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ABSTRACT 

In classification and regression problems, classifiers for high dimensional noisy data suffer from 

the concurrent negative effects of noise and high dimensionality. Noise disrupts data and high 

dimensionality prevents the classifier from focusing on relevant features; potentially reducing 

classification and regression accuracies. However, most noise detection techniques cannot be 

used for high dimensional data and many dimensionality reduction methods are not applicable to 

noisy data. The goal of this dissertation is to enhance the quality of high dimensional noisy data 

by simultaneously removing noise and providing relevant features. To achieve that we propose 

the NDFS algorithm which relies on two genetic algorithms, one for noise detection (GA-ND) 

and the other for feature selection (GA-FS), which exchange their results periodically at certain 

generation intervals. Also prototype selection (PS-ND) is used together with the genetic 

algorithm to improve the performance of the noise detection part. Our experimental results show 

that while the sequential application of noise detection and feature selection methods may not 

overcome the concurrent negative effects of noise and high dimensionality, the NDFS algorithm 

succeeds in this and achieves high performance by simultaneous noise removal and feature 

selection. We demonstrate that the NDFS algorithm substantially increases the classification 



 

accuracies and reduces the error rates, and show that it significantly enhances the quality of high 

dimensional noisy data for both classification and regression problems. 
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CHAPTER 1 

INTRODUCTION 

In classification and regression problems, classifiers for high dimensional noisy data 

suffer from the concurrent negative effects of noise and high dimensionality. Noise disrupts data 

and high dimensionality prevents classifier from focusing on relevant features. Therefore they 

may reduce classification and regression accuracies. In the machine learning field, there are two 

primary topics related to this problem: noise detection and dimensionality reduction. Noise 

detection is the process to identify noise in data, and dimensionality reduction is the procedure to 

reduce the number of features and to identify relevant features. 

Noise refers to incorrect or erroneous values in the data. It is closely related to outlier, 

another popular term. A common definition of an outlier is given by Barnett and Lewis [5] as an 

instance that appears to be inconsistent with the remaining instances in the data. Noise, outlier, 

error, and exception are terms frequently used to describe the same or similar concept. Noise 

may exist in regular attributes (features) or the target attribute. Witten and Frank [68] note that a 

classifier learns how to use feature noise to build a more accurate model, and removing feature 

noise may reduce the performance of a classifier. However, target noise rather than feature noise 

disrupts data and training a classifier on target-noise-free data may increase its performance [68]. 

We define noise as incorrect or erroneous target value. Hodge and Austin [27] indicate 

that many real world data contain noise because of human errors, instrument errors, system 

errors or malicious human behavior. Noise may disrupt data and lead a classifier to build an 

incorrect model. Therefore, detecting and removing noise from data will probably increase the 
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accuracy of a classifier by guiding it to build a more accurate model. A large amount of research 

effort has been devoted to noise detection. We briefly introduce noise detection methods in 

Chapter 2. Despite the large amount of work, there is no universally accepted noise detection 

method [27]. 

In high dimensional domains, noise detection is quite difficult due to the concurrent 

negative effect of high dimensionality. High dimensionality suggests that data includes many 

features irrelevant or redundant to the target. Most noise detection algorithms do not provide 

dimensionality reduction. Such noise detection algorithms without dimensionality reduction 

suffer from the curse of dimensionality that a classifier faces when managing high dimensional 

data. We describe the curse of dimensionality in Chapter 3. Reducing dimensionality and 

providing relevant features to a classifier will probably increase the performance of the classifier 

by curing the curse of dimensionality and guiding the classifier to focus on relevant features. In 

addition to the curse of dimensionality, Chapter 3 includes previous related work on 

dimensionality reduction. 

Most noise detection techniques cannot be used for high dimensional data and many 

dimensionality reduction methods are not applicable to noisy data. The goal of this dissertation is 

to enhance the quality of high dimensional noisy data by simultaneously removing noise and 

providing relevant features for classification and regression problems. 

We propose the NDFS algorithm in this dissertation. NDFS relies on two genetic 

algorithms, one for noise detection (GA-ND) and the other for feature selection (GA-FS), which 

exchange their results periodically at certain generation intervals. Also prototype selection (PS-

ND) is used together with the genetic algorithm to improve the performance of the noise 

detection method. 
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In addition to previous work on noise detection in Chapter 2 and dimensionality 

reduction in Chapter 3, we introduce the proposed NDFS algorithm for simultaneous noise 

removal and feature selection in Chapter 4. The three main components of NDFS: GA-ND, PS-

ND and GA-FS, are explained in detail and their pseudo-codes are provided. 

In Chapter 5, we describe how our synthetic data sets are generated and what properties 

they have. Also we present the parameter settings used for NDFS. 

In Chapter 6, experimental results of the NDFS algorithm are discussed. While the 

sequential application of noise detection and feature selection methods may not overcome the 

concurrent negative effects of noise and high dimensionality, the NDFS algorithm succeeds in 

this and achieves high performances by simultaneous noise removal and feature selection. 

Finally Chapter 7 concludes the dissertation with a brief summary and a discussion of the 

drawbacks of the NDFS algorithm. 
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CHAPTER 2 

NOISE DETECTION AND NOISE HANDLING 

Categories of Noise Detection Approaches 

There are two methodologies for categorizing noise detection methods. The first 

methodology is to classify the detection methods by the availability of data. According to the 

availability of data, detection methods are divided into three approaches: supervised, semi-

supervised, and unsupervised detection approaches ([15] and [27]). The supervised detection 

approach uses data pre-labeled as normal or noise. A classifier builds a model that classifies 

instances as normal or noisy, and decides which class the testing data fall into on the basis of this 

model. While this type of noise detection method may have high accuracy, fully labeled data are 

not available in many cases. The semi-supervised detection approach is known as novelty 

detection. In these detection methods, only normal data are available and a classifier defines a 

boundary of normality. Any testing data within this boundary of normality is considered normal; 

otherwise, it is identified as noise. However it is not easy to collect enough data for all the 

possible boundaries of normality. In the unsupervised detection approach, a classifier does not 

have any knowledge of normal and noisy data. The basic idea of unsupervised detection methods 

is that noisy data can be separated from normal data by some criteria. These methods suffer from 

low accuracies. 

The second methodology for categorizing noise detection methods is by the underlying 

detection algorithm. We use this methodology to provide related previous work on noise 

detection. In the next section, we divide noise detection methods into seven approaches: 
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distribution-based, distance-based, cluster-based, classifier-based, misclassification-based, 

prototype-based, and other approaches. 

 

Noise Detection Approaches 

 

1. Distribution-based Approaches 

Assuming the data were generated from some distribution such as Gaussian or Poisson, 

these approaches propose an appropriate distribution. If instances significantly deviate from the 

proposed distribution, they are detected as noise. The drawback of the approaches is that finding 

an appropriate distribution is expensive and difficult [14].  

Grubb’s test is used to detect noise for univariate data on the basis of the normality 

assumption ([14] and [15]). The test statistic is the absolute difference between the value for the 

feature and the average of the data for the feature divided by the standard deviation of the data 

for the feature: Grubs = |x - mean(x)| / std(x). The statistic is tested with significance levels to 

detect noisy instances. 

Ye and Chen [71] calculate a chi-square statistic as follows: Σi
n[(xi – Ei)2/Ei] where xi is 

the value of the ith feature, Ei is the expected value of ith feature, and n is the number of features. 

If the chi-square statistic for an instance is greater than [Ei+3×(standard deviation)], it is detected 

as noise. 

Aggarwal [2] calculates statistical deviations from the values predicted by a polynomial 

regression; a high statistical deviation indicates the possibility of a noisy instance. 

Robert [53] proposes extreme value theory (EVT) for noise detection. EVT uses a 

gaussian mixture model (GMM), a popular method of data density estimation. The maximum 
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likelihood parameters of the GMM are estimated by an expectation maximization (EM) 

algorithm. Noise is defined as the extremal instances in the tail of the data distribution. Therefore 

instances that lie outside of the range of expected extreme values are identified as noise by EVT. 

Filzmoser et al. [21] introduce a sign noise detection method that uses Principal 

Component Analysis (PCA) (refer to Chapter 3 for PCA) and the Mahalanobis distance 

(described below). The intuition is that noisy instances will be more outstanding in principal 

component space than original data space since they increase variance. The Sign method 

calculates robust Mahalanobis distances from sphere data normalized in principal component 

space. Then instances with robust distance values greater than a threshold calculated from a Chi-

square distribution are identified as noise. 

 

2. Distance-based Approaches 

Distance-based approaches are among the most popular noise detection approaches. 

These approaches identify an instance as noise if the instance has no more neighbors than a 

fraction of the data within its neighborhood, using metrics such as Euclidean or Mahalanobis 

distance. The Mahalanobis distance is a distance function that considers the correlations between 

features when measuring the distance between an instance and the center of all instances: 

Mahalnaobis = sqrt [(x-μ)t∑-1(x-μ)] where μ is the center and  ∑ is the covariance matrix ([14] 

and [27]). These approaches are expensive computationally since the distances between all 

instances are measured. 

Ramaswamy et al. [49] calculate the distance of an instance from its kth nearest neighbor 

and rank each instance on the basis of the distance. While higher ranked instances are sparse, 

dense instances have lower ranks. Therefore, the top n instances are identified as noise. 
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Knorr and Ng [34] count the neighbors of each instance within some distance d and 

define as noise any instance that has less than or equal to m neighbors. 

Breuning et al. [9] propose a method to detect density-based local outliers. They assign to 

each instance a degree of being an outlier. The local outlier factor (LOF) represents the degree of 

isolation of an instance from its neighbors and is calculated from the k-distance neighborhood 

(refer to their paper for the formal definition of LOF). 

Aggarwal and Yu [1] provide an intuition for noise detection in high dimensional data. 

The method measures the sparsity of data points in the lower dimensions searched by genetic 

algorithms. It divides the data into f ranges and generates individuals which can contain the 

values 1 to f, or * (don’t care). The evaluation function computes the sparsity coefficient of the 

data in the lower dimension with the corresponding grid ranges. 

Li and Kitagawa [43] propose a distance-based noise detection method combined with an 

example-based algorithm for high dimensional data. User noisy instances are implanted in the 

high dimensional data, and feature spaces are searched by a genetic algorithm. The aim of the 

genetic algorithm is to find the most suitable feature space in which the user noise is significantly 

outstanding. The evaluation function of the genetic algorithm using a binary representation is 

related to the number of neighbors around normal and user noisy instances. After the most 

suitable features are found, other parameters are determined to separate user noise from normal 

instances. With the determined parameters, a regular distance-based noise detection method is 

then applied. 

Brieman ([7] and [8]) introduces the Random forests technique that is a proximity-based 

noise detection method. The technique constructs many trees by randomly sampling instances 

with replacement from the training data set, as well as randomly selecting features. After each 
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tree is constructed, all instances in the data follow down the tree and proximities are calculated 

for all of the instances. The proximities are stored in an N×N matrix, and if two instances are in 

the same leaf of a tree, their proximity increases by one. At the end, proximities are normalized, 

dividing by the number of trees.  In Random forests, noise is defined as instances with lower 

proximities to all other instances in the same class. Breiman defines a noise measure and then 

recommends that if the measure is greater than 10, the instance should be considered as noise. 

This method takes time to construct its many decision trees. 

 

3. Cluster-based Approaches 

In cluster-based approaches, noise is detected as a byproduct of the clustering process. 

These approaches assume that noisy instances do not belong to any cluster, belong to small 

clusters, or belong to clusters significantly different from others, as they are significantly 

different from other normal instances. Similar to distance-based approaches, cluster-based 

approaches are computationally expensive. 

Ng and Han [46] develop a clustering method, CLARANS (Clustering Large 

Applications based on RANdomized Search) that is based on randomized search. After applying 

CLARANS, the instances in a cluster with silhouette widths below 0.5 are removed as noise. 

They note that the silhouette of an instance indicates how much the instance truly belongs to the 

cluster and an instance with a value close to 1 belongs to the cluster with high certainty. The 

silhouette width is the average of the silhouettes of all instances in the cluster. 

Zhang et al. [74] propose BIRCH (Balance Iterative Reducing and Clustering using 

Hierarchies) which builds a clustering tree on the basis of their CF (clustering feature). A node in 

the CF tree represents a cluster made up of all its entries. While dense instances on the CF tree 
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are treated as a cluster, sparse instances are detected and removed as noise. BIRCH works 

incrementally, dynamically adding new incoming instances to CF tree. 

Ester et al. [20] introduce the DBSCAN (Density Based Spatial Clustering of 

Applications with Noise) clustering algorithm. DBSCAN uses the density-based notions: directly 

density-reachable, density-reachable, and density-connected (refer to their paper for the formal 

definitions of these notions). A cluster is defined as a set of density-connected instances, and 

noise is identified as instances not belonging to any clusters. 

He et al. [26] define a noise factor, CBLOF (Cluster-Based Local Outlier Factor) that 

represents the degree of deviation of an instance from a cluster. The CBLOF of an instance is 

determined by the size of its cluster and the distance between the instance and its closest cluster. 

Their method clusters instances with its squeezer clustering algorithm and calculates a CBLOF 

value for each instance. 

 

4. Classifier-based Approaches 

These approaches look into the characteristics of a machine learning classifier and focus 

on how it responds to noise. Therefore the performance and complexity highly depend on the 

accuracy of the adopted classifier on the data. 

Torr and Murray [64] use a regression function for noise detection. This method analyzes 

the effect of an instance on regression. They propose to create the regression function, remove 

the instance that has the greatest effect on the regression function, and recalculate the regression 

function. This procedure is repeated until the effect is less than a threshold.  However they note 

that using a robust regression method is critical when there are many noisy instances in the data. 
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Another classifier used frequently for noise detection is a neural network. Hawkins et al. 

[25] propose a replicator neural networks (RNN) method. RNN is a feed-forward multi-layer 

perceptron with an input, an output, and three hidden layers. The numbers of units in the hidden 

layers are decided empirically to minimize the average reconstruction error across all the training 

data. The trained RNN calculates the outlier factor (OF) of all instances, and higher valued 

instances are identified as noise. OF is defined by the average reconstruction error over all 

features. Williams [67] reports that RNN performs successfully for small and large data sets. 

