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Abstract

Density cumulant theory (DCT) describes the state of an electronic system by

variationally optimizing a parametrization of the two-particle density cumulant.

The cumulant is a statistical descriptor of the wavefunction distribution which

naturally decouples independent subsystems, leading to desirable properties like

size-extensivity which have given the coupled-cluster methods pride of place in

electronic structure theory. We present benchmark calculations demonstrating the

superior performance of density cumulant theory relative to coupled-cluster theory

for the description of ground-state properties. Next, we extend this method for

the description of excited states using linear response theory. Finally, we develop

algorithms for the new excited state model which enable us to study larger systems.
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Chapter 1

Introduction and Literature Review

1.1 Naive Electronic Structure Theory

As an entry point into electronic structure theory, let us begin by forgetting what

we know about electrons from the standard model of particle physics. From the

standpoint of Heisenberg and others developing the new quantum theory in 19251

chemical matter was described by nimble, negatively-charged electrons orbiting

heavy, positively-charged nuclei. This theory would be conceptually clarified in

the following year by Schrödinger’s development of wave mechanics,2–4 which de-

scribed the possible electronic states of an isolated molecule as eigenfunctions of

the quantum-mechanical Hamiltonian, oscillating in time with a frequency pro-

portional to their energy. In atomic units:

Ψ(t) = Ψe−iEt ĤΨ = EΨ (1.1)

Crudely speaking, the Hamiltonian operator is derived from its classical counter-

part by replacing momentum variables with del operators divided by the imaginary
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unit, p̂ = 1
i
∇. It can be written as a sum over one and two electron terms

Ĥ =
electrons∑

i

ĥi +
electron

pairs∑
i<j

ĝij (1.2)

where the one-electron operator ĥi describes the kinetic energy of the ith electron

and its electrostatic (Coulomb’s law) attraction to the nuclei, and the two-electron

operator ĝij describes the Coulombic repulsion between electrons i and j.

ĥi ≡ 1
2 p̂2

i −
nuclei∑
A

ZA
|rA − ri|

ĝij ≡
1

|ri − rj|
(1.3)

The vector space containing the wavefunction is the system’s Hilbert space, H,

which in our case is the space of square integrable functions of n position variables,

L2(R3n), one for each electron in the molecule. The infinite dimensionality of this

space prohibits an exact solution to Eq. (1.1) in most cases, but we can make

progress by expressing it as a product of one-electron Hilbert spaces.

H = He ⊗He ⊗ · · · He = L2(R3) (1.4)

This allows us to expand the electronic wavefunction as a linear combination of

orbital products, where orbital is the term a one-electron wavefunction.

One way of generating the orbital basis is to solve the Schrödinger equation for

each electron in the mean Coulombic field generated by the others.

(ĥ1 + v̂1)φi(r1) = εi φi(r1) v̂1 ≡
∑
j 6=i

∫
d3r2

φ∗j(r2)φj(r2)
|r1 − r2|

(1.5)
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These orbitals can be shown to minimize the energy of a single product

〈φ1 · · ·φn|Ĥ|φ1 · · ·φn〉 =
orbitals∑
i=1

hii +
orbital
pairs∑
i<j

gijij (1.6)

which is a sum over the following one- and two-electron integrals.

hqp ≡
∫
d3r1 φ

∗
p(r1)ĥ1φq(r1) grspq ≡

∫
d3r1d

3r2 φ
∗
p(r1)φ∗q(r2)ĝ12φr(r1)φs(r2)

(1.7)

Eq. (1.5) is most effective for weakly correlated electronic states, where the elec-

tron probability density approximately factors into one-electron densities. Having

determined an orbital set, the Schrödinger equation can be solved as a matrix

equation in the product basis

Hc = Ec (H)PQ = 〈φp1 · · ·φpn |Ĥ|φq1 · · ·φqn〉 (1.8)

which is equivalent to Eq. (1.1) in the limit of a complete expansion. The coef-

ficients of the solution vector are the components of the wavefunction along each

orbital product.

The general strategy we have just outlined carries over into modern electronic

structure theory, but it is missing two essential ingredients: the spin of the electron,

and the antisymmetric permutational symmetry of electrons as fermions.
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1.2 Spin

The non-relativistic theory of one-electron states was completed with Pauli’s so-

lution of the hydrogen spectrum at the start of 1926.5 His work concludes with

a discussion of the recent work by Goudsmit and Uhlenbeck6 showing that the

anomalous Zeeman splitting of alkali metals could be explained by positing an in-

trinsic source of angular momentum and magnetism for the electron besides that

generated by its orbital motion about the nucleus. This was the electron’s spin.

The need for an additional quantum number had already been understood by Pauli

in his analysis of alkali metal spectra at the end of 1924:

In alkali metals, the angular momentum values of the atom, and its

energy changes in the presence of an external magnetic field, are appro-

priately interpreted as the sole working of the optically active electron,

and the same situation is thought to be the case in observations of the

anomalous Zeeman effect. From this standpoint, the doublet structure

of the alkali spectra, as well as the breakdown of Larmor’s theorem,

must therefore come from some intrinsic, classically non-describable

type of two-valuedness that is a characteristic of the optically active

electron.7

In hindsight, the Stern-Gerlach experiment8 had already shown in 1922 that the

5s electron of the silver atom was quantized into two magnetic states, whereas the

new quantum theory predicted an odd number of states (0,±1,±2, . . .) for the

spatial orbits of a charged particle. This new source of angular momentum was
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characterized by half-integer values whose eigenfunctions cannot exist in L2(R3).

ŝzψ = ±1
2ψ (1.9)

Instead, the new “spinor” part of the one-electron state was encoded in a two-

component vector space

ŝz =
(

1
2 0
0 −1

2

)
α =

(
1
0

)
β =

(
0
1

)
(1.10)

where α is the “up” spinor and β is the “down” spinor. The states of individual

electrons therefore had to be described not by orbitals but by spin-orbitals:

ψ(x) = φ(r)ωσ ωσ ≡

 ασ if the spin projection is +1
2

βσ if the spin projection is −1
2

(1.11)

which live in an extended one-electron Hilbert space, He = L2(R3) ⊗ C2, whose

degrees of freedom are described by a pair of space and spin variables, x ≡ (r, σ).

The spin variable σ refers to the first or second vector component of the spinor,

which evaluates to 1 or 0 depending on whether the state is spin-up or spin-down.

Having completed the system of quantum numbers for an electron in a spherical

potential with what would eventually be recognized as spin, Pauli was struck with

a curious observation:

By considering the case of strong magnetic fields we can reduce [earlier

observations], that the number of electrons in a completed subgroup is

the same as the number of corresponding terms in the Zeeman effect

5



of the alkali spectra, to the following more general rule about the oc-

currence of equivalent electrons in an atom: There can never be two

or more equivalent electrons in an atom for which in strong fields the

values of all quantum numbers n, l, k,ml (or, equivalently, n, l,ml,ms)

are the same. If an electron is present in the atom for which these

quantum numbers (in an external field) have definite values, this state

is “occupied.” . . . We cannot give a further justification for this rule,

but it seems to be a very plausible one.9

This “housing office for equivalent orbits”10 would remain a mystery until Heisen-

berg’s work on two-electron systems the following year.

1.3 Antisymmetry

In June of 1926, Heisenberg published an article on The Many-Body Problem and

Resonance in Quantum Mechanics, which sought to address foundational issues

arising in his attempts to apply the new quantum theory to the helium atom. In

his words, there were three outstanding problems:

[1.] The aspects of de Broglie’s theory of waves that lead to Bose-

Einstein statistics appear to have no analogue in quantum mechan-

ics; [2.] Ad hoc rules like Pauli’s ban on equivalent orbitals cannot be

expressed in the current mathematical formalism of quantum mechan-

ics. . . [3.] Finally there is one known difficulty in the quantitative in-

terpretation of spectra that we should remind ourselves of: The splitting

of singlet and triplet states in the spectra of the alkaline earth metals
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and in helium is too big by an order of magnitude to be explained as

a difference in the magnetic interaction energies of two spinning elec-

trons.11

By considering two harmonic oscillators and treating them as indistinguishable in

the surprising sense discovered by Bose12 and Einstein13 two years prior, Heisen-

berg found that the eigenstates of the coupled system exist in symmetric and

antisymmetric combinations, and that only the antisymmetric states are consis-

tent with the spectroscopic observations for helium. This raised the intriguing

possibility that, as a rule, the electronic wavefunction is antisymmetric under par-

ticle exchange. If so, the appropriate basis state would not be the orbital product,

which places each electron into its own distinct orbit, but the determinant function:

Φp1···pn(x1, . . . ,xn) = 1√
n!

∑
π

(−)πψp1(xπ1) · · ·ψpn(xπn) (1.12)

where π is a permutation of electron labels and (−)π is its signature. When an

orbital appears in the product twice its determinant vanishes, so this provided a

mathematical explanation for Pauli exclusion. The determinant’s energy is

〈Φ1···n|Ĥ|Φ1···n〉 =
orbitals∑
i=1

hii +
orbital
pairs∑
i<j

gijij gijij ≡ gijij − g
ji
ij (1.13)

which is the same as the product expectation value of Eq. (1.6) except for the

gjiij integrals. These “exchange interactions” between electrons in orbitals i and j

serve to lower the energy by cancelling out part of the Coulomb repulsion where
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they overlap. The orthogonality of opposite spinors means that this effect only

takes place between electrons of the same spin, lowering the energy of high-spin

states relative to low-spin ones of the same configuration, as had been observed

by Hund.14 Thus the new theory could also explain the “large force of unknown

origin”10 that was lowering the energy of the triplet states in helium.

1.4 Modern Electronic Structure Theory

Heisenberg’s insights laid the foundation for a quantum mechanical treatment of

many-electron systems,11 but the determinant functions needed to describe these

antisymmetric states were difficult to work with. This challenge was addressed in

a 1932 article by Vladimir Fock, which developed a new mathematical framework

for indistinguishable particles that he called second quantization.15 Building on

earlier work by Dirac,16 the new formalism replaced the opaque combinatorial

arguments of the previous “first quantized” formalism with transparent algebraic

manipulations. Center stage in the new approach was the annihilation operator:

(âpΨ)(x2, . . . ,xn) ≡
√
n
∫
d4x′ ψ∗p(x′) Ψ(x′,x2, . . . ,xn) (1.14)

whose physical meaning becomes clear from its effects on the determinant basis.

âpk
Φp1···pn = (−)k−1Φp1···pk−1pk+1···pn (1.15)

â†pk
Φp1···pk−1pk+1···pn = (−)k−1Φp1···pn (1.16)
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âq1q2···
pipj ···Φp1···pi−1pipi+1···pj−1pjpj+1···pn = Φp1···pi−1q1pi+1···pj−1q2pj+1···pn

(where âq1···qh
p1···ph

≡ â†q1 · · · â
†
qh
âph
· · · âp1)

(1.17)

In words, the annihilation operator deletes a spin-orbital and renormalizes the

state. Its adjoint constitutes a creation operator which adds a spin-orbital, and we

can string these operators together to form an excitation operator which substitutes

one set of spin-orbitals in the determinant with another. In each case, an invalid

operation, such as creating an occupied state or annihilating an unoccupied state,

causes the determinant to vanish. This allows us to expand the wavefunction in

terms of single, double, triple, etc. excitations of a reference determinant

Ψ =
(
c01̂ + ciaâ

a
i + (1

2)2cijabâ
ab
ij + ( 1

3!)
2cijkabcâ

abc
ijk + · · ·

)
Φ (1.18)

where i, j, k count over states which are occupied in the determinant, a, b, c count

over unoccupied states, and we have adopted the Einstein summation convention

for summing over repeated indices. For weakly correlated states, the reference

determinant can be chosen so that c0 ≈ 1 and the coefficients become negligibly

small for higher than quadruple excitations, allowing us to truncate this expansion

to a good approximation. Finally, by substituting the following decomposition

Ψ(x1,x2, . . . ,xn) = 1√
n

∑
p

ψp(x1) (âpΨ)(x2, . . . ,xn) (1.19)

9



into a general antisymmetric matrix element of the Hamiltonian, we find that the

restriction of Ĥ to antisymmetric states can be expressed in the following form.

Ĥ = hqp â
p
q + 1

4g
rs
pq â

pq
rs (1.20)

This reduces the evaluation of Hamiltonian matrix elements to the algebra of

creation and annihilation operators. These second quantized operators obey simple

anticommutation relationships that encode the permutational antisymmetry of

the electrons. Several mathematical tools have been developed to facilitate the

evaluation of products and expectation values in second quantization, most notably

the expansion theorem discovered by Gian-Carlo Wick in 1950.17

1.5 Density Cumulants

From the second quantized Hamiltonian, we see that the electronic energy is de-

termined by the expectation values of the single and double excitations, i.e. the

one- and two-body density matrices. A general h-body density matrix is defined as

follows.

γp1···ph
q1···qh

≡ 〈Ψ|âp1···ph
q1···qh

|Ψ〉 (1.21)

This raises the possibility of determining the density matrices directly, rather than

from a wavefunction. The variational determination of the two-body density ma-

trix was first explored in a 1955 article by Joseph Mayer,18 who showed that

one requires a set of n-representability constraints to ensure that the density is

derivable from a wavefunction. An unfortunate defect of this approach is that
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truncating the n-representability conditions for computational tractability spoils

the size-extensivity and size-consistency of the model. Size-extensivity refers to

the fact that the energy grows linearly with n in the limit of an infinite crystal, and

size-consistency means that the energy of two non-interacting systems equals the

sum of their individual energies, calculated separately. These properties are cru-

cial for correctly describing chemical processes. One way around this comes from

recognizing that the density matrices are statistical moments of the wavefunc-

tion’s probability distribution. The moments of a distribution are its expectation

values over a polynomial basis of basic variables, which can be used to evaluate

expectations values for functions of these variables.

An alternative statistic for characterizing a distribution is the cumulant, which

can be defined as “a combination of moments that vanishes when some subset

of the variates is independent of the others.”19 The definition of cumulants for

quantum statistical distributions goes back to the work of Ryogo Kubo in 1962.20

Following Kubo, we can express h-body density cumulant in terms of a so-called

cumulant average.

λp1···ph
q1···qh

= 〈Ψ|âp1···ph
q1···qh

|Ψ〉c (1.22)

By analogy to the classical case, this “average” is defined as follows21

〈Ψ|Q̂|Ψ〉c ≡
n∑
k=1

(−)k+1(k − 1)!
Part(Q̂,k)∑

Π
(−)Π〈Ψ|Π̂1|Ψ〉 · · · 〈Ψ|Π̂k|Ψ〉 (1.23)

where Π is a partition of the excitation operator string Q̂ into k products and (−)Π

is the signature the permutation. These partitions keep the relative orderings of

11



Table 1.1: The moment-cumulant relations, where γp1···ph
q1···qh

≡ 〈Ψ|ap1···ph
q1···qh

|Ψ〉 and λp1···ph
q1···qh

≡ 〈Ψ|ap1···ph
q1···qh

|Ψ〉c are
the h-body moments and cumulants of the wavefunction density and we show the expansions for h = 1, 2, 3, 4.
Here, P(R1/R2/···/Rm) denotes antisymmetrization over riffle shuffle permutations of m sets of indices.

h moment (γ) cumulant (λ)

1 λp1
q1 γp1

q1

2 λp1p2
q1q2 + P(q1/q2)λ

p1
q1λ

p2
q2 γp1p2

q1q2 − P(q1/q2)γ
p1
q1 γ

p2
q2

3 λp1p2p3
q1q2q3 + P

(p1p2/p3)
(q1q2/q3) λ

p1p2
q1q2 λ

p3
q3 + P(q1/q2/q3)λ

p1
q1λ

p2
q2λ

p3
q3 γp1p2p3

q1q2q3 − P
(p1p2/p3)
(q1q2/q3) γ

p1p2
q1q2 γ

p3
q3 + 2P(q1/q2/q3)γ

p1
q1 γ

p2
q2 γ

p3
q3

4
λp1p2p3p4
q1q2q3q4 + P

(p1p2p3/p4)
(q1q2q3/q4) λ

p1p2p3
q1q2q3 λ

p4
q4 + P

(p2/p3p4)
(q1q2/q3q4)λ

p1p2
q1q2 λ

p3p4
q3q4

+P (p1p2/p3p4)
(q1q2/q3/q4)λ

p1p2
q1q2 λ

p3
q3λ

p4
q4 + P(q1/q2/q3/q4)λ

p1
q1λ

p2
q2λ

p3
q3λ

p4
q4

γp1p2p3p4
q1q2q3q4 − P

(p1p2p3/p4)
(q1q2q3/q4) γ

p1p2p3
q1q2q3 γ

p4
q4 + P

(p2/p3p4)
(q1q2/q3q4)γ

p1p2
q1q2 γ

p3p4
q3q4

−2P (p1p2/p3p4)
(q1q2/q3/q4)γ

p1p2
q1q2 γ

p3
q3 γ

p4
q4 + 6P(q1/q2/q3/q4)γ

p1
q1 γ

p2
q2 γ

p3
q3 γ

p4
q4
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the operators in each block. Only the products that have the form of an excitation

operator have non-vanishing expectation values, so this defines an expansion for

h-body cumulants in terms of h′-body moments, with h′ ≤ h. Table 1.1 shows

several examples. The inverse relationship has a simpler form.

〈Ψ|Q̂|Ψ〉 =
n∑
k=1

Part(Q̂,k)∑
Π

(−)Π〈Ψ|Π̂1|Ψ〉c · · · 〈Ψ|Π̂k|Ψ〉c (1.24)

As we have already mentioned, the defining property of the cumulants is that they

vanish for independent variables. This insures that the cumulant set of a system

separates into a union of cumulants for its non-interacting components. As a

consequence, a description of the electron density in terms of cumulants ensures

size-consistency and size-extensivity from the outset.

