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Abstract

The purpose of this study is to find an optimal experimental design for cancer biomarker

reproducibility studies. A biomarker is defined as a characteristic that is objectively mea-

sured and evaluated as an indicator of normal biologic processes, pathogenic processes, or

pharmacologic responses to a therapeutic intervention (CCR Focus March 9, 2010). Vital

signs, such as blood pressure, can also be considered biomarkers. Experiments that measure

biomarkers can be costly and time consuming. In response to these factors, this study has

identified and developed an algorithm that determines optimal allocation of samples for the

most effective experimental results. This biomarker reproducibility study estimates the vari-

ance of laboratory measurements by using the intraclass correlation coefficient (ICC), which,

unlike the F test, uses no hypothesis testing of population means. The ICC evaluates the

amount of overall variance relative to between-subject variability (von Eye et al. 2005). This

study focuses on finding the most cost-efficient design for cancer biomarker studies assessing

reproducibility.

Index words: cancer biomarker, experimental design, intraclass correlation coefficient
(ICC)
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Chapter 1

Objective of Cancer Biomarker

Designs

In reproducibility studies, the same experiment is performed several times, and an attempt

is made to determine whether the same result is produced. An example of a reproducibility

study was done by Dobbin et al. (2005) to measure gene expression values from microar-

rays. It used the between laboratory ICC as the measure of reproducibility with multiple

laboratories. Another study that used reproducibility was the McShane et al. study (2000).

This study compared the reproducibility of p53 measurements in different tumors. The

laboratory reproducibility between laboratories is compared. Another example is the study

done by Jessup et al. (2009) to determine the expression of 18q LOH. The chromosome

18q LOH (long arm of the chromosome) is a prognostic marker. It was shown that stage II

colon cancer patients with 18q LOH had a smaller rate of survival. This study measured

whether the loss of heterozygosity on the long arm of chromosome 18 was reproducible in

different laboratories. The reproducibility must be established before it can be used in a

large clinical trial. Reproducibility studies are important because they will test whether the

results of an event in one situation can be reproduced in another situation. In many cases
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the results from different laboratories will be biased, and therefore the decisions made by

doctors for the patients will be based on biased information. Reproducibility ensures the

laboratory results from different laboratories are the same and not biased. The intraclass

correlation coefficient (ICC) is one measurement of reproducibility. The variability of the

ICC is determined by measuring the mean square error (MSE), and designs that result in

smaller MSE are preferred. When the MSE is small, if the experiment is repeated, then the

same ICC is expected. The closer the ICC is to 1, the greater the likelihood of experimental

reproducibility. When the ICC is 1, the results in one laboratory should be reproduced in

another laboratory. The ICC is a better measurement than the regular Pearson correlation,

because the ICC considers experimental design. These experiments can be expensive, and

in some cases, measurement of the sample just once can be costly. Therefore, the focus of

this study is to construct a design that provides the most cost-effective information about

an experiment. In a traditional statistical setting (such as an F-test), groups are arranged

to detect statistical differences. A reproducibility study estimates the similarly between the

groups. In this study, the ICC was used as a measure of reproducibility to test whether the

laboratories are the same.
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Chapter 2

Literature Review

Saito et al. (2006) examined designs in which multiple raters evaluated multiple subjects to

determine the inter-rater reliability of rating scales. A two-way analysis of variance (ANOVA)

model without interaction was used, which identified subjects and raters as random effects.

A study was performed on the number of subjects and the number of raters that minimized

the variance of the ICC with a fixed total number of ratings. The relative ratio is the ratio of

rater variance to error variance. A large number of raters improved the accuracy of the ICC

when the relative ratio was greater. The Saito et al. (2006) included 144 observations, but

since the study utilized 12 raters to obtain these 144 observations, this approach becomes

an expensive proposition in terms of reproducibility. Their investigation was a rater study,

and it cost nothing to rate a single item repeatedly, but it can be expensive to repeat an

experiment even once across 12 laboratories. Also, the logistics of employing more than a

small number of laboratories would not prove feasible. For the same rater to rate the same

item is inexpensive, but having the same laboratory measure the same sample several times

is expensive. Each laboratory experiment can also be complex. Additionally, as more steps

exist in a protocol, the likelihood that people will not follow that exact protocol increases.

Duplication of protocol is imperative to the validity of a study.
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The laboratory effect is analogous to the rater effect. Their rater-to-rater variation applies

to our laboratory-to-laboratory variation. One rater may rate a little high just as one

laboratory may score a little higher than another. The Saito et al. (2006) study is similar

to our research, but the key differences are costs and context. The Saito et al. (2006) study

context included multiple raters who performed assessments, whereas this study included

multiple laboratories which performed assays. These cost-free raters, in the Saito et al.

(2006) study, can be compared to laboratories in this study, which in theory are costly. The

Saito et al. (2006) study has many raters, and in contrast, our study involved only four

laboratories.

The McShane et al. study (2000) was performed to assess the reproducibility of immuno-

histochemistry for measuring the p53 expression in bladder tumors. The McShane study,

which compared laboratories, did not answer the question under the examination of this

study. The objective of this study is to design a reproducibility study to give the best or

smallest root MSE with a fixed total number of observations. McShane et al. (2000) used a

different design than the design used in this study, which examined laboratory-to-laboratory

reproducibility. They used one design, while this study compared multiple designs to deter-

mine the best design for the study. Their experiment implicated fifty paraffin blocks that

were selected randomly from invasive primary bladder tumors. After each block was stained,

intralaboratory and interlaboratory studies were observed with consideration for staining

and scoring to establish whether the stains were positive or negative. McShane et al. (2000)

used a design with two replications within the laboratory per sample and compared labo-

ratories on a scoring method, which produced integers from 0 to 4 with the result that the

data were nominal. This study assumes continuous data from a normal distribution.

