ‘total dropouts’ was deemed too large. So, clearly, seeds are much harder to genotype

than trees. From Table 3.4, we can also infer that the technicians analyzing the seed data

improved in proficiency between 2000 (when 27% of the seeds could not be genotyped) and

2002 (when only 7% failed). This sort of dramatic improvement is usually indicative of a

novice technician and might be an indication that s/he is prone to make other genotyping

errors, as discussed next.

Missing Trees Seeds
0 286 648
2 5 78
4 1 -
6 6 -
8 1 -
Total 299 726

Table 6.1: Missing Alleles for Genotyped Trees and Seeds

Total dropout is not common (from Table 6.1, one can infer that it occurred for only

0.4% of all tree loci and 2.7% of all seed loci used in the analyses), and it should not cause

any particular error, since the information for that locus is simply missing. So, by itself, total

dropout is more of a nuisance that causes loss of power than it is a source of bias. However,

total dropout rate is a warning of a more severe bias-causing error, ‘allelic dropout’, also

known as ‘false homozygosity’. What occurs there is that only one of the two alleles shows

up as a band on the gel, so the analyst scores this as a ‘double band’. A ‘double band’

actually occurs if the locus is homozygous for the allele of interest; i.e. if the two alleles

are the same. However, if the alleles are different and one drops out, the analyst will falsely

record this as a homozygous pair. Unlike ‘total dropout’, which is easy to identify, one does

not know for sure whether any particular homozygous result is a true homozygote or due to

‘allelic dropout’. Of course, if the proportion of homozygotes among the genotyped loci is

higher than expected theoretically, that is an indication that ‘allelic dropout’ is occurring.

To see whether there is any evidence of this for our data set, consider the data in Table 6.2.
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The rows represent the names of the four loci used in obtaining the microsatellite DNA from

the Jacaranda trees and seeds, chosen as described in Jones and Hubbell [13] from among 11

possible loci. These loci, at positions 9, 18, 21, and 31, have different numbers of alleles ever

observed, ranging from a low of 8 levels for locus 21 to a high of 11 for locus 18. In general, a

good locus is one that has many possible alleles, so that there is less chance for ambiguity in

making matches. The first of the four right-hand columns in Table 6.2 displays the results for

the 280 unique trees. (There were 292 genotyped adult trees used in the analyses of Chapter

5, but only unique patterns are considered here.) The ‘DZ’ column stands for ‘double zero’,

which is the code for total dropout, and, as noted before, we see that it is rare for trees,

with only 4 of the 280∗4=1120 tree loci experiencing the event. The column labeled ‘HM’

contains the number of homozygotes observed among the 280 trees at the given locus. It is

not immediately obvious from the summary given whether this number is more or less than

expected, or, in fact, what is expected. This is discussed more below.

The other three column-pairs on the right-hand side of Table 6.2 refer to various groups

of seeds. One could list all 726, or the 616 matched and 110 unmatched, but just as we do

not list all 292 trees, but rather only the 280 unique trees, we desire to consider unique seed

patterns. From left to right, the groups are 251us (153 unique matched seeds + 98 unique

non-matched seeds), 153mus (153 unique matched seeds) and 98umn (98 unique unmatched

seeds).

280trees 251us 153mus 98umn
Locus Levels DZ HM DZ HM DZ HM DZ HM
9 9 1 36 7 34 6 16 1 18
18 11 1 30 34 45 26 11 8 34
21 8 0 81 6 76 6 42 0 34
31 9 2 37 11 40 6 19 5 21
Total 4 184 58 195 44 88 14 107

Table 6.2: Total and Allelic Dropout for Trees and Seeds

The first of the 3 seed columns (251us) contains all 251 unique seeds patterns, with 153

being from the 616 matched seeds and 98 being from the 110 unmatched seeds (obviously,
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there are many more ‘repeats’ for the matched seeds). To see how the joint distribution of the

alleles for 280 unique trees and 251 seeds compare, one must examine Tables 6.3-6.6, for loci 9,

18, 21, and 31, respectively. In each table, the top panel contains the tree data and the bottom

contains the seed data. The total in the bottom right hand corner of each table is usually

slightly less than 280 (251) because the ‘DZ’ loci are not included. All the matrices shown are

upper-right triangular since the genotyping procedure can not differentiate between (A,B)

and (B,A), and arbitrarily stores all such heterozygote counts in the A<B cell. The values

shown as the row and column headings are the allele values and represent the lengths of

the di-nucleotide tandem repeats (DNTR) found at that microsatellite locus. At loci 9, 21,

and 31 the values are (almost) always even integers, whereas at locus 18 they are (almost)

always odd integers. The skip between levels is usually two because these are ‘di-nucleotide’

repeats, so the smallest level of increase is 2 units.

JACC9 172 178 180 182 184 186 188 190 192 194 196 Total
172 5 3 24 12 6 11 14 10 0 1 0 86
178 0 0 1 1 1 0 1 0 0 0 0 4
180 0 0 9 19 12 7 14 12 4 4 0 81
182 0 0 0 6 9 2 16 7 1 4 1 46
184 0 0 0 0 4 5 11 3 0 3 0 26
186 0 0 0 0 0 4 8 2 0 0 0 14
188 0 0 0 0 0 0 5 9 1 4 0 19
190 0 0 0 0 0 0 0 2 0 0 0 2
194 0 0 0 0 0 0 0 0 0 1 0 1
Total 5 3 34 38 32 29 69 45 6 17 1 279

JACC9 172 178 180 182 184 186 188 190 192 194 196 Total
170 0 0 0 0 0 0 1 0 0 0 0 1
172 5 1 11 11 5 4 16 10 0 0 0 63
178 0 0 1 0 0 0 0 0 0 0 0 1
180 0 0 8 12 9 3 16 7 6 4 0 65
182 0 0 0 2 12 2 21 3 0 5 0 45
184 0 0 0 0 2 7 10 5 0 1 0 25
186 0 0 0 0 0 3 12 2 0 1 0 18
188 0 0 0 0 0 0 13 8 0 4 0 25
190 0 0 0 0 0 0 0 1 0 0 0 1
Total 5 1 20 25 28 19 89 36 6 15 0 244