1.6 Prospectus

The first method for variationally determining the two-body cumulant was pro-

posed by Werner Kutzelnigg in 200622 and was first implemented by Andrew

Simmonett four years later.23 Originally this approach was called density cumu-

lant functional theory (DCFT), but more recent works have begun to shorten the

name to density cumulant theory (DCT) to avoid confusion with density functional

theory (DFT), which is unrelated. The DCT approach was brought to maturity

by the contributions of Alexander Sokolov, who showed how determine the en-

ergy as an exact functional of the two-body cumulant24 and contributed several

new variants, including an orbital-optimized model25 and a model which includes

connected triples in the cumulant parametrization.26
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The main contribution of the present work is the generalization of density cu-

mulant theory for excited electronic states. Chapter 2 presents a benchmark study

of the ground-state DCT variants, demonstrating that the best variant of the the-

ory to date, ODC-12, consistently outperforms the popular CCSD method for the

description of thermochemical and kinetic processes. Chapter 3 presents a model

for excited states, which is derived from the linear response of ground-state den-

sity cumulant theory under time-dependent perturbations (LR-DCT). We present

a theoretical framework for LR-DCT, derive the linear response working equations

for the ODC-12 model, as well as the initial implementation and verification of

the theory. We also present the linearized variant of our model, which is the first

implementation of a linear response theory for the orbital-optimized linearized

coupled-cluster doubles (OLCCD) method. Finally, Chapter 4 presents the algo-

rithms that were used for our study of larger systems, particularly hexatriene.
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Chapter 2

Benchmark Study of Density Cumulant Functional Theory:

Thermochemistry and Kinetics∗

∗A. V. Copan, A. Y. Sokolov, and H. F. Schaefer, J. Chem. Theory Comput. 10, 2389 (2014).
Reprinted here with permission of the publisher.
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2.1 Abstract

We present an extensive benchmark study of density cumulant functional theory

(DCFT) for thermochemistry and kinetics of closed- and open-shell molecules.

The performance of DCFT methods (DC-06, DC-12, ODC-06, and ODC-12) is

compared to that of coupled-electron pair methods (CEPA0 and OCEPA0) and

coupled-cluster theory (CCSD and CCSD(T)) for the description of noncova-

lent interactions (A24 database), barrier heights of hydrogen-transfer reactions

(HTBH38), radical stabilization energies (RSE30), adiabatic ionization energies

(AIE), and covalent bond stretching in diatomic molecules. Our results indicate

that out of four DCFT methods the ODC-12 method is the most reliable and ac-

curate DCFT formulation to date. Compared to CCSD, ODC-12 shows superior

results for all benchmark tests employed in our study. With respect to coupled-pair

theories, ODC-12 outperforms CEPA0, and shows similar accuracy to the orbital-

optimized CEPA0 variant (OCEPA0) for systems at equilibrium geometries. For

covalent bond stretching, ODC-12 is found to be more reliable than OCEPA0.

For the RSE30 and AIE datasets, ODC-12 shows competitive performance with

CCSD(T). In addition to benchmark results, we report new reference values for

the RSE30 dataset computed using coupled cluster theory with up to perturbative

quadruple excitations.
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2.2 Introduction

Recent developments in ab initio quantum chemistry have resulted in a variety

of computational models for studying molecules. Apart from concerns about ef-

ficiency and accuracy, several concepts have evolved as criteria for judging the

merits of a particular method. Energy-based criteria typically define an “ideal”

approximation as one yielding correlation energies that are size-consistent, ex-

tensive27, well-defined (giving continuous, unique potential surfaces), and varia-

tional.28 While it has been argued that the practical benefits of variationality are

rather limited,29 the efficiency of gradient computations, at least, is improved by

formulating a theory in terms of a Hermitian and stationary energy functional.30

With respect to scope and stability, methods that show consistent performance

for open-shell systems, strongly correlated states, and non-equilibrium geometries

are particularly valuable.29

The incorrect scaling of truncated configuration interaction (CI) energies with

system size has inspired the development of size-extensive alternatives. Among

the earliest formulations, the coupled electron pair approximations (CEPAs)31–35

attracted much attention in 1970s,36–40 offering rigorous extensivity and size-

consistency while retaining much of the linearity41 of CI in their equations. CEPA

methods, however, have been shown to rapidly deteriorate as the molecular geom-

etry deviates from equilibrium41 and yield energies that vary under the rotation of

the occupied orbitals.34 Partly in light of such defects, CEPA has been largely dis-

placed by coupled-cluster (CC) theory.29;42–48 In addition to size-extensivity, CC

offers orbital invariance and improved stability for non-equilibrium structures41,
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but has a non-Hermitian energy functional and non-linear equations which are

not readily amenable to parallel implementation. Although neither class of meth-

ods is strictly variational, VCEPA (variational CEPA) has been shown to be ef-

fectively equivalent to its non-variational counterpart.49 Various other modifica-

tions to resolve the deficiencies of traditional CEPA have been explored, includ-

ing self-consistent size-consistent CI,50;51 orbital-invariant CEPA,52;53 and orbital-

optimized CEPA formulations.54–57 Recently, the CEPA methods have been re-

vived by Neese and co-workers49;58;59 who developed the local pair-natural-orbital

CEPA (LPNO-CEPA) methods and have implemented them for massively parallel

computer architectures.

It has recently been demonstrated22;60–62 that CEPA methods naturally arise

in the context of theories that obtain the molecular energies from density cu-

mulants, the connected and extensive components of the reduced density matrices

(RDMs).63–68 The advantage of cumulant-based theories is that, unlike their RDM-

based counterparts,69–71 they are naturally size-extensive and size-consistent.66;72

We have recently achieved the first implementation23;73 of density cumulant func-

tional theory (DCFT), proposed by Kutzelnigg in 2006.22 In DCFT, the molecular

energy is obtained in terms of a mean-field one-particle RDM and the two-particle

density cumulant, constrained to be at least approximately N -representable (i.e.

to correspond to a physical N -electron wavefunction). Like traditional CC theory,

DCFT is size-extensive and orbital-invariant, but it has the additional advantage

of a stationary and Hermitian energy functional, which simplifies the computation

of molecular properties. In the original DCFT formulation (DC-06)22;23;73 N -
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representability conditions derived from second-order Møller-Plesset perturbation

theory (MPPT) were used,74 yielding equations similar to those of the simplest

CEPA model (CEPA0),33;35 but including higher-order terms in the description of

one-particle correlation effects. Using the same set of conditions, we have devel-

oped new formulations of DCFT that take advantage of an improved description of

the one-particle density matrix (DC-12)24 and full orbital optimization (ODC-06

and ODC-12 methods).25

Our previous studies23–25;73 demonstrated for a limited set of systems that the

DC-06, DC-12, ODC-06 and ODC-12 methods generally yield molecular energies

and properties competitive with those obtained by CCSD and CCSD(T), but may

exhibit unstable performance due to imbalances in the description of electron cor-

relation. Herein, we present an extensive benchmark of the DCFT methods with

respect to thermochemical and kinetic molecular properties, including noncovalent

interactions, barrier heights in hydrogen-transfer reactions, radical stabilization

energies, and adiabatic ionization energies for challenging electron-dense systems.

We conclude our benchmark study by testing the performance of DCFT for cova-

lent bond stretching in diatomic molecules.

2.3 Overview of DCFT

In this section a short overview of DCFT is presented. For details on the theory

the reader is referred to our earlier publications.23–25 In the RDM methods75 the

exact molecular energy is expressed as a functional of the one- and two-particle
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reduced density matrices, γ1 and γ2 (1-RDM and 2-RDM):

E = hqpγ
p
q + 1

2g
rs
pqγ

pq
rs , [γ1]pq ≡ γpq , [γ2]pqrs ≡ γpqrs . (2.1)

In Eq. (2.1), hqp and grspq are the usual one- and two-electron integrals in the

orthonormal spin-orbital basis {ψp} and summation over the repeated indices

is implied. Expressing γ1 through γ2 via the partial trace relation ∑
r γ

pr
qr =

(N − 1)γpq , the energy functional (2.1) can be minimized by varying γ2 subject

to N -representability constraints. This is the essence of the variational 2-RDM

approach.75

In DCFT, some of the challenges of the 2-RDM approach are circumvented

by expanding γ2 in terms of its irreducible components – the 1-RDM and the

two-particle cumulant (denoted by λ2):

γpqrs = γprγ
q
s − γqrγps + λpqrs . (2.2)

In Eq. (2.2), λ2 describes the correlated part of γ2 that cannot be expressed via

γ1. The cumulant also determines the correlation contribution to γ1, allowing

the 1-RDM to be decomposed as the sum of an idempotent 1-RDM (κ) and a

correlation correction (τ ):

γ1 = κ+ τ . (2.3)

The correlation component τ is fully specified by λ2, whereas κ is independent of

λ2. Eqs. (2.2) and (2.3) allow us to write an equivalent energy expression with κ
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and λ2 as independent functional parameters:

E[κ,λ2] = 1
2(hqp + f qp )(κpq + τ pq ) + 1

4g
rs
pqλ

rs
pq (2.4)

f qp = hqp + gqspr(κrs + τ rs ) gpqrs = gpqrs − gqprs (2.5)

Here, the generalized Fock operator f differs from that of Hartree-Fock theory by

the presence of an external potential gqsprτ rs due to electron correlation.22

To date, all DCFT formulations make the energy (2.4) stationary with respect

to variations of λ2, subject to cumulant N -representability constraints derived

from second-order Møller-Plesset perturbation theory (MPPT).74 To account for

orbital relaxation effects, the two earliest DCFT methods, DC-0622;23;73 and DC-

1224, determined the orbitals by diagonalizing the generalized Fock operator f

defined in Eq. (2.4). These two methods differ in their description of 1-RDM

N -representability. Whereas DC-06 employs an approximate expression for τ in

terms of λ2, DC-12 uses the exact relationship. Recently, we proposed orbital-

optimized variants of DC-06 and DC-12 (ODC-06 and ODC-12),25 which fully

account for orbital relaxation effects.

2.4 Computational Details

All computations were performed using the Psi4 package.76 The results were

benchmarked against coupled cluster theory with single and double excitations

(CCSD)46–48, CCSD with perturbative triple excitations [CCSD(T)],77;78 coupled

electron pair approximation zero (CEPA0),33;35 and the orbital-optimized variant
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of CEPA0 (OCEPA0)55. All electrons were correlated in all computations. The

cc-pCVXZ79;80 and aug-cc-pVXZ81 basis sets (X = T, Q) were used (see text

for details). Noncovalent interaction energies, hydrogen-transfer barrier heights,

and radical stabilization energies were computed using geometries from the A2482,

HTBH3883, and RSE3084 benchmark databases, respectively, available in Psi4.

Adiabatic ionization energies were computed from neutral and cation geometries

optimized at each level of theory, with added harmonic zero-point vibrational

energy corrections. Harmonic frequencies were computed by numerical differentia-

tion of analytic energy gradients. Single-point energies were converged to 10−8 Eh,

while the root mean square of the energy gradient was converged to 10−6 Eh/a0

for geometry optimizations.

2.5 Results

2.5.1 Noncovalent Interactions

We begin by testing the accuracy of DCFT methods for the description of noncova-

lent interactions in 24 closed-shell molecular dimers, which are listed in Table 2.1.

These molecular complexes comprise the A24 dataset82 developed by Řezáč and

Hobza to include a variety of noncovalent interactions, including hydrogen bonding

and π-π stacking. Although Řezáč and Hobza reported the interaction energies

at the CCSD(T) complete basis set (CBS) limit, we use CCSD(T)/aug-cc-pVTZ

energies as reference values in order to effectively exclude basis-set incompleteness

error from the comparison.
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Table 2.1: Errors in interaction energies (kcal mol−1) for 24 noncovalently bound molecular dimers comprising
the A24 database82 computed using seven methods with the aug-cc-pVTZ basis set. The errors are relative to
CCSD(T) reference values (kcal mol−1) shown in the rightmost column. For each method the mean absolute
deviations from CCSD(T) (∆MAE, kcal mol−1) and the standard deviations from the mean signed error (∆SD,
kcal mol−1) are also shown.

Complex (Sym.) ∆CEPA0 ∆DC-06 ∆DC-12 ∆CCSD ∆OCEPA0 ∆ODC-06 ∆ODC-12 CCSD(T)
H2O···NH3 (Cs) 0.26 0.24 0.22 0.36 0.19 0.20 0.18 -7.18
H2O···H2O (Cs) 0.19 0.18 0.16 0.25 0.13 0.14 0.12 -5.71
HCN···HCN (Cs) 0.21 0.27 0.16 0.15 0.18 0.26 0.14 -7.12

HF···HF (Cs) 0.14 0.13 0.11 0.16 0.08 0.09 0.07 -5.20
NH3···NH3 (C2h) 0.15 0.13 0.14 0.26 0.12 0.12 0.12 -3.43
HF···CH4 (C3v) 0.17 0.16 0.20 0.23 0.12 0.12 0.16 -2.30
NH3···CH4 (C3v) 0.07 0.05 0.05 0.13 0.05 0.05 0.04 -1.08
H2O···CH4 (Cs) 0.06 0.05 0.04 0.11 0.05 0.05 0.04 -1.03

CH2O···CH2O (Cs) 0.89 0.99 0.65 0.46 0.62 0.87 0.46 -5.23
H2O···C2H4 (Cs) 0.15 0.16 0.15 0.31 0.20 0.26 0.21 -3.33

CH2O···C2H4 (Cs) 0.21 0.18 0.14 0.27 0.19 0.24 0.16 -2.24
HCCH···HCCH (C2v) 0.07 0.05 0.05 0.20 0.10 0.12 0.10 -2.57
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Complex (Sym.) ∆CEPA0 ∆DC-06 ∆DC-12 ∆CCSD ∆OCEPA0 ∆ODC-06 ∆ODC-12 CCSD(T)
NH3···C2H4 (Cs) 0.09 0.06 0.08 0.24 0.12 0.15 0.13 -2.07

C2H4···C2H4 (C2v) 0.10 0.02 0.07 0.33 0.14 0.13 0.15 -1.81
CH4···C2H4 (Cs) 0.02 -0.02 0.01 0.14 0.05 0.04 0.06 -0.92
BH3···CH4 (Cs) 0.23 0.18 0.24 0.37 0.18 0.16 0.22 -2.52
CH4···C2H4 (Cs) 0.13 0.09 0.13 0.23 0.10 0.09 0.09 -1.37
CH4···C2H6 (Cs) 0.09 0.06 0.09 0.17 0.07 0.06 0.09 -1.14
CH4···CH4 (D3d) 0.08 0.06 0.08 0.14 0.06 0.05 0.08 -0.93
Ar···CH4 (C3v) 0.07 0.05 0.07 0.10 0.05 0.05 0.06 -0.78
Ar···C2H4 (C2v) 0.03 -0.01 0.02 0.11 0.05 0.03 0.05 -0.63

C2H4···HCCH (C2v) -0.02 -0.19 -0.01 0.38 0.07 -0.06 0.11 0.43
C2H4···C2H4 (D2h) -0.05 -0.30 -0.03 0.43 0.04 -0.16 0.11 0.41

HCCH···HCCH (D2h) 0.01 -0.09 0.02 0.34 0.10 0.02 0.12 0.91
∆MAE: 0.14 0.16 0.12 0.25 0.13 0.15 0.13
∆SD: 0.18 0.23 0.13 0.11 0.12 0.18 0.09

24



0.0

0.1

0.2

0.3

0.4
∆
a
bs
 (k

ca
l m

ol
−

1
)

CEPA0

DC-06
DC-12
CCSD

OCEPA0

ODC-06
ODC-12

Figure 2.1: Mean absolute deviations (∆MAE, kcal mol−1) and the standard devi-
ations from the mean signed error (∆SD, kcal mol−1) of the interaction energies for
24 noncovalently bound molecular dimers (A24 database) computed using seven
methods with the aug-cc-pVTZ basis set. The errors are relative to CCSD(T)/aug-
cc-pVTZ reference values. The ∆MAE value is represented as a height of each col-
ored box, while the ∆SD value is depicted as a radius of the black vertical bar. See
Table 2.1 for data on individual database members.

Figure 2.1 depicts mean absolute error (∆MAE) relative to CCSD(T) in the

binding energies of CEPA0, OCEPA0, CCSD, and the four DCFT methods (DC-

06, DC-12, ODC-06, and ODC-12), as well as the root mean square deviation from

the average signed error (∆SD). All methods but CCSD give similar ∆MAE values

(0.14±0.02 kcal mol−1), and a comparison between CEPA0, DC-06, and DC-12 and

their orbital-optimized variants (OCEPA0, ODC-06, and ODC-12) shows negligible

0.01 kcal mol−1 differences in each case. CCSD gives a significantly larger ∆MAE
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(0.25 kcal mol−1) than the other methods, exceeding the DC-12 ∆MAE by a factor

of two (0.12 kcal mol−1). The ∆SD values are much more sensitive to the choice of

method than the ∆MAE values, and are noticeably affected by orbital optimization.

ODC-12 gives the smallest standard deviation (∆SD = 0.09 kcal mol−1), while the

largest ∆SD value was found for DC-06 (0.23 kcal mol−1). The OCEPA0, ODC-06,

and ODC-12 methods (∆SD = 0.12, 0.18, and 0.09 kcal mol−1, respectively) exhibit

much more consistent performance than their non-orbital-optimized analogues,

with ∆SD smaller by 0.05 ± 0.01 kcal mol−1 in each case. CCSD also exhibits a

relatively small ∆SD value (0.11 kcal mol−1), possibly due to its inclusion of single

excitations which partly account for orbital relaxation.