Bland et al. (2010) stated that in order to determine whether a new measurement technique

should replace an established one, the clinical measurement contrast of the new technique to

the established one can be necessary to establish whether the two techniques agree. However,
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such a comparison can be performed incorrectly by using correlation coefficients, because,

sometimes, the meaning of statistical correlation is ambiguous. The correlation coefficient “r”

measures the strength of a linear relation between two variables, not the agreement between

them. Bland et al. (2010) pointed out that data which seem to be in poor agreement

can generate strong correlations. An example was reported by Serfontein and Jaroszewicz

(1978) that compared two methods for the measurement of gestational age. Babies with a

gestational age of 35 weeks by one method had gestations between 34 and 39.5 by the other

method; but, the comparison produced a high r value (0.85).

Another observation from Bland et al. (2010) is that a change in the scale of measure-

ment affects the agreement but not the correlation. For example, subcutaneous fat can be

measured by skinfold calipers. The calipers will measure two thicknesses of fat. If caliper

measurements were plotted against half-caliper measurements a straight line with a slope

of 2.0 should be obtained. The correlation would be 1.0, but the measurements would not

agree, because the fat thickness was obtained by two methods. In addition, another example

described by Bland et al. (2010) is when the range of the true quantity sample is wide, the

correlation will be larger than if the range is small. When a subject has a peak expiratory

flow meter (PEFR) that is less than 500 l/min, r is 0.88; while for those with greater PE-

FRs, r is 0.90. These are less than the total correlation of 0.94, but according to Bland et

al. (2010) it is not reasonable to argue that agreement is worse below 500 l/min and worse

above 500 l/min than it is for everybody. Investigators usually try to compare two methods

over the whole range of values encountered, so a high correlation can result.

There may be a “Gold Standard” established measurement method that works. Sometimes,

researchers try to find a cheaper version of the Gold Standard. The assays must be approved

by ethical committees in order for them to be used. We assume there is no Gold Standard

when using the ICC to access reproducibility.

For a set of samples, two different measurements are performed on each sample resulting in
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two times the samples. Each of the samples is shown on the Bland Altman plot by the mean

of the two measurements as the abscissa value and the difference between the two values as

the ordinate value.

The ICC has been used extensively and, therefore, is applicable to this study. However,

there are other correlation measurement methods, such as the method used in the 1989 Lin

et al. study, which developed a new reproducibility index. This index is the correlation

involving two readings that should ideally fall on a 45 degree line through the origin. One

reading comes from the x-axis, and the other reading comes from the y-axis. This index,

known as the Lin concordance correlation coefficient (CCC), measures how well a new read-

ing of observations replicates an original set. Lin’s CCC is an alternative to the ordinary

Pearson correlation coefficient, which measures the linear relationship between two sets of

measurements. The slope of the line relating the two readings should be 1 for the second

reading to reproduce the first reading. The statistical properties of Lin’s estimate are ade-

quately assessed using an inverse hyperbolic tangent transformation (also known as Fisher

transformation). Correlation measures can miss systematic shifts and do not capture the

deviation from the 45 degree line. The Lin Concordance Correlation Coefficient measures the

deviation from the 45 degree line. Calculating the Lin Concordance Correlation Coefficient

for experimental designs would be nontrivial for our study, because several plots would be

needed; therefore, the Coefficient is not used in our study. Our model has two sources of

variation, including the biological sample and laboratory, so more scatter plots would need

to be formed.

The coefficient ρc is derived to allow the researcher to determine how well the relationship

between the measurements is represented by a line through the origin at a 45-degree angle.

If the two measurements have identical results, the measurements are represented by a line
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through the origin at an angle of 45 degrees. The equation for ρc is as follows:

ρc = 1− E[(Y1 − Y2)
2]

σ2
1 + σ2

2 + (µ1 − µ2)2
(2.1)

The Pearson Correlation Coefficient R is defined as:

R =
Σ(Y1 − µ1)(Y2 − µ2)

[Σ(Y1 − µ1)2Σ(Y2 − µ2)2]
1
2

(2.2)

(Kutner et al. 2005)

The expected squared perpendicular deviation from the line when the measurements are

correlated is E[(Y1 − Y2)
2], and σ2

1 + σ2
2 + (µ1 − µ2)

2 is the expected squared perpendicular

deviation from the line when the measurements are uncorrelated.

ρc can also be written as

ρc = R ∗ Cb. (2.3)

R is the Pearson correlation coefficient. Cb, which is the second measurement component, is

a bias factor that is calculated as follows:

Cb =
2

v+1
v+u2

(2.4)

where Cb measures ”how far the best fit line deviates from the 45 degree line,”

v =
s1
s2

(2.5)

and

u =
µ1 − µ2√
s1 ∗ s2

(2.6)

The means of the first and the second set of measurements are µ1 and µ2, respectively.
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The standard deviations of the first and the second set of measurements are s1 and s2 ,

respectively.

If β1 = s1
s2

and β0 = µ1 - β1 µ2 are the slope and intercept from the conditional distribution

of Y1 given Y2, then

ρc =
2β1s2

2

(s12 + s22)[(β0 − 0) + (β1 − 1)µ2]
2 . (2.7)

The inverse hyperbolic transformation or the Fisher Z transformation is

Z = log(
1 + ρc

1− ρc
) (2.8)

(Lin 1989 and Versaudaraan, 2009).