Table 6.3: Locus 9 Distribution of Allele Pairs (Top – Trees, Bottom – Seeds)
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JACC18 269 271 275 277 279 281 283 285 287 289 293 297 299 303 Total
269 6 6 8 10 8 3 7 1 1 0 0 21 0 0 71
271 0 2 2 8 3 1 7 2 2 0 2 17 2 0 48
275 0 0 1 4 4 1 4 1 0 0 1 9 0 0 25
277 0 0 0 2 2 4 6 2 2 0 0 16 1 0 35
279 0 0 0 0 3 0 3 2 4 0 0 18 1 0 31
281 0 0 0 0 0 0 0 2 1 1 0 8 0 0 12
283 0 0 0 0 0 0 0 3 2 0 0 12 3 0 20
285 0 0 0 0 0 0 0 0 1 0 1 8 0 0 10
287 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2
293 0 0 0 0 0 0 0 0 0 0 0 4 2 0 6
297 0 0 0 0 0 0 0 0 0 0 0 16 2 1 19
Total 6 8 11 24 20 9 27 13 13 1 4 131 11 1 279

JACC18 269 271 275 277 279 281 283 285 287 289 293 297 299 303 Total
269 13 8 5 19 4 1 2 0 0 1 0 16 0 0 69
271 0 6 1 5 2 1 5 3 1 0 0 15 1 0 40
275 0 0 2 0 2 0 1 0 0 0 0 8 0 0 13
277 0 0 0 4 0 2 4 1 0 0 0 15 1 0 27
279 0 0 0 0 2 0 1 2 2 0 0 8 2 0 17
281 0 0 0 0 0 0 0 0 1 0 0 3 0 0 4
283 0 0 0 0 0 0 1 3 1 0 0 9 1 0 15
285 0 0 0 0 0 0 0 1 1 0 1 4 0 0 7
287 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2
288 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
293 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2
294 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2
295 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
297 0 0 0 0 0 0 0 0 0 0 0 16 1 0 17
Total 13 14 8 28 10 4 14 10 6 1 1 99 9 0 217

Table 6.4: Locus 18 Distribution of Allele Pairs (Top – Trees, Bottom – Seeds)

From Table 6.1 we had noted that the seeds had a much higher rate of total dropout than

the trees, and from Table 6.2, we can see that locus 18 seems to be the main offender, followed

by locus 31, with loci 9 and 21 occurring the least (but all occurring at rates significantly

higher than for the 280 trees). Since total dropout is a warning sign for ‘allelic dropout’, we

might expect this same sort of pattern by locus. What we hope to glean from the data in

Table 6.2 and Tables 6.3-6.6 is whether there is evidence of excess homozygosity in the seeds

relative to the trees, especially for the unmatched seeds. The standard procedure used in

genetics to measure excess homogeneity is the deviation from Hardy-Weinberg equilibrium.

In statistical terms, the Hardy-Weinberg model simply states that the alleles pair with one

another independently in the population. We’re not particularly interested in testing that

hypothesis – we’re more interested in seeing if there is a trend toward homozygosity for the
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JACC21 230 232 234 236 240 242 244 246 248 250 252 Total
230 50 4 6 102 15 13 0 3 4 10 0 207
232 0 0 0 1 1 0 1 0 0 0 0 3
234 0 0 0 2 0 0 0 0 0 2 0 4
236 0 0 0 25 7 10 0 0 4 9 0 55
240 0 0 0 0 0 2 0 0 1 0 0 3
242 0 0 0 0 0 1 0 0 0 2 0 3
248 0 0 0 0 0 0 0 0 2 0 0 2
250 0 0 0 0 0 0 0 0 0 3 0 3
Total 50 4 6 130 23 26 1 3 11 26 0 280

JACC21 230 232 234 236 240 242 244 246 248 250 252 Total
230 39 7 5 90 12 8 0 0 2 11 1 175
232 0 0 0 0 1 0 1 0 0 0 0 2
233 0 0 0 0 1 0 0 0 0 0 0 1
236 0 0 0 33 5 8 0 0 1 12 0 59
242 0 0 0 0 0 0 0 0 0 3 0 3
248 0 0 0 0 0 0 0 0 1 0 0 1
250 0 0 0 0 0 0 0 0 0 3 1 4
Total 39 7 5 123 19 16 1 0 4 29 2 245

Table 6.5: Locus 21 Distribution of Allele Pairs (Top – Trees, Bottom – Seeds)

seeds as opposed to the trees, especially for the ungenotyped seeds. To do this, we calculate

the expected number of homozygotes at a locus under H-W equilibrium, as:

E(HM) = (
k∑

i=1

N2
i )/(4N), (6.1)

where k is the number of allele classes for that locus, Ni is the number of occurrences of allele

i among the 2N alleles, and N is the number of non-dropout individuals observed at that

locus. This expected number of homozygotes is then compared with the observed number of

homozygotes (the values listed as ‘HZ’ in Table 6.2; the sum of the respective diagonals in

Tables 6.3-6.6) and a proportion of excess homozygosity, PEH (which may be negative), is

calculated as:

PEH =
Obs− E(HM)

E(HZ)
=

Obs− E(HM)

N − E(HM)
(6.2)
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JACC31 137 138 140 142 144 146 148 150 152 154 156 169 Total
138 0 0 3 1 0 0 0 1 0 1 1 0 7
140 0 0 16 33 0 15 43 8 6 18 4 0 143
142 0 0 0 7 3 15 16 4 2 8 2 0 57
144 0 0 0 0 0 0 4 0 0 1 0 0 5
146 0 0 0 0 0 1 9 3 4 5 3 0 25
148 0 0 0 0 0 0 10 10 2 10 3 1 36
150 0 0 0 0 0 0 0 0 1 0 0 0 1
152 0 0 0 0 0 0 0 0 1 0 1 0 2
154 0 0 0 0 0 0 0 0 0 2 0 0 2
Total 19 41 3 31 82 26 16 45 14 1 278

JACC31 137 138 140 142 144 146 148 150 152 154 156 169 Total
136 0 0 0 1 0 0 0 0 0 0 0 0 1
137 1 0 0 0 0 0 0 0 0 0 0 0 1
138 0 1 3 2 0 0 0 0 0 5 0 0 11
140 0 0 20 28 0 18 44 9 2 14 2 0 137
142 0 0 0 7 2 13 9 5 3 7 1 0 47
144 0 0 0 0 0 0 3 0 0 0 0 0 3
146 0 0 0 0 0 2 1 1 0 7 1 0 12
148 0 0 0 0 0 0 5 10 0 6 2 0 23
150 0 0 0 0 0 0 0 0 0 0 1 0 1
154 0 0 0 0 0 0 0 0 0 4 0 0 4
Total 1 1 23 38 2 33 62 25 5 43 7 0 240

Table 6.6: Locus 31 Distribution of Allele Pairs (Top – Trees, Bottom – Seeds)

Note that this is not a statistic for calculating significance from the hypothesis of Hardy-

Weinberg equilibrium, but simply a measure of excess. The Observed, Expected, and PEH

values for the trees, unique seeds, unique matched seeds, and unique unmatched seeds are

shown in Table 6.7. Note that for the unique tree set, there is a tendency for excess heterozy-

gozity (expressed as negative excess homozygosity, PEH). This is not uncommon in natural

populations, where greater diversity in alleles may increase the odds of survival. For the 251

unique seeds, all the PEH’s are more positive than they were for the trees (although only

that for Locus 18 is itself positive) indicating the expected trend toward homozygosity. If one

decomposes the 251 seeds into those from the 153 unique matched seeds and those from the

98 unique unmatched seeds, the difference becomes very striking. The unique matched seeds
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have a PEH pattern similar (or perhaps slightly more negative) than the original trees. This

is not too surprising, since these seeds match with some subset of the trees. However, the 98

unmatched seeds have a much higher homozygosity proportion, with all loci being positive.