Errors in interaction energy and CCSD(T) reference values for each molecular

complex are shown in Table 2.1. The largest deviations from CCSD(T) were

obtained for the formaldehyde dimer (CH2O · · ·CH2O, complex 9 in Table 2.1), for

which DC-06, CEPA0, and OCEPA0 yield errors of 0.99, 0.89, and 0.87 kcal mol−1,

respectively. For this system, the best performance is shown by CCSD and ODC-

12, both of which give an error of 0.46 kcal mol−1. For systems with π-stacking

interactions (complexes 22-24 in Table 2.1), CCSD shows large errors (0.38, 0.43,

0.34 kcal mol−1) relative to the magnitude of the interaction energy (0.43, 0.41,

0.91 kcal mol−1, respectively). Here CEPA0, DC-12, and their orbital-optimized

variants offer much better agreement with CCSD(T), with errors ranging from

0.01 to 0.15 kcal mol−1.
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Table 2.2: Errors in barrier heights (kcal mol−1) for 18 hydrogen-transfer reactions (R1 + R2H→R1H + R2)
comprising the HTBH38 database85 computed using five methods with the aug-cc-pVTZ basis set. The
errors are relative to CCSD(T) reference values (kcal mol−1) shown in the rightmost column. Each reaction
includes barrier heights in the forward (R1 + R2H→[R1R2H]*) and reverse ([R1R2H]*←R1H + R2) directions,
respectively, except in the case of R1 = R2 = H where they are the same. The mean absolute (∆MAE,
kcal mol−1) and the mean percent (∆rel, %) errors with respect to CCSD(T), as well as the standard deviations
from the mean signed error (∆SD, kcal mol−1) are also shown.

Reaction Barrier ∆CEPA0 ∆DC-12 ∆CCSD ∆OCEPA0 ∆ODC-12 CCSD(T)
1 H + HCl→[HHCl]* 0.74 0.49 0.09 -0.41 -0.28 5.22
2 OH + H2→[OHH2]* 3.77 3.38 1.82 0.88 1.24 4.99
3 CH3 + H2→[CH3H2]* 1.60 1.46 1.37 0.46 0.70 11.29
4 OH + CH4→[OHCH4]* 4.26 3.85 2.61 1.22 1.65 5.64
5 H + H2→[HH2]* 0.80 0.69 0.30 -0.27 -0.05 9.77
6 OH + NH3→[OHNH3]* 6.02 5.25 3.54 1.18 1.82 3.17
7 HCl + CH3→[HClCH3]* 1.93 1.78 1.79 0.68 0.92 0.10
8 OH + C2H6→[OHC2H6]* 4.66 4.21 2.69 1.28 1.72 2.69
9 F + H2→[FH2]* 3.40 3.14 1.20 0.52 0.78 1.13
10 O + CH4→[OHCH3]* 3.40 3.12 2.37 0.70 1.20 13.62
11 H + PH3→[HPH3]* 0.93 0.86 0.59 -0.16 0.10 2.29
12 H + HO→[OHH]* 2.03 1.59 0.44 -0.61 -0.26 10.25
13 H + H2S→[HH2S]* 1.01 0.92 0.65 -0.11 0.14 3.17
14 O + HCl→[OHCl]* 6.33 6.01 3.58 0.79 1.51 9.74
15 NH2 + CH3→[CH3NH2]* 2.48 2.22 1.99 0.49 0.86 7.66
16 NH2 + C2H5→[NH2C2H5]* 2.48 2.22 2.09 0.55 0.92 8.21
17 C2H6 + NH2→[C2H6NH2]* 3.30 3.00 2.73 1.23 1.62 10.39
18 NH2 + CH4→[NH2CH4]* 2.98 2.72 2.55 1.11 1.48 13.23
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Reaction Barrier ∆CEPA0 ∆DC-12 ∆CCSD ∆OCEPA0 ∆ODC-12 CCSD(T)
1 [HHCl]*←H2 + Cl 1.44 1.31 1.61 0.53 0.77 7.39
2 [OHH2]*←H + H2O 2.09 1.66 0.09 -0.91 -0.58 21.07
3 [CH3H2]*←H + CH4 0.95 0.80 0.38 -0.38 -0.11 14.91
4 [OHCH4]*←CH3 + H2O 3.23 2.80 1.87 0.27 0.65 18.09
6 [OHNH3]*←H2O + NH2 5.46 4.62 3.14 0.79 1.33 13.17
7 [HClCH3]*←Cl + CH4 1.97 1.94 2.31 0.78 1.16 5.89
8 [OHC2H6]*←H2O + C2H5 3.34 2.89 1.85 0.28 0.64 18.49
9 [FH2]*←HF + H 1.27 0.88 -0.78 -1.47 -1.33 32.95
10 [OHCH3]*←OH + CH3 2.62 2.29 1.82 0.32 0.68 7.43
11 [HPH3]*←PH2 + H2 1.14 1.11 1.37 0.39 0.63 23.21
12 [OHH]*←H2 + O 3.47 3.08 1.99 0.62 1.07 12.81
13 [HH2S]*←H2 + HS 1.51 1.51 1.88 0.65 0.97 16.41
14 [OHCl]*←OH + Cl 5.59 5.35 3.55 0.51 1.24 9.35
15 [CH3NH2]*←CH4 + NH 2.77 2.49 2.26 0.73 1.12 21.32
16 [NH2C2H5]*←C2H6 + NH 3.06 2.75 2.46 0.85 1.26 18.52
17 [C2H6NH2]*←NH3 + C2H5 2.54 2.30 2.30 0.63 1.02 16.20
18 [NH2CH4]*←CH3 + NH3 2.51 2.29 2.21 0.56 0.96 15.69

∆MAE: 2.77 2.49 1.84 0.67 0.94
∆SD: 1.51 1.39 1.06 0.62 0.71

∆rel %: 99 90 77 29 40
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Figure 2.2: Mean absolute deviations (∆MAE, kcal mol−1) and the standard de-
viations from the mean signed error (∆SD, kcal mol−1) of barrier heights for 18
hydrogen-transfer reactions (R1 + R2H→R1H + R2, HTBH38 database) computed
using five methods with the aug-cc-pVTZ basis set. The errors are relative to
CCSD(T)/aug-cc-pVTZ reference values. The ∆MAE value is represented as a
height of each colored box, while the ∆SD value is depicted as a radius of the black
vertical bar. See Table 2.2 for data on individual database members.

2.5.2 Hydrogen-Transfer Reaction Barrier Heights

We continue by assessing the performance of DCFT methods in predicting barrier

heights for 18 hydrogen-transfer reactions from the HTBH38 database:83

R1 + R2H −−→ [R1R2H]∗ −−→ R1H + R2 (2.6)
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These reactions† involve molecules (R1 and R2) and transition states ([R1R2H]∗)

with open-shell character, making their properties more sensitive to electron corre-

lation effects. We employ barrier heights computed at the CCSD(T)/aug-cc-pVTZ

level of theory as our reference rather than the values provided by Lynch85 in or-

der to effectively exclude basis-set incompleteness effects. We also omit the DC-06

and ODC-06 methods, which encounter frequent convergence problems due to the

poor description of N -representability (see Supporting Information for incomplete

DC-06 results).

Mean absolute deviations (∆MAE) and standard deviations (∆SD) for the hydrogen-

transfer barrier heights are presented in Table 2.2 and plotted in Figure 2.2. The

largest ∆MAE values come from CEPA0 and DC-12 (2.77 and 2.49 kcal mol−1, re-

spectively). Orbital optimization greatly improves the accuracy of these methods,

resulting in ∆MAE values of just 0.67 and 0.94 kcal mol−1 for OCEPA0 and ODC-

12, respectively. The CCSD method shows intermediate performance with ∆MAE

= 1.84 kcal mol−1. A similar trend is observed for the ∆SD values, with OCEPA0

(0.62 kcal mol−1) and ODC-12 (0.71 kcal mol−1) significantly improving upon

CEPA0 (1.51 kcal mol−1), DC-12 (1.39 kcal mol−1), and CCSD (1.06 kcal mol−1).

In addition to ∆MAE and ∆SD, Table 2.2 includes mean percent error (∆rel) values,

which are commonly used to benchmark performance for reaction kinetics. The

smallest ∆rel values are 29% and 40% for OCEPA0 and ODC-12, respectively.

Turning to barrier heights for individual hydrogen-transfer reactions (Table 2.2),

the largest errors are observed for reactions 6 and 14, both involving the OH radi-
†Reaction 19 in HTBH38, the cis-trans isomerization of piperylene, is omitted in the present

study.
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cal, for which CEPA0 and DC-12 give errors of ∼ 5-6 kcal mol−1. The best results

for these reactions are obtained from OCEPA0, with errors ranging from 0.51 to

1.18 kcal mol−1. The ODC-12 method tends to predict larger barrier heights than

OCEPA0, yielding smaller errors only when OCEPA0 underestimates the barrier

heights.

2.5.3 Radical Stabilization Energies

In this section we study the performance of DCFT methods for predicting radical

stabilization energies (RSEs). An R-group’s RSE is defined as the enthalpy of a

homodesmotic reaction

RH + ·CH3 −−→ ·R + CH4 (2.7)

where exothermic (negative) values indicate that the radical ·R is more thermo-

dynamically stable than ·CH3.86 For our benchmark we use the RSE30 dataset84,

which provides a diverse variety of ·R species (listed in Table 2.3). Since the per-

formance of CCSD(T) is known to deteriorate for strongly spin-contaminated UHF

references,87–91 we augment CCSD(T) energies with a quadruples correction (∆Q

= ECCSDT(Q) − ECCSD(T)) and use these as our benchmark. CBS-extrapolated

CCSD(T) reference values have been published for this dataset,56 but we use

CCSD(T) values computed with the cc-pCVTZ basis set to avoid basis-set incom-

pleteness effects. The δQ correction was evaluated using the cc-pCVDZ basis set.

As in the previous Section, DC-06 and ODC-06 computations cannot be converged
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Table 2.3: Errors in radical stabilization energies (RSEs, kcal mol−1) for 30 open-shell doublet species (·R)
comprising the RSE30 database84 computed using six methods with the cc-pCVTZ basis set. The errors
are relative to CCSD(T) with an added quadruples correction (δQ = ECCSDT(Q) − ECCSD(T)) shown in the
rightmost column in kcal mol−1. The δQ correction was computed using the cc-pCVDZ basis set. RSE is
defined as the reaction enthalpy for the homodesmotic reaction ·CH3 +RH→CH4 + ·R. To indicate the degree
of spin-contamination in the UHF reference, the spin expectation values (〈Ŝ2〉SCF) are also shown in units of
~2. For each method the mean absolute deviations from CCSD(T)+δQ (∆MAE, kcal mol−1) and the standard
deviations from the mean signed error (∆SD, kcal mol−1) are also presented.

·R 〈Ŝ2〉SCF ∆CEPA0 ∆DC-12 ∆CCSD ∆OCEPA0 ∆ODC-12 ∆CCSD(T) CCSD(T)+δQ
·CH2NO2 0.78 1.24 0.95 0.66 0.16 0.27 0.32 -3.50
·CH2OCHO 0.76 1.16 1.12 0.63 0.40 0.48 0.10 -4.84
·CH2SCH3 0.76 1.89 1.70 0.81 0.63 0.72 0.15 -11.01
·CF−−CH2 0.94 6.12 3.71 0.96 0.42 0.64 0.46 6.26
·CH2CH2F 0.76 0.30 0.27 0.13 0.08 0.10 0.04 -1.53
·CH2CHO 0.93 5.01 2.86 0.32 -0.16 0.02 0.46 -10.11
·CH2CN 0.94 6.36 3.52 0.65 -0.02 0.21 0.46 -8.66
·CH2F 0.76 1.03 1.00 0.52 0.55 0.57 0.06 -4.22
·CH2NH2 0.76 1.28 1.18 0.59 0.50 0.52 0.06 -12.06
·CH2NH +

3 0.76 0.16 0.10 0.08 0.06 0.03 0.02 4.58
·CH2NHOH 0.77 1.76 1.57 0.78 0.58 0.64 0.15 -8.81
·CH2OH 0.76 1.29 1.23 0.62 0.57 0.60 0.07 -9.27
·CH2PH +

3 0.76 0.21 0.14 0.01 0.01 -0.02 0.05 0.49
·CH2SH +

2 0.77 0.41 0.30 0.12 0.11 0.08 0.06 2.29
·CH2SH 0.76 1.60 1.43 0.68 0.57 0.63 0.12 -9.68
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·R 〈Ŝ2〉SCF ∆CEPA0 ∆DC-12 ∆CCSD ∆OCEPA0 ∆ODC-12 ∆CCSD(T) CCSD(T)+δQ
·CH2C−−−CH 1.00 6.23 3.47 0.82 -0.03 0.23 0.52 -13.17
·CH2CH3 0.76 0.30 0.26 0.11 0.08 0.10 0.03 -3.36
·CH2Cl 0.77 1.13 1.02 0.50 0.48 0.51 0.09 -5.67
·CH2BH2 0.76 0.17 0.17 0.05 0.03 0.04 0.05 -11.66
·CHO 0.77 2.26 2.24 1.48 1.55 1.56 0.20 -17.61
·CH2PH2 0.76 1.17 1.02 0.39 0.36 0.39 0.12 -6.50
·CHClF 0.76 1.61 1.52 0.76 0.78 0.81 0.13 -6.61
·CHFCH3 0.76 1.07 1.01 0.50 0.51 0.53 0.08 -5.87
·CH(OH)2 0.76 1.30 1.22 0.60 0.60 0.61 0.08 -6.67
·CHCl2 0.77 1.78 1.57 0.72 0.72 0.75 0.15 -9.56
·CHF2 0.76 1.50 1.48 0.78 0.83 0.85 0.10 -4.07
CH2−−C·−CN 1.39 19.10 11.50 2.36 -0.31 0.29 1.80 1.98
·C−−−CH 1.15 11.20 6.51 0.77 -0.78 -0.07 0.82 26.25
·CH−−CH2 0.94 5.42 3.01 0.58 0.11 0.31 0.40 5.49
·CH2−CH−−CH2 0.97 4.98 3.17 0.51 0.11 0.31 0.48 -17.53

∆MAE: 2.97 2.01 0.62 0.40 0.43 0.25
∆SD: 3.97 2.27 0.45 0.43 0.35 0.35
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Figure 2.3: Mean absolute deviations (∆MAE, kcal mol−1) and the standard de-
viations from the mean signed error (∆SD, kcal mol−1) of the radical stabilization
energies (RSEs) for 30 open-shell doublet species (RSE30 database) computed us-
ing six methods with the cc-pCVTZ basis set. The errors are relative to CCSD(T)
with an added quadruples correction (δQ = ECCSDT(Q)−ECCSD(T)). The δQ correc-
tion was computed using the cc-pCVDZ basis set. RSE is defined as the reaction
enthalpy for the homodesmotic reaction ·CH3 + RH→CH4 + ·R. The ∆MAE value
is represented as a height of each colored box, while the ∆SD value is depicted as
a radius of the black vertical bar. See Table 2.3 for data on individual database
members.

for all database members and are omitted in the analysis below (see Supporting

Information for incomplete DC-06 and ODC-06 data).

The relative performance of the DCFT, CEPA, and CC methods for the RSE30

dataset is shown in Figure 2.3. The effect of orbital-optimization on accuracy is

now even more pronounced, reducing the large ∆MAE errors of CEPA0 (2.97 kcal mol−1)
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and DC-12 (2.01 kcal mol−1) to 0.40 and 0.43 kcal mol−1 for OCEPA0 and ODC-

12, respectively. CCSD has a slightly larger ∆MAE value (0.62 kcal mol−1), while

CCSD(T) has the smallest overall ∆MAE (0.25 kcal mol−1). Both CEPA0 and DC-

12 show large standard deviations again (3.97 and 2.27 kcal mol−1, respectively).

For OCEPA0, the standard deviation (0.43 kcal mol−1) is similar to that of CCSD

(0.45 kcal mol−1). ODC-12 and CCSD(T) exhibit the most consistent performance

with the same ∆SD value of 0.35 kcal mol−1.

Deviations from CCSD(T)+δQ for individual RSEs predicted by each method

are tabulated in Table 2.3. In addition, Table 2.3 includes expectation values

of the square-norm spin operator computed for the UHF wavefunction of ·R

(〈Ŝ2〉SCF). The largest errors in computed RSEs were obtained for ·R species

with 〈Ŝ2〉SCF > 0.9 ~2 (radicals 4, 6, 7, 16, and 27-30 in Table 2.3). For these sys-

tems, the average CEPA0 and DC-12 errors are 8.05 and 4.72 kcal mol−1, and the

average CCSD(T) error is 0.68 kcal mol−1. OCEPA0 and ODC-12 offer remark-

ably better performance for this subset, with average errors of 0.24 kcal mol−1 and

0.26 kcal mol−1.

2.5.4 Adiabatic Ionization Energies in Electron-Dense Molecules

We conclude the assessment of DCFT methods for the description of thermo-

dynamic properties by computing adiabatic ionization energies (AIEs) for a set

of 10 di- and triatomic electron-dense molecules (Table 2.4), i.e. those that are

composed of elements with small atomic radius, high electron affinity, and high

electronegativity (N, O, F), in order to increase the magnitude of electron correla-
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Table 2.4: Errors in adiabatic ionization energies (AIEs, eV) for 10 di- and triatomic molecules computed
using six methods with the cc-pCVQZ basis set. The errors are relative to experimental values (IEref , eV) from
Ref. 92, unless noted otherwise. For all AIEs the harmonic zero-point vibrational energy corrections were
included. For each method the mean absolute deviations from IEref (∆MAE, eV) and the standard deviations
from the mean signed error (∆SD, eV) are also shown.