In addition, this study could have been done such that an F test was completed to compare

the sample means. The null hypothesis of this F test would be that the means of the

laboratories are equal, while the alternative is that the means of the laboratories are not

equal. Therefore,

H0 : µLaboratory1 = µLaboratory2 = µLaboratory3 = µLaboratory4

HA: not all population means of laboratories are equal

and

F =
MSL

MSE
(2.9)

such that MSL is the mean square of the laboratories and MSE is the mean square of the

error. Please see, for example, Table 4.8 without interaction.

This test could have been done in this study to compare whether the laboratories are getting

the same average result. In contrast, this ICC laboratory study does not reject the null

hypothesis when there are no laboratory effects but instead the ICC determines how well

the laboratories agree with each other.
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The Dobbin et al. (2005) study determines whether 4 laboratories are reproducible using

unbalanced designs. This study used the ICC and hierarchical cluster analysis to determine

that complete tumor microarray analysis can be performed for a single study at multiple

independent laboratories. From this study, it was shown that there is a possibility to develop

a standardized assay that has sufficient reproducibility for clinical use.
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Chapter 3

Background

The sample size is an integer multiple of the number of biological samples and laboratories

for a design when every cell has the same number of observations (known as a balanced

design). This is not true for an experiment, where each cell does not have the same number

of observations, known as an unbalanced design. By replication, it is possible to estimate

the experimental error variance and measure the variability between the laboratories and the

biological samples. A repeated biological sample or laboratory effect reveals any difference

in the response compared to a prior response resulting from experimental error. When the

experimental error variance is low, the response is extremely reproducible. With a large

variance, the response is not very reproducible (Kutner et al. 2005).

The ICC is a variance decomposition method to evaluate the portion of general variance

attributable to between-subject variability. Theoretically, the ICC formula for a population

is expressed as

ICC =
σ2
B

σ2
B + σ2

W

, (3.1)

where σ2
B, is the variance between cases and σ2

W indicates the variance within cases. The

variance between cases and the variance within cases cover the total variance of the ratings.

Both components are estimated using Analysis of Variance (ANOVA) methods (von Eye et

15



al. 2005).

A data vector y is a random sample from an unknown population. f(y|θ) is the probability

density function (PDF) that determines the probability of observing the data vector y given

the parameter θ. For a set of parameter values, the PDF will have some data that has a

higher probability than other data. One method of estimation is maximum likelihood (ML).

Given the data and a model, among all probability densities, the goal of maximum likelihood

is to find the model that is most likely to have produced the data.

In order to reach this goal, we determine the most likely PDF by setting L(θ|y)=f(y|θ),

where L(θ|y) is the likelihood of the parameter θ given y. When y is the data vector and

θ is the vector of parameters in the distribution function of y, this function can be written

as f(y|θ). Therefore, for some, the given value of θ, f(y|θ) is the density function of y. In

conclusion, the maximum likelihood finds the θ that maximizes that likelihood, given the

data.

A method related to ML is restricted maximum likelihood (REML). This applies ML to

linear functions of y. An example of a linear function is KTy for which KT causes KTy to

contain none of the fixed effects that are part of the model for y. The variance components

of REML are estimated without being affected by fixed effects.

Exact mathematical results are not feasible for this research, because closed form expressions

cannot be obtained for all of the experimental designs considered. Therefore, simulations

are used to compare the designs.

The following Random Effects Model will be considered

YBLR = µ+ bB + lL + ϵBLR (3.2)

where B = 1, 2, ..., B0, B0=number of biological samples, and bB is the effect of biological

sample B, L = 1, 2, ..., L0, L0=number of laboratories, and lL is the effect of laboratory L,
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R = 1, 2, ..., R0, R0=number of replications. In addition, µ is constant, bB are independent

N(0, σ2
b ), lL are independent N(0, σ2

l ), and ϵBLR are independent N(0, σ2
e).

The model used has no interaction term, yet if an interaction term was used the model would

have the form

YBLR = µ+ bB + lL + (bl)BL + ϵBLR. (3.3)

There is a method by Scheffe (1959) in the book The Analysis of Variance that tests for an

interaction in a 2 way layout with 1 replication per cell, yet our models assumes that there

is no interaction term.

In order to use the method of maximum likelihood, it is assumed that YBLR are jointly

normally distributed. The density function of the multivariate normal distribution is given

as

f(Y ) =
1

(2π)p/2|Σ|1/2
exp[−1

2
(Y − µ)′Σ−1(Y − µ)]. (3.4)

The joint density function for YBLR is shown in Equation 3.5: this applies to other places

below. The mean vector µ in this equation is Zu. σ2Y is equivalent to the variance-covariance

matrix Σ below:

f(Y ) =
1

(2π)nT /2|Σ|1/2
exp[−1

2
(Y −Xβ)′Σ−1(Y −Xβ)] (3.5)

In order to find the maximum likelihood estimates of the parameters, the log of Equation

3.5 is obtained and is shown below:

logeL = −nT

2
loge(2π)−

1

2
loge|Σ| −

1

2
(Y −Xβ)′Σ−1(Y −Xβ) (3.6)

(Kutner et al. 2005)
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Maximum likelihood estimates are then found for σ2
b , σ

2
l , and σ2

e .

This is a specific example for three biological samples, two laboratories, and two replications.

The observation matrix is a 12× 1 matrix, and this is denoted as Y. Other examples can be

provided as well for different numbers of biological samples, laboratories, and replications.

The ICC is calculated from Equation 3.2.