Roughly speaking, the increase in homozygosity rate for the unmatched seeds relative to

the trees appears to be 4%, 30%, 8%, and 12% for the four loci, respectively. Of course,

these are rough estimates and far above the true rate of excess homozygosity (since we’ve

selectively chosen the non-matched seeds), but it is fairly convincing evidence that allelic

dropout, especially at loci 18 and 31, may be the cause of some of the unmatched seeds.

280 Unique Trees 251 Unique Seeds 153 Unique Matched Seeds 98 Unique Unmatched Seeds
LOCUS HM E(HM) PEH HM E(HM) PEH HM E(HM) PEH HM E(HM) PEH
9 36 39.55 -.015 34 36.43 -.012 16 21.10 -.012 18 15.80 +.027
18 30 38.15 -.034 45 33.00 +.065 11 19.82 -.082 34 14.26 +.261
21 81 91.93 -.058 76 82.52 -.040 42 51.05 -.094 34 32.36 +.025
31 37 50.79 -.061 40 47.09 -.037 19 30.79 -.101 21 16.97 +.053

Table 6.7: Excess Homozygosity for Unique Trees and Seeds

A third kind of error that can occur in genotyping is ‘binning error’. The actual number

of DNTR’s is an integer, but the distance slid on the gel is continuous, so there is some

sort of binning convention to assign alleles to the closest even (or odd, for locus 18) integer.

Sometimes the drift is too large and the allele is assigned to the wrong bin. Di-nucleotide

tandem repeats seem more vulnerable to this error than others, which is why much modern

genotyping, if tandem repeats are utilized to measure alleles, uses tri-nucleotide or tetra-

nucleotide tandem repeats. Unfortunately, DNTR was the state of the art in 2000-2002, so

we must do the best we can with it. There are no good literature estimates for how often

such binning errors occur, although all models for such have a much higher probability for

a shift of ±2 units than for ±4 units, for example. There is also some evidence that binning

errors, unlike allelic dropout, may not occur independently for different loci from the same

individual.

Finally, there is always the possibility of human recording error. Although the genotyping

process was somewhat automated, it is clear that some human intervention occurred. For

example, for locus 21, ‘236’ is a very common allele value, but one seed had ‘326’, obviously
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a transcription error, recorded. Similarly, one allele for locus 18 was recorded as ‘27’, when it

was obviously something in the range of 270−279. There were also some judgment calls made

by Andy Jones concerning when a match occurred if six of the alleles matched perfectly and

the other two were allelic dropouts. Careful examinations of this kind were what allowed the

number of unmatched seeds to drop from 119 at the time of the original analysis to 116 at

the time of the publications of the Jones et. al [14] article to 110 at the current time. One of

the largest changes from unmatched to matched (7 seeds) is worth mentioning. It arose from

our examination of the unmatched seeds to see if any of these uniquely matched each other.

If so, that might be an indication that there was some large off-site tree whose seeds were

drifting onto the FDP. For the most part, the answer to that question was ‘no’; the 110 seeds

currently classified as unmatched contain 98 unique patterns. However, there was one group

of 7 seeds in 3 nearby traps which matched perfectly (or perfectly with one allelic dropout)

with each other but not with any genotyped tree. These three traps (#35, #36, and #37)

are all very near the boundary of the FDP. We have examined all nearby trees’ alleles and

can not find any which seem like they are matches with minor recording errors. We are sure

that there must be a tree with the exact pattern of these 7 seeds very near the traps, most

likely at the very edge of the buffer zone near the FDP. We are not sure why this tree was

not genotyped, but feel sure that it exists and have added it as a 292nd adult genotyped

tree in our analyses. We do not think that it is at all credible that these 7 seeds come from

some super-tree over 100m away, out of the buffer zone. Although there is certainly evidence

in the data set of seeds dispersing more than 100m from their source, there is no evidence

at all of one tree dispersing so many seeds over 100m. Even the most fecund tree which

we observed, which dispersed 96 seeds in total, did not have 7 caught seeds dispersed more

than 30m away. In any case, we were able to detect some human errors and correct them,

but there may be others which are still lurking in the data and not amenable to statistical

detection.
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6.2 Global Estimation of Misclassification Proportion

The previous section discussed genotyping errors and gave some evidence that they have

occurred in the set of 726 genotyped seeds, but with little attempt to quantify exactly how

often they occurred. This section attempts to produce estimates and confidence bounds for

the proportion of misclassified seeds by two very different methods, the Hypergeometric-

Poisson method and the Density-Matching method, with both demonstrating that a sub-

stantial proportion of the 110 unmatched seeds are likely misclassified. Both methods, while

developed for the FDP data set, are easily modified to estimate misclassification for similarly

collected genotyped data sets.

Both methods were developed because the distribution of unmatched seeds did not “look

right”. One expects such seeds, if they truly were from off-site trees, to be more concentrated

in the traps near the edges of the FDP, but there was no evidence of this at all. As a matter of

fact, the best predictor of presence of an unmatched seed in a trap is not the trap’s location,

but how many matched seeds are in the trap. This does not make much sense if the seed is

really from off-site, but seems quite reasonable if one believes that a certain proportion of

these seeds are, in fact, genotyped seeds that have been misclassified. A display that partially

demonstrates this is Table 6.8. There, each of the 298 traps is classified according to how

many non-matched seeds were present in the trap. Each category was then sub-divided into

those traps that contained at least 1 matched seed and those with no matched seeds. From

the last column, we see that there were 113 traps among the 298 which never had any seeds

sampled from them. (Or, possibly seeds were sampled, but they were among the 138 for

which genotyping failed.) Of the remaining 185 traps, there were 17 with only non-matched

seeds, 106 with only matched seeds, and 62 with both matched and non-matched seeds. A

simple 2×2 odds-ratio statistic for association of matched and unmatched presence for the

298 traps yields a value of 3.89, very strongly indicating (p<0.0001) that the two types of

seeds are not independent, but positively associated with one another. This makes no sense

at all, since the off-site seeds, if the unmatched seeds are indeed from off-site, should behave
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approximately independently of the matched seeds. Indeed, if anything, one might expect a

negative association, since traps near the center of the FDP are expected to receive seeds

from on-site trees and rarely from off-site, while the converse would be true for traps near

the boundaries.