Molecule Transition ∆CEPA0 ∆DC-12 ∆CCSD ∆OCEPA0 ∆ODC-12 ∆CCSD(T) IEref
N2

1Σ+
g → 2Σ+

g 0.08 0.17 0.12 -0.05 0.07 -0.03 15.581 ± 0.008 a

O2
3Σ−g → 2Πg -0.11 -0.03 0.04 -0.09 -0.02 -0.04 12.0697 ± 0.0002

F2
1Σ+

g → 2Πg 0.06 0.06 0.04 0.08 0.01 -0.03 15.697 ± 0.003
NO 2Π→ 1Σ+ -0.15 -0.05 -0.05 -0.05 -0.02 -0.09 9.26438 ± 0.00005
OF 2Π→ 3Σ− 0.11 0.12 -0.10 -0.03 -0.02 -0.11 12.77 ± 0.01 b

HNC 1Σ+
g → 2Σ+ 0.27 0.14 -0.12 -0.14 -0.08 -0.04 12.04 ± 0.01 c

HOF 1A′ → 2A′′ 0.20 0.17 -0.10 -0.03 -0.04 -0.07 12.71 ± 0.01
FNO 1A′ → 2A′′ 0.51 0.10 -0.02 -0.02 -0.00 0.04 12.63 ± 0.03
F2N 2B1 → 1A1 0.07 0.10 0.07 0.01 0.03 -0.08 11.63± 0.01
F2O 1A1 → 2B1 0.49 0.37 -0.01 0.05 0.04 -0.04 13.11 ± 0.01

∆MAE: 0.21 0.13 0.06 0.05 0.03 0.06
∆SD: 0.22 0.12 0.08 0.06 0.04 0.04

a Reference 93.
b Reference 94.
c Reference 95.
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Figure 2.4: Mean absolute deviations (∆MAE, eV) and the standard deviations
from the mean signed error (∆SD, eV) of adiabatic ionization energies for 10 di-
and triatomic molecules computed using six methods with the cc-pCVQZ basis set.
The errors are relative to experimental values.92–95 The ∆MAE value is represented
as a height of each colored box, while the ∆SD value is depicted as a radius of the
black vertical bar. See Table 2.4 for data on individual molecules.

tion effects. We use experimentally measured ionization energies reported to high

precision (∼0.01 eV)92–95 as reference values for our benchmark (IEref , Table 2.4).

The AIEs were computed using the cc-pCVQZ basis set, with harmonic ZPVE

corrections applied to each neutral and cationic system.

The ∆MAE and ∆SD values for our computed AIEs relative to experiment are

plotted in Figure 2.4. Of the six methods, CEPA0 and DC-12 exhibit the largest

∆MAE values (0.21 and 0.13 eV, respectively). The closest agreement with experi-

ment is given by ODC-12, with ∆MAE = 0.03 eV. OCEPA0, CCSD, and CCSD(T)
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show somewhat poorer performance (∆MAE = 0.05, 0.06 and 0.06 eV, respectively).

The ∆SD for ODC-12 matches that of CCSD(T) (0.04 eV). For the other methods,

the ∆SD values decrease in the order CEPA0 (0.22 eV) > DC-12 (0.12) > CCSD

(0.08) > OCEPA0 (0.06).

Individual errors for each system are shown in Table 2.4. Both DC-12 and

CEPA0 exhibit large deviations for F2O (0.49 and 0.37 eV), and CEPA0 also gives

a large error for FNO (0.51 eV) which is the maximum error for this dataset.

Both DC-12 and CEPA0 give errors exceeding 0.1 eV for seven of the ten systems,

whereas CCSD exhibits errors in excess of 0.1 eV for only three systems (OF,

HNC, and HOF). CCSD(T) has only one such error (0.11 eV for OF), as does

OCEPA0 (0.14 eV for HNC). ODC-12 does the best of the methods considered,

with a maximum error of 0.08 eV, found for the AIE of HNC.

2.5.5 Covalent Bond Stretching in Diatomic Molecules

Finally, we benchmark DCFT methods for covalent bond stretching. Although

accurate description of bond stretching demands the use of multireference meth-

ods, our aim here is to explore the limits of DCFT away from equilibrium. For

this purpose, we compute the energy as a function of bond distance for diatomic

molecules with single (HF and BH), double (BeO), and triple (N2) bonds using the

CEPA0, OCEPA0, DC-12, ODC-12, CCSD, and CCSD(T) methods. We restrict

ourselves to modest basis sets in order to use full CI (FCI) as a reference, and

plot the errors with respect to FCI (∆E) as a function of internuclear distance for

each molecule. The relative performance of the methods is described below using
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Figure 2.5: Error in the total energy (mEh), relative to full CI, as a function of
B–H internuclear separation (Å) computed using six methods with the DZP basis
set. The full CI reference is depicted with a horizontal dotted line. The dashed
vertical line indicates the full CI equilibrium bond distance.
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Figure 2.6: Error in the total energy (mEh), relative to full CI, as a function of
H–F internuclear separation (Å) computed using six methods with the DZP basis
set. The full CI reference is depicted with a horizontal dotted line. The dashed
vertical line indicates the full CI equilibrium bond distance.
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Figure 2.7: Error in the total energy (mEh), relative to full CI, as a function
of Be–O internuclear separation (Å) computed using six methods with the 6-31G
basis set. The full CI reference is depicted with a horizontal dotted line. The
dashed vertical line indicates the full CI equilibrium bond distance.
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Figure 2.8: Error in the total energy (mEh), relative to full CI, as a function of
N–N internuclear separation (Å) computed using six methods with the 6-31G basis
set. The full CI reference is depicted with a horizontal dotted line. The dashed
vertical line indicates the full CI equilibrium bond distance.
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non-parallelity errors (NPE = ∆Emax −∆Emin, mEh) computed for specific bond

distance ranges.

BH Figure 2.5 shows errors relative to FCI for the BH molecule. DC-12 and

CCSD increasingly overestimate the energy at larger internuclear distances, whereas

the CEPA0 error curve is concave down. Orbital optimization lowers the binding

energy for OCEPA0 even further compared to CEPA0, leading to large errors with

respect to FCI for r(B–H) ¿ 1.5 re, where re is the FCI equilibrium bond distance

(re = 1.244 Å). At 1.87 re, OCEPA0 encounters convergence problems, which origi-

nate from numerical instabilities due to the method’s deficiencies in the description

of N -representability. The ODC-12 method exhibits much more stable behavior

with respect to bond stretching in this case, fortuitously showing smaller errors

and better parallelity than CCSD(T). For the range [0.72 re, 2.47 re], the NPEs

decrease in the order DC-12 (24 mEh) > CEPA0 (15) > CCSD (5) > CCSD(T)

(3) > ODC-12 (1).

HF Errors for HF bond stretching are plotted in Figure 2.6. The ∆E values

of CCSD and DC-12 increase as a function of r(H–F), while CEPA0 fortuitously

maintains parallelity similar to CCSD(T) over the range [0.74 re, 1.94 re] (re =

0.929 Å). OCEPA0 increasingly overestimates the HF binding energy away from

equilibrium, failing to converge past 1.82 re. The ODC-12 method exhibits larger

NPE than was observed for BH, and encounters convergence problems past 1.94 re.

CCSD(T) shows the best overall performance, with errors between 0 and 1 mEh.

In the range [0.74 re, 1.94 re] the computed NPE values are: DC-12 (15 mEh) >
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CCSD (7) > ODC-12 (3) > CEPA0 (1) ≈ CCSD(T) (1). Recently, the orbital-

optimized variants of CCSD(T) have been shown to yield good performance for

HF bond stretching.96

BeO The double bond of BeO presents a more challenging test for the single-

reference methods under consideration (Figure 2.7). All methods but CCSD(T)

show qualitatively similar error curves, with inflection points near the FCI equilib-

rium (re = 1.394 Å) and valleys/peaks around 0.6 re/1.2 re. OCEPA0 encounters

convergence problems past 1.10 re. The ODC-12 method performs similarly to

CCSD. Overall, the NPEs for the range [0.65 re, 1.10 re] decrease in the following

order: DC-12 (29 mEh) > CEPA0 (24) > ODC-12 (19) > CCSD (17) > CCSD(T)

(3).

N2 Figure 2.8 depicts the errors relative to FCI for triple bond stretching in

N2. Here, OCEPA0 fails to converge past 1.24 re (re = 1.135 Å). The ODC-12

method significantly overestimates the binding energy, possibly due to the lack of

three-body correlation effects, but shows much more stable performance compared

to methods other than CCSD(T). NPEs in the range [0.79 re, 1.39 re] decrease in

the order: CEPA0 (802 mEh)‡> CCSD (27) > DC-12 (21) > ODC-12 (14) >

CCSD(T) (4).
‡CEPA0 exhibits a vertical asymptote at 1.36 re for N2 stretching.
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2.6 Conclusions

We have presented the benchmark study of four density cumulant functional theory

(DCFT) methods (DC-06, DC-12, ODC-06, and ODC-12) developed recently in

our group.23–25;73 Specifically we have compared the performance of DCFT to

that of coupled electron pair methods (CEPA0 and OCEPA0), as well as coupled-

cluster theory [CCSD and CCSD(T)] for predicting a variety of chemical properties

relevant to thermochemistry and kinetics, with a particular focus on open-shell,

electron-dense, and non-equilibrium systems.

Our results indicate that among the four DCFT methods, the best agreement

with available reference data is obtained for the ODC-12 method. While all four

DCFT formulations yield similar results for the description of noncovalent inter-

actions, DC-06, DC-12, and ODC-06 exhibit worse performance than ODC-12 for

thermodynamic and kinetic properties of reactions involving open-shell molecules.

In particular, DC-06 and ODC-06 frequently encounter convergence problems that

originate from poor description of N -representability. In comparing ODC-12 to

other methods, several trends can be observed:

(i) For all benchmark datasets, ODC-12 outperforms CCSD with errors smaller

by almost a factor of two, on average. ODC-12 is also superior to CCSD for the

description of single bond stretching in BH and HF, although it does not converge

for all bond distances.

(ii) The performance of ODC-12 and OCEPA0 is comparable. In particular,

for hydrogen-transfer reaction barrier heights, the OCEPA0 method yields smaller

percent errors than ODC-12, whereas, for the radical stabilization energies (RSE)
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and adiabatic ionization energies (AIE) in electron-dense molecules, the ODC-

12 method smaller standard deviations than OCEPA0. For AIEs, ODC-12 gives

smaller mean absolute deviations by almost a factor of two. ODC-12 also shows

significantly smaller non-parallelity errors than OCEPA0 for covalent bond stretch-

ing, and can be converged for a larger range of distances for all diatomic molecules

studied.

(iii) For the two most challenging datasets, RSE and AIE, the standard devi-

ation of ODC-12 and CCSD(T) are similar. While CCSD(T) yields smaller mean

absolute errors for the RSE database, the ODC-12 method significantly outper-

forms CCSD(T) for the AIE test case. However, for bond stretching ODC-12 is

competitive with CCSD(T) only for the BH dissociation and shows worse results

for other molecules.

Overall, the data presented herein indicates that the ODC-12 method can be

used as an efficient O(n6) alternative to CCSD, capable of predicting thermo-

dynamic and kinetic quantities that are competitive in accuracy with the “gold-

standard” O(n7) CCSD(T). Although our current implementation of ODC-12 is

far from optimal, the ODC-12 equations have reduced non-linearities compared to

CCSD, which makes them more amenable to parallel implementation. The effi-

ciency of ODC-12 can also greatly benefit from spin-adaptation,66;97;98 local ap-

proximations,59;99–101 and density fitting.99;102–104 Another important advantage of

ODC-12 over CCSD is its stationarity, which makes the computation of first-order

properties and analytic gradients more efficient and easily accessible. In particu-
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lar, ODC-12 has potential to be used for computing accurate response properties

which do not suffer from a lack of gauge-invariance.105;106
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Chapter 3

Linear-Response Density Cumulant Theory for Excited Elec-

tronic States∗

∗A. V. Copan and A. Yu. Sokolov, arXiv:1804.02141 [physics.chem-ph] (2018).
Reprinted here with permission of the publisher.
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3.1 Abstract

We present a linear-response formulation of density cumulant theory (DCT) that

provides a balanced and accurate description of many electronic states simultane-

ously. In the original DCT formulation, only information about a single electronic

state (usually, the ground state) is obtained. We discuss the derivation of linear-

response DCT, present its implementation for the ODC-12 method (LR-ODC-12),

and benchmark its performance for excitation energies in small molecules (N2, CO,

HCN, HNC, C2H2, and H2CO), as well as challenging excited states in ethylene,

butadiene, and hexatriene. For small molecules, LR-ODC-12 shows smaller mean

absolute errors in excitation energies than equation-of-motion coupled cluster the-

ory with single and double excitations (EOM-CCSD), relative to the reference data

from EOM-CCSDT. In a study of butadiene and hexatriene, LR-ODC-12 correctly

describes the relative energies of the singly-excited 11Bu and the doubly-excited

21Ag states, in excellent agreement with highly accurate semistochastic heat-bath

configuration interaction results, while EOM-CCSD overestimates the energy of

the 21Ag state by almost 1 eV. Our results demonstrate that linear-response DCT

is a promising theoretical approach for excited states of molecules.

3.2 Introduction

Accurate simulation of excited electronic states remains one of the major chal-

lenges in modern electronic structure theory. Ab initio methods for excited states

can be divided into single-reference and multi-reference categories, based on their
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ability to treat static electron correlation. Multi-reference methods107–124 can cor-

rectly describe static correlation in near-degenerate valence orbitals and electronic

states with multiple-excitation character, but often lack accurate treatment of im-

portant dynamic correlation effects or become computationally very costly when

the number of strongly correlated orbitals is large. Meanwhile, single-reference

methods46;48;125–137 often provide a compromise between the computational cost

and accuracy, and can be used to reliably compute properties of molecules in

low-lying electronic states near the equilibrium geometries. In these situations,

single-reference equation-of-motion coupled cluster theory (EOM-CC)46;48;127–130

is usually the method of choice, especially when high accuracy is desired.

The EOM-CC methods yield size-intensive excitation energies132;133 and can

be systematically improved by increasing the excitation rank of the cluster op-

erator in the exponential parametrization of the wavefunction. Although EOM-

CC is usually formulated in the context of a similarity-transformed Hamiltonian,

its excitation energies are equivalent to those obtained from linear-response cou-

pled cluster theory (LR-CC).131–133 Both EOM-CC and LR-CC are based on non-

Hermitian eigenvalue problems, which complicates the computation of molecular

properties (e.g., transition dipoles) by requiring evaluation of left and right eigen-

vectors,138–141 and may result in an incorrect description of potential energy sur-

faces in the vicinity of conical intersections where complex excitation energies may

be obtained.142–144 Several Hermitian alternatives to EOM-CC and LR-CC have

been proposed to avoid these problems, such as algebraic diagrammatic construc-
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tion145–147, unitary and variational LR-CC,148–150 similarity-constrained CC,151

and propagator-based LR-CC.152;153

In this work, we present a linear-response formulation of density cumulant the-

ory for excited electronic states. In density cumulant theory (DCT),22–26;73;154;155

the electronic energy is determined directly in terms of the one-particle reduced

density matrix and the density cumulant, i.e. the fully connected part of the two-

body reduced density matrix (2-RDM).63–66;68;72;156–159 In this regard, DCT is re-

lated to approaches based on the variational optimization65;160–165 or parametriza-

tion60–62 of the 2-RDM. On the other hand, DCT has a close relationship with

wavefunction-based electronic structure theories,24;25 such as linearized, unitary,

and variational coupled cluster theory.30;166–173 In contrast to variational 2-RDM

theory69–71 and traditional coupled cluster methods,46;48 DCT naturally combines

size-extensivity and a Hermitian energy functional. In addition, the DCT elec-

tronic energy is fully optimized with respect to all of its parameters, which greatly

simplifies computation of the first-order molecular properties.174–177 We have suc-

cessfully applied DCT to a variety of chemical systems with different electronic

structure effects (e.g., open-shell, symmetry-breaking, and multi-reference).25;26;154;178;179

One limitation of the original DCT formulation is the ability to describe only the

lowest-energy state of a particular symmetry (usually, the ground state). By com-

bining DCT with linear response theory, we remove this limitation, providing

access to many electronic states simultaneously.

We begin with a brief overview of DCT (Section 3.3.1) and linear response

theory (Section 3.3.2). In Section 3.3.3, we describe the derivation of the linear-
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response equations for the ODC-12 model (LR-ODC-12). In Section 3.3.4, we

compare the LR-ODC-12 method with linear-response orbital-optimized linearized

coupled cluster theory with double excitations (LR-OLCCD), which we derive by

linearizing the LR-ODC-12 equations. We outline the computational details in

Section 3.4. In Section 3.5, we demonstrate that the LR-ODC-12 excitation ener-

gies are size-intensive (Section 3.5.1), test the performance of LR-ODC-12 for the

dissociation of H2 (Section 3.5.2), benchmark its accuracy for vertical excitation

energies of small molecules (Section 3.5.3), and apply LR-ODC-12 to challenging

excited states in ethylene, butadiene, and hexatriene (Section 3.5.4). We present

our conclusions in Section 3.6.