12X1 Observation Matrix, Y is shown in Equation 3.7:



YB1L1R1

YB1L1R2

YB1L2R1

YB1L2R2

YB2L1R1

YB2L1R2

YB2L2R1

YB2L2R2

YB3L1R1

YB3L1R2

YB3L2R1

YB3L2R2



(3.7)
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The covariance matrix is defined as follows where ⊗ is the Kronecker Product:

I3⊗



σ2
b + σ2

l + σ2
e σ2

b + σ2
l σ2

b σ2
b

σ2
b + σ2

l σ2
b + σ2

l + σ2
e σ2

b σ2
b

σ2
b σ2

b σ2
b + σ2

l + σ2
e σ2

b + σ2
l

σ2
b σ2

b σ2
b + σ2

l σ2
b + σ2

l + σ2
e


+(J3,3−I3)⊗



σ2
l σ2

l 0 0

σ2
l σ2

l 0 0

0 0 σ2
l σ2

l

0 0 σ2
l σ2

l


(3.8)

such that J3,3= 
1 1 1

1 1 1

1 1 1

 (3.9)

and I3= 
1 0 0

0 1 0

0 0 1

 (3.10)

For between laboratories, the estimate is

ICCB =
σ̂2
b

σ̂2
b + σ̂2

l + σ̂2
e

. (3.11)

The within laboratory estimate is

ICCW =
σ̂2
b

σ̂2
b + σ̂2

e

. (3.12)

Within laboratory experiments are experiments that are done in the same laboratory. Be-

tween laboratory experiments are experiments from different laboratories that are compared.

For example, 12 samples, three laboratories, and two replicates per laboratory equal 72 ob-

servations. σ2
b is driven by biological variation. In laboratory reproduction studies, the

19



researcher is often more interested in between laboratory agreement than within laboratory

agreement. The real independent replications are the samples. Complete within laboratory

replicates show how well laboratories agree with themselves. Ideally, the researcher would

like to use most of the replications on between laboratory replications and not within lab-

oratory replications, because the ICCB is driven by biological variation. Multiple within

laboratory replications give good within laboratory estimates but poor between laboratory

estimates. The analysis of variance depends, in many situations, on whether every cell of

data has the same number of observations. When every cell has the same number of ob-

servations, the data are balanced. When the data are unbalanced, some cells have different

numbers of replicates. Unbalanced laboratory designs can give more between laboratory

replications.

It is not obvious whether the same marker will give the same result on the same person. The

intention is to measure whether, if tested twice in the same laboratory, the same answer will

be found. Then, a measurement will be taken to determine whether two different laboratories

give the same answer. It is not ethical to test this on people if it is not reproducible in the

same laboratory. The logistics and reproducibility determine whether it can be performed

in multiple laboratories compared to just one laboratory, as well as in a different laboratory.

According to Burdick et al. (2005) (page 80) a confidence interval is constructed as:

σ2
o

γY
(3.13)

where the numerator and denominator are defined by

σ2
o = max[0,

(B0 − 1)MSB

L0R0W2

− (L0B0R0 − L0 −B0 + 1)MSE

lrW3

] (3.14)

and

γY =
(l − 1)MSL

brW1

+
(b− 1)MSB

brW2

+
(lbr − l − b+ 1)MSE

lbrW3

(3.15)
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whereW1, W2, andW3 are equal to chi square random variables with degrees of freedom L0-1,

B0-1 and L0*B0*R0-L0-B0+1, respectively. The values found at the 2.5 and 97.5 percentiles

are the left and right ends of the confidence interval, respectively. σ2
o and γY are generalized

pivotal quantities as define in Burdick et al. (2005). The mean squares of the sample are

chi square distributed so the W’s are chi squared. 100,000 values are distributed because it

is hard to estimate the percentiles in the tails. The confidence interval should contain the

true values of the parameters 95 percent of the time.

This study is interested in measuring between laboratory reproducibility as well as possible.

The between laboratories are hardest to estimate because there are a limited number of

laboratories. If one can estimate between laboratory reproducibility, then one can also

estimate within laboratory reproducibility. The within laboratory study can be done with

only one laboratory. Intuitively the 1 replication design is better than the other 2 designs

because the 1 replication design uses the most biological samples. The more biological sample

replicates there are the better the estimates. A large sample size gives the best estimation of

biological variance to minimize the variance. Some believed an unbalanced design was the

best design because the one replication design has no within laboratory replications. Also,

it seemed with a 1 replication design that experimental error could not be estimated well.
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Chapter 4

Results

The data used in this study was simulated in R and is not laboratory data. We generated

data from different models using R and the effect of errors were generated as normal random

variables. The parameters were fixed at different settings. An algorithm was developed based

upon the equations described in the background section, and it was applied to samples of

size 48, 72 and 96 to study the optimal experimental design. The 48 sample results are

shown in this section, while the 72 and 96 samples are in the Appendix due to similarities.

In general, it was found that the 1 replication design was the optimal design, because it has

the smallest root MSE of any of the samples. If the root MSE is smaller, then this implies

a better design.

The 2 replicate linear design has the highest root MSE; and therefore, it is the worst design.

Since the 2 replicate design has more replicates, it uses fewer biological samples because the

population or total number of observations is fixed; and this causes the design to have a poor

root MSE. 2 biological samples in each cell means fewer biological samples. The 48 sample

designs have higher root MSE values than the 72 sample designs and the 96 sample designs

due to the sample size. The 96 sample designs have smaller root MSE designs than the 48

sample designs and the 72 sample designs.
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48 Sample

The balanced 2 replicate design is shown in Table 4.15. Each cell has two observations

indicated with ”x’s”. The 2 replicate design has 6 biological samples and 4 laboratories.