Vesanto et al. [66] use a self-organizing map (SOM) which is an unsupervised neural 

network to detect noise. SOM is trained iteratively on each instance of the data.  It assigns an 

instance to its best matching units and updates the weight vector of the node, which is similar to 

the mean vector in the k-mean clustering algorithm. If the vector distance that is the distance 

between the instance and its best matching unit is large relative to the accuracy of the map unit, 

the instance is identified as noise. Also Saunders and Gero [55], and Ypma et al. [72] propose 

methods to use SOMs for noise detection. 

Tax et al. [63] introduce support vector data description (SVDD), a modified SVM. An 

SVDD is the minimal volume sphere which contains all data within the normal class. SVDD is a 

more flexible and tighter description using Gaussian kernels than the normal spherical 

description of SVM. If an instance is not included in SVDD, it is identified as noise. 

 

5. Misclassification-based Approaches 

Misclassification-based approaches identify instances that are misclassified by a classifier 

as noise. Similarly to classifier-based approaches, the performance of these approaches highly 

depends on the accuracy of the classifier. 
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Brighton and Mellish [10] introduce Wilson’s editing method and Tomek’s extension. 

Wilson’s editing method removes noisy instances that are incorrectly classified by their nearest 

neighbors. Tomek enhances Wilson’s method by using a k-NN algorithm in which the value k is 

increased after each iteration, and repeating the editing rule until it is not applicable to any more 

instances. 

John [32] proposes the Robust-C4.5 algorithm, which uses a pruning tree to remove noisy 

instances. The basic assumption of the algorithm is that the instances classified incorrectly by the 

pruning tree are not useful locally. Furthermore it assumes that locally useless instances are not 

useful globally as well. The method builds a pruning tree based on the data and classifies each 

instance in the data. The instances misclassified by the pruned tree are removed from the data. 

These processes are repeated until the pruned tree correctly classifies all instances in the data. 

Brodley and Friedl [11] use n-fold cross-validation to identify misclassified instances. 

The data are partitioned into n subsets. For each of the n subsets, m classifiers are trained on the 

instances in the other n-1 subsets and then used to classify the instances in the excluded subset. 

Each classifier tags the instance as misclassified if the instance is classified incorrectly. Majority 

voting or consensus can be used in the filtering process. 

Muhlenbach et al. [45] provide a preliminary procedure in which misclassified instances 

are filtered. The algorithm creates a geometrical neighborhood graph of the data set and 

optionally removes or re-labels an instance if the proportion of instances with the same class is 

not significantly large in its neighborhood. 
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6. Prototype-based Approaches 

Prototypes refer to small subsets of instances that represent a large original data set. 

Normally prototypes are used to reduce the memory space for large databases. Skalak [58] notes 

that prototypes tend not to include many noisy instances and the limited number of prototypes 

may avoid overfitting the training data. Therefore prototype-based approaches achieve the effect 

of noise removal on training data. 

Skalak [58] uses Monte Carlo sampling and random mutation Hill Climbing to generate 

prototypes that exclude many noisy instances. The procedure by which Monte Carlo sampling 

creates prototypes is as follows. (1) Select k random samples of n instances with replacement 

from the training data. (2) Measure the classification accuracy for each sample. (3) Choose the 

set of instances with the highest classification accuracy as prototypes. The Hill Climbing method 

uses the following steps. (1) Choose a binary string representation of n prototypes at random. 

The length of the binary string is ⎡log2
m⎤ ×n where m is the number of instances in data. (2) 

Mutate a bit at random. (3) Measure the fitness of the mutated string using a classifier. If the 

fitness is better, the binary string is replaced by the mutated string. (4) Repeat steps 2 and 3 for a 

maximum number of iterations. In both methods, the 1-nearest neighbor classifier is used. 

In Skalak’s algorithm described above, the number of prototypes (n) is fixed. Sebban [56] 

proposes a method to determine the number of prototypes by constructing homogenous subsets. 

After constructing the neighborhood graph of the minimum spanning tree, the homogenous 

subsets are constructed by deleting the edges connecting points that belong to different classes. 

Therefore the homogenous subset is a connected sub-graph in the minimum spanning tree. The 

number of prototypes is then set proportional to the number of homogenous subsets. Afterwards, 

Skalak’s Monte Carlo sampling is applied to identify the prototypes. 
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Skalak [59] applies a genetic algorithm for prototype selection as well. Each individual in 

the population represents a set of n prototypes. As with the previous Hill Climbing method, the 

size of an individual is ⎡log2
m⎤ ×n where m is the number of instances in the data. The fitness is 

the accuracy on the training data by a 1-nearest neighbor classifier. 

Sierra et al. [57] use an Estimation of Distribution Algorithm (EDA). An EDA is similar 

to a genetic algorithm but does not have crossover and mutation operators. Instead it estimates 

the joint probability distribution of an individual among the individuals selected by a selection 

operator, and samples new individuals from this distribution to create the next population. Binary 

representation is used with a 1 indicating the selection of the corresponding instance. 

 

7. Other Approaches 

Crawford and Wainwright [17] apply genetic algorithms for noise detection. Each GA 

individual includes k noisy instances, given n data instances. This method sets the fixed size k of 

the individual by experimental testing from 2 up to ⎣n/2⎦ separately, and compares three different 

evaluation functions: Least Squares, Cook’s squared distance formula, and the determinantal 

ratio developed by Andrews and Pregibon. 

Xiong et al. [69] propose the Hcleaner technique, a hyper-clique based data cleaner. 

Every pair of instances in a hyper-clique pattern has a high level similarity related to the strength 

of the relationship between two instances. Hcleaner filters out instances that are not included in 

any hyper-clique pattern as noise. 

Arning et al. [4] provide a set-based approach. The subset of data whose removal causes 

the greatest contribution in the dissimilarity of the remaining data with the least number of 

removed instances is considered as a noise set. The dissimilarity function can be any function 
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that returns a lower value between similar data and a higher value between dissimilar data such 

as variance. However, they note that finding a universal dissimilarity function is difficult. 

Lane and Brodley [41] use similarity sequence matching to detect noise in string 

sequence data. The similarity of an instance to the training data is calculated. If the similarity 

measure is between minimum and maximum bounds, the instance is normal. Otherwise the 

instance is noisy. The bounds are determined empirically, and the similarity measure depends on 

the similarity function and an adjacency counter. Their similarity function returns a high value 

for pairs of closely resembling sequences and a low value for pairs of largely different 

sequences. 

 

Noise Handling 

There are two general treatments of noisy instances: noise removal and noise 

accommodation. The first solution, noise removal, detects and removes noisy instances to 

enhance the quality of data. Noisy instances detected by the methods in the previously described 

approaches can be removed in data preprocessing. 

The alternative solution, accommodation accepts noisy instances and builds a robust 

model that withstands noise and minimizes its effects. Bagging and stacking achieve robustness 

by combining multiple models. While bagging combines models of the same type by voting, 

stacking uses a meta-learner to combine the classifications of models of different types. The 

Random forests method is an example of bagging in which many classification trees are 

constructed, each tree votes to classify a tested instance, and the majority class is assigned to the 

instance. Breiman [7] tries to prove the robustness of the Random forests method, comparing 

with Adaboost. Least median of squares regression is a robust version of least square regression. 
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Unlike least square regression that minimizes the sum of squared errors, it minimizes the median 

of the squared errors. Barnett [5] notes that the least median square regression is noise robust up 

to a degree of noise contamination as high as 50 percent. 



 16

 

 

CHAPTER 3 

DIMENSIONALITY REDUCTION 

The Curse of Dimensionality 

A classifier that uses a limited number of instances in high dimensional space suffers from 

the curse of dimensionality. The curse of dimensionality is that the volume of a data space grows 

exponentially as the number of dimensions increases. Therefore many more instances are 

required in order to keep the same density of instances throughout the entire space. The problems 

of high dimensionality are described by the following two geometric properties of the curse of 

dimensionality ([6], [16] and [24]). 

1. To grab a small fraction of the instances in a high dimensional data space, a large amount 

of space must be covered. Hastie notes that in ten dimensions, 63% or 80% of the space 

must be enclosed respectively in order to capture 1% or 10% of the instances on average. 

Therefore a classifier that uses lazy learning such as k-nearest neighbor may not be used 

in high dimensional space. 

2. Most instances are concentrated in the boundary of high dimensional space. It was found 

that when 100 instances are uniformly distributed in a 10-dimensional unit ball centered 

at the origin, the median distance of the nearest instance to the center of the space is 

approximately 0.61 which means that the ratio of distances from center and to boundary 

is 61:39. Thus the instance is closer to the boundary than the center of the space. This 

indicates that new instances may be extrapolated as each instance is far from the other 

instances. Therefore prediction in high dimension becomes much more difficult. 
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To cure the curse of dimensionality and build an accurate model from high dimensional data, 

dimensionality reduction is necessary. There are two fundamental approaches to dimensionality 

reduction: feature extraction that generates new features of lower dimension from the original 

higher dimensional feature space and feature subset selection that chooses a relevant subset of 

features from the large number of original features. 

 

Feature Extraction 

For dimensionality reduction, feature extraction generates new features by mapping the 

original higher-dimensional feature space to a lower-dimensional feature space. While a linear 

method calculated by a linear combination of original features is simpler and easier, a non-linear 

method is more difficult but more general. The disadvantage of these approaches is that 

interpreting the meaning of the new features is usually difficult. 

One of the most popular feature extraction methods is Principal Component Analysis 

(PCA) ([22], [37] and [61]). Principal components (PCs) are defined as orthogonal linear 

combinations of original features. PCA generates the linear combination with the largest 

variance as the first PC. The second PC has the second largest variance and is orthogonal to the 

first PC.  The third PC has the third largest variance is orthogonal to both the first and the second 

PCs, and so on. In PCA, there are as many PCs as the number of original features and the 

dimensionality can be reduced by excluding the later PCs with smaller variance. 

Similar to PCA, Independent Component Analysis (ICA) generates linear combinations 

([28], [29], [37] and [62]). However, ICA is different from PCA in that it seeks independent 

components (ICs) using higher order statistics while PCA uses second order statistics to generate 

uncorrelated features. Independence always implies uncorrelatedness but the opposite is not 
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always true. Only if the distribution is multivariate normal, they are equivalent. Therefore for 

Gaussian distribution, PCs are also ICs. ICA does not necessarily reduce dimensionality. Some 

other methods such as PCA are needed first to reduce dimensionality. Forder [22] provides a 

survey of more feature extraction methods such as factor analysis, projection pursuit, non-linear 

principal analysis, non-linear independent analysis, and random projection. 

Another feature extraction approach is feature weighting using genetic algorithms. 

Multiplying the original features with the associated weights generates new features. Jarmulak 

and Craw [30], Kelly and Davis [35], and Punch et al. [48] present genetic algorithms to 

determine feature weights for k-NN classifiers. The individuals are real valued and each position 

in the individual holds the weight associated with each feature. The evaluation function uses the 

accuracy of the weighted k-NN classifier. The weights close to zero result in dimensionality 

reduction by eliminating the corresponding features. 

 

Feature Subset Selection 

Feature subset selection is an approach to select a relevant subset of features from the 

original features of high dimensions. There are two broad categories of feature subset selection 

approaches: filter and wrapper approaches. The filter approach is a simple and fast method that 

optimizes feature selection using evaluation measures such as distance, information, dependence 

and consistency ([18], [38] and [44]).  The filter approach is fast because it does not use any 

induction algorithms to evaluate a selected subset of features. Meanwhile, the wrapper approach 

uses induction algorithms to evaluate the selected subset of features. It is slower but more 

accurate. 
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1. Filter Approaches 

Distance-based filter approaches are known as separability-based, divergence-based and 

discrimination-based [18]. They assume that instances belonging to the same class are close to 

each other and instances belonging to different classes are relatively far apart. A feature that 

induces a greater distance between instances from different classes is preferred for selection. 

Relief for binary classification is a distance-based method ([36], [37] and [54]). Relief 

samples a set of instances randomly. For each selected instance, Nearest Hit, a nearest instance 

belonging to the same class and Nearest Miss, a nearest instance from the other class are found. 

For each feature, the feature weight is updated based on the differences between the instance and 

the Nearest Hit or the Nearest Miss. If the instance and the Nearest Hit are close, then the weight 

increases. Otherwise, it decreases. Also if the instance and the Nearest Miss are far, then the 

weight increases. Otherwise, it decreases. Features with weight greater than a threshold or a 

predefined number of features with higher weight are selected. Relief can be extended to 

multiple class problems as well as to regression problems. 

Information-based filter approaches measure information gain of a feature. A feature that 

has high information gain is preferred for selection. Information gain is the expected reduction of 

impurity of instances separated by a feature. Information gain of a feature x is formally defined 

as follows: 

Entropy (S) ≡ Σi -Pi log2Pi,  

Gain (S, x) ≡ Entropy (S) - Σv є values(x) (|Sv| / |S|) × Entropy (Sv), 

where S is a set of instances, Pi is the proportion of instances that belong to class i, values(x) is 

the set of possible values for feature x, |Sv| is the number of instances whose feature x has the 

value v, and |S| is the number of instances. 



 20

Decision tree learning uses information gain to select the best features. Cardie [13] 

creates C4.5 decision tree and selects as relevant features the features remaining in the pruned 

tree. Also Singh and Provan [58] propose a feature selection method to find features that 

maximize the following information metrics using a forward greedy search (refer to their paper 

for the formal definitions of the metrics): conditional information gain (CIG), conditional gain 

ratio (CGR), and 1-conditional distance (CDC). 

Dependence-based filter approaches measure the dependence between a feature and the 

class. A feature with a high dependence on the class is preferred for selection. While a feature 

with a low dependence on the class is irrelevant, a high dependence of a feature on other features 

is a measure of redundancy of the feature. Therefore lower inter-dependence between features is 

desired ([18]). 