3.3 Theory

3.3.1 Overview of Density Cumulant Functional Theory

We begin with a brief overview of density cumulant theory (DCT) for a single

electronic state. Our starting point is to express the electronic energy as a trace of

the one- and antisymmetrized two-electron integrals (hqp and grspq) with the reduced

one- and two-body density matrices (γpq and γpqrs ):

E = hqpγ
p
q + 1

4g
rs
pqγ

pq
rs (3.1)

where summation over the repeated indices is implied. In DCT, the two-body

density matrix γpqrs is expanded in terms of its connected part, the two-body density

cumulant (λpqrs), and its disconnected part, which is given by an antisymmetrized
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product of one-body density matrices:22

γpqrs = 〈Ψ|apqrs|Ψ〉 = λpqrs + P(r/s)γ
p
rγ

q
s (3.2)

where P(r/s)vrs = vrs − vsr denotes antisymmetrization and apqrs = a†pa
†
qasar is the

two-body operator in second quantization. The one-body density matrix γpq is

determined from its non-linear relationship to the cumulant’s partial trace:24

γpq = γprγ
r
q − λprqr (3.3)

This allows us to determine the energy (3.1) from the two-body density cumulant

and the spin-orbitals, thereby defining the DCT energy functional. The density

cumulant is parametrized by choosing a specific Ansatz for the wavefunction |Ψ〉

such that26

λpqrs = 〈Ψ|apqrs|Ψ〉c (3.4)

where c indicates that only fully connected terms are included in the parametriza-

tion. Eq. (3.4) can be considered as a set of n-representability conditions that

ensure that the resulting one- and two-body density matrices represent a physi-

cal n-electron wavefunction. To compute the DCT energy, the functional (3.1) is

made stationary with respect to all of its parameters. Importantly, due to the con-

nected nature of Eq. (3.4), DCT is both size-consistent and size-extensive for any

parametrization of |Ψ〉, and is exact in the limit of a complete parametrization.26
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In this work, we consider the ODC-12 method,24;25 which parametrizes the

cumulant through a unitary treatment of single excitations and a linear expansion

of double excitations:

|Ψ〉 = eT̂1−T̂ †1 (1 + T̂2)|Φ〉 (3.5)

T̂1 = t1 · a1 = tiaa
a
i (3.6)

T̂2 = t2 · a2 = 1
4t
ij
aba

ab
ij (3.7)

The exponential singles operator eT̂1−T̂ †1 has the effect of a unitary transformation

of the spin-orbital basis and is incorportated in our ODC-12 implementation by

optimizing the orbitals.25 The t1 and t2 parameters are obtained from the station-

arity conditions
∂E

∂t†1
!= 0 , ∂E

∂t†2
!= 0 (3.8)

and are used to compute the ODC-12 energy. Explicit equations for the station-

arity conditions are given in Refs. 24 and 25. Although in ODC-12 the wavefunc-

tion parametrization is linear with respect to double excitations (Eq. (3.5)), the

ODC-12 energy stationarity conditions are non-linear in t2 due to the non-linear

relationship between the one-particle density matrix and the density cumulant

(Eq. (3.3)).24 Neglecting the non-linear t2 terms in Eq. (3.8) results in the equa-

tions that define the linearized orbital-optimized coupled cluster doubles method

(OLCCD). This method is equivalent to the orbital-optimized coupled electron

pair approximation zero (OCEPA0).55
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3.3.2 Linear Response Theory

We now briefly review linear response theory in the quasi-energy formulation.180

The quasi-energy of a system perturbed by a time-dependent interaction V̂ f(t) is

defined as

Q(t) = 〈Ψ(t)|Ĥ + V̂ f(t)− i ∂
∂t
|Ψ(t)〉 (3.9)

where Ψ(t) is the phase-isolated wavefunction, from which the usual Schrödinger

wavefunction can be recovered as e−i
∫ t

0 dt
′Q(t′)Ψ(t). Assuming that the perturbation

is periodic

f(t) =
∑
ω

f(ω)e−iωt (3.10)

the time average of the quasi-energy over a period of oscillation, denoted as {Q(t)},

is variational with respect to the exact dynamic state.181 The independent param-

eters u(t) that define such a state can be written using a Fourier expansion

u(t) =
∞∑
n=0

∑
ω1···ωn

u(ω1, . . . , ωn)e−i(ω1+···+ωn)t (3.11)

where the outer sum runs over polynomial orders in f(t). The stationarity of the

time-averaged quasi-energy then implies the following relationship182

0 = d

df(ω)
∂{Q(t)}
∂u†(ω)

∣∣∣∣∣
f=0

=

∂2{Q(t)}
∂u†(ω)∂u(ω)

∂u(ω)
∂f(ω)

∣∣∣∣∣
f=0

+ ∂2{Q(t)}
∂u†(ω)∂f(ω)

∣∣∣∣∣
f=0

(3.12)
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which constitutes a linear equation for the first-order response of the system to the

perturbation. When the frequency ω is in resonance with an excitation energy of

the system, Eq. (3.12) will result in an infinite first-order response ∂u(ω)
∂f(ω) . From

Eq. (3.12), we find that these poles occur when the Hessian matrix of the quasi-

energy with respect to the wavefunction parameters u(ω) becomes singular. We

can express this Hessian matrix in the form:

∂2{Q(t)}
∂u†(ω)∂u(ω)

∣∣∣∣∣
f=0
≡ E− ωM (3.13)

where E is the Hessian of the time-averaged electronic energy {〈Ψ(t)|Ĥ|Ψ(t)〉} and

ωM is the Hessian of the time-derivative overlap {〈Ψ(t)|iΨ̇(t)〉}. The excitation

energies of the system ωk can therefore be determined by solving the following

generalized eigenvalue equation:

Ezk = ωkMzk (3.14)

where M serves as the metric matrix. Eq. (3.14) allows the determination of

excitation energies for an arbitrary parametrization of |Ψ(t)〉.

The generalized eigenvectors zk can be used to compute transition properties

for excited states. In particular, in the exact linear response theory,183 the tran-

sition strength of the perturbing interaction, |〈Ψ|V̂ |Ψk〉|2, is equal to the complex

residue of the following quantity at ω → ωk:

〈〈V̂ ; V̂ 〉〉ω ≡ v′† · ∂u(ω)
∂f(ω)

∣∣∣∣∣
f=0

(3.15)
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This quantity is known as the linear response function and v′ is termed the property

gradient vector,184 which is defined as follows:

v′ ≡ ∂2{Q(t)}
∂u†(ω)∂f(ω)

∣∣∣∣∣
f=0

(3.16)

Substituting Eqs. (3.13) and (3.16) into Eq. (3.12) and decomposing the quasi-

energy Hessian as

E− ωM = (Z†)−1(Z†MZ)(Ω− ω1)(Z)−1 (3.17)

where Z is the matrix of generalized eigenvectors (Eq. (3.14)) diagonalizing matri-

ces E and M, and Ω is the diagonal matrix of eigenvalues, we obtain the general

formula for the transition strengths:

lim
ω→ωk

(ω − ωk)〈〈V̂ ; V̂ 〉〉ω = |z
†
kv′|2

z†kMzk
(3.18)

In Section 3.3.3, we will use the quasi-energy formalism to derive equations for the

linear-response ODC-12 method (LR-ODC-12).

3.3.3 Linear-Response ODC-12

In the ODC-12 method, the electronic energy Hessian can be written in the fol-

lowing form

E =


A11 A12 B11 B12
A21 A22 B21 B22
B∗11 B∗12 A∗11 A∗12
B∗21 B∗22 A∗21 A∗22

 (3.19)
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where the submatrices are defined in general as

Anm = ∂2E

∂t†n∂tm

∣∣∣∣∣
f=0

, Bnm = ∂2E

∂t†n∂t∗m

∣∣∣∣∣
f=0

(3.20)

These complex derivatives relate to the second derivatives of the electronic energy

with respect to variations of the orbitals (A11, B11) and cumulant parameters (A22,

B22). Similarly, the mixed second derivatives couple variations in the orbitals and

cumulant parameters (A12, B12). The metric matrix M has a block-diagonal

structure, as a consequence of the linear parametrization of the wavefunction in

Eq. (3.5):

M =


S11 0 0 0
0 12 0 0
0 0 −S∗11 0
0 0 0 −12

 (3.21)

where 12 = 〈Φ|a†2a2|Φ〉 is an identity matrix over the space of unique two-body

excitations and the orbital metric is defined as follows:

ωS11 = ∂2{〈Ψ(t)|iΨ̇(t)〉}
∂t†1(ω)∂t1(ω)

∣∣∣∣∣
f=0

(3.22)

Equations for all blocks of E, M, and the property gradient vector v′ are shown

explicitly in the Supporting Information. The computational cost of solving the

LR-ODC-12 equations has O(O2V 4) scaling (where O and V are the numbers of

occupied and virtual orbitals, respectively), which is the same as the computational

scaling of the single-state ODC-12 method. We note that, due to the Hermitian

nature of the DCT energy functional (3.1), the ODC-12 energy Hessian E is always
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symmetric. As a result, in the absence of instabilities (i.e., as long as the Hessian

is positive semi-definite), the LR-ODC-12 excitation energies are guaranteed to

have real values.

To illustrate the derivation of the LR-ODC-12 energy Hessian, let us consider

the diagonal two-body block of E. Expressing the energy (3.1) using the cumulant

expansion (3.2) and differentiating with respect to t2, we obtain:

A22 = ∂2E

∂t†2∂t2
= f qp

∂2γpq

∂t†2∂t2
+ gqspr

∂γpq

∂t†2

∂γrs
∂t2

+1
4g

rs
pq

∂2λpqrs
∂t†2∂t2

(3.23)

where we have introduced the generalized Fock matrix f qp ≡ hqp+gqsprγrs . The deriva-

tives of the one-body density matrix can be expressed in terms of the derivatives

of the density cumulant

A22 =F qp
∂2λptqt

∂t†2∂t2
+ Gqspr

∂λptqt

∂t†2

∂λrusu
∂t2

+1
4g

rs
pq

∂2λpqrs
∂t†2∂t2

(3.24)

where the intermediates F qp and Gqspr can be computed using a transformation

of the one- and two-electron integrals to the natural spin-orbital basis (see Sec-

tion 3.A for details). These cumulant derivatives are straightforward to evaluate

from Eqs. (3.4) and (3.5) using either algebraic or diagrammatic techniques.
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Next, let us outline the derivation of the one-body metric. Substituting Eq. (3.5)

into Eq. (3.22) gives

ωS11 = 1
2
∂2{〈Ψ|[i ˆ̇T †1 (t), T̂1(t)]|Ψ〉}

∂t†1(ω)∂t1(ω)

∣∣∣∣∣∣
f=0

− 1
2
∂2{〈Ψ|[T̂ †1 (t), i ˆ̇T1(t)]|Ψ〉}

∂t†1(ω)∂t1(ω)

∣∣∣∣∣∣
f=0

(3.25)

where we have assumed that we are working in the variational orbital basis so that

T̂1(t)|f=0 = 0, and Ψ = Ψ(t)|f=0 denotes the ground state wavefunction. Using the

Fourier expansion of the t1(t) parameters (Eq. (3.11)), the gradients of the time

derivatives can be evaluated as:

∂i ˆ̇T †1 (t)
∂t†1(ω)

∣∣∣∣∣∣
f=0

= −ωa†1e+iωt (3.26)

∂i ˆ̇T1(t)
∂t1(ω)

∣∣∣∣∣∣
f=0

= +ωa1e
−iωt (3.27)

Substituting Eqs. (3.26) and (3.27) into Eq. (3.25) and evaluating the gradients of

T̂1 and T̂ †1 similarly gives the final working equation for the one-body metric:

ω(S11)ia,jb = ω〈Ψ|[aia, abj]|Ψ〉

= ω(δbaγij − δijγba)
(3.28)
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3.3.4 Linear-Response OLCCD

As we discussed in Section 3.3.1, the orbital-optimized linearized coupled cluster

doubles method (OLCCD) can be considered as an approximation to the ODC-

12 method where all of the non-linear t2 terms are neglected in the stationarity

conditions. Similarly, we can formulate the linear-response OLCCD method (LR-

OLCCD) by linearizing the LR-ODC-12 equations. This simplifies the expressions

for the electronic Hessian blocks that involve the second derivatives with respect

to t2. For example, for the A22 block, we obtain:

A22 = (f0)ji
∂2λirjr

∂t†2∂t2
− (f0)ba

∂2λarbr
∂t†2∂t2

+ 1
4g

rs
pq

∂2λpqrs
∂t†2∂t2

(3.29)

where (f0)qp = hqp + gqipi is the usual (mean-field) Fock operator. Comparing

Eq. (3.29) with Eq. (3.24) from the LR-ODC-12 method, we observe that the

former equation can be obtained from the latter by replacing the F qp intermediates

with the mean-field Fock matrix elements and ignoring the term that depends

on Gqspr . These simplifications arise from the fact that the F qp and Gqspr interme-

diates contain high-order t2 contributions that are not included in the linearized

LR-OLCCD formulation (see Section 3.A and Ref. 24 for details). For the B22

block, we find that all of the Hessian elements are zero. A complete set of working

equations for LR-OLCCD is given in the Supporting Information.
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3.4 Computational Details

The LR-ODC-12 and LR-OLCCD methods were implemented as a standalone

Python program, which was interfaced with Psi4185 and Pyscf186 to obtain the

one- and two-electron integrals. To compute excitation energies, our implementa-

tion utilizes the multi-root Davidson algorithm,187;188 which solves the generalized

eigenvalue problem (3.14) by progressively growing an expansion space for the nroot

lowest generalized eigenvectors of the electronic Hessian and the metric matrix. A

key feature of this algorithm is that it avoids storing the Hessian and metric ma-

trices, significantly reducing the amount of memory required by the computations.

Our implementation of the energy Hessian was validated by computing the static

response function for a dipole perturbation (i.e., the dipole polarizability):

〈〈V̂ ; V̂ 〉〉0 = −v′†E−1v′ (3.30)

This quantity can be evaluated numerically as a derivative of the ground state

energy

〈〈V̂ ; V̂ 〉〉0 = d2E

df 2

∣∣∣∣∣
f=0

(3.31)

by perturbing the one-electron integrals hqp ← hqp + fvqp with the integrals of the

perturbing dipole operator (vqp), and solving the ODC-12 (or OLCCD) equations

for different values of f . For the dipole polarizability of the water molecule along

its C2 symmetry axis, the values of 〈〈V̂ ; V̂ 〉〉0 Computed using Eqs. (3.30) and (3.31)

matched to 10−9 a.u.
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We used Q-Chem 4.4189 to obtain results from equation-of-motion coupled

cluster theory with single and double excitations (EOM-CCSD) and EOM-CCSD

with triple excitations in the EOM part [EOM-CC(2,3)]. The MRCC program190

was used to obtain results for equation-of-motion coupled cluster theory with up to

full triple excitations (EOM-CCSDT). All electrons were correlated in all compu-

tations. We used tight convergence parameters in all ground-state (10−8 Eh) and

excited-state computations (10−5 Eh). In Sections 3.5.2 and 3.5.3, the augmented

aug-cc-pVTZ and d-aug-cc-pVTZ basis sets of Dunning and co-workers were em-

ployed.81 For alkenes (Section 3.5.4), the ANO-L-pVXZ (X = D, T) basis sets191

were used as in Ref. 192. To compute vertical excitation energies in Section 3.5.3,

geometries of molecules were optimized using ODC-12 (for LR-ODC-12), OLCCD

(for LR-OLCCD), or CCSD [for EOM-CCSD, EOM-CC(2,3), and EOM-CCSDT].

For the alkenes in Section 3.5.4, frozen-core MP2/cc-pVQZ geometries were used

as in Refs. 192 and 193.

3.5 Results

3.5.1 Size-Intensivity of the LR-ODC-12 Energies

In Section 3.3.1, we mentioned that all DCT methods are by construction size-

extensive, meaning that their electronic energies scale linearly with the number of

electrons. In this section, we demonstrate that the LR-ODC-12 excitation energies

are size-intensive, i.e. they satisfy the following property: E(A∗ + B) = E(A∗) +

E(B), where A and B are two noninteracting fragments in their corresponding

ground states and A∗ is the fragment A in an excited state. Table 3.1 shows
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Table 3.1: Ground-state energies (in Eh) and vertical excitation energies (in eV)
for the four lowest-energy excited states of the CO molecule and noninteracting
systems of CO with Ne atoms (CO + nNe, n = 1, 2, 3) computed using the ODC-
12 and LR-ODC-12 methods (cc-pVDZ basis set). The noninteracting systems
were separated from each other by 10000 Å and the C–O bond distance was set
to 1.12547 Å. Results demonstrate size-intensivity of the LR-ODC-12 excitation
energies.

CO CO + Ne CO + 2Ne CO + 3Ne
X 1Σ+

g −113.051282 −241.730913 −370.410543 −499.090174
3Π 6.48596 6.48596 6.48596 6.48596

3Σ+ 8.41225 8.41225 8.41225 8.41225
1Π 8.90866 8.90866 8.90866 8.90866
3∆ 9.33189 9.33189 9.33189 9.33189

the ODC-12 ground-state energies and the LR-ODC-12 excitation energies for

the CO molecule and noninteracting systems composed of CO and the neon atoms

separated by 10000 Å (CO + nNe, n= 1, 2, 3). The scaling of the ODC-12 energies

with the number of electrons for the ground X 1Σ+
g electronic state is perfectly

linear up to 10−8 Eh, which is the convergence parameter used in our ODC-12

computations. Upon the addition of the neon atoms, the excitation energies of

the CO molecule remain constant up to the convergence threshold set in LR-

ODC-12 (10−6 eV). These results provide numerical evidence that the LR-ODC-12

excitation energies are size-intensive.