The balanced and unbalanced 1 replicate designs are shown in Table 4.16 and Table 4.17,

respectively. The 1 replicate design has 12 biological samples and 4 laboratories, and the

unbalanced design has 8 biological samples with 4 laboratories. Each of these Tables has

biological samples and laboratories that equal 48 observations.

Tables 4.1, 4.2 and 4.3 show the simulation results from each design and different variance

parameter settings. All models were fit using REML. Each row represents 1,000 simulations.

Model A has the estimates of σ2
e=1.0, σ2

l =0.5 and σ2
b=3.5. Model B has the estimates of

σ2
e=1.0, σ2

l =1.0 and σ2
b=4.67. Model C has the estimates of σ2

e=1.0, σ2
l =1.0 and σ2

b=2.33.

Table 4.1 shows balanced data with 2 replications for a sample of size 48. Table 4.2 has

balanced data with 1 replication for a sample size of 48. Table 4.3 has unbalanced data for

a sample size of 48. Model B has the smallest root MSE for the within ICC, and model A

has the smallest root MSE for the between ICC for a sample of size 48. The 1 replication

design has the smallest root MSE, and the 2 replication design has the largest root MSE

for a sample of size 48. Since REML is used some of the variance values will result in zero

estimates for variance parameters. For the balanced 2 replication data, Model B has the

least number of zeros for the laboratory variance. For the balanced 1 replication data and

the unbalanced data, Model C has the least number of zeros for the laboratory variance. For

each model, there are no zeros for the biological variance.

Tables 4.4 and 4.5 show simulation results, but models were instead fit using maximum

likelihood. Table 4.4 shows balanced Linear Model data with 2 replications for a sample of

size 48. These results are different from the Table 4.1 REML 2 replicate balanced design

data. Table 4.5 shows balanced data with 1 replication for a sample of size 48. The 1

replicate design results for REML are the same as the 1 replicate ML design results.
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Figures 4.1, 4.2 and 4.3 show a graphical comparison of the designs for 48 total observations.

Figure 4.4 and 4.5 show the bias and variance of the between-laboratory intraclass correlation

coefficient as a function of the true between ICC. It is shown on the bias squared plot that

the center of the graph is noisier than the tails of the graph. This is because there is less

variability in the tails of the graph and more variability in the center of the graph. On the

variance plot, the 1 replicate design has the smallest standard error and is therefore the best

design. The biggest advantage is around a correlation of 0.5, because there is the greatest

difference between the designs as seen in the right of Figure 4.4. These figures show that the

root MSE is minimized for the 1 replicate design.

ANOVA tables are presented in Tables 4.6-4.11. Note that when an interaction term is

added to the model (Table 4.7), there are no degrees of freedom for error. The assumption

of no interaction is key to our comparisons. If there is an interaction, this design will not

necessarily be optimal. For a model with an interaction term, one would have to do more

work to determine the best design.

Tables 4.12-4.14 compare results of confidence intervals from the 2 replicate and 1 replicate

designs for Model A, Model B and Model C. Although the 1 replicate intervals are narrower,

the coverage is not maintained at 95 percent. This shows a drawback of the one replicate

design.

As discussed previously, results for 72 and 96 observations were similar and are presented

in the Appendix. The 96 sample size had the smallest root MSE values, and the 48 sample

size had the largest root MSE values.
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Figure 4.1: ICC between values of a 48 sample for model A.
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Table 4.6: LMER 2 Replication Design with Interaction

df df actual E(MS)
Biological Sample b-1 5 σ2

ϵ + 2Lσ2
α + 2σ2

αβ

Laboratory Effect l-1 3 σ2
ϵ + 2Bσ2

β + 2σ2
αβ

Interaction (b-1)(l-1) 15 σ2
ϵ + 2σ2

αβ

Error (r-1)bl 24 σ2
ϵ

Total rbl-1 47

Table 4.7: LMER 1 Replication Design with Interaction

df df actual E(MS)
Biological Sample b-1 11 σ2

ϵ + Lσ2
α + σ2

αβ

Laboratory Effect l-1 3 σ2
ϵ + Bσ2

β + σ2
αβ

Interaction (b-1)(l-1) 33 σ2
ϵ + σ2

αβ

Error (r-1)bl 0 σ2
ϵ

Total rbl-1 47

Table 4.8: LMER 2 Replication Design with no Interaction

df df actual E(MS)
Biological Sample b-1 5 σ2

ϵ + 2Lσ2
β

Laboratory Effect l-1 3 σ2
ϵ + 2Bσ2

α

Error rbl-b-l+1 39 σ2
ϵ

Total rbl-1 47

Table 4.9: LMER 1 Replication Design with no Interaction

df df actual E(MS)
Biological Sample b-1 11 σ2

ϵ + Lσ2
β

Laboratory Effect l-1 3 σ2
ϵ + Bσ2

α

Error (b-1)(l-1) 33 σ2
ϵ

Total bl-1 47
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Table 4.10: Linear Model 2 Replication Design with no Interaction

df df actual E(MS)

Biological Sample b-1 5 σ̂2
b = MS(B)−MS(E)

L

Laboratory Effect l-1 3 σ̂2
l = MS(L)−MS(E)

B

Error rbl-b-l+1 39 σ̂2
e = MS(E)

Total rbl-1 47

Table 4.11: Linear Model 1 Replication Design with no Interaction

df df actual E(MS)

Biological Sample b-1 11 σ̂2
b = MS(B)−MS(E)

L

Laboratory Effect l-1 3 σ̂2
l = MS(L)−MS(E)

B

Error (b-1)(l-1) 33 σ̂2
e = MS(E)

Total bl-1 47

Table 4.12: Model A 48 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.606335 0.084901 0.922
2 Replicate 0.635270 0.117607 0.963