Non-Matched Total MatchSeed>0 MatchSeed=0
Seeds Traps Traps Traps

4 1 1 0
3 6 5 1
2 16 15 1
1 56 41 15
0 219 106 113

Total 298 168 130

Table 6.8: Distribution of Traps by Number of Non-Matched Seeds

The fact that independence was so strongly rejected caused us to formulate a model for the

number of unmatched seeds in a trap. The simplest version of this, called the Hypergeometric-

Poisson model, can be written as:

Pr(X = x|T, n) =
T−n+x∑

k=x

(
k
x

)(
T−k
n−x

)
(

T
n

) λk

k!
exp(−λ) (6.3)

where

x = observed number of unmatched seeds in a trap

T = Total number of seeds (genotyped & ungenotyped) caught in trap

n = Total number of seeds (matched and unmatched) sampled from trap

λ = Poisson parameter.

What this model means is that there is an unknown Poisson parameter, λ, which governs

the unobserved number k of off-site seeds that land in a trap. Assuming no genotyping

errors, this number k must be at least as large as the observed number of non-matched seeds

x which are observed when a sample of n seeds is chosen at random from the T seeds which

were caught in the trap. The values for x and n are observed for all 298 traps, although, of



75

course, for the 113 traps where n=0, there is no likelihood to be calculated. The value of T

for the 200 network traps is known (or taken) to be the sum of the number of seeds observed

in that trap in the years 2000 & 2002. For the gap-traps, since they are not part of the

official network, we do not know what T is, since Andy Jones simply reported the number of

seeds he genotyped from these traps, not the total collected for the bi-year period. For the

network traps, the ratio of T/n for most traps was in the range 5<(T/n)<10, so we tried

using both T=10×n and T=5×n for the gap-traps, with T=5×n yielding slightly better fits.

The maximum likelihood estimate of λ, if one maximizes the likelihood from equation (6.3)

over all 185 traps for which any of the 726 genotyped seeds were found is, λ̂=1.90. Goodness

of fit according to the G-squared statistic is poor (G2/df=478/184=2.60), indicating that

this model completely fails to model the situation.

The fit above is the best which one can achieve if one holds steadfastly to the belief that

there are no genotyping errors - every unmatched seed truly originated from a tree beyond

the buffer zone. An improved generalization of the model allows introduction of another

parameter, P , which is the probability that an on-site seed is incorrectly categorized as a

non-matched seed. In that case, the model of (6.3) is generalized to:

Pr(X = x|T, n) =
T−n+x∑

k=x

x∑
xf=0

(
k
xt

)(
T−k
n−xt

)
(

T
n

) λk

k!
exp(−λ)×

(
n− xt

xf

)
P xf (1− P )n−x (6.4)

where

x = observed number of unmatched seeds in a trap

T = Total number of seeds (genotyped & ungenotyped) caught in trap

n = Total number of seeds (matched and unmatched) sampled from trap

λ = Poisson parameter,

P = Binomial misclassification parameter.

In this formulation, the observed number of unmatched seeds, x, is decomposed into two

unobserved parts, x=xf+xt, representing the false (i.e. misclassified) and true (i.e. from off-

site) unmatched seeds. As with the unobserved k, the possible values of xf are summed over
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Figure 6.1: 95% Joint Confidence Ellipsoid for (p, λ)

when calculating the likelihood. When this likelihood was evaluated over all 185 traps con-

taining genotyped seeds, the MLE’s were (P̂ , λ̂)= (0.127, 0.42), with (G2/df=343/183=1.87).

This fit is still suspect, but vastly superior to that from assuming that P=0, as above. Figure

6.1 uses the profile likelihood method (adjusted for over-dispersion) to find a joint 95% con-

fidence ellipsoid for (P , λ). Note that (P , λ)=(0, 1.90), the original solution obtained above,

is far from the ellipse, indicating that the assumption of no genotyping error is very unre-

alistic. The MLE point estimate at the center of the ellipse corresponds to the situation

where only 20 of the 110 unmatched seeds are real; the other 90 are mistakes! Of course,

this is just a point estimate, and there is a fair amount of variability, as indicated by the

profile. The further to the left one moves in the ellipse, the lower P is, and, hence, the fewer

of the 110 unmatched seeds are considered erroneous. The upper left bound of the ellipse,
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near the point (P , λ)=(.085, 0.68) corresponds to an expectation of 53 real off-site seeds and

57 misgenotyped seeds. So, by the Hypergeometric-Poisson approximation method, there

is fairly convincing evidence that at least half of the 110 unmatched seeds may be due to

genotyping mistakes.

DC Distance MDPT Tree trap Match616 Fictreetrap R616o E616o L616f R616f E616f
1 0-5m 2.5 7 8 0 1.1429 0.00 1.51 4.5174 0.00
2 5-10m 7.5 33 67 0 2.0303 0.00 0.66 1.9285 0.00
3 10-15m 12.5 48 75 0 1.5625 0.00 0.07 1.0732 0.00
4 15-20m 17.5 93 98 0 1.0538 0.00 -0.41 0.6665 0.00
5 20-25m 22.5 88 76 0 0.8636 0.00 -0.82 0.4415 0.00
6 25-30m 27.5 115 33 0 0.2870 0.00 -1.19 0.3055 0.00
7 30-35m 32.5 129 55 0 0.4264 0.00 -1.52 0.2183 0.00
8 35-40m 37.5 153 21 0 0.1373 0.00 -1.83 0.1600 0.00
9 40-45m 42.5 177 47 0 0.2655 0.00 -2.12 0.1196 0.00