3.5.2 H2 Dissociation

One of the desirable properties of an electronic structure method is exactness for

two-electron systems. While the ODC-12 method is not exact for two-electron
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Figure 3.1: Errors in vertical excitation energies (eV) for six lowest-lying
electronic states of H2 computed using LR-ODC-12 (3.1a) and LR-OLCCD
(3.1b) as a function of the H–H bond length, relative to full configuration
interaction. All methods employed the d-aug-cc-pvtz basis set. In each figure,
the inset shows the same plot for a larger range of errors.

systems, it has been shown to provide a very good description of the ground-

state H2 dissociation curve, with errors of ∼ 1 kcal mol−1 with respect to full

configuration interaction (FCI) near the dissociation limit.25 Here, we investigate

the performance of LR-ODC-12 for the excited states of H2. Figure 3.1a shows

the errors in vertical excitation energies for six lowest-lying electronic states as a

function of the H−H distance, relative to FCI. The FCI energies were computed

using the EOM-CCSD method, which is exact for two-electron systems. At the

equilibrium geometry (re = 0.742 Å) the errors in excitation energies for all states

do not exceed 0.02 eV. Between 0.6 and 1.45 Å (r ≈ 2re), the LR-ODC-12 exci-

tation energies remain in good agreement with FCI, with errors less than 0.1 eV

for all states. In this range, the largest error is observed for the 3Σ+
u state. For
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r ≥ 1.5 Å, the error in the 1Σ+
g excited state energy rapidly increases from 0.10

eV (at 1.5 Å) to 2.13 eV (at 2.35 Å), while for other states the errors increase

much more slowly. Analysis of the FCI wavefunction for the 1Σ+
g state shows a

significant contribution from the (1σg)2 → (1σu)2 double excitation already at r =

1.55 Å. This contribution becomes dominant for r ≥ 1.75 Å. Thus, the large LR-

ODC-12 errors observed for the 1Σ+
g state are likely due to the increasingly large

double-excitation character of this electronic state at long H−H bond distances.

The second largest error near the dissociation is observed for the 3Σ+
u state (0.43

eV). For other electronic states, smaller errors of ∼ 0.25 eV are observed near the

dissociation.

The importance of the non-linear terms in the LR-ODC-12 equations can be

investigated by comparing the LR-ODC-12 and LR-OLCCD results. Figure 3.1b

shows the errors in the LR-OLCCD vertical excitation energies as a function of

the H−H bond length. Although near the equilibrium geometry the performance

of LR-OLCCD and LR-ODC-12 is similar, the LR-OLCCD errors increase much

faster with increasing H−H distance compared to LR-ODC-12. At r = 1.3 Å,

the LR-OLCCD error for the 3Σ+
u state (0.4 eV) is almost six times larger than

the corresponding error from LR-ODC-12 (0.07 eV). For r ≥ 1.35 Å, the LR-

OLCCD errors for all excitation energies show very steep increase in magnitude,

ranging from 1.5 to 4.7 eV already at r = 1.75 Å. We were unable to converge

the LR-OLCCD equations for r ≥ 1.80 Å. Overall, our results demonstrate that

the non-linear terms in LR-ODC-12 significantly improve the description of the
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excited states at long H−H distances where the electron correlation effects are

stronger.

3.5.3 Benchmark: Small Molecules

Here, we benchmark the performance of LR-ODC-12 for vertical excitation ener-

gies in several small molecules: N2, CO, HCN, HNC, C2H2, and H2CO. Tables 3.2

and 3.3 show the errors in excitation energies computed using EOM-CCSD, LR-

OLCCD, and LR-ODC-12 for the singlet and triplet excited states, respectively,

relative to the results from EOM-CCSDT. To measure the performance of each

method, we computed the mean absolute errors (∆MAE) and the standard devia-

tions from the average signed error (∆SD), shown in Figure 3.2.

For the singlet electronic states (Table 3.2), the excitation energies computed

using LR-ODC-12 are in better agreement with EOM-CCSDT than those obtained

from EOM-CCSD, on average. This is evidenced by ∆MAE, which is smaller for

LR-ODC-12 compared to EOM-CCSD by a factor of two (∆MAE = 0.08 and 0.17

eV, respectively). The LR-ODC-12 errors exceed 0.10 eV for only four states, with

a maximum error of 0.20 eV. EOM-CCSD has a minimum error of 0.10 eV, shows

errors greater than 0.10 eV for 14 states, and has a maximum error of 0.26 eV.

EOM-CCSD shows a somewhat smaller ∆SD compared to that of LR-ODC-12

(∆SD = 0.05 and 0.08 eV, respectively).

For the triplet states (Table 3.3), LR-ODC-12 is again superior to EOM-CCSD,

on average, with ∆MAE = 0.06 and 0.11 eV for the two methods, respectively. LR-

ODC-12 has errors larger than 0.10 eV for five states with a maximum error of
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Table 3.2: Errors in vertical excitation energies (eV) for singlet states computed
using LR-OLCCD, LR-ODC-12, and EOM-CCSD, relative to EOM-CCSDT (aug-
cc-pVTZ basis set). All electrons were correlated in all computations. Also shown
are mean absolute errors (∆MAE) and standard deviations (∆SD) computed for
each method.

∆EOM-CCSD ∆LR-OLCCD ∆LR-ODC-12 EOM-CCSDT
N2

1Πg 0.18 0.08 0.20 9.29
1Σ−u 0.23 0.15 0.09 9.84
1∆u 0.26 0.14 0.10 10.26

CO 1Π 0.16 0.09 0.17 8.46
1Σ− 0.19 −0.10 −0.01 9.89
1∆ 0.19 −0.22 −0.05 10.03

HCN 1Σ− 0.16 0.05 0.00 8.25
1∆ 0.17 0.04 0.01 8.61
1Π 0.17 0.05 0.20 9.12

HNC 1Π 0.15 −0.01 0.10 8.13
1Σ+ 0.24 0.05 0.12 8.46
1Σ− 0.15 −0.09 0.04 8.67
1∆ 0.15 −0.18 −0.03 8.84

C2H2
1Σ−u 0.12 0.06 0.02 7.11
1∆u 0.10 0.07 0.03 7.45

H2CO 1A2 0.10 −0.07 0.02 3.95
∆MAE 0.17 0.09 0.08
∆SD 0.05 0.11 0.08
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Table 3.3: Errors in vertical excitation energies (eV) for triplet states computed
using LR-OLCCD, LR-ODC-12, and EOM-CCSD, relative to EOM-CCSDT (aug-
cc-pVTZ basis set). All electrons were correlated in all computations. Also shown
are mean absolute errors (∆MAE) and standard deviations (∆SD) computed for
each method.

∆EOM-CCSD ∆LR-OLCCD ∆LR-ODC-12 EOM-CCSDT
N2

3Σ+
u 0.11 0.04 −0.02 7.63

3Πg 0.15 0.06 0.11 8.00
3∆u 0.17 0.08 0.03 8.82
3Σ−u 0.28 0.03 0.01 9.63
3Πu 0.14 −0.01 0.10 11.18

CO 3Π 0.12 0.06 0.08 6.27
3Σ+ 0.05 −0.03 −0.03 8.38
3∆ 0.11 −0.07 −0.03 9.21
3Σ− 0.19 −0.18 −0.06 9.72a

HCN 3Σ+ 0.05 −0.04 −0.10 6.40
3∆ 0.13 −0.02 −0.06 7.40
3Π 0.10 0.08 0.06 8.01
3Σ− 0.16 −0.10 −0.05 8.15a

HNC 3Π 0.09 0.00 0.03 6.06
3Σ+ 0.04 −0.09 −0.11 7.20
3∆ 0.10 −0.14 −0.11 8.02
3Σ+ 0.22 −0.05 0.04 8.38
3Σ− 0.15 −0.02 0.11 8.56a

C2H2
3Σ+

u 0.01 −0.02 −0.08 5.52
3∆u 0.08 −0.02 −0.05 6.41
3Σ−u 0.10 −0.03 −0.05 7.10a

H2CO 3A2 0.04 −0.02 0.01 3.56
3A1 0.02 −0.06 −0.14 6.06

∆MAE 0.11 0.05 0.06
∆SD 0.06 0.07 0.07

a For CO, HCN, HNC, and C2H2, the 3Σ− (3Σ−u ) excitation energies were ob-

tained from EOM-CC(2,3), which energies were shifted to reproduce the EOM-

CCSDT energy for the 1Σ− (1Σ−u ) state.
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Figure 3.2: Mean absolute deviations (∆MAE) and standard deviations from the
mean signed error (∆SD) for vertical excitation energies (Tables 3.2 and 3.3) com-
puted using LR-OLCCD, LR-ODC-12, and EOM-CCSD, relative to EOM-CCSDT
(aug-cc-pVTZ basis set). The ∆MAE value is represented as a height of each colored
box, while the ∆SD value is depicted as a radius of the black vertical bar.

0.14 eV, whereas EOM-CCSD exceeds 0.10 eV error for 12 states and shows a

maximum error of 0.28 eV. For linear molecules, EOM-CCSD exhibits consistently

poor results for the 3Σ− electronic states, while the performance of LR-ODC-

12 for different electronic states is similar. Notably, all EOM-CCSD excitation

energies overestimate the EOM-CCSDT values, while the LR-ODC-12 energies

are centered around the reference energies, suggesting that LR-ODC-12 provides

a more balanced description of the ground and excited states.

Comparing LR-ODC-12 with LR-OLCCD, we see that both methods show very

similar results for the triplet states (∆MAE = 0.06 and 0.05 eV, respectively), with

noticeable differences observed only for the 3Σ− states. For the singlet electronic

states, LR-OLCCD shows a somewhat larger ∆MAE = 0.09 eV and ∆SD = 0.11

eV compared to LR-ODC-12 (∆MAE = 0.08 eV and ∆SD = 0.08 eV). In this case,

significant differences are observed for the 1Π states of N2 and HCN, 1Σ− of HNC,
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Table 3.4: Vertical excitation energies computed using LR-OLCCD, LR-ODC-12,
and EOM-CCSD for the low-lying electronic states of ethylene (C2H4), butadiene
(C4H6), and hexatriene (C6H8). Computations employed the ANO-L-pVDZ (for
C4H6 and C6H8) and ANO-L-pVTZ (for C2H4) basis sets and the MP2/cc-pVQZ
optimized geometries. For LR-OLCCD and LR-ODC-12, oscillator strengths of
the allowed transitions are given in parentheses. All electrons were correlated in
all computations.

EOM-CCSD LR-OLCCD LR-ODC-12 SHCIa

C2H4 13B1u 4.46 4.66 4.52 4.59
11B1u 8.14 8.20 (1.8) 8.13 (1.9) 8.05

C4H6 13Bu 3.20 3.58 3.43 3.37
11Bu 6.53 6.76 (4.2) 6.67 (4.4) 6.45
21Ag 7.28 7.14 6.81 6.58

C6H8 13Bu 2.64 3.01 2.83 2.77
11Bu 5.60 5.89 (6.5) 5.74 (8.1) 5.59
21Ag 6.55 4.21 5.73 5.58

a Also shown are the excitation energies from the semistochastic
heat-bath CI (SHCI) method, extrapolated to full CI limit.194

The 1s orbitals of carbon atoms were not included in the
SHCI correlation treatment. The SHCI computations used the
same basis sets and optimized geometries as those used for LR-
OLCCD, LR-ODC-12, and EOM-CCSD.

and 1∆ of CO and HNC, indicating that the non-linear terms included in LR-

ODC-12 are important for these electronic states.

3.5.4 Ethylene, Butadiene, and Hexatriene

Finally, we apply the LR-ODC-12 method to challenging excited states of ethylene

(C2H4), butadiene (C4H6), and hexatriene (C6H8). A reliable description of these

electronic states requires an accurate treatment of electron correlation.192;193;195–209

All three molecules feature a dipole-allowed 11Bu (or 11B1u) state that is well
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described as a π−π∗ excitation, but requires a very accurate description of dynamic

correlation between the σ and π electrons. In butadiene and hexatriene, the 11Bu

state is near-degenerate with a dipole-forbidden 21Ag state that has a substantial

double-excitation character, requiring the description of static correlation in the

π and π∗ orbitals.203–205 For this reason, the relative energies and ordering of the

11Bu and 21Ag states are very sensitive to various levels of theory. For example,

single-reference methods truncated to single and double excitations describe the

11Bu state more accurately than the 21Ag state, while multi-reference methods

are more reliable for the 21Ag state, missing important dynamic correlation for

the 11Bu state. Very recently, Chien et al.194 reported accurate vertical excitation

energies for the low-lying states of ethylene, butadiene, and hexatriene computed

using semistochastic heat-bath configuration interaction (SHCI) extrapolated to

the full CI limit. In this section, we will use the SHCI results to benchmark the

accuracy of the LR-ODC-12 method.

Table 3.4 reports the vertical excitation energies of ethylene, butadiene, and

hexatriene computed using the EOM-CCSD, LR-OLCCD, and LR-ODC-12 meth-

ods, along with the SHCI results from Ref. 194. All methods employed the same

optimized geometries and basis sets (see Table 3.4 for details). We refer to the B1u

states of C2H4 as Bu for brevity. All excitation energies decrease as the number

of double bonds in a molecule increases. For butadiene and hexatriene, the (11Bu;

21Ag) excitation energies computed using the SHCI method are (6.45; 6.58) and

(5.59; 5.58) eV, respectively, indicating that the two states are nearly degenerate

for the longer polyene. This feature is not reproduced by the EOM-CCSD method,
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which predicts the 11Bu state energies in close agreement with SHCI, but signif-

icantly overestimates the energies for the doubly-excited 21Ag state. As a result,

the EOM-CCSD method overestimates the energy spacing between the 11Bu and

21Ag states by ∼ 0.6 eV and 1.0 eV for butadiene and hexatriene, respectively.

The LR-ODC-12 method, by contrast, correctly describes the relative energies

and ordering of the 11Bu and 21Ag states, predicting their energy spacing to be 0.14

and −0.01 eV for butadiene and hexatriene, respectively, in an excellent agreement

with the SHCI results (0.13 and −0.01 eV). For the singlet excited states, the LR-

ODC-12 method consistently overestimates the SHCI excitation energies by∼ 0.1 –

0.2 eV. For the 13Bu state, the LR-ODC-12 errors are smaller in magnitude (∼ 0.06

eV). Importantly, these results suggest that the LR-ODC-12 method provides a

balanced description of the excited states with different electronic structure effects,

as illustrated by its consistent performance for the 13Bu, 11Bu, and 21Ag states in

ethylene, butadiene, and hexatriene.

Comparing to LR-OLCCD shows that including the non-linear terms in LR-

ODC-12 is crucial for the description of excited states with double-excitation char-

acter. While for the 13Bu and 11Bu states the LR-OLCCD errors exceed the LR-

ODC-12 errors by ∼ 0.15 eV, for the doubly-excited 21Ag state the LR-OLCCD

errors are much worse: 0.56 and −1.37 eV for butadiene and hexatriene, respec-

tively.
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3.6 Conclusions

We have presented a new approach for excited electronic states based on the linear-

response formulation of density cumulant theory (DCT). The resulting linear-

response DCT model (LR-DCT) has the same computational scaling as the original

(single-state) DCT formulation but can accurately predict energies and properties

for many electronic states, simultaneously. We have described the general for-

mulation of LR-DCT, derived equations for the linear-response ODC-12 method

(LR-ODC-12), and presented its implementation. In LR-ODC-12, excited-state

energies are obtained by solving the generalized eigenvalue equation that involves

a symmetric Hessian matrix. This simplifies the computation of the excited-state

properties (such as transition dipoles) and ensures that the excitation energies

have real values, provided that the Hessian is positive semi-definite. In addition,

the LR-ODC-12 excitation energies are size-intensive, which we have verified nu-

merically for a system of noninteracting fragments.

Our preliminary results demonstrate that LR-ODC-12 yields very accurate ex-

citation energies for a variety of excited states with different electronic structure

effects. For a set of small molecules (N2, CO, HCN, HNC, C2H2, and H2CO), LR-

ODC-12 outperforms equation-of-motion coupled cluster theory with single and

double excitations (EOM-CCSD), with mean absolute errors in excitation ener-

gies of less than 0.1 eV, relative to reference data. Importantly, both LR-ODC-12

and EOM-CCSD have the same computational scaling. In a study of ethylene, bu-

tadiene, and hexatriene, we have compared the performance of LR-ODC-12 and

EOM-CCSD with the results from highly-accurate semistochastic heat-bath config-
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uration interaction (SHCI). For butadiene and hexatriene, LR-ODC-12 provides a

balanced description of the singly-excited 11Bu and the doubly-excited 21Ag states,

predicting that the two states become nearly-degenerate in hexatriene, in excellent

agreement with SHCI. By contrast, EOM-CCSD drastically overestimates the en-

ergy of the 21Ag state, resulting in a ∼ 1 eV error in the energy gap between these

states of hexatriene.

Overall, our results demonstrate that linear-response density cumulant theory

is a promising theoretical approach for spectroscopic properties of molecules and

encourage its further development. Several research directions are worth exploring.

One of them is the efficient implementation of LR-ODC-12 and its applications to

chemical systems with challenging electronic states. Two classes of systems that

are particularly worth exploring are open-shell molecules and transition metal

complexes. Another direction is to extend LR-DCT to simulations of other spec-

troscopic properties, such as photoelectron or X-ray absorption spectra. In this

regard, applying LR-DCT to the computation of optical rotation properties is of

particular interest as it is expected to avoid gauge invariance problems due to the

variational nature of the DCT orbitals.210 We plan to explore these directions in

the future.