Correlation-based feature selection is a well-known dependence-based filter approach. 

Hall [23] applies a correlation metric to classification and regression problems, using best first 

search under the assumption that good features are highly correlated with the class but 

uncorrelated with each other. For regression problems, they apply linear correlation. For 

classification problems, symmetrical uncertainty (SU) is used to estimate the degree of 

association between features. Yu and Liu [73] also use SU to identify irrelevant and redundant 

features. The definition of symmetrical uncertainty is as follows:  

H(x) = -ΣiP(xi)log2(P(xi)), 

H(x|y) = -ΣjP(yj) Σi P(xi|yi)log2(P(xi|yi)),  

SU(x,y) = 2× [(H(x)-H(x|y)) / (H(x)+H(y)], where P(xi) are the prior probabilities for all values 

of x, and P(xi|yi) are the posterior probabilities of x given y. 
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Consistency-based feature selection approaches select a minimal set of features that 

separate classes most consistently. If instances have the same values for the selected features but 

different class label, the instances are inconsistent for the feature subset. For feature x in Table 

3.1, the first and the second instances have the same value 0, but they are assigned the different 

target t values 0 and 1 respectively. Therefore the instances are inconsistent for feature x. 

 

Table 3.1 Consistency of features 

x y T 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

 

Almuallim and Dietterich [3] introduce the FOCUS algorithm that uses an exhaustive 

search to finds a minimal subset of features in which there are no two instances that are 

consistent in all the features but are not consistent in the class. Liu and Setiono [40] propose a 

probabilistic consistency-based filter method, LVF, which creates a random feature subset in 

each trial. If the number of features is less than the size of the best feature subset found so far 

and the inconsistency criterion is less than a predefined rate, the best feature subset is replaced 

with the current feature subset. The LVF repeats for a pre-determined number of trials. Dash and 

Liu [19] compare different inconsistency measures and different search strategies. 
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2. Wrapper Approaches 

Wrapper approaches use induction algorithms to evaluate the selected subset of features. 

John et al. [31] search the feature space using greedy algorithms of backward elimination and 

forward selection. The selected subset of features is evaluated by decision trees using n-fold 

cross validation. Skalak [60] uses a random mutation hill climbing search algorithm, and the 

accuracy of a 1-nearst neighbor classifier as the evaluation function. Liu and Setiono [39] 

introduce a probabilistic wrapper approach LVW, a modified version of LVF. LVW generates a 

random subset of features and calculates the error rate using decision trees (C4.5 and ID3). If the 

error rate for current features is less than that for the best, the best feature subset is replaced with 

the current feature subset. LVW repeats this process until the error rate is not updated for a 

predefined number of times. 

Another typical wrapper approach is to use genetic algorithms. Vafaie and De Jong [65], 

Jarmulak and Craw [30], and Yang [70] propose genetic algorithms for feature selection. They 

implement binary representation in which the value 1 corresponds to a relevant feature, and use 

evaluation functions related to classification accuracy. Pernkopf and O’Leary [47] present a 

genetic algorithm that uses an integer representation. In it, an individual has a predetermined size 

and is initialized with values between 1 and the number of original features. The evaluation 

function is based on the classification rate as well. Furthermore, there are many variations of 

genetic algorithms for feature selection. Cantú-Paz [12] presents a hybrid method which uses the 

output of a filter method to form the initial population, and uses classification accuracy as the 

evaluation function. Lanzi [42] applies a genetic algorithm to a filtering method using the 

inconsistency rate as the evaluation function. Cantú-Paz and Lanzi both use binary 

representation. Jourdan et al. [33] also use a genetic algorithm with binary representation for 
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feature selection. Their evaluation function is formularized with the total number of features and 

the number of selected significant features that are not too close in terms of the chromosomal 

distance. 

 

Combination of Feature Extraction and Feature Subset Selection 

Genetic algorithms can be used as a hybrid method for feature generation and feature 

selection. Raymer et al. ([50] and [51]) introduce a genetic algorithm to select the relevant 

features and to determine the weights of the selected features simultaneously. The individuals are 

composed of two parts: the feature weighting part and the feature selection part. The positions 

for feature weighting contain real valued numbers between 0 and 100 and while those for feature 

selection contain binary masking digits – one for each feature. If the weight is close to 0 or the 

masking digit is 0, then the feature is not considered by the classifier. The evaluation function 

uses a weighted k-NN accuracy based on the selected features. Ritthoff et al. [52] use variable-

length individuals. These individuals hold the selected features (e.g. x or y from Table 3.1 above) 

and the additional features (e.g. x+y or x×z) generated by feature generators. The features are 

evaluated by a support vector machine using both the selected features and the generated 

features. 
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CHAPTER 4 

THE PROPOSED ALGORITHM - NDFS 

General Description of NDFS 

 

Figure 4.1 Framework of NDFS 

 

As shown in Figure 4.1, the proposed algorithm (NDFS) is composed of two parts: a 

noise detection method (ND) and a feature selection (FS) which communicate to exchange their 

results. ND implements two sub-parts, a genetic algorithm (GA-ND) and prototype selection 

(PS-ND), to detect noise. FS also uses a genetic algorithm (GA-FS) to select the relevant 

features. GA-ND and GA-FS exchange their results at certain generation intervals. In the first 

step, GA-ND identifies a set of candidates suspected of being noisy instances. These suspicious 

instances are removed from the training data set as potentially noisy instances. Before GA-ND 

passes its result to GA-FS, PS-ND is triggered to detect actual noisy instances among the 

candidates. GA-FS then selects the relevant features based on the training data provided by ND, 

and returns these identified features to ND which in turn uses them for another round of noise 

detection. These steps are repeated until a stopping condition is satisfied. 
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Pseudocode for NDFS is provided in Figures 4.2 through 4.6, which describe common 

frameworks for classification and regression problems. Problem specific implementations are 

separately explained in the sections below. NDFS (Figure 4.2) includes two algorithms: ND 

(Figure 4.3) and FS (not given). Note that while ND has two subroutines, FS contains only one, 

GA-FS, and thus is simply a trigger for this subroutine. 

 

 

Figure 4.2 Algorithm NDFS 

 

ND first identifies potentially noisy instances using relevant features selected by FS, and 

then measures the actual noise of these candidates. These processes are performed by GA-ND in 

Figure 4.4 and PS-ND in Figure 4.5 respectively. Then ND updates the best individual in its GA-

ND with the actual noise detected by PS-ND. FS identifies relevant features using instances 

identified as noise-free by ND. This process is performed by GA-FS (Figure 4.6). The next 

generations in GA-ND and GA-FS are probabilistically re-initialized with their current best 

individuals (the reason for this is discussed later). Note that GA-ND returns its noise candidates 
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after n1 generation and GA-FS exchanges its relevant features every n2 generation. Also NDFS 

repeats these steps n times (refer to Table 5.9 in the next chapter for all parameter settings). 

 

 

Figure 4.3 Algorithm ND 

 

GA-ND: Identifying Candidates for Noise 

GA-ND applies a genetic algorithm to identify noisy candidate instances using relevant 

features selected by FS. 

 

1. Representations 

GA-ND can be implemented using a binary or integer representation. For either, the size 

of individuals in the population is I which corresponds to the number of instances in the training 

data set. Each position in an individual corresponds to an instance in the training data and is used 

to indicate if an instance is noise-free or noisy. In the binary representation, a value of 0 at the ith 

position of an individual indicates that the ith instance in the training data set is noise-free while a 

1 means the ith instance is noisy. 
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In the integer representation, the size of each individual is (I+1). Each individual has an 

additional position that contains a threshold. If the value at the ith position of an individual is 

greater than or equal to this threshold, the ith instance in the training data set is considered noise-

free; otherwise, the ith instance is noisy. 

 

 

Figure 4.4 Algorithm GA-ND 

 

2. Populations 

For binary representation, each position in an individual of GA-ND is initialized with the 

value 0 with probability p1 or the value 1 with probability p2. For integer representation we 

initialize each position of an individual with a uniform random integer value between 0 and (I-1). 

The size of populations for both representations is set to N1. 
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3. Evaluation (fitness) Functions 

GA-ND uses only the features selected by the FS algorithm to calculate the fitness 

values. The fitness value of each individual is calculated on the basis of the classification 

accuracy of the primary classifier (we call the classifier in GA-ND and GA-FS the primary 

classifier). Individuals in GA-ND split the training data set into two subsets: the remaining data 

set and the removed data set. The remaining data set is composed of the instances considered as 

noise-free by the individual, and the removed data set is created by grouping the instances 

identified as potential noise. Note that the removed data set is denoted by noise_candidates in 

GA-ND of Figure 4.4. 

GA-ND maximizes the following evaluation function:  

ND-Fitness = %RemainingCorrect + %RemovedIncorrect – TreeSize, 

where %RemainingCorrect is the percentage of instances classified correctly by the primary 

classifier in f1-fold cross-validation on the remaining data set, %RemovedIncorrect is the 

percentage of the instances in the removed data set classified incorrectly by the primary classifier 

trained on the remaining data set, and TreeSize is the size of the tree built by the primary 

classifier on the remaining data set. In the case where all instances in a small removed data set 

are classified incorrectly and ND-Fitness is very high, without removing more instances from the 

training data set, the genetic algorithm may become stuck in a local optimum. In this event 

TreeSize provides the momentum the genetic algorithm needs to move forward and reach the 

global optimum. If more instances are removed from the training data set, the size of the tree 

built on the remaining data set becomes smaller and ND-Fitness gets higher. In addition, a 

smaller tree may prevent overfitting noisy instances. 

 



 29

4. Selection and Variation Operators 

In both representations, we use tournament selection with replacement and tournament 

size k. We use r-point crossover with probability p5. For binary representation we apply bitwise 

mutation to each individual with probability p6. Mutation is done by flipping the bit at one 

randomly selected position. For integer representation, we apply creep mutation to each 

individual with probability p7. Mutation is done by adding a creep constant a1 with probability 

p8 or a creep constant a2 with probability p9 to the value at each position in the individual. 

 

5. Consideration of Multiple Individuals in Mature Population 

It is observed that under the evaluation function of GA-ND, several individuals may get 

the same fitness value. This phenomenon can cause some of the best individuals to fail to 

converge to the global optimum. Thus, we consider the b individuals with the highest fitness 

values instead of picking only the best individual in the population in the final generation. If a 

position in b individuals has been selected more than B×b times, the corresponding instance is 

added to the set of candidates for noisy instances. Therefore the set of candidates is likely to 

include more elements than the set of actual noisy instances. Finally GA-ND outputs its set of 

candidates for noisy instances based on b individuals in the population in the last generation. 

Note that this process is performed only once in the final generation of GA-ND where the 

population is completely mature. 

 

PS-ND: Detecting Actual Noise 

We observe that GA-ND tends to remove many false noisy instances from the training 

data set. Therefore PS-ND is used to attempt to recover the incorrectly removed noisy instances. 



 30

As mentioned above, the word “prototypes” refers to small subsets of instances that 

represent a large original dataset. Normally prototypes are used to reduce the memory space for 

large databases. Skalak [60] notes that prototypes tend not to include many noisy instances and 

the limited number of prototypes may avoid overfitting the training data. 

 

 

Figure 4.5 Algorithm PS-ND 
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Although potentially noisy instances are removed from the training data set by GA-ND, the 

remaining data set still has a chance to contain noisy instances.  We therefore apply the prototype 

selection method to create a noise-free representation of the remaining training data. Note that 

the remaining data are denoted as training_data and the removed data as noise_candidates in PS-

ND of Figure 4.5. 

We follow similar steps to [60] to create prototypes that represent the remaining data set 

without noise: 

1. Select m percent of the instances at random from the remaining data set. 

2. Build a model using the instance set randomly selected by the secondary classifier (we 

call the classifier in PS-ND the secondary classifier). 

3. Classify the remaining data set using the model. 

4. Measure the classification accuracy. 

5. Repeat steps (1 to 4) t times. 

6. Choose the set of instances with the highest classification accuracy as prototypes. 

The steps above are performed by d different secondary classifiers separately and the 

prototypes with the highest accuracy are selected. Also the secondary classifier that generates 

prototypes is referred to as the prototype classifier. Note that the prototype classifier is denoted 

as prototype_classifier in PS-ND of Figure 4.5.  

We build a model on the prototypes created by the prototype classifier and classify the 

instances in the set of noise candidates using this model. Then the correctly classified instances 

are removed from the set of candidates and returned to the remaining data set, assuming that GA-

ND has identified them incorrectly as candidates. The instances which remain in the set of 
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candidates until the end are detected as actual noisy instances, and the instances in the remaining 

data set which are considered noise-free are used by GA-FS later. 

 

GA-FS: Identifying Relevant Features 

GA-FS is also implemented with a genetic algorithm that identifies relevant features 

using instances selected as noise-free by ND. 

 

1. Representations 

Similarly to GA-ND, GA-FS can use binary or integer encoding as representations. The 

size of the individuals is F that is the number of features (attributes), and each position in an 

individual is associated to the number of a feature in the training data set.  For binary 

representation, the value 0 at each position represents selection of the feature and the value 1 

indicates elimination of the feature from the training data set. For integer representation, the size 

of individuals is (F+1). If a value at the jth position of the individual is greater than or equal to 

the threshold, the jth feature in the training data set is considered as relevant; otherwise, the jth 

feature is irrelevant or redundant.  

 

2. Populations 

For binary representation, individuals are initialized with the value 0 or 1 with probability 

p3 or p4 respectively. For integer representation, we initialize each position of an individual with 

a random integer value between 0 and (F-1). The size of populations for both representations is 

set to N2. 
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Figure 4.6 Algorithm GA-FS 

 

3. Evaluation Functions 

GA-FS uses only the instances selected as noise-free by the ND algorithm. GA-FS 

maximizes the following evaluation function: 

FS-Fitness = %RemainingCorrect + %RemainingMeritCorrelation, 

where the %RemainingCorrect is the percentage of the instances classified correctly by the 

primary classifier in f2-fold cross-validation on the training data set using only the features 

selected by the individual. The %RemainingMeritCorrelation indicates the merit percentage of 

correlation from the selected features which is used as the evaluation measure in the correlation-

based feature selection (filter) method. The features selected as relevant by GA-FS are sent 

(back) to GA-ND. 
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4. Selection and Variation Operators 

For the genetic operators of selection, crossover, and mutation, the same schemes as 

those for GA-ND are applied. However, unlike GA-ND, elitism is used to retain the best relevant 

features through each generation. 