10 45-50m 47.5 187 12 0 0.0642 0.00 -2.40 0.0909 0.00
11 50-55m 52.5 193 14 0 0.0725 0.00 -2.66 0.0701 0.00
12 55-60m 57.5 233 10 0 0.0429 0.00 -2.91 0.0547 0.00
13 60-65m 62.5 235 13 0 0.0553 0.00 -3.14 0.0431 0.00
14 65-70m 67.5 239 4 0 0.0167 0.00 -3.37 0.0343 0.00
15 70-75m 72.5 261 0 0 0.0000 0.00 -3.59 0.0276 0.00
16 75-80m 77.5 285 5 0 0.0175 0.00 -3.80 0.0223 0.00
17 80-85m 82.5 282 5 0 0.0177 0.00 -4.01 0.0182 0.00
18 85-90m 87.5 328 4 0 0.0122 0.00 -4.21 0.0149 0.00
19 90-95m 92.5 331 3 0 0.0091 0.00 -4.40 0.0123 0.00
20 95-100m 97.5 329 3 0 0.0091 0.00 -4.59 0.0101 0.00
21 100-150m 125 4062 18 41 0.0044 0.18 -5.66 0.0035 0.14
22 150-200m 175 5173 11 360 0.0021 0.77 -6.26 0.0019 0.69
23 200-300m 250 12740 13 3188 0.0010 3.25 -6.84 0.0011 3.40
24 300-400m 350 13579 10 8342 0.0007 6.14 -7.43 0.0006 4.96
25 400-500m 450 12381 4 15412 0.0003 4.98 -7.90 0.0004 5.70
26 500-600m 550 10476 4 24600 0.0004 9.39 -8.31 0.0002 6.04
27 600-700m 650 8529 1 33807 0.0001 3.96 -8.68 0.0002 5.75
28 700-800m 750 6810 2 42376 0.0003 12.45 -9.01 0.0001 5.16
29 800-900m 850 5155 0 50473 0.0000 0.00 -9.32 0.0001 4.51
30 900-1000m 950 3211 0 58445 0.0000 0.00 -9.61 0.0001 3.91
31 1000-1100m 1050 1037 0 65663 0.0000 0.00 -9.89 0.0001 3.34
32 1100-1200m 1200 117 0 67285 0.0000 0.00 -10.27 0.0000 2.33
33 1200-1300m 1250 0 0 64595 0.0000 0.00 -10.39 0.0000 1.98
34 1300-1400m 1350 0 0 58880 0.0000 0.00 -10.63 0.0000 1.43
35 1400-1500m 1450 0 0 50345 0.0000 0.00 -10.86 0.0000 0.97
36 1500-1600m 1550 0 0 40991 0.0000 0.00 -11.08 0.0000 0.64
37 >1600m 1650 0 0 97982 0.0000 0.00 -11.29 0.0000 1.23

Total 87016 616 682782 41.12 52.16

Table 6.9: Estimated Off-site Seeds by Density Matching Method

One objection to the Hypergeometric-Poisson method is that it does not take distance into

account, since it assumes the same Poisson intensity (λ) for each trap to experience an off-site
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seed landing. A very straight-forward method which does take distance into account is the

Density-Matching method. This method can best be illustrated by examination of Table 6.9.

The first 5 columns of this table are identical to those of Table 5.4, showing the distribution

of the 616 matched seeds (Match616) relative to the distribution of the 87016 tree-trap

distances. This allows calculation of the crude observed rate (R616o=Match616/Tree trap)

shown in the ‘R616o’ column of Table 6.9. The column labeled ‘Fictreetrap’ is of much

relevance here. It is calculated by assuming that the adult Jacaranda trees beyond the buffer

zone (the source from which true unmatched seeds must have arisen) have the same spatial

density as in the FDP+buffer zone (292 trees/840000m2), and then arranging these fictitious

trees in a grid pattern with this density up to 900m away from the outer edge of the buffer

zone in all directions. Next, for each of these fictitious off-site trees, the distance between it

and each of the 292 traps on the FDP was calculated and binned, as shown in Table 6.9.

Of course, the minimum possible distance class for these trees is 100−150m, and this event

would be rare (only 41 expected occurrences), since it would require both the existence of

a tree near the outer buffer zone boundary and a trap in the FDP near the inner buffer

zone boundary. The most typical distance classes are very large, such as 1200-1300m. The

Density-Matching method now simply says that the off-site trees will have the same seed

catching rate as was observed for the matched seeds in those same classes; i.e. the column

of the table given by E616o=Fictreetrap×R616o. For the first 20 distance classes, the value

of R616o is irrelevant, since there are no off-site trees within those ranges. However, as the

distance increases beyond 100m, more tree-trap combinations become eligible. The empirical

rates estimated by R616o are very low beyond 100m, but the number of possible fictitious

tree-trap combinations is high, so a non-trivial expected value accrues in the E616o column.

It sums to 41.12, so if the empirical rate were exactly correct for the off-site trees, we expect

about 41 real off-site seeds to appear in our sample (and, thus, the other 69 unmatched

seeds must be due to genotyping error). This point-estimate is certainly consistent with the

values found by the previous method, but a confidence interval calculation remains elusive.
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This estimate is clearly rather variable, since the empirical R616o estimate is so erratic.

For example, one does not really believe that the true rate for 70-75m is zero just because

no 70m distance seeds were observed for the 616 matched seeds. Similarly, although there

were no observed matched seed distances at greater than 800m does not mean that this

could never happen. It is quite possible that the true rate for this category is so low that

it was never observed in the 5155 network tree-traps in that category, but with 10 times as

many observations in that category for the fictitious trees, it might occur. Another point to

consider here is the large influence played by the two observations in the 700-800m range.

If either one of these seeds had not been present, the estimate in E616o would decrease by

6 seeds. As usual when making inferences about extremes in the tails, there is little data to

go upon and results depend heavily upon what one wants to assume about tail behavior.

The ‘L616f ’ column represence a parametric fit to the log-intensity for the 616 seed dataset

which is very similar to ‘lqn’ of Table 5.4 for d < 100m, but closer to ‘en’ for d > 100m. The

corresponding ‘R616f ’ and ‘E616f ’ columns display the rate and number of off-site seeds

which would be expected under this log-intensity, assuming that the off-site adult Jacaranda

trees have the same spatial density and fecundity distribution as the 292 on-site adult trees.

This provides slightly smoother log-intensity estimates and a slightly larger estimate (52.16)

of the expected number of real non-matched seeds which should be present. So, in summary,

the point estimate based on the empirical 616 seed rate, the fitted 616 seed rate (and indeed

estimates based on any of the six distance functions examined in Section 5.3), all lead to the

conclusion that at least half of the non-matched seeds are misgenotyped.