Table 4.13: Model B 48 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.6166412 0.09128614 0.944
2 Replicate 0.6606639 0.1222401 0.963

Table 4.14: Model C 48 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.6260818 0.07160277 0.929
2 Replicate 0.6916461 0.0878267 0.961
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Table 4.15: 48 Sample 2 Replicate Design with 6 Samples and 4 Laboratories
Laboratory

1 2 3 4

Biological Sample

1 xx xx xx xx
2 xx xx xx xx
3 xx xx xx xx
4 xx xx xx xx
5 xx xx xx xx
6 xx xx xx xx

Table 4.16: 48 Sample 1 Replicate Design with 12 Samples and 4 Laboratories
Laboratory
1 2 3 4

Biological Sample

1 x x x x
2 x x x x
3 x x x x
4 x x x x
5 x x x x
6 x x x x
7 x x x x
8 x x x x
9 x x x x
10 x x x x
11 x x x x
12 x x x x

Table 4.17: 48 Sample Unbalanced Design with 8 Samples and 4 Laboratories
Laboratory

1 2 3 4

Biological Sample

1 xx xx x x
2 xx xx x x
3 xx xx x x
4 xx xx x x
5 x x xx xx
6 x x xx xx
7 x x xx xx
8 x x xx xx
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Chapter 5

Conclusion

The purpose of this thesis was to find an optimal experimental design for cancer biomarker

reproducibility studies. It focused on identifying the most cost-effective design for cancer

biomarker investigations assessing reproducibility. An algorithm was developed to determine

optimal allocations of samples for the most effective experimental results. This algorithm

was applied to sample sizes of 48, 72 and 96.

The results from this thesis demonstrate that the 1 replicate design gave the lowest root MSE

for the between ICC. This is somewhat surprising, because there are no within-laboratory

replicates; yet, this makes intuitive sense, because the 1 replicate designs use most of the

biological samples. These results rely critically on two assumptions: that the effects are nor-

mally distributed and that there is no laboratory by sample interaction as seen in Equation

3.2.

There are two commonly used criteria for comparing designs, which are the variance and the

confidence interval. Usually, in most cases, the best design has the smallest variance and

most narrow confidence interval width. From the designs that were utilized, it was found

that the 1 replicate design has the smallest variance and the most narrow confidence interval.

In this thesis, it was found that the one replication design was the best design. In studies
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such as the Dobbin et al. (2005) study, it was thought that the unbalanced design was the

best design. This thesis demonstrates that the one replication design is the best design.

36



Chapter 6

Resources

Bland, J., Altman, D. (2010). Statistical Methods for Assessing Agreement between Two

Methods of Clinical Measurement. International Journal of Nursing Studies,47, 931-936.

Burdick, R., Borror, C., Montgomery, D. Design and Analysis of Gauge R and R Studies:

Making Decisions with Confidence Intervals in Random and Mixed ANOVA Models, ASA-

SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, ASA, Alexandria,

VA, 2005.

Dobbin, K., Beer, D., Meyerson, M., Yeatman, T., Gerald, W., Jacobson, J., Conley, B.,

Buetow, K., Heiskanen, M., Simon, R., Minna, J., Girard, L., Misek, D., Taylor, J., Hanash,

S., Naoki, K., Hayes, D., Ladd-Acosta, C., Enkemann, S., Viale, A., Giordano, T. (2005,

January 15). Interlaboratory Comparability Study of Cancer Gene Expression Analysis us-

ing Oligonucleotide Microarrays. Clinical Cancer Research, 11 565-572.

Jessup, J., Dobbin, K., Hamilton, S., Thibodeau, S., Redston, M., Taube, S., Wang, Z.,

Benedetti, J. and the Program for the Assessment of Clinical Cancer Tests (PACCT) 18qLOH

Team. (2009) Interlaboratory assay reproducibility study for loss of heterozygosity on chro-

mosome 18 (18qLOH) in colon cancer. Journal of Clinical Oncology, 27: Supplement, Meet-

37



ing Abstract 4052.

Kutner, M., Nachtsheim, C., Neter, J., Li, W. Applied Linear Statistical Models, McGraw-Hill

Irwin New York, NY, 2005. Lin, L. (1989, March). A Concordance Correlation Coefficient

to Evaluate Reproducibility. Biometrics,45,255-268.

McShane, L. (2000, May 1). Reproducibility of p53 Immunohistochemistry in Bladder Tu-

mors. Clinical Cancer Research, 6, 1854-1864.

Saito, Y., Sozu, T., Hamada, C., Yoshimura, I. (2006). Effective Number of Subjects and

Number of Raters for Inter-Rater Reliability Studies. Statistics in Medicine,25, 1547-1560.

Scheffe, H., The Analysis of Variance, John Wiley and Sons, Inc. Canada, 1959.

Serfontein, G., Jaroszewicz, A. (1978). Estimation of Gestational Age at Birth: Comparison

of Two Methods. Arch Dis. Child, 53,509-511.

Versaudaraan, B. S. (2009, February 20). Lin’s Concordance Correlation Coefficient (Corre-

lation Coefficient with Small Sample). [web blog comment]. Retrieved from http://purabuana.

von Eye, A., Mun, E. (2005). Analyzing Rater Agreement: Manifest Variable Methods

Lawrence Erlbaum Associates, Publishers. wordpress.com/2009/02/20/lins-concordance-

correlation-coefficient-correlation-coefficient-with-small-sample/

38



Chapter 7

Appendix

72 Sample

In the 72 sample design, it is seen that the 1 replicate linear model and the 1 replicate LMER

model have the smallest root MSE. As stated previously, the linear model has no interaction

term, and, therefore, extra degrees of freedom cause the linear model to have a good fit.