 

Re-initialization of Populations 

The populations of GA-ND and GA-FS are re-initialized whenever they exchange their 

results. The reason for this is as follows. GA-ND uses the new features which GA-FS has 

optimized on the basis of the remaining data set created from the best individual in the previous 

generation of GA-ND. Therefore individuals other than the previous best one in the current 

generation of GA-ND are not related to the new features. So the population of GA-ND is re-

initialized whenever it receives new features from GA-FS. The population of GA-FS is also 

reinitialized for similar reasons. These processes are performed by GA-ND (Figure 4.4) and GA-

FS (Figure 4.6) respectively. 

Re-initialization is implemented probabilistically. Each individual in the binary 

population is reinitialized with probability p10 with the values of the previous best individual. 

For integer representation, individuals are reinitialized with probability p11 with values 

computed by adding a creep constant a1 to the value at each position of the previous best 

individual. 

 

Implantation of Features Pre-selected by a Filter Method into Initial Population 

According to NDFS in Figure 4.2, ND is initially triggered using all features of the 

original data and GA-ND performs noise detection initially on the basis of the set of full features. 
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If GA-ND were to use features pre-selected by a filter method in the first generation, it may 

achieve better performance. The process could be implemented by implanting an individual 

associated with features pre-selected by a filter method into the initial population for GA-FS, and 

initially passing these features to ND so that GA-ND uses them in the first generation. 

This process is different from Cantu-Paz’s method [12] in that while it initializes the 

whole population with the output of a filter method, NDFS implants one individual associated 

with features selected by a filter method into the initial population. If the implanted individual 

does not have a high fitness value, GA-FS is likely to throw it away after the first generation. 

 

Extension to Regression Problems 

For GA-ND in regression problems, the concept of incorrectly classified instance is 

defined as follows. If the absolute difference between the predicted value and the original target 

value is greater than IncorrectThresholds, then we consider the instance to be classified 

incorrectly. Otherwise, the instance is correct. The IncorrectThresholds is defined as follows: 

IncorrectThresholds = v × Std, 

where v is a threshold constant and Std is the standard deviation of the target values in the 

original training data set. A low value v results in aggressively removing instances as noise, and 

so GA-ND may suffer from false noise detection. In the meantime, GA-ND with a high value v 

may not detect many true noisy instances. 

To determine the threshold constant v, we introduce an adaptive threshold scheme. 

Initially the original training data set is classified and its relative absolute error (error) is 

measured, using f3-fold cross-validation. This step is repeated e times and the average error is 

calculated. Then v is set to error and the value of [error×Std] is assigned to IncorrectThresholds. 



 36

For example, if the relative absolute error is 25%, IncorrectThresholds is [0.25× Std]. We also 

empirically limit the minimum value of v to C. 

However, there are two possibilities for data sets with high error rate. The first case is 

that although the error rate is initially high since the data is contaminated by high levels of noise, 

the classifier can build a more accurate model as noise decreases. The second case is that 

regardless of noise level, the classifier is inaccurate on the data set. In the former case, we need 

to decrease the threshold constant as noise is removed in order to detect as many true noisy 

instances as possible. However in the latter case, we want to increase the threshold constant in 

order to reduce the rate of false noise detection. To distinguish between these two cases, we look 

into the relationship between the primary classifier in GA-ND and the secondary classifier in PS-

ND. In the first case, PS-ND agrees to the noise removal by GA-ND. However in the latter case, 

PS-ND returns many candidate instances to the remaining data set, considering them as false 

noise. 

Therefore after g1 and g2 generations, the threshold constant v is updated by GA-ND. If 

PS-ND disagrees with candidates at a rate greater than r1, IncorrectThresholds is set to [(v+0.1) 

× Std]. If the recovery rate of PS-ND is below r2, the value of [(v-0.1) × Std] is assigned to 

IncorrectThresholds. Otherwise IncorrectThresholds is not changed. 

For classification problems, TreeSize is included in the evaluation function of GA-ND. 

For regression problems, it may disturb the evaluation function since the threshold value also 

affects the evaluation function. Therefore we implement two different evaluation functions 

separately and compare their results. One is the same evaluation function as that of classification 

problems and the other is the evaluation function without the term TreeSize. 
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We do not consider multiple individuals in the final generation of GA-ND in regression 

problems. Only the best individual is selected to provide the noisy candidates. For the 

%RemainingCorrect in evaluation function of GA-FS, the value of 100 minus the relative 

absolute error percentage was used. Except for these differences, NDFS uses the same algorithm 

as that used in classification problems. 
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CHAPTER 5 

DATA SETS AND EXPERIMENTAL SETUP 

Data Sets 

 

1. Classification Problems 

We downloaded four real world data sets from the UCI machine learning repository and 

then generated synthetic data sets artificially from them. The downloaded data sets were 

Quadruped Mammals (Mammals), MUSK (Musk), Waveform (Waveform) and Wisconsin 

Diagnostic Breast Cancer (Wdbc). They vary in the number of features and class labels. Also 

they contain numeric values for most features. Therefore we can generate our synthetic data sets 

based on them with ease. 

Table 5.1 shows the summary characteristics of the data sets. For example the Wdbc data 

set has 569 instances and 32 features. The class variable has two possible values as the data set 

includes 357 benign instances and 212 malignant instances. 

 

Table 5.1 Characteristics of data sets 

Data Sets Number of Instances N of Features Number of Class Labels 

Mammals 1000 (241, 250, 257, 252) 72 4 (giraffe, dog, cat, horse) 

Musk 6598 (1017, 5581) 168 2 (musk, non-musk) 

Waveform 5000 (1657, 1647, 1696) 21 3 (0, 1, 2) 

Wdbc 569 (357, 212) 32 2 (benign, malignant) 
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If the original labels of the data are used, we cannot measure the performance of our 

algorithm since the testing data sets could be contaminated with noise. Therefore to generate 

synthetic data sets, we removed non-numeric features from the data sets. As a result, one feature 

from Wdbc and two features from Musk were eliminated. Then we generated synthetic data sets 

from the new data sets which include only numeric features. First we selected ten features at 

random and generated real numbers from the selected features using the formulas in Table 5.2. Xi 

refers to the value of the ith feature. Each formula contains ten X variables since ten features were 

selected randomly. Note that all the coefficients and powers in these formulas were generated at 

random. 

 

Table 5.2 Formulas to create synthetic data sets 1 for classification problems 

Data Sets Formula 

Mammals 1 - 0.68 – 0.60 X10 + 0.29 X11 + 0.85 X25
2 – 0.72 X34

2 + 0.88 X43 + 0.56 X45
2 

– 0.47 X46
2 – 0.06 X52  + 0.03 X66

2 + 0.52 X70 

Musk 1 0.63 – 0.41 X14 + 0.11 X37
2 + 0.43 X41 + 0.72 X70 – 0.18 X81

2 – 0.08 X94
2 – 

0.23 X109
2 + 0.60 X110 + 0.96 X149

2 – 0.76 X164 

Waveform 1 - 0.08 – 0.88 X2 + 0.79 X4
2 – 0.99 X6

2 + 0.64 X9 – 0.96 X10 + 0.02 X11 + 

0.47 X13
2 – 0.90 X16 – 0.04X17

2 – 0.95 X20
2 

Wdbc 1 0.306 + 0.45 X4
2 – 0.32 X8

2 + 0.64 X12
2 – 0.92 X16

2 + 0.32 X19
2 + 0.21 X23 

+ 0.23 X27
2 + 0.51 X28

2 – 0.64 X29 + 0.30 X30
2 
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We then set thresholds for the real numbers based on the class distribution of the original 

UCI data sets and labeled the class values by using the threshold. For example, for the Waveform 

data set, the 1657 instances with the highest values were assigned to class 0, the next highest 

1647 instances were labeled class 1, and the 1696 instances with the lowest values were labeled 

class 2. 

We then grabbed 10 noise-free training data sets with 100 instances each and the 

corresponding ten noise-free testing data sets with 100 instances each from the synthetic data sets 

at random. None of the noise-free training data sets or their corresponding noise-free testing data 

sets overlapped. Thus we had 10 noise-free training data sets of size 100 each and 10 

corresponding testing data sets of size 100 each. 

For noise levels of 5%, 10%, 15%, 20%, 25%, and 30%, we generated noisy training data 

sets from the noise-free training data sets created in the previous step. For each noise level, 

random instances, as many as the noise level implies, were selected and assigned to one of the 

other (wrong) class labels. For example, in order to generate the 5% noisy data sets, we selected 

5 instances from each noise-free training data set and labeled them with one of the other class 

labels (randomly in the multi class domains). We generated 10 noisy training data sets for each 

noise level. Therefore, we had 10 noise-free training data sets, 10 corresponding noise-free 

testing data sets, and 10 noisy training data sets for each of the noise levels stated above. 

To simulate various real world data sets, we generated another synthetic data set from 

each data set, following the same processes explained above but using different randomly 

generated formulas. Table 5.3 shows the formulas that were used to generate these additional 

synthetic data sets. 
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Finally, two different synthetic data sets were generated from each downloaded data set 

for classification problems. For each synthetic data set, we had 10 noise-free training data sets, 

10 corresponding noise-free testing data sets, and 10 noisy training data sets for each of the noise 

levels stated above. 

 

Table 5.3 Formulas to create synthetic data sets 2 for classification problems 

Data Sets Formula 

Mammals 2 0.34 + 0.79 X0
2 – 0.59 X4

2 – 0.78 X16 – 0.63 X20
2 – 0.59 X24 + 0.94 X38

2 

+ 0.04 X40 + 0.65 X48
2 + 0.09 X54 – 0.66 X60 

Musk 2 - 0.83 – 0.49 X7 – 0.40 X30
2 – 0.78 X40 + 0.56 X49

2 +0.95 X77 – 0.77 X110
2 

+ 0.18 X125 – 0.58 X140 + 0.78 X148 – 0.84 X154 

Waveform 2 - 0.14 + 0.70 X0
2 + 0.82 X2

2 – 0.26 X5 + 0.19 X7
2 + 0.26 X10 + 0.59 X11 – 

0.77 X12
2 – 0.97 X13

2 + 0.49 X16
2 + 0.70 X20 

Wdbc 2 0.86 – 0.63 X0
2 – 0.93 X1 + 0.67 X2 + 0.80 X10

2 – 0.07 X11 + 0.29 X14 + 

0.78 X17 + 0.57 X18
2 + 0.64 X23

2 – 0.16 X27 

 

 

Table 5.4 shows the classification accuracies after the primary classifier built a model 

using the training data sets created by the methods explained above and classified the noise-free 

testing data sets. The number in each cell of the table is the average of the results on 80 data sets 

(80 = 4×2×10; 4 original data sets, 2 different formula and 10 noisy data sets at each noise level). 

“Feature-selected” in the “Feature section” column means that irrelevant and redundant features 

were manually removed completely, and so there exists only ten relevant features in the data 



 42

sets. “Noise-removed” in the “Noise removal” column denotes that noisy instances were 

manually removed completely. The “Original and Noise-removed” data row shows results for 

the high dimensional training data whose noisy instances were manually removed completely.  

The “Feature-selected and Original” data row shows results for the noisy training data whose 

irrelevant and redundant features were manually removed completely. The “Feature-selected and 

Noise-removed” data row shows results for the training data with both noisy instances and 

irrelevant and redundant features manually removed completely. The “Feature-selected and 

Noise-free” data row shows results for the training data in which all instances had correct class 

values and all features were only relevant features. The main difference between the last two 

types was size. The number of instances in the “Feature-selected and Noise-removed” data row 

is smaller. 

 

Table 5.4 Classification accuracies on synthetic data sets for classification problems 

Feature selection Noise removal 5% 10% 15% 20% 25% 30% 

Original 86.37 82.85 79.05 74.38 70.88 64.90 

Noise-removed 90.27 90.15 89.68 89.07 89.02 88.35 

Original 

Noise-free 90.32 

Original 89.57 86.55 84.62 81.76 78.91 75.03 

Noise-removed 91.46 91.20 91.00 90.88 90.30 90.26 

Feature-selected 

Noise-free 91.61 

 

The table indicates that the primary classifier shows the highest overall accuracies for the 

feature-selected noise-free data sets and very close accuracies for the feature-selected noise-
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removed data. However the classifier has poor accuracies for the original high dimensional noisy 

data. This result supports our hypothesis that removing noisy instances and selecting relevant 

features enhance the quality of the training data sets and improves classification accuracy. For 

example, the primary classifier shows a classification accuracy of 91.61% on the “Feature-

selected and Noise-free” data and 90.26% on the “Feature-selected and Noise-removed” data at 

the noise level of 30%. However, it has an accuracy of only 64.90% on the “Original noisy” data 

at the same noise level. 

 

2. Regression Problems 

For regression problems, we used the same data sets as those for the classification 

problems. We generated synthetic data sets which included only numeric features, again as we 

did for the classification problems. We followed the formula of Table 5.5 to create the target 

values for the data set. Then we randomly grabbed ten noise-free training data sets with 100 

instances each and their corresponding ten noise-free testing data sets with 100 instances each 

from the synthetic data set. 