6.3 Corrections for Misclassification and Revised Estimates

Section 6.1 of this chapter discussed the possibility of genotyping errors occurring and pro-

duced some evidence that both ‘total dropout’ and ‘allelic dropout’ had occurred during

the seed genotyping. Section 6.2 produced two methods to estimate the global proportion

of misclassification, and both agreed that at least half of the 110 non-matched seeds might
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indeed be seeds which should have been matched to an on-site source. These are nice results

from a theoretical perspective, but from a practical viewpoint, one desires to know precisely

which seeds were the ‘mistakes’, so that these can be corrected, enabling the methods intro-

duced in Chapter 5 to be applied correctly. Unfortunately, estimating global misclassification

rates is much easier than specifying exactly which unmatched seeds are ‘wrong’. We initially

attempted to do this by eye, believing that it would be easy to find non-matches which

differed by one allele from known tree sources. While it is true that some non-matched seeds

immediately became apparent as matched seeds with an allelic dropout, the process was not

nearly as easy as one might think, since many genotyped trees (which we believe to be cor-

rect and unique) have very similar profiles. We must ensure that we do not go overboard in

switching an assignment from ‘unmatched’ to ‘matched’ based on unsound reasoning. Even-

tually we decided to evaluate every seed(k) in a trap(j) by calculating a score that measures

its probabilistic distance to each source tree(i) (including a fictitious perfectly matched off-

site source), with the seed then being matched to the tree which gave the best score. This

is what Andy Jones did initially, too, although his scoring algorithm was a very simple one

that matched a seed to the nearest tree which yielded a perfect match on all 8 alleles and

to an off-site ‘non-match’ if this did not occur. This yielded 552 perfect matched seeds. He

modified this slightly later to allow matches to also occur if there were an agreement on all

six observed alleles and total dropout for another pair. This added 64 more matches, for the

current total of 552+64=616 matches. Our method includes Dr. Jones’ method as a special

case, but allows more flexibility in making other assignments.

From Chapters 4 and 5, we already have some measures of how likely tree(i) is to deposit

a seed in trap(j), such as:

ln(λij) = β0 + β1 ∗ qij + β2 ∗NAFX(i),

so this is a good start in measuring the log(likelihood) that a seed from tree(i) ends up in

trap(j). If the seed(k) in trap(j) is a perfect match to tree(i), the above is a good score to

use. However, if the seed is not a perfect match to tree(i), it is still possible that tree(i)
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is the true source, but that various genotyping errors have occurred. Such errors are rare

(probabilistically unlikely), so they must be penalized in some way. Nevertheless, if after

appropriate penalization, a certain tree has a higher score than a theoretical perfect match

far away, the seed should be assigned to the source which yields the better score. Thus, we

considered score functions of the form:

Zik(j) = β0 + β1 ∗ qij + β2 ∗NAFX(i)− cz ∗ nz(k)− cd ∗ nd(k, i)− cs ∗ ns(k, i) (6.5)

where i, j, and k refer to the tree, trap, and seed respectively, cz, cd, and cs are some positive

penalty coefficients to be determined, and

nz(k) = Number of double zero (‘total dropout’) loci for seed k,

nd(k, i) = Number of loci in seed k which would match to tree i if an allelic dropout

event had occurred, and

ns(k, i) = Total number of absolute bin shift units between the alleles of seed(k) and

tree(i), excluding loci with nz or nd events.

An example illustrating this is shown in Table 6.10. Suppose that Tree(i) and Seed(k)

alleles are as shown there. In this case, nz(k)=1 because of the allelic dropout at Locus 18.

The value of nd(k, i)=1 also, because Seed(k)’s Locus 31 homozygote pair (148, 148) could

be a match to Tree(i)’s Locus 31 pair (148, 154) if allelic dropout had occurred. The 4 alleles

at the other two loci are then compared and summed to obtain ns(i, k)=0+0+|−2| + |4| =

6, since there is a perfect match at Locus 9, but discrepancies of −2 and +4 units at Locus

21.

Locus 9 Locus 18 Locus 21 Locus 31

Tree(i) 180, 182 283, 297 236, 236 148, 154
Seed(k) 180, 182 0, 0 234, 240 148, 148

Table 6.10: Sample Tree-Seed Allele Comparison

There are several matters to consider in developing this score function and algorithm:
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(a) What are the appropriate penalties (cz, cd, cs) for errors?

(b) What is the location of the hypothetical off-site perfect-match tree?

(c) How does one handle suggested switches among matched trees?

To be consistent with the results of section 6.2, the appropriate penalties must be deter-

mined by trial and error so as to leave only about 40-50 seeds as unmatched. A value of cz

twice as large as cd may be reasonable since a total dropout can be thought of as a double

allelic dropout. Probably cs should be set higher than cd, since allelic dropout is generally

believed to be more common that bin shift. Care must be taken not to put the hypothetical

off-site ‘perfect match’ tree too close to the buffer zone, or most unmatched seeds (and some

matched seeds) will choose the off-site tree as the best match. In our algorithm, we did not

allow a matched seed to switch to an off-site ‘match’, even if the off-site match score was

higher. We had not considered the possibility that the algorithm would recommend switching

a matched tree to another genotyped (but not perfectly matched) tree, but this did happen

if we made our penalties too small. At first, we over-rode these suggestions, but after more

careful analysis, we decided to keep some of these switches.

Initially, we set all the penalties very high (cz=cd=cs=10) to see if the algorithm re-

created the original assignment of trees. It did so in that any seed which was not a perfect

match on all 8 alleles was matched to an off-site tree. That is, the procedure yielded 552

matches and 174 non-matches. Some seeds which should have been matched to long distance

sources were instead matched to fictitious ‘nearer’ off-site trees, but the over-ride provision

kept this from being implemented. If cd=cs=10, but cz=0, we recreated Andy Jones’ initial

categorization of 616 matched and 110 unmatched seeds. As the cz value was lowered in

tandem with the cd value, in a 2:1 ratio, with cs kept high, we found that the number of

originally non-matched seeds which remained unmatched was about 70-80. To lower this

value to the expected 40-50 or so, we needed to reduce cs, but doing this led to more

internal switches, which we wished to avoid. Table 6.11 displays results for some of the
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parameter values we tried. In this table, the row values are cs, the column values are cd,

and cz=0 in all cases. There are two values reported in each cell. The number above the

diagonal is the number (out of 174) of non-matched seeds which stay non-matched under

this parameter configuration. The number beneath the diagonal is the number (out of 552)

originally matched seeds which are now paired to a different (not perfectly matched) tree

after implementaton of the algorithm. The four corner values illustrate the point. If both cd

and cs are set high, as shown in the lower right-hand corner of Table 6.11, most (82) of the

174 unmatched seeds remain unmatched and very few (9) of the 552 matched seeds change

their tree affiliation. (Some of those that do change are revealing – they are apparent perfect

matches to trees that are hundreds of meters away, but could, with a simple allelic dropout,

be perfect matches to a very nearby tree which has several other perfect match seeds in the

same trap as the seed in question. There is little doubt in our mind that this non-perfect

assignment is the correct one.) If cs and cd are both set low, as in the upper left of the

table, we have the undesirable situation where every unmatched seed has found a match,

but a great many of the 552 perfectly matched seeds have also changed their affiliations.