3.A Derivatives of the One-Body Density Matrix in Density Cumulant

Theory

Repeated differentiation of the one-body n-representability condition (Eq. (3.3))

gives the following formulas for the first and second derivatives of the cumulant
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partial trace:
∂λprqr
∂y

= γps
∂γsq
∂y

+ ∂γps
∂y

γsq −
∂γpq
∂y

(3.32)

∂2λprqr
∂x∂y

= γps
∂γsq
∂x∂y

+ ∂γps
∂x∂y

γsq −
∂γpq
∂x∂y

+∂γ
p
s

∂x

∂γsq
∂y

+
∂γsq
∂x

∂γps
∂y

(3.33)

Transforming to the natural spin-orbital basis (NSO, denoted by prime indices)

where the one-body density matrix is diagonal, the first and second derivatives of

the one-body density matrix can be determined from the cumulant derivatives as

follows:
∂γp

′

q′

∂y
= θp′q′

∂λp
′r
q′r

∂y
(3.34)

∂2γp
′

q′

∂x∂y
= θp′q′

∂2λp
′r
q′r

∂x∂y
− δs′r′θp′q′θp′s′θq′r′

∂λp
′t
s′t

∂x

∂λr
′u
q′u

∂y

−δs′r′θp′q′θp′s′θq′r′
∂λr

′u
q′u

∂x

∂λp
′t
s′t

∂y

(3.35)

Here, we have defined the following matrix:

θp′q′ ≡
{

(γp′ + γq′ − 1)−1 if p′, q′ ∈ occ or vir
0 otherwise (3.36)

where γp′ denotes an eigenvalue of the one-body density matrix (i.e., an occupation

number). The natural spin-orbital p′ is considered occupied if γp′ > 0.5.

Eqs. (3.34) and (3.35) can be used to derive expression for the two-body energy

Hessian in Eq. (3.23). Simplifying the resulting equations allows us to determine

the intermediates defined in Eq. (3.24). In the NSO basis, these intermediates are
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given by

F q
′

p′ ≡ θp′q′f
q′

p′ (3.37)

Gq
′s′

p′r′ ≡ θp′q′θr′s′(gq
′s′

p′r′ −F s
′

p′ δ
q′

r′ −F
q′

r′ δ
s′

p′) (3.38)

These quantities are computed in the NSO basis and back-transformed to the

original spin-orbital basis using the eigenvectors of the one-particle density matrix

(see Ref. 24 for more details).

3.B Supporting Information

Here, we present the working equations for the LR-ODC-12 and LR-OLCCD meth-

ods. We refer the reader to the main article for definitions and notation, and note

that prime indices refer to the natural spin-orbital basis (NSO) where the one-

particle density matrix is diagonal, γp
′

q′ = δp
′

q′γq′ . Quantities computed in the NSO

basis can be back-transformed to the original basis using the eigenvectors of the

one-particle density matrix.

For the property gradient vectors, we define the block structure as follows

v′† ≡ (p1 p2 p∗1 p∗2)† pm ≡
∂〈Ψ|V̂ |Ψ〉
∂t†m

(3.39)

where V̂ can be any one-particle operator, defined through its spin-orbital inte-

grals, vqp = 〈ψp|v̂|ψq〉, as follows.

V̂ = vqpa
p
q (3.40)
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A typical example would be an electric dipole operator.

3.C Working Equations for LR-ODC-12

3.C.1 Density Matrices

γij = 1
2(1 +

√
1 + 4d)ij dij ≡ −1

2t
ik
cdt

cd
jk (3.41)

γba = 1
2(1−

√
1 + 4d)ba dba ≡ −1

2t
kl
act

bc
kl (3.42)

γijkl = 1
2t
ij
cdt

cd
kl + P(k/l)γ

i
kγ

j
l (3.43)

γcdab = 1
2t
kl
abt

cd
kl + P (c/d)γcaγ

d
b (3.44)

γibja = −tikactbcjk + γijγ
b
a (3.45)

γijab = tijab (3.46)

3.C.2 Blocks of the Energy Hessian

(A11)ia,jb =hijγ
b
a + hbaγ

i
j − F̄ i

j δ
b
a − F̄ b

aδ
i
j + gminj γ

nb
ma + gnbmaγ

mi
nj + giejfγ

bf
ae + gbfaeγ

ie
jf

+gibmeγmeja + gmeja γ
ib
me

(3.47)
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F̄ ≡ 1
2(F + F†) F q

p ≡ htpγ
q
t + 1

2g
uv
pt γ

qt
uv (3.48)

(B11)ia,jb = gimbe γ
je
ma + gjemaγ

im
be + giembγ

jm
ae + gjmae γ

ie
mb + 1

2g
ij
mnγ

mn
ab + 1

2g
mn
ab γ

ij
mn

+1
2g

ij
efγ

ef
ab + 1

2g
ef
abγ

ij
ef

(3.49)

(A22)ijab,klcd =−P (c/d)
(a/b|k/l)F caδdb δikδ

j
l − P

(i/j|c/d)
(k/l) F ikδ

j
l δ
c
aδ
d
b + P(k/l)g

cd
abδ

i
kδ
j
l + P (c/d)gijklδ

c
aδ
d
b

−P (i/j|c/d)
(a/b|k/l)g

jc
laδ

d
b δ
i
k + P

(c/d)
(a/b)Gecaf t

ij
ebt

fd
kl + P(a/b|k/l)Gmeka t

ij
ebt

cd
ml

+P (i/j|c/d)Gicmet
mj
ab t

ed
kl + P

(i/j)
(k/l)Ginmkt

mj
ab t

cd
nl

(3.50)

F q
′

p′ ≡ θp′q′f
q′

p′ Gq
′s′

p′r′ ≡ θp′q′θr′s′(gq
′s′

p′r′ −F s
′

p′ δ
q′

r′ −F
q′

r′ δ
s′

p′) (3.51)

θp′q′ ≡
{

(γp′ + γq′ − 1)−1 if p, q ∈ occ or vir
0 otherwise (3.52)

(B22)ijab,klcd =P(a/b|c/d)Gefac t
ij
ebt

kl
fd + P

(k/l)
(a/b)Gkenat

ij
ebt

nl
cd + P

(i/j)
(c/d)Gifmct

mj
ab t

kl
fd

+P (i/j|k/l)Gikmnt
mj
ab t

nl
cd

(3.53)

(A12)ia,klcd =−P(k/l)g
cd
laδ

i
k − P (c/d)gidklδ

c
a − P(k/l)(I ia)mk tcdml − P (c/d)(I ia)cetedkl

−P (c/d)
(k/l) g

mc
ae t

ed
mlδ

i
k − P

(c/d)
(k/l) g

im
ke t

ed
mlδ

c
a − 1

2P(k/l)g
mn
la t

cd
mnδ

i
k − 1

2P
(c/d)gidef t

ef
kl δ

c
a

(3.54)
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(B12)ia,klcd =−P (k/l)(I ia)kmtmlcd − P(c/d)(I ia)ectkled − P
(k/l)
(c/d)g

le
adt

ki
ce − P

(k/l)
(c/d)g

il
mdt

km
ca − gklmatimcd

−giecdtklae
(3.55)

(I ia)l
′

k′ ≡ θk′l′(I ia)l
′

k′ (I ia)lk ≡ +f laδik − gmlkaγim + gilkeγ
e
a (3.56)

(I ia)c
′

d′ ≡ θc′d′(I ia)c
′

d′ (I ia)cd ≡ −f idδca + gmcad γ
i
m − gicedγea (3.57)

3.C.3 Blocks of the Metric Matrix

(S11)ia,jb = (δbaγij − δijγba) (3.58)

3.C.4 Blocks of the Property Gradient Vector

(p1)ia = vma γ
i
m − vieγea (3.59)

(p2)ijab = −P(a/b)Veat
ij
eb − P (i/j)V imt

mj
ab (3.60)

Vq
′

p′ ≡ θp′q′v
q′

p′ (3.61)

3.D Working Equations for LR-OLCCD

3.D.1 Density Matrices

γij = δij − 1
2t
ik
cdt

cd
jk (3.62)
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γba = 1
2t
kl
act

bc
kl (3.63)

γijkl = 1
2t
ij
cdt

cd
kl + P(k/l)δ

i
kδ
j
l − 1

2P
(i/j)
(k/l) δ

i
kt
jm
cd t

cd
lm (3.64)

γcdab = 1
2t
kl
abt

cd
kl (3.65)

γibja = −tikactbcjk + 1
2δ
i
jt
kl
act

bc
kl (3.66)

γijab = tijab (3.67)

3.D.2 Blocks of the Energy Hessian

(A11)ia,jb = Eq. (3.47) with OLCCD density matrices. (3.68)

(B11)ia,jb = Eq. (3.49) with OLCCD density matrices. (3.69)

(A22)ijab,klcd =P
(c/d)
(a/b|k/l)(f0)caδdb δikδ

j
l − P

(i/j|c/d)
(k/l) (f0)ikδ

j
l δ
c
aδ
d
b + P(k/l)g

cd
abδ

i
kδ
j
l

+P (c/d)gijklδ
c
aδ
d
b − P

(i/j|c/d)
(a/b|k/l)g

jc
laδ

d
b δ
i
k

(3.70)

(f0)qp = hqp + gqipi (3.71)
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(B22)ijab,klcd = 0 (3.72)

(A12)ia,klcd =−P(k/l)g
cd
laδ

i
k − P (c/d)gidklδ

c
a − P(k/l)(I ia)mk tcdml + P (c/d)(I ia)cetedkl

−P (c/d)
(k/l) g

mc
ae t

ed
mlδ

i
k − P

(c/d)
(k/l) g

im
ke t

ed
mlδ

c
a − 1

2P(k/l)g
mn
la t

cd
mnδ

i
k − 1

2P
(c/d)gidef t

ef
kl δ

c
a

(3.73)

(I ia)lk ≡ +f laδik − gilka (I ia)cd ≡ −f idδca + gicad (3.74)

(B12)ia,klcd =−P (k/l)(I ia)kmtmlcd + P(c/d)(I ia)ectkled − P
(k/l)
(c/d)g

le
adt

ki
ce − P

(k/l)
(c/d)g

il
mdt

km
ca − gklmatimcd

−giecdtklae
(3.75)

3.D.3 Blocks of the Metric Matrix

(S11)ia,jb = Eq. (3.58) with OLCCD density matrices. (3.76)

3.D.4 Blocks of the Property Gradient Vector

(p1)ia = Eq. (3.59) with OLCCD density matrices. (3.77)

(p2)ijab = P(a/b)v
e
at
ij
eb − P (i/j)vimt

mj
ab (3.78)
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Chapter 4

Algorithms for Linear-Response Density Cumulant Theory

Chapter 3 presented the LR-ODC-12 model for electronic excited states, where

excitation energies and transition properties are computed by diagonalizing the

parameter Hessian of the ODC-12 energy functional, with respect to a metric that

arises from the time-dependence of the parameter responses. Since number of pa-

rameters in the ODC-12 model scales as O(o2v2) with the number of occupied (o)

and virtual (v) orbitals, the memory requirement for the Hessian matrix scales

with the fourth power of o and v, and the number of floating point operations

needed to diagonalize it scales with the sixth power of these dimensions. Such a

brute-force approach will rapidly overwhelm available computing resources even for

relatively small molecules. For the common scenario in which we only care about

states within a narrow energy range, the cost of diagonalization can be drastically

reduced through the use of so-called direct algorithms which enable the determi-

nation of subsets of eigenvectors and eigenvalues without explicitly constructing

the Hessian matrix in computer memory. This chapter will explore the use of the

Davidson algorithm187;188 in solving the LR-ODC-12 model. Section 4.1 describes
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the Davidson algorithm in general terms and describes strategies employed in the

present implementation to reduce memory usage for large calculations. Section 4.2

discusses the structure of the LR-ODC-12 eigenvalue equations, which is followed

by a comparison of several alternative strategies for solving the LR-ODC-12 model

in section Section 4.3.

4.1 The Davidson Algorithm

Direct algorithms represent linear transformations as functions mapping vectors v

in their domain to vectors L(v) in their codomain, rather than as coefficient arrays

[Lij] = [ei · L(ej)] over a complete basis. That is, the result of the transforma-

tion is determined directly, without explicitly forming its matrix representation in

computer memory. The Davidson algorithm applies this technique in the context

of a matrix diagonalization, by progressively growing a basis {u1, . . . ,ud} to span

the lowest or highest eigenvectors of a matrix to some threshold of accuracy. For

a transformation on Rn, this allows us to reduce our computational effort from

O(n3) to O(n2d) or even less when L is constructed from lower-dimensional ar-

rays. Memory requirements are reduced from O(n2) to O(nd) in the Davidson

algorithm, so that, as long as the dimension of the transformation is large relative

to the desired number of roots, we can gain considerable savings.

The procedure for the generalized Davidson algorithm is presented in Algo-

rithm 1, which solves for the eigenvalues and right eigenvectors of a generalized

eigenvalue problem, which may or may not be symmetric. The strategy of the

algorithm is as follows. We expand our transformations in the reduced expansion
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Algorithm 1 Canonical multiroot Davidson algorithm for a generic eigenvalue
problem, Lvj = λjGvj, with periodic subspace collapse. Requires linear transfor-
mation functions and diagonal approximations (indicated by tildes) for L and G
and solves for the lowest k eigenvalues and eigenvectors.

1: procedure Davidson(L(·),G(·), L̃, G̃,U(0), k, dmax, imax, rtol)
2: Initialize the expansion space with a set of guess vectors, U← U(0).
3: for 1 ≤ i ≤ imax do
4: Construct subspace representation and solve the lowest k eigenvalues.

Lsub = U†L(U)

Gsub = U†G(U)

Lsubvsub
j = λjGsubvsub

j

5: Calculate the eigenvector residuals over the full space.

rj = (L(U)− λjG(U))vsub
j

6: if max(rj) < rtol for all j then
7: Set vj ← Uvsub

j and quit the loop. The eigenvectors are converged.
8: end if
9: Determine new direction vectors by preconditioning the residual.

d(i)
j = −(L̃− λjG̃)−1rj

10: Project out the span of U and orthogonalize via SVD compression.

Û(i) = (1−U†U)D(i)

Û(i) ≈ U(i)Σ(i)W(i)†

11: if rank(U) + rank(U(i)) < dmax then
12: Extend the expansion space, U← (U U(i))
13: else
14: Collapse the expansion space, U← (Uvsub

1 · · · Uvsub
k ).

15: end if
16: end for
17: return λj,vj
18: end procedure
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space, [Lsub
ij ] = [ui · L(uj)], and solve the eigenvalue equation in this subspace.

Lsubvsub
j = λtrial

j Gsubvsub
j (4.1)

This trial solution is expressed in the full space as vtrial
j = Uvsub

j . The correction

vector dj = vtrial
j − vj taking us to the exact solution can be approximated as

dj ≈ −(L̃− λtrial
j G̃)−1rj (4.2)

where rj ≡ (L − λtrial
j G)vtrial

j is the residual vector and (L̃ − λtrialG̃)−1 is called

the preconditioner, which is constructed from diagonal approximations to L and

G. This correction vector can be motivated as an approximate solution to the

following identity.

0 = (L− λjG)vj = (L− λjG)(vtrial
j + dj) (4.3)

By repeatedly adding these correction vectors to the subspace, one can iteratively

grow the expansion space until it spans the desired eigenvector, vj. At conver-

gence, the residual and the correction vectors become vanishingly small. A key

assumption of this algorithm is that the matrices are diagonally dominant, other-

wise the diagonal approximation in Eq. (4.2) breaks down and the procedure will

fail to converge on the desired roots. When the expansion space becomes large, we

can periodically replace the expansion vectors with the current set of trial eigen-

vectors in order to keep the memory requirements more manageable. For very
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large matrices, frequent collapses every second or third iteration can be used to

keep I/O requirements to a minimum, at the cost of slower convergence.211 This

approach is quite general and can be adapted to other large matrix problems, such

as the linear equation Lx = b, where it yields a variant of the conjugate gradient

method.

Figure 4.1 presents memory profiles for the Davidson algorithm, as imple-

mented for the present study. The red trace represents the most straight-forward

implementation of Algorithm 1. Note that the images L(ui) are only evaluated

once as these vectors are added to the expansion space and are reused on future

iterations. The large spike in memory between 0 and 3 minutes in the runtime

comes from the initial evaluation of the transformation on the guess vectors. This

can be mitigated by breaking the expansion space into blocks of no more than

20 vectors, so that the guess vector evaluations have the same cost as the latter

transformations. The result is depicted as the purple trace, where we see that

the early memory spike has been smoothed at negligible cost to the runtime. The

sawtooth shape of the red and purple traces between 3 and 18 minutes depicts the

periodic collapse of the expansion space, which would otherwise continue to build

indefinitely as the algorithm proceeds. Storing the Davidson vectors and the all-

virtual integral arrays, gcdab and Gcdab , on disk produces the green trace, which irons

out the sawtooth shape in the trajectory at the cost of some additional runtime

for retrieving arrays that are stored on disk. Finally, the blue trace shows that

the memory usage can be reduced below 1 GB by shrinking the block sizes even

further, albeit at the cost of some additional I/O overhead.
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Figure 4.1: Memory profiles for calculating the lowest 20 states of ethylene with
the def2-SV(P) basis set on an Intel R© CoreTM i7-5600U processor using Eqs. (4.14)
and (4.16) below. Starts from a set of 100 guess vectors and periodically collapses
the expansion space to keep the number of vectors under 200. The green and blue
trace result from storing vectors and integral arrays on disk, whereas the red and
purple ones use only RAM.

88



4.2 The LR-ODC-12 Eigenvalue Equation

The LR-ODC-12 eigenvalue equation has a two-by-two block structure which de-

scribes the independent variation of the parameters and their complex conjugates.