For noise levels of 5%, 10%, 15%, 20%, 25% and 30%, we generated noisy training data 

sets from the noise-free training data sets. For each noise level, random instances, as many as the 

noise level implies, were selected and noise values were added to the target values of the selected 

instances. The noise values were random numbers generated between 10% and 30% of the range 

of the target values in the training data set. Each noise value had a positive or negative sign 

randomly assigned. Therefore, we had 10 noise-free training data sets, 10 corresponding noise-

free testing data sets, and 10 noisy training data sets for each of the noise levels stated above. 
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Table 5.5 Formulas to create synthetic data 1 for regression problems 

Data Sets Formula 

Mammals 1 -0.12 + 0.38 X10
2 – 0.77 X12

2 + 0.64 X15
2 – 0.66 X16 – 0.13 X32

2 – 0.58 

X33
2 – 0.15 X40

2 – 0.24 X48 + 0.12 X57
2 + 0.01 X62 

Musk 1 0.29 + 0.72 X57 + 0.34 X68 – 0.10 X75 + 0.01 X92
2 – 0.18 X104

2 – 0.48 X108
2 

– 0.25 X109 + 0.80 X112 – 0.70 X157
2 – 0.92 X158

2 

Waveform 1 - 0.55 – 0.92 X0
2 + 0.93 X2 + 0.63 X5 – 0.38 X6 + 0.21 X10 – 0.50 X11 + 

0.85 X15
2 + 0.75 X16 + 0.30 X19

2 – 0.61 X20 

Wdbc 1 0.45 + 0.31 X1 + 0.53 X4 + 0.03 X6
2 – 0.44 X8 – 0.63 X12

2 + 0.18 X13 + 

0.08 X19 + 0.01 X24 + 0.60 X26
2 – 0.11 X29 

 

As in classification problems, we generated additional synthetic data sets from each data 

set, following the process explained above but using different formulas. Table 5.6 shows the 

formulas that are used to generate these additional data sets. 

Finally, two different synthetic data sets were generated from each downloaded data set 

for regression problems. For each synthetic data set, we had 10 noise-free training data sets, 10 

corresponding noise-free testing data sets, and 10 noisy training data sets for each of the noise 

levels stated above. 

Table 5.7 shows the classification accuracies after the primary classifier built a model 

using the training data sets that were created by the methods explained above and classified the 

noise free testing data sets. The table’s layout and description are similar to that for the 

classification problems. 
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Table 5.6 Formulas to create synthetic data 2 for regression problems 

Data Sets Formula 

Mammals 2 - 0.14 + 0.96 X0 – 0.62 X10 – 0.41 X16
2 – 0.77 X17 + 0.44 X42 + 0.33 X47 + 

0.01 X55
2 – 0.59 X58

2 + 0.63 X61 – 0.68 X66
2 

Musk 2 - 0.96 – 0.18 X0 – 0.70 X37 – 0.49 X45
2 + 0.51 X65 – 0.35 X68

2 + 0.61 X80 – 

0.86 X102 + 0.07 X140 + 0.71 X155
2 – 0.80 X163 

Waveform 2 0.15 + 0.002 X2
2 + 0.22 X3

2 + 0.79 X6 – 0.98 X7
2 – 0.48 X9 – 0.11 X11

2 + 

0.15 X12
2 + 0.82 X16 + 0.45 X17

2 + 0.18 X18 

Wdbc 2 0.26 + 0.98 X2 + 0.98 X3 – 0.45 X5
2 + 0.17 X6

2 + 0.81 X17
2 – 0.03 X23

2 – 

0.98 X24 – 0.94 X26
2 + 0.58 X28

2 – 0.20 X29 

 

 

Table 5.7 Classification accuracies on synthetic data sets for regression problems 

Feature selection Noise removal 5% 10% 15% 20% 25% 30% 

Original 81.26 78.77 76.63 74.90 72.17 69.89 

Noise-removed 84.45 84.02 83.09 82.29 82.56 81.70 

Original 

Noise-free 84.22 

Original 84.28 82.16 80.17 78.82 77.68 76.43 

Noise-removed 87.06 86.93 86.85 86.32 85.76 85.29 

Feature-selected 

Noise-free 87.21 
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Performance Measures 

 

1. Classification Accuracy 

The goal of this research is to enhance the quality of the training data by removing noisy 

instances and selecting relevant features from high dimensional noisy training data. Therefore 

the classification accuracy is the main measure of performance. For classification problems, the 

classification accuracy is the percentage of test instances classified correctly by the model built 

on the training data set. For regression problems, the classification accuracy is 100 minus the 

relative absolute error estimated by the model built on the training data set. Also the average 

error reduction percentages over all noise levels are computed from the classification accuracies. 

To evaluate the performance of NDFS, we chose two noise detection techniques and two 

feature selection methods as our opponents for each problem. For noise detection, Weka’s noise 

filtering method with Random forests and Sign noise detection techniques were selected.  The 

“RemoveMisclassified” filtering of Weka removes incorrectly classified instances, which is used 

for noise detection in Weka [68]. A C4.5 tree and a Model tree were selected as its classifier for 

classification and regression problems respectively. Also Random forests noise detection was 

applied to classification problems, while Sign method was applied to regression problems (refer 

to Chapter 2 for detailed descriptions of these algorithms). Both of Random forests and Sign 

methods were operated in the statistical software R. For feature selection, correlation-based and 

ReliefF filter methods are selected for both the classification and regression problems (refer to 

Chapter 3 for detailed descriptions of these algorithms). 
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2. Noise Detection Accuracy 

Table 5.8 presents the confusion matrix as applied to noise detection. A confusion matrix 

is a good tool for evaluating correctness [68]. While true noisy and true noise-free instances are 

instances which get classified correctly, false noisy and false noise-free instance get classified 

incorrectly. False noisy instances are instances that get classified as noisy but are actually noise-

free, and false noise-free instances are instances that get classified as noise-free but are actually 

noisy. 

We derive the noise detection accuracy from the confusion matrix as follows : 

Noise detection accuracy = (true noisy + true noise-free) /  

(true noisy + false noisy + true noise-free + false noise-free) 

 

Table 5.8 Confusion matrix for noise detection 

Instance Classification 
Confusion Matrix 

Noisy Noise-free 

Noisy True noisy False noise-free 
Actual Instance 

Noise-free False noisy True noise-free 

 

 

3. Run Time 

Since the drawback of genetic algorithms is speed, describing the run time of NDFS as it 

uses genetic algorithms is meaningful. We show the average run times of NDFS algorithms. 
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Experimental Setup 

Table 5.9 shows the parameter settings used to implement the NDFS algorithm. For 

Weka, we used its default setup, and a threshold of [0.5×standard deviation of original target 

values] for regression problems. For ReliefF feature selection, the top ten ranked features were 

selected since the correct number of features is ten in our synthetic data sets. Also for Random 

forests, the instances with the noise measure greater than 10 were selected as noise. 
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Table 5.9 Parameter setting 

Parameters Classification Regression 

Primary classifier C4.5 tree Model tree 

Secondary classifier SVM, multilayer perceptron 

B 0.5 - 

C - 0.2 

F Feature size of each data set 

I 100 

N1 500 200 

N2 100 80 

a1 ±1 (select + or – at random) 

a2 ±10 (select + or – at random) 

b 100 - 

d 2 

e - 5 

f1 if (generation < 80), f1=2, else f1=5 f1=2 

f2 5 

f3 - 10 

g1, g2 - g1=40, g2=60 

k 2 

m 10 

n, n1, n2 10 

p1, p2 p1=0.95, p2=0.05 

p3, p4 p3=0.5, p4=0.5 p3=0.02, p4=0.98 

p5 p5=0.8 

p6, p7, p8, p9 p6=0.6, p7=0.6, p8=0.95, p9=0.05 

p10, p11 (current generation/ number of generations) 

r 2 

r1, r2 - r1=0.25, r2=0.1 

t if (last generation) t=500, else t=200 if (last generation) 
t=200, else t=100 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

Classification Problems 

Tables 6.1 and 6.2 present the classification accuracies after the primary classifier built a 

model based on the training data sets and classified the noise-free testing data sets for 

classification problems. The numbers in each cell of the tables are the averages of the results on 

80 data sets at each noise level (80 = 4×2×10; 4 original data sets, 2 different formula and 10 

noisy data sets at each noise level; refer to Chapter 5 for the number of data sets) and the 

numbers in parentheses indicate the standard deviation of the results. Also the tables show the 

average error reduction percentages over all noise levels. Figures 6.1 and 6.2 compare the 

performances of noise detection techniques and feature selection methods on the behalf of the 

error reductions graphically. 

 

1. Effect of Noise Removal Only and Features Selection Only 

In Table 6.1, the accuracies and the average error reduction results from applying 

separately the noise detection techniques and feature selection methods are shown. In the table, 

“Weka” and “Random forests” data sets are the training data sets that Weka and Random forests 

offer respectively, after applying their noise detection techniques to the original high 

dimensional noisy training data sets. “Correlation” and “ReliefF” data sets are the training data 

sets whose relevant features are selected by correlation-based and ReliefF feature selection 

methods respectively. As seen in the table, the primary classifier shows the accuracies of 66.03% 
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on the data sets for Weka, 64.70% on data sets for Random forests, 75.81% for correlation-based 

feature selected data sets, and 70.48% for ReliefF feature selected data sets at the level of 30% 

noise. 

 

Table 6.1 Effects of noise removal only and feature selection only in classification 

problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Weka 
87.10 

(4.24) 

83.35 

(5.78) 

79.48 

(5.98) 

75.17 

(7.16) 

70.85 

(6.65) 

66.03 

(8.21) 
2.51 

Random forests 
85.82 

(4.19) 

82.75 

(5.60) 

79.01 

(6.18) 

74.03 

(6.56) 

71.17 

(7.21) 

64.70 

(8.10) 
-0.67 

Correlation 
90.28 

(3.04) 

87.26 

(4.70) 

85.48 

(5.59) 

81.92 

(6.18) 

80.77 

(6.26) 

75.81 

(10.3) 
30.45 

ReliefF 
85.77 

(5.78) 

82.01 

(6.92) 

81.80 

(8.31) 

80.31 

(7.39) 

77.18 

(9.03) 

70.48 

(11.0) 
13.51 

 

 

According to Table 6.1 and Figure 6.1, feature-selection-only methods work 

unexpectedly well on our synthetic data sets for classification problems. Correlation-based 

feature selection reduces the error rates by 30.45% and ReliefF results in an average error 

reduction by 13.51%. 
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Figure 6.1 Average error reduction percentages of noise removal only and feature selection only 

in classification problems 

  

However, noise-removal-only techniques do not seem to work well. Noise detection in 

Weka reduces the error rates by only 2.51%. Interestingly, the Random forests method resulted 

in a negative error reduction rate of –0.67%. A negative error reduction percentage means that 

the detection method is inaccurate and the noise removal by the method degrades the training 

data sets. This result supports our hypothesis that most noise detection algorithms cannot be used 

for high dimensional data sets. 
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2. Effects of Noise Removal and Feature Selection 

Table 6.2 shows the classification accuracies and the average error reduction percentages 

resulting from the combinations of noise detection techniques and features selection methods. In 

the table, “Weka-Correlation” and “Weka-ReliefF” data sets are the training data sets whose 

relevant features are selected by correlation-based and ReliefF feature selection methods 

respectively after Weka applied its noise detection algorithm to the training data set. Similarly 

“Rf-Correlation” and “Rf-ReliefF” are the combinations of Random forests and correlation-

based feature selection, and Random forests and ReliefF feature selection respectively. The 

“Correlation-Weka” data set is the training data set that Weka provided after applying its noise 

detection algorithm to the training data set with features pre-selected using correlation-based 

feature selection. The “ReliefF-Weka” data set is the training data set that Weka provided after it 

removed noise with relevant features selected using ReliefF feature selection. “Correlation-Rf” 

and “ReliefF-Rf” are the combinations of correlation-based feature selection and Random 

forests, and ReliefF feature selection and Random forests respectively. “NDFS-Binary” and 

“NDFS-Integer” mean the proposed NDFS algorithms using binary and integer representations 

in their genetic algorithms respectively. Also “NDFS-Binary-Cfs” is the “NDFS-Binary” 

algorithm with correlation-based feature implantation (refer to Chapter 4 for algorithm details). 

The primary classifier has classification accuracies of 72.94% on the data sets for 

correlation-based feature selection with Weka, 70.28% on the data sets for ReliefF with Random 

forests, 76.20% on the data sets for Weka with correlation-based features selection, 70.62% on 

the data sets for Random forests with ReliefF, and 77.36% on the data sets for NDFS with binary 

representation at the 30% noise level. 
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Table 6.2 Effects of noise removal and feature selection in classification problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Weka-Correlation 
90.24 

(3.23) 

87.41 

(5.57) 

85.42 

(5.46) 

82.70 

(6.81) 

78.32 

(7.53) 

72.94 

(11.4) 
27.27 

Weka-ReliefF 
85.72 

(5.33) 

83.37 

(7.17) 

81.32 

(7.97) 

79.48 

(8.37) 

75.50 

(9.54) 

69.75 

(10.2) 
11.81 

Rf-Correlation 
89.94 

(3.99) 

87.85 

(4.35) 

86.07 

(5.02) 

82.25 

(5.83) 

79.84 

(6.36) 

75.00 

(10.4) 
30.03 

Rf-ReliefF 
86.01 

(6.07) 

82.42 

(6.18) 

82.10 

(8.04) 

78.51 

(8.14) 

77.61 

(8.60) 

70.28 

(11.0) 
13.07 

Correlation-Weka 
90.56 

(3.04) 

87.46 

(4.85) 

86.12 

(5.18) 

82.68 

(6.07) 

81.26 

(6.82) 

76.20 

(10.4) 
32.39 

Correlation-Rf 
89.70 

(3.31) 

87.05 

(4.56) 

86.23 

(5.13) 

81.72 

(6.34) 

80.42 

(6.40) 

75.75 

(10.2) 
29.98 

ReliefF-Weka 
86.17 

(6.08) 

82.66 

(7.54) 

82.02 

(8.48) 

79.71 

(8.06) 

77.25 

(9.01) 

71.16 

(10.8) 
14.51 

ReliefF-Rf 
85.65 

(5.81) 

81.75 

(6.71) 

82.21 

(8.02) 

78.35 

(8.51) 

77.56 

(9.05) 

70.62 

(10.9) 
12.50 

NDFS-Binary 
89.68 

(3.26) 

89.20 

(4.02) 

88.52 

(4.27) 

85.72 

(5.35) 

82.13 

(7.92) 

77.36 

(9.38) 
38.28 

NDFS-Binary-Cfs 
90.41 

(3.62) 

89.86 

(3.43) 

88.77 

(4.23) 

86.03 

(5.45) 

84.26 

(6.97) 

80.22 

(8.39) 
43.18 

NDFS-Integer 
90.28 

(3.42) 

89.26 

(3.47) 

88.61 

(4.29) 

86.27 

(5.12) 

82.86 

(8.73) 

79.57 

(8.74) 
41.28 

 

 



 55

As seen in Table 6.2 and Figure 6.2, the average error rate decreases by 41.28% for 

NDFS with integer representation, by 32.39% for Weka with correlation-based feature selection, 

29.98% for Random forests with correlation-based feature selection, and 30.04% for correlation-

based feature selection with Random forests. 