This means that we are almost totally ignoring genetic information and matching seeds to

the nearest large tree. Somewhat surprisingly, this seems to achieve the correct answer for

446 of the 552 perfectly matched seeds, since only 106 are switched. Although it is easy to

find regions of the table which are not good, it is hard to say exactly what is right. The

MLE point-estimate from the Hypergeometric-Poisson method predicted that only 20 of the

non-matched seeds are correct, so this corresponds to a point near (cs=0.225, cd=0.225), but

this seems to have far too much switching of matched seeds. If we try for the point estimate

from the Density-Matching approach (which is in the feasible region for the Hypergeometric-

Poisson approach), we want about 52 of the non-matched seeds to remain unmatched. This

appears to occur near the point (cs=0.50, cd=0.40), although this does lead to 12 switches

among the 552 original perfectly matched seeds. Our examination of these 12 switches leads

us to believe that over half are surely correct, whereas others are questionable, depending on
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exactly how strongly one feels about the relative probability of a long distance event versus

the probability of a bin shift.

cs\cd 0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 1.50
0.05 0/106 0/106 0/106 0/104 1/97 1/94
0.10
0.15
0.20 15/31 15/31
0.25 23/20 23/20
0.30
0.35
0.40 42/15 42/15 42/15 43/14 49/14 52/14
0.45 46/12 46/12 47/12 48/12 49/12 49/12
0.50 50/12 51/12 51/12 51/12 52/12 52/12
0.55 56/12 57/12 58/12
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00 74/10 76/10 77/10 80/10 82/9

Table 6.11: Non-Match Holdouts/Match Switches for Selected cs and cd

Once the general form of the score function was found, we tweaked it in various ways, using

slight refinements of the distance (q) and fecundity (NAFX) functions displayed in equation

(6.5) to make the fit better. For example, as noted in Section 5.3, both the qn and ql log-

intensity functions are more steep than the empirical el log-intensity function beyond 100m.

To make sure that use of qn did not bias the results away from LDD results, we estimated

a log-intensity function which behaved the same as qn for distances <100m, but more like

en for distances >100m. In the end, using this function and (cz=0, cd=0.40, cs=0.50) in

the score function, our best correction for the data is that 52 of the 110 non-matched seeds

belong to off-site trees, while 58 are matched to on-site trees, acknowledging genotyping

errors. In addition, 23 of the 616 matched seeds are switched to non-perfectly-matching, but
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significantly closer trees, with this happening 12 times for the 552 original perfectly matched

trees and 11 times for the 64 trees which were 6-matches. This is summarized in Table 6.12.

Original Match New Match Off-site Total
Perfect Match at 4 Loci 540 12 0 552
Perfect Match at 3 Loci + ‘00’ 53 11 0 64
Unmatched 0 58 52 110

Total 593 81 52 726

Table 6.12: Comparison of Original and Final Genotyped Seed Resolutions

The entire procedure of using the score function of equation 6.5 to produce the results in

Table 6.12 seems reasonable, but is not statistically rigorous. It would be preferable to specify

prior distributions for the three types of genotypic error – total dropout, allelic dropout, and

bin shift, and then to use Bayesian methods to allow the data to select the optimal values of

the paramters cz, cd, and cs. Unfortunately, the previous research on genotyping errors is not

particularly precise concerning the rates of these errors, since they depend so heavily upon

the amount of genetic material available for genotying and upon the skill of the technician.

For the 81 seeds in Table 6.12 for which the score function of equation 6.5 found switches

in tree assignment to be appropriate, there were 19 total dropouts (+59 for other seeds),

74 allelic dropouts, and 82 bin shifts. Over the entire data set of 726 genotyped seeds, this

corresponds to a locus dropout rate of .0268, an allelic dropout rate of .0127, and an allelic

bin shift rate of .0141. All of these values are within the realm of possibility for genotypic

errors of these types, but are higher than one expects when genotyping is performed by

experts using modern (tetra-nucleotide) tandem repeat procedures. The total dropout and

allelic dropouts found in the 81 seeds appear to be justified, but there is some doubt about

the relatively high rate of bin shift errors. Of the 82 claimed bin shift errors, 32 require a

shift of two units, 18 require a shift of four units, and the other 32 require larger shifts. Most

experts [1] believe that 4-shift errors are less common than 2-shift errors, and that 6-shift

and higher errors almost never occur under ordinary circumstances.
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Table 6.13 compares the dispersal distribution of the original 616 matched seeds with the

revised set of 674 ‘matched’ seeds. The first 6 columns are identical to those of Table 6.9,

except for ‘Match674’, which is the newly estimated distribution. Of course, it is very similar

to ‘Match616’, since there has been no change at all to 593 of the 674 seeds. However, one

will note that there are fewer very extreme distances observed, and that three of the longest-

dispersing seeds from the original 616 matched seeds (at distances 453m, 513m, and 710m)

have now been shifted to shorter distances. The ‘L674f’ column gives the estimates of the

log-intensity based on the ql model applied to the 674 seed match, but with higher intensity

used at distances greater than 100m to account for the previously noted deficiency of the

ql model at long distances. The penultimate two columns in the table, ‘E616f’ and ‘E674f’,

represent the number of off-site seeds which would be expected to land in the 298-trap

network if the fitted 616 seed or 674 seed log-intensities, respectively, were correct, assuming

the off-site adult Jacaranda trees had the same spatial density and fecundity distribution as

the 292 on-site adults. From the ‘Match674’ column, one observes that the estimate of the

probability of LDD dispersal from the revised data set is now 67/674=.10, which is slightly

less than the original 11%-13% estimate, and much less than the 23% estimated by the

censored data approach of Section 5.2. The ‘Match674’ distribution is more tightly packed

in the 100-300m region than the ‘Match616’ distribution, with dispersal over 400m being

very rare. If one desires a parametric function which best estimates the log-intensity of the

revised data over the entire range of the data, we recommend the ‘L674f’ funtion shown as

the last column of Table 6.13.
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DC Distance MDPT Tree Trap Match616 Match674 Fictreetrap E616o E616f E674f L674f
1 0-5m 2.5 7 8 9 0 0.00 0.00 0.00 1.59
2 5-10m 7.5 33 67 77 0 0.00 0.00 0.00 0.74
3 10-15m 12.5 48 75 82 0 0.00 0.00 0.00 0.14
4 15-20m 17.5 93 98 108 0 0.00 0.00 0.00 -0.34
5 20-25m 22.5 88 76 81 0 0.00 0.00 0.00 -0.75
6 25-30m 27.5 115 33 36 0 0.00 0.00 0.00 -1.12
7 30-35m 32.5 129 55 59 0 0.00 0.00 0.00 -1.46
8 35-40m 37.5 153 21 27 0 0.00 0.00 0.00 -1.78
9 40-45m 42.5 177 47 50 0 0.00 0.00 0.00 -2.07