Ezk = ωkMzk, E =
(

A B
B∗ A∗

)
, M =

(
S 0
0 −S∗

)
, zk =

(
xk
yk

)
(4.4)

This block symmetry leads to a paired system of eigenvalues, {±ωk}. The subma-

trices in Eq. (4.4) are further blocked according to whether they describe variations

of the one-body (t1) or two-body (t2) parameters.

A =
(

A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
S =

(
S11 0
0 12

)
xk =

(
xk,1
xk,2

)
(4.5)

Following Ref. 212, we can can add and subtract the block rows of Eq. (4.4) to

arrive at the following pair of equations (assuming real coefficients).

(A + B)(xk + yk) = ωkS(xk − yk) (4.6)

(A−B)(xk − yk) = ωkS(xk + yk) (4.7)

Multiplying both equations by S−1 and substituting one into the other yields

the following non-symmetric eigenvalue equation for the squares of the excitation

energies, reducing the dimension of the transformation by a factor of two.

S−1(A−B)S−1(A + B)(xk + yk) = ω2
k(xk + yk) (4.8)
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Solving this equation only gives us the sum xk + yk, not the individual blocks,

but these can be recovered by using Eq. (4.6) to compute xk − yk, so we can still

calculate transition from the reduced eigenvalue equation.

The bottleneck in evaluating these transformations is in the diagonal two-body

Hessian, A22. The image of an arbitrary two-body vector uµ,2 = [uijµ,ab] under this

transformation is given by

(A22(uµ,2))ijab =−P(a/b)F cau
ij
µ,cb − P (i/j)F iku

kj
µ,ab + 1

2g
cd
abu

ij
µ,cd + 1

2g
ij
klu

kl
µ,ab

−P (i/j)
(a/b)g

jc
lau

il
µ,cb + 1

2P(a/b)Gecaf t
ij
ebt

fd∗
kl u

kl
µ,cd + 1

2P(a/b)Gmeka t
ij
ebt

cd∗
ml u

kl
µ,cd

+1
2P

(i/j)Gicmet
mj
ab t

ed∗
kl u

kl
µ,cd + 1

2P
(i/j)Ginmkt

mj
ab t

cd∗
nl u

kl
µ,cd

(4.9)

where the i, j, k, l,m, n run over occupied spin-orbitals and a, b, c, d, e, f run over

virtual (un-occupied) spin-orbitals with implicit summation over pairs of upper

and lower indices. See Chapter 3 for the definitions of these intermediates. For

reasonably sized basis sets, the rate limiting step is the contraction of the v4

integrals with the expansion vector, gcdabu
ij
µ,cd, which scales as O(dµo2v4) in the

number of floating point operations. This term is the rate limiting step in EOM-

CCSD as well. The full set of linear transformation formulas for the LR-ODC-12

Hessian and metric blocks is given in the appendix (Section 4.A).

The reduced eigenvalue equation, Eq. (4.8), requires us to invert the metric,

which is an identity matrix but for the orbital block, S11. This matrix is given by

(S11)ia,jb = γijδ
b
a − δijγba (4.10)
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where γij and γba are occupied and virtual blocks of the one-body density matrix.

For systems of moderate size this metric could be numerically inverted, but we can

derive a simple and inexpensive formula for the inverse by expanding the density

matrices in the natural spin-orbital (NSO) basis where they are diagonal.

γij = (Y)j
′

j (Y†)ii′δi
′

j′γj′ γba = (Y)a′a (Y†)bb′δb
′

a′γa′ (4.11)

Inverting in the NSO basis and transforming back to the original basis yields

(S−1
11 )ia,jb =

(Y†)ij′(Y)b′a
γj′ − γb′

(Y†)bb′(Y)j
′

j (4.12)

which scales as O(o2v3) in the number of floating point operations. The same

strategy can be used to evaluate other analytic functions of the metric.

4.3 Strategies for Solving the LR-ODC-12 Model

We explore three strategies for solving for the excitation energies and transition

properties of the LR-ODC-12 model using the Davidson algorithm. A direct solu-

tion of the full eigenvalue equation (Eq. (4.4)) is not possible with the Davidson

algorithm, because the presence of negative roots means that the eigenvalues of

interest are in the middle of the spectrum. Instead, we can solve for the highest

roots of the full inverse (FI) eigenvalue equation

M(zk) = ω−1
k E(zk) (4.13)
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which are the reciprocals of the excitation energies. Alternatively, we can solve

the reduced eigenvalue equation, Eq. (4.8), for the squares of the lowest excitation

energies, which we will call the canonical reduced (CR) equation.

H−(H+(c+
k )) = ω2

kc+
k H± ≡ S−1(A±B) c±k ≡ xk ± yk (4.14)

Lastly, we consider the following symmetrized reduced (SR) eigenvalue equation

H̄−(H̄+(c̄+
k )) = ω2

kc̄+
k H̄± ≡ S−

1
2 (A±B)S− 1

2 c̄±k ≡ S
1
2 (xk ± yk) (4.15)

which is approximately Hermitian when the elements of B are small in magnitude.

For each of these variants of the LR-ODC-12 eigenvalue equation we can use dif-

ferent diagonal approximations to define the preconditioner. Here we will consider

two possibilities. One option is to only use the Fock-like terms in the A matrix

and approximate the metric as an identity matrix, which will here be called the

Fock diagonal (FD) approximation.

(S̃FD
11 )ia,ia ≡ 1 (ÃFD

11 )ia,ia ≡ −f ii + faa (ÃFD
22 )ijab,ijab ≡ −F ii −F

j
j −Faa −F bb

(4.16)

These generalized Fock matrices take the place of the mean-field Fock matrix

in a linearized theory, where this would constitute the zeroth order perturbative

approximation to the Hessian. Alternatively, we can approximate diagonals of

our transformation matrices as products of the exact diagonals of A, S, and, for

the reduced eigenvalue equations, also B. I will call this the product of exact
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diagonals (PED) approximation. Evaluating these diagonal elements from the

transformation function is computationally inefficient because it requires O(o2v2)

function evaluations, each of which scales as O(o2v4), so it is important to have

analytic formulae for the diagonals. The two-body diagonals are given by

(ÃPED
22 )ijab,ijab ≡−F ii −F

j
j −Faa −F bb + gijij + gabab − S(i/j|a/b)giaia

+S(a/b)Geaaf t
ij
ebt

fb
ij − S(a/b)Gebaf t

ij
ebt

fa
ij + 2S(i/j|a/b)Gmeia t

ij
ebt

ab
mj

+S(i/j)Ginmit
mj
ab t

ab
nj − S(i/j)Gjnmjtmiab tabnj

(4.17)
(B̃PED

22 )ijab,ijab ≡+S(a/b)Gefaat
ij
ebt

ij
fb − S(a/b)Gefba t

ij
ebt

ij
fb + 2S(i/j|a/b)Giamat

ij
ebt

mj
ab

+S(i/j)Giimnt
mj
ab t

nj
ab − S(i/j)Gijmnt

mj
ab t

ni
ab

(4.18)

where S(p/q)vpqpq = vpqpq + vqpqp denotes an index symmetrizer. Formulae for the

diagonals of the one-body blocks of A, B, and S are included in the appendix,

Section 4.A.

Table 4.1 shows the results for each solution strategy on five small molecules,

ranging in size from water to ethylene, using the def2-SV(P) basis set213 of Weigend

and Ahlrichs. The Davidson algorithm and the LR-ODC-12 were implemented as

part of a standalone Python code interfaced to the Psi4185 and Pyscf186 pack-

ages, which performed the integral evaluations. In this code the order of operations

of the tensor contractions is optimized before passing the operations off to the ap-

propriate BLAS linear algebra kernels, which use multithreading for performance

enhancement. Comparing the three strategies, we see that the FI strategy con-

sistently achieves the best convergence, with the CR and SR strategies requiring

∼ 50% more iterations in most cases. This comes at the cost of a 2–3 times
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Table 4.1: A comparison of three different solution strategies for the LR-ODC-12 model for five molecules
using the def2-SV(P) basis set. In each case 10 eigenvectors are converged to 10−5 a.u., starting from an
initial expansion space of 100 guess vectors and collapsing the subspace very 200 vectors. The second and
third columns show the number of singles and doubles parameters for each system, which determine the
dimensions of the matrix equation, and the remaining columns give the number of iterations, the run-time,
and the number of low-lying roots obtained for each strategy. The first row for each molecule shows the
results for the FD preconditioner and the second row shows the results for the PED preconditioner. All
computations were run on an Intel R© CoreTM i7-5600U processor using four threads.

Full Inverse Canonical Reduced Symmetrized Reduced
n1 n2 iter time (s) roots iter time (s) roots iter time (s) roots

H2O 260 14,625 11 23 10/10 16 29 10/10 16 30 10/10
11 23 10/10 24 38 10/10 24 40 10/10

N2 588 78,351 14 186 10/10 17 213 9/10 17 216 9/10
10 156 10/10 15 179 9/10 15 202 9/10

HCN 644 94,185 15 251 9/10 21 281 9/10 21 331 9/10
10 205 9/10 18 252 9/10 19 308 9/10

H2CO 768 135,360 20 478 7/10 28 638 6/10 27 650 6/10
11 362 7/10 23 442 7/10 25 614 7/10

C2H4 896 184,800 17 640 9/10 25 874 9/10 25 891 9/10
10 500 9/10 19 574 9/10 20 722 9/10
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greater memory requirement which will require the vectors to be stored on disk

for larger systems. This likely owes to the fact that the diagonal approximations

of the preconditioner are more appropriate for the full transformation than the

reduced ones, so the convergence gap could likely be closed by developing better

preconditioners for the latter. The performance of the SR strategy is consistently

similar or marginally worse than that of the CR strategy, suggesting that the

symmetrization is not worth it. Comparing the rows for each strategy shows that

the PED preconditioner consistently reduces the number of iterations to conver-

gence with the exception of water, where the reduced algorithms perform slightly

worse with the alternative preconditioner. The FI strategy is helped more than

the reduced strategies by the PED preconditioner, which further widens the gap

in their convergence rates. Taken together, these results suggest that the FI/PED

combination is to be preferred if it can be afforded, and the CR/PED combination

presents a second best option.

4.A LR-ODC-12 Linear Transformation Formulas

(A11(uµ,1))ia =hijγ
b
au

j
µ,b + hbaγ

i
ju
j
µ,b − F̄ i

ju
j
µ,a − F̄ b

au
i
µ,b + gminj γ

nb
mau

j
µ,b

+gnbmaγminj u
j
µ,b + giejfγ

bf
aeu

j
µ,b + gbfaeγ

ie
jfu

j
µ,b + gibmeγ

me
ja u

j
µ,b

+gmeja γibmeu
j
µ,b

(4.19)

(B11(uµ,1))ia = gimbe γ
je
mau

b
µ,j + gjemaγ

im
be u

b
µ,j + giembγ

jm
ae u

b
µ,j + gjmae γ

ie
mbu

b
µ,j

+1
2g

ij
mnγ

mn
ab u

b
µ,j + 1

2g
mn
ab γ

ij
mnu

b
µ,j + 1

2g
ij
efγ

ef
abu

b
µ,j + 1

2g
ef
abγ

ij
efu

b
µ,j

(4.20)
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(A12(uµ,2))ia =−1
2g

cd
lau

il
µ,cd − 1

2g
id
klu

kl
µ,ad − 1

2(I ia)mk tcd∗ml uklµ,cd − 1
2(I ia)ceted∗kl uklµ,cd

−gmcae ted∗ml uilµ,cd − gimke ted∗ml uklµ,ad − 1
4g

mn
la t

cd∗
mnu

il
µ,cd

−1
4g

id
ef t

ef∗
kl u

kl
µ,ad

(4.21)

(B12(uµ,2))ia =−1
2(I ia)kmtmlcd ucdµ,kl − 1

2(I ia)ectkleducdµ,kl − gleadtkiceucdµ,kl − gilmdtkmca ucdµ,kl
−1

4g
kl
mat

im
cd u

cd
µ,kl − 1

4g
ie
cdt

kl
aeu

cd
µ,kl

(4.22)

(A21(uµ,1))ijab =−P (i/j)gjcabu
i
µ,c − P(a/b)g

ij
kbu

k
µ,a − P (i/j)(Ick)imt

mj
ab u

k
µ,c

−P(a/b)(Ick)eat
ij
ebu

k
µ,c − P

(i/j)
(a/b)g

ce
mat

mj
eb u

i
µ,c − P

(i/j)
(a/b)g

ie
kmt

mj
eb u

k
µ,a

−1
2P

(i/j)gjcmnt
mn
ab u

i
µ,c − 1

2P(a/b)g
ef
kbt

ij
efu

k
µ,a

(4.23)

(B21(uµ,1))ijab =−P (i/j)(Ikc )imt
mj
ab u

c
µ,k − P(a/b)(Ikc )eat

ij
ebu

c
µ,k − P

(i/j)
(a/b)g

je
cbt

ik
aeu

c
µ,k

−P (i/j)
(a/b)g

mb
kj t

im
ac u

c
µ,k − gijmctkmab ucµ,k − gkeabtijceucµ,k

(4.24)

(A22(uµ,2))ijab =−P(a/b)F cau
ij
µ,cb − P (i/j)F iku

kj
µ,ab + 1

2g
cd
abu

ij
µ,cd + 1

2g
ij
klu

kl
µ,ab

−P (i/j)
(a/b)g

jc
lau

il
µ,cb + 1

2P(a/b)Gecaf t
ij
ebt

fd∗
kl u

kl
µ,cd + 1

2P(a/b)Gmeka t
ij
ebt

cd∗
ml u

kl
µ,cd

+1
2P

(i/j)Gicmet
mj
ab t

ed∗
kl u

kl
µ,cd + 1

2P
(i/j)Ginmkt

mj
ab t

cd∗
nl u

kl
µ,cd

(4.25)
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(B22(uµ,2))ijab = 1
2P(a/b)Gefac t

ij
ebt

kl
fdu

cd
µ,kl + 1

2P(a/b)Gkenat
ij
ebt

nl
cdu

cd
µ,kl

+1
2P

(i/j)Gifmct
mj
ab t

kl
fdu

cd
µ,kl + 1

2P
(i/j)Gikmnt

mj
ab t

nl
cdu

cd
µ,kl

(4.26)

(S11(uµ,1))ia = γiju
j
µ,a − γbauiµ,b (4.27)

(S−1
11 (uµ,1))ia =

(Y†)ij′(Y)b′a
γj′ − γb′

(Y†)bb′(Y)j
′

j u
j
µ,b (4.28)

(Y†)qq′γpq (Y)p′p = δp
′

q′γq′ (4.29)

(ÃPED
22 )ijab,ijab ≡−F ii −F

j
j −Faa −F bb + gijij + gabab − S(i/j|a/b)giaia

+S(a/b)Geaaf t
ij
ebt

fb
ij − S(a/b)Gebaf t

ij
ebt

fa
ij + 2S(i/j|a/b)Gmeia t

ij
ebt

ab
mj

+S(i/j)Ginmit
mj
ab t

ab
nj − S(i/j)Gjnmjtmiab tabnj

(4.30)

(B̃PED
22 )ijab,ijab ≡+S(a/b)Gefaat

ij
ebt

ij
fb − S(a/b)Gefba t

ij
ebt

ij
fb + 2S(i/j|a/b)Giamat

ij
ebt

mj
ab

+S(i/j)Giimnt
mj
ab t

nj
ab − S(i/j)Gijmnt

mj
ab t

ni
ab

(4.31)
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Chapter 5

Conclusion

We have presented comprehensive benchmarks to demonstrate that orbital-optimized

density cumulant theory with double excitations (ODC-12) consistently outper-

forms coupled-cluster theory with singles and doubles (CCSD) for the description

of noncovalent interactions, hydrogen-transfer barrier heights, radical stabilization

energies, ionization energies, and covalent bond stretching. Having established

the promising performance of this model for ground state calculations, we have

extended the theory for the calculation of excitation energies and transition prop-

erties through the use of linear response theory. After numerically demonstrating

that our initial working equations and implementation are correct, we have empiri-

cally shown this method to be size-intensive, i.e. displaying the correct qualitative

behavior with respect to excited states of independent systems. Next, we have

shown that this method is more stable with respect to strong electron correlation

than its linearized variant, LR-OLCCD, which often achieves impressive error can-

cellation in the absence of strong correlation. This demonstrates that the infinite

order one-particle n-representability conditions defining the ODC-12 method con-
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tribute to a robust description of the electron distribution for more challenging

states. Our initial benchmark study of the vertical excitation energies predicted

by this method shows that it reduces the mean absolute error by roughly a factor

of two relative to the popular equation-of-motion coupled-cluster with singles and

doubles (EOM-CCSD) method, similar to our findings for ground states. For well-

behaved systems we find that the linearized model, LR-OLCCD, is an effective

approximation to LR-ODC-12 with a lower cost prefactor. Finally, we develop

some improvements to the algorithms used for solving the LR-ODC-12 equations

using disk-based direct matrix algorithms (variants of the Davidson algorithm).

These developments allow us to study polyene systems as large as hexatriene with

a natural orbital basis of double-zeta quality. This calculation involves 44 elec-

trons and 124 spatial orbitals withnearly 20 million unique wavefunction param-

eters, which would not be feasible without the new algorithms. The advantages

of LR-ODC-12 over EOM-CCSD and LR-OLCCD for these polyene systems are

even more stark than for our previous benchmarks. Whereas EOM-CCSD overes-

timates the energy of the challenging 21Ag state of hexatriene and its gap with the

neighboring 11Bu state by close to 1 eV each, LR-ODC-12 matches its energy to

within 0.15 eV and matches the energy gap to within 0.01 eV. Given the relative

sparsity of inexpensive alternatives to EOM-CCSD, we believe that these results

merit further development of algorithms for the LR-ODC-12 method to expand

our toolkit for studying excited electronic states.
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