All NDFS algorithms show higher accuracies and average error reduction percentages 

than the other methods. Also the binary NDFS algorithm with correlation-based feature 

implantation archives the best performances by providing training data sets with high qualities to 

the primary classifier. 

 

 

Figure 6.2 Average error reduction percentages of noise removal and feature selection in 

classification problems 

 

Figures 6.1 and 6.2 appear to indicate that noise detection techniques combined with 

feature selection do not produce additional error reduction. Most error reductions result from 

feature selection.  The average error reduction of correlation-based feature selection alone in 



 56

Figure 6.1 is 30.45%, while the combinations of correlation-based feature selection with Weka 

and Random forests by 27.27% and 30.04% respectively, and the combinations of Weka and 

Random forests with correlation-based feature selection reduced the average error rates by 

32.39% and 29.98% respectively. Also while ReliefF shows an error reduction of 13.51% in 

Figure 6.1, ReliefF with Weka and Random forests only by 11.81% and 13.07% respectively, 

and Weka and Random forests with ReliefF reduce the error rates only by 14.51% and 12.50% 

respectively. These observations indicate that the sequential application of noise removal and 

feature selection may not overcome the concurrent negative effects of noise and high 

dimensionality. In the meantime, NDFS algorithms achieve high performances, overcoming 

these negative effects through simultaneous noise removal and feature selection. 

 

3. Noise Detection Accuracies and Run Times 

Table 6.3 and Figure 6.3 show the noise detection accuracies. All NDFS algorithms 

exhibited higher noise detection accuracy than the other methods. In particular, the binary NDFS 

with correlation-based feature implantation showed the highest average noise detection accuracy. 

The Random forests noise detection method displayed higher detection accuracy than 

Weka. However it does not work well with feature selection methods. The detection accuracies 

decreased when it was combined with feature selection methods. The Random forests method 

constructs many trees by randomly sampling instances with replacement from the training data 

set and randomly selecting features. It seems that filter-based feature selection methods reduce 

the diversity of the feature pool for Random forests and therefore decrease its noise detection 

accuracy. 
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Table 6.3 Noise detection accuracies in classification problems 

Algorithms 5% 10% 15% 20% 25% 30% Average 

Weka 95.06 91.02 85.83 81.50 77.13 71.53 83.68 

Random forests 95.57 92.67 89.02 81.27 75.45 70.12 84.02 

Correlation-Weka 95.40 93.21 90.65 86.81 85.02 79.83 88.48 

Correlation-Rf 91.00 91.02 87.57 80.35 75.20 69.76 82.48 

ReliefF-Weka 93.13 89.93 88.02 85.12 81.92 75.43 85.59 

ReliefF-Rf 93.06 91.05 86.55 80.17 74.98 69.98 82.63 

NDFS-Binary 95.20 94.18 93.02 90.56 87.26 81.52 90.29 

NDFS-Binary-Cfs 95.73 94.32 92.46 89.92 88.25 83.30 90.66 

NDFS-Integer 95.38 93.82 92.45 89.65 85.53 80.06 89.48 

 

 

 

Figure 6.3 Average noise detection accuracies in classification problems 
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Table 6.4 describes the average run times of NDFS variants. We used a machine with 2.4 

GHz and 64-bit architecture to run these experiments. 

 

Table 6.4 Average run times per data set in classification problems 

NDFS variant NDFS-Binary NDFS-Binary-Cfs NDFS-Integer 

Run Time 25 Min 11 Min 11 Min 

 

 

Regression Problems 

Tables 6.5 and 6.6 show the classification accuracies and the average error reduction 

percentages for the regression problems. As described above for the classification problems, the 

numbers in each cell of the tables are the averages of the results on 80 data sets and the numbers 

in parentheses indicate standard deviations for these results. Also Figure 6.4 and 6.5 compare the 

error reduction percentages of noise detection techniques and feature selection methods over all 

noise levels graphically. 

 

1. Effects of Noise Removal Only and Features Selection Only 

Similarly to the classification problems, the accuracies and average error reductions in 

Table 6.5 result from applying noise detection techniques and feature selection methods 

separately. The Sign noise detection method is used for regression problems as the Random 

forests method is only suited for classification problems (refer to Chapter 2 for algorithm 

details). However the Sign algorithm does not work if more than 50% of the values included in 

one or more features are equal. For our synthetic data, the Mammals and Musk data sets contain 
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such features, and so we could not apply the Sigh noise detection method to these data sets. 

Therefore the values for the Sign noise detection are the averages of the Waveform and Wdbc 

data sets only. In the table, the “Sign” data sets are the training data sets that Sign offered after 

applying its noise detection algorithm. Other terms are the same as those used in the 

classification problems. 

Unlike the classification problems, the feature selection methods did not perform well in 

the regression problems. For example, as seen in Table 6.5 and Figure 6.4, correlation-based and 

ReliefF feature selection methods produced average error reduction rates of only 7.65% and –

7.44% respectively. This observation supports our hypothesis that many feature selection 

methods are not applicable to noisy data sets. However while Sign noise detection did not work 

well, Weka did reduce errors by 19.43%. 

 

Table 6.5 Effects of noise removal only and feature selection only in regression problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Weka 
83.44 

(3.36) 

81.73 

(3.76) 

81.26 

(4.47) 

79.81 

(3.79) 

79.35 

(5.17) 

76.46 

(5.48) 
19.43 

Sign 
79.07 

(5.80) 

75.57 

(6.13) 

73.15 

(6.75) 

71.27 

(7.39) 

67.32 

(8.41) 

62.67 

(15.6) 
-16.79 

Correlation 
81.18 

(3.24) 

79.25 

(3.91) 

77.65 

(4.51) 

76.86 

(4.31) 

75.93 

(5.07) 

73.95 

(5.63) 
7.65 

ReliefF 
79.43 

(6.54) 

76.08 

(6.67) 

73.66 

(8.32) 

74.02 

(7.49) 

69.99 

(9.54) 

69.56 

(8.58) 
-7.44 
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Figure 6.4 Average error reduction percentages of noise removal only and feature selection only 

in regression problems 

 

2. Effects of Noise Removal and Feature Selection 

As with the classification problems, the classification accuracies and the average error 

reduction percentages in Table 6.6 result from the combinations of noise detection techniques 

and features selection methods. In the table, “Sign-Correlation” and “Sign-ReliefF” data sets are 

the training data sets whose relevant features are selected by correlation-based and ReliefF 

feature selection methods respectively after Sign applied its noise detection algorithm to the 

training data set. Also the “Correlation-Sign” data sets are the training data sets that Sign 

provided after applying its noise detection algorithm to the training data set with the features pre-

selected by the correlation-based feature selection method. “ReliefF-Sign” is the combination of 

the ReliefF feature selection method and Sign noise detection technique. As mentioned in the 

previous section, the Sign method could not be applied to the Mammals and Musk data sets. 

Therefore the values in these cells only include averages using the Waveform and Wdbc data 
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sets. “NDFS-Binary-Cfs 1” is the NDFS algorithm in combination with correlation-based feature 

implantation and using binary representation for its genetic algorithms. “NDFS-Binary-Cfs 2” is 

same as “NDFS-Binary-Cfs 1” except that the evaluation function used in GA-ND did not 

include TreeSize (refer to Chapter 4 for algorithm details). Other terms are the same as those 

used in the classification problems. 

Since real valued targets are more sensitive than nominal target values, regression 

problems are more difficult than classification problems. According to Table 6.6, the error 

reduction percentages for the regression problems were not as high as for the classification 

problems. 

Figure 6.5 shows error reduction performance for the algorithms over all noise levels 

graphically. Correlation-based feature selection with Weka, Weka with ReliefF, Sign with 

correlation-based feature selection, and Sign with ReliefF, all performed poorly. They reduced 

error rates only by 2.27%, 4.65%, 2.30%, and 2.79% respectively. In particular, correlation-

based and ReliefF feature selections with Sign show negative error reductions. Also ReliefF with 

Weka achieved 11.82% error reduction, and Weka noise detection with correlation-based feature 

selection reduces error rates by 15.86%. However on Figures 6.4, the error reduction rate of 

Weka without any feature selection was 19.43%. Therefore as with the classification problems, 

the sequential application of noise removal and feature selection does not overcome the 

concurrent negative effects of noise and high dimensionality. 
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Table 6.6 Effects of noise removal and feature selection in regression problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Weka-Correlation 
79.90 

(3.41) 

77.41 

(5.44)

76.96 

(3.72)

75.56 

(3.86)

73.99 

(5.26)

73.12 

(4.65)
2.26 

Weka-ReliefF 
80.50 

(6.42) 

81.38 

(5.66)

79.18 

(6.54)

78.86 

(6.03)

77.39 

(8.16)

73.61 

(9.35)
11.81 

Sign-Correlation 
79.31 

(4.50) 

77.60 

(4.30)

75.73 

(5.76)

75.11 

(5.85)

72.28 

(7.63)

70.74 

(7.01)
-1.95 

Sign-ReliefF 
82.16 

(4.70) 

78.52 

(4.85)

76.85 

(6.88)

75.02 

(6.13)

72.57 

(7.02)

68.26 

(10.7)
-0.16 

Correlation-Weka 
82.00 

(3.07) 

80.95 

(3.60)

80.22 

(4.14)

79.10 

(3.89)

78.10 

(4.88)

76.46 

(5.30)
15.86 

Correlation-Sign 
80.97 

(3.39) 

78.25 

(3.78)

77.18 

(5.28)

75.73 

(5.10)

73.32 

(7.31)

71.54 

(8.46)
2.30 

ReliefF-Weka 
80.60 

(6.98) 

78.23 

(6.76)

76.59 

(7.92)

76.94 

(7.69)

74.40 

(8.22)

73.67 

(8.14)
4.65 

ReliefF-Sign 
82.43 

(3.77) 

79.02 

(4.34)

77.62 

(6.79)

75.60 

(4.79)

72.78 

(7.48)

70.25 

(7.43)
2.79 

NDFS-Binary 
84.35 

(2.91) 

83.05 

(2.86)

82.51 

(3.32)

80.93 

(2.72)

78.57 

(4.97)

76.05 

(5.53)
21.75 

NDFS-Binary-Cfs 1 
84.35 

(3.59) 

83.90 

(2.81)

83.26 

(2.87)

81.31 

(3.29)

79.10 

(5.42)

76.36 

(4.67)
23.68 

NDFS-Binary-Cfs 2 
85.10 

(2.47) 

83.65 

(3.49)

84.23 

(2.55)

81.81 

(3.62)

80.93 

(4.97)

77.83 

(5.49)
27.27 

NDFS-Integer 
83.71 

(3.15 

82.22 

(3.24)

81.46 

(3.82)

79.99 

(3.87)

78.31 

(4.51)

76.87 

(4.46)
19.77 
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Figure 6.5 Average error reduction percentages of noise removal and feature selection in 

regression problems 

 

All NDFS algorithms performed better than other methods. Most of them reduced the 

error rates by more than 20%. Unlike in the classification problems, NDFS with binary 

representation alone performed better than NDFS with integer representation.  Also the binary 

NDFS with correlation-based feature implantation and no TreeSize produced the best 

performance by providing higher quality training data sets to the primary classifier than others. 
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3. Noise Detection Accuracies and Run Times 

Tables 6.7 and 6.10 show the average noise detection accuracies and the run times of 

NDFS on the regression problems. In Table 6.7 and Figure 6.6, there is an interesting 

observation to be made on the detection accuracies of Weka, Weka with correlation-based 

feature selection, and Weka with ReliefF. All three show high noise detection accuracies relative 

to their error reduction rates. In particular, Weka with ReliefF exhibits an accuracy of 89.84% 

(see Figure 6.6) but an error reduction rate of only 4.65% (see Figure 6.5). These results are 

caused by low false noise detection rates and low true noise detection rates. If an algorithm has 

both low false noise detection rates and low true noise detection rates, it may report high 

detection accuracies and low error reduction rates (refer to Chapter 5 for detailed measurements 

of noise detection accuracy). For example, Tables 6.8 and 6.9 present confusion matrices based 

on the data set with 100 instances and 10% noise level. In Table 6.8, noise detection accuracy is 

90% and true noise detection rate is 10%. In spite of the high detection accuracy, it may result in 

low error reduction because of low true noise detection rate. However in Table 6.9, although 

noise detection accuracy is only 85%, high error reduction can be produced due to a high true 

noise detection rate of 90%. 

As with the classification problems, all NDFS algorithms achieved high noise detection 

accuracies. 