10 45-50m 47.5 187 12 15 0 0.00 0.00 0.00 -2.35
11 50-55m 52.5 193 14 16 0 0.00 0.00 0.00 -2.61
12 55-60m 57.5 233 10 8 0 0.00 0.00 0.00 -2.86
13 60-65m 62.5 235 13 14 0 0.00 0.00 0.00 -3.10
14 65-70m 67.5 239 4 5 0 0.00 0.00 0.00 -3.33
15 70-75m 72.5 261 0 1 0 0.00 0.00 0.00 -3.55
16 75-80m 77.5 285 5 5 0 0.00 0.00 0.00 -3.76
17 80-85m 82.5 282 5 5 0 0.00 0.00 0.00 -3.97
18 85-90m 87.5 328 4 4 0 0.00 0.00 0.00 -4.17
19 90-95m 92.5 331 3 3 0 0.00 0.00 0.00 -4.37
20 95-100m 97.5 329 3 3 0 0.00 0.00 0.00 -4.56
21 100-150m 125 4062 18 19 41 0.18 0.14 0.16 -5.50
22 150-200m 175 5173 11 15 360 0.77 0.69 0.74 -6.18
23 200-300m 250 12740 13 15 3188 3.25 3.40 3.37 -6.85
24 300-400m 350 13579 10 9 8342 6.14 4.96 4.55 -7.51
25 400-500m 450 12381 4 3 15412 4.98 5.70 4.91 -8.05
26 500-600m 550 10476 4 3 24600 9.39 6.04 4.92 -8.52
27 600-700m 650 8529 1 1 33807 3.96 5.75 4.46 -8.93
28 700-800m 750 6810 2 1 42376 12.45 5.16 3.83 -9.31
29 800-900m 850 5155 0 0 50473 0.00 4.51 3.21 -9.66
30 900-1000m 950 3211 0 0 58445 0.00 3.91 2.67 -9.99
31 1000-1100m 1050 1037 0 0 65663 0.00 3.34 2.20 -10.30
32 1100-1200m 1200 117 0 0 67285 0.00 2.33 1.46 -10.74
33 1200-1300m 1250 0 0 0 64595 0.00 1.98 1.22 -10.88
34 1300-1400m 1350 0 0 0 58880 0.00 1.43 0.85 -11.14
35 1400-1500m 1450 0 0 0 50345 0.00 0.97 0.56 -11.40
36 1500-1600m 1550 0 0 0 40991 0.00 0.64 0.36 -11.65
37 >1600m 1650 0 0 0 97982 0.00 1.23 0.67 -11.89

Total 87016 616 674 682782 41.12 52.16 40.15

Table 6.13: Revised Estimates by Distance Class



Chapter 7

Conclusion

In Chapter 4, we demonstrated inverse modeling techniques for non-genotyped data. By

examining combined bi-year data, separate bi-year data and pooled bi-year ‘X’ data, we

have learned that different time periods should be modeled separately. And for Jacaranda

trees, Clark’s model with c = 0.5, with fecundity modeled as being proportional to DBH2

is reasonable. But more general models which make fecundity proportional to DBHg will

typically estimate g to be smaller than 2, usually 1 < g < 2. Even if one over-parameterizes

by fitting certain influential trees separately, the dispersion of the overall model will be at

least nine times as great as that expected under Poisson conditions when evaluation is at

the trap level.

In Chapter 5, from the genotyped data due to actual seed dispersal distances being

observed, the distance function estimation improved substantially in the upper tail. Both

the genotyped and ungenotyped data sets give some general support to the belief that log-

intensity function decays approximately as square-root of distance rate for dij < 100m.

However, the genotyped data gives definite evidence of some (∼ 11% − 13%) long-distance

dispersals, although certainly not nearly as strong as the censored data approach estimates

of Jones, Chen, Weng and Hubbell [14] described in Section 5.2. Both the ungenotyped and

genotyped data sets lend some support to the idea that fecundity is proportional to DBHg,

with estimates of g varying widely, but generally being less than the g=2 value often assumed

in the inverse modeling literature. If we over-parameterize to obtain approximately the best

possible fit for distance and to model individual trees’ fecundities, we can force G2
e and G2

I
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to become arbitrarily small, but neither the overall deviance, G2, nor G2
J , which is the best

overall fit to the trap data, will fit adequately by any standard statistical convention.

In Chapter 6, we discussed the possibility of genotyping errors occurring and produced

some evidence that both ‘total dropout’ and ‘allelic dropout’ had occurred during the seed

genotyping. We then used two methods to estimate the global proportion of misclassification,

and both agreed that at least half of the 110 non-matched seeds might indeed be seeds which

should have been matched to an on-site source. Eventually, we decided to evaluate every

seed(k) in a trap(j) by calculating a score that measures its probabilistic distance to each

source tree(i) (including a fictitious perfectly matched off-site source), with the seed then

being matched to the tree which gave the best score. After doing this, our estimate of the

probability of LDD dispersal from the revised data set is 10%, slightly less than the original

11%-13% estimate, but much greater than the estimates from non-genotyped data (5%) and

much smaller than the LDD estimates (23%) found by Jones et. al. [14].

Overall, we find that the use of direct estimation on genotyped seed data will allow for

better estimation of the dispersal function than will indirect estimation on non-genotyped

seed data. This is especially true in the upper tail of the distribution. However, we do offer

the following caveats:

(a) There is much fecundity variability not measurable by DBH.

(b) Large numbers of seeds must still be collected for good dispersal estimates to be

obtained, even with genotyped data.

(c) It is very important to reduce genotyping errors. We recommend using tetra-NTR’s

rather than di-NTR’s in the future, if possible.
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