Figures 7.1 through 7.3 show the ICC between root MSE values for model A, model B and

model C respectively. These results are seen in Tables 7.1 through 7.5. The squared bias and

variance are shown in Figure 7.4. It is apparent in Figure 7.4 that the squared bias is small

compared to the variance. The mean of each design is seen in Figure 7.5. In Table 7.15,

the 2 replicate design is shown where each cell has two ”x’s” to indicate two observations.

The balanced 1 replicate design is shown in Table 7.16. Table 7.17 shows the unbalanced

design. ANOVA tables are show in Tables 7.6-7.11. When an interaction term is added to

the model, there are no degrees of freedom for error. The results for confidence intervals of

1 replicate and 2 replicate designs are shown in Tables 7.12-7.14 for Model A, Model B and

Model C.
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Figure 7.1: ICC between values of a 72 sample for model A.
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Figure 7.2: ICC between values of a 72 sample for model B.
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Figure 7.3: ICC between values of a 72 sample for model C.
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Figure 7.4: Bias squared and variance of 1 replicate, 2 replicate, and unbalanced designs.
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the unbalanced design is the square symbol.

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

72 Sample Mean

true ICCb

m
ea

ni
cc

b
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Table 7.6: LMER 2 Replication Design with Interaction

df df actual E(MS)
Biological Sample b-1 8 σ2

ϵ + 2Lσ2
α + 2σ2

αβ

Laboratory Effect l-1 3 σ2
ϵ + 2Bσ2

β + 2σ2
αβ

Interaction (b-1)(l-1) 24 σ2
ϵ + 2σ2

αβ

Error (r-1)bl 36 σ2
ϵ

Total rbl-1 71

Table 7.7: LMER 1 Replication Design with Interaction

df df actual E(MS)
Biological Sample b-1 17 σ2

ϵ + Lσ2
α + σ2

αβ

Laboratory Effect l-1 3 σ2
ϵ + Bσ2

β + σ2
αβ

Interaction (b-1)(l-1) 51 σ2
ϵ + σ2

αβ

Error (r-1)bl 1 σ2
ϵ

Total rbl-1 71

Table 7.8: LMER 2 Replication Design with no Interaction

df df actual E(MS)
Biological Sample b-1 8 σ2

ϵ + 2Lσ2
β

Laboratory Effect l-1 3 σ2
ϵ + 2Bσ2

α

Error rbl-b-l+1 60 σ2
ϵ

Total rbl-1 71

Table 7.9: LMER 1 Replication Design with no Interaction

df df actual E(MS)
Biological Sample b-1 17 σ2

ϵ + Lσ2
β

Laboratory Effect l-1 3 σ2
ϵ + Bσ2

α

Error (b-1)(l-1) 51 σ2
ϵ

Total bl-1 71
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Table 7.10: Linear Model 2 Replication Design with no Interaction

df df actual E(MS)

Biological Sample b-1 8 σ̂2
b = MS(B)−MS(E)

L

Laboratory Effect l-1 3 σ̂2
l = MS(L)−MS(E)

B

Error rbl-b-l+1 60 σ̂2
e = MS(E)

Total rbl-1 71

Table 7.11: Linear Model 1 Replication Design with no Interaction

df df actual E(MS)

Biological Sample b-1 17 σ̂2
b = MS(B)−MS(E)

L

Laboratory Effect l-1 3 σ̂2
l = MS(L)−MS(E)

B

Error (b-1)(l-1) 51 σ̂2
e = MS(E)

Total bl-1 71

Table 7.12: Model A 72 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.536804 0.081189 0.902
2 Replicate 0.573068 0.113866 0.959

Table 7.13: Model B 72 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.5627318 0.09452231 0.926
2 Replicate 0.609554 0.1239345 0.946

Table 7.14: Model C 72 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.565991 0.05781505 0.92
2 Replicate 0.6298454 0.08614601 0.948
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Table 7.15: 72 Sample 2 Replicate Design with 9 Samples and 4 Laboratories
Laboratory

1 2 3 4

Biological Sample

1 xx xx xx xx
2 xx xx xx xx
3 xx xx xx xx
4 xx xx xx xx
5 xx xx xx xx
6 xx xx xx xx
7 xx xx xx xx
8 xx xx xx xx
9 xx xx xx xx

Table 7.16: 72 Sample 1 Replicate Design with 18 Samples and 4 Laboratories
Laboratory
1 2 3 4

Biological Sample

1 x x x x
2 x x x x
3 x x x x
4 x x x x
5 x x x x
6 x x x x
7 x x x x
8 x x x x
9 x x x x
10 x x x x
11 x x x x
12 x x x x
13 x x x x
14 x x x x
15 x x x x
16 x x x x
17 x x x x
18 x x x x
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Table 7.17: 72 Sample Unbalanced Design with 12 Samples and 4 Laboratories
Laboratory

1 2 3 4

Biological Sample

1 xx xx x x
2 xx xx x x
3 xx xx x x
4 xx xx x x
5 xx xx x x
6 xx xx x x
7 x x xx xx
8 x x xx xx
9 x x xx xx
10 x x xx xx
11 x x xx xx
12 x x xx xx
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96 Sample