 65

Table 6.7 Noise detection accuracies in regression problems 

Algorithms 5% 10% 15% 20% 25% 30% Average 

Weka 95.92 94.32 92.28 90.51 89.28 87.45 91.63 

Sign 71.52 69.00 66.32 64.85 62.05 60.25 65.66 

Correlation-Weka 94.70 93.26 91.77 90.62 89.13 87.46 91.16 

Correlation-Sign 83.60 81.17 78.47 74.80 71.45 67.65 76.19 

ReliefF-Weka 93.95 92.00 89.98 89.65 86.91 86.57 89.84 

ReliefF-Sign 80.05 78.75 76.20 73.85 69.42 67.90 74.36 

NDFS-Binary 95.60 94.80 93.63 91.97 89.35 85.42 91.79 

NDFS-Binary-Cfs 1 95.35 95.26 94.31 92.58 90.51 86.33 92.39 

NDFS-Binary-Cfs 2 96.18 95.08 94.76 92.63 90.82 87.82 92.88 

NDFS-Integer 96.40 94.42 92.26 89.21 86.26 82.93 90.25 

 

 

 

Figure 6.6 Average noise detection accuracies in regression problems 
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Table 6.8 Example confusion matrix with low true noise detection rate 

Instance Classification 
Confusion Matrix 

Noisy Noise-free 

Noisy 1 9 Actual 

Instance Noise-free 1 89 

 

  

Table 6.9 Example confusion matrix with high true noise detection rate 

Instance Classification 
Confusion Matrix 

Noisy Noise-free 

Noisy 9 1 Actual 

Instance Noise-free 14 76 

 

 

Table 6.10 Average run times per data set in regression problems 

NDFS NDFS-Binary 
NDFS-Binary-

Cfs 1 

NDFS-Binary-

Cfs 2 
NDFS-Integer 

Run Time 35 Min 28 Min 27 Min 28 Min 
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Results on Individual Data Sets 

In the Appendix, Tables A.1 through A.8 present the classification accuracies and 

average error reduction percentages of each data set. The accuracies in each cell of the tables list 

the averages of the results of 20 data sets at each noise level (20 = 2×10; 2 different formula and 

10 noisy data sets at each noise level (refer to Chapter 5 for details on the number of data sets). 

As seen in Tables A.1 through A.4, all NDFS algorithms exhibited the best average error 

reduction percentages in the classification problems. However according to Table A.7 on the 

Waveform data sets on the regression problems, Weka without any feature selection performed 

better with an average error reduction of 11.14%, while the binary NDFS with correlation-based 

feature implantation and no TreeSize only reduced the error rates by 7.55%. Meanwhile, many of 

the other methods returned negative error reduction percentages on the data sets. The Wdbc data 

sets had the smallest number of features and the primary classifier shows relatively low 

accuracies on the original data sets. The features selection of NDFS does not seem to work well 

due to low accuracies in the classifier. Therefore Weka without any feature selection may 

achieve better performance than NDFS algorithms. With the exception of the Waveform data 

sets, NDFS algorithms produce the best average error reductions in the regression problems. 
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CHAPTER 7 

CONCLUSION 

In classification and regression problems, classifiers for high dimensional noisy data 

suffer from the concurrent negative effects of noise and high dimensionality. Noise disrupts data, 

and high dimensionality prevents a classifier from focusing on relevant features; potentially 

reducing classification and regression accuracies. 

We proposed the NDFS algorithm in order to enhance the quality of training data sets 

possessing noise and high dimensionality for use in classification and regression problems. 

NDFS relies on two genetic algorithms, one for noise detection (GA-ND) and the other for 

feature selection (GA-FS), and allows them to exchange their results at periodic generational 

intervals. Prototype selection (PS-ND) is used in conjunction with the genetic algorithm to 

improve the performance of our noise detection method. 

We extrapolated synthetic data sets from the UCI machine learning repository to simulate 

real world data. Our synthetic data sets included a fixed number of instances (100) and various 

numbers of features (21 through 168). Then we generate noisy data sets by applying the noise 

levels from 5% to 30%. 

According to our experimental results, most noise detection techniques are not effective 

on high dimensional data sets, and many feature selection methods are not applicable to noisy 

data sets. Also the sequential application of noise detection and feature selection algorithms may 

not overcome the concurrent negative effects of noise and high dimensionality. 
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However NDFS overcomes the concurrent effects of noise and high dimensionality, and 

achieves high performance by performing noise removal and feature selection simultaneously. 

We have shown that the NDFS algorithm significantly enhanced the quality of our high 

dimensional noisy data sets for classification and regression problems. As our results 

demonstrated, NDFS substantially increased the classification accuracies and reduced the error 

rates of our synthetic data sets. 

However NDFS has two drawbacks. NDFS highly depends on the accuracy of its 

classifier. If the classifier returns lower accuracy on the original data set, the NDFS algorithm 

will exhibit lower performance.  Another weakness of NDFS relates to feature selection. If the 

classifier produces high accuracy on binary classification data, NDFS will select only one or two 

features that are far less relevant than the real relevant features of our data sets. This is because a 

small number of features is enough to explain the target of the training data. In this case, the 

model overfits the training features and the classifier does not generalize well on testing data. 

The problem can be solved by increasing the number of instances. 



 70

 

 

REFERENCES 

[1] C. C. Aggarwal and P. S. Yu, Outlier detection for high dimensional data, Proceedings of 

ACM SIGMOD Conference, 2001. 

[2] C. C. Aggarwal, On abnormality detection in spuriously populated data streams, Proceedings 

of SIAM International Conference on Data Mining, 2005. 

[3] H. Almuallium and T. G. Dietterich, Learning with many irrelevant features, Proceedings of 

National Conference on Artificial Intelligence, 1991. 

[4] A. Arning, R. Agrawal and P. Raghavan, A linear method for deviation detection in large 

databases, International Conference on Knowledge Discovery and Data Mining, 1996. 

[5] V. Barnett and T. Lewis, Outliers in Statistical Data, John Wiley and Sons, 1994. 

[6] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006. 

[7] L. Breiman, Random forests, Machine Learning, 45(1): 5-32, 2001. 

[8] L. Breiman, Manual on setting up, using, and understanding random forests v 3.1, Author’s 

Web (http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf), 2002. 

[9] M. M. Breunig, H. Kriegel, R. T. Ng and J. Sander, LOF: identifying density-based local 

outliers, Proceedings of International Conference on Management of Data, 2000. 

[10] H. Brighton and C. Mellish, Advances in instance selection for instance-based learning 

algorithms, Data Mining and Lnowledge Discovery, 6: 153-172, 2002. 

[11] C. E. Brodley and M. A. Friedl, Identifying mislabeled training data, Journal of Artificial 

Intelligence Research, 11: 131-167, 1999. 



 71

[12] E. Cantu-Paz,  Feature subset selection, class separability, and genetic algorithms, Genetic 

and Evolutionary Computation Conference, 2004. 

[13] C. Cardie, Using decision trees to improve case-based learning, Proceedings of 

International Conference on Machine Learning, 1993. 

[14] S. Cateni, V. Colla and M. Vannucci, Outlier Detection Methods for Industrial Applications, 

Advances in Robotics, Automation and Control, 2008. 

[15] V. Chandola, A. Banerjee, and V. Kumar, Outlier detection: a survey. Technical Report of 

University of Minnesota, 2007. 

[16] V. Cherkassky and F. M. Mulier, Learning from Data: Concepts, Theory, and Methods, 

Wiley-IEEE Press, 2007. 

[17] K. D. Crawford and R. L. Wainwrit, Applying genetic algorithms to outlier detection, 

Proceedings of International Conference on Genetic Algorithms, 1995. 

[18] M. Dash and H, Liu, Feature selection for classification, Intelligent Data Analysis, 1: 131-

156, 1997. 

[19] M. Dash and H, Liu, Consistency-based search in feature selection, Artificial Intelligence, 

151: 155-176, 2003. 

[20] M.Ester, H. Kriegel, J. Sander and X. Xu, A density-based algorithm for discovering 

clusters in large spatial databases with noise, Proceedings of International Conference on 

Knowledge Discovery and Data Mining, 1996. 

[21] P. Filzmoser, R. Maronna and M. Werner, Outlier identification in high dimensions, 

Computational Statistics and Data Analysis, 52(3): 1694-1711, 2007. 

[22] I. K. Fodor, A survey of dimension reduction techniques, Technical Report of the US 

Department of Energy, 2002. 



 72

[23] M. Hall, Correlation-based feature selection for discrete and numeric class machine 

learning, Proceedings of International Conference on Machine Learning, 2000. 

[24] Trevor Hastie, The Elements of Statistical Learning, Springer, 2001. 

[25] S. Hawkins, H. He, G. Williams and R. Baxter, Outlier detection using replicator neural 

networks, Proceedings of International Conference on Knowledge Discovery and Data 

Warehousing, 2002. 

[26] Z. He, X. Xu and S. Deng, Discovering cluster based local outliers, Pattern Recognition 

Letters, 24 (9-10): 1641-1650, 2003. 

[27] V. Hodge and J Austin, A survey of outlier detection methodologies, Artificial Intelligence 

Review, 22: 85 – 126, 2004. 

[28] A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis, 

EEE Trans. on Neural Networks, 10: 626-634, 1999. 

[29] A. Hyvarinen and E. Oja, Independent component analysis: algorithms and applications, 

Neural Networks, 13(4-5): 411-430, 2000. 

[30] J. Jarmulak and S. Craw, Genetic algorithms for feature selection and weighting, 

Proceeding of IJCAI, 1999. 

[31] G. H. John, R. Kohavi and K. Pfleger, Irrelevant features and the subset selection problem, 

Proceedings of International Conference on Machine Learning, 1994. 

[32] G. H. John, Robust decision trees: removing outliers from databases, Proceedings of 

International Conference on Knowledge Discovery and Data Mining, 1995. 

[33] L. Jourdan, C. Dhaenens and E. Talbi, A genetic algorithm for feature selection in data 

mining for genetics, Metaheuristics International Conference, 2001. 

 



 73

[34] E. M. Knorr and R. T. Ng, Algorithms for mining distance-based outliers in large datasets, 

Proceedings of the 24rd International Conference on Very Large Data Bases, 1998. 

[35] J. D. Kelly and L. Davis, A hybrid genetic algorithm for classification, Proceedings of 

International Conference on Artificial Intelligence, 1991. 

[36] I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, European 

Conference on Machine Learning, 1:111-117, 1994. 

[37] I. Kononenko and M. Kukar, Machine Learning and Data Mining, Horwood Publishing, 

2007. 

[38] S. Kotsiantis, D. Kanellopoulos and P. Pintelas, Data Preprocessing for Supervised Leaning, 

International Journal of Computer Science, 2006. 

[39] H. Liu and R. Setiono, Feature selection and classification – a probabilistic wrapper 

approach, Proceeding of Industrial and Engineering Applications of AI and ES, 1996. 

[40] H. Liu and R. Setiono, A probabilistic approach to feature selection – a filter solution, 

Proceedings of International Conference on Machine Learning, 1996. 

[41] T. Lane and C. E. Brodley, Sequence matching and learning in anomaly detection for 

computer security, AAAI Technical Report, 1997. 

[42] P. L. Lanzi, Fast feature selection with genetic algorithms: a filter approach, Proceedings of 

International Conference on Evolutionary Computation, 1997. 

[43] Y. Li and H. Kitagawa, Example-based db-outlier detection from high dimensional datasets, 

Proceedings of International Conference on Database Systems for Advanced Application, 2008. 

[44] L. C. Molina, L. Belanche and A. Nebot, Feature Selection Algorithms: A Survey and 

Experimental Evaluation, Proceedings of International Conference on Data Mining, 2002. 



 74

[45] F. Muhlenbach, S. Lallich and D. A. Zighed, Identifying and handling mislabeled instances, 

Journal of Intelligent Information Systems, 22(1): 89-109, 2004. 

[46] R. T. Ng and J. Han, Efficient and effective clustering methods for spatial data mining, 

Proceedings of International Conference on Very Large Data Bases, 1994. 

[47] F. Pernkopf and P. O’Leary, Feature selection for classification using genetic algorithms 

with a novel encoding", Proceedings of International Conference on Computer Analysis of 

Images and Patterns, 2001. 

[48] W. F. Punch, E. D. Goodman, M. Pei, L. Chia-Shun, P. Hovland and R. Enbody, Further 

research on feature selection and classification using genetic algorithms, Proceedings of 

International Conference on Genetic Algorithms, 1993. 

[49] S. Ramaswamy, R. Rastogi and K. Shim, Efficient algorithms for mining outliers from large 

data sets, Proceedings of Conference on Management of Data, 2000. 

[50] M. L. Raymer, W. F. Punch and E. D. Goodman, Simultaneous feature extraction and 

selection using a masking genetic algorithm, Presentation at International Conference on 

Genetic Algorithms, 1997. 

[51] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn and A. K. Jain, Dimensionality 

reduction using genetic algorithms, EEE transactions on evolutionary computation, 4(2): 164-

171, 2000. 

[52] O. Ritthoff, R. Klinkenberg, S. Fischer and I. Mierswa, A hybrid approach to feature 

selection and generation using an evolutionary algorithm, Proceedings of U.K. Workshop on 

Computational Intelligence, 2002. 

[53] S. J. Roberts, Novelty detection using extreme value statistics, IEE Proceedings on Vision, 

Image and Signal Processing, 1998. 



 75

[54] M. Robnik-Sikonja, I. Kononenko, An adaptation of Relief for attribute estimation in 

regression, International Conference on Machine Learning, 1997. 

[55] R. Saunders and J. S. Gero, A curious design agent: a comutational model of novelty-

seeking behavior in design, Proceedings of Conference on Computer Aided Architectural Design 

Research in Asia, 2001. 

[56] M. Sebban, Prototype selection from homogenous subsets by a monte carlo sampling, 

Proceedings of the International FLAIRS Conference, 1998. 

[57] B. Sierra, E. Lazkano, I. Inza, M. Merino, P. Larranaga and  J. Quiroga, Prototype selection 

and feature subset selection by estimation of distribution algorithms, Proceedings of Conference 

on AI in Medicine in Europe, 2001. 

[58] M. Singh and G. M. Provan, Efficient learning of selective Bayesian network classifiers, 

Proceedings of International Conference on Machine Learning, 1996. 

[59] D. B. Skalak, Using a genetic algorithm to learn prototypes for case retrieval and 

classification, Proceedings of the AAAI-93 Case-Based Reasoning Workshop, 1993. 

[60] D. B. Skalak, Prototype and feature selection by sampling and random mutation hill 

climbing algorithms, Machine Learning: Proceedings of International Conference, 1994 

[61] L. I. Smith, A tutorial on principal components analysis, 2002. 

[62] J. V. Stone, Independent Component Analysis, The MIT Press, 2004. 