The results from the 96 sample design demonstrate that the 1 replicate linear model and the 1

replicate LMER model have the smallest root MSE. Since the linear model has no interaction

term, the extra degrees of freedom cause the linear model to have a good fit. Tables 7.18

through 7.22 show these results. Figures 7.6 through 7.8 have the ICC between root MSE

values for model A, model B and model C, respectively. Figure 7.9 has the squared bias and

the variance. It is demonstrated in Figure 7.9 that the squared bias is small compared to

the variance. Figure 7.10 shows the mean of each design. The balanced 2 replicate design

is shown in Table 7.32, where each cell has two ”x’s” to indicate two observations. The

balanced 1 replicate design is shown in Table 7.33, and the unbalanced design is shown in

Table 7.34. Tables 7.23-7.28 show ANOVA tables. There are no degrees of freedom for error

when an interaction term is added to the model. Confidence intervals for 1 replicate and 2

replicate designs are shown in Tables 7.29-7.31 for Model A, Model B and Model C.
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Figure 7.6: ICC between values of a 96 sample for model A.
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Figure 7.7: ICC between values of a 96 sample for model B.
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Figure 7.8: ICC between values of a 96 sample for model C.
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Figure 7.9: Bias squared and variance of 1 replicate, 2 replicate, and unbalanced designs.
The circle symbol is the 2 replicate design, the 1 replicate design is the triangle symbol, and
the unbalanced design is the square symbol.
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Figure 7.10: Mean of 1 replicate, 2 replicate, and unbalanced designs. The circle symbol
is the 2 replicate design, the 1 replicate design is the triangle symbol, and the unbalanced
design is the square symbol.
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Table 7.23: LMER 2 Replication Design with Interaction

df df actual E(MS)
Biological Sample b-1 11 σ2

ϵ + 2Lσ2
α + 2σ2

αβ

Laboratory Effect l-1 3 σ2
ϵ + 2Bσ2

β + 2σ2
αβ

Interaction (b-1)(l-1) 33 σ2
ϵ + 2σ2

αβ

Error (r-1)bl 48 σ2
ϵ

Total rbl-1 95

Table 7.24: LMER 1 Replication Design with Interaction

df df actual E(MS)
Biological Sample b-1 23 σ2

ϵ + Lσ2
α + σ2

αβ

Laboratory Effect l-1 3 σ2
ϵ + Bσ2

β + σ2
αβ

Interaction (b-1)(l-1) 68 σ2
ϵ + σ2

αβ

Error (r-1)bl 1 σ2
ϵ

Total rbl-1 95

Table 7.25: LMER 2 Replication Design with no Interaction

df df actual E(MS)
Biological Sample b-1 11 σ2

ϵ + 2Lσ2
β

Laboratory Effect l-1 3 σ2
ϵ + 2Bσ2

α

Error rbl-b-l+1 81 σ2
ϵ

Total rbl-1 95

Table 7.26: LMER 1 Replication Design with no Interaction

df df actual E(MS)
Biological Sample b-1 23 σ2

ϵ + Lσ2
β

Laboratory Effect l-1 3 σ2
ϵ + Bσ2

α

Error (b-1)(l-1) 69 σ2
ϵ

Total bl-1 95
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Table 7.27: Linear Model 2 Replication Design with no Interaction

df df actual E(MS)

Biological Sample b-1 11 σ̂2
b = MS(B)−MS(E)

L

Laboratory Effect l-1 3 σ̂2
l = MS(L)−MS(E)

B

Error rbl-b-l+1 81 σ̂2
e = MS(E)

Total rbl-1 95

Table 7.28: Linear Model 1 Replication Design with no Interaction

df df actual E(MS)

Biological Sample b-1 23 σ̂2
b = MS(B)−MS(E)

L

Laboratory Effect l-1 3 σ̂2
l = MS(L)−MS(E)

B

Error (b-1)(l-1) 69 σ̂2
e = MS(E)

Total bl-1 95

Table 7.29: Model A 96 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.505002 0.083529 0.868
2 Replicate 0.539424 0.112881 0.944

Table 7.30: Model B 96 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.5422297 0.09719413 0.907
2 Replicate 0.584088 0.1182391 0.943

Table 7.31: Model C 96 Sample Confidence Interval

Mean Width Standard Deviation Width Coverage Probability
1 Replicate 0.5313649 0.0578626 0.89
2 Replicate 0.5948094 0.0802446 0.946
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Table 7.32: 96 Sample 2 Replicate Design with 12 Samples and 4 Laboratories
Laboratory

1 2 3 4

Biological Sample

1 xx xx xx xx
2 xx xx xx xx
3 xx xx xx xx
4 xx xx xx xx
5 xx xx xx xx
6 xx xx xx xx
7 xx xx xx xx
8 xx xx xx xx
9 xx xx xx xx
10 xx xx xx xx
11 xx xx xx xx
12 xx xx xx xx

Table 7.33: 96 Sample 1 Replicate Design with 24 Samples and 4 Laboratories
Laboratory
1 2 3 4

Biological Sample

1 x x x x
2 x x x x
3 x x x x
4 x x x x
5 x x x x
6 x x x x
7 x x x x
8 x x x x
9 x x x x
10 x x x x
11 x x x x
12 x x x x
13 x x x x
14 x x x x
15 x x x x
16 x x x x
17 x x x x
18 x x x x
19 x x x x
20 x x x x
21 x x x x
22 x x x x
23 x x x x
24 x x x x
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Table 7.34: 96 Sample Unbalanced Design with 16 Samples and 4 Laboratories
Laboratory

1 2 3 4

Biological Sample

1 xx xx x x
2 xx xx x x
3 xx xx x x
4 xx xx x x
5 xx xx x x
6 xx xx x x
7 xx xx x x
8 xx xx x x
9 x x xx xx
10 x x xx xx
11 x x xx xx
12 x x xx xx
13 x x xx xx
14 x x xx xx
15 x x xx xx
16 x x xx xx
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