[63] D. M. J. Tax, A. Ypma and R. P. W. Duin, Support vector data description applied to 

machine vibration analysis, Proceedings of ASCI, 1999. 

[64] P. H. S. Torr and D. W. Murray, Outlier detection and motion segmentation, Proceedings of 

SPIE, 1993. 



 76

[65] H. Vafaie and K. D. Jong, Genetic algorithms as a tool for feature selection in machine 

learning, Proceeding of International Conference on Tools with Artificial Intelligence, 1992. 

[66] H. Vesanto, J. Himberg, M. Siponen and O. Simula, Enhancing SOM based data 

visualization, Proceedings of International Conference on Soft Computing and Information 

Systems, 1998. 

[67] G. Williams, R. Baxter, H. He and S. Hawkins, A comparative study of RNN for outlier 

detection in data mining, Proceedings of the IEEE International Conference on Data Mining, 

2002. 

[68] I. H. Witten and E. Frank, Data Mining, Morgan Kaufmann Publishers, 2005. 

[69] H. Xoing, G. Pandey and M. Steinbach, Enhancing data analysis with noise removal, IEEE 

Transactions on Knowledge and Data Engineering, 18(3): 304-319, 2006. 

[70] J. Yang and V. Honavar, Feature subset selection using a genetic algorithm, IEEE 

Intelligent Systems, 13(2): 44-49, 1998. 

[71] N. Ye and Q Chen, An anomaly detection technique based on a chi-square statistic for 

detecting intrusions into information systems, Quality and Reliability Engineering International, 

17:105-112, 2001. 

[72] A. Ypma and R. P. W. Duin, Novelty detecting using self-organizing maps, Progress in 

Connectionist-Based Information Systems, 2: 1322-1325, 1997. 

[73] L. Yu and H. Liu, Feature selection for high-dimensional data: a fast correlation-based filter 

solution, Proceedings of International Conference on Machine Learning, 2003. 

[74] T. Zhang, R. Ramakrishnan and M. Livny, BIRCH: an efficient data clustering method for 

very large databases, Proceedings of International Conference on Management of Data, 1996. 



 77

 

 

APPENDIX 

Table A.1 Classification accuracies and average error reduction percentages on Mammals for 

classification problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Original 92.15 86.40 82.55 76.65 73.55 64.80 - 

Weka 92.40 87.15 83.45 76.95 74.25 64.95 2.47 

Random forests 91.00 86.00 81.45 76.60 74.60 64.05 -1.93 

Correlation 95.10 90.00 88.75 86.40 80.25 73.20 30.45 

ReliefF 95.10 92.00 91.05 87.25 83.05 75.55 38.75 

Weka-Correlation 94.15 91.15 90.15 86.60 79.45 74.65 32.32 

Weka-ReliefF 94.70 92.75 91.30 85.90 82.25 77.80 39.22 

Rf-Correlation 94.35 90.25 89.25 87.60 79.55 73.85 31.27 

Rf-ReliefF 94.95 91.35 89.10 86.60 83.50 75.85 36.52 

Correlation-Weka 95.25 90.25 89.25 86.55 81.55 74.40 33.30 

Correlation-Rf 95.05 89.50 90.20 86.15 79.25 73.15 29.99 

ReliefF-Weka 95.20 92.50 91.00 86.95 83.10 76.70 39.91 

ReliefF-Rf 95.25 91.10 90.70 87.05 84.40 75.45 38.69 

NDFS-Binary 94.95 94.50 94.10 92.55 86.00 84.15 56.82 

NDFS-Binary-Cfs 94.95 94.75 94.10 91.30 87.40 85.10 57.67 

NDFS-Integer 95.70 93.95 93.95 91.60 88.35 83.35 57.19 
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Table A.2 Classification accuracies and average error reduction percentages on Musk for 

classification problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Original 86.50 83.65 77.90 74.45 67.85 61.75 - 

Weka 87.05 83.35 78.40 73.85 67.75 65.05 2.20 

Random forests 86.35 83.85 78.05 72.95 67.60 61.55 -1.21 

Correlation 90.65 88.65 86.85 83.45 84.00 79.55 41.40 

ReliefF 90.15 85.70 84.70 86.90 80.00 73.65 33.29 

Weka-Correlation 91.30 88.60 86.00 82.55 79.90 71.95 32.58 

Weka-ReliefF 89.15 86.50 84.45 84.10 79.50 70.85 28.70 

Rf-Correlation 90.20 89.00 87.70 83.55 83.15 79.45 41.21 

Rf-ReliefF 90.25 87.30 84.85 82.65 80.85 73.65 32.08 

Correlation-Weka 90.75 88.35 87.75 84.35 84.00 79.90 42.73 

Correlation-Rf 90.20 88.55 87.60 83.10 84.00 79.55 41.29 

ReliefF-Weka 90.05 86.05 84.80 81.80 80.25 73.80 30.45 

ReliefF-Rf 90.20 85.50 85.60 81.90 80.00 74.10 30.81 

NDFS-Binary 89.85 89.65 87.40 83.85 79.90 75.00 36.38 

NDFS-Binary-Cfs 91.25 90.05 88.85 85.75 84.65 81.05 47.14 

NDFS-Integer 90.20 91.05 89.20 85.90 83.20 78.95 45.11 
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Table A.3 Classification accuracies and average error reduction percentages on Waveform for 

classification problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Original 71.05 68.10 66.65 60.30 58.10 56.50 - 

Weka 72.95 69.70 66.20 63.45 58.05 56.75 2.83 

Random forests 70.05 67.75 66.55 60.40 58.10 56.65 -0.59 

Correlation 76.90 72.50 70.65 63.00 65.45 64.40 14.56 

ReliefF 73.45 70.20 68.60 59.90 63.60 56.40 5.47 

Weka-Correlation 76.45 73.40 70.70 68.70 63.50 61.55 15.32 

Weka-ReliefF 74.80 72.05 68.15 64.75 62.70 57.90 8.96 

Rf-Correlation 75.35 73.10 70.40 62.10 65.45 64.50 13.77 

Rf-ReliefF 72.60 70.55 68.60 58.95 63.60 56.50 4.60 

Correlation-Weka 77.75 73.35 71.60 65.05 66.45 64.40 17.26 

Correlation-Rf 75.35 72.70 70.70 63.00 65.55 64.20 13.90 

ReliefF-Weka 75.00 72.00 69.10 63.05 63.65 57.50 9.10 

ReliefF-Rf 72.90 70.60 68.25 58.85 63.65 56.60 4.76 

NDFS-Binary 76.55 75.10 74.15 69.45 68.40 62.35 20.36 

NDFS-Binary-Cfs 77.45 77.05 74.50 70.45 70.20 64.65 24.31 

NDFS-Integer 77.20 74.25 73.00 71.05 68.35 64.30 21.42 
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Table A.4 Classification accuracies and average error reduction percentages on Wdbc for 

classification problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Original 95.80 93.25 89.10 86.15 84.05 76.55 - 

Weka 96.00 93.20 89.90 86.45 83.35 77.40 1.16 

Random forests 95.90 93.40 90.00 86.20 84.40 76.55 1.84 

Correlation 98.50 97.90 95.70 94.85 93.40 86.10 56.52 

ReliefF 84.40 80.15 82.85 87.20 82.10 76.35 -57.04 

Weka-Correlation 98.40 96.65 94.65 91.95 90.80 84.90 43.20 

Weka-ReliefF 83.30 81.70 82.80 84.45 79.70 75.15 -50.33 

Rf-Correlation 97.70 98.10 96.90 95.25 92.85 86.10 55.92 

Rf-ReliefF 86.45 79.95 86.85 86.50 82.10 76.35 -35.55 

Correlation-Weka 98.50 97.90 95.90 94.80 93.05 86.10 56.29 

Correlation-Rf 98.20 97.45 96.45 94.65 92.90 86.10 55.33 

ReliefF-Weka 84.45 80.10 83.20 87.05 82.00 76.65 -56.67 

ReliefF-Rf 84.25 79.80 84.30 85.60 82.20 76.35 -57.68 

NDFS-Binary 97.40 97.55 98.45 97.05 94.25 87.95 64.62 

NDFS-Binary-Cfs 98.00 97.60 97.65 96.65 94.80 90.10 67.70 

NDFS-Integer 98.05 97.80 98.30 96.55 91.55 91.70 65.43 
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Table A.5 Classification accuracies and average error reduction percentages on Mammals for 

regression problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Original 93.47 91.95 90.48 89.55 87.31 86.90 - 

Weka 94.73 93.89 93.30 91.81 90.59 90.03 24.01 

Correlation 91.98 90.65 89.18 89.70 88.70 87.70 -2.13 

ReliefF 89.71 86.15 83.81 84.82 80.46 82.27 -54.40 

Weka-Correlation 92.62 92.66 90.61 89.99 89.45 88.25 7.46 

Weka-ReliefF 89.88 88.94 89.26 88.97 84.78 86.85 -18.16 

Correlation-Weka 93.30 92.13 90.67 91.17 89.56 88.92 10.86 

ReliefF-Weka 91.14 86.77 85.44 85.60 81.47 83.79 -43.21 

NDFS-Binary 97.45 96.64 95.65 95.58 94.90 93.24 55.16 

NDFS-Binary-Cfs 1 97.70 96.44 96.17 96.34 95.50 94.08 60.02 

NDFS-Binary-Cfs 2 97.11 97.11 97.13 96.71 96.22 95.70 66.46 

NDFS-Integer 97.41 96.76 95.68 94.83 94.01 02.80 52.11 
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Table A.6 Classification accuracies and average error reduction percentages on Musk for 

regression problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction %

Original 67.25 65.63 64.16 61.04 58.77 56.57 - 

Weka 67.75 65.45 66.19 62.96 64.07 59.39 5.57 

Correlation 70.34 66.56 65.70 63.59 64.01 60.41 7.77 

ReliefF 61.99 58.33 53.72 56.50 51.59 49.28 -19.16 

Weka-Correlation 68.36 61.79 65.76 62.04 61.97 62.20 3.84 

Weka-ReliefF 61.84 68.26 59.27 61.42 61.16 47.74 -6.05 

Correlation-Weka 70.65 67.61 67.70 63.92 63.79 61.69 9.91 

ReliefF-Weka 60.61 58.55 53.99 56.02 53.23 52.08 -17.82 

NDFS-Binary 68.76 65.40 64.88 64.28 59.79 58.58 3.86 

NDFS-Binary-Cfs 1 69.82 70.05 68.24 65.57 62.15 59.52 9.81 

NDFS-Binary-Cfs 2 69.59 68.38 70.07 67.20 64.00 59.81 11.47 

NDFS-Integer 70.09 66.91 66.48 65.54 62.23 61.47 8.62 
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Table A.7 Classification accuracies and average error reduction percentages on Waveform for 

regression problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Original 71.66 68.60 68.39 65.70 63.51 61.53 - 

Weka 73.92 71.85 71.36 69.89 69.26 65.30 11.14 

Sign 70.98 67.24 65.53 64.14 61.72 58.43 -5.66 

Correlation 68.47 67.67 65.88 65.93 63.43 63.61 -2.22 

ReliefF 71.32 68.29 67.31 66.90 61.76 62.39 -0.68 

Weka-Correlation 68.18 67.72 67.42 65.71 64.15 64.17 -1.00 

Weka-ReliefF 72.13 71.35 71.42 68.88 68.35 65.49 9.09 

Sign-Correlation 67.94 67.44 64.82 65.54 62.09 61.59 -4.95 

Sign-ReliefF 72.29 67.38 67.61 66.06 63.18 59.77 -1.54 

Correlation-Weka 66.44 67.01 66.14 65.67 63.95 63.34 -3.33 

Correlation-Sign 68.12 67.38 64.86 65.79 63.14 63.49 -3.32 

ReliefF-Weka 72.45 69.94 69.84 70.15 66.90 64.13 7.06 

ReliefF-Sign 71.92 67.26 66.22 65.86 62.19 60.29 -2.84 

NDFS-Binary 73.77 72.83 71.68 67.12 64.65 60.81 5.77 

NDFS-Binary-Cfs 1 72.86 71.89 71.35 66.64 62.70 59.32 2.73 

NDFS-Binary-Cfs 2 75.35 71.66 71.87 66.44 66.79 62.29 7.55 

NDFS-Integer 69.91 68.55 68.05 64.82 62.87 62.84 -1.14 
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Table A.8 Classification accuracies and average error reduction percentages on Wdbc for 

regression problems 

Algorithms 5% 10% 15% 20% 25% 30% Error reduction % 

Original 92.66 88.91 83.51 83.31 79.12 74.89 - 

Weka 97.39 95.75 94.21 94.62 93.51 91.16 65.97 

Sign 87.18 83.91 80.78 78.42 72.94 66.93 -35.03 

Correlation 93.97 92.16 89.87 88.26 87.59 84.09 34.23 

ReliefF 94.72 91.59 89.81 87.91 86.18 84.31 32.27 

Weka-Correlation 98.13 97.16 96.36 95.32 95.07 92.82 74.25 

Weka-ReliefF 98.16 96.96 96.78 96.19 95.27 94.37 77.20 

Sign-Correlation 90.68 87.76 86.65 84.68 82.47 79.89 9.98 

Sign-ReliefF 92.04 89.67 86.09 83.99 81.95 76.76 8.31 

Correlation-Weka 97.65 97.08 96.41 95.67 95.15 91.92 73.90 

Correlation-Sign 93.84 89.14 89.52 85.68 83.52 79.61 19.08 

ReliefF-Weka 98.21 97.70 97.12 96.01 96.04 94.71 79.69 

ReliefF-Sign 92.95 90.80 89.04 85.35 83.39 80.23 18.48 

NDFS-Binary 97.45 97.35 97.85 96.77 94.98 91.58 75.81 

NDFS-Binary-Cfs 1 97.04 97.25 97.30 96.72 96.08 92.56 77.01 

NDFS-Binary-Cfs 2 98.38 97.47 97.87 96.90 96.72 93.53 80.75 

NDFS-Integer 97.48 96.68 95.66 94.81 94.16 90.39 68.88